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supergravity (superhelicity Y = 3/2) as it’s massless limit. The new results will illumi-

nate the underlying structure of auxiliary superfields required for the description of higher

massive superspin systems.

Keywords: Space-Time Symmetries, Supersymmetric Effective Theories

ArXiv ePrint: 1310.7387

1Supported in part by National Science Foundation Grant PHY-09-68854.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2014)030

mailto:gatess@wam.umd.edu
mailto:koutrol@umd.edu
http://arxiv.org/abs/1310.7387
http://dx.doi.org/10.1007/JHEP03(2014)030


J
H
E
P
0
3
(
2
0
1
4
)
0
3
0

Contents

1 Introduction 1

2 Arbitrary superspin representation theory 2

3 The massless limit 3

4 Warming up with Y = 1/2 4

5 New massive Y = 3/2 theory 6

6 Summary and conclusions 9

1 Introduction

After four decades of exploring the topic of supersymmetry (SUSY), the problem of writing

a manifestly susy-invariant action that describes a free, off-shell massive arbitrary superspin

irreducible representation of the Super-Poincaré group still possesses puzzles. Although the

non-supersymmetric case of massive higher spin theory has been developed [1, 2] and is well

understood, the off-shell supersymmetric case has yet to be understood with a comparable

level of clarity. There has been progress for on-shell supersymmetry [3], but these results

don’t capture the rich off-shell structure of supersymmetric theories. There is a need for

a manifestly susy invariant theory of massive integer and half-integer superspins which

includes all the auxiliary superfields a theory of this nature is expected to possess.

Progress in this direction was made with the works presented in [4–6] where free

massive irreducible representations of superspin 1 and 3/2 were constructed. These results

provided a proof of concept that constructions like these are possible, but they don’t

shed light to the heart of the problem which is to determine the set of auxiliary superfields

required to describe an arbitrary superspin system with a proper massless limit. Specifically

in [4] the focus was on massive extension of linearized old-minimal supergravity and new-

minimal supergravity. These theories do not generalize to the arbitrary spin case, therefore

the results obtained do not provide clues about the underlying structure of the auxiliary

superfields for the general case.

This is not the case with the work presented in [6] where a free massive extension

of linearized non-minimal supergravity is derived. Linearized non-minimal supergravity

supermultiplet is a member of a tower of irreducible representations that can be extended

to the arbitrary super-helicity and that makes it a good starting point. However their

construction uses a lagrange multiplier technique in order to impose constraints that were

not derived in a dynamical way.
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We will show that there is an alternative formulation of the theory where all the

constraints required, for the description of a free massive irreducible representation of

Y = 3/2, are dynamically generated from the equations of motion of a set of superfields

{Hαα
. , χα, uα}. Superfields Hαα

. , χα in the massless limit form the free linearized non-

minimal theory (superhelicity Y = 3/2) and uα is an auxiliary superfield that decouples

when m→ 0.

Finally, the theory presented here is a free theory without interactions. The fully

interacting, non-linear problem is still an open and very difficult one and it is one of the

motivations for this kind of investigations. In a realistic approach we can not talk about

interactions if we haven’t established the free theories first. The results presented here

extend our understanding for the free massive theory of the non-minimal superspin 3/2

supermultiplet, which is the first non-trivial. Furthermore we provide clues for some of the

degrees of freedom that must be present in the non-linear, interacting theory. These are

the superfields that have auxiliary status in the free linearized theory.

Our presentation is organized as follows: in section 2, we quickly review the representa-

tion theory of the 4D, N = 1 Super-Poincaré group for a free massive arbitrary superspin

system. In section 3, we present the constraints imposed in the theory in order to have

a proper massless limit. In the following section 4, we start with a warm up exercise by

quickly reproducing the massive theory for superspin Y = 1/2. In the last section 5 we

present the new massive theory for Y = 3/2.

2 Arbitrary superspin representation theory

The irreducible representations of the Super-Poincaré group are labeled by it’s two

Casimir operators. The first one is the mass and the other one is a supersymmetric exten-

sion of the Poincaré Spin operator. For the massive case the Super-spin casimir operator

takes the form

C2 =
W 2

m2
+

(
3

4
+ λ

)
P(o) , (2.1)

where W 2 is the ordinary spin operator (the square of the Pauli-Lubanski vector), P(o) is

the projection operator P(o) = − 1
m2 DγD̄2Dγ and the parameter λ satisfies the equation

λ2 + λ =
W 2

m2
. (2.2)

In order to diagonalize C2 we want to diagonalize both W 2, P(o). The superfield

Φα(n)α
.
(m) that does this

W 2Φα(n)α
.
(m) = j(j + 1)m2Φα(n)α

.
(m), j =

n+m

2
,

P(o)Φα(n)α
.
(m) = Φα(n)α

.
(m) ,

(2.3)

and describes the highest possible representation (highest superspin)

λ =
n+m

2
,

C2Φα(n)α
.
(m) = Y (Y + 1)Φα(n)α

.
(m), Y =

n+m+ 1

2
,

(2.4)
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has to satisfy the following:

D2Φα(n)α
.
(m) = 0 ,

D̄2Φα(n)α
.
(m) = 0 ,

DγΦγα(n−1)α
.
(m) = 0 ,

∂γγ̇Φγα(n−1)γ̇α
.
(m−1) = 0 ,

�Φα(n)α
.
(m) = m2Φα(n)α

.
(m) ,

(2.5)

where all dotted and undotted indices are fully symmetrized and the spin content of this

supermultiplet is j = Y + 1/2, Y, Y, Y − 1/2.

A superfield that describes a superspin Y system has index structure such that n+m =

2Y −1 where n,m are integers. This Diophantine equation has a finite number of different

solutions for (n,m) pairs but the corresponding superfields are all equivalent because we

can use the ∂ββ̇ operator to convert one kind of index to another. So we can pick one of

them to represent the entire class.

One last comment has to be made about the reality of the representation. The reality

condition imposed on the superfield differs with the character of the superfield. The bosonic

superfields, have even total number of indices therefore describe half-integer superspin

systems, Y = s + 1/2. In this case we can pick to have n = m = s (Hα(s)α
.
(s)) and the

reality condition is Hα(s)α
.
(s) = H̄α(s)α

.
(s). On the other hand the fermionic superfields have

odd total number of indices and describe integer superpsin systems, Y = s + 1. For that

case we can pick n = s + 1, m = s (Ψα(s+1)α
.
(s)) and the reality condition is the Dirac

equation i∂αs+1
α
.
s+1Ψ̄α(s)α

.
(s+1) +mΨα(s+1)α

.
(s).

3 The massless limit

Representation theory tells us the type of superfield and constraints we need in order

to describe a specific irreducible representation. We would like to have a dynamical way

to derive these constraints, through an action. Very quickly we realize that, for that to

happen we need a set of auxiliary superfields to help us generate these constraints, as in the

non-supersymmetric free massive arbitrary spin story. To find the minimum number and

type of these auxiliary superfields needed, is the heart of the problem. That sounds like an

intuitive trial-and-error process, but there is a hidden clue and that is the massless limit of

the theory. We demand the massless limit of our massive theory to give the corresponding

massless irreducible representation.

The list of available massless highest superhelicity irreducible representations was pre-

sented in [7–10], and [11]. There is one infinite tower for theories of integer superhelicity

and two different infinite towers for theories of half integer super-helicities (figure 1). How-

ever there are a few theories that don’t fall in one of the three infinite towers, like the old

minimal, new minimal and new-new minimal supermultiplets. These are special cases that

can not be generalized to the arbitrary superhelicity. If our goal is towards the construction
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Figure 1. Towers of Massive Higher Spin Supermultiplets

of an arbitrary massive superspin supermultiplet, then it is obvious that we should start

with massless theories that are members of an infinite tower and not a special case.

The conclusion is that the construction of massive theories must start with the cor-

responding massless action, the addition of some extra auxiliary superfields (if necessary)

and appropriate (self)interaction terms proportional to m and m2, so the massless theory

decouples in the massless limit.

4 Warming up with Y = 1/2

So if we want to construct the theory of superspin 1/2 we start with the theory of

superhelicity 1/2, add terms proportional to m and m2 and check if we can generate the

desired constraints. If not then we add extra auxiliary fields until we do. The starting

action is:

S =

∫
d8z
{
a1HDγD̄2DγH + a2m H

(
D2H + D̄2H

)
+ a3m

2 H2
}

. (4.1)

To describe Y = 1
2 , H must satisfy D2H = 0 and �H = m2H. The equation of motion is

E(H) =
δS

δH
= 2a1DγD̄2DγH + 2a2m

(
D2H + D̄2H

)
+ 2a3m

2H , (4.2)

which gives

D2E(H) = 2a2mD2D̄2H + 2a3m
2D2H , (4.3)

so by choosing a2 = 0, a3 6= 0 we find D2H = 0  D̄2H = 0 (reality) and if this is

substituted back into E(H) we get �H = a3
a1
m2H which fixes a3 = a1 for compatibility with

the Klein-Gordon equation.
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There is also another way to obtain these results and that is à la Stückelberg. The

observation is that at least on-shell the massive superspin 1
2 can be seen as the result of

the combination of the massless superhelicity 1
2 plus the massless superhelicity 0. So we

start with the actions for superhelicity 1
2 and 0 and we introduce (self)interaction terms

proportional to m and m2

S =

∫
d8z
{
a1 HD̄γ̇D2D̄γ̇H + a2mH

(
D2H + D̄2H

)
+ a3m

2 H2

+ γm H
(
Φ + Φ̄

)
+ b1 ΦΦ̄

}
+

∫
d6z b2m ΦΦ .

(4.4)

The equations of motion are:

E(H) = 2a1DγD̄2DγH + 2a2m
(
D2H + D̄2H

)
+ γm

(
Φ + Φ̄

)
+ 2a3m

2H , (4.5)

E(Φ) = −b1D̄2Φ̄− γmD̄2H + 2b2mΦ . (4.6)

If we manage to show that on-shell Φ = 0 then E(Φ) = 0 D2H = 0 �H = m2H (a3 =

a1). With that goal in mind we attempt to eliminate H from the equation of Φ and choose

coefficients in such a way to find Φ = 0. We begin by defining I = D̄2E(H) + mE(Φ) and

then notice

I = D̄2E(H) +mE(Φ) = (γ − b1)m D̄2Φ̄ + (2a3 − γ)m2 D̄2H

+ 2a2 D̄2D2H + 2b2m
2 Φ .

(4.7)

If we choose γ = b1 = 2a3 = 2a1, a2 = 0 we obtain I = 2b2m
2 Φ. Now we can follow two

possible routes

1. b2 6= 0: b2 can be anything besides zero and in that case on-shell I = 0 Φ = 0 we

find all the desired constraints for H and the action is

S =

∫
d8z
{
c HD̄γ̇D2D̄γ̇H + cm2H2 + 2cm H

(
Φ + Φ̄

)
+ 2c ΦΦ̄

}
+

∫
d6z b2m ΦΦ .

(4.8)

2. b2 = 0: if we set b2 to zero, then I identically vanish. That means the D̄2E(H) +

mE(Φ) = 0 can be treated as a Bianchi identity and the corresponding action is

invariant under a symmetry. The symmetry of the action that generates the above

Bianchi identity is

δGH ∼ D̄2L+ D2L̄ , (4.9)

δGΦ ∼ mD̄2L . (4.10)

Due to this symmetry, the chiral superfield Φ can be gauged away completely and

therefore it’s equation of motion (or the Bianchi identity) will give the desired con-

straint of D2H = 0. The action for this case is

S =

∫
d8z
{
c HD̄γ̇D2D̄γ̇H + cm2H2 + 2cm H

(
Φ + Φ̄

)
+ 2c ΦΦ̄

}
, (4.11)
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and the gauge fixed action is identical with the action obtained from the first deriva-

tion. We would like to know if similar ‘Stückelberg’ constructions can occur for the

higher superspin theories, like it is the case for the higher spin theories

5 New massive Y = 3/2 theory

Now we will follow a similar strategy to build a theory of superspin 3
2 . The starting

point is the theory of superhelicity 3
2 , in specific we choose the theory of non-minimal

supergravity (s = 1 in [9]). Linear Non-minimal supergravity is formulated in terms of a

real bosonic superfield Hαα
. and a fermionic superfield χα. We will add mass corrections

to that action and check if 1) we can make χα vanish on-shell (auxiliary status) and 2)

we can generate the constraints on Hαα
. demanded by representation theory DαHαα

. = 0,

�Hαα
. = m2Hαα

. . The starting action is given by

S =

∫
d8z

{
Hαα

.
DγD̄2DγHαα

. + a1mH
αα
.
(D̄α
.χα −Dαχ̄α

.)

− 2 Hαα
.
D̄α
.D2χα + c.c. + a2mH

αα
.
(D2Hαα

. + D̄2Hαα
.)

− 2 χαD2χα + c.c. + a3mχ
αχα + c.c.

+ 2 χαDαD̄α
.
χ̄α
. + a4m

2Hαα
.
Hαα

.
}

,

(5.1)

and the equations of motion are:

E(H)

αα
. = 2DγD̄2DγHαα

. + 2(DαD̄2χ̄α
. − D̄α

.D2χα) + a1m(D̄α
.χα −Dαχ̄α

.)

+ 2a2m(D2Hαα
. + D̄2Hαα

.) + 2a4m
2Hαα

. , (5.2)

E(χ)
α = −4D2χα + 2DαD̄α

.
χ̄α
. − 2D2D̄α

.
Hαα

. + a1mD̄α
.
Hαα

. + 2a3mχα . (5.3)

Now we may use these equations and attempt to remove any Hαα-dependence to derive

one equation that depends solely on χα. That will tell us if we can pick coefficients in a

way that χα vanishes on-shell. Consider the following linear combination of equations of

motion where each such equation of motion is obtained by the variation of the action with

regard to the respective superfields indicated by the subscripts in the first equation below:

Iα = AD2D̄α
.
E(H)

αα
. +BD2D̄2E(χ)

α +m2E(χ)
α

= −2 (A+B)�D2D̄α
.
Hαα

. + 2 (A+B) D2D̄2DαD̄α
.
χ̄α
. −Aa1mD2D̄α

.
Dαχ̄α

.

+ 2 (Aa4 − 1)m2D2D̄α
.
Hαα

. − 4 (A+B)�D2χα − 4m2D2χα

+ (a1)m3D̄α
.
Hαα

. + 2 (Aa1 +Ba3)mD2D̄2χα + 2m2DαD̄α
.
χ̄α
.

+ 2a3m
3χα .

(5.4)

The following choice of coefficients will remove any Hαα
. dependence from the equation

above:

A+B = 0 , Aa4 − 1 = 0 , a1 = 0 , (5.5)

– 6 –
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and imposing these leads to the form of Iα to be given by

Iα = −4m2D2χα + 2Ba3mD2D̄2χα + 2m2DαD̄α
.
χ̄α
. + 2a3m

3χα . (5.6)

From this we see there is no choice of coefficients that will make χα vanish on-shell.

Therefore we must introduce an auxiliary superfield. Its purpose will be to impose a

constraint on χα when it vanishes. That constraint will be used to simplify the above

expression for Iα and set χα to zero. But a more careful examination of Iα will convince

us that there is no unique constraint on χα that will make all terms (except the last

one) vanish. The inescapable conclusion is that we have to treat χα = 0 as the desired

constraint. This suggests that we must introduce a spinorial superfield uα that couples

with χα through only a mass term ∼ muαχα. Hence when uα = 0 then immediately we

see χα = 0.

We must update the action with the introduction of a few new terms: the interaction

term muαχα and the kinetic energy terms for uα (the most general quadratic action). The

new action is

S =

∫
d8z
{
Hαα

.
DγD̄2DγHαα

. + γmuαχα + c.c.

− 2 Hαα
.
D̄α
.D2χα + c.c. + a2mH

αα
.
D2Hαα

. + c.c. + b1u
αD2uα + c.c.

− 2 χαD2χα + c.c. + a3mχ
αχα + c.c. + b2u

αD̄2uα + c.c.

+ 2 χαDαD̄α
.
χ̄α
. + a4m

2Hαα
.
Hαα

. + b3u
αD̄α

.
Dαūα

.

+ b4u
αDαD̄α

.
ūα
.

+ b5mu
αuα

}
,

(5.7)

and the updated equations of motion are

E(H)

αα
. = 2DγD̄2DγHαα

. + 2(DαD̄2χ̄α
. − D̄α

.D2χα) + 2a2m(D2Hαα
. + D̄2Hαα

.)

+ 2a4m
2Hαα

. , (5.8)

E(χ)
α = −4D2χα + 2DαD̄α

.
χ̄α
. − 2D2D̄α

.
Hαα

. + 2a3mχα + γmuα , (5.9)

E(u)
α = 2b1D2uα + 2b2D̄2uα + b3D̄α

.
Dαūα

. + b4DαD̄α
.
ūα
. + 2b5muα + γmχα . (5.10)

Now we repeat the process of eliminating Hαα
. , but since uα doesn’t couple to Hαα

.

nothing will be changed regarding theHαα
.-dependent terms. The same choice of coefficients

as in (24) must be made to remove Hαα
. . So the updated expression for Iα is

Iα =2Ba3mD2D̄2χα − 4m2D2χα

+BγmD2D̄2uα + 2m2DαD̄α
.
χ̄α
.

+ γm3uα + 2a3m
3χα .

(5.11)

Now we want to use the equation of motion of uα to remove any dependences on χα in

order to derive an equation of uα. For that we calculate the updated version of Iα which

– 7 –
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we denote by Jα whose explicit form is given by

Jα = Iα +mKD2E(u)
α +mΛDαD̄α

.
Ē(u)

α
.

= [2Ba3]D2D̄2χα + [Bγ + 2Kb2 + Λb3]mD2D̄α
.
uα

− [4−Kγ]m2D2χα + [Kb3 + 2Λb2]mD2D̄α
.
Dαūα

.

+ [2 + Λγ]m2DαD̄α
.
χ̄α
. + [Λ(2b4 − b3)]DαD̄2Dβuβ

+ [2a3]m3χα + γm3uα

+ [Kb5]m2D2uα + [Λb5]m2DαD̄α
.
ūα
. .

(5.12)

If we choose

a3 = 0 , − 4 +Kγ = 0 , 2 + Λγ = 0 , (5.13)

we derive an equation of motion for uα in the form

Jα =[Bγ + 2Kb2 + Λb3]mD2D̄α
.
uα + [Kb5]m2D2uα

+ [Kb3 + 2Λb2]mD2D̄α
.
Dαūα

. + [Λb5]m2DαD̄α
.
ūα
.

+ [Λ(2b4 − b3)]DαD̄2Dβuβ

+ γm3uα

(5.14)

Now we are in position to choose coeffecients so as to make uα vanish on-shell by selecting

Bγ + 2Kb2 + Λb3 = 0 , Kb3 + 2Λb2 = 0 , 2b4 − b3 = 0 , b5 = 0 , γ 6= 0 (5.15)

Since uα = 0 on-shell, now we can reverse the arguments. Its equation of motion will

give χα = 0 and that will put constraints on Hαα
. : D2D̄α

.
Hαα

. = 0

E(H)

αα
. = 2DγD̄2DγHαα

. + 2a2m(D2Hαα
. + D̄2Hαα

.) + 2a4m
2Hαα

. ,

E(χ)
α = −2D2D̄α

.
Hαα

. .
(5.16)

Finally because of D2D̄α
.
Hαα

. = 0 we see that

DαE(H)

αα
. = 2a2mDαD̄2Hαα

. + 2a4m
2DαHαα

. . (5.17)

For a2 = 0, a4 6= 0 this gives DαHαα
. = 0. Thus the equation of motion for Hαα

. becomes

the Klein-Gordon equation with a4 = 1

�Hαα
. = m2Hαα

. (5.18)

– 8 –
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To complete the analysis we look for the consistency and non-trivial solution of the systems

of equations (20), (28), (30), a2 = 0, and a4 = 1. A solution exists and it is

a1 = 0 , b1 = free, can be set to zero , γ = 1 , Λ = −2 ,

a2 = 0 , b2 =
1

6
, , A = 1 ,

a3 = 0 , b3 =
1

6
, , B = −1 ,

a4 = 1 , b4 =
1

12
, , K = 4 ,

b5 = 0 .

(5.19)

The final action takes the form

S =

∫
d8z
{
Hαα

.
DγD̄2DγHαα

. +muαχα + c.c.

− 2 Hαα
.
D̄α
.D2χα + c.c. +

1

6
uαD̄2uα + c.c.

− 2 χαD2χα + c.c. +
1

6
uαD̄α

.
Dαūα

.

+ 2 χαDαD̄α
.
χ̄α
. +

1

12
uαDαD̄α

.
ūα
.

+m2Hαα
.
Hαα

.
}

.

(5.20)

This is the superspace action that describes a superspin Y = 3
2 system with the

minimum number of auxiliary superfields and has a massless limit that gives the free

linearized non-minimal supergravity. This action is a representative of a family of actions

that are all equivalent and connected through superfields redefinitions of the form

χa → χα + z1uα + w1D̄α
.
Hαα

. (5.21)

uα → uα + z2χα + w2D̄α
.
Hαα

. , where zi, wi are complex (5.22)

6 Summary and conclusions

We started with the 3
2 superhelicity theory of free linearized non-minimal supergravity,

formulated in terms of a real vector superfield Hαα
. and a fermionic compensator χα. We

then added mass terms to it in an attempt to discover a theory for massive superspin 3
2

system, only to find that it is not possible and we need the help of an extra fermionic

auxiliary superfield uα which must couple only to χα through a mass term. Finally using

the equations of motion we manage to show that on-shell uα = 0  χα = 0  DαHαα
. =

0 �Hαα
. = m2Hαα

.

We have managed to derive yet another formulation of free massive supergravity su-

permultiplet and most importantly probe the set of auxiliary superfields required for the

construction of higher superspin theories. The fermionic superfield uα is the first non-

trivial auxiliary superfield needed beyond the massless theory. As we go to even higher
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superspin values we should discover more and more of these objects. The hope is that

after the study of some non-trivial low superspin examples, such as the one demonstrated

here, we will have a deeper understanding on the number, type and role of these auxiliary

objects. When that happens we might be in a position to construct the arbitrary massive

superspin irreducible representation in an inductive manner.
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