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1 Introduction

Constructing and analyzing solutions to theories of (Einstein) gravity with various kind

of matter fields in diverse dimensions has been a very active area of research since the

conception of General Relativity. Black holes, stationary solutions with a regular event
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horizon, has been a class of solutions of particular interest. We now have classification

(not necessarily a complete one) and in some case uniqueness theorems [1] for specific

gravity theories. This classification is usually based on the choice of asymptotic behavior

and horizon topology, the charges like mass, angular momenta and electric or magnetic (or

possibly dipole) charges and, if there are “moduli” in the theory, on the asymptotic values

of these moduli scalar fields.1

Based on the seminal works of Hawking [5] and Bekenstein [6], it was argued that black

holes behave like thermodynamical systems and the four laws of black hole (thermo)dynam-

ics was proposed [7]: black hole is a thermodynamical system at the Hawking temperature

TH (the temperature of the Hawking radiation as seen by the asymptotic observer) and

chemical potentials, the horizon angular velocities Ωi and horizon electric/magnetic po-

tentials Φp. One can then associate conjugate charges to these, the angular momenta Ji,

the electric/magentic charges qp and the (ADM) mass M . These parameters and charges

satisfy first law of thermodynamics, if we associate an entropy SBH to the black hole, as

Bekenstein and Hawking did; explicitly,2

THδSBH = δM −
∑
i

ΩiδJi −
∑
a

Φpδqp . (1.1)

The remarkable feature of thermodynamical description is its universality, that it is inde-

pendent of the theory and the specific class of solutions in consideration; it stems from

very deep connections between gravity and thermodynamics.

The next conceptual step in the thermodynamical description of black holes appeared

in a series of papers by R. Wald et al. [9, 10, 12]. It was argued that not only the charges

Ji, qp and M , but also the entropy SBH may be viewed as a Noether conserved charge,

associated with the Killing vector field which becomes null (and actually vanishes) at the

horizon. Within this approach the first law of black hole thermodynamics was proved.

Since our analysis will be based on [9, 10], we will review these works in appendix B.

Among many novel features, Wald’s approach clarified (1) how the charges Ji, qp, M

and SBH depend on the theory (action), as well as the solution; (2) the significance of

gravity equations of motion and dealing with “solutions” for having the thermodynamic

description (recall that Noether charges are defined on-shell) and; (3) what is the meaning

of “perturbations” δX’s appearing in the first law (1.1): the first law is not only about

some relations among the parameters defining the class of black hole solutions, the δX’s are

associated with the corresponding charges of a (non-stationary) system probing the black

hole background specified by TH , Ωi and Φp; the black hole is seen as a thermodynamical

system by the probe.

In search for the micro/statistical mechanical system underlying black holes, the class

of extremal black holes, those with TH = 0, proved very useful. Extremal black holes may

be viewed as the ground state of a system with the same values of Ji and qp and have

1This topic started off by notable papers of W. Israel [2, 3], and is more than four decades old, with a

rich literature, e.g. see [1, 4] and references therein as some examples.
2The moduli (the asymptotic value of scalar fields) may also appear in the first law through a modification

of δM term. Explicitly, through shifting δM to δM − ∂M

∂φα
δφα where φα denotes the moduli [8].
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generically non-zero entropy, while at zero temperature. It was noted in [13–15] and then

rigorously proved in a series of papers [16–18] that focusing on a region close to the horizon

of extremal black holes we obtain a new class of solutions to the same theory of gravity.

This class of solutions, the Near Horizon Extremal Geometries (NHEG’s) have the same

conserved charges, Ji and qp as the original black hole, while have no horizon and have a

different asymptotic region. As the near horizon limit has been taken, these geometries

have no horizon and no singularity. The project of classification and uniqueness theorems

for NHEG has been actively pursued in the last decade or so and we have several theorems

in four and five dimensions (see [18] for a recent review). We will briefly review these in

section 2.

In this work we focus on the NHEG and construct three laws of NHEG (thermo)dy-

namics. We argue one may associate an entropy to the geometry as the Noether charge

associated with a (class of) Killing vector field(s) which become null at specific points of

spacetime, very similar to what Wald did for black holes. We then work out universal

relations among the entropy and other Noether charges of the system. We also work out

what resembles first law of (thermo)dynamics for black holes, i.e. a universal relation which

governs the relation between perturbations in the entropy and other charges associated with

the stationary or non-stationary perturbations of the NHEG.

The rest of this work is organized as follows. In section 2, we review some facts about

the NHEG. In section 3, we compute all Noether charges associated with the symmetries

of NHEG. In section 4, we present the three laws of NHEG mechanics. In section 4.1, we

present zeroth law of NHEG mechanics. In section 4.2, work out the “entropy law” for the

NHEG dynamics, i.e. a universal relation between entropy, which as we argue, itself is a

Noether charge, and other Noether charges of the NHEG. The entropy law formula is closely

related to Sen’s entropy function [19]. In section 4.3, we construct “entropy perturbation

law” for the NHEG. In section 5, we discuss whether the laws of NHEG dynamics can be

constructed from those of black hole dynamics when the black hole becomes an extremal

one. We end with discussions and concluding remarks. In the appendices we have gathered

some useful relations about the sl(2,R) algebra, a review of Wald-Iyer formulation of the

entropy and the first law of black hole thermodynamics, details of the computation of the

symplectic form used in section 4.3, and discuss the “inner-outer horizons permutation

symmetry,” used in section 5.

2 Near Horizon Extremal Geometries (NHEG)

As mentioned in the introduction a generic black hole solution is determined by two class

of parameters: those appearing in the thermodynamical description and those associated

with the asymptotic values of moduli. There is a largely held idea that all thermodynami-

cal black hole quantities is encoded only in the near horizon data. This viewpoint has been

proved for the class of supersymmetric or BPS black holes where it has been shown that

the value of the moduli fields at the horizon is independent of their asymptotic values and

is completely determined by the (thermodynamical) conserved charges. This observation

was called “attractor mechanism” [20–22]. It was then realized that [14, 15, 19, 23] ex-
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tremal black holes (which are not necessarily BPS) also exhibit attractor behavior. This

means that all the information for “thermodynamical” description of black holes3 is already

included in the NHEG. This prompted the study of extremal horizons and exploring the

possibility of NHEG uniqueness theorems, which we will review in this section. For further

details the reader is referred to the recent comprehensive review [18].

2.1 Extremal horizons and near horizon limits

Extremal black holes are solutions with vanishing surface gravity and hence they do not

have a bifurcate horizon. Therefore, it is useful to describe them in a null Gaussian coor-

dinate system [18]:

ds2 = 2dṽ

(
dr + rh̃a(r, x)dxa +

1

2
r2F̃ (r, x)dṽ

)
+ γ̃ab(r, x)dxadxb , (2.1)

where the horizon is at r = 0, and γ̃ab computed at r = 0 is the metric on the horizon which

is taken to be a smooth, non-degenerate, compact codimension two spacelike surface. One

can then readily take the near horizon limit by expanding around r = 0, setting r = ερ

and v = ṽ/ε, ε→ 0 to obtain

ds2 = 2dv

(
dρ+ ρha(x)dxa +

1

2
ρ2F (x)dv

)
+ γab(x)dxadxb , (2.2)

where γab(x) = γ̃ab(0, x), ha(x) = h̃a(0, x), F (x) = F̃ (0, x). The near-horizon limit has

fixed all the ρ dependence. Metric (2.2) has translation symmetry along v coordinate, as

well as scaling (v, ρ)→ (v/λ, λρ).

Next, one should require (2.2) to also satisfy equations of motion. Depending on

the theory and its matter content we have some different possibilities for the ha and F

functions and hence the symmetries of the (v, ρ) space. In particular, for “static” cases

with dha = 0 and when the matter content satisfies strong energy condition the isometry

of (v, ρ) part enhances to SL(2,R). For stationary cases, with four and five dimensional

Einstein-Maxwell-Dilaton (EMD) theory where metric on the space of U(1) gauge fields and

dilatons is positive definite (they have non-negative kinetic term) and when the potential of

the dilatons is non-positive again we are dealing with a background with SL(2,R)×U(1)N

symmetry. Here we do not intend to review in detail the extremal horizon uniqueness

theorems. For more detailed and precise discussion see [18].

As we see for physically interesting cases the symmetry of the extremal black hole

geometry generically enhances to SL(2,R) and some other U(1) factors. Therefore, here

we only focus on the geometries with such symmetry. Explicitly,

We define NHEG as the most general geometry with local SL(2,R)×U(1)N symmetry

group.

Here, we consider a generic diffeomorphism and gauge invariant theory without specifying

the explicit form of the action. (Note that EMD is a special class of such models.) In

3The term thermodynamical has been put in quotation because extremal black holes are systems at zero

temperature and there is really no energy flow. This point will become more clear in the next sections.
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general, at most d − 3 U(1) factors are associated with rotations of the d dimensional

spacetime while the rest of them (up to N) is the number of gauge fields.

For a generic NHEG we adopt a coordinate system which makes the SL(2,R)×U(1)N

symmetry manifest:

ds2 = Γ

−r2dt2 +
dr2

r2
+
d−n−2∑
α,β=1

Θαβdθ
αdθβ +

n∑
i,j=1

γij(dϕ
i + kirdt)(dϕj + kjrdt)

 , (2.3)

supplemented by a set of gauge fields A(p)

A(p) =
n∑
i=1

f
(p)
i (dϕi + kirdt) + eprdt . (2.4)

In the above i, j = 1, · · · , n and p = n+ 1, · · · , N , and n ≤ d− 3. Γ,Θαβ, γij , f
(p)
i are func-

tions of the polar coordinates θα whose explicit form may be fixed upon imposing equations

of motion. ki, ep are constants, the constancy of which is a direct consequence of SL(2,R)

symmetry. A full solution may also involve a number of scalars φA = φA(θα), however, due

to the attractor behavior (see [14] and references therein) the parametric dependence of the

scalar fields is completely fixed by the other charges. So, while these scalars can affect the

value of charges, we need not consider them separately in this paper. We take the constant

r, t surfaces, denoted by H, to be compact, smooth and non-degenerate. Moreover, we take

the metric on ϕi space, γij , to be non-degenerate and positive definite.

The geometric part of the SL(2,R) × U(1)N symmetry, which is SL(2,R)× U(1)n, is

generated by the following Killing vector fields (cf. appendix A for our convention and

notations for sl(2,R) algebra.)

ξ1 = ∂t ,

ξ2 = t∂t − r∂r , (2.5)

ξ3 =
1

2

(
t2 +

1

r2

)
∂t − tr∂r −

n∑
i=1

ki

r
∂ϕi ,

mi = ∂ϕi , (2.6)

with the commutation relations:

[ξ1, ξ2] = ξ1 , [ξ2, ξ3] = ξ3 , [ξ1, ξ3] = ξ2 , (2.7)

[ξa,mi] = 0 , a ∈ {1, 2, 3} and, i ∈ {1, . . . , n} . (2.8)

2.2 Relation between SL(2,R) and U(1) generators

Let us define the SL(2,R) vector na, a = 1, 2, 3 as the unit normal vector to AdS2 in the

R2,1 embedding space, i.e. nan
a = −1. In the basis we have used for writing the metric (2.3)

na are (see appendix A for more discussions):

n1 = −r , n2 = −tr , n3 = − t
2r2 − 1

2r
. (2.9)
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Using na, one has the following relation between the SL(2,R) isometries and U(1)

symmetry generators:

naξa = kimi . (2.10)

Note that we have used SL(2,R) metric (A.3) for raising a index on na. To show this recall

that the Killing vector ξ3 is

ξ3 =
1

2

(
t2 +

1

r2

)
∂t − tr∂r −

∑
i

ki

r
∂ϕi . (2.11)

Multiplying by r and rewriting the above equation in terms of Killing vectors yields:

rξ3 = − t
2r2 − 1

2r
ξ1 + trξ2 −

∑
i

ki∂ϕi , (2.12)

or

n3ξ1 − n2ξ2 + n1ξ3 ≡ naξa =
∑
i

kimi . (2.13)

More detailed analysis and useful identities about the SL(2,R) structure is gathered in the

appendix A.

3 NHEG conserved charges

Given a geometry which is (a part of) a solution to a diffeomorphism invariant gravity

theory, in the same spirit as the Noether theorem, one may associate a conserved quantity

to each Killing vector field. A given solution may also be invariant under some “internal”

symmetries, like in Maxwell theory, to which one may associate the corresponding Noether

charges too. This general argument implies that with the NHEG with SL(2,R) × U(1)N

symmetries one can associate N + 3 conserved Noether charges. In this section we work

out those charges. As reviewed in the appendix B, however, there are always ambiguities

in defining Noether charge densities (specially when we are dealing with a symmetry as-

sociated with diffeomorphisms). These ambiguities are usually fixed by giving a reference

point (e.g. asymptotic ADM charges). Here, we also discuss how those ambiguities may

be dealt with in the NHEG case where we do not have a maximally symmetric asymptotic

space. Here, following conventions of [9, 10], we use boldface for spacetime forms.

3.1 Noether charge density of non-Abelian symmetries

Obtaining Noether charge density Q from the Noether current J associated to a diffeomor-

phism generator (cf. appendix B) is not generally an easy task, but when we are dealing

with non-Abelian symmetry groups, this will become straightforward due to construction

we discuss below.

Consider a set of Killing vectors ξa which satisfy the following Lie bracket relations

[ξa, ξb] = f c
ab ξc , (3.1)

– 6 –
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where f c
ab are the structural constants of the symmetry Lie algebra G. Let Kab be the

metric of the algebra. Then, noting that

f c
ab f

abd = C2 K
cd , (3.2)

where C2 is the second rank Casimir of the algebra in the adjoint representation, we have

ξa =
1

C2
f bc
a [ξb, ξc] . (3.3)

(Note that the indices on the structure constant tensor is raised and lowered by metric

Kab.) Next, recalling the definition of the Lie bracket,

[ξb, ξc]
µ = ξνb∇νξµc − ξνc∇νξ

µ
b

= ∇ν
(
ξ

[ν
b ξ

µ]
c

)
, (3.4)

In the second line we have used the Killing property ∇νξν = 0. Consequently, the Noether

current J (introduced in (B.4)) may be written as

Jµξa = Θµ
ξa
− Lξµa

=
2

C2
L f bc

a ∇ν
(
ξµb ξ

ν
c

)
. (3.5)

In the second line we have dropped Θξa term because it is a linear function of δξaΦ and

for Killing fields δξΦ = LξΦ = 0. In our notations Φ stands for all the fields we have in

our theory.

One can further simplify (3.5) using the chain rule and the fact that ξa’s are isometries

of L, i.e. ξνa∇νL = 0, to obtain

Jµξa = ∇νQµν
ξa
, (3.6)

in which

Qµν
ξa

=
2

C2
L f bc

a ξµb ξ
ν
c . (3.7)

In the presence of (internal) gauge symmetries one should revisit the above analysis:

in this case δξΦ is not necessarily zero, δξΦ should be zero up to internal gauge transfor-

mations, i.e. generically

δξΦ = δΛΦ , for some Λ = Λ(ξ) . (3.8)

In the diffeomorphism and gauge invariant theories on which we have focused in this work,

only the gauge fields A
(p)
µ are subject to the above discussion. So, let us revisit Θ term for

them:

Θµ =
∂L

∂∇µA(p)
ν

δA(p)
ν =

∂L
∂∇µA(p)

ν

∂νΛ(p) (3.9)

= ∇ν

(
∂L

∂∇µA(p)
ν

Λ(p)

)
− Λ(p)∇ν

∂L
∂∇µA(p)

ν

, (3.10)

where Λ(p) = Λ(p)(ξa) is determined such that δξaA
(p)
µ = ∂µΛ(p).
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Assuming that the action is local and invariant under the gauge A → A + dΛ, it can

only be a function of Fµν = ∂[µAν] and the second term vanishes due to the field equations

for gauge fields in the absence of source.4 Therefore,

Θµ = ∂νj
µν , jµν =

∑
p

Λ(p) ∂L
∂F

(p)
µν

. (3.11)

This is the term that should be added to (3.7) in the presence of gauge fields and hence

the complete form of the Noether charge density for the generator ξa is5

Qµν
ξa

=
2

C2
L f bc

a ξµb ξ
ν
c +

∑
p

Λ(p) ∂L
∂F

(p)
µν

. (3.12)

3.2 SL(2,R) conserved charges

Applying the method of previous subsection, one can compute the conserved charges cor-

responding to SL(2,R) isometry of NHEG spacetime. It can be seen from (2.4) that

δξ1A
(p) = δξ2A

(p) = 0 , δξ3A
(p) = −e

p

r2
dr = d

(
ep

r

)
, (3.13)

and hence Λ
(p)
ξ3

= ep

r (where Λ
(p)
ξ3

is the one appearing in (3.9)).

For the sl(2,R) algebra, C2 = 2 and the Noether charge density for generator ξa
becomes

Qµν
a = L f bc

a ξµb ξ
ν
c + δa3

∑
p

ep

r

∂L
∂F

(p)
µν

. (3.14)

Using this we can obtain conserved charges corresponding to sl(2,R) Killing vectors by

integrating it over the closed surface H, which is any of (d − 2)-dimensional t, r = const

surfaces in (2.3):

Qa ≡
∮
H
dΣµνQ

µν
a . (3.15)

Replacing Qµν
a from (3.14) and using (A.9) we obtain

Qa =
f bc
a

2
δξbnc

∮
H
dΣtrL+ δa3

∑
p

ep

r

∮
H
dΣµν

∂L
∂F

(p)
µν

, (3.16)

where we have used the fact that any function of r can be taken out of the integration, as

the integration is on the constant r surface H. Noting (A.8) and recalling the definition of

the electric charge

qp ≡ −
∮
H

dΣµν
∂L

∂F
(p)
µν

, (3.17)

4Note that SL(2,R) invariance does not allow for having local sources.
5This argument in a straightforward way extends to the non-Abelian internal gauge symmetries and

also to the cases with higher dimensional p-forms. Moreover, it is possible that a black hole of non-trivial

topology carries a dipole charge while it is neutral, e.g. as in the case of dipole black ring [24]. These dipole

moments do appear in the first law [25] and our analysis may be extended to include these cases.
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we find

Qa = na

∮
H
dΣtrL − δa3

∑
p

ep

r
qp . (3.18)

It will be more useful to consider the SL(2,R) invariant linear combinations of charges Qa
by multiplying both sides with na, to obtain

naQa =
∑
p

epqp −
∮
H
dΣtrL . (3.19)

The above analysis, which is based on Noether’s theorem, makes it apparent that de-

spite explicit t, r dependence, Qa’s are conserved. Moreover, in writing SL(2,R) charges

(3.18) we have already fixed the ambiguities associated with Noether-Wald charges dis-

cussed in appendix B. This point will be discussed further in section 4.2.

3.3 NHEG entropy as a conserved charge

Despite the fact that the NHEG does not have a (Killing) horizon as black holes do,

recalling that they can be obtained as the near horizon limit of extremal black holes, one

may formally associate an entropy to them. To this end, we note that instead of the horizon,

the NHEG have surfaces H (i.e. surfaces of constant time and radius in the coordinates used

to represent the NHEG metric (2.3)). As discussed in the appendix A, SL(2,R) invariance

facilitates defining an (SL(2,R) invariant) binormal 2-form (which is dual to the volume

form on H). Given these, we can readily write the analogue of Iyer-Wald entropy [10] for

the NHEG:

Definition. Entropy of the NHEG as a solution of the e.o.m is defined as

S

2π
≡ −

∮
H

Vol(H)
δL

δRµναβ
εµνεαβ

= −2

∮
H

dΣµνE
µναβεαβ ,

(3.20)

where H is any of the SL(2,R) invariant (d−2)-dimensional surfaces, εµν is the SL(2,R)

invariant binormal 2-form, cf. (A.10), and Eµναβ ≡ δL
δRµναβ

.

One of the key steps in Wald formulation of “entropy as a Noether charge” [9] is the

realization that Killing horizon is associated with a null Killing vector whose dual one-

form vanishes on the horizon. In the NHEG we do not have the Killing horizon, however,

recalling discussions in section 2.2, we indeed have an infinite family of such Killing vector

fields:

ζH ≡ naHξa − kimi , (3.21)

where naH=na(t=tH , r=rH) and na is given in (2.9). We will prove the following proposi-

tion:

Conserved charge corresponding to Killing vector ζH is the NHEG Entropy,

defined in (3.20).

– 9 –
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Proof. We first note that ζH is a linear combination of Killing vector fields with constant

coefficients (naH and ki are constants), and hence ζH is a Killing vector field. Next, we

note that according to the proposition 4.1 of the Iyer-Wald paper [10] (see appendix B),

the Noether conserved charge corresponding to ζH can be decomposed as

QζH =

∮
H
dΣµν

(
Wµν

αζ
α
H − 2Eµν

αβ∇
αζβH + Y µν + (dZ)µν

)
, (3.22)

where Eµναβ = δL
δRµναβ

and W and Y and Z are covariant quantities which are locally

constructed from fields and their derivatives. Y is linear in δζHΦ and Z is linear in ζH
(recall (2.9) and (2.10)). As discussed in the previous section, δζHΦ = 0 up to internal

gauge transformations. In our case, that is, all δξΦ = 0, except for δξ3A
(p) which is a

pure gauge. We fix the Y ambiguity requiring physical charges to be gauge independent.

The W and dZ ambiguities are removed, noting that the Killing vector field ζH has been

constructed such that ζH |t=tH ,r=rH = 0. Therefore,

QζH = −2

∮
H
dΣµνE

µν
αβ∇

αζβH . (3.23)

To determine ∇αζβH , we take covariant derivative of both sides of the identity (2.10),

na∇αξβa − ki∇αm
β
i = −ξβa∇αna = εαβ , (3.24)

where in the second equation we have (A.10). The l.h.s. of the above equality may be

computed at any r, t. In particular, when computed at r = rH , t = tH we obtain

∇αζβH = εαβ . (3.25)

With the above (3.23) takes the form

QζH = −2

∮
H
dΣµνE

µν
αβε

αβ =
S

2π
, (3.26)

which is exactly the NHEG entropy (3.20) calculated on the surface H. It is important to

note that although the surface H (defined at constant tH , rH) has appeared in the above

arguments, the final result is independent of tH and rH . In other words, there are infinitely

many Killing vector fields ζH , all leading to the same entropy. This is of course expected

because of the SL(2,R) invariance.

4 Laws of NHEG dynamics

In this section we derive three laws of NHEG mechanics. The first two are describing the

NHEG geometry itself, but the third one governs perturbations (or probes) over the NHEG

background. The first and third laws resemble the laws of black hole mechanics [7], while

“entropy law” has no counterpart for generic black holes.
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4.1 Zeroth law of NHEG dynamics

Demanding (2.3) to be SL(2,R) invariant, restricts ki and ep parameters, while imposing

equations of motion will determine other functions there. In particular, ξ3 is a Killing

vector field only if ∇θαξϕ
i

3 +∇ϕiξθα3 ∼ ∂θαki = 0. Similarly, if we require that Lξ3F (p) = 0,

where F (p) = dA(p) and Lξ3 denotes the Lie derivative w.r.t. the Killing vector ξ3, leads to

∂θαe
p = 0. That is, ki’s and ep’s should be constants with respect to the coordinates θα.

The constancy of ki and ep can be treated as the zeroth law of NHEG dynamics.

In section 5, we discuss the relation between the NHEG and (near) extremal black

holes and show the close connection between the NHEG zeroth law and the constancy of

Hawking temperature and horizon angular velocities. This makes the analogy of NHEG

zeroth law and the black hole zeroth law.

4.2 NHEG entropy law

In this section we prove the “NHEG entropy law”:

S

2π
= kiJi + epqp −

∮
H

√
−gL , (4.1)

where ki and ep are constants appearing in the NHEG solution (2.3) and (2.4), Ji and qp
denote the corresponding N U(1) charges and

√
−g = Γd/2

√
det Θαβ · det γij .

Derivation: We start by taking covariant derivative from (3.21)

−∇αζβH = ki∇αmβ
i − n

a
H∇αξβa , (4.2)

and integrating both sides over 2
∮
H dΣµνE

µν
αβ:

− 2

∮
H
dΣµνE

µν
αβ∇

αζβH = 2

∮
H
dΣµνE

µν
αβ

(
ki∇αmβ

i − n
a
H∇αξβa

)
. (4.3)

Next, we note that as discussed in the appendix B, there is a Noether conserved charge

associated each of the Killing vector fields ζH , ξa and mi, but these conserved charges come

with three kind of W,Y, dZ ambiguities

QζH =

∮
H
dΣµν [Wµν

α ζH
α − 2Eµν

αβ∇
αζH

β + Y µν
ζH

+ (dZζH )µν ] ,

Qmi =

∮
H
dΣµν [Wµν

αm
α
i − 2Eµν

αβ∇
αmβ

i + Y µν
mi + (dZmi)

µν ] ,

Qξa =

∮
H
dΣµν [Wµν

α ξ
α
a − 2Eµν

αβ∇
αξβa + Y µν

ξa
+ (dZξa)µν ] .

Computed “at the horizon” where ζH is zero, the W and dZ terms in QζH vanish. Similarly,

in the following linear combination of other charges∑
a

naHQξa −
∑
i

kiQmi ,

– 11 –



J
H
E
P
0
3
(
2
0
1
4
)
0
1
4

the W and dZ terms also vanish. Therefore, (4.3) becomes

QζH −

(∑
a

naHQξa −
∑
i

kiQmi

)
=

∮
H
dΣµν

(
Y µν
ζH
− naHY

µν
ξa

+ kiY µν
mi

)
.

The r.h.s. of the above equation is zero because δξΦ is linear in ξ (or in ∇ξ) as well as in

Φ (or in ∇Φ), and hence δζHΦ− (naHδξaΦ− kiδmiΦ) = δζH−naHξa+kimiΦ = 0. In summary,

all the three W , Y and dZ type ambiguities cancel out from the two sides of the equality

and we obtain

QζH =
∑
a

naHQξa −
∑
i

kiQmi . (4.4)

With a similar reasoning one can show that the above equation holds when we replace QζH
by S/(2π) (cf. (3.26)), Qmi by physical angular momenta Ji, and naHQξa from (3.19). We

hence obtain the desired entropy law expression (4.1).

Before closing this section some comments are in order:

1. eq.(4.1) is universal, meaning that it is the relation between conserved charges asso-

ciated with any NHEG solution to any diffeomorphism invariant theory (of gravity).

2. In the above we have used the fact that the l.h.s. of (3.19) is SL(2,R) invariant and

hence can be computed at any arbitrary constant t, r surface.

3. The entropy law (4.1) is a manifestation of the fact that the SL(2,R) and U(1)

generators mix with each other, as is manifest, e.g. from (2.5). Explicitly, the ξ3

Killing vector also involves a ki∂φi term (2.5).

4. The entropy law (and also the entropy perturbation law (4.5)) are invariant under

permutation of N U(1) symmetries.

5. We stress that such a universal relation between entropy and other thermodynamical

quantities/conserved charges does not exist for generic black holes. As we will discuss

further in following sections, the “first law” of black hole thermodynamics deals with

perturbations of these parameters and not themselves. Note also that Smarr-like

formulas which may resemble our entropy law, are not universal and are solution

and/or theory dependent.

6. The reason why our derivation of entropy law (or in other words, Wald’s derivation)

does not hold for generic black holes is presence of ambiguities we discussed in some

detail, and in particular the fact that these ambiguities should be computed and

compared at different locations in the black hole geometry. In our case, unlike the

black hole case, we have vanishing Killing vector ζH for any tH , rH . We will elaborate

on this point further in the next sections.

7. Our derivation is based on Noether conserved charges and hence makes clear the role

of being on-shell. In particular, in the last term in (4.1), the Lagrangian L should be

computed on the NHEG solution.

– 12 –
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8. The entropy (3.26) is a conserved charge associated with a vanishing Killing vector

field ζH , although NHEG does not have a horizon. The entropy is completely deter-

mined by the geometry and not other fields, although other fields affect the geometry

through Einstein equations.

9. Note that in our ansatz for gauge fields (2.4) we have already included possibility

of having a non-zero magnetic flux (through the f
(p)
i dϕi term). As expected, the

magnetic and electric flux (denoted through ep) appear asymmetrically in our entropy

law; magnetic flux appears only through the Lagrangian term.

10. In our derivation it is clear that the terms in the r.h.s. of the entropy law are associated

with N U(1) symmetries of the system and the corresponding conserved charges. The

dilaton-type scalar fields (or moduli) which are not associated with any symmetry

can only appear through the Lagrangian term. This is a realization of the attractor

behavior [14, 15, 23] in our setup.

11. Our entropy law is closely related to Sen’s entropy function [14, 19].6 However, our

derivation is quite different; specifically we note that our derivation is completely

based on the NHEG and not the extremal black hole. Therefore, we need not deal

with the issues which may arise in the usage of Wald entropy formula which is derived

for bifurcate horizons, for extremal horizons. Further discussion related to this point

can be found in section 5.

4.3 NHEG entropy perturbation law

In the previous section we derived the NHEG entropy law, which is a relation among

conserved Noether-Wald charges of the NHEG which is a solution to equations of motion

for a given gravity theory with our desired SL(2,R) × U(1)N symmetry. As pointed out

this relation has no universal analog for generic black holes. In this section we construct

the analog of the first law of thermodynamics for the NHEG.

To this end, let us denote the NHEG solution by the field configuration Φ0 and consider

a perturbation around it δΦ. The configuration Φ0 + δΦ is not necessarily of the form

of NHEG, however, we assume that the perturbations δΦ satisfy linearized equations of

motion around the NHEG background solution Φ0. Therefore, δΦ can also be labeled by

the same charges as the background. Let us denote these charges by δJi, δqp and δS. Our

discussions here are basically paralleling those in [10] for ordinary black hole. However, as

we will see below, the case of NHEG has its own specific and novel features. Under specific

conditions over field perturbations δΦ which are listed in the end of this section, we prove

the “entropy perturbation law” relating different charges of the probe:

δS

2π
= kiδJi + epδqp (4.5)

6We point out that in the entropy function formulation one is prescribed to start from an “off-shell

entropy functional” defined on the NHEG solution (2.3) and (2.4), and then find equations of motion by

setting zero variations of this entropy functional with respect to unknown functions or parameters of the

NHEG solution ansatz. Computing the value of this entropy functional on the solutions to these equations

of motion is shown to reproduce Wald entropy for extremal black holes [14, 23].
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Derivation: Noether current corresponding to the diffeomorphism generated by ζH is (see

appendix B for notations):

JζH = Θ(Φ, δζHΦ)− ζH ·L , (4.6)

where ζH is the Killing vector field defined in (3.21). We will use ξ · X to denote the

contraction of the vector ξ with the first index of the form X, which is usually written as

iξX. Let us now consider variations in (4.6) associated with Φ0 → Φ0 + δΦ:

δJζH = δ[Θ(Φ, δζHΦ)]− ζH ·δL . (4.7)

We assume that the variations do not alter the quantities attributed to the background. In

particular, this means that δζH , δξa, δmi are all vanishing (as they do in the case of black

holes [9, 10]). In this sense these variations are considered as perturbations or probes over

the NHEG. Let us start our analysis from the last term in (4.7):

δL = EiδΦ
i + dΘ(Φ0, δΦ) . (4.8)

The first term vanishes due to the on-shell condition and the second term is simplified

recalling the identity ξ · dΘ = δξΘ − d(ξ ·Θ) which is valid for any diffeomorphism ξ,

therefore,

ζH ·δL = δζHΘ(Φ0, δΦ)− d(ζH ·Θ(Φ0, δΦ)) . (4.9)

Inserting the above into (4.7) we obtain

δJζH = ω(Φ0, δΦ, δζHΦ) + d(ζH ·Θ(Φ0, δΦ)) . (4.10)

where

ω(Φ0, δ1Φ, δ2Φ) ≡ δ1Θ(Φ0, δ2Φ)− δ2Θ(Φ0, δ1Φ) (4.11)

is the symplectic current, the (d− 1)-form associated with variations δ1, δ2, and is bilinear

in its arguments [9]. This implies that for Killing vectors ξ with δξΦ0 = 0, the symplectic

form vanishes. However, in presence of gauge fields δξΦ0 need not vanish for a symmetry,

it may be non-zero up to gauge transformations. In particular, as we have already seen

in previous section, this is the case for the third Killing vector ξ3 and the corresponding

symplectic current ω(Φ0, δΦ, δξ3Φ) does not vanish. This feature (which was not relevant

for the discussions of black holes [9, 10]) has an important role in our derivation of the

entropy perturbation law.

The current JζH is conserved on-shell, i.e. dJζH = 0, so one can associate a conserved

charge d− 2 form QζH , JζH = dQζH , to the symmetry generated by ζH . Moreover, when

the solution is deformed by a perturbation which is a solution to the linearized equations of

motion, the relation dJζH = 0 still holds even if the perturbation is not symmetric under ζH
(i.e. δζH (δΦ) 6= 0). In other words, one can take the variation of the relation JζH = dQζH

and arrive at [9]

δJζH = δdQζH = dδQζH . (4.12)
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From the above equation, we also learn that perturbations over a background can be labeled

by the charges corresponding to the background symmetries, although they do not carry

those symmetries. Using (4.12) in (4.10) yields

ω(Φ0, δΦ, δζHΦ) = d
(
δQζH − ζH ·Θ(Φ0, δΦ)

)
. (4.13)

We integrate the above “conservation equation” over a timelike hypersurface Σ bounded

between two radii r = rH , r =∞. The hypersurface Σ can be simply chosen as a constant

time surface t = tH . The interior boundary r = rH is necessary, since AdS2 does not have

a compact interior. As discussed before, the surface H will play the role of horizon on

which we define the entropy of NHEG. The r = ∞ choice for the other boundary, is a

convenient choice because the extra terms appearing due to gauge transformations vanish

(cf. appendix C, and in particular discussions around (C.10)). Following [9], we define the

symplectic form associated with Σ as

Ω(Φ0, δ1Φ, δ2Φ) ≡
∫

Σ
ω(Φ0, δ1Φ, δ2Φ) . (4.14)

Integrating (4.13) over Σ then yields:

Ω(Φ0, δΦ, δζHΦ) =

∮
∂Σ

(
δQζH − ζH ·Θ(Φ0, δΦ)

)
=

∮
∞

(
δQζH − ζH ·Θ(Φ0, δΦ)

)
−
∮
H
δQζH (4.15)

where in the first line we have used the Stokes theorem to convert the integral over Σ to an

integral over its boundary ∂Σ and in the second line, we used the fact that ζH = naHξa−kimi

vanishes on H. Since the charge perturbation δQζH is linear in the vector ζH , one can

expand the first term on r.h.s. of (4.15)

Ω(Φ0, δΦ, δζHΦ) = naH

∮
∞

(
δQa − ξa ·Θ

)
− ki

∮
∞

(
δQmi −mi ·Θ

)
−
∮
H
δQζH . (4.16)

mi is tangent to the boundary surface and hence the pullback of mi ·Θ over the surface

r =∞ vanishes, and we have

Ω(Φ0, δΦ, δζHΦ) = naHδEa − ki
∮
∞
δQmi −

∮
H
δQζH , (4.17)

where

δEa ≡
∮
∞

(δQξa − ξa.Θ) , (4.18)

is the canonical generator of the symmetry ξa in the covariant phase space [11].

The technical details of computation of Ω(Φ0, δΦ, δζHΦ) is given in the appendix C,

where it is shown that

Ω(Φ0, δΦ, δζHΦ) = −epδqp.
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Substituting this result into (4.17) yields∮
H
δQζH = kiδJi + epδqp + naHδEa , (4.19)

where δJi is the angular momentum corresponding to the rotational symmetry mi

δJi ≡ −
∮
∞
δQmi . (4.20)

(Since pullback of mi ·Θ vanishes over any constant t, r surface on NHEG, one can show

that in the above equation δJi could be computed with the integral at ∞ replaced by any

r = rH surface.)

To show that the left side of (4.19) is actually the perturbation of entropy δS, we

should discuss ambiguities of δQζH . Any Noether charge can be decomposed as in (3.22)

with W , Y and dZ ambiguities. The W and dZ ambiguities vanish since they are linear in

ζH , which vanishes at surface H. The δY ambiguity, which is proportional to variation of

fields δξΦ needs more attention. Since ζH = 0, at surface H, δζHΦ = 0. This implies that

Y vanishes on background over H, and also that its perturbation is given by

δY (Φ0, δζHΦ) = Y (Φ0, δδζHΦ)

= Y (Φ0, δζHδΦ)

= δζHY (Φ0, δΦ)

= ζH · dY + d(Y · ζH) . (4.21)

In the above we have used the fact that since δζH = 0, we can interchange δζH and δ.

Equation (4.21) is linear in the generator ζH , does not contribute to the left hand side

of (4.19) and therefore

δ

∮
H

QζH = −2δ

∮
H
dΣµνE

µν
αβ∇

αζβH =
δS

2π
. (4.22)

so

δS

2π
= kiδJi + epδqp + naHδEa . (4.23)

Analysis of [26, 27] indicates that the NHEG background is stable for a class of field

perturbation which satisfy certain boundary conditions. As we will show in our upcoming

work [28], this stability condition implies δEa = 0. Dropping the last term in (4.23) by the

choice of boundary conditions, we arrive at the desired entropy perturbation law (4.5).

To end this section we summarize the assumptions over the field perturbations which

resulted in the entropy perturbation law (4.5):

• Perturbations should satisfy the linearized field equations.

• Perturbations are restricted to those for which SL(2,R) charges vanish, i.e. δEa = 0.

This is typically done by choosing a set of boundary conditions.

We also note that the variation δ does not affect the Killing vectors associated with the

background, i.e. δζH = δξa = δmi = 0.
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5 NHEG vs. extremal black hole

So far we focused on NHEG as an interesting class of solutions to gravity theories and

introduced and worked out three laws of NHEG dynamics. NHEG, as the name implies,

is related to extremal black holes and one may wonder if laws of NHEG dynamics can be

(directly) related to the laws of extremal black hole thermodynamics. This question has

of course been discussed and studied in the literature from various different perspectives,

see in particular [29, 30]. This section is mainly meant to fill some gaps remaining in the

literature about the connection of NHEG and extremal black holes.

The most general form of the metric of a stationary and axisymmetric black hole

possessing some U(1) gauge fields, can be written in the ADM form as

ds2 = −fdτ2 + gρρdρ
2 + g̃αβdθ

αdθβ + gij(dψ
i − ωidτ)(dψj − ωjdτ) ,

Ã(p) = Φ(p) dτ +
∑
i

µ
(p)
i (dψi − ωidτ) ,

(5.1)

where f, gρρ, g̃αβ, gij , ω
i and Φ(p), µ

(p)
i are functions of ρ, θα and i, j = 1, 2, · · · , n and p =

n+ 1, · · · , N . The horizons of black hole are at the roots of gρρ,

gρρ =
1

D2(ρ, θα)∆(ρ)
, ∆ =

∏
m

(ρ− rm) , (5.2)

where we assume the function D to be analytic and nonvanishing everywhere. Due to the

smoothness of metric on the horizons f can always be written in the following form:

f = C2(ρ, θ)∆(ρ) . (5.3)

In four dimensions the black hole has at most two horizons (e.g. see [1]) and ∆ = (ρ −
r+)(ρ− r−). When there exist more than two horizons, we call the outermost two horizons

as r−, r+ (r+ > r−). The constants r+, r− are two parameters characterizing the black

hole. We introduce rh, ε instead of r± as:

rh ≡ (r+ + r−)/2 , ε ≡ (r+ − r−)/2 . (5.4)

The above notation turns out to be useful since ε is a good measure of black hole temper-

ature TH . Hawking temperature of the black hole can be found requiring the near horizon

metric in the Euclidean sector to be free of conical singularity (this seems to be a well

known fact, e.g. see [31]), leading to [32, 33]

TH =
1

2π

√
gρρ ∂ρ

√
f
∣∣∣
ρ=r+

=
CD

4π
(r+ − r−) =

CD

2π
ε , (5.5)

where in the above C and D are computed at the horizon ρ = r+. Constancy of Hawking

temperature on the horizon implies that C(r+, θ)D(r+, θ) is a constant on the horizon [32,

33]. In the extremal limit, ε→ 0 and ∆ in (5.2) will have a double root at ρ = re.

– 17 –



J
H
E
P
0
3
(
2
0
1
4
)
0
1
4

5.1 Near horizon limit of extremal black holes

From now on we will focus on the extremal case, r+ = r− = re. To take the near horizon

limit let us first make the coordinate and gauge transformations

ρ = re(1 + λr) , τ =
αret

λ
(5.6)

ϕi = ψi − Ωiτ , A(p) = Ã(p) + dΛ, Λ = −Φ(p)|reτ (5.7)

where Ωi = ωi(re) is the horizon angular velocity and Φ(p)|re is the horizon electric po-

tential. In the first line we scale ρ − re and τ inversely by a factor λ and α is a suitable

constant to get the most simple form for the near horizon metric. λ is the parameter which

we send to zero once we take the limit. The shift in ψi takes us to the frame co-rotating

with the black hole. In the last equation, we have used the gauge symmetry in order to

remove the infinities resulting from the limit λ→ 0. Upon these transformations the near

horizon geometry (obtained in the λ→ 0 limit) becomes

ds2 =
1

D2

[
−r2dt2+

dr2

r2
+D2g̃αβdθ

αdθβ+D2gij(dϕ
i+(Ωi − ωi)dτ)(dϕj+(Ωj − ωj)dτ)

]
,

(5.8)

where we used the fact that CD = const on the horizon and chose

αr2
e =

1

CD
. (5.9)

Recalling that Ωi = ωi|re , we arrive at the general form:

ds2 = Γ

[
−r2dt2 +

dr2

r2
+ gαβdθ

αdθβ + γij(dϕ
i + kirdt)(dϕj + kjrdt)

]
(5.10)

A(p) = e(p)rdt+
∑
i

µ
(p)
i (dϕi + kirdt) , (5.11)

in which

Γ =
1

D2

∣∣∣∣
ρ=re

, γij = D2gij

∣∣∣∣
ρ=re

, ki = − 1

CD

∂ωi

∂ρ

∣∣∣∣
ρ=re

, e(p) =
1

CD

∂Φ(p)

∂ρ

∣∣∣∣
ρ=re

.

(5.12)

The above is, as expected, the same as the NHEG ansatz (2.3) and (2.4).

We first show that smoothness of black hole geometry (5.1) forces ∂ρω
i to be con-

stant on the horizon, and ki are hence constants in the NHEG. A more detailed proof

for this has appeared in [34] (see the appendix there). However, here we give an al-

ternative argument. Analysis of finiteness of curvature invariants for solutions to field

equations of the form (5.10) reveals that (∂θαω
i)2 ∼ (ρ − re)2α, with α > 1. Therefore,

∂ρ∂θαω
i
∣∣
ρ=re

= ∂θα∂ρω
i
∣∣
ρ=re

= 0. So, not only ∂θαω
i = 0 on the horizon (which means

that angular velocity is constant on the horizon), but also ∂ρ∂θαω
i = 0 which means that

∂ρω
i is constant at the horizon of extremal black holes. Using the third equation of (5.12),

we find that ki are θ independent and hence constants. This is a restatement of the zeroth

law for NHEG geometries (cf. section 4.1).
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5.2 NHEG entropy perturbation law and near horizon limit

Here we briefly review what was done in [29] (see also [30, 35, 36]): one can indeed derive

“entropy variation law” of NHEG from taking the extremal limit, starting from first law of

thermodynamics for near extremal black holes. To this end, we recall the first law of black

holes stating how perturbation of entropy is related to the perturbations of mass and other

conserved charges of any black hole:

δM = THδS +
∑
i

ΩiδJi +
∑
p

Φpδqp . (5.13)

At the extremal point where TH = 0 the above reduces to δM =
∑

i ΩiδJi +
∑

p Φpδqp,

which may in principle be integrated to get the BPS relation M = M(Ji, qp). In the

near extremal case when TH ∼ ε, one may then make a low temperature expansion of all

thermodynamics quantities in powers of ε. For black holes, we have the crucial relation

that [29] δM − Ωi
extδJi − Φp

extδqp ∼ ε2, and hence to the leading order in ε the first law

reduces to

δS = −
∑
i

Ω′iδJi +
∑
p

Φ′pδqp , (5.14)

where

Ω′
i

=
∂Ωi

∂TH

∣∣∣∣
TH=0

, Φ′
p

=
∂Φp

∂TH

∣∣∣∣
TH=0

. (5.15)

eq.(5.14) reduces to the NHEG entropy perturbation law (4.5), if we show that ki =

− 1

2π

∂Ωi

∂TH
, ep =

1

2π

∂Φp

∂TH
. That is what we will do next.

5.3 Interpretation of ki, ep

To relate Ω′i and Φ′p (which are constructed from thermodynamic chemical potential of

black holes in the extremal limit) to the ki and ep which are parameters appearing in the

NHEG, after taking the near horizon limit, we need to make a connection between process

of taking the near extremal limit and the near horizon limit performed in section 5.1.

Explicitly, we need to relate spatial derivatives of ωi to the derivative of Ωi (which is ωi

computed at the horizon) with respect to temperature. (ωi are defined in (5.1).) Similar

arguments may also be repeated for the electric charges and the corresponding potentials.

To do so, we use the values of the chemical potentials at inner and outer horizons and the

corresponding continuity conditions.

Any function in the black hole solution (like metric components) has a spacetime and

a parametric dependence. Here we choose TH and the conserved charges Ji, qp as the basis

for parameter space of a generic black hole; the subspace TH = 0 specifies the extremal

black holes. In order to relate ∂ρω and thermodynamic quantities of black hole, we use

a novel symmetry of black holes pointed out in [37] based on ideas initiated in [38–40].

We call it horizons permutation symmetry (see appendix C for a proof) which states that
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under r+ ↔ r−,

Ωi
+ ←→ Ωi

− ,

Φp
+ ←→ Φp

− , (5.16)

κ+ ←→ −κ− ,

where Ωi
±, Φp

±, κ± are respectively the angular velocity, horizon area and surface gravity

of outer/inner horizons. This symmetry takes a more convenient form in terms of rh, ε

defined in (5.4), as

r± = rh(TH , J, . . .)± ε . (5.17)

Since for small ε temperature is proportional to ε, rh = rh(ε, J, . . .), and rh → re as we take

ε→ 0. As the first step we prove that corrections to rh as we move away from re grow like

ε2 in the leading order.

Proof. We first note that rh = (r+ + r−)/2 is symmetric under r+ ←→ r− ,while 2ε =

r+ − r− is antisymmetric. This in particular implies that r+ ←→ r− transformation takes

ε ←→ −ε or TH ←→ −TH transformation. Therefore, rh(ε) = rh(−ε) and
∂rh
∂ε

= 0 or

rh = re +O(ε2).

We should comment that in the above analysis, we started with TH ≥ 0 but extended

the parameter space of black holes to the negative TH as well. The point (−TH , J) describes

the inner horizon of the black hole with (TH , J) and the transformation TH → −TH reveals

the inner horizon thermodynamics [37]. From the black hole geometry viewpoint, this is

equivalent to moving from r+ to r− and hence we have built the connection between moving

in the radial direction in spacetime and moving in the parameter space of black holes, from

which we can deduce our desired relations.

We now prove that radial derivative of ωi(ρ) = gijgtj can be related to the parametric

derivative of horizon angular velocity Ωi
± w.r.t. temperature, i.e.

∂ωi

∂ρ

∣∣∣∣
ρ=re

= ±
∂Ωi
±

∂ε

∣∣∣∣
ε=0

. (5.18)

Proof. The r+ → r− ⇒ Ωi
+ → Ωi

− symmetry, in the lowest order in ε yields

Ωi
+ − 2ε

∂Ωi

∂ε
= Ωi

− ⇒ Ωi
+ − Ωi

− = 2ε
∂Ωi

∂ε
, (5.19)

where Ωi is the (outer) horizon angular velocity Ωi
+. On the other hand, by definition of

Ωi we have

Ωi
± = ωi(r±; J, ε)⇒ Ωi

+ − Ωi
− = 2ε

∂ωi

∂ρ

∣∣∣∣
ρ=re

, (5.20)

and hence

∂ωi

∂ρ

∣∣∣∣
ρ=re

=
∂Ωi

∂ε

∣∣∣∣
ε=0

. (5.21)
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Similarly one can show that

∂Φ(p)(ρ)

∂ρ

∣∣∣∣
ρ=re

=
∂Φ(p)

∂ε

∣∣∣∣
ε=0

. (5.22)

This is an interesting identity because ∂ω/∂ρ is completely geometrical and concerns

the change of ω by moving outside the horizon of an extremal black hole, but ∂Ω/∂ε is a

quantity in the parameter space and measures the change of angular velocity by turning

the temperature on, and has no geometrical meaning.

We can now compute ki in (5.12):

ki = − 1

CD

∂ω

∂ρ

∣∣∣∣
ρ=re

=
1

2π

∂Ωi

∂TH

∣∣∣∣
ε=0

, (5.23)

where we used (5.5). One may similarly work out ep, and with these in hand (5.14) takes

the form

δS = 2π

(∑
i

kiδJi +
∑
p

epδqp

)
. (5.24)

That is, we have obtained NHEG entropy perturbation law as the appropriate near extremal

limit of the first law of black hole thermodynamics.

6 Concluding remarks

In this work we focused on the NHEG as a well-studied and classified solution to gravity

theories and worked out universal relations among the parameters defining these solutions

and the corresponding conserved charges. In particular we pointed out three laws of NHEG

dynamics: (1) ki and ep parameters defining the NHEG are constants. (2) We have the

“entropy law” which relates entropy (as a Noether charge) associated with the NHEG

to conserved charges angular momenta J i and the electric charges qp and the on-shell

value of Lagrangian (integrated over H), and (3) the “entropy perturbation law,” which

relates entropy and other Noether charges associated with a probe (probing the NHEG

background) to each other.

The entropy and entropy perturbation laws, despite the similarity to laws of black hole

thermodynamics do not indeed have a thermodynamical interpretation; in the NHEG case

we are dealing with a system which cannot be excited (without destroying the SL(2,R)

isometry) [26, 27, 29]. Among other points, we would like to stress that the entropy law does

not have a correspondent in the black hole thermodynamics systems. Technically, this is due

to the fact that in the Wald’s derivation of the first law for black holes there are ambiguities

defining the charge integrals which prevents one to draw a universal relation among the

thermodynamical parameters of black holes, while such ambiguities does vanish when we

consider variations of fields and the corresponding perturbations in the thermodynamical

charges, as they appear in the first law of thermodynamics.
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It is worth also mentioning that the entropy and entropy perturbation laws are invariant

under permutation of N U(1) symmetries. Under these permutations ki and ep and the

corresponding charges are rotated into each other, while S and δS are only a function

invariant under these permutations. It is interesting to explore this permutation symmetry

further.

Regarding the entropy perturbation law, as we discussed δS, δJi and δqp are associated

with a field configuration δΦ probing the NHEG background, given by the field configura-

tion Φ0. As we argued, entropy perturbation law (4.5) is valid for δΦ satisfying equations

of motion linearized around background Φ0. Moreover, δΦ should be such that δEa = 0.

Given the discussions in [26, 27] one may wonder if these two conditions can be satisfied.

Our preliminary analysis [28] shows the answer is positive. In answering this question one

may also explore if there is any relation between these δΦ and the set of perturbations and

boundary conditions appearing in the Kerr/CFT proposal [35, 41]. It is also desirable to

understand better the connection of our derivations and the NHEG mechanics with the

entropy function analysis. This is also postponed to future works.

In general, especially when we deal (extremal) black holes of non-trivial horizon topol-

ogy, it is possible to have solutions with non-zero “dipole charges”. One such example is the

neutral singly rotating dipole black ring [24]. The dipole charge in fact contributes to the

energy of the system and appears both in first law or the Smarr-type relation for the dipole

black ring [24]. Following Wald’s derivation for the first law one can in fact prove that in

general such dipole charges should appear in the first law [25]. In principle black holes/rings

with dipole charges can become extremal. For example the five dimensional dipole black

ring of [24] can become extremal while the dipole charge is still non-zero. One may study

near horizon limit of extremal dipole rings and see that they exhibit SL(2,R)×U(1)2 [16]

and hence they fall into our definition of the NHEG. One then expects these dipole charges

to appear both in our entropy law and in the entropy perturbation law [28].

One may wonder if the second law of thermodynamics has a correspondent in the

NHEG case. Here we make a comment on that and postpone a more thorough analysis to

the future publications. Let us for simplicity consider the NHEG ansatz (2.3). One may

show that the angular momentum Ji is given by the Noether integration

Ji ∝
∫
H
F (θ)γijk

j =⇒ kiJi ∝
∫
H
F (θ)kiγijk

j , (6.1)

where F (θ) is a positive definite function and γij is also a positive definite metric on the

φi part of the NHEG geometry. Therefore, kiJi is positive definite. Similar relation also

holds for epqp.

We also discussed a derivation of NHEG mechanics laws from near extremal black

holes, this latter amount to finding a relation between spatial derivatives of black hole

metric functions and the parametric derivatives of the chemical potentials (horizon an-

gular velocities or electric potentials). To this end we proved and used the inner-outer

horizon exchange symmetry (see discussions in section 5 and appendix D). It is desirable

to understand this symmetry better and study its further implications.
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A On sl(2,R) Lie algebra

SL(2,R) is the group of all 2× 2 real-valued matrices with determinant one. The sl(2,R)

Lie algebra with generators ξa, a = 1, 2, 3 is defined as

[ξa, ξb] = f c
ab ξc (A.1)

where f c
ab are structure constants. In this paper we have chosen the basis in a way that

the commutation relations take the form

[ξ1, ξ2] = ξ1 , [ξ2, ξ3] = ξ3 , [ξ1, ξ3] = ξ2 . (A.2)

In this basis, the Killing form (metric) of the algebra is

Kab =

0 0 1

0 −1 0

1 0 0

 (A.3)

and its inverse Kab = (Kab)
−1 has the same components as itself (in the chosen basis).

Metric Kab can be used for lowering or raising the sl(2,R) indices, e.g. fabc = Kcdf
d

ab .

One may also show that

f c
ab f

abd = 2Kcd . (A.4)

One specific representation of the sl(2,R) algebra, which also realized the SL(2,R) isometry

of (2.3), is given in (2.5).

SL(2,R) which is a double cover of SO(2, 1) is also the isometry group of AdS2 man-

ifold, defined as the set of points with square distance −1 from the origin of a flat 1 + 2

dimensional Minkowski space. In a suitable coordinate system in which the metric is (A.3),

this condition is explicitly

nana = Kabnanb = −1 , (A.5)

where xa = na are the position of points of AdS2 in the embedding space. coordinates. A

solution for na, parametrized with two parameters t, r is

n1 = −r , n2 = −tr , n3 = − t
2r2 − 1

2r
, (A.6)
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then the induced metric on the AdS2 surface is

ds2 = −r2dt2 +
dr2

r2
(A.7)

which is the metric of AdS2 in Poincaré patch. The na, a = 1, 2, 3 form a vector

representation under SL(2,R) and hence,

δξanb = f c
ab nc , δξa(nbn

b) = 0 , (A.8)

where δξanb is the Lie derivative of the vector nb. Using the explicit form of (2.5) and (2.9)

one may show that

naδξanb = 0 , δξanb = ξtaξ
r
b − ξraξtb . (A.9)

The above relations also show that the constant r, t part of the NHEG metric (2.3),

the codimension two surface H, is an SL(2,R) invariant space, i.e. its metric and volume

form do not depend on which constant r, t the surface H is defined.

Definition. The binormal tensor of the SL(2,R) invariant surfaces H is defined as:

εµν ≡ ξaµ∇νna . (A.10)

In the basis (2.5) and coordinate (2.9), this tensor can be calculated as follows:

εµν = ξa µ∂νn
a = Kabξa µ∂νnb = Kabξa µ(δtνξ

r
b − δrνξtb) ,

where in the last equality we used ∂rna = −ξta, ∂tna = ξra. Explicit computation for

µ = r, t and with metric (2.3) yields

Kabξa rξ
r
b = Kabξa tξ

t
b = −Γ , (A.11)

and zero for the other components. The final result is that

εµν =

{
εtr = −εrt = Γ ,

0 other components ,
(A.12)

or as a 2-form

ε = Γdt ∧ dr =
1√

−gttgrrr
dt ∧ dr . (A.13)

One can also readily show that

ε2 ≡ εµνεµν = −2 (A.14)

A.1 AdS2 in global coordinates, another example

As another example, let us consider NHEG in the global coordinate for AdS2:

ds2 = Γ

−(1 + r2)dt2 +
dr2

1 + r2
+

d−n−2∑
α,β=1

Θαβdθ
αdθβ +

n∑
i,j=1

γij(dϕ
i + kirdt)(dϕj + kjrdt)


(A.15)
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where Γ,Θαβ, γij are some functions of θα, specified by the equations of motion. Associated

with this coordinate system, the sl(2,R) Killing vector fields are given as

ξ1 = ∂t ,

ξ2 = sin t
r√

1 + r2
∂t − cos t

√
1 + r2∂r + sin t

n∑
i=1

ki√
1 + r2

∂ϕi , (A.16)

ξ3 = − cos t
r√

1 + r2
∂t − sin t

√
1 + r2∂r − cos t

n∑
i=1

ki√
1 + r2

∂ϕi .

In this basis the sl(2,R) commutation relations and metric are

[ξ1, ξ2] = −ξ3 , [ξ3, ξ1] = −ξ2 , [ξ2, ξ3] = ξ1 , (A.17)

Kab =

1 0 0

0 −1 0

0 0 −1

 . (A.18)

The solution to (A.5) which also satisfies (A.8) is now given as

n1 = −r , n2 = −
√

1 + r2 sin t , n3 =
√

1 + r2 cos t . (A.19)

It can be checked that relations ∂rna = −ξta and ∂tna = ξra also hold in the global coordinate

and hence (A.9) is still true. Using the same discussion as above one can show that using

the definition (A.10) leads to the same result for the binormal tensor

εµν =
1√

−gttgrrr
dt ∧ dr . (A.20)

B Symmetries and conserved charges

Symmetry is a transformation which maps a set of solutions of equations of motion (with

appropriate boundary conditions) to themselves and hence leaves the action invariant, or

equivalently, changes the Lagrangian up to a total divergence. The symmetries could be

local (gauge) or global and both of these have been argued to be a basis for deriving

constants of motion or conserved charges, see [42] and references therein for a historical

review. Here we will be mainly concerned with symmetries associated with spacetime

coordinate transformations and diffeomorphisms and will follow Wald’s papers [9, 10, 12].

Consider a diffeomorphism invariant theory with a Lagrangian density L and the cor-

responding action in d-dimensional space-time

I[φ] =

∫
ddx
√
−gL(Φ;xµ) (B.1)

in which Φ denotes all of dynamical fields of the system and each of them will be denoted

by Φi. Associated with any infinitesimal diffeomorphism as a symmetry of the theory, one

can find a Noether current and the corresponding Noether charge. Following [10] we take
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the Lagrangian L to be a top form, a d-form equal to
√
−gLεd with εd being the Levi-

Civita tensor, and generator of diffeomorphism symmetry to be a 1-form ξ. Variation of

Lagrangian under the diffeomorphism is [43]

δξL = EiδξΦ
i + dΘ(Φ, δξΦ) , (B.2)

where Ei = 0 is the e.o.m for Φi. The (d− 1)-form Θ is the surface term generated by the

variation.

According to the identity δξL = ξ·dL + d(ξ·L) and noting that dL = 0, we can replace

the l.h.s. of (B.2):

dΘ(Φ, δξΦ)− d(ξ ·L) = −EiδξΦ
i (B.3)

Now, we can associate a Noether (d− 1)-form current J as:

J ≡ Θ(Φ, δξΦ)− ξ ·L (B.4)

Therfore dJ = −EiδεΦ
i so that dJ = 0 whenever e.o.m is satisfied and according to the

Poincaré’s lemma, since J is closed, it would be exact and can be written as:

J = dQ (B.5)

where Q is a (d− 2)-form, the Noether charge density.

B.1 Ambiguities

It has been shown [10, 12] that the (d − 1)-form J in (B.4) has twofold ambiguities. One

ambiguity comes from freedom of the definition of Lagrangian of the theory up to an exact

d-form:

L → L+ dµ , (B.6)

which leads to J → J + δξµ. The other ambiguity comes from the freedom in specifying

J itself (for a given Lagrangian) up to an exact (d − 1)-form dY (Φ, δΦ). Therefore, the

Noether current J is defined up to the following ambiguities

J→ J + d(ξ · µ) + dY (Φ, δΦ) , (B.7)

where the (d−2)-form Y (Φ, δΦ) is linear in δξΦ and we used the identity δξµ = ξ·dµ+d(ξ·µ).

When we want to find the Noether charge, in addition to these ambiguities there is another

one which is the freedom of choosing Q up to an exact (d − 2)-form dZ(Φ, ξ) where Z is

linear in ξ. So accumulating all of the ambiguities, we have the freedom of choosing the

Noether charge density as:

Q→ Q + ξ · µ+ Y + dZ , (B.8)

and hence the Noether charge density Q is not unique and its most general is [10]

Q = Wµ(Φ)ξµ + Eµν(Φ)∇[µξν] + Y (Φ, δξΦ) + dZ(Φ, ξ), (B.9)
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where Wµ and Eµν and Y and Z are covariant quantities which are locally constructed

from fields and their derivatives, Y is linear in δξΦ, Z is linear in ξ and,

(Eµν)α3...αd = −Eαβµνεαβα3...αd , Eµναβ ≡ δL
δRµναβ

. (B.10)

In order to fix/remove these ambiguities, we need some physical reasoning and/or reference

point for defining the charges (like requesting to coincide with the ADM charges etc.)

B.2 Iyer-Wald entropy

Iyer-Wald entropy [9, 10] for a generic stationary black hole with bifurcate horizon is

defined as:
S

2π
≡ −

∫
H

Vol(H)
δL

δRµναβ
εµνεαβ (B.11)

where εαβ = n[αξβ] is the binormal for the d − 2-dimensional horizon surface H and the

vectors ξµ and nµ are normals to the bifurcate horizon null surface which on the horizon

satisfy the relations

n·n = 0 , ξ ·ξ = 0 , n·ξ = −1 (B.12)

and according to them, the binormal satisfies ε2 = −2.

C Computation of symplectic form

Here we present details of computation of the symplectic form appearing in the l.h.s.

of (4.17). As mentioned [10], the symplectic current ω = 0 for δξΦ = 0. This is true for the

Killing vectors of NHEG, except for ξ3 when acting on gauge fields where there is a residual

gauge transformation. To compute the effects of this residual gauge transformation, we

start with the definition of ω

ω(Φ, δΦ, δξΦ) = δΘ(δξφ)− δξΘ(δφ) . (C.1)

We discussed the form of Θ, or its Hodge dual vector field Θµ, for gauge fields in (3.9):

Θµ(δAα) =
∂L
∂Fµν

δAν ,

so

δ2Θµ(δ1Aα) = δ2(
∂L
∂Fµν

δ1Aν) (C.2)

= δ2(
∂L
∂Fµν

) δ1Aν +
∂L
∂Fµν

δ2δ1Aν . (C.3)

Assuming that δ1δ2 = δ2δ1 (which is true for δ, δξ)

ωµ(Φ, δ1Φ, δ2Φ) = δ2(
∂L

∂Fµν
)δ1Aν − δ1(

∂L

∂Fµν
)δ2Aν , (C.4)
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where ωµ is the vector Hodge dual to the (d− 1)-form symplectic current ω. The nonvan-

ishing part of ω is hence

ωµ(Φ, δΦ, δξ3Φ) = δ(
∂L

∂Fµν
)δξ3Aν − δξ3(

∂L

∂Fµν
)δAν (C.5)

= δ(
∂L

∂Fµν
)δξ3Aν . (C.6)

The second term on the right hand side is zero since ξ3 is a symmetry of Lagrangian and

Fµν . Next, recall from (3.13) that

δξ3Aν = (0,− e

r2
, 0, 0) = ∇νΛ, Λ =

e

r

therefore

ωµ(Φ, δΦ, δξ3Φ) = δ(
∂L

∂Fµν
)∇νΛ

= ∇ν
(

Λδ(
∂L

∂Fµν
)
)
− Λ∇νδ(

∂L

∂Fµν
)

= ∇ν
(

Λδ(
∂L

∂Fµν
)
)

(C.7)

where we have used the linearized equation of motion for the gauge field perturbations

δAµ. Therefore, we obtain

Ω(Φ, δΦ, δξ3Φ) =

∫
Σ
dΣµω

µ(Φ, δΦ, δξ3Φ) =

∫
Σ
dΣµ∇ν

(
Λδ(

∂L

∂Fµν
)
)

(C.8)

=

∮
∂Σ
dΣµν Λ δ(

∂L

∂Fµν
) , (C.9)

where Σ is a constant time slice bounded between r = rH and r = ∞. Ω will hence have

a term at infinity and a term on H. The term at infinity does not contribute since Λ =
e

r
vanishes there (in fact r =∞ boundary was chosen precisely for this reason). So, the only

contribution is

Ω(Φ, δΦ, δξ3Φ) =

∮
H
dΣµν

(
Λδ(

∂L

∂Fµν
)
)

(C.10)

=
e

rH
δq (C.11)

where δq =
∮
H dΣµνδ(

∂L
∂Fµν

). Noting that ζH = naHξa − kimi, and that Ω is linear in

δζHA = naHδξaA− kiδmiA, we obtain

Ω(Φ, δΦ, δζHΦ) = n3
HΩ(Φ, δΦ, δξ3Φ) = n3

H

ep

rH
δqp = −epδqp (C.12)
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D Inner/outer horizons permutation symmetry

In this appendix we state and prove the permutation symmetry of black hole horizons.

Permutation symmetry states that:7

Let {ri} denote the position of horizons of a given black hole, a permutation in black hole

parameters of the form ri → rσi, has the following effect on black hole horizon chemical

potentials:

Ωi
ri→rσi−−−−→ Ωσi (D.1)

Proof. we assume that ∆ is an analytic function of r, then ∆ =
∑n

m=0 cmr
m which has n

roots {ri} and n constants cm,

∆(ri; {cm}) = 0 , i = 1, 2, · · · , n . (D.2)

If we consider cm’s as unknowns and ri as given parameters, the above is a system of

linear equations which can be uniquely solved to write cm’s in terms of rm’s which results

in cm = cm(r1, r2, . . .). Now a transformation of the form (ri) → (rσi) where σ is a

permutation function of 1, 2, . . . , n, does not change the set of equations and as a result,

the solutions cm = cm(r1, r2, . . .) are still solutions, and from the fact that the solution is

unique, this means that cm(rσ(i)) = cm(ri). Therefore,

Ωi = ω(r = ri; {cm})
ri→rσ(i)−−−−−→ ω(r = rσ(i); {cm}) = Ωσ(i) . (D.3)

Although ω can in principle depend on other parameters of black holes, than ci, e.g

d1, d2, . . . this dependence is not relevant to our argument because the transformation

ri → rσ(i) does not change di. The reason is that we assume the system of equations (D.2)

has a unique solution, and so ri is completely determined by cm’s and does not depend on

dm’s and changing (permuting) ri’s does not affect dm’s and our argument still holds.
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[40] M. Cvetič, G.W. Gibbons and C.N. Pope, Universal Area Product Formulae for Rotating and

Charged Black Holes in Four and Higher Dimensions, Phys. Rev. Lett. 106 (2011) 121301

[arXiv:1011.0008] [INSPIRE].

[41] M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys.

Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

[42] K.A. Brading, Which Symmetry? Noether, Weyl and Conservation of Electric Charge, Stud.

His. Phil. Mod. Phys. 33 (2002) 3.

[43] J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725

[INSPIRE].

– 31 –

http://dx.doi.org/10.1103/PhysRevD.73.024015
http://arxiv.org/abs/hep-th/0505278
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505278
http://dx.doi.org/10.1088/1126-6708/2009/08/101
http://dx.doi.org/10.1088/1126-6708/2009/08/101
http://arxiv.org/abs/0906.2380
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2380
http://dx.doi.org/10.1088/1126-6708/2009/09/044
http://arxiv.org/abs/0906.2376
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2376
http://dx.doi.org/10.1103/PhysRevD.88.101503
http://arxiv.org/abs/1305.3157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3157
http://arxiv.org/abs/1203.3561
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3561
http://arxiv.org/abs/gr-qc/9707012
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9707012
http://dx.doi.org/10.1016/j.nuclphysb.2007.10.015
http://dx.doi.org/10.1016/j.nuclphysb.2007.10.015
http://arxiv.org/abs/0706.1847
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.1847
http://dx.doi.org/10.1007/JHEP10(2011)013
http://arxiv.org/abs/1107.5705
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5705
http://dx.doi.org/10.1103/PhysRevD.78.044042
http://arxiv.org/abs/0803.2998
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.2998
http://dx.doi.org/10.1088/1126-6708/2009/04/019
http://arxiv.org/abs/0811.4393
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4393
http://dx.doi.org/10.1143/PTP.122.355
http://dx.doi.org/10.1143/PTP.122.355
http://arxiv.org/abs/0903.4176
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4176
http://dx.doi.org/10.1007/JHEP11(2012)017
http://arxiv.org/abs/1206.2015
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2015
http://dx.doi.org/10.1103/PhysRevD.56.1005
http://arxiv.org/abs/hep-th/9702153
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702153
http://dx.doi.org/10.1016/S0550-3213(97)00541-5
http://dx.doi.org/10.1016/S0550-3213(97)00541-5
http://arxiv.org/abs/hep-th/9706071
http://inspirehep.net/search?p=find+EPRINT+hep-th/9706071
http://dx.doi.org/10.1103/PhysRevLett.106.121301
http://arxiv.org/abs/1011.0008
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.0008
http://dx.doi.org/10.1103/PhysRevD.80.124008
http://dx.doi.org/10.1103/PhysRevD.80.124008
http://arxiv.org/abs/0809.4266
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4266
http://dx.doi.org/10.1063/1.528801
http://inspirehep.net/search?p=find+J+J.Math.Phys.,31,725

	Introduction
	Near Horizon Extremal Geometries (NHEG)
	Extremal horizons and near horizon limits
	Relation between SL(2,R) and U(1) generators

	NHEG conserved charges
	Noether charge density of non-Abelian symmetries
	SL(2,R) conserved charges
	NHEG entropy as a conserved charge

	Laws of NHEG dynamics
	Zeroth law of NHEG dynamics
	NHEG entropy law
	NHEG entropy perturbation law

	NHEG vs. extremal black hole
	Near horizon limit of extremal black holes
	NHEG entropy perturbation law and near horizon limit
	Interpretation of k**i, e**p

	Concluding remarks
	On sl(2,R) Lie algebra 
	AdS(2) in global coordinates, another example

	Symmetries and conserved charges
	Ambiguities
	Iyer-Wald entropy

	Computation of symplectic form
	Inner/outer horizons permutation symmetry

