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1 Introduction

One of the main successes of string theory as a theory of quantum gravity has been to

provide a statistical interpretation of black hole entropy [1]. This program has been very

explicitly carried out for a class of supersymmetric black holes and a detailed matching of

the string answer has been done in the large charge limit, where the string answer explicitly

matches with the Bekenstein-Hawking, or more generally, the Wald entropy [2] of the black

hole in question [3–10]. We refer the reader to [11] for a review and a more exhaustive set

of references.1 However, the string answer is the full quantum answer for the entropy of the

black hole and therefore also contains corrections to the Wald formula and it is interesting

to ask if a direct physical interpretation of these corrections is possible, at least in some

cases. In this paper, we will explore this question in the specific context of exponentially

suppressed corrections to the microscopic degeneracy [15].

In the context of extremal black holes there is a parallel way of posing the black hole

entropy problem. In particular, the near horizon geometry of such black holes is always of

the form AdS2⊗K where K is a compact manifold. Then, it was proposed in [16] that the

full quantum answer for the microscopic degeneracy associated with the black hole horizon

is contained in the quantum entropy function, defined as the string path integral over all

spacetimes which asymptote to the black hole near horizon geometry. The finite part of

this path integral is expected to contain the entropy of the black hole at the quantum level.

In particular, for extremal black holes carrying charges ~q ≡ qi [16],

dhor (~q) ≡
〈

exp

[

i

∮

qidθAi
θ

]〉finite

AdS2

, (1.1)

where dhor is the full quantum degeneracy associated with the black hole horizon, and Ai
θ

is the component of the ith gauge field along the boundary of the AdS2. In this picture

the entropy associated to the horizon degrees of freedom of an extremal blackhole is the

free energy corresponding to the partition function (1.1). This proposal has been tested

in a variety of ways, for which we refer the reader to [15, 17–22] and more generally the

lectures [23] for an overview. A particularly non-trivial test of this proposal is that the

leading quantum corrections in the large charge limit, which scale as log (charges), to the

semi-classical Bekenstein-Hawking formula as predicted from the string computation can be

reproduced from the quantum entropy function for N = 4 and N = 8 string theory [24, 25].

This is obtained by expanding the quantum entropy function about the saddle-point defined

by the near- horizon geometry of the black hole.

At this point it is natural to ask if the exponentially suppressed contributions to the

microscopic degeneracy have an interpretation from the point of view of the quantum

entropy function. It is proposed that these should be thought of as saddle-points of the

string path integral of (1.1) where the near-horizon geometry of the black hole is quotiented

by a ZN orbifold which we shall shortly review and define. This proposal already passes two

non-trivial tests. Firstly, it may be shown using appropriate coordinate transformations

1This matching extends to the negative discriminant states in N = 4 string theories as well, provided

the macroscopic configurations are carefully identified [12–14].
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that this configuration has the appropriate asymptotic behaviour for it to be considered an

admissible saddle-point to (1.1), and secondly, it gives the correct leading term for d (Q,P )

in the large-charge limit [17].

In this paper, we shall initiate a program aimed at providing a quantum test of this

proposal. The overall goal is to compute the log correction in the ZN orbifold of the

attractor geometry and match it against the microscopic answer available from the string

computation. We do not solve this problem in its entirety here. This paper is devoted

to developing firstly the necessary techniques that will permit us to solve this problem

efficiently, and secondly to carrying out a natural first consistency check of this conjecture

as an application of these techniques. In particular, as we shall review soon, the log

correction about these exponentially suppressed terms actually vanishes in N = 4 string

theory for arbitrary values of N . As a consistency check against this microscopic result,

we shall explicitly demonstrate that the contribution of a single N = 4 vector multiplet to

the log term vanishes about this saddle point. The full gravity calculation is technically

more involved, and is in progress.

A brief overview of this paper is as follows. In section 2 we briefly review the string

theory answer for the entropy of quarter-BPS black holes and the quantum entropy function

proposal for their macroscopic dual. These geometries are essentially ZN orbifolds of the

near horizon geometry of the black hole in question. Section 3 is a brief review of the

heat kernel method as applied to extract logarithmic terms from the partition function of

a quantum theory. As the overall goal of the paper is to compute the heat kernel about

these orbifolds and extract out log corrections to the black hole entropy, sections 4 and 5

develop new techniques for computing the heat kernel in these ZN orbifolds of AdS2, S
2

and AdS2 ⊗ S2. The AdS results are reached by analytic continuation from the sphere,

for the validity of which some evidence is provided in section 4. Finally in section 6 we

compute the contribution to the log term from a single N = 4 vector multiplet. We

find that though individual contributions from gauge fields, scalars and fermions have

very nontrivial N dependence, the final log contribution still vanishes when zero modes are

properly accounted for. This matches perfectly with our expectations from the microscopic

results reviewed in section 2. We then conclude.

2 Quarter-BPS black holes in N = 4 string theory and their entropy

We begin with a brief review of black hole entropy for N = 4 string theories. In particular,

we shall discuss the microscopic formula for black hole entropy obtained from string theory,

and the Quantum Entropy Function formalism [16] which is a prescription for computing

the full quantum entropy associated with the black hole horizon. We then propose a

quantum test of the proposal of [16] analogous to the tests performed in [24, 25].

2.1 Exponentially suppressed corrections to black hole entropy

In this section we briefly review the stringy origin of the entropy of 1
4 -BPS black holes in

N = 4 string theories [3, 4, 6, 10]. We refer the reader to [11] for an indepth account and

a more extensive set of references. In particular, we will study the degeneracy of 1
4 -BPS

– 3 –
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dyons in the large charge limit in which the results can be compared to the gravity side.

This is essentially a review of the results of [15]. We shall concentrate especially on the

N = 4 string theory obtained by compactifying Type IIB string theory on K3 × T 2 or

heterotic string theory on T 6. In this case the electric charge Q, and magnetic charge P of

a dyon are 28-dimensional vectors and the dyon degeneracy is given in terms of the Igusa

cusp form Φ10 by

d(Q,P ) = (−1)Q·P+1

∫

C
dρ̂dσ̂dv̂e−πi(ρ̂P

2+σ̂Q2+2v̂Q·P ) 1

Φ10(ρ̂, σ̂, v̂)
(2.1)

where ρ̂, σ̂ and v̂ are complex variables, and the integral is over C, which is a three real-

dimensional subspace of the C3 spanned by (ρ̂, σ̂, v̂). For more details, we refer the reader

to [10, 11, 15]. The poles of the integrand are the zeros of Φ10 which are located at

n2(σ̂ρ̂− v̂2) + jv̂ + n1σ̂ − ρ̂m1 +m2 = 0, (2.2)

where

m1, n1,m2, n2 ∈ Z, j ∈ 2Z+ 1, m1n1 +m2n2 +
j2

4
=

1

4
. (2.3)

We note here that the equations (2.2) are symmetric under the transformation (~m,~n, j) →
(−~m,−~n− j). We use this symmetry to set n2 ≥ 0. In the remainder of this paper, we

shall focus on the case of n2 ≥ 1.2 Further, for a given n2, we can use symmetries of Φ10

to restrict the range of m1, n1 and j to

0 ≤ n1 ≤ n2 − 1, 0 ≤ m1 ≤ n2 − 1, 0 ≤ j ≤ 2n2 − 1. (2.4)

We shall focus on how these results are used to evaluate the statistical entropy Sstat (Q,P ) ≡
ln d (Q,P ) and extract its behaviour in the large charge limit. The strategy one follows in

evaluating the integral in (2.1) has been explicated in [11]. The procedure is to deform the

contour C to values of (ρ̂2, σ̂2, v̂2) of the order of 1/charge. In that case, the integral in (2.1)

receives contributions from the deformed contour and from the poles of the integrand which

were crossed during this deformation. It can further be shown [11] that the dominant con-

tribution to d (Q,P ) arises from the the poles (2.2) of the integrand, while the contribution

from the deformed contour is subleading. Then using the residue theorem one first reduces

the integration variables in (2.1) from three to two by performing the integration over v̂.

The integrations over ρ̂ and σ̂ are performed using the method of steepest descent. It may

be shown that for a given choice of ~m,~n, j, the saddle point lies at [3, 11]

(ρ̂, σ̂,−v̂) = i

2n2
√

Q2P 2 − (Q · P )2
(

Q2, P 2, Q · P
)

− 1

n2

(

n1,−m1,
j

2

)

(2.5)

Using the above results, it is finally found that the degeneracy at the saddle point is given by

d(Q,P )n2 =
(−1)P ·Q

n2
exp

(

π
√

Q2P 2 − (Q · P )2/n2
)

exp

[

iπ

n2
(n1P

2 −m1Q
2 + jQ · P )

]

×
[

det(CΩ̂ +D)κ+2g(ρ)−1g(σ)−1(1 +O(q−2))
]

saddle
, (2.6)

2The case of n2 = 0 is also physically relevant. These poles capture the jumps in degeneracy as one

moves across walls of marginal stability [26].
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where

g(ρ) = η(ρ)24, q2 = (Q2, P 2, Q · P ), (2.7)

Where η(ρ) is Dedekind eta function and ρ, σ and v are variables defined in terms of

(ρ̂, σ̂, v̂) as
(

ρ v

v σ

)

= Ω = (AΩ̂ +B)(CΩ̂ +D)−1, Ω̂ =

(

ρ̂ v̂

v̂ σ̂

)

(2.8)

Here the matrices A, B, C and D are chosen such that

v =
n2(σ̂ρ̂− v̂2) + jv̂ + n1σ̂ −m1ρ̂+m2

det(CΩ̂ +D)
(2.9)

Thus in the un-hatted variables the pole (2.2) is at v = 0. The exponential term, apart from

phase factor, in the degeneracy gives the leading entropy which goes like SBH

n2
. Thus we see

that dominant contribution to the entropy comes from the saddle point for which n2 = 1.

Now in order to see the log correction in the entropy and to compare with macroscopic

entropy from gravity side, we take all the components of the charge vector to be very large.

We then uniformly scale all charges as Q→ ΛQ̃, P → ΛP̃ where Λ is very large number.

In this case the leading contribution to entropy and hence area scales as

π
√

Q2P 2 − (Q · P )2 → Λ2π

√

Q̃2P̃ 2 − (Q̃ · P̃ )2 (2.10)

Thus the terms in the degeneracy (2.6) which are proportional to Λ will give logarithm

correction to entropy. It is easy to see that (ρ̂, σ̂,−v̂) or Ω̂ at the saddle point do not

depend on Λ and hence the matrices A, B, C, D and Ω|saddle are independent of Λ. Thus

we see that the term in the square bracket of d(Q,P )n2 goes as O(1) + O( 1
Λ2 ). Thus the

entropy from the saddle point is given by

Sn2 = ln d(Q,P )n2 =
(

π
√

Q2P 2 − (Q · P )2/n2
)

+ ln

[

O(1) +O
(

1

Λ2

)]

∼
(

π
√

Q2P 2 − (Q · P )2/n2
)

+
O(1)

Λ2
+ . . . (2.11)

Thus in this example of N = 4 string theory there is no log corrections to the leading

exponential term. This statement is independent of the value of n2. In section 6 we will

show from the quantum entropy function that the log correction for a single N = 4 vector

multiplet vanishes. Firstly, this is entirely consistent with the above result, and secondly it

gives evidence that there should be no log corrections for any N = 4 string theory at any

value of n2. To prove this statement explicitly, we will need to include the contribution of

the full gravity multiplet, which is work in progress.

2.2 The quantum entropy function and their macroscopic origin

We have seen in section 2.1 that while the statistical entropy d (Q,P ) grows as eπ
√
∆ in

the large charge limit, it also has exponentially suppressed contributions which grow as

e
π
√
∆

n2 in the same scaling limit, where n2 > 1. In the context of extremal black holes there

– 5 –
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is a complementary formula for the full quantum entropy of the black hole, known as the

quantum entropy function [16]. The proposal is that the degeneracy associated with the

horizon degrees of freedom of the extremal black hole is captured by the string partition

function over spacetimes that asymptote to the near-horizon geometry of the black hole.3

In particular, the dominant contribution, which corresponds to the Bekenstein-Hawking

(more generally, Wald) entropy corresponds to the following saddle-point of the string

path integral4

ds2 = v
(

dη2 + sinh2 ηdθ2
)

+ u
(

dψ2 + sin2 ψdφ2
)

+
R2

τ2
|dx4 + τdx5|2,

GI =
1

8π2
[

QI sinψdx
5 ∧ dψ ∧ dφ+ PI sinψdx

4 ∧ dψ ∧ dφ+ dual
]

,

V i
I = constant, V r

I = constant.

(2.12)

We refer the reader to [27] for more details about this solution. Here we merely mention

that the parameters u, v,R, τ and V are determined completely in terms of the electric and

magnetic charges (Q,P ) of the black hole, and u = v. R and τ do not scale with the AdS

radius u. A particularly non-trivial test of this proposal is that expanding in quadratic

fluctuations about this saddle point yields a term proportional to log a, where a is the radius

of the AdS2 and S2 submanifolds. This matches precisely with the log a term extracted from

the microscopic degeneracy as in section 2.1, in that both of them are zero5 [24, 25]. At

this point, it is natural to ask if the exponentially suppressed corrections to the microscopic

degeneracy have a proposed counterpart in the quantum entropy function formalism, and

it turns out that the answer is yes. These correspond to the following orbifolds of the

geometry (2.12) [15, 17]

θ 7→ θ +
2π

N
, φ 7→ φ− 2π

N
, x5 7→ x5 +

2πκ

N
, gcd (κ,N) = 1. (2.13)

It may be seen, for one, that the leading contribution to the entropy from these saddle

points is A
4N [15, 17], which precisely matches the leading contribution of the exponentially

suppressed terms with the identification n2 ↔ N . Additionally, it can also be shown [17]

that these geometries obey the appropriate fall-off conditions for them to be included in the

string path integral in (1.1). We refer the reader to [15, 17, 27] for more details regarding

this orbifold. In this paper, we will perform a further test of this proposal. In particular,

as we have seen above, there exist a family of N = 4 string theories with an arbitrary

number of vector multiplets for which the term proportional to log a vanishes even about

these exponentially suppressed terms. It must therefore be that the contribution of a single

3The near-horizon geometry of an extremal black hole is AdS2 times a compact manifold K. Due to the

presence of the AdS2 factor, the string path integral diverges. There is however a well-defined prescription

by which a finite part of this partition function may be extracted [16]. By now, there is very non-trivial

evidence that this finite part does indeed correctly capture the degeneracy in the horizon degrees of freedom

of the black hole, see [23] for a review.
4We write the solution in the supergravity obtained by compactifying Type IIB Supergravity on K3.
5The corresponding computation for black holes in N = 8 string theory yields a non-vanishing quantity

which is also found to match with the microscopic formula [25].

– 6 –
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N = 4 vector multiplet to the log term vanishes. In this paper, we will set up heat kernel

techniques to tackle this problem, and explicitly verify this conjecture. In particular, we will

revisit the computation of the one-loop partition function carried out in the near horizon

AdS2 ⊗ S2 geometry of a 1
4 -BPS black hole in [24] and carry out the same computation on

the ZN orbifold of the geometry where the ZN quotients the θ and φ angles of AdS2 and S2

as in (2.13). We will then demonstrate that the contribution of the N = 4 vector multiplet

in this orbifolded background indeed vanishes, in accordance with the expectation from the

microscopic results.6

3 The heat kernel method and logarithmic corrections to the partition

function

This section is a brief review of the heat kernel method as applied to extract the logarithmic

corrections to the partition function of a generic quantum field theory. In particular, we

shall focus on an effective field theory in d + 1 dimensions, defined on a background with

length scale a, and show how the term that scales as log a may be extracted for large a from

the heat kernel. We refer the reader to [24]–[29] where more details and references may

be found. Firstly, it may be shown that the term scaling as log a is sensitive only to the

two-derivative sector of the theory, and further only receives contributions from massless

fields, and at one-loop only [28]. We will therefore concentrate on the one-loop partition

function of the theory. We consider, therefore, the partition function

Z [Φ] =

∫

[DΦ] e−
1
~
S[Φ]. (3.1)

In the limit ~ → 0, this is dominated by classical configurations Φcl, which solve

δ

δΦ
S |Φ=Φcl

= 0. (3.2)

We decompose the field Φ into small fluctuations about the configuration Φcl

Φ = Φcl + φ, (3.3)

in which case

S [Φ] ≃ S [Φcl] +

∫

dd+1x
√
gφ (x)Dφ (x) , (3.4)

where D is the kinetic operator for the fluctuation φ. Higher-order terms in φ correspond

to higher-loop corrections and have been omitted here. The one-loop partition function is

then given by

Z1−ℓ = det−
1
2 (D) . (3.5)

6The reader might worry that by computing only over the spectrum of massless fields in four dimensions

one is missing the N dependence which would come from the x5 quotient. This is true. However, we are

looking to compute the contribution to the partition function which scales non-trivially with a at large a.

This scale appears only in the AdS2 ⊗ S2 part of the near-horizon geometry. Hence, for this purpose, it is

sufficient to reduce onto the four-dimensional part of the attractor geometry and, as argued in [24, 28] only

the massless modes in this effective geometry will contribute to the log term.

– 7 –
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To define the determinant, we use the identity

detD =
∏

n

κn, (3.6)

where the κn are the eigenvalues of D. In that case, it is easy to see that

− log detD = −
∑

n

log κn =
∑

n

∫ √
gdd+1x

∫ ∞

0

dt

t
e−tκnΨ∗

n (x)Ψn (x) , (3.7)

where the Ψn are the normalised eigenfunctions of the operator D belonging to the eigen-

value κn.Though this expression has been written for a discrete non-degenerate spectrum,

the generalisation to the continuous and degenerate cases is apparent. The final expression

in (3.7) is just the trace of the heat kernel for the operator D

Kab (x, y; t) =
∑

n

Ψn,a (x)Ψ
∗
n,b (y) e

−tκn , (3.8)

i.e.

− log detD =

∫ ∞

ǫ

dt

t
K (t) , (3.9)

where

K (t) =
∑

n

∫ √
gdd+1x e−tκnΨ∗

n (x)Ψn (x) , (3.10)

and ǫ is a UV cutoff. In the above analysis we have assumed that all the κn are positive

definite. This is indeed true for the Laplacian on spheres, except for the constant scalar

mode, but the Laplacian on hyperboloids is only positive semi-definite. In particular,

there exist fields on hyperboloids for which the Laplacian has non-trivial zero modes.

This includes one-forms on AdS2 [30], and more generally p-forms on AdS2p [31].7 To

illustrate how the above analysis is modified in the presence of zero modes, consider the

finite-dimensional Gaussian integral

Z =

∫ n
∏

i=1

dxi e
−∑n

i,j=1 x
iMijx

j

, (3.11)

where M has already been diagonalised. In particular, M = diag (λ1, . . . , λn−1, 0). In that

case, it is easy to see that Z is given by

Z =
(

det′M
)− 1

2

∫

dxn, (3.12)

where det′ (M) =
∏n−1
i=1 κi. Hence, the path integral decomposes into the determinant of

the operator M evaluated over the subspace of its non-zero eigenvectors, with a residual

zero-mode integral remaining. This is precisely what happens for the path integral as well.

We find that

Z1−ℓ = det′D− 1
2 · Zzero, (3.13)

7For these fields, by ‘Laplacian’, we mean the Hodge Laplacian, given by ∆ = dδ + δd, where δ is the

adjoint of the exterior derivative, defined with respect to the background metric by the Hodge star.

– 8 –
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where det′D is the determinant of D evaluated over its non-zero modes, and Zzero is the

residual zero-mode integral. We will therefore compute the determinant of the Laplacian

explicitly over non-zero modes only, and separately analyse the zero mode integral.8 and

In order to extract the zero mode contribution to the log term, it is sufficient to determine

how Zzero scales with a. This has been done in [24] and we do not repeat it here. The final

result is that if the operator D has n0 zero modes when acting over a vector field, then9

logZzero = n0 log a+O (1) . (3.14)

Now, we need to examine how the non-zero modes contribute to the log term. For this, we

firstly observe that if D is a Laplace-type operator defined on a background with a metric

with an overall scale a, the eigenvalues of D scale as 1
a2
. We then define a new variable

s̄ = t
a2

in terms of which (3.9) becomes

− log det′D =

∫ ∞

ǫ

a2

ds̄

s̄
K (s̄) . (3.15)

We therefore find that

logZnon-zero = −1

2
log det′D = K1 log a+ . . . , (3.16)

where the terms in ‘ . . .’ do not scale as log a and K1 is the order-1 term in the series

expansion of K (s̄) about s̄ = 0. We then find that the contribution to the free energy

which scales as log a is given by

Flog = (K1 + n0) log a. (3.17)

In the rest of this paper, we will compute the two contributions to the partition function

for scalar, spin-half and vector fields on ZN orbifolds of S2, AdS2 and their product spaces.

Finally, in section 6 we will see that this contribution from a single N = 4 vector mul-

tiplet vanishes in the ZN orbifold of the near horizon geometry of a 1
4 -BPS black hole in

N = 4 supergravity, which precisely matches with our expectations from the microscopic

computations of the entropy of this black hole.

4 The heat kernel Laplacian on AdS2/ZN

In order to compute logarithmic corrections about these saddle-points from the Quantum

Entropy Function, we need to evaluate the integrated heat kernel about the quotient spaces

defined in section 2.2. As a warm-up, we will consider in this section the heat kernel of

the scalar Laplacian on a ZN orbifold of AdS2 which we shortly specify. In principle, this

answer can also be extracted by employing the Sommerfeld formula [32–34] on AdS2.
10

8This is in slight contrast to the methods of [24]–[29], where the heat kernel was computed over the full

set of eigenmodes of the fields, including zero modes, and then the zero mode contribution was subtracted

out to give the determinant over non-zero modes. The two methods are of course equivalent.
9The more general result is that if an operator D has n0 zero modes and integration over a zero mode

gives a factor aβ then logZzero = n0β log a+O (1) [25, 28].
10See also [35, 36] for related work in AdS geometries, [37, 38] for related work on spherical geometries.
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However, the answer is obtained in an integral form from which the N dependence can

only be extracted in a series expansion [39]. We propose here an alternate method, which

involved computing the integrated heat kernel on the corresponding ZN orbifold of S2

by explicitly enumerating the spectrum and degeneracies of the Laplacian on this space,

and performing an analytic continuation, which we motivate, to AdS2. This has two

benefits. Firstly, at a technical level, we obtain a new and efficient method for computing

coefficients in the Seeley-de Wit expansion of the heat kernel on these conical spacetimes.

This method can be easily employed, once set up, to extract coefficients to arbitrary power

in the heat kernel time. In this manner, we will obtain the full N -dependence of the heat

kernel coefficients to the required accuracy. Secondly, we will see that this strategy of

computing the heat kernel by explicitly enumerating the spectrum and degeneracies of the

quadratic operator will be of great use when we compute the heat kernel of the Laplacian

on the higher-dimensional spaces S2 ⊗ S2, its ZN orbifold, and when taking into account

the effects of the graviphoton flux while computing the relevant one-loop determinants for

the N = 4 vector multiplet. Additionally, we note that the spectrum and degeneracies

of the spin-s Laplacian are very explicitly known on arbitrary-dimensional spheres and

hyperboloids [30]. It is possible, though we do not carry out this program here, that our

analysis may be extended to explicitly compute the heat kernel for higher-spin fields, in

higher-dimensional spacetimes as well.

4.1 The ZN orbifold of S2 and AdS2

We will consider quotients of the two-sphere, with metric given by

ds2 = a2
(

dρ2 + sin2 ρdθ2
)

, (4.1)

and AdS2 with metric

ds2 = a2
(

dχ2 + sinh2 χdθ2
)

, (4.2)

which can be obtained from (4.1) by the analytic continuation ρ 7→ iχ, a 7→ ia. The

quotient we consider is

θ 7→ θ +
2π

N
. (4.3)

Under this quotient, ρ = 0, π are fixed points on the sphere and χ = 0 is the fixed point on

AdS2. In the neighborhood of each fixed point (small enough that sin ρ ≃ ρ and sinhχ ≃ χ),

the corresponding geometries become

ds2 = dr2 + r2dθ2, (4.4)

where r = aρ or aχ as the case may be, i.e. in the neighborhood of the fixed point, the

geometry is that of a cone. We have to evaluate the integrated heat kernel on these mani-

folds. The integrated heat kernel on AdS2 and AdS2/ZN suffers from a volume divergence

which needs to be regulated carefully to capture the finite N -dependent terms in the heat

kernel expansion. This is analogous to the problem encountered for the heat kernel on

hyperboloids quotiented by freely acting orbifolds [40, 41]. Even in those cases the heat

kernel suffers from a volume divergence, but the regulated answer turns out to have an
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interesting dependence on the chemical potentials corresponding to the quotient. To obtain

this N dependence, we will adopt a strategy very similar to [40, 41]; we will carry out the

computation on the sphere, and analytically continue the result to the hyperboloid by a

prescription we develop below.

4.2 The scalar Laplacian on S2/ZN

We begin by recalling the well-known spectrum of the scalar Laplacian on S2. The eigen-

values of the Laplacian are given by

Eℓ =
ℓ (ℓ+ 1)

a2
, ℓ = 0, 1, 2, . . . , (4.5)

these eigenvalues are dℓ = (2ℓ+ 1)-fold degenerate, with the corresponding eigenfunctions

being given by the spherical harmonics

Yℓm (ρ, φ) = Pmℓ (cos ρ) e±imφ, |m| ∈ [0, ℓ] ,m ∈ Z. (4.6)

The corresponding integrated coincident heat kernel is given by

I =

∫

d2x
√
gK (x, x; t) =

∑

ℓ

(2ℓ+ 1) e−
t

a2
ℓ(ℓ+1) =

∑

dℓe
−tEℓ . (4.7)

We will now write down a corresponding expression for the heat kernel of the scalar Lapla-

cian over the quotient space S2/ZN , where the heat kernel is computed over scalar modes

periodic under the ZN quotient. Clearly, these are just the modes for whichm = Np, where

p is an integer.11 The expression for the integrated heat kernel for the scalar Laplacian on

S2/ZN in terms of eigenvalues and degeneracies is then given by12

S=
∞
∑

p=0

(2p+ 1)

[

e−t
Np(Np+1)

a2 + e−t
(Np+1)(Np+2)

a2 + . . .+ e−t
(Np+N−1)(Np+N)

a2

]

≡
N
∑

n=1

Sn, (4.8)

where

Sn =
∞
∑

p=0

(2p+ 1) e−t
(Np+n−1)(Np+n)

a2 . (4.9)

It turns out that the expression (4.8) can be related to the integrated heat kernel over

the unquotiented sphere S2, with some corrections which can be precisely computed. The

final result should not be surprising; if we excise the fixed points on S2/ZN , which house

curvature singularities, the remaining space is completely smooth, and the heat kernel

asymptotics can be computed from the Seeley-de Wit expansion where the coefficients

are well-known [42]. Intuitively, it should be possible to think of the final answer for

11This spectrum also includes the ℓ = 0 mode, which is a zero mode. As per the discussion in section 3,

we should perform the integral over the zero mode separately. However, using the methods of [24] one may

show that the log a term extracted remains the same. For fields on
(

AdS2 ⊗ S2
)

/ZN which we encounter

in section 5 we shall indeed treat the zero mode integral separately.
12It is easy to see that for a given ℓ = Np+ q, where 0 ≤ q < N is an integer, the allowed m values are

|m| = 0, N, 2N, . . . , Np. The expression (4.8) follows.
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the heat kernel on these singular spaces as arising from the smooth part of the manifold,

with an additional contribution from the conical singularities [43]. We do indeed recover

this structure in our final answer for S2/ZN , which is also useful for fixing the analytic

continuation to AdS2/ZN .

4.2.1 The large radius approximation

As the subsequent computations are rather formal, it is useful to consider first the heat

kernel on S2/ZN in a limit where the radius a is very large.13 We will focus on the domi-

nant term in the large-a expansion. In the next section, we make no such approximation,

and write down the corresponding exact expression. Essentially, in the large radius limit,

the sum over p in (4.8) can be replaced by an integral.In particular, we use the approxi-

mation that
∫ b

a
f(x) dx ≃ 1

2
f(a) + f(a+ 1) + . . .+ f(b− 1) +

1

2
f(b). (4.10)

The error associated with making this approximation is given by

E =
∞
∑

k=2

Bk
k!

(

f (k−1) (b)− f (k−1) (a)
)

. (4.11)

We will show that the error involved in making the approximation (4.10) is subleading

in the large-a expansion. Further, in this limit, the integrated heat kernel over the ZN

orbifold of S2 is just given by 1
N times the integrated heat kernel over S2. For definiteness,

we shall fix N to 2; the computation for arbitrary N is entirely analogous. In this case,

the integrated heat kernel is given by the sum

S =
∞
∑

m=0

(2m+ 1)
[

e−
t

a2
2m(2m+1) + e−

t

a2
(2m+1)(2m+2)

]

≡ S1 + S2. (4.12)

Now, using (4.10), S1 and S2 may be approximated as

S1 ≃
1

2
+

∫ ∞

0
dm (2m+ 1) e−

t

a2
2m(2m+1), (4.13)

and

S2 ≃
1

2
e−

2t
a2 +

∫ ∞

0
dm (2m+ 1) e−

t

a2
(2m+1)(2m+2). (4.14)

By simple changes of variables, we can easily see that

S ≃ 1

2

(

1 + e−
2t
a2

)

+
1

2

∫ ∞

0
dℓ (2ℓ+ 1) e−

t

a2
ℓ(ℓ+1) − 1

2

∫ 1

0
dℓ ℓe−

t

a2
ℓ(ℓ+1). (4.15)

Of these terms, the integral from zero to infinity scales as a2

t , while the other terms scale

as order 1 in the a expansion. Hence

S ≃ 1

2

∫ ∞

0
dℓ (2ℓ+ 1) e−

t

a2
ℓ(ℓ+1) ≃ 1

2

∞
∑

0

(2ℓ+ 1) e−
t

a2
ℓ(ℓ+1), (4.16)

13We would like to thank Justin David for suggesting this approach to us.
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where we have approximated the integral over ℓ by the corresponding sum. Hence, we have

shown that in the large-a approximation, the heat kernel of the scalar Laplacian on S2/Z2

is given by half the heat kernel of the scalar Laplacian in S2. To complete the proof, we

need to show that the error terms E given in (4.11) are subleading in the large-a expansion.

We shall explicitly demonstrate this for the function which is the summand in S1, i.e.

f (x) = (2x+ 1) e−
t

a2
2x(2x+1). (4.17)

Firstly, note that the expression E is finite (in fact, zero) in the limit t 7→ 0. Hence a naive

power-series expansion of the terms in E is justified. Now, it is easy to see that f(x) iself

is O (1) in the small-t (or large-a) expansion.14 Taking derivatives of f with respect to x

will in general pull down more powers of 1
a2
, making these terms further suppressed in the

large-a approximation. This completes our proof.

4.2.2 The Euler-Maclaurin formula and the heat kernel on S2/ZN

Now, we return to our original goal of evaluating the heat kernel over the quotient space

ZN . To do so, we shall use the Euler-Maclaurin Formula, which states that

b
∑

n=a

f (n) =
1

2
f (a) +

∫ b

a
dx f(x) +

1

2
f (b) + E, (4.18)

where E is given in (4.11). From the analysis of section 4.2.1, it is natural to expect that

the heat kernel on S2/ZN should finally be expressible as 1
N times the heat kernel on S2

with additional terms, which now have to be computed. We will see that, to a given order

in t
a2
, only a finite number of terms contribute to E, which enables us to explicitly evaluate

the heat kernel to that order in t. Consider now, the nth term in the sum (4.8), Sn. Using

the Euler-Maclaurin formula, we find that

Sn =
1

2
e−t

n(n−1)

a2 +

∫ ∞

0
dp (2p+ 1) e−t

(Np+n−1)(Np+n)

a2 −
∞
∑

k=2

Bk
k!
f (k−1)
n (0) , (4.19)

where we have used the fact that the function fn(x) = (2x + 1)e−t
(Nx+n−1)(Nx+n)

a2 and its

derivatives vanish at x = ∞ for arbitrary values of n. To solve this further, we substitute

ℓ = Np+ n− 1 in the integral to find

Sn =
1

2
e−t

n(n−1)

a2 +

∫ ∞

n−1

dl

N

(

2ℓ+ 1

N
+

(

1 +
1− 2n

N

))

e−t
ℓ(ℓ+1)

a2 −
∞
∑

k=2

Bk
k!
f (k−1)
n (0) . (4.20)

This can be further simplified to obtain

Sn=
1

2
e−t

n(n−1)

a2 +

∫ ∞

0

dl

N2
(2ℓ+ 1) e−t

ℓ(ℓ+1)

a2 −
∫ n−1

0

dl

N2
(2ℓ+ 1) e−t

ℓ(ℓ+1)

a2 (4.21)

+

(

1+
1−2n

N

)∫ ∞

0

dℓ

N
e−t

ℓ(ℓ+1)

a2 −
(

1+
1−2n

N

)∫ n−1

0

dℓ

N
e−t

ℓ(ℓ+1)

a2 −
∞
∑

k=2

Bk
k!
f (k−1)
n (0) .

14The dimensionless expansion parameter is t

a2 .
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Then the total integrated heat kernel can be obtained by summing Sn over n as follows.

Firstly,
N
∑

n=1

∫ ∞

0

dl

N2
(2ℓ+ 1) e−t

ℓ(ℓ+1)

a2 = − a2

Nt
, (4.22)

and

N
∑

n=1

∫ ∞

0

(

1 +
1− 2n

N

)∫ ∞

0

dℓ

N
e−t

ℓ(ℓ+1)

a2 =

[∫ ∞

0

dℓ

N
e−t

ℓ(ℓ+1)

a2

]

(0) = 0. (4.23)

The rest of the terms are regular as t = 0 and we can extract the short time asymptotics by

doing a power series expansion of each term. We will retain terms upto O(t) and discard

terms from O(t2) onwards. On evaluating the sum S in this approximation, we find

S =
1

N

∫ ∞

0
dℓ (2ℓ+ 1) e−t

ℓ(ℓ+1)

a2 +
N2 + 1

6N
+

(

N4 + 10N2 + 1
)

t

180a2N
+O

(

t2
)

. (4.24)

Now, using the Euler-Maclaurin formula to express the above integral in terms of a sum,

and again working to linear order in t
a2
, we find that

S =
1

N

∞
∑

ℓ=0

(2ℓ+ 1) e−t
ℓ(ℓ+1)

a2 +
N2 − 1

6N
+

(

N2 + 11
) (

N2 − 1
)

t

180a2N
+O

(

t2
)

. (4.25)

This is our final result. It expresses the heat kernel for a real scalar field on the quotient

space S2/ZN in terms of the heat kernel on the unquotiented sphere, and additional terms,

which can be thought of as arising from the fixed points of the ZN orbifold. The coefficient

for the t0 term is given for scalars on compact manifolds Mβwith conical singularities

in [37]. Their answer for this term is (see their equations (1.2), (2.7) and (2.8))

A1 =
1

4π

[

1

6

∫

Mβ−Σ
R+

1

6
· 2π
N

(

N2 − 1
)

(♯Σ)

]

, (4.26)

where Σ denotes the singular points and β = 2π
N is the angle of the cone. For the sphere

and its quotients R = 2
a2
, and there are two singular points, the north and south poles of

the sphere. Hence the above expression becomes

A1=
1

4π
· 4πa

2

N
· 1

3a2
+

1

4π
· 4π
6

(

N− 1

N

)

=
1

N
· 1
3
+

1

6

(

N2−1

N

)

=
1

N
AS

2

1 +
1

6

(

N2−1

N

)

.

(4.27)

This matches (term-by-term) with the coefficient of the t0 term which we have obtained

above. Here AS
2

1 is the coefficient of the t0 term in the heat kernel expansion on S2 without

any quotient, and is read off from (A.5).

4.3 The analytic continuation to AdS2/ZN

The heat kernel for the scalar on the ZN orbifold of S2 is given by

Ks
S2/ZN

=
1

N
Ks

S2
+
N2 − 1

6N
+

(

N2 + 11
) (

N2 − 1
)

t

180a2N
+O

(

t2
)

, (4.28)
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where Ks
S2

denotes the integrated heat kernel on the unquotiented S2. We will now outline

how this answer is to be analytically continued to AdS spaces. We expect that the answers

should be related by a 7→ ia, but there are two subtleties. Firstly, the answer on AdS2 and

its ZN orbifold is volume divergent, and hence has to be regulated. The other subtlety is

due to the fact that the global properties of the ZN orbifold on S2 and AdS2 are slightly

different, and this must be accounted for.15 We first show how the differences in the global

properties of the quotient group action may be accounted for. The discussion in [37] will

be useful for this purpose. Consider the integrated heat kernel over a manifold Mβ with

conical singularities located at points pi. Further, let ǫi be (arbitrarily) small disconnected

regions enclosing points pi. Then the integrated heat kernel over Mβ may be decomposed

into integrals over the small neighbourhoods of the singular points and an integral over the

rest of the manifold, which is smooth.

∫

Mβ

K (x, x, t) =

∫

Mβ−{⋃ ǫi}
K (x, x, t) +

∑

i

∫

ǫi

K (x, x, t) . (4.29)

Consider now our answer (4.25) for the quotiented sphere S2\N . The first term corresponds

to the integral over the remaining smooth manifold, and the rest of the terms arise from

integrating about the conical singularities located at the north and south poles of the

sphere. We argue this as follows: the integrated heat kernel on the smooth manifold

Mβ − {⋃ ǫi} admits an expansion in powers of t where the coefficients are expressible in

terms of volume integrals of local general-coordinate invariant quantitites [42]. As S2 is

homogeneous, these invariants are independent of the location on S2 (or its quotients), and

these integrals on such manifolds are just the volume of the manifold times a constant. On

S2/ZN (once the singular points, the north and south poles, have been removed), therefore,

the answer is 1
N times the answer on S2. As there are two conical singularities on S2, each

cone contributes
1

2

[

N2 − 1

6N
+

(

N2 + 11
) (

N2 − 1
)

t

180a2N
+O

(

t2
)

]

. (4.30)

Now the AdS2 under this quotient has only one fixed point. It should again be possible to

carry out the above decomposition of the integration domains into the smooth part and a

small neighbourhood containing the singularity.

∫

AdS2\N
K (x, x, t) =

∫

AdS2\N−ǫ
K (x, x, t) +

∫

ǫ
K (x, x, t) , (4.31)

where ǫ contains the origin, where the conical singularity is located. By the above con-

siderations, we analytically continue the conical contribution to the heat kernel (4.25) on

S2/ZN as

Kconical
AdS2/ZN

=
1

2

[

N2 − 1

6N
−
(

N2 + 11
) (

N2 − 1
)

t

180a2N

]

+O
(

t2
)

, (4.32)

15Such differences have already been encountered in the cases where the orbifold group acts freely on the

sphere and hyperboloid [40, 41]. The analytic continuation acress the quotient spaces should account for

these differences, but once that is done, completely consistent answers are obtained. See for example [44–46].
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where we have analytically continued a 7→ ia as well. The analytic continuation of the first

term in (4.25) is well understood [30]. Since both S2 and AdS2 are homogeneous spaces,

we have

Ks
S2

= Vol.S2K
s
1 (a) , Ks

AdS2 = Vol.AdS2K
s
2 (a) , (4.33)

where Ks
1 and Ks

2 are the coincident scalar heat kernels over S2 and AdS2 respectively.

These are related by analytic continuation.16 In particular,

Ks
1 (a) =

1

12πa2
+

1

4πt
+

t

60πa4
+O(t2), (4.34)

and

Ks
2 (a) = − 1

12πa2
+

1

4πt
+

t

60πa4
+O(t2). (4.35)

A derivation of (4.34), again employing the Euler-Maclaurin formula (4.18), is presented

in appendix A. The final step is to regulate the volume divergence of AdS2. This is again

well understood by now. However, since we will use this procedure to regulate all the

divergences we encounter in our analysis, we will review this briefly here. We state the

main steps, referring the reader to [16, 17, 24, 29] for details. The AdS2 volume integral is

given by

V =

∫ ∞

0

∫ 2π

0
dηdφ

(

a2 sinh η
)

, (4.36)

which clearly diverges. To regulate this divergence, we put a cutoff on η at a large value

η0, which gives the regulated volume of AdS2 to be

Vreg = 2πa2 (cosh η0 − 1) = 2πa2
(

1

2
eη0 − 1 +O

(

e−η0
)

)

. (4.37)

Now, following the discussion in [29], since the divergent term eη0 may be expressed in

terms of the radius of curvature of the boundary sphere, it can be cancelled off by boundary

counterterms. Hence, the regularised volume of AdS2 is given by

V = −2πa2. (4.38)

Hence, the integrated scalar heat kernel on AdS2/ZN is given by

Ks
AdS2/ZN

=
1

N

(

−a
2

2t
+

1

6
− t

30a2

)

+
1

2

[

N2 − 1

6N
−
(

N2+11
) (

N2−1
)

t

180a2N

]

+O
(

t2
)

, (4.39)

where the volume divergence has been regulated as above.

4.3.1 A check of the analytic continuation

In the previous section, we have shown how the heat kernel for the scalar on S2/ZN may

be analytically continued to obtain the heat kernel on AdS2/ZN . In this section, we will

verify this explicitly against expressions obtained in the existing literature. In particu-

lar, the scalar heat kernel was computed on the AdS2 cone in [39] using the Sommerfeld

16We refer the reader to [24] for explicit expressions. We also emphasize that there the coincident heat

kernel on AdS2 is computed independently of this analytic continuation.
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formula [32–34]. It was found that if the angular coordinate of AdS2 is quotiented by

θ 7→ θ+ 2πα, where α ∈ R+, then the traced heat kernel on the quotient space (called Hα
2

in [39]) is given by

TrKHα
2
= αTrKH2 + α

e
−s̄
4

(4πs)
1
2

∫ ∞

0
dy cosh yf (y, α) e

−y2

s̄ , (4.40)

where s̄ = t
a2

and the function f(y, α) was determined to be

f (y, α) =
1

sinh2 y

(

1− 2y

sinh 2y

)

(1− α) +O
(

(1− α)2
)

. (4.41)

We refer the reader to equations (20) to (23) of [39] for more details regarding these

expressions. Now in the α ≃ 1 expansion, the expression (4.40) becomes

TrKHα
2
= αTrKH2 +

α

2
e−

s̄
4

(

1

3
− s̄

20
+O

(

s̄2
)

)

(1− α)

≃ αTrKH2 +
α (1− α)

2

(

1

3
− 2s̄

15
+O

(

s̄2
)

)

.

(4.42)

We now identify the parameter α with our 1
N , and find that

TrKHN
2

≃ 1

N
TrKH2 + (N − 1)

(

1

6
− 1

15

t

a2
+ . . .

)

, (4.43)

where we have retained the leading term in the N ≈ 1 expansion. This is precisely the

expression obtained on expanding (4.39) formally around N = 1.

4.4 The Hodge Laplacian for vector fields

Let us consider, following [24], the path integral for a U(1) gauge field in the Euclidean

signature on a background manifold M, equipped with a metric g.

SA =

∫

ddx
√
gFµνF

µν , (4.44)

where Fµν is the U(1) field strength ∂µAν − ∂νAµ. To evaluate the path integral, we will

fix gauge by adding the term

Sgf = −1

2

∫

ddx
√
g (DµA

µ)2 , (4.45)

so that the total action becomes

S = SA + Sgf = −1

2

∫

ddx
√
gAµ (∆A)

µ , (4.46)

where

(∆A)µ = −�Aµ +RµνA
ν , �Aµ = gρσDρDσAµ (4.47)

is the Hodge Laplacian, expressed as

∆ ≡ dδ + δd, (4.48)
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where δ = − ∗ d∗, and ∗ is the Hodge dual defined with respect to the background metric

g. This gauge fixing requires us to introduce two anticommuting scalar ghost fields whose

kinetic operator is the usual Laplacian. Then the one-loop contribution of the gauge field

is given by
1

2

∫ ∞

ǫ

ds

s

∫

ddx
√
g [Kv (x, x, s)− 2Ks (x, x, s)] . (4.49)

The first term is the heat kernel of ∆ over vector fields, while the second term represents

the contribution due to the ghost fields. Now, in the rest of this section, we will consider

the case where M is either S2 or AdS2, or their ZN orbifolds. We will use the fact that,

upto global issues, the vector field on AdS2 and S2 may be written as

Aµ = ∇µφ1 + ǫµν∇νφ2, (4.50)

where φ1 and φ2 are scalars on the corresponding manifold. For the spaces S2 and AdS2,

one can show that if17

∆∇µφ1 = Λ∇µφ1, (4.51)

where ∆ = dδ + δd is the Hodge Laplacian over 1-forms, then we must have

�φ1 =

(

Λ∓ 1

a2

)

φ1. (4.52)

Hence, eigenmodes of the vector Laplacian are in one-to-one correspondence with scalar

eigenfunctions. Hence, the spectrum and degeneracies for the vector Laplacian can be

obtained from those of the scalar Laplacian, and one would naively conclude

Kv = KvT +KvL = Ks +Ks = 2Ks, (4.53)

for both S2 and AdS2 and vT and vL are longitudinal and transverse modes of the gauge

field. However, there are corrections to this expression in both the S2 and AdS2 cases. In

the S2 case, there is a correction due to the fact that the ℓ = 0 mode of the scalar is a

constant over the two-sphere and does not give rise to a non-trivial gauge field. We account

for this by explicitly starting the sum over scalar eigenvalues from ℓ = 1 when evaluating

the heat kernel. So the heat kernel on S2 for the Hodge Laplacian over vectors is given by

Kv (t) = 2
∞
∑

ℓ=1

(2ℓ+ 1) e
−t

(

ℓ(ℓ+1)

a2

)

= 2
(

Ks
S2

− 1
)

. (4.54)

The case of AdS2 and its quotients is more subtle. It has to do with the presence of

harmonic 1-forms in the spectrum of the Hodge Laplacian which lead to zero modes in

the full AdS2 ⊗ S2 geometry and its ZN orbifold. These modes cannot be reached by the

analytic continuation we are working with. We shall come to these modes in the next

subsection, but for the moment we note that for transverse and longitudinal modes of the

17Though ∇s don’t commute over arbitrary tensors, they do commute over scalars, and hence ǫ∇φ is a

transverse vector mode. Further, as ǫµν is covariantly constant, we will concentrate on just ∇µφ1, and our

discussion goes through for transverse modes as well.
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vector field on AdS2 there is no subtlety, and the heat kernel for these fields equals just

the heat kernel of the scalar Laplacian.

KvT
AdS2

= KvL
AdS2

= Ks
AdS2 . (4.55)

In particular, there is no need to subtract out the constant mode of the scalar field as it

is not a normalisable mode on AdS2 [24]. The discussion of the corresponding quotient

spaces is entirely analogous. We finally find that

KvT
S2/ZN

= KvL
S2/ZN

= Ks
S2/ZN

− 1, Kv
S2/ZN

= 2
(

Ks
S2/ZN

− 1
)

, (4.56)

and

KvT
AdS2/ZN

= KvL
AdS2/ZN

= Ks
AdS2/ZN

. (4.57)

For the vector field on S2/ZN , we can compute the O
(

t0
)

term in the heat kernel expansion.

We find that the conical singularities contribute

2
N2 − 1

6N
+ 2

(

1

N
− 1

)

(4.58)

to the t0 term, which precisely matches with the expression obtained by the methods

of [37]. We close this section by a brief discussion of the analytic continuation of the vector

heat kernel from S2 and S2/ZN to AdS2 and AdS2/ZN . Firstly, vector fields on AdS2 and

AdS2/ZN have longitudinal and transverse modes as above, in addition, there is a series

of harmonic modes as well [30]. These arise from field configurations

A = dΦ, (4.59)

which are square-integrable, though Φ itself is not square-integrable. These configurations

are not captured by analytic continuation from the sphere, but also contribute to the gauge

field path integral. We shall treat these configurations in detail in section 5.2.1. For the

moment, we concentrate on the longitudinal and transverse modes of the gauge field. In

this case, the natural analytic continuation is to analytically continue from KvT
S2/ZN

and

KvL
S2/ZN

after adding the ℓ = 0 mode back to the heat kernel. This of course is equivalent to

evaluating the Laplacian over the full set of modes of the scalar fields φ1 and φ2 in (4.50),

and we indeed find after this analytic continuation that

K
vT,L

AdS2/ZN
= Ks

AdS2/ZN
. (4.60)

This is the procedure we shall follow for the analytic continuation when we take into account

the graviphoton background in section 6.

5 The one-loop determinants on
(

AdS2 ⊗ S2
)

/ZN

In this section we will compute the one-loop determinants of Laplacian over the scalar, vec-

tor and Dirac spinor field in the
(

AdS2 ⊗ S2
)

/ZN geometry. We will do this by computing

the corresponding determinant over
(

S2 ⊗ S2
)

/ZN geometry and analytically continuing
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the answer to the AdS case. This will serve as a useful warm-up for the final computation

of section 6, where the effects of the graviphoton coupling to the N = 4 vector multiplet

fields is accounted for. Additionally, we will find a particularly suggestive form of the an-

swer closely related to those obtained previously for freely acting quotients of spheres and

hyperboloids in [40, 41]. We begin with defining the geometry and the orbifold projection

that will be imposed. In global coordinates, AdS2 ⊗ S2 may be written as

ds2 = a2
(

dη2 + sinh2 ηdθ2
)

+ a2
(

dρ2 + sin2 ρdφ2
)

, (5.1)

where (η, θ) are coordinates on AdS2 and (ρ, φ) are coordinates on S2. We will consider,

in what follows, the ZN orbifold of this geometry

(θ, φ) 7→
(

θ +
2π

N
, φ− 2π

N

)

. (5.2)

In particular, we will compute the heat kernel of the Laplacian for various spin-fields over

the modes in AdS2 ⊗ S2 that are left invariant under the orbifold action. We note here

that this geometry may be reached from the space
(

S2 ⊗ S2
)

/ZN with metric

ds2 = a21
(

dχ2 + sin2 χdθ2
)

+ a22
(

dρ2 + sin2 ρdφ2
)

, (5.3)

via the analytic continuation a1 7→ ia, a2 7→ a, χ 7→ iη. The orbifold action on S2 ⊗ S2 is

still given by (5.2). We now turn to the evaluation of the integrated heat kernel over these

two geometries. Our strategy will be to write down the full sprectrum of the Laplacian

over the unquotiented geometries S2⊗S2 and AdS2⊗S2, and impose an orbifold projection

which maps to the subset of modes invariant under (5.2). We shall then explicitly evaluate

the heat kernel over this subset of modes. We mostly obtain explicit answers for the

compact space
(

S2 ⊗ S2
)

/ZN , and indicate how the answer may be analytically continued

to
(

AdS2 ⊗ S2
)

/ZN .

5.1 The scalar field

The eigenfunctions of the Laplacian acting over scalar field in AdS2 ⊗ S2 are obtained by

tensoring the scalar eigenfunctions on S2 with the scalar eigenfunctions on AdS2. That is,

the spectrum of scalar eigenfunctions on AdS2 ⊗ S2 is given by

Φλ,m,ℓ,n (η, θ, ρ, φ) = fλ,m (η, θ)Yℓ,n (ρ, φ) , (5.4)

where the Ψλ,m are the eigenfunctions of the scalar Laplacian on AdS2, given — upto

normalisation — by [30]

fλ,m (η, θ) = sinh|m| η2F1

(

iλ+ |m|+ 1

2
,−iλ + |m|+ 1

2
, |m|+ 1,− sinh2

η

2

)

eimθ,

0 < λ <∞, m ∈ Z,

(5.5)

and the Yℓ,ns are the usual spherical harmonics on S2. The eigenfunction (5.4) belongs to

the eigenvalue

Eλ,ℓ =
1

a2

(

λ2 +
1

4
+ ℓ (ℓ+ 1)

)

. (5.6)
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The eigenfunctions of the scalar Laplacian on S2 ⊗ S2 are given by

Ψℓ̃,m,ℓ,n (χ, θ, a1, ρ, φ, a2) = Yℓ̃,m (χ, θ, a1)Yℓ,n (ρ, φ, a2) , (5.7)

which belong to the eigenvalue

Eℓ̃,ℓ =
1

a21
ℓ̃
(

ℓ̃+ 1
)

+
1

a22
ℓ (ℓ+ 1) . (5.8)

Now, we will use the fact that the spectrum of the scalar Laplacian on AdS2⊗S2 is related

to the spectrum of the scalar Laplacian on S2 ⊗ S2 by the analytic continuation [30]

ℓ̃ 7→ iλ− 1

2
, a1 7→ ia, χ 7→ iη, a2 7→ a. (5.9)

In particular, we will impose the projection (5.2) on the modes on the compact space S2⊗S2

and compute the integrated heat kernel by enumerating the eigenvalues and their degen-

eracies. Then, we will obtain the answer over
(

AdS2 ⊗ S2
)

/ZN by analytic continuation.

We now begin with imposing the orbifold action (5.2) on modes (5.7). Modes invariant

under the orbifold action obey the quantisation condition

m− n = Np , p ∈ Z+. (5.10)

Firstly, note that the unconstrained integrated heat kernel on S2⊗ S2 may be expressed as

Ks = Ks
S2

·Ks
S2

=
∞
∑

ℓ=0

∞
∑

ℓ̃=0

ℓ̃
∑

m=−ℓ̃

ℓ
∑

n=−ℓ
e
− t

a21
ℓ̃(ℓ̃+1)

e
− t

a22
ℓ(ℓ+1)

. (5.11)

From this, we can extract the heat kernel of the states invariant under the projection (5.2)

by inserting a Kronecker delta over m and n which is nonvanishing when m and n

obey (5.10). We choose the following representaion for this delta function

δm,n,N =
1

N

N−1
∑

s=0

e2πi(m−n) s
N , m, n, s ∈ Z. (5.12)

Then the scalar heat kernel over the orbifold geometry
(

S2 ⊗ S2
)

/ZN is given by

Ks =
1

N

N−1
∑

s=0









∞
∑

ℓ̃=0

sin
[

π(2ℓ̃+1)s
N

]

sin
[

πs
N

] e
− t

a21
ℓ̃(ℓ̃+1)









∞
∑

ℓ=0

sin
[

π(2ℓ+1)s
N

]

sin
[

πs
N

] e
− t

a22
ℓ(ℓ+1)







 , (5.13)

which has been obtained by carrying out the sums overm and n. We recognize the functions

χℓ (s) =
sin
[

π(2ℓ+1)s
N

]

sin
[

πs
N

] (5.14)

as the characters in the spin-ℓ representation of SU(2). The above answer may be expressed

in the following form, which suggests an analytic continuation to AdS.

Ks =
1

N
Ks

S2⊗S2
+

1

N

N−1
∑

s=1









∞
∑

ℓ̃=0

χℓ̃ (s) e
− t

a21
ℓ̃(ℓ̃+1)





( ∞
∑

ℓ=0

χℓ (s) e
− t

a22
ℓ(ℓ+1)

)



 . (5.15)
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Here Ks
S2⊗S2

is the integrated heat kernel of the scalar over the unquotiented space S2 ⊗
S2. We will now perform an analytic continuation of this answer to the quotient space
(

AdS2 ⊗ S2
)

/ZN . Firstly, we note that Ks
S2⊗S2

may be expressed as

Ks
S2⊗S2

(a1, a2) = Ks
S2

(a2)
∞
∑

ℓ̃=0

(

2ℓ̃+ 1
)

e
− t

a21
ℓ̃(ℓ̃+1)

. (5.16)

The first term is just the heat kernel for the scalar on the S2 that acts as a spectator, its

analytic continuation is trivial, just the radius a2 has to be replaced by a. The second

term is the heat kernel on the S2 which is being analytically continued to AdS2. The rules

for this analytic continuation have been very precisely specified in section 4.3. Finally, the

second term is (5.16) may be regarded as arising due to the presence of fixed points in our

quotient space. This is analytically continued using our usual prescription of a1 7→ ia, and

multiplying an overall factor of 1
2 to account for the global feature that AdS2 has only one

fixed point under the action of this orbifold, while the sphere, from which we’re doing this

analytic continuation has two. For the specific example of the Z2 orbifold, this leads to the

final expression

Ks
AdS2⊗S2/Z2

=
1

2
Ks

AdS2K
s
S2

+
1

4

[

1

4
+O(t2)

]

. (5.17)

5.2 The vector field

We now turn to the evaluation of the heat kernel of the Hodge Laplacian over the vector

field on AdS2 ⊗ S2 and its ZN orbifold. This may be decomposed into

Kv
(AdS2⊗S2)/ZN

= Kv
(AdS2

Ks
S2)/ZN

+Ks
(AdS2

Kv
S2)/ZN

(5.18)

To begin with, we consider the heat kernel evaluated purely over longitudinal and transverse

modes of the gauge field on AdS2/ZN . We will account for the presence of harmonic modes

subsequently. For the non-zero modes on AdS2/ZN , the contribution to the heat kernel

on
(

AdS2 ⊗ S2
)

/ZN may be arrived at by analytic continuation from the vector field heat

kernel on
(

S2 ⊗ S2
)

/ZN . We will first consider the case of N = 1, i.e. the unquotiented

spaces and specify the analytic continuation. The heat kernel on S2 ⊗ S2 is given by

Kv
S2⊗S2

(a1, a2) = Kv
S2

(a1)K
s
S2

(a2) +Ks
S2

(a1)K
v
S2

(a2) , (5.19)

which may be written out as

Kv
S2⊗S2

(a1, a2) =



2
∞
∑

ℓ̃=1

(

2ℓ̃+ 1
)

e
−t

(

ℓ̃(ℓ̃+1)

a21

)





[ ∞
∑

ℓ=0

(2ℓ+ 1) e
−t

(

ℓ(ℓ+1)

a22

)

]

+





∞
∑

ℓ̃=0

(

2ℓ̃+ 1
)

e
−t

(

ℓ̃(ℓ̃+1)

a21

)





[

2
∞
∑

ℓ=1

(2ℓ+ 1) e
−t

(

ℓ(ℓ+1)

a22

)

]

. (5.20)

This may be re-expressed as

Kv
S2⊗S2

(a1, a2) = 2
(

Ks
S2

(a1)− 1
)

Ks
S2

(a2) + 2Ks
S2

(a1)
(

Ks
S2

(a2)− 1
)

. (5.21)
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Now, we will analytically continue this to the AdS2 case. This involves the following

replacements. Firstly, the heat kernel of the scalar on the S2 of radius a1 gets continued

to the heat kerne of the scalar on AdS2 of radius a as above. Secondly, there is no need to

subtract out the constant mode of the scalar in the first term. We thus obtain

Kv
AdS2⊗S2

(a) = 2Ks
AdS2 (a)K

s
S2

(a) + 2Ks
AdS2 (a)

(

Ks
S2

(a)− 1
)

. (5.22)

The above discussion goes through on the ZN quotients as well, where we have to be careful

to project onto the appropriate subset of modes invariant under the orbifold, but no other

change is required. In this case, it is apparent that the final answer on
(

S2 ⊗ S2
)

/ZN is

given by

Kv
(S2⊗S2)/ZN

= 4Ks
(S2⊗S2)/ZN

(a1, a2)− 2K2
S2/ZN

(a1)− 2KS2/ZN
(a2) . (5.23)

That the last two terms are the heat kernel evaluated on the modes invariant under the

orbifold projection on a single S2 should be apparent from the fact that the constant mode

on one sphere corresponds to modes (m,n) = (0, n), in which case the modes invariant

under (5.2) are (m,n) = (0, Np), where p ∈ Z. These are just modes invariant under the

ZN orbifold on the other S2. Now the analytic continuation to
(

AdS2 ⊗ S2
)

/ZN may be

obtained from continuing the scalar heat kernels, and not subtracting out the constant

mode on S2 (a1). We then obtain

Kv
(AdS2⊗S2)/ZN

= 4Ks
(AdS2⊗S2)/ZN

(a, a)− 2K2
AdS2 (a) . (5.24)

We remind the reader that this expression is the heat kernel for the transverse and longitu-

dinal modes of the vector field. We have not included the harmonic modes in this analysis.

Neither have we subtracted out the ghost determinant which arises out of gauge fixing.

5.2.1 Zero modes of the vector field in AdS2

Now we take into account the presence of modes on AdS2 which are not related by analytic

continuation to S2. These are

fma = ∇aφ
m, φm =

√

1

2π|m|

[

sinh η

1 + cosh η

]|m|
eimθ, m ∈ Z− {0}. (5.25)

These contribute in two ways. Firstly, they tensor with non-zero modes of the scalar on S2

to produce non-zero modes of the vector field in AdS2 ⊗ S2 and its ZN orbifold. Secondly,

they tensor with the zero mode of the scalar on S2 to produce zero modes in AdS2⊗S2 and

its ZN orbifold. We will first calculate the heat kernel contribution of the modes (5.25) to

the non-zero modes

Kb′ =
∑

m∈Z−{0}

∞
∑

ℓ=1

ℓ
∑

n=−ℓ

∫ η0 √
gdηdθgabf∗ma fmb δm−n,Npe

− t

a2
ℓ(ℓ+1)

=
1

N

N−1
∑

s=0





∑

m∈Z−{0}
tanh

(η0
2

)2|m|
eim

2πs
N





∞
∑

ℓ=1

χℓ

(πs

N

)

e−
t

a2
ℓ(ℓ+1).

(5.26)
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We will now explicitly evaluate this expression. The bracketed term sums to

T (s) =
1

1− tanh2
(η0

2

)

e
2πis
N

− 1 +
1

1− tanh2
(η0

2

)

e−
2πis
N

− 1. (5.27)

Further, we can show that

T (0) ≃ 1

2
eη0 − 1 +O

(

e−η0
)

, T (m) ≃ −1 +O
(

e−η0
)

, 1 ≤ m ≤ N − 1. (5.28)

Then, in accordance with our usual rule for regularising these divergences, we retain the

order-1 term only to find that

Kb′ = −1

[

1

N

N−1
∑

s=0

∞
∑

ℓ=1

χℓ

(πs

N

)

e−
t

a2
ℓ(ℓ+1)

]

= −Ks
S2/ZN

+ 1. (5.29)

Now, to compute the contribution of the zero modes to the vector field, it is sufficient

to compute the number of zero modes. On non-compact spaces like AdS2/ZN and
(

AdS2 ⊗ S2
)

/ZN , this is typically a divergent quantity which has to be regulated. We

now describe how this is done. We take our definition of the number of zero modes to be

n0 =
∑

p∈Z−{0}

∫

dθdη
√
ggmnf ℓ∗m f

ℓ
n, (5.30)

where ℓ = Np for p ∈ Z. Our strategy will be to compute the above integral by cutting off

the AdS radial coordinate η at some large value η0 to compute the above sum (which is

completely convergent in that regularisation). Then we will do the large η0 expansion to

pick out the order 1 term which will be our definition of the number of zero modes. This

is completely equivalent to the way we compute zero modes on the homogeneous spaces

like AdS2 where the integral (essentially the volume of the AdS space) is regularised in

this manner.

n0 =
∑

p∈Z−{0}

∫ η0

AdS2

dθdη
√
ggmnfNp∗m fNpn =

∑

p∈Z−{0}

(

tanh
η0
2

)2N |p|
(5.31)

= 2
(tanh η0

2 )
2N

1−
(

tanh η0
2

)2N
≃ 1

2N
eη0 − 1 +O

(

e−η0
)

, (5.32)

in the large η0 limit. We drop the factor diverging with the AdS radial coordinate, and

keep the order 1 term as the number of zero modes. Hence the number of zero modes in

the quotient space AdS2/ZN is given by

n0AdS2/ZN
= −1. (5.33)

In appendix C we outline how a zeta function regularization of (5.30) gives the same

answer as obtained here. Finally, zero modes on the space
(

AdS2 ⊗ S2
)

/ZN are obtained

by tensoring the harmonic modes 5.25 on AdS2 with the constant mode of the scalar

on S2. It is straightforward to check from the orbifold projection 5.2 that the only field

configurations that can contribute are harmonic modes of vector fields on AdS2 with moding

m = Np, p ∈ Z. Hence, we obtain

n0(AdS2⊗S2)/ZN
= n0AdS2/ZN

= −1. (5.34)
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5.3 The Dirac spinor

We finally examine how the above discussion extends to the case of the Dirac spinor on

S2×S2, AdS2×S2 and their ZN quotients. We will again compute the answer explicitly on

the compact space
(

S2 ⊗ S2
)

/ZN and analytically continue the answer to
(

AdS2 ⊗ S2
)

/ZN .

We first recollect that the eigenstates of /DS2 are given by

χ±
l,m =

1√
4πa2

√

(l −m)!(l +m+ 1)!

l!
ei(m+ 1

2)φ

(

i sinm+1 ψ
2 cosm ψ

2P
(m+1,m)
l−m (cosψ)

± sinm ψ
2 cosm+1 ψ

2P
(m,m+1)
l−m (cosψ)

)

,

(5.35)

and

η±l,m =
1√
4πa2

√

(l −m)!(l +m+ 1)!

l!
e−i(m+ 1

2)φ

(

i sinm ψ
2 cosm+1 ψ

2P
(m+1,m)
l−m (cosψ)

± sinm+1 ψ
2 cosm ψ

2P
(m,m+1)
l−m (cosψ)

)

,

(5.36)

where

l,m ∈ Z, l ≥ 0, 0 ≤ m ≤ l. (5.37)

These spinors satisfy

/DS2χ±
l,m = ±i a−1 (l + 1)χ±

l,m , 6DS2η±l,m = ±i a−1 (l + 1) η±l,m . (5.38)

Here Pα,βn (x) are the Jacobi Polynomials:

P (α,β)
n (x) =

(−1)n

2n n!
(1− x)−α(1 + x)−β

dn

dxn

[

(1− x)α+n(1 + x)β+n
]

. (5.39)

Now the integrated heat kernel on the unquotiented space S2 ⊗ S2 is given by18

Kf

S2⊗S2
(a1, a2) =





∞
∑

ℓ̃=0

4
(

ℓ̃+ 1
)

e
− t

a21
(ℓ̃+1)

2



 ·
[ ∞
∑

ℓ=0

4 (ℓ+ 1) e
− t

a22
(ℓ+1)2

]

. (5.40)

Each of the two products corresponds to

Kf

S2
(a) =

∞
∑

ℓ=0

4 (ℓ+ 1) e−
t

a2
(ℓ+1)2 =

∞
∑

ℓ=0

2

ℓ+ 1
2

∑

m=−ℓ− 1
2

e−
t

a2
(ℓ+1)2 , (5.41)

from which we obtain

Kf
S2⊗S2 (a1, a2) =

∞
∑

ℓ′=0

2

ℓ′+ 1
2

∑

m=−ℓ′− 1
2

e
− t

a21
(ℓ′+1)2

·
∞
∑

ℓ=0

2

ℓ+ 1
2

∑

n=−ℓ− 1
2

e
− t

a22
(ℓ+1)2

. (5.42)

The modes invariant under the orbifold action 5.2 are still given by the quantization

condition

m− n = Np, p ∈ Z, (5.43)

18Following [24] we will compute the heat kernel of − /D
2
, which is the square of i /D, which means we

should multiply a factor of 1
2
, but we are also considering a Dirac fermion, rather than a Majorana fermion,

which yields a factor of 2. These two factors cancel.
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where n is the azimuthal quantum number on the sphere with radius a2. On imposing

this projection as for the scalar field, we find that the integrated heat kernel is given by

Kf

(S2⊗S2)/ZN
=

∞
∑

ℓ′=0

∞
∑

ℓ=0

Df
(

ℓ′, ℓ
)

e
− t

a21
(ℓ′+1)2

e
− t

a22
(ℓ+1)2

, (5.44)

where

Df
(

ℓ′, ℓ
)

=
4

N

N−1
∑

s=0

χℓ′+ 1
2

(πs

N

)

χℓ+ 1
2

(πs

N

)

. (5.45)

We can separate out the s = 0 contribution as for the scalar, and write

Kf

(S2⊗S2)/ZN
(a1, a2) =

1

N
Kf

S2⊗S2
(5.46)

+
4

N

N−1
∑

s=1

∞
∑

ℓ′=0

∞
∑

ℓ=0

χℓ′+ 1
2

(πs

N

)

χℓ+ 1
2

(πs

N

)

e
− t

a21
(ℓ′+1)2

e
− t

a22
(ℓ+1)2

.

The first term on the right-hand side represents the contribution of the smooth part of the

quotient space, while the second term may be regarded as the contribution of the fixed

points. This form of the answer is suitable for analytic continuation to
(

AdS2 ⊗ S2
)

/ZN .

However, we do not carry out the analytic continuation here.

5.4 A group-theoretic interpretation of these results

AdS2 and S2 are the simplest examples of the so-called symmetric spaces. These are coset

spaces G/H where G and H are Lie groups, and H is a subgroup of G. Harmonic analysis

on such spaces has a group theoretic structure which has been exploited to evaluate the

traced integrated heat kernel, on quotients of symmetric spaces where the quotient group

acts freely on the sphere or hyperboloid [40, 41]. In this section, we draw an interesting

parallel between the results obtained previously for freely acting quotient groups and the

results obtained here. This parallel also encourages us to expect that the heat kernel

may be explicitly evaluated on these conical spaces for arbitrary-spin particles as well,

in particular, in higher-dimensional spaces. To draw the parallel, we begin with a brief

review of the results of [40, 41]. Consider a symmetric space19 G/H which is quotiented

by a discrete group Γ ⊂ G, which acts on G from the left. Further, the action of Γ is such

that it has no fixed points in G. In that case, the heat kernel on Γ\G/H may be expressed

in terms of the heat kernel on G/H using the method of images. For a field transforming

in a representation S of H, the integrated heat kernel for the Laplacian on the quotient

space was found to be

KS
Γ = v ·

∑

R

∑

γ∈Γ
χR (γ) e−tE

S
R , (5.47)

where v is a volume factor corresponding to the ratio of the volume of Γ\G/H to the

volume of G/H, R are the representations of G which contain S when restricted to H, and

19Strictly speaking, most of the results of [40, 41] would hold for quotients of homogenous spaces as well.

The additional requirement that the space begin quotiented be symmetric as well leads to a few technical

simplifications, and minor simplifications in the final results.
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ESR is the eigenvalue of the Laplacian. To obtain this result, G and H were assumed to

be compact, and the extension to non-compact spaces SO (N, 1) /SO(N) was carried out

by analytic continuation. Though the action of ZN which we have considered on S2, and

the product space S2 ⊗ S2 has fixed points, the final forms of the answer thus obtained

in (4.25), (5.13), and (5.44), have remarkable similarities to (5.47). In particular, the

values of ℓ being summed over in these expressions are precisely the ones determined by

the branching rules as in (5.47). This is possibly related to the fact that for the scalar heat

kernel over the cone in flat space, the method of images does in fact produce the correct

answer for integer N [34]. It would be very interesting to make this connection explicit as

it would provide a very explicit solution to the heat kernel about these quotient spaces for

arbitrary-spin particles. Finally, it was observed in [40, 41] that the answer (5.47) could

be extended to the non-compact case of the hyperboloids by replacing the Weyl character

which appears in (5.47) by the Global (or Harish-Chandra) character. It is natural to

ask if the same extension is possible in this case. Though we do not fully explore this

question here, we provide some preliminary evidence for this in the context of the Z2

orbifold of AdS2. Firstly, we observe that the heat kernel for the scalar on S2/Z2 may also

be expressed, using the projection methods of section 5.1 as

Ks
S2/Z2

=
1

2

1
∑

s=0

∞
∑

ℓ=0

χℓ

(πs

2

)

e−
t

a2
ℓ(ℓ+1) (5.48)

We will now show that replacing the Weyl character of SU(2) in (5.48), and multiplying

by a factor of 1
2 to account for the relative number of fixed points in S2/ZN and AdS2/ZN ,

leads to the asymptotic expansion found in (4.39) for N = 2. For this, we require the

Harish-Chandra character of the group SO(2, 1) ≃ SL(2, R). This is given for the scalar,20

by [47]

dµ =
1

2

cosh (π − 2θ)λ

cosh (πλ)
dλ, (5.49)

where θ = πs
N . For us, N = 2 and s = 0, 1. The s = 0 term corresponds to the contribution

from the smooth part of AdS2/ZN , which is just 1
N times the heat kernel on AdS2. We will

concentrate on the s = 1 term, which is responsible for the contribution from the conical

singularities. We therefore find

Kconical =
1

2
· 1
2

∫ ∞

0
dλ

1

cosh (πλ)
e−

t

a2
(λ2+ 1

4) ≃ 1

8
− t

16a2
+ . . . . (5.50)

These are precisely the conical terms found in (4.39) on setting N = 2 there, which verifies

our conjecture. Thus, many of the central results of [40, 41] seem to carry over to these

quotient spaces as well, leading us to expect that the heat kernel can be explicitly solved

for arbitrary rank tensors, on arbitrary-dimensional spheres and hyperboloids in these ZN

orbifolds as well. It would be interesting to explore this question further.

20The corresponding expression for the fermion is also available in [47].
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6 The one-loop determinants in the graviphoton background

In this section we will carry out the computation proposed at the end of section 2.2. In

particular, we will consider the ZN orbifold (5.2) of the near-horizon geometry of a 1
4 -

BPS black hole and compute the log term in the one-loop partition function of an N = 4

vector multiplet. We find that it vanishes, which is consistent with the microscopic results.

We now give an overview of our strategy for this computation. Firstly, we note that the

spectrum of the quadratic operator for theN = 4 vector multiplet in the attractor geometry

has been completely solved for in [24]. This four-dimensional background is AdS2⊗S2 with

graviphoton fluxes running through the AdS2 and S2 submanifolds. We refer the reader

to [11] and section 4.2 of [24] for details. Hence, to determine the spectrum, we can

separately analyse the quadratic operators on AdS2 and S2. The following is a summary

of the results of [24] which we will need for our analysis.

We will first consider the kinetic operator for bosons and then the fermionic kinetic

operator. The N = 4 vector multiplet has a single vector field A, two Dirac fermions Ψ1,2

and 6 real scalars φa, where 1 ≤ a ≤ 6. Of these, the four scalars φa where 3 ≤ a ≤ 6 do

not mix with any other field. Their action is that of a real scalar field minimally coupled

to background gravity. Their contribution to the heat kernel is therefore known from the

analysis of section 5. The field φ1 mixes with the transverse modes of A along AdS2 on

account of the graviphoton flux. The relevant kinetic operator is [24]

− 1

2

∫

√

det g

[

(

φ1 Aα

)

(

−�− 2
a2

2i
a ε

γβDγ
2i
a ε

αγDγ −gαβ�+Rαβ +DαDβ

)(

φ1
Aβ

)

−AαD
αDβAβ

]

, (6.1)

where the last term is the gauge fixing term. The consequence of this mixing is that the

eigenvalues21 of the kinetic operator shift from 1
a2

(

λ2 + 1
4

)

to

1

a2

[

(λ± i)2 +
1

4

]

. (6.2)

The longitudinal and zero modes modes of A on AdS2 do not mix with the scalar, and their

contribution to the partition function is again known from the analysis of section 5. The

field φ2 on the other hand mixes with transverse modes of the vector field A along the S2

direction again on account of the graviphoton flux, and the relevant kinetic operator is [24]

− 1

2

∫

√

det g

[

(

φ2 Aα

)

(

−�+ 2
a2

− 2
aε
γβDγ

− 2
aε
αγDγ −gαβ�+Rαβ +DαDβ

)(

φ2
Aβ

)

−AαD
αDβAβ

]

,

(6.3)

where the last term is again the gauge fixing term. In this case, for modes of AT and φ2
labelled by ℓ ≥ 1 the eigenvalues shift from 1

a2
ℓ (ℓ+ 1) to

1

a2
ℓ (ℓ− 1) ,

1

a2
(ℓ+ 1) (ℓ+ 2) . (6.4)

21We remind the reader that these are the eigenvalues of both the standard Laplacian over scalar fields

as well as the Hodge Laplacian over vector fields in AdS2.
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The ℓ = 0 mode of φ2 does not mix, but its eigenvalue does get shifted from zero to 2
a2
.

Again, the modes AL do not mix with the scalar. In both the AdS2 and S2 cases, even

though the eigenvalues of the quadratic operator shift from those of the Laplacian, the

degeneracies do not. That is to say, that though the eigenvalue shifts from Eold to Enew,

the degeneracy of Enew is equal to the degeneracy of Eold. Further, on comparing the kinetic

operators in (6.1) and (6.3), it is apparent that they are related to each other by the same

analytic continuation as the AdS2 and S2 Laplacians are to each other. Finally, the shifted

eigenvalues (6.2) and (6.4) are related to each other by the same analytic continuation

a 7→ ia, ℓ 7→ iλ− 1

2
, (6.5)

as those of the Laplacian on AdS2 and S2 [30]. The analysis for the fermions is similar.

While the degeneracies do not change, the eigenvalues change from ±ia−1 (ℓ+ 1) on S2 to

±ia−1
(

ℓ+ 1± 1
2

)

, and from ±ia−1λ on AdS2 to ±ia−1
(

λ± i
2

)

, which are again related

to each other through the analytic continuation for fermions [48]. To compute the heat

kernel of the N = 4 vector multiplet in the ZN orbifold of AdS2⊗ S2 with the graviphoton

flux, we will therefore employ the same strategy as in section 5. We will compute the heat

kernel in the ZN orbifold of S2 ⊗ S2, where the two S2s have radii a1 and a2 respectively,

and the mixing along each S2 is as per (6.3) and (6.4). We will then analytically continue

the answer thus arrived at via

a1 7→ ia, a2 7→ a (6.6)

to arrive at the answer on
(

AdS2 ⊗ S2
)

/ZN .

6.1 The graviphoton background on
(

S2 ⊗ S2
)

/ZN

In this section we will compute the heat kernel for an N = 4 vector multiplet in a ZN

orbifold of an S2 ⊗ S2 background with a graviphoton flux running through both S2s. The

scalar φ1 couples to the gauge field A on the S2 of radius a1 via (6.3), while the scalar φ2 is

identically coupled to A on the S2 of radius a2. The effect of this coupling on the spectrum

has already been reviewed above.

6.1.1 The bosonic determinants

We consider the first the boson contribution which is given by

Kb (a1, a2) =4K
(s,s)

(S2⊗S2)/ZN
(a1, a2) +K

(s,v+s)

(S2⊗S2)/ZN
(a1, a2) +K

(v+s,s)

(S2⊗S2)/ZN
(a1, a2)

− 2K
(s,s)

(S2⊗S2)/ZN
(a1, a2) .

(6.7)

Here K
(v+s,s)

(S2⊗S2)/ZN
denotes the heat kernel of the vector-scalar mixed system on the S2

of radius a1 multiplied with the heat kernel for the scalar on the S2 radius a2, and the

subscript means that we have to pick out the ZN invariant states and compute the heat

kernel over them only. The last term represents the contribution of the ghost fields. We

have already computed K
(s,s)

(S2⊗S2)/ZN
in section 5.1. We shall now compute K

(v+s,s)

(S2⊗S2)/ZN
.
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The computation for K
(s,v+s)

(S2⊗S2)/ZN
is just related by the replacement a1 ↔ a2. With the

spectrum (6.3), the heat kernel K(v+s,s) is given by

∞
∑

ℓ′=0

[ ∞
∑

ℓ=1

Ds(ℓ, ℓ′)e
− t

a21
Eℓ−1

+
∞
∑

ℓ=0

Ds(ℓ, ℓ′)e
− t

a21
Eℓ+1

+
∞
∑

ℓ=1

Ds(ℓ, ℓ′)e
− t

a21
Eℓ

]

e
−t ℓ

′(ℓ′+1)

a22 , (6.8)

where

Ds(ℓ, ℓ′) =
1

N

N−1
∑

m=0

sin
[

π(2ℓ+1)m
N

]

sin
[

πm
N

]

sin
[

π(2ℓ′+1)m
N

]

sin
[

πm
N

] ≡ 1

N

N−1
∑

m=0

χ(ℓ,ℓ′)

(πm

N

)

, (6.9)

and Eℓ = ℓ (ℓ+ 1). By using standard trigonometric identities one can reduce this to

the form

K
(v+s,s)

(S2⊗S2)/ZN
= 3Ks

(S2⊗S2)/ZN
− 4

N

N−1
∑

m=1

∞
∑

ℓ,ℓ′=0

χ(ℓ,ℓ′)

(πm

N

)

sin2
πm

N
e
− t

a21
Eℓ

e
− t

a22
Eℓ′
. (6.10)

Putting everything together, we find that

Kb
(S2⊗S2)/ZN

= 8Ks
(S2⊗S2)/ZN

− 8

N

N−1
∑

m=1

∞
∑

ℓ,ℓ′=0

χ(ℓ,ℓ′)

(πm

N

)

sin2
πm

N
e
− t

a21
Eℓ

e
− t

a22
Eℓ′
. (6.11)

Finally, on using (5.15), we obtain as our final result

Kb
(S2⊗S2)/ZN

=
8

N
Ks

S2⊗S2
+

8

N

N−1
∑

m=1

∞
∑

ℓ,ℓ′=0

χ(ℓ,ℓ′)

(πm

N

)

cos2
πm

N
e
− t

a21
Eℓ

e
− t

a22
Eℓ′
. (6.12)

6.1.2 The fermionic determinants

As mentioned previously, the effect of the graviphoton background for fermions on S2 is

to shift the eigenvalues by of the Dirac operator from ±ia−1 (ℓ+ 1) to ±ia−1
(

ℓ+ 1± 1
2

)

.

The degeneracies do not change. As a result, the fermion heat kernel on
(

S2 ⊗ S2
)

/ZN
changes to

K=− 1

N

N−1
∑

m=0

∞
∑

ℓ′=0

∞
∑

ℓ=0

χ(ℓ′+ 1

2
,ℓ+ 1

2 )

(πm

N

)

(

e
−

t

a
2
1

(ℓ′+ 3

2 )
2

+e
−

t

a
2
1

(ℓ′+ 1

2 )
2
)(

e
−

t

a
2
2

(ℓ+ 3

2 )
2

+e
−

t

a
2
2

(ℓ+ 1

2 )
2
)

.

(6.13)

Again, using standard trigonometric identities we can show that

∞
∑

ℓ=0

χ(ℓ+ 1
2)

(πs

N

)

(

e−
t

a2
(ℓ+ 3

2)
2

+ e−
t

a2
(ℓ+ 1

2)
2
)

= 2e−
t

4a2

∞
∑

ℓ=0

χℓ

(πs

N

)

cos
(πs

N

)

e−
t

a2
ℓ(ℓ+1).

(6.14)

We therefore find

K = − 4

N
e
− t

4a21 e
− t

4a22

N−1
∑

s=m

∞
∑

ℓ=0

∞
∑

ℓ′=0

χ(ℓ,ℓ′)

(πm

N

)

cos2
(πm

N

)

e
− t

a21
Eℓ′
e
− t

a22
Eℓ

, (6.15)
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and separating out the s = 0 term, we find

K=− 4

N
e
− t

4a21 e
− t

4a22

[

Ks
S2⊗S2

+
N−1
∑

m=1

∞
∑

ℓ=0

∞
∑

ℓ′=0

χ(ℓ′,ℓ)

(πm

N

)

cos2
(πm

N

)

e
− t

a21
Eℓ′
e
− t

a22
Eℓ

]

. (6.16)

As there are two Dirac fermions in an N = 4 multiplet the overall fermion contribution is

given by

Kf = −e
− t

4a21 e
− t

4a22Kb
(S2⊗S2)/ZN

(a1, a2) , (6.17)

where we have used (6.12).

6.2 The analytic continuation to
(

AdS2 ⊗ S2
)

/ZN

We will now focus on how the above results may be analytically continued to the heat

kernel of the N = 4 vector multiplet in the near horizon geometry of a quarter-BPS black

hole. To carry out the analytic continuation, we will use the following prescription. We will

take the heat kernels computed on
(

S2 ⊗ S2
)

/ZN above and continue a1 7→ ia and a2 7→ a

as in section 5. We will multiply the resulting functional form of the heat kernel by an

overall factor of half.22 This will yield the regulated heat kernel of the kinetic operator with

the graviphoton flux on
(

AdS2 ⊗ S2
)

/ZN . Further, we have to be careful to add the ℓ = 0

modes mentioned in section 4.4 when we analytically continue the vector heat kernel from

S2 to AdS2. We begin with the bosonic contribution to the heat kernel. Following [24], we

have to compute

Kb = 4K
(s,s)

(AdS2⊗S2)/ZN
+K

(s,v+s)

(AdS2⊗S2)/ZN
+K

(v+s,s)

(AdS2⊗S2)/ZN
− 2K

(s,s)

(AdS2⊗S2)/ZN
, (6.18)

It should be clear that the analytic continuation for most of the terms is straight forward.

In particular, K(s,s) gets continued to the corresponding scalar heat kernel in the non-

compact geometry and K(s,v+s) gets continued again as before because the field for which

the analytic continuation being done is just the scalar, for which there are no subtleties of

zero modes. Hence

K
(s,s)

(AdS2⊗S2)/ZN
(a) =

1

2
K

(s,s)

(S2⊗S2)/ZN
(ia, a), K

(s,v+s)

(AdS2⊗S2)/ZN
(a) =

1

2
K

(s,v+s)

(S2⊗S2)/ZN
(ia, a).

(6.19)

It now remains to compute K
(v+s,s)

(AdS2⊗S2)/ZN
. This may be decomposed as

K
(v+s,s)

(AdS2⊗S2)/ZN
(a) = K

(vT+vL+s,s)

(AdS2⊗S2)/ZN
(a) +K

(v0,s)′

(AdS2⊗S2)/ZN
(a) , (6.20)

since the zero modes of the gauge field do not mix with the scalar field φ1 on AdS2. The

prime on the superscript of the second term on the right hand side above reminds us that

22The origin of the factor of half is as follows. Firstly, for the contribution from the conical singularities

it accounts for the fact that the number of fixed points on the AdS quotient is half the number of fixed

points on the sphere quotient. Secondly, for the contribution from the smooth part of the manifold, the

integrated heat kernel is given by the coincident heat kernel times the volume. The two coincident heat

kernels are related by a 7→ ia [24]. In the analytic continuation, the volume of the S2, which is 4πa2
1 is

replaced by the (regularised) volume of AdS2, which is −2πa2. Hence the overall factor of half, with the

continuation a 7→ ia.
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this is the heat kernel over the non-zero modes obtained by tensoring the zero modes of

the vector field on AdS2 with the non-zero modes of the scalar on S2. This has already

been evaluated in (5.29) and found to be,

K
(v0,s)′

(AdS2⊗S2)/ZN
(a) = −Ks

S2/ZN
(a) + 1. (6.21)

The first term K
(vT+vL+s,s)

(AdS2⊗S2)/ZN
(a) is given by

K
(vT+vL+s,s)

(AdS2⊗S2)/ZN
(a) =

1

2

[

K
(vT+vL+s,s)

(S2⊗S2)/ZN
(ia, a) + 2Ks

S2/ZN
(a)

]

, (6.22)

where the 2Ks
S2/ZN

being added is because when we analytically continue the longitu-

dinal and transverse modes of the vector fields from S2 to AdS2 we have to add back

the ℓ = 0 modes of the scalars φ1 and φ2 as discussed in section 4.4. We therefore find

from (6.20), (6.21) and (6.22) that

K
(v+s,s)

(AdS2⊗S2)/ZN
(a) =

1

2
K

(v+s,s)

(S2⊗S2)/ZN
(ia, a) + 1. (6.23)

Finally, putting (6.18), (6.19) and (6.23) together, we find that the bosonic heat kernels

contribute

Kb =
1

2

[

2Ks
(S2⊗S2)/ZN

(ia, a) +K(s,v+s) (ia, a) +K
(v+s,s)

(S2⊗S2)/ZN
(ia, a)

]

+ 1, (6.24)

which simplifies to

Kb =
1

2
Kb
(S2⊗S2)/ZN

(ia, a) + 1. (6.25)

Now the fermionic contribution may be analytically continued from the expression (6.17)

to obtain

Kf = −1

2
Kb
(S2⊗S2)/ZN

(ia, a) . (6.26)

Then the contribution from the non-zero modes to the heat kernel is finally

Knon-zero = Kb +Kf = +1 (6.27)

Therefore the contribution to the log term from non-zero modes is

Snon-zero
log =

1

2

∫

ǫ

a2

ds̄

s̄
(+1) = log a. (6.28)

We’ve already counted the number of zero modes on the 4d geometry, which is -1, so

Szero
log = (−1) log a. (6.29)

Thus the two terms, when added, cancel each other and the net logarithmic contribution

vanishes.

Slog = 0. (6.30)
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7 Conclusions

In this paper we computed the heat kernel for a single N = 4 vector multiplet in a ZN

orbifold of the near-horizon geometry of a quarter-BPS black hole in N = 4 supergravity.

We found that the contribution proportional to log a vanishes for arbitrary values of N , in

accordance with the expectation from microstate counting. To carry out this computation,

we developed new techniques to compute the short-time asymptotic behaviour of the heat

kernel over spheres and hyperboloids with ZN orbifolds. Though we worked mostly with S2,

AdS2, their product spaces and their ZN orbifolds, we also obtained group-theoretic forms

for the heat kernel suggestive of a possible solution for the heat kernel over arbitrary-spin

fields in higher-dimensional spheres and hyperboloids. It would firstly be very interesting

to make this connection to the results previously obtained for freely acting quotient groups

in [40, 41]. Finally, the motivation for this work was to concretely match the logarithmic

corrections about exponentially suppressed saddle points of the quantum entropy function

with the corresponding microscopic answers for N = 4 and N = 8 string theory along the

lines of [24, 25] for the leading saddle-point. This requires us to extend the analysis of this

paper to the gravity multiplet as well, which is work in progress. In addition, these methods

would also be useful in the case of extremal black holes in AdS4 constructed in [49–51]. In

this case the AdS2 and S2 have different radii which in our expressions can be obtained

by analytically continuing one of the S2s to an AdS2 of radius different than the other S2.

The techniques developed in this paper could potentially also be used for computations of

entanglement entropy [52].
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A The scalar Laplacian on S2 and the analytic continuation to AdS2

As a zeroth order check of our method of evaluating the heat kernel expansion by explic-

itly enumerating the eigenvalues and degeneracies of the Laplacian and using the Euler-

Maclaurin formula, we will show that this precisely reproduces results for the integrated

heat kernel arrived at previously in [24]. Additionally, we will recover the result for the

contribution of a single massless minimally coupled scalar to the logarithmic correction to

the entropy of an extremal black hole also obtained in [24]. We start with the expression
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for the integrated heat kernel on the two-sphere

Sg =
∞
∑

ℓ=0

(2ℓ+ 1) e−t
ℓ(ℓ+1)

a2 . (A.1)

Using the Euler-Maclaurin formula (4.18) this can be expressed as

Sg =
1

2
f(0) +

∫ ∞

0
dℓ (2ℓ+ 1) e−t

ℓ(ℓ+1)

a2 +
∞
∑

k=2

Bk
k!

(

f (k−1)(∞)− f (k−1)(0)
)

, (A.2)

where

f(x) ≡ (2x+ 1) e−t
x(x+1)

a2 . (A.3)

We will now extract the short-time asymptotic behaviour of Sg from the above expression.

Firstly, note that the integral over ℓ can be done to obtain

Sg =
1

2
+
a2

t
−

∞
∑

k=2

Bk
k!
f (k−1)(0), (A.4)

where we have also used the fact that f and all its derivatives vanish at ∞. Also, to extract

the log term from the heat kernel, we need the order 1 term in the t expansion of the scalar

heat kernel on AdS2 ⊗ S2. The scalar heat kernel on this product space is just the product

of the scalar heat kernel on AdS2 times the scalar heat kernel on S2. We know that the heat

kernels go as 1
t so we will neglect terms from O(t2) onwards in this expansion. Expanded

out to any finite power of t, the function f will be polynomial in x and therefore the sum

over k above is a finite sum and can be evaluated completely. Upon doing so, we find

Sg =
1

3
+
a2

t
+

t

15a2
+O(t2). (A.5)

Now we would like to analytically continue this to the Anti-de Sitter case. Note that this

is the integrated heat kernel, and we cannot naively continue this, as there is a volume

divergence in AdS which will be missed. To do this continuation note that

Sg =
∞
∑

ℓ=0

(2ℓ+ 1) e−t
ℓ(ℓ+1)

a2 = (Vol.S2)
∞
∑

ℓ=0

2ℓ+ 1

4πa2
e−t

ℓ(ℓ+1)

a2 . (A.6)

The last sum is the coincident heat kernel, which can be safely analytically continued

via a 7→ ia. The integrated heat kernel on AdS can hence be written down by analytic

coninuation as

Ag = (Vol.AdS2)

(

− 1

12πa2
+

1

4πt
+

t

60πa4
+O(t2)

)

. (A.7)

The expression for the coincident heat kernel above matches precisely with the series ex-

pansion in s̄ = t
a2

of (2.15) of [24]. Then the integrated heat kernel on AdS2 × S2 is

given by

K(t) = −2πa2
(

− 1

12πa2
+

1

4πt
+

t

60πa4
+O(t2)

)

·
(

1

3
+
a2

t
+

t

15a2
+O(t2)

)

, (A.8)
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where −2πa2 is the regularized volume of AdS2 as obtained in (4.38). Then, the one-loop

effective action is given by

δS =
1

2

∫ ∞

ǫ

dt

t
K(t), (A.9)

from which the one-loop correction to black hole entropy may be extracted

δSBH =

∫ ∞

ǫ

a2

ds̄

s̄

(

1

12
− 1

4s̄
+

s̄

60
+O

(

s̄2
)

)

·
(

1

3
+

1

s̄
+

s̄

15
+O

(

s̄2
)

)

. (A.10)

The log contribution, as before, comes from the order 1 term in the integrand, given by
1

180πa2
. We therefore obtain

δSBH = − 1

180
log

a2

ǫ
. (A.11)

This matches with the expression found in [24].

B Anti-periodic fermions on S2/ZN and AdS2/ZN

In this appendix, we will compute the heat kernel for anti-periodic fermions on S2/ZN and

AdS2/ZN . Unlike scalars and spin-1 fields, these modes are not a subset of the anti-periodic

modes on S2 and AdS2. While these are not relevant to the computation of the one-loop

determinants in orbifolds of the graviphoton background considered in section 6, we shall

briefly outline the main elements of the analysis for these fermions as well. The main

result which we shall use is that though these modes are not a subset of the anti-periodic

modes found in [48], the same analytic continuation as found in [48] for the unorbifolded

case can be used to relate the spectrum of the Dirac operator on S2/ZN and AdS2/ZN as

well. It is straighforward to follow through the analysis of [48] to verify this statement. We

can therefore use the Euler-Maclaurin formula to compute the integrated heat kernel on

S2/ZN and further prescribe an analytic continuation to obtain the integrated heat kernel

on AdS2/ZN . The last expression is, to our knowledge, new. We will first consider the

calculation on S2/ZN . The spectrum of the Dirac operator is given by [37]

λ = ±
(

N

(

p+
1

2

)

+ q +
1

2

)

, p, q ∈ Z+, (B.1)

and the degeneracy of each eigenvalue is 2. Then the square of the Dirac operator has

eigenvalues

λ =

(

N

(

p+
1

2

)

+ q +
1

2

)2

, p, q ∈ Z+, (B.2)

where each eigenvalue is four-fold degenerate. But there are more degeneracies than this.

To see the point, consider an eigenvalue ℓ = Nr + s, where 0 ≤ s ≤ N − 1. There are

(r + 1) ways of realising this as Np + q, corresponding to p = 0, 1, . . . , r. Therefore the
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heat kernel for the Dirac operator can be given by23

Kf

S2/ZN
= −

∞
∑

r=0

N−1
∑

s=0

4 (r + 1)

[

e−
t

a2
(Nr+s+N+1

2 )
2
]

≡ −
∞
∑

s=0

ks, (B.3)

where

ks =
∞
∑

r=0

4 (r + 1) e−
t

a2
(Nr+s+N+1

2 )
2

. (B.4)

Now, as for the scalar on S2/ZN in section 4.2, we use the Euler-Maclaurin formula to find

that the heat kernel for Dirac fermions on S2/ZN is given by

Kf

S2/ZN
=

1

N
Kf

S2
+
N2 − 1

6N
+

(

7N2 + 17
) (

N2 − 1
)

t

720a2N
+O

(

t2
)

. (B.5)

This matches with the t0 term computed in [37]. Then, the analytic continuation of this

answer to the AdS case is

Kf
AdS2/ZN

=
1

N
Kf

AdS2
+

1

2

[

N2 − 1

6N
−
(

7N2 + 17
) (

N2 − 1
)

t

720a2N

]

+O
(

t2
)

. (B.6)

Here, we introduced a factor of half in the contribution from the conical singularity, as

AdS2/ZN has only one such singularity, not two, as in the case of S2/ZN . We also analyt-

ically continued via a 7→ −ia in these terms, as per the rules outlined in the main text.

C Zero modes on AdS2 by zeta function regularization

In this section we will evaluate the number of zero modes on AdS2 and
(

AdS2 ⊗ S2
)

/ZN by

a different regularization. On non-compact manifolds like AdS2 this is typically a divergent

quantity which we define as

n0 =
∑

ℓ∈Z

∫

dθdη
√
ggmnf ℓ∗m f

ℓ
n, (C.1)

where

f ℓm = ∇mφ
ℓ, φℓ =

1
√

2π|ℓ|

[

sinh η

1 + cosh η

]|ℓ|
eiℓθ, l = ±1,±2, . . . , (C.2)

are the discrete zero modes of the vector Laplacian on AdS2. We will first evaluate this

answer using the methods of [24], and then show how a zeta function regularisation gives

rise to the same result. We begin with the method of [24]. In this case, we note that AdS2
is a homogeneous space and we can evaluate the integrand

∑

ℓ g
mnf ℓ∗m f

ℓ
n at any point on

the space, in particular, the origin. In that case only the ℓ = ±1 modes contribute. Then

the number of zero modes is given by

n0 =
2

4πa2
(Vol.AdS2) = −1, (C.3)

23Following [24] we will compute the heat kernel of − /D
2
, which is the square of i /D, which means we

should multiply a factor of 1
2
, but we are also considering a Dirac fermion, rather than a Majorana fermion,

which yields a factor of 2. These two factors cancel.
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where we have used −2πa2 as the regularized volume of AdS2. Now we will evaluate the

above answer by doing the volume integral explicitly. We then find, on doing the η integral

n0 =
∞
∑

ℓ∈Z−0

∫ 2π

0
dθ

1

2π
= 2

∞
∑

ℓ=1

1 = 2ζ (0) = −1. (C.4)

Hence the zeta function regularization gives the same answer as obtained by regularizing

the volume divergence. Now suppose we put the orbifold θ 7→ θ+ 2π
N on AdS2. The modes

f ℓm which survive the projection are the ones for which ℓ = Np, where p = ±1,±2, . . . ,∞.

On going through the above procedure, we again find that

n0 = −1. (C.5)

This matches with the number of zero modes (5.33) obtained in the main text.
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