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1 Introduction

A phase transition at zero temperature may occur as the ground state of a many-body
system is changed by tuning an external parameter. The boundary between the two phases
is a quantum critical point [1-3], characterized by a ‘Lifshitz’ scaling symmetry

t— Nt, 2t = A, (1.1)



where t is time and 2%, i = 1,...,d are space coordinates. The number z is the dynamic
critical exponent. For an ordinary relativistic conformal field theory z = 1, but in general
systems its value can be arbitrary. Quantum critical points are believed to underlie the
exotic properties of heavy fermion compounds and other materials including high T, su-
perconductors. These materials have a metallic phase (dubbed as ‘strange metal’) whose
properties cannot be explained within the ordinary Landau-Fermi liquid theory.

Simple examples where z # 1 are multicritical Lifshitz points [4]. In its simplest
incarnation, the Lifshitz point is characterized by a free energy density for a scalar order
parameter ¢ that takes the form

F(¢) = a2d® + asd* + -+ + c1(0i9)* + c2(020)* + -+ - . (1.2)

This is of the same form as the Ginzburg-Landau theory. For the Lifshitz point the co-
efficient ¢; — 0, so it is necessary to consider higher derivative terms. A simple model
exhibiting the scaling properties of a Lifshitz point is that of a free scalar with an action
K

(@200 (13)

1
5= / dt dz {2(8,5(1))2 _
This action is invariant under the scaling transformation
¢ — NE=D2¢ (1.4)

along with (1.1). This model, first considered in [5] for z = 2, can be extended to include
interactions respecting the scale symmetry [6, 7]. Strongly coupled theories with Lifshitz
scaling can be described by gravity duals using a generalization of the gauge/gravity cor-
respondence, also known as holographic duality [8]. In the gravity dual the Lifshitz scaling
is realized as an isometry of the metric, see also [9, 10]. Of special interest is that Lifshitz
scaling emerges at large distances in finite density systems with a holographic description
that have been proposed as models of strange metals [11, 12].

Quantum critical points, however, are not accessible directly by experiments. Instead,
their existence can be inferred from the properties of the system at finite temperature. For
instance, for strange metals some quantities exhibit universal power-like behaviour such
as the resistivity, which is linear in the temperature p ~ T [13-15]. It is well known that
systems with ordinary critical points behave hydrodynamically with transport coefficients,
whose temperature dependence is determined by the scaling at the critical point [16].
Quantum critical systems also have hydrodynamic descriptions, as has been shown more
recently for conformal field theories at finite temperature [17], fermions at unitarity [18]
and graphene [19-21]. A similar hydrodynamic description has been suggested for strange
metals based on the large scattering rate measured in experiments [15, 22, 23|, and we
proposed recently a concrete realization [24].

We derived most properties of Lifshitz hydrodynamics using symmetry considerations,
in particular we derived the equation of state from the ‘trace’ Ward identity of the energy-
momentum tensor associated to the scaling symmetry [24]

2T uu” —THPY =0, (1.5)



where u is the velocity of the fluid u,u* = n, utu” =—1 and P* =n" +utu, p,v = (t,1).
In this paper we re-derive and extend some of our previous results from various perspectives.
In addition to the dissipative transport coefficient o that we found in the neutral fluid [24],
we find two new transport coefficients o’ and C for charged Lifshitz hydrodynamics at the
first derivative order.! They appear in the antisymmetric part of the energy-momentum
tensor as

Tl = 7 = _qulta?) — T(o + CYult P70, @) (1.6)

where a* = u®0,u* is the acceleration and T, u are the temperature and chemical po-
tential. The new transport coefficients also appears in the U(1) current in a different
combination j* O —(a/ — C)a*. The coefficient C is dissipationless and does not satisfy
the Onsager relation.

We will start in section section 2 by giving a covariant formulation of a free Lifshitz
theory and construct an improved energy-momentum tensor that satisfies the trace Ward
identity. It is not completely obvious that the identity should be satisfied, since Lifshitz
theories have scale but not conformal invariance, so in principle there could be a virial
current. We will see that this is actually the case for the free scalar, but nevertheless the
energy-momentum tensor can be improved and eliminate the virial term, which is only
possible because Lorentz symmetry is explicitly broken.

In section 3 we will derive the path integral form of the thermal partition function
and compute the temperature dependence of one- and two-point functions of the energy-
momentum tensor at zero frequency and spatial momentum. We will use these results to
write down the ideal hydrodynamic energy-momentum tensor at arbitrary velocities.

In the last sections we study a generalization of Lifshitz hydrodynamics by adding a
conserved current. In section 4 we follow [25, 26] to derive the ideal energy-momentum
tensor from a generating functional. We find a generalization of Weyl transformations
of the metric that reproduces the Ward identity. In section 5 we use the fluid/gravity
correspondence [27] to derive the equations of Lifshitz hydrodynamics at the ideal level.
In section 6 we go beyond the ideal level and consider new possible terms allowed by
the breaking of Lorentz symmetry. At first order there is a dissipative term that we
already discussed in [24] and for charged hydrodynamics an additional dissipationless term
producing a current along the acceleration of the fluid is also possible. We show how
to compute the new transport coefficients from the energy-momentum tensor and current
correlators using Kubo formulas. We end with a discussion of our results and appendices
containing some technical details.

2 Covariant formulation of Lifshitz theories

Although we are interested in general interacting theories with Lifshitz scaling, we find
useful to show explicitly some of their properties in a concrete model. For simplicity we
will restrict to local theories, z = 2n, n € Z, and in particular to the simplest case z = 2.

'"'We would like to thank Shira Chapman for pointing out the possibility of having a non-vanishing ¢’ in
the Lifshitz fluid.



A local action for a free scalar can also be written for rational values of the dynamical
exponent z = 2n/m, n,m € Z,

5= /ww[i S(07) ~ (@202 (2.1)

For some values of m and n, the symmetry is enhanced. For instance, there is a Schrédinger
symmetry for m = n = 1 [28] and a relativistic conformal symmetry for m =2, n = 1.
The main points that we want to highlight using the free field theory example are:

e For local Lifshitz theories there is a covariant formulation even though Lorentz in-
variance is explicitly broken. The Lagrangian is well-defined as a scalar density from
which one can derive the energy-momentum tensor. The breaking of Lorentz sym-
metry is manifested in the asymmetric properties of the energy-momentum tensor

T £ 70 (2.2)

The Lorentz Ward identity for the energy-momentum tensor <T gl > — <T ji> = 0 only
holds when the two indices are spatial (assuming rotational invariance).

e Lifshitz theories in flat space (given z and d) can be defined for arbitrary time-like
Killing vectors. These theories are essentially identical since it is possible to do
frame transformations to map different Lifshitz theories on each other. This will be
important for hydrodynamics because it justifies our formulation where the equation
of state is independent of the frame. We will show it explicitly for the z = 2 theory
in section 3.

As an analogy, consider a theory of complex scalars ¢%, a = 1,2 with a U(2) flavor
symmetry. If we add a term to the Lagrangian of the form

AL o 306" (2.3
the symmetry is explicitly broken to U(1) x U(1). The change of variables
¢* — U%e®, U e SU(2), (2.4)
maps the term that breaks the SU(2) symmetry into
AL o WU )l (25)

Although the couplings in the action look different, the theory with the term AL and
the theory with AL’ are equivalent. They are related by a change of variables (all
observables are related by a simple U(2) rotation).

The analogous statement is true for Lifshitz theories, with the subtlety that the
theory should be quantized along the direction determined by the time-like Killing
vector. Lifshitz theories with different Killing vectors quantized along the same time
direction are inequivalent. Typically this breaks the scaling symmetry as well, so we
will not consider it here.



In order to define the z = 2 Lifshitz theory covariantly in curved spacetime, we will
introduce the vierbein fields e,*. The action is

S = /dd+ [ (V)9)* - (viqb)? e (2.6)

where the dots correspond to couplings of the scalar to the curvature, and
Vg =tV,up =t"e)'V,o, (2.7)
V3¢ =PV, V,6=Plete,V,V,o. (2.8)

Here % = (1,0), P = n® + t%" and n4t*® = —1. The flat spacetime action is recovered
by substituting e’ =4,
From the action we can extract the Lagrangian density

1 K
L=5(V)o) - (Vi) (2.9)
The Lagrangian density is explicitly invariant under the coordinate transformations:

Vup = AV, e — el (A—l): . (2.10)

In flat space we can do a coordinate transformation combined with a frame transformation
that leaves the vierbein (and hence the metric) invariant

el = Aje) (A7) = e, =4 (2.11)

Note that, contrary to a relativistic theory, the Lagrangian density is in general not invari-
ant under this transformation

L= (AT)atctd(A)be“eZquﬁvm
+ (AT (ATYe PEY PET (M) (M) eteledeh N WV oV AV pib. (2.12)

If we do the combined coordinate plus frame transformation that leaves the background
vierbeins invariant, a frame transformation rotates the unit time vector t* into

@ — (AT)age, (2.13)
Therefore, Lifshitz theories defined with different vectors u® are equivalent.

2.1 Canonical energy-momentum tensor

Having determined the action in curved spacetime, we can extract the energy-momentum
tensor from the variation of the action with respect to the vierbein

135S
Te= _géeac'

(2.14)

In contrast with the usual definition using the variation with respect to the metric, in
principle the energy-momentum tensor is not necessarily symmetric in its two indices. The



Lifshitz scaling symmetry should translate into a ‘trace’ Ward identity for the energy-
momentum tensor, similar to the condition 77, = 0 in a conformal field theory.

In many cases the trace identity is not satisfied by the energy-momentum tensor derived
from the naive extension of the action to curved space. It is necessary to add improvement
terms that do not affect to the conservation equations. We will find, in the free scalar
example, that a term proportional to the divergence of a virial current V# remains, while
most of the contributions can be improved by adding couplings of the scalar field to the
curvature. For a general Lifshitz theory, we thus expect

Al T — PATY = 9,V = 9y VI + PP8,V3. (2.15)

Where VIl = —t2V,.

The virial current cannot be improved unless it is of the form V), = 9,,X in a relativistic
theory (cf. [29]). This is not the case in the example we study. However, because Lifshitz
is not Lorentz invariant, there is still room to add further improvement terms that fix the
trace Ward identity. Both terms in (2.15) depend on the virial current and can be removed

by adding the improvement terms

1
T4 =T% - (tO‘BCV” - 533”1/”) - PPo Vs — 5313;”’601/,)) . (2.16)

z—1+d <
Note that these terms give asymmetric contributions to the energy-momentum tensor (even
if z = 1). Thus we cannot improve the energy-momentum tensor and preserve Lorentz
invariance in general. We will later use the Ward identity to constrain the form of the
energy-momentum tensor in ideal hydrodynamics.

In the following we will derive the energy-momentum tensor for the z = 2 Lifshitz
theory with an arbitrary time-like vector. We will show that it is possible to improve the
energy-momentum tensor to satisfy a trace Ward identity, which depends on the time-like
vector. There is a non-zero virial current. It is possible to improve the virial current
without affecting the Ward identity.

The canonical energy-momentum tensor in flat space is given by

can ¢

TSy ¢ =0)$t"0ctd — KPP 005007 ¢ — 62L
+ g (Ptfaﬁ(a%aiqb) — P,205(8% 602 ) + Ptaﬁag(@cgb@iqb)) . (2.17)

We use the formulas in appendix A to compute the variation of the action and set e," = d;,
at the end of the calculation to get the result. One can show explicitly that it is conserved

801Tcoén c = 8C¢ |:82¢ + ;(ai)zd)] =0. (218)

To find the trace, we compute the projection on ¢ and the transverse directions of the

energy-momentum tensor

1

T ot'ta = —5(9)9)° = 5 (97 9)7, (2.19)
d d N d

Ton Pro = —5(0)0)" + £ (01¢)* + 5 [Pt 50000507 ¢ — Eaﬁ(a%aiqs) . (220



One can use that 0% = 33_ — aﬁ and 0,X0%Y = Pﬂﬁaaxaﬁy — 0 X9)Y to rewrite the last

expression as

d d d N
T o= = 510007 -~ k§(@207 — (G~ 1) P00 0
d
n§(8ﬁ¢éﬁ¢ + 900,01 ¢). (2.21)
The Lifshitz trace Ward identity is
Tr = 2T%°t o, — T%P,S = 0. (2.22)

For the canonical tensor, we have
d K o d
Trean = (2 - 1) [(6”¢>2+2<ai¢>2+npt 70a0050% 6|~ (07608 6+0)90) 0% 6). (2.23)

In the following we add improvement terms to check whether we can make the trace
to vanish.

2.2 Improvement terms and trace Ward identity

We can add the following terms to the action
Sp=— / A" ae[c1 Rupt"t’ X + caR, PIY). (2.24)
The variation of the action around flat space gives
Tk . = c1(3.20] — t.0°0) + tct*9° — 1°9.0)) X
+ (6,207 — P,P9%0s + P00 — P*P9.05)Y. (2.25)

This contribution does not affect to the conservation of the energy-momentum tensor
0,15 . = 0. For the contributions to the trace, we compute the projections of Tj .

TS tat® = 103 X — c07Y, (2.26)
Th Py§ = de10f X + co(2(d — 1)07 — doj)Y. (2.27)

Then, the total contribution to the trace is
Trg = ¢1(207 — dOf)X + co(ddf — 2d07)Y. (2.28)
If instead we use the combinations defined in (A.16) R = — 15 (Ruwt"t” + 1R P/")
R, = —ﬁ (Ruut*t” + Ry, P/") in the following action

Sk = —/dd+1$€ [CHRHX + CJ_RJ_Y] , (2.29)

then we can read off the trace from (2.28). We get Trp = cuaﬁX + ¢, 0%Y. Then, with
the choice

1/d



the trace becomes

d d
Trean + Trg = — ( - 1) ¢[8ﬁ¢ + ;(8@24 — 15 (0601 ¢ + 96001 )

2
— k(82607 6+ 0,60,0%6) = 20, (9,607 2.31
= —k5(0]9016 + 0199|901 ¢) = —K70) (9 919), (2.31)
where we have used the equations of motion, and
1
SO0 = (910) + 607, (2:32)
01 (9071 9) = (019)* + 2P/ 9,60,(91)°¢ + 6(91)*¢. (2:33)

In principle we would like to find a coupling to the curvature that can cancel out
the leftover part. However, it is not strictly necessary. For the energy-momentum tensor
T =T%

o ¢ T T5 ., we can define a conserved dilatation current

D* =21ty — TUPf 2t =tV (2.34)
where t*V is analogous to the virial current
d
V= —n§8uqﬁ8i¢. (2.35)

Then, one can show
0o D* = 2Tt — TLP;, — OV = 0. (2.36)

From now, we take d = 2. Then Tf_. = 0, which can be checked easily from (2.30).
We define the conserved energy current as

EY = -T%°, (2.37)
where T% =Tg, .or T% =T, .+ 15 . for d = 2. Concretely, we take
£ = —t° %(8”@2 + g(aiqsf + gpfﬁ (005007 ¢ — 800507 ) - (2.38)
The projections, longitudinal and transverse to ¢, are
1 = L(@0) + SR 6), (2.39)
P p€° = S P77 [90500% 6 — 960507 6] - (2.40)

The conserved momentum current is defined in a similar way
b
P =-TP/ .. (2.41)
We have

1 K o
Po= —t°P}, [a,|¢ab¢ + Qabv] — S BVPL  [050000% 6 + 000507 )]

1 K K 1
+ PP, [2(a¢)2 +5(010)° + S P 0,001 6 + SOV | - (2.42)



Similarly, the projections are

1
taP% =P}, [3”@2531@ + 2317‘/] ; (2.43)

K

2
o |1 2, K a2 2 Fopab 2 1
+ P, 2(6||¢) + 4(3J_¢) + 2Pt 0a P00 ¢ + 28“‘/ . (2.44)

2 PP = — S PP (9500003 ¢ + Byp050R o]

Note that all the terms in each expression have the same scaling except for the ones
depending on the virial terms.
We can get rid of the virial terms by redefining the momentum current to

~ 1
PL=P%—5 (taptbca,,v - P;;a”v) . (2.45)

One can check the new momentum current is still conserved 9,P% = 0. Note that, with
this definition, all the components of the momentum current have the same scaling, and
the Ward identity is satisfied

2, EY — PF P = 0. (2.46)

In fact we can see the new term in the definition of the momentum as an improvement of
the energy-momentum tensor

T%=T%— % (t0.V — 620)V) . (2.47)
Note that V is not a total derivative, thus the improvement terms cannot come from
curvature terms added to the action. One can check that the improvement terms do not
contribute to the energy current. With the improved tensor, the dilatation current will
take the usual form D = QT%tCtux“ —Topf x 2" up to a total derivative. The general
form of the improvement term is given in (2.16). Assuming that V' is independent of the
vierbeins, it can be derived from an added term to the action of the form

1 d
Simprov = 8 /ddx |€|€aﬂ <tatb - z—l—&—dptab> G#Vb. (2.48)

3 Free Lifshitz theories at finite temperature

At finite temperature the energy-momentum tensor acquires a non-zero expectation value,
and two-point functions receive temperature-dependent contributions at zero momentum.
We will use the z = 2 free scalar example to compute them explicitly and then generalize
the formulas for other values of z. First we will find the scaling properties of one- and two-
point functions in terms of the temperature. Then we check the trace Ward identity for a
Lifshitz theory defined with an arbitrary time-like vector.

As we will see, the energy-momentum tensor takes the same form as the ideal energy-
momentum tensor in hydrodynamics. Furthermore, the Ward identity fixes the equation
of state in an arbitrary frame

2t T, — P} TH, = —ze¢ + dpy = 0, (3.1)



where the energy density and pressure are defined from the one-point functions when
t* =(1,0)
(Too) = €0, (Tij) = podij- (3.2)

After the analysis in flat spacetime we will use the generating functional approach
of [25, 26] to find equilibrium configurations in a curved spacetime. We find that the
spatial components of the velocities depend, to linear order, on the mixed components of
the vierbein

u’ ~ Crey + Cze;’6", (3.3)

where the coefficients C7 and Cy depend on the two-point functions of the T% and Ti0
components of the energy-momentum tensor.

In a theory with Lifshitz scaling the energy-momentum correlators depend on a power
of the temperature, but in contrast to relativistic theories, the power is different for different
correlators. One could use this result to distinguish between Lifshitz theories and (non-
conformal) relativistic theories with the same equation of state. Another outcome of our
analysis is that no additional terms are necessary in curved spacetime at the ideal level.
This provides a microscopic justification of our proposal for Lifshitz hydrodynamics that
we present in the next sections. In particular, no new dissipative terms are present in
ideal hydrodynamics, even though probes may experience a drag force independent of the
temperature as in [30].

3.1 General temperature dependence of one- and two-point functions

We can use scaling arguments to determine the temperature dependence of the energy-
momentum correlators. We have computed, in appendix B, the one- and two- point func-
tions of a free scalar theory at finite temperature. The one-point functions of the energy-
momentum tensor for t* = (1,0) can be computed using (2.45) and (2.39), (2.43), (2.40)
and (2.44).

The scaling dimension of the temperature is the same as the scaling of time derivatives
g~ 0% ~ T. Therefore, the scaling with the temperature of the components of the
energy-momentum tensor is

(TO) ~ (TH) ~ T2, (T ~ T2, (T) ~T3. (3.4)
We have checked that the Ward identity is satisfied
(T7) = §9(T™). (3.5)

For general dimensions and values of the dynamical exponent

d+z d+1 d—1+422

(1) = 305 (T0) ~ T, (1)~ T2, (T~ TR 3

The expectation values of <T i0> and <T Oi> are zero in flat spacetime.

,10,



Two-point functions We are interested in computing the zero frequency and momen-

tum correlators
Cuvap = lim lim (T}, Top) (w, k). (3.7)

w—0k—0

We are interested, in particular, in the Ty; and T;g values for d = 2 spatial dimensions. The
scaling with the temperature is

Coioj ~ T, Coijo=Ciooj ~T? Cijo~T> (3.8)
The generalization for arbitrary z and d is

d+2—z d+z d+3z—2

Coioj ~T =, Coijo=Cioj~T =, Cijo~T = . (3.9)

We can compare these results with the scaling obtained in [31] in the zero temperature
theory using general field theory arguments. To do so, we convert our results to those of
the coordinate space, using

2A—d—=z

(O@OO) ~ 272 & (OHF)O(—k))n ~ T (3.10)
Then we get
(ToiTo;) (t,x) ~ p 22 , (ToiTjo) (t,x) ~ 2022 , (3.11)
(TiTjo) (t,z) ~ 2?2742, (3.12)
In [31], the correlation functions for the modified stress tensor .J,,, = W—FAf J,, with mas-

sive gauge field AE and associated current .J,,, are evaluated ford = land z = 1 + €2, e < 1

(Jia(t, 2) J(0)) ~ 274 (Jat(t, 2) iz (0)) ~ 272727 (3.13)
(Tt (t, ) Ty (0)) ~ 2% (3.14)

These two results are consistent if we identify Ty; ~ J¢ and T;9 ~ Ji. Our notation and
the corresponding scaling are consistent with the conservation equation 9, 7" = 0

3.2 Partition function and energy-momentum tensor in a general frame

The finite temperature partition function for a field theory is defined as
Zorr[f] =Tr (e’ﬁH ) ; (3.15)

where H = T% is the Hamiltonian. For a Lifshitz theory this definition is not frame-
independent, but we can define a frame-independent partition function which coincides
with the usual definition when t* = (1,0):

Zyie[B] = Tr (fﬁfdd“ tag&) : (3.16)

Where
/ddazL = /dd+1a:5(tax°‘). (3.17)

— 11 —



Note that t* is a time-like Killing vector of spacetime and that we can identify 2/l = t 2
with the direction where time evolution takes place. The conjugate momentum to ¢ is
then m = 0, ¢.

We can follow the usual steps to rewrite the partition as an Euclidean path integral.
First we introduce the identity

— [ sl (3.18)

N-times inside the trace, and use that

<¢Z+1|7T’L> = €xp ( /d xl 7Tz¢z+1> (319)

The partition function takes the form

Zri[B) = hm J\//l—[dmalgbZ exp( /ddmL [tac‘:a ] Z(@E/N@)])' (3.20)

It is understood that ¢g = ¢, and N is a suitable normalization.

For the z = 2 free scalar case, we found
1
t &% = 57# + - (am) (3.21)

The integrals over momenta are Gaussian, so we can make them explicitly. This leads to

Zi[f] = lim N/Hd(bzexp( NZ/ o [2 ( ¢z+61/N¢z)> Z(ai@y]),
(3.22)

Taking the continuum limit, we are left with the Euclidean path integral

ZiilB /D¢ T, X exp( / dr / ddx | [ 0-0)% + (aiqﬁ)?D. (3.23)

The field ¢ is periodic in the 7 direction as usual. This shows that in order to compute
thermal correlators we can simply change J derivatives into 9; derivatives as we do in
usual QFT calculations with time derivatives.

In order to compute the expectation values of the energy and momentum currents, we
should use the expressions (2.38), (2.42) and (2.45). For the energy we get?

d? w 2
(£2) = 252/ gL +Eﬁ§2 = et (3.24)

Where we have used that terms odd in the momentum vanish. For the momentum we

will have

(6% P C d2 w + q2 2 (6% (6%
(PY) = t Z/ qL Eq;; = pP®, =cP?,. (3.25)
1

2There is temperature-independent divergent contribution that needs to be subtracted in order to get a
finite energy density. The same applies to other expressions involving integrals over momentum.

— 12 —



In this case we have used that
1
/d2ql qiqi = 2Pta6/d2qui. (3.26)

This shows that the expectation value of the (improved) energy-momentum tensor at finite
temperature in an arbitrary Lifshitz theory defined by t“ has the form

(T) = ett. + pP?., (3.27)
and the equation of state is independent of ¢t
£ =p. (3.28)

Clearly, this can be generalized for other values of z and d.

We identify the Lifshitz theory defined with t* = (1,0) as the one that determines the
properties of the fluid at rest. When the fluid is moving with a velocity u* with respect to
an observer, the (ideal) energy-momentum tensor measured by the observer will be

(T%) = eu®ue + pPy

u c

(3.29)

This is just the same form as the energy-momentum tensor in a relativistic theory in flat
spacetime. As an operator 7% is not symmetric, so differences can appear when going
beyond the ideal level or in curved spacetimes.

3.3 Equilibrium hydrodynamics in curved space

In curved spacetime the expectation value of the energy-momentum is modified by the
presence of a background metric/vierbein. If the deviation from flat space is small, we can
use linear response theory to find the change to leading order. For the relativistic theory

5 (T () = / e G (1 2 )5 g ('), (3.30)
where dg,, = guv — N and G is the retarded correlator
GHroB (g, af) = it — t') <[TW(:L~), Taﬁ(a:')]> : (3.31)

Since in flat space there is translation invariance, the retarded correlator actually depends
only on the difference x — z’. One can do a Fourier transform (omitting spacetime indices)

Gr(w,q) = /dtddxe_iw(t_t/)+iq'(x_xl)GR(t —t',x—x). (3.32)
The zero frequency limit coincides with the Euclidean propagator
Gr(w=0,q) = Gg(0,q). (3.33)
If we use the hydrodynamic constitutive relations

(T") = (e +p)ut'u” + pg"”, (3.34)
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and solve the ideal hydrodynamic equations to leading order in dg,,
v, T* =0, (3.35)

the prediction from hydrodynamics in a relativistic theory is that at zero frequency and

momentum cf. [25]

(TioTjo) (w=0,q=0) = (T;0Tv;) (w=0,g=0) = % (Too) 6ij- (3.36)

The same relation will hold if one derives the hydrodynamic energy-momentum tensor from
a generating functional as is done in [25] as well. We have computed in appendix B the
one- and two- point functions of a free scalar theory at finite temperature. One can easily
check that the relation above is satisfied in a relativistic theory, but it does not hold in a
general theory with Lifshitz scaling.

In order to see how the difference is manifested in hydrodynamics, we will follow the
approach of [25, 26] to derive the ideal hydrodynamic energy-momentum tensor from the
generating functional of a theory in curved space at thermal equilibrium. We will introduce
a ‘Killing vector field’ that depends on the vierbeins. The generating functional is

W= / a2 elp(T), (3.37)
where
T T
T = 0 = L (3.38)
—(eV) - (eV) —(eV)?
We are using the notation
(eV)* = enV*H, (eV)- (eV) = nab(eV)a(eV)b. (3.39)

The variation of the temperature with respect to the vierbein is

T 1
0 —=TF,=T ut(eu)q + 5 (e 6Va> : (€U)] . (3.40)
66# —(6V) 56/1
We have defined Vi
e (3.41)
—(eV)?
Note that 5 . 16
Fl= /= (V)2 ————— = log (—(eV)?). (3.42)

de,t \/—(eV)? 2 0e,f
The expectation value of the energy-momentum tensor is the variation of the generating
functional with respect to the vierbein:

1 oW dp
o
In flat space e, =4, we recover the usual energy-momentum tensor
n o u n
(ThY = Ta—Tu (6u)q + pdt,, (3.44)
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provided

)% Ve
. = B =
((556#(1) (0u) = nap e s u” = 0. (3.45)

In order to compute the two-point function we take the second variation of the gener-
ating functional.

1 8w
92 (0 A .
<TaTb> |€| 56’;‘56 b (3 46)
Op
= (e — e’ )p + TaT(e“aF”b + %)
0 W\ 1w Op 6F*,
-I-Ta—T <TaT> Y Tﬁ@'
Where we can derive the last term using (3.42):
oo 110 e terpol L e g
de,b  2((eV)?)? e, de,b ‘ 2 (eV)? de,bde o < '
More explicitly,
SFY, Y Y
661}) = QF%F b + nabu“u
n 1 (5V“( e + 5V” V™ eu) +< (5V> ( >
(V)2 | e} deot \o
1 52V 1
. . 4
+ ey (agep) 0 oy (meg) () 009
In flat space F'q = u*(du)q, therefore the second variation simplifies to
1 W
pyvy — = 9
2TaT) le] de,2de,p
= (94,5 — D4+ T O (i (Su)y + Iy (u)a)
0 op\ .
+ Ta—T <T8T> ufu” (0u)q(du)p
+T@( +2(0u)q (du)p)utu”
oT Nab a b
1 oVH 5V”
w
g e (2]
1 52V 1
: : 4
* V=V2 (65%“561}’) (ou) + —V2 ( de a) ( (3.49)

In order to check the Kubo formulas we will evaluate this expression in the static back-
ground, with the flat space vierbeins and V? = 1, V? = 0. The most interesting formulas
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are those involving a mixture of time and space indices, since this is where we expect to see

the difference between Lifshitz and relativistic theories. The time-space correlators become

oV, OV SVk sVl 52y 0
(1070 = 0P 5 OV OVs L VIOV OV
; 4 +po | OV, SVI SVE V! 52y
Toi N = _Pogi £0 EELA SIS S S
< v 0> 2 it 2 5ej0 dey + Okt dey’ 5ej0 560156j0 ’

A v svkeovt  82V0
5ej0 561»0 M (561»0 5ej0 (58i0(56j0

i g €0 + Do
T'\T%) =
< 0= 0 2

We have used the condition that in the static background

sVo
jea 0
€u

We will recover the right Kubo formulas for the relativistic case if

1 po i 1 e 5tk e 0

Vie — = e — = :
2¢0+po © 2e0+po "

2 2
Py i J €0 ij_0_0
Vo014 — 20  §oeled +—0 _§ie ¢,
8(eo +p0)2 w070 8(eo +p0)2 v
€0 — Po €0Po i, 0, J
Ote,ey .
2(6() —l—p()) 4(50 +p0)2] A

For the Lifshitz case these expressions are modified. Let us use the notation

(T97%) = %55, (T4T%) = 1855, (TT%) = tood".

Then,
Vi:_[l_ ¢ ]eoi_t()oéikeko
2 eo+po €0 + po ’
11 00 1 g2 g o
0 _ i S PN 00 ij, 0,0 0¢i,0,2
Vv —1+2 [2 80+p0:| dijegeg +2(80+p0)25 e; €; +Co5j€z' eg
where . 0 0
co_ L potgtoo +87 42t toot™
0 =

2 €0 + Po (g0 +po)?

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

We see that at least up to the level we have made our calculations, it is consistent to use

the hydrodynamic generating functional formalism for Lifshitz theories. At the ideal level

one can distinguish a Lifshitz theory from a relativistic theory with the same equation of

state by putting the theories in curved spacetime. The equilibrium values of the velocities

and conserved densities are different in both theories, as they are determined to leading

order by the two-point functions (and to higher orders by higher correlation functions) and

in particular they will exhibit a different temperature dependence. On the other hand, the

form of the ideal hydrodynamic energy-momentum tensor in terms of energy, pressure and

velocities is universal and no additional frame-independent terms are present.
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4 Ideal hydrodynamics from generating functional

We will follow the approach of [25, 26] to derive the ideal hydrodynamic equations and
the trace Ward identity from a generating functional. We couple the Lifshitz theory to
a background vierbein and integrate out all degrees of freedom. The resulting generating
functional must be invariant under the symmetries of the Lifshitz theory, thus by doing
symmetry transformations of the sources one finds conditions on the generating functional
that one can interpret as the hydrodynamic equations. In all this procedure the generating
functional is taken to have a local dependence on the sources, which is appropriate for
equilibrium configurations at finite temperature in the absence of long-range spatial corre-
lations. The symmetry transformations are then generalized to local transformations. The
non-relativistic form of general coordinate transformations in the rest frame were originally
used in in [32] to constrain the effective action of unitary Fermi gases, and later generalized
in [33] and extended for z # 2 in [34].

The Lifshitz symmetry algebra consists of a non-relativistic scale transformation D =

—(2t0y + 2'0;), time translation H = —0;, spatial translations P; = —0; and rotations
M;; = —xiﬁj + 270;. The corresponding commutation relations are
[M;j, M) = 0ix My + 65y My — 05 My, — 66 My (4.1)
(M, Py| = 0 Pj — 6P
[D,P] =P, (D, H] = zH .

The scale symmetry associated to the D generator implies the trace Ward identity

TH+ ) T =0. (4.4)
7

This algebra is appropriate in the rest frame of the fluid for a Lifshitz theory with t# =
(1,0). However, when the fluid is moving (with constant velocity) we should use the
Lifshitz theory in a different frame. As we have seen in the example of the free scalar, this
amounts to changing the time-like vector t* — u#. The symmetries of the Lifshitz theory
are affected by the change of frame. The generators associated to translations and scale

transformations become
Pl =w9,, Pt=Pr0,, D=za'u,Pl—a'pPl (4.5)
Where P = (5;’ +uyu”. Then, the momentum operators commute among themselves and

[D,Pl]=2Pl, [D,Pr]=P;. (4.6)

The Ward identity associated to D becomes
2Thu” =THPY =0. (4.7)

For the background vierbein we will use the following parametrization:

e =e % V= —e72"B;, e =0, (4.8)
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and define the spatial metric
Gij = 5kleikejl. (4.9)
This is equivalent to the following form of background metric
ds® = Gdatdx” = —e2a® (dxo - Bidfvi)2 + gijdxidxj . (4.10)
Under infinitesimal diffeomorphisms z# — x* + £, the metric components transform as

0G = £P0,G L + 0,8 Gy + 0,E°G . (4.11)
For general temporal (£ = f) and spatial (¢¥) diffeomorphisms the transformations are
1 /. :
— ch Z(ékp, —
6 = 9,0+~ (£Bi - f) ,
0¢Bi = £"0,Bi + (€* By — [)Bi + 0,6" By, — 0if + " guae®*?
0¢gij = €"Ougij + 0i€"gr; + 936" gur + E*(Bignj + Bjgri) - (4.12)

Where a dot denotes a time derivative f = 8, f, etc.
In the frame defined by w*, the form of an infinitesimal scale transformation with
parameter w is

H=w(—z" + (z — Dufuqgz®) . (4.13)
The transformation of the background metric is then
Ju® = 90D — g [1 (1) — Bkuk)uo} :
0B = £*0.B; — (z — w [e2a‘1>giku’“uo — (u” — Byu®)(uoB; + uz-)] :
695 = £ Dagis + w 205 — (2 = 12uFguluy) + woBy))] - (4.14)

Which can be seen as a generalization of a Weyl transformation. Indeed, note that for
the relativistic case z = 1, we recover the usual Weyl transformation

1
50.)(1) = ——w, (SwBl =0 s 6wgij = 2wgij . (415)
(07

We will slightly generalize the analysis by considering charged hydrodynamics with a
single U(1) charge. We will introduce as a source an background gauge field Au-3 The
change of the gauge field under gauge transformations (A) and diffeomorphisms is

0¢Ay = £0a AL + 0,6% A — OuA. (4.16)
Or, distinguishing between temporal and spatial diffeomorphisms

eAo = "0, Ao+ fAo+EF AL — X,
0eA; = 10, A; + O0if Ao + 0P Ay — O3\ (4.17)

30ne way to realize this is introducing an additional coordinate & and add a term (dy — Agdz® — A;dz*)?
to the metric (4.10). The coordinate y does not carry a non-trivial scaling dimension.
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in addition to (4.12). In the frame with non-trivial u#, the infinitesimal scaling transfor-

mation of the background gauge fields are
0wAy = &0 A +w(A, — (z — Duyu®Ay] . (4.18)

in addition to (4.14).
The generating functional depending on the background metric and gauge fields, frame,
temperature and chemical potential is

W= / A /gem " p(T, 1) (4.19)
where
T Ty _ Toe"™ - (4.20)
V=G VIVY (VO — BVi)Z — ¢2a®g ViV
" A VH _ @A, VH (4.21)

T /G VIV (VO BiVIE — 2ty Yy ]

The vector V*# is proportional to the frame velocity u* but it is not of unit norm, the
relation between the two is

ut = v : (4.22)
\/(VO _ BiVi)Q _ eQO“I)gijViVj

We will now derive the hydrodynamic equations by imposing the symmetry of the gener-
ating functional under translations and scale transformations. Under a general transfor-
mation of the background fields

ow oW ow ow
(5£W = 6591‘]*% + (5531‘7 + (5&‘1’— + (5§Aaﬁ.

4.
393, 3B, i (4.23)

When the sources are set to zero (& =0, B; =0, g;5 = d;5, Agu® = p), the variation of the
generating functional is simply

SoW = a [(e + p)u’u® +n°%p] , (4.24)
6p,W = (e + p)ulu® (4.25)
S, W = %5% - %(s + pu'n’ | (4.26)
da W = pu® . (4.27)

In order to get these expressions we have used the relations

Op dp
= = == T = . 4.28
S=ar P o s+pup=c+p (4.28)
Invariance under temporal and spatial diffeomorphisms (4.12) imply the equations
0, T = —pu”9, A°, (4.29)
0,T" = —pu”9, A" = 0. (4.30)
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where the energy-momentum tensor is
" = (e + p)uu” + pn™”. (4.31)

The conservation equations thus take the same form as in a relativistic theory.
Invariance under the Weyl transformations (4.14) imposes the following condition

—z(e —pp) +dp=0. (4.32)
For p = 0 this is the usual equation of state for the theory with Lifshitz scale invariance.
Note that the way we have defined it, it is independent of the frame and in fact it agrees with
the Ward identity (4.7). When u # 0 the Ward identity is modified because the chemical
potential breaks scale invariance. Note however that the temperature dependence of the
pressure is still the same, since

o)
0=—z(e —pp)+dp=—2(Ts—p)+dp = —zTa—; + (d + 2)p. (4.33)

Integrating this equation we find that p T even when the chemical potential
is non-zero.

We can generalize this analysis to include higher order terms in a derivative expansion
of the sources, which appear beyond the ideal order in the hydrodynamic expansion. Since
the method is valid for equilibrium configurations, only non-dissipative terms are captured
this way. In the original works [25, 26] the approach using the generating functional was
useful to derive relations between transport coefficients at the same or different orders. It is
an interesting problem that we leave for future work to find how the relations are modified
in the non-relativistic theory, and whether they still match with the derivation using an
entropy current.

5 Ideal hydrodynamics from fluid/gravity correspondence

A very successful application of gauge/gravity dualities has been the map between hydro-
dynamic equations of motion and Einstein equations in black hole geometries [35]. Among
the theories where the fluid/gravity correspondence has been derived are non-relativistic
conformal theories [27], which have a dynamical exponent z = 2. Here we will extend the
correspondence to other dynamical exponents. Our goal is to show that the form of the
ideal energy-momentum tensor and the equation of state take the same form as we have
derived in the previous sections. In principle we could extend the analysis to include higher
derivative terms (dissipative and non-dissipative) by doing a systematic expansion of the
metric and bulk fields, this is an interesting problem that we leave as future work.

We will derive the hydrodynamic equations of the dual field theory following the
method of projecting Einstein’s equations on the horizon [36-38] for a particular model
with Lifshitz solutions proposed in [39, 40]. We find the usual Navier-Stokes equations

(e + p) u“Oquy + PSOap = 0. (5.1)

Where the energy and the pressure satisfy the Lifshitz equation of state —ze + dp = 0 and
d+=z

have the expected scaling with the temperature & ~ T“%*. The Lifshitz energy-momentum

tensor at rest frame has been computed in [41-43].
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5.1 Gravitational background

Metrics with Lifshitz scaling were first constructed and proposed as holographic duals of

Lifshitz theories in [8]. Black hole geometries were first found analytically in [9] and numer-

ically in [44] and also analytically in [45-48]. As a first step we generalize such solutions by

constructing a black-brane solution at a constant velocity using coordinate transformations.
At zero temperature, the original Lifshitz metric is

dr? o
ds® = —r?*dt? + 7’% + r25ijdyldy], (5.2)
which has the isometry
r=Ar, t— ATyt o ATy (5.3)
Let us consider a black-hole metric of the form

dr?

(r)

ds? = —F(r)dt* + H(r)2—— + G(r)5;;dy'dy’ (5.4)

where F(rg) = 0. In a Lifshitz black hole solution (in a 3+1 dimensional bulk) the
functions appearing in the metric are H(r) = r—*~!, F(r) = v?*f(r), G(r) = r? and
fr)=1- ()",

We can do a change of coordinates

t=1t+r.(r), (5.5)
where J H(r)
- F(:) (5:6)
Then, the metric becomes
ds? = —2H(r)dtdr — F(r)dt* + G(r)é;jdy’dy’ (5.7)
If the geometry is sourced by a matter energy-momentum tensor (with 7, = 0), the

components in the ¢, r directions are changed as

T = Tu, (5.8)
ir ;I((:)) T, (5.9)
Trr =T + (I;((Zj))f T (5.10)
We can now do another coordinate transformation
F=wu,a”, y' =2 + 8’ + (v - 1)5;fj ;. (5.11)

Where u,, = (1, 8%), and v* = 1/(1 — 4?), 8% = 8;8". One can check that

oyt Oy

i gt gy — v T Ut = Py (5.12)
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Then, the metric becomes
ds* = —2H (r)u,dxtdr — F(r)u,u,datdz” + G(r) Py, dr*dz”. (5.13)

This expression is our black brane solution for constant velocities. Note that the functions
that depend on the radial coordinate are arbitrary, so in particular we can choose them
to be those of Lifshitz black holes. When the velocities are not constant it is necessary to
correct the metric by terms depending on the derivatives of the velocity, in order to ensure
that the Einstein’s equations are satisfied and the solution is regular.

If we take (5.2) as starting point, the boosted brane solution is

ds? = —2r* Yy, dotdr — r¥uyu, detde” + r* Py, dat da”. (5.14)

Note that this is not invariant under the transformation (5.3). However, since a change
of coordinates cannot make the isometry disappear, it must take a new form. Indeed, one
can check that the metric is invariant under

r— Ar, xt — =\ (PHx% — zufuax®). (5.15)

Note that for z = 1 the transformation is still the same, but not for general z. In terms of
the components of a Killing vector

& =r &'=—-PLa"+ zufuy,z®. (5.16)

In the dual field theory £ should map to a symmetry, this is precisely the scaling symmetry
generated by the velocity-dependent D in (4.5).

Regarding the matter fields, in the boosted brane solution the components of the
matter energy-momentum tensor are

rr — Lrr, (517)
T/,Lr = UHTEM (518)
Ty = wpu, T + PuTi (5.19)

where we have used T;; = T116;;. The changes of variables are the same for the components
of the Ricci tensor.

If there are background scalar fields depending on the radial coordinate, their profile
¢(r) is not affected by the change of coordinates. For gauge fields we will have

. H H
A= Audt + A, dr = A <dt + Fdr) + Apdr = Apuydat + (AT + F> dr (5.20)

The conventions for the black brane are that A oc u,dz* is non-zero at the horizon. We
should then make A; non-zero at the horizon and

A= (5.21)
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Since H and F' are only functions of r, this choice does not affect to the field strengths
or the equations of motion. In the static case the A; # 0 condition is not regular and
A, « 1/F is singular, so there is no smooth mapping. Presumably is because the future
and past horizons sit at the same value of r in the static case and in the black brane they
are separated. The field strengths are (allowing a space-time dependence on u, and A;)

F =dA = Aju,dr A da? + 20, Agu, da? A dz?. (5.22)

5.2 Lifshitz model

The action for the effective model proposed in [39, 40] consists of Einstein gravity coupled
to Maxwell’s gauge fields F),, and a scalar ‘dilaton’ ¢

S = / d2z /=g [R - ZY)FABFAB — %(0@2 +V(9)|, (5.23)

where A, B = (r, u), d is a number of spatial dimensions, and we focus on d = 2. Einstein’s

equations are

1
RAB—§gABR:TjB+T£4B, (5.24)

where the energy-momentum tensor for the scalar field is

L1 1
Thip = §8A¢8B¢ — 1948 [(09)* — 2V (9)] , (5.25)
and the Maxwell’s part is
Z 1
Tip = (f) <QCDFACFBD - 49ABF2> : (5.26)

For the matter fields we are interested in Maxwell’s equations

94 (V=9Z(¢)g*Pg“PFgp) = 0. (5.27)

These set of equations admit black hole solutions (5.4) with two independent parame-
ters, Lifshitz scaling exponent z and hyperscaling violation exponent . Explicitly [39, 49],

H(r)=r7 17200 pr)y = 2272004 (r) G(r) = 272004, (5.28)

Where f(r) =1-— (T—H)dJrz_@. The solutions for the scalar and background gauge fields are

r

2(z—1)

br) _ 5 _ 2=
€ A 212-6

r2 0 f (), (5.29)

where s = £1/4z — 4 + 02 — 220, while the coupling Z(¢) and a scalar potential V (¢) are

4—0

72(6) = ¢

This solution can be viewed as a direct generalization of AdS black hole with dynamical z

O V(g)=(2+2z—0)(1+z—0)e ?. (5.30)

and hyperscaling violation # exponents.
We can do a coordinate transformation to the metric (5.13) and after that introduce
a spacetime dependence in the velocities, rp, the gauge field and the scalar.
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5.3 Projection of equations of motion on the horizon

We will project with the normal to the horizon ¢4
4 = (0,u?), (5.31)
and evaluate the projected equations at the horizon. For this, we will need the

£
gAB:<H i ) (5.32)

ut 1 puv
7 cb

inverse metric

The details of the projection are collected in appendix C. Note that at the horizon ¢"" =
F/H? =0 so ¢4 is indeed a normal vector.
The simplest equation is the current conservation obtained from Maxwell’s equations

Bu(pu) = 0, (5.33)
where 42
_ Z()GYE
p=-200 (5.34)

evaluated at the horizon. The factor of 167 is arbitrary and is fixed for convenience.

The scalar energy-momentum tensor does not contribute to the ideal conservation
equations, but it will contribute to bulk viscosity terms in the hydrodynamic equations as
shown in [50]. The contribution from the Maxwell’s fields to hydrodynamic equations are

THpeP = ZZ(IZ;) (2A0u” 0, Apu,)) = 2%” (PSOaA; + AjuBauy,) (5.35)
where we have used that G%2 = 4s gives the entropy density. Projecting with u# this term
vanishes, so there is no contribution to the entropy current. Projecting with P’ we get the
same equation.

So far our expressions are valid for a general action of the form (5.23), but we will
need to be more concrete now and we will use (5.28). The surface gravity determines
the temperature

1
k=2rT = 5(2 +d— 0)rf = 2nbri;. (5.36)

For convenience we will define T, = T'/b, which fixes

2-260/d 1 (4_p 1 (d—s _ 142+260/d
G=T, =, s=rg = 0 H=T (5.37)

Then, 8,G/G = 22149 T,/ T;,

4
The projection of Einstein’s equations evaluated on these solutions gives

d—=0
R0 = —27b {( . )uuuaﬁaTb + Ty0u Py + Py 0aTy| - (5.38)
Projecting with u* we get
d—=06 2mh =0 b
o [ 1120 )uaaaTb - Tbaaua] =7 0a(T, 7 u®) = 752 0o (su). (5.39)
T, T,
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Since the matter fields do not contribute to leading order, the entropy current is conserved
Ou(sut) =0. (5.40)

Projecting now (5.38) with P/, we get
—27b [Tpu®Opuy, + P OTy) - (5.41)

Together with the energy-momentum tensor of matter we have
(1 + jf)sAt> WOty + P9 In T + TispgaaAt = 0. (5.42)

If we define the chemical potential as

Ay(ry) = 1, (5.43)

then, multiplying by a factor of T's
(T's + pp) u*Opuy, + TsPIOyInT + pPJOgp = 0. (5.44)

These are the ordinary hydrodynamic equations for a charged fluid. It becomes more clear
if we use the thermodynamic identities

dp = pdp + sdT, e+ p="Ts+ up. (5.45)
The equations become the relativistic Navier-Stokes equations
(€ 4+ p) u®Oquy + PJOap = 0. (5.46)

The exponents z and 6 of the theory are manifested in the dependence of the pressure,
energy, charge and entropy density on the temperature and chemical potential.

6 First order asymmetric dissipative terms

The breaking of Lorentz invariance implies that the energy-momentum tensor is not neces-
sarily symmetric. We have seen from the calculation in free field theories that no asymmet-
ric terms are expected in the hydrodynamic energy-momentum tensor at the ideal level.
However, such terms could appear at higher orders in derivatives, although they can be
constrained by physical requirements such as the second law of thermodynamics in its local
form. In a previous work [24] we found the asymmetric terms possible to first viscous order,
we will give here a more detailed presentation including a conserved current and the Kubo
formulas for the new transport coefficients.
The energy-momentum tensor in the Landau frame takes the form

TH = eufu” + pP* + W(SW) + W%V} + (u“wka] + u”w%a])ug. (6.1)

Where we impose on the symmetric part Trfguy)ul, = 0 and the last term ensures that
the condition

T u, = —eu”, (6.2)
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is satisfied. To first order in derivatives the only possible contributions to wg are the shear

and bulk viscosities

7d") = B daug = PPN — %P " Oau, (6.3)

where n and ¢ are the shear and bulk viscosities respectively and the shear tensor is
defined as

2
Aaﬁ = 26(aU5) - gPag(aguU). (64)

The constitutive relation of the conserved current is
JH = put +vH, (6.5)

where we impose the condition v#u, = 0.
The divergence of the entropy current is

0= 0,T"u, + po,J"
= —T@ujfj—|—8“(7rl[ffy])uy+8ﬂ(u“7rl[4w]ug)ul,—ﬁﬂ(ﬂ%a])ug—W%U}t‘?ﬂug—i—u@#uﬁﬁ- e
= —T0,j4 — wl[ffa] (Oputo] — upu™ Oatig)) + pOu v + -+ - . (6.6)

The dots denote positive-definite contributions from the shear and bulk viscosities that do
not affect to the analysis. The entropy current is defined as

Jh = sut — %1/“. (6.7)

If the chemical potential is zero, in order to have a positive quantity,
7['1[4“4 = —oz‘“’o‘ﬁ(a[aum — uju’Opug) (6.8)

where a#¥?? contains all possible transport coeflicients to first dissipative order. It must
also satisfy the condition, for an arbitrary real tensor 7,

TuuawjapTap >0. (69)

The condition that boost but not rotational invariance is broken with respect to the rest
frame of the fluid imposes the condition

Papym1P, 5 = 0. (6.10)
This implies that the antisymmetric term should take the form
it = oy, (6.11)

where one can take Vju, = 0 without loss of generality. This restricts the form

of the transport coefficients a®? ~ yltpP By and for the normal fluid it makes
awaﬁa[aum ~ ulta”! where the acceleration is defined as a* = u®d,u”. This leads to

a single transport coefficient

71'[:”} = —aulta’!, a>o0. (6.12)
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When the chemical potential is non-zero there are two additional possible transport coeffi-
cients. One of them does not satisfy the Onsager relation and is dissipationless, while the
other is dissipative. The equation for the entropy current is

. 1 i
Oujs = =70 Vaa = "0, (T) +- (6.13)
Where the entropy current is defined as
gk = sut — %I/”. (6.14)

We now expand the dissipative terms as

Vi =-Taja" — TagP“”8y< >, (6.15)

Ni= NI

N—

v = —azat — oz4P“V8V< (6.16)

Then, the equation for the entropy current becomes

oujtt = (a Pra, (%)) <Z; Zi) (ngf(éﬁ)> . (6.17)

If we write ap = C + o/, oz = —C + o, the dependence on C drops from the equation,
so it corresponds to a dissipationless transport coefficient, but it would be forbidden if we
impose the Onsager relation. The other three dissipative coefficients are a1 = /T (that
is the same as in the neutral case), o/ and the coefficient cy = 0T that can be identified
with the ordinary conductivity. The positivity conditions on the coefficients are

ao > ()2, a>0, 0>0 (6.18)
6.1 Kubo formulas

We will derive Kubo formulas for the new transport coefficients assuming that the Onsager
relation is satisfied. To first order in the derivative expansion we have found the following
asymmetric contributions to the energy-momentum tensor

T, Py = 2040, Py, T P, = 0, (6.19)

that also enter in the current through v in (6.16). Expanding around the equilibrium
configuration u# ~ (1, %) to linear order in the velocities,

Toi ~ adoB; + TrO; (%) ; (6.20)
ji = pfi — 0T (%) NN (6.21)

By expanding around flat spacetime, the dependence of velocity §; ~ éijVj on the
background vierbein is as determined in (3.57) to leading order in derivatives. Recall that
the two-point functions of the energy-momentum tensor are

i\ 0 (Toi) or 0 (Toi)
<T0iTJO>_ 5ej0’ <T0iTj>_ 5eoj '

(6.22)
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The mixed correlators with the current are

(5'T%) = 5{5?, (T = 55<]J> (6.23)
J €0

Then, it is straightforward to derive the Kubo relations for the new transport coeflicients
after doing a Fourier transformation of the correlators®

o = lim é (ToiT") (w, k = 0), (6.24)
o = lim ﬁ (To;T%) (w,k = 0), (6.25)
o = = lim %B% (7'T'y) (w, k = 0), (6.26)
o = = lim ;a‘i (G'T%) (w,k = 0). (6.27)

Where we have defined the coefficients

1 00 t
, B=—"—,
2 ego+po €0 + po

(6.28)

and t%, tog are the zero frequency two-point functions (3.56).

7 Discussion

In the first couple of sections we have computed the energy momentum tensor at non-zero
temperature of a free scalar. An obvious extension will be to add interactions and compute
hydrodynamic transport coefficients using Kubo formulas. Of particular interest are the
transport coefficients associated to the breaking of Lorentz invariance that we have found
in the last section.

We have shown how to obtain the ideal energy-momentum tensor in a charged fluid
using the generating functional and a holographic dual. In relativistic theories in some
cases a current is conserved only up to a quantum anomaly, but nevertheless it can be
included in the hydrodynamic description and the anomaly produces interesting effects
in the motion of the fluid [51-55]. Even if the fluid is not charged a conformal anomaly
determines the equation of state [56-58]. Fluids with Lifshitz scaling may exhibit analogous
properties, as there can be both axial anomalies [59, 60] and Weyl anomalies [61-64]. We
should remark that this is not just a formal observation about some models with Lifshitz
scaling, anomalies may appear in the effective description of ordinary Fermi liquids [65].

Another interesting direction that can also be pursued is to extend the hydrodynamic
description to superfluids (see e.g. [66]). This is motivated by the apparent existence
of a quantum critical point in high-T, superconductors, which is “hidden” by the super-
conducting phase. Notwithstanding, one may uncover new scaling relations that can be

4Note that already at the ideal level there is a correction depending on time derivatives of the vierbein
to the static velocity. From the equation 8;6p + pd;5° = 0 and the expressions (3.57) we see that it must
be at least quadratic in the mixed components of the vierbeins, so it vanishes from the two-point function
in flat spacetime.
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tested experimentally. It seems likely that a realistic description will be in terms of a fluid
with broken Galilean invariance (rather than Lorentzian), as we proposed for the normal
phase in [24].

We hope to address these questions and others in the future.
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A Variations of metric and curvature with respect to vierbein
We will use the following formulas:

e Variation of the metric

5gap _ oA Tp(SgAT

(5€ac - g g 660{0 (Al)
59 v o, a o, a

Fi‘? = Nac(0pe,” +d,e,"). (A.2)

e Variation of the Christoffel symbol

59)\7'
0T, =—g"*1",, e e Sl + g7y (A.3)
Using that
d9pv og OGuv 0Gpv dg O
v, 29 v 29 g 09w _ 5 9 9,291 _ 5 %9u
Hoec * Y de,c e H e * Y de,c P ec
- 09
— 2", 56/;; + 2005 e, (A.4)
and 5 5
Gov 9pov  ab
© 5eac = ~MNac 5eab wz ) (A5)
where the spin connection is
wzb = n“cefvue%. (A.6)
We have used that
Vs + nawle, = 0. (A7)
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One can show

Where

Then,

where

1 1 14
517, = g0 | 590000 | 53 0%m _ 500w | 1 5,

124 H c v c P c
2 de, de, de

Dgde, = Vgde, — nabwgcéeab.

0T, = F°°, Dade.y,

pre

B o= ae 9720 — g7 200 | +e760,0)

)

Variation of Ricci tensor

SRy = V017, — V7,617,

From the variation of the Christoffel symbol one gets

SRy, = FP8 N, Dgbe t — P, N, Dgde S +--- .

pve uve

o

(A.10)

(A.11)

(A.12)

(A.13)

The dots are terms proportional to derivatives of the background vierbein (they

should give contributions that make the expression covariant V,, — D,,), they will

vanish in flat space.

If we contract with t#:

SRt = (e, *V|t"Dg — t .V Dy + tt*VF Dy — t*V " Dg)bel, + - - - .

Contracting with P/

ORy P = (ecaptﬁvvﬁpv - PthaDﬁ + Ptgvﬁpﬁ - Ptaﬁvcpﬁ)&g +oee

It is convenient to form the combinations

1 T
Ry=-2-1 (R“”t“t + gl bl > ’
1
=L (Rt £ RLPM™).
Ry = gy (Bt + B PLY)

B Thermal correlators in free theories

The Euclidean correlator of the scalar field is

1

(p9) (iwn, q) = ()2 — Q%

(A.14)

(A.15)

(A.16)

(A.17)

(B.1)

Where Q? = ¢? in the relativistic theory and Q? = g(qQ)2 for the z = 2 free scalar theory.
In the following we will generalize this expression to arbitrary z and number of dimensions.

Even though for arbitrary z there is no local action, the generalization of these results to

arbitrary z can be done by replacing the terms ~ x(¢g?)? — x(¢?)? and the factor ¢? in the

z—1

T component by (¢?)
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B.1 Relativistic theory

e The one-point function is

(Too) = 252/ n) ZQ. (B.2)

The sums over Matusbara frequencies gives

iwn)?
;Z(iw(n);)_qg = —%(1+2n3(q)), (B.3)
and . . 1
BZW = —gg 1 T 2n8(0), (B.4)
where
1

ng(q) = fB(Bq) = Ba 1" (B.5)

When we add the two contributions there is a temperature-independent part which
is divergent and we should substract and a temperature dependent part, which is

d
(Too) = /(;i()ldan(Q)

_ Sd 1 V(Sd ) 00
= / dqq®np(q (2 Td'H/O dexlfg(z). (B.6)

For the stress tensor we get that the temperature-dependent part is

5
(Tij) = — (Tho) - (B.7)
e The two-point function is
an QzQJ
(ToiTo;) / B.8
0T g Z —¢*)* (B8)
We will use that inside the integral we can substitute
Lo o
qiq; — 85”6‘/ . (B.g)
The sum over Matusbara frequencies we will need is
Z “"” —_1 L 14 2mm(q) + (o) (B.10)
8 (iwn, 2\ 2¢ B\ B\ |- '

As before, there is a temperature independent term that we should subtract and the
remaining contribution is

d—1 C.d+1 00
<T0iT0j>:—V((§W)d)6”§d /0 dx x3H1 (ifB(x)-Ffjg(x)). (B.11)
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We can use integration by parts on the second term

/OO de ™ flp(z) = —(d+1) /OO dr 2% fp(x).
0 0

Then, the two-point function becomes

Lo V(ST g [ 4 L /00
<T0iT0j> = 5(5¢ij + /0 dxx fB(.%') = 5 <T >(5”

The relation found from hydrodynamics in Minwalla is indeed satisfied.

B.2 Lifshitz theory

We will compute the one- and two- point functions

e The one-point function is
)= =55 % [ G
00) ~95 o
Where Q? = g(q2)z. The sums over Matusbara frequencies gives

iwn)?
;Z M = —%(1 +2n5(Q)),

and

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

When we add the two contributions there is a temperature-independent part which

is divergent and we should substract and a temperature dependent part, which is

V(i

d 00
@) = [ ga@na@ = Vo [ dadann@)

d
Z\FV(STY) e [ 4
—(Z2) T2 _p dz 2971 fp (7).
(2) o T [ et
For z =2 and k/z = 1 we get

d—1 (9]
V(S)d)Tdf/O dz z% f5(2?).

(1) = (2w

For the stress tensor we get that the temperature-dependent part is

(Tij) = 504 (Too) -

e The two-point function is

1 / Q2c(z—1)
CZ (i qq :
(T<oi>T<0j>). = B - Z/ n) 014y SGDE
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(B.17)

(B.18)

(B.19)

(B.20)



Where we use the notation for ¢ = 0,1, 2

(T<0i>T<0j>)o = (ToiToj) , (T<0i>T<0j>); = (ToiTjo) , (T<0i>T<0j>)y = (TioTjo) -

(B.21)
The sum over Matusbara frequencies we will need is
1 (iwn)? 1/1
BZW =73 <2Q(1+2WB(Q))+n33(Q)> . (B.22)

As before, there is a temperature independent term that we should subtract and the
remaining contribution is

d+2—2c¢

2\ 2 V(ST 0y, dremsraco)
< <0i> <0]>>c (ﬁ) (27T)d 2d

X /OOO da ¥ 4201 (;ZfB(IBZ) + ij(SUZ)) . (B.23)

We will use that

fp(@®) = WifB(ﬂfz) = Lﬁfg(xz). (B.24)

zx#~1 Oz

We can use integration by parts on the second term

/ dr lxd+2—z+20(z—1)a$f3 ($Z)
0 z

_ (d+2—2z+2c(z—1)) / do pH1-2ED (%) (B.25)
0

z

Then, the two-point function becomes

(d+2—2z+42c(z—1)) z e V(891 atre-zi2e(z-1)
(T<0i>T<0j>), = 52d dij | — o z
« / dr xd+172+20(271)fB (xz) (B26)
0
Forc=1
Lo (A\EV(STY e [
<T0iT‘jO> == E(Sz] (/{/) (271')de/0 drx 2= fB(Z'Z) (B27)
Therefore we have the relation
1
(TviTjo) = (TiTo;) = 55@' (Too) » (B.28)

which is analogous to the relativistic formula but with a different factor.
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C Curvature tensors in Lifshitz

In the original coordinates, the non-zero Christoffel symbols are

1 1 F (H*\' H 1F
I‘r — _ Tr - - - - _ - '1
= 59 O 2H2<F> H 2F (C.1)
1 1FF' o L1FG
PLV = —igw Gy = 5?6”5'} — > 12 5;51{5,], (02)
1 1F 1@ .
Fﬁr = ig'uaargya = 5?5553 + 5555(%5; (03)
Useful formulas:
1[/F G
e =-11—= d|{ — 4
w3 |(F)+(5)) ©
1| [F\° G"\?
Iers, = 1 (F> +d <G) (C.5)
The non-zero components of the Ricci tensor are then
RT?” = 787“1137“ + Fgozrir - F?ﬁrfav (06)
Ry, = 0,15, + 18,17, —T7,T0, —ToT},. (C.7)

There is a constribution in R, that is singular at the horizon for the Lifshitz and black

brane solutions

el G'H' 1 /¢ 2
=t Eam T3 <G> (C.8)

F// F/ E/ B dGl B g
H 2G 2

The components that enter in the horizon equation are

FF" JFF'G' FFH
Ry = - C.9
= 5m ¥ AGH? 2H3 (C.9)

F'G" FG" FGH' (d—2)FG"?
=5 = — 1
Hij = 0 [ 2H2 2H? = 2H3 4GH? (C.10)
The Ricci scalar is
R N F' (H dG F (dG'H' dG" F d(d—3)G"” ©.11)
~ H? H:\H G H?\ GH G H?  4G? '
C.1 First order terms in the Einstein tensor
The projection of the Einstein tensor to the horizon is
Roath= 1 pos = 1 .07 0.0 C.12
ual” = sy B S” = g VeQu — Oub. (C.12)
The second term is second order in derivatives and we will ignore it.
The first term is 1
VVQHV = aVQHV - §QVP8M,YVP7 (013)
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where v,, = GP,, at the horizon and

with

and

To leading order in derivatives

Then,

which fixes

and

We can use

Putting all together,

Ry t¥ =

Open Access.

Q) =G"* [0y — ks, (C.14)
k=0, u" (C.15)
O, = Vul" = 0u” + T u®. (C.16)
FI 5 G/ 5
Fl
(—)N = —ﬁu Uy (C18)
F/
=5 (C.19)
Q) =-G¥?kp}. (C.20)
QMW = —GU 2P (C.21)
v 14 v 81,:‘41
(0.G - P;9,G) — 9,P", — P, p (C.22)
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