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1 Introduction

Understanding strongly coupled dynamics of Quantum Chromodynamics (QCD) from first

principles is one of the most important challenges in modern theoretical physics. Chiral

symmetry breaking and quark confinement are two hallmarks of the nonperturbative QCD

vacuum. Moreover QCD exhibits novel phenomena under extreme conditions, such as color

deconfinement at high temperature and color superconductivity at high baryon chemical

potential. These areas are actively investigated in relation to the physics of compact stars,

heavy ion collisions, and early Universe; see [1] for a review.

Recently QCD in an external magnetic field has attracted considerable attention. The

magnetic field is not only interesting as a theoretical probe to the dynamics of QCD, but

also important in cosmology and astrophysics. A class of neutron stars called magnetars
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has a strong surface magnetic field of order 1010 T [2] while the primordial magnetic field

in early Universe is estimated to be even as large as ∼ 1019 T [3]. In non-central heavy

ion collisions at RHIC and LHC, a magnetic field of strength ∼ 1015 T perpendicular to

the reaction plane could be produced and can have impact on the thermodynamics of the

quark-gluon plasma [4].

The effect of magnetic field has been vigorously investigated in chiral effective mod-

els [5–36] (see [37, 38] for reviews). It was found that the magnetic field acts as a catalyst

of chiral symmetry breaking, an effect called magnetic catalysis. This model-independent

phenomenon is explained through dimensional reduction (3 + 1 → 1 + 1) in the quark

pairing dynamics in a magnetic field [10, 11].

The dynamics of QCD in a magnetic field has also been studied in lattice simula-

tions [39–52], see [53] for a review. At a relatively large quark mass, the chiral condensate

and the chiral restoration temperature were found to increase with the magnetic field in ac-

cordance with the magnetic catalysis scenario,1 whereas simulations at the physical quark

masses [43, 46] show that the effect of a magnetic field is non-monotonic: the chiral con-

densate increases at low temperature, but decreases at high temperature, resulting in a

lower pseudo-critical temperature in a stronger magnetic field. The origin of this inverse

magnetic catalysis (or magnetic inhibition) is not fully understood yet.

Possible explanations for the inverse magnetic catalysis have been suggested by sev-

eral groups [55–58]. Among others, Fukushima and Hidaka [55] noted that the dimensional

reduction of neutral pion could be a source of disorder that weakens chiral symmetry break-

ing. The idea is rooted in the observation that the neutral pion ‘feels’ the magnetic field

through its internal quark and anti-quark, and consequently the pion can move in direc-

tions transverse to the magnetic field with little energy cost [10, 11, 31, 32]. However the

analysis of [55] was limited to zero temperature, and the impact of anisotropic fluctuations

of neutral pion on the finite-temperature dynamics of QCD has not been quantitatively

investigated.

In this work, we apply the functional renormalization group (FRG) [59] to the quark-

meson model to study chiral symmetry breaking and its restoration at finite temperature

under a magnetic field. FRG is a powerful nonperturbative method to go beyond the mean-

field approximation by fully taking thermal and quantum fluctuations into account. The

basic idea of FRG is to start from a microscopic action at the UV scale k = Λ, and keep

track of the flow of the scale-dependent effective action while integrating out degrees of

freedom with intermediate momenta successively; finally at k = 0 the full quantum effective

action is obtained. See [60–63] for reviews. While FRG has already been applied to chiral

models in a magnetic field [27–30, 35], so far no attempt has been made to go beyond the

leading order of the derivative expansion, known as the local-potential approximation (LPA)

in which the meson fluctuations are included but the scale-dependent flow of the kinetic

term is entirely neglected. In this work, we proceed to the next order of the derivative

expansion by including the wave function renormalization. This enables us to investigate

the strongly anisotropic meson fluctuations for the first time. We will show that the pion

1However, inverse magnetic catalysis with large quark mass was reported quite recently [54].
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decay constant and the meson screening masses become direction dependent, due to the

breaking of the rotational symmetry by a magnetic field, and that the pion’s transverse

velocity (i.e. the velocity in the direction perpendicular to the magnetic field) decreases

significantly under a strong magnetic field.2 To be specific, we will compute following

quantities as functions of temperature and magnetic field strength:

• Constituent quark mass (Mq)

• Transverse meson screening masses (m⊥π,σ)

• Longitudinal meson screening masses (m
‖
π,σ)

• Transverse pion decay constant (f⊥π )

• Longitudinal pion decay constant (f
‖
π)

• Wave function renormalization factors for mesons (Z⊥, Z‖)

• Transverse velocity of mesons (v2
⊥ ≡ Z⊥/Z‖)

• Chiral restoration temperature (Tpc)

Our model calculations for the anisotropic screening masses and the transverse velocity of

pions offer predictions that can be tested in future lattice simulations. As for the pseudo-

critical temperature, contrary to the expectation from [55], we did not observe agreement

with lattice data: Tpc increases monotonically with the magnetic field as in other model

calculations, despite the fact that our present calculation incorporates significantly more

meson fluctuations than other calculations. While our truncation of the effective action

is still far from being complete and can be extended further, the discrepancy with lattice

data could be taken as evidence that gluonic degrees of freedom which are ignored in chiral

models actually play a vital role in the phenomenon of inverse magnetic catalysis.

This paper is organized as follows. In section 2 we introduce the quark-meson model

and describe the formulation of FRG. We specify our truncation of the effective action and

introduce regulators that are devised for analysis in a magnetic field. Then we give full

expressions for the flow equations (omitting the details of derivation) and discuss the setup

to solve them numerically. In section 3 we show plots of physical observables obtained

with a numerical method, discuss their characteristics, and compare with the mean-field

treatment and LPA. We will also comment on agreement and discrepancy with the available

lattice data. Section 4 is devoted to conclusion. The analytical derivation of all the flow

equations is presented in full details in appendices A, B, and C.

2 Functional renormalization group for the quark-meson model

In this section we describe the setup of FRG for the quark-meson model in a magnetic field.

In general, FRG requires specification of the following 4 ingredients: (1) the flow equation,

2This is similar to the effect of the heatbath in finite-temperature QCD where the temporal decay

constant differs from the spatial decay constant and the pion velocity is less than the speed of light [64–66].
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(2) regulator functions, (3) truncation of the effective action, and (4) initial conditions for

the flow. We will describe (1)–(3) in this section and (4) in section 3.1.

2.1 General structure of the flow and regulators

The functional renormalization group equation (called the Wetterich equation) reads

∂kΓk =
1

2
Tr

[
1

Γ
(2,0)
k + RB

k

∂kR
B
k

]
− Tr

[
1

Γ
(0,2)
k + RF

k

∂kR
F
k

]
, (2.1)

which describes the evolution of the scale-dependent effective action Γk from the initial UV

scale (k = Λ) to the IR limit (k = 0). Γk=Λ is taken to be equal to the classical action and

Γk=0 is the full quantum effective action incorporating the effects of all fluctuations. Here

RB
k and RF

k are cutoff functions (regulators) for bosons and fermions, while Γ
(2,0)
k and Γ

(0,2)
k

represent the second functional derivative of Γk with respect to boson fields and fermion

fields, respectively. Tr is a trace in the functional space. Further details on FRG can be

found in reviews [60–63].

Although (2.1) has a simple one-loop structure, it must be distinguished from the

perturbative one-loop approximation: actually (2.1) incorporates effects of arbitrarily high

order diagrams in the perturbative expansion through the full field-dependent propagator

(Γ
(2)
k + Rk)

−1.

The flow of Γk from UV to IR is controlled by the cutoff functions RB,F
k (p). The latter

must satisfy (i) lim
k→∞

Rk(p) = ∞, (ii) lim
k→0

Rk(p) = 0, and (iii) lim
p→0

Rk(p) > 0 [60]. In this

work we use the following anisotropic regulators

RB
k (p) = (k2 − p2

3)Z
‖
k θ(k2 − p2

3) , (2.2)

RF
k (p) = −i/p3

rk(p3) with rk(p3) ≡
(

k

|p3|
− 1

)
θ(k2 − p2

3) , (2.3)

for bosons and fermions (/p3
= p3γ3), respectively. Here Z

‖
k is a wave function renormal-

ization factor for mesons (cf. section 2.2). These regulators comply with the conditions

(i)–(iii) above. Actually they are nothing but Litim’s optimized regulator but now re-

stricted to the p3 direction. On one hand, these (somewhat unusual) regulators that break

rotational symmetry are quite convenient because of a simple form of the scale-dependent

fermion propagator in a magnetic field, as will be demonstrated later. On the other hand,

they render the flow equation UV-divergent as they do not suppress momenta p1 and p2

at all. We will return to this problem later. Associated with this, we remark that the

scale-dependent action Γk no longer admits a naive interpretation as a Wilsonian coarse-

grained effective action at scale k, because the above regulators do not suppress modes with

momenta p2
1,2 . k2. However, we hasten to add that those regulator functions work per-

fectly well as a machinery to interpolate between the classical action and the full quantum

effective action.

2.2 Scale-dependent effective action

Next, let us define the model we use and specify our truncation of the running effective

action. If we consider realistic QCD with two flavors of charge +2e/3 and −e/3, the chiral
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symmetry SU(2)R × SU(2)L
∼= O(4) would be explicitly broken even in the chiral limit and

consequently the flow equation becomes highly complicated: the scale-dependent effective

potential would no longer be a function of the single O(4)-symmetric variable σ2 +~π2,3 and

also the wave function renormalization factors for π± and π0 will be different in general.

To avoid these complications and focus on the mechanism proposed by Fukushima and

Hidaka [55], we will limit ourselves to the quark-meson model [67, 68] with one flavor of

a fermion with charge e and color Nc . (We ignore the axial anomaly.) In this model, the

pion (π) is neutral. Since π± in real Nf = 2 QCD decouple from the low-energy dynamics

in a strong magnetic field and only the neutral pion π0 remains light, it essentially reduces

to the model considered here.

While the original Wetterich equation (2.1) formulated in the infinite-dimensional func-

tional space is exact, in practice we need to find a proper truncation of Γk to make ex-

plicit computations feasible. A variety of truncation schemes have been discussed in the

literature. Among others, the leading order of the derivative expansion, called the local-

potential approximation (LPA), is frequently used due to its technical simplicity and was

also employed in [27, 30, 35]. In LPA the effective potential flows with k while the field

renormalization is neglected altogether, resulting in identically vanishing anomalous di-

mension of fields. In this work, we go beyond LPA by employing the following truncation

of the running effective action:

Γk[ψ, σ, π] =

∫ β

0
dx4

∫
d3x

{
Nc∑
a=1

ψa[ /D + g(σ + iγ5π)]ψa + Uk(ρ) − hσ

+
Z⊥k
2

∑
i=1,2

[(∂iσ)2 + (∂iπ)2] +
Z
‖
k

2

∑
i=3,4

[(∂iσ)2 + (∂iπ)2]

}
,

(2.4)

with β = 1/T and ρ ≡ 1
2(σ2 + π2). The Dirac operator reads

/D = γµDµ , Dµ = ∂µ − ieAµ , A = (0, Bx1, 0) , and A4 = 0 . (2.5)

One can verify that the action possesses U(1) × U(1) chiral symmetry when h = 0. The

parameter h that enters as a symmetry breaking field parametrizes the effect of current

quark mass. Below we assume h > 0. In (2.4) we introduced the wave function renormal-

ization factors Z⊥k and Z
‖
k . Setting Z⊥k = Z

‖
k = 1 brings us back to LPA. Here we let these

variables depend on k. It is important that Z⊥k for directions perpendicular to the mag-

netic field, and Z
‖
k for directions parallel to the magnetic field, are treated independently.

This setup is well-motivated in view of the anisotropy induced by a magnetic field and is

actually essential to test the scenario by Fukushima and Hidaka [55].

Several caveats are in order. Firstly, we neglect the wave function renormalization of

fermions and the derivative term of ρ (i.e., (∂µρ)2), as well as all bosonic terms that are

consistent with symmetries and include more than two derivatives. We also ignore the k-

dependence of g because the flow of g is not expected to affect final results significantly (see

3This point seems to have been neglected in earlier works [27, 30, 35].
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e.g., [67]). In principle all these corrections can be incorporated into the present approach in

a straightforward manner,4 but it is beyond the scope of this work. Secondly, for technical

simplicity, we use a common variable, Z
‖
k , for both the wave function renormalization factor

in x4-direction and that in x3-direction. We assume the error due to this approximation is

small (see [71] for a discussion on a related issue at finite temperature).

2.3 Flow equations for the quark-meson model

With (2.1), (2.2), (2.3) and (2.4), we are now ready to derive the flow equations for Uk(ρ),

Z⊥k and Z
‖
k explicitly. Since their analytical derivation is rather lengthy and involved, we

shall relegate it to the appendices A and B. Here we only quote the main formulas:

∂kUk(ρ) = k2

(
1 +

k

3

∂kZ
‖
k

Z
‖
k

)∫ ′ d2p⊥
(2π)3

(
1

Eπ(ρ)
coth

Eπ(ρ)

2T
+

1

Eσ(ρ)
coth

Eσ(ρ)

2T

)

− 1

2π2
Nck

2|eB|
∞∑
n=0

′
αn

En(ρ)
tanh

En(ρ)

2T
, (2.6)

∂kZ
⊥
k = −k2

π2

ρk
[
U ′′k (ρk)

]2
(Z
‖
k)

2

(
1 +

k

3

∂kZ
‖
k

Z
‖
k

)
T
∑

q4: even

∫ ∞
0

dw(
w + k2 + q2

4 + m̂2
π

Z
‖
k

)2(
w + k2 + q2

4 + m̂2
σ

Z
‖
k

)2

− 1

π2
Ncg

2k2 T
∑
q4: odd

1

[q2
4 + E0(ρk)

2]2
, (2.7)

∂kZ
‖
k = −k2

π2

ρk
[
U ′′k (ρk)

]2
Z
‖
kZ
⊥
k

T
∑

q4: even

∫ ∞
0

dw(
w + k2 + q2

4 + m̂2
π

Z
‖
k

)2(
w + k2 + q2

4 + m̂2
σ

Z
‖
k

)2

− 1

2π2
Ncg

2|eB| T
∑
q4: odd

∞∑
n=0

αn
[q2

4 + En(ρk)
2]2

, (2.8)

with the definitions

U ′k ≡ ∂Uk/∂ρ , U ′′k ≡ ∂2Uk/∂ρ2 , (2.9)

αn ≡
{

1 (n = 0)

2 (n ≥ 1)
, En(ρ) ≡

√
k2 + 2|eB|n + 2g2ρ , (2.10)

Eπ(ρ) ≡

√√√√k2 +
Z⊥k p2

⊥ + U ′k(ρ)

Z
‖
k

, Eσ(ρ) ≡

√√√√k2 +
Z⊥k p2

⊥ + U ′k(ρ) + 2ρU ′′k (ρ)

Z
‖
k

, (2.11)

ρk ≡ argmin
ρ>0

{
Uk(ρ) − h

√
2ρ
}

, (2.12)

m̂2
π ≡ U ′k(ρk) , m̂2

σ ≡ U ′k(ρk) + 2ρkU
′′
k (ρk) , (2.13)∑

q4: odd

≡
∞∑

`=−∞
q4=(2`+1)πT

,
∑

q4: even

≡
∞∑

`=−∞
q4=2`πT

. (2.14)

4See however [69, 70] for a subtlety in the higher-order derivative expansion based on a non-smooth

regulator, such as Litim’s optimized regulator. This issue does not arise at the order of expansion considered

in this paper.
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The meson masses (2.13) are bare masses, which should not be confused with the renor-

malized (physical) masses introduced later in section 2.4. The two primes (′) in (2.6) imply

that the sum and the integral are divergent; we will comment more on this below. As one

can see from the presence of ∂kZ
‖
k in the r.h.s. of (2.6) and (2.7), the flow of Uk and Z⊥k

depend on the flow of Z
‖
k , whereas the flow of Z⊥k and Z

‖
k depend on Uk through ρk. Thus

these three coupled equations must be solved simultaneously. We note that (2.6) does not

agree with the flow equations in [27, 30, 35] even for Z⊥k = Z
‖
k = 1, because the regulator

we use is entirely different from those in [27, 30, 35]. The formulas (2.6), (2.7) and (2.8)

can be simplified analytically so as to facilitate numerical evaluation; see the appendices A

and B for details.

Even without relying on numerical analysis, one can understand to some extent the

dynamics of the system through inspection of these flow equations. The second term in

∂kUk(ρ), (2.6), originates from the fermionic contribution to the flow equation (cf. (2.1)).

The summation over n manifestly embodies the Landau level structure of fermion’s energy

levels, and the lowest (n = 0) Landau level becomes dominant in a strong magnetic field.

The fact that the prefactor which is normally k4 [72–74] is now replaced by k2|eB| in (2.6)

implies that the dynamics of fermions in a strong magnetic field is effectively reduced to

(1+1)-dimensions. This illustrates how the dimensional reduction [10, 11] in the fermionic

sector takes place.

What is more nontrivial is the dimensional reduction in the bosonic sector [55]. In our

FRG setup, the only source of anisotropy of meson dynamics is the asymmetry between

∂kZ
⊥
k and ∂kZ

‖
k . An important difference between them is that ∂kZ

⊥
k has no explicit

dependence on eB in contrast to ∂kZ
‖
k ; one can anticipate that this feature will make Z⊥k

less sensitive to eB than Z
‖
k , which turns out to be true as demonstrated in section 3.

Another notable difference is that the fermionic contribution in (2.7) is multiplied by k2

whereas that in ∂kZ
‖
k is multiplied by |eB|. This means that the growth of Z

‖
k toward

k = 0 should be enhanced in a strong magnetic field, while no such effect is present for

Z⊥k . These two characteristics of ∂kZ
⊥
k and ∂kZ

‖
k provide a rough understanding on how

and why the magnetic field induces anisotropy in the propagation of neutral mesons.

Taylor expansion method. In order to make the flow equation numerically more

tractable, we expand the effective potential as a polynomial around the minimum:

Uk(ρ) =
2∑

n=0

a
(n)
k

(ρ − ρk)
n

n!
, (2.15)

ρk ≡ argmin
ρ

{
Uk(ρ) − h

√
2ρ
}

. (2.16)

Note that a
(1)
k is nonzero since ρk is not a minimum of Uk(ρ). The expansion up to second

order in ρ is normally sufficient to describe a second-order phase transition [75]. Then the

flows of a
(1)
k and a

(2)
k are easily found as

∂ka
(1)
k =

∂kU
′
k

∣∣∣
ρk

1 +
(2ρk)

3/2

h
a

(2)
k

and ∂ka
(2)
k = ∂kU

′′
k

∣∣∣
ρk

, (2.17)
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while ρk is determined from the relation ρk =
h2

2
(
a

(1)
k

)2 at each step of the flow. (The flow

of a
(0)
k is simply ignored as it plays no dynamical role.) One can derive ∂kU

′
k and ∂kU

′′
k

from (2.6) by taking derivatives with respect to ρ (see the appendix C for final expres-

sions). The flow equations for Z⊥k and Z
‖
k are readily obtained from (2.7) and (2.8) upon

substitution of (2.15). Now the problem reduces to solving coupled ordinary differential

equations for five variables: ρk, a
(1)
k , a

(2)
k , Z⊥k and Z

‖
k .

Problem of UV renormalization. It is intriguing to observe that the UV divergence

encountered in (2.6) disappears once we take the derivative of ∂kUk with ρ : both the

integral and the sum are convergent. This means that the UV divergence only appears in

the constant term of Uk(ρ). Therefore, within the Taylor expansion scheme described above,

no UV cutoff is necessary to make the flows of a
(1)
k and a

(2)
k finite! The full expressions

of ∂kU
′
k

∣∣
ρk

and ∂kU
′′
k

∣∣
ρk

obtained without UV cutoff are lengthy and are presented in the

appendix C.

In principle one could also argue that an explicit UV cutoff has to be applied because

the quark-meson model is after all a low-energy effective model of QCD. To assess the

sensitivity of infrared observables to the UV regularization scheme, we have also solved the

flow equations with an explicit UV cutoff ∼ 1 GeV and compared the obtained results with

those from the cutoff-free scheme. We found that while quantitative differences are present,

the global tendencies of results from both schemes are the same, including the monotonic

increase of Tpc as a function of eB. Therefore we will only present the numerical results

obtained within the cutoff-free scheme in the next section.

LPA and mean-field approximation. Finally, let us comment on other related schemes.

In LPA we ignore nontrivial scale dependence of the propagators, which amounts to setting

Z⊥k = Z
‖
k ≡ 1 in (2.6). This approximation has been employed to study chiral models in a

magnetic field [27, 30, 35].

The conventional mean-field approximation is attained from our flow equation by set-

ting bosonic fields to their expectation values and removing the bosonic loop contribution

in (2.6) altogether. The resulting flow equation now reads

∂kUk(ρ) = − 1

2π2
Nck

2|eB|
∞∑
n=0

′
αn

En(ρ)
tanh

En(ρ)

2T
. (2.18)

It is instructive to integrate both sides over k explicitly:

Uk=0(ρ) = Uk=Λ(ρ) −
∫ Λ

0
dk

[
− 1

2π2
Nck

2|eB|
∞∑
n=0

′
αn

En(ρ)
tanh

En(ρ)

2T

]
(2.19)

= Uk=Λ(ρ) + 4NcT
|eB|
2π

∞∑
n=0

′

αn

∫ Λ

0

dk

2π
k

∂

∂k

(
log cosh

En(ρ)

2T

)
(2.20)

= Uk=Λ(ρ) − Nc
|eB|
2π

∞∑
n=0

′

αn

∫ Λ

−Λ

dp3

2π

[
En(ρ) + 2T log(1 + e−En(ρ)/T )

]
, (2.21)
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where in the last step we have discarded an irrelevant constant and a surface term resulting

from partial integration, and relabelled k as p3 so that En(ρ) =
√

p2
3 + 2|eB|n + 2g2ρ can

be interpreted as the energy of a quark in the n-th Landau level. As claimed above, (2.21)

reproduces the thermodynamic potential in the mean-field approximation [19, 21]. The

expectation value of ρ should be determined from the minimization of Uk=0(ρ) − h
√

2ρ .

2.4 Physical quantities

Let us define physical quantities attained in the k → 0 limit of the flow equation. The

essence is that the minimum of the effective potential gives the condensate 〈σ〉 while the

curvature around the minimum gives the meson masses. In the presence of the field renor-

malization, however, these quantities are nontrivially renormalized and care must be taken

in comparing results from FRG with those from other methods, such as lattice simulations.

In this subsection we wish to spell out the notations and definitions of all observables we

consider, as a preparation for section 3 where they are evaluated by numerically solving

the flow equation.

Firstly, the dynamical quark mass is given by

Mq ≡ gfbare
π = g

√
2ρk=0 , (2.22)

where fbare
π = 〈σ〉 is the bare pion decay constant. (〈σ〉 > 0 for h > 0.)

Next, we note that the dispersion of the mesons follows from (2.4) via analytic contin-

uation as

Z
‖
kp

2
0 − Z⊥k (p2

1 + p2
2) − Z

‖
kp

2
3 − m̂2

σ,π = 0 , (2.23)

with the bare masses m̂σ,π defined in (2.13). Thus the screening mass in the directions or-

thogonal to the magnetic field (i.e., the transverse screening mass), m⊥σ,π , and the screening

mass along the direction of the magnetic field (i.e., the longitudinal screening mass), m
‖
σ,π ,

are given by

m⊥σ,π ≡ m̂σ,π√
Z⊥k=0

and m‖σ,π ≡ m̂σ,π√
Z
‖
k=0

, (2.24)

respectively. The pole mass is equal to m
‖
σ,π within our effective action. It is also evident

from (2.23) that the transverse velocity v⊥ of mesons (i.e., the velocity of mesons in the

directions perpendicular to the magnetic field) is given by5

v⊥ ≡

√√√√Z⊥k=0

Z
‖
k=0

. (2.25)

It has been suggested in model calculations that v2
⊥ � 1 in a strong magnetic field [10, 11,

31, 32, 55] and it is one of our aims to check this at finite temperature in the framework

of FRG, incorporating the effect of fluctuations of interacting mesons.

5Strictly speaking, v⊥ in (2.25) is equal to the transverse velocity of mesons only when mσ,π = 0.

However we stick to calling this quantity the velocity for brevity.
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Interestingly, in the presence of a magnetic field the decay constant of the neutral pion

also exhibits anisotropy [32]. This is due to the fact that the coupling of pions to the

axial vector current is direction-dependent in a magnetic field. Although the definition of

a ‘decay constant’ in a thermal media is nontrivial (see e.g., [64–66]), following [67, 68] we

shall define the transverse and longitudinal pion decay constants at finite temperature by

f⊥π ≡
√

Z⊥k=0 fbare
π =

√
2Z⊥k=0ρk=0 and (2.26)

f‖π ≡
√

Z
‖
k=0 fbare

π =

√
2Z
‖
k=0ρk=0 , (2.27)

respectively. This convention is motivated by the fact that the chiral effective Lagrangian

of the neutral pion to lowest order assumes a particularly simple form

Leff =
f⊥2
π

4
(∂⊥U)2 +

f
‖2
π

4
(∂‖U)2 + . . . , (2.28)

where U(x) is a U(1) field whose phase describes the pion, ∂⊥ = (∂1, ∂2) and ∂‖ = (∂3, ∂4).

In the limit of a weak magnetic field, f⊥π /f
‖
π → 1 and Leff reduces to the familiar form.

This completes the formulation of FRG for the quark-meson model.

3 Numerical results

In this section we will show results of integrating the flow equations numerically. In order

to estimate the impact of mesonic fluctuations, we will contrast results from three approx-

imations: LPA plus scale-dependent wave function renormalizations (which we term “full

FRG”), LPA, and the mean-field approximation.

One of our purposes is to understand the phase structure from the viewpoint of chiral

symmetry. After describing the initial conditions of the flow in section 3.1, we will present

results for the constituent quark mass (Mq) at finite temperature and magnetic field in

section 3.2. From the temperature dependence of Mq the pseudo-critical temperature of the

chiral phase transition is estimated and its dependence on the magnetic field is examined.

The neutral meson dynamics acquires anisotropy in an external magnetic field through

the quark loop contributions. The second purpose of our FRG analysis is to see the

anisotropy of neutral meson modes. In section 3.3, we calculate some observables such as

meson screening masses, and examine their directional dependence at finite temperature

and external magnetic field.

3.1 Parameter fixing

We numerically solved the Taylor-expanded flow (2.17) with the second-order Runge-Kutta

method (RK2) for full FRG, LPA, and the mean-field approximation, respectively. The

initial scale of the RG flow is fixed at 600 MeV. In LPA and the mean-field approximation,

we have four initial parameters: a
(1)
k=Λ, a

(2)
k=Λ, h and g. In the full FRG calculation, in

addition, we need to specify initial values for the wave function renormalizations, Z⊥ and

Z‖. All those initial conditions are gathered in table 1.
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Nc g Λ h/Λ3 a
(1)
k=Λ/Λ2 a

(2)
k=Λ Z

‖
k=Λ Z⊥k=Λ

Full FRG 3 2.0 600 0.00596 0.489 1.0 0.002 0.236

LPA 3 2.76 600 0.00835 0.732 5.0 — —

Mean field 3 2.76 600 0.00820 0.947 0.25 — —

Table 1. Initial conditions for the flow equation at k = Λ. The column for Λ is given in MeV.

Observables at k = 0
Tpc

fπ mπ mσ Mq Z
‖,⊥
k=0

Full FRG 93.4∗ 138∗ 411∗ 257 0.529 178

LPA 94.2 138 407 260 — 194

Mean field 92.5 138 417 261 — 174

Table 2. Resulting physical values at T = 3MeV and eB = 0.5m2
π and the pseudo-critical temper-

ature Tpc at eB = 0.5m2
π. The columns for fπ, mπ, mσ, Mq and Tpc are given in MeV. The values

with star ∗ (fπ, mπ and mσ for Full FRG) are obtained after the wave function renormalization

(see section 2.4).

In table 2, resulting physical values at k = 0 are shown for each approximation at

T = 3MeV and eB = 0.5m2
π. (We checked that observables hardly vary for 0 . eB .

0.5m2
π , so eB = 0.5m2

π is small enough to be considered as the limit of vanishing magnetic

field.) The initial flow parameters were tuned in each approximation so as to reproduce

physical values for Mq, mπ, mσ and fπ. This makes our model a good laboratory for QCD

in the real world. As explained in section 2.4, the values of physical observables in the full

FRG calculation (mπ, mσ and fπ) are subject to the wave function renormalization.

In vacuum (T = eB = 0), the Euclidean SO(4) symmetry is intact. However this is

not automatically realized in our setup due to the fact that the regulators used here ((2.2)

and (2.3)) break the SO(4) symmetry explicitly, regardless of the magnetic field strength

and temperature. Indeed ∂kZ
⊥
k in (2.7) does not agree with ∂kZ

‖
k in (2.8) even in the

vacuum limit (T, eB → 0). We cure this problem by fine-tuning the initial conditions

Z
⊥,‖
k=Λ so that Z⊥k=0 = Z

‖
k=0 holds at T = 3MeV and eB = 0.5m2

π. This is how Z
⊥,‖
k=Λ in

table 1 are fixed. We have used the same set of initial values at all temperatures.6

In table 2, we also summarize the pseudo-critical temperature (Tpc) in each approxi-

mation scheme at eB = 0.5m2
π. Here Tpc is determined from the peak of the temperature

derivative of the constituent quark mass. In the following subsections, we shall normalize

the temperature axis of every plot by Tpc at eB = 0.5m2
π to facilitate comparison of the

three approximations.

3.2 Pseudo-critical temperature

The constituent quark mass Mq is proportional to the bare pion decay constant (cf. (2.22))

and serves as an order parameter for the chiral symmetry breaking. In figure 1, we show the

temperature dependence of Mq in full FRG, LPA, and the mean-field approximation, with

6The deviation of Z⊥
k=0/Z

‖
k=0 from 1 turns out to be at most 10% over the range 0 < T < 360 MeV at

eB = 0.5m2
π.
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Figure 1. The constituent quark mass at finite temperature and magnetic field from full FRG

(top), LPA (bottom, left) and the mean-field approximation (bottom, right). The vertical axis is

normalized to 1 at T = eB = 0.

varying external magnetic field. The three plots share the same qualitative features. At low

temperature, chiral symmetry is spontaneously broken and quarks acquire a mass of order

300 MeV. At high temperature, chiral symmetry is effectively restored: the dynamical

mass drops to around 15% of the vacuum value at T = 2Tpc. Since quarks have the current

mass, Mq never reaches zero even above Tpc.

From figure 1 one can read off the external magnetic field dependence of the constituent

quark mass. In all the three approximations, Mq increases monotonically with |eB| at all

temperatures below 2Tpc. This behavior, called magnetic catalysis, has been observed in

lattice simulations [53] as well as in various chiral effective models [38]. The increase of Mq

with |eB| is slower in LPA than in the mean-field approximation, which is attributable to

the meson-loop contribution to the flow of Uk that counteracts the symmetry breaking effect

of fermions. On the other hand, our new result from full FRG, which also includes effects of

the wave function renormalization, turns out to be closer to the mean-field approximation

than LPA.
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Figure 2. The slope of the constituent quark mass at finite temperature and magnetic field from

full FRG (top), LPA (bottom, left) and the mean-field approximation (bottom, right).

In figure 2 we show the temperature derivative of Mq for various values of the ex-

ternal magnetic field. The peaks of these curves define the pseudo-critical temperature,

Tpc. Clearly, in all approximations, the peak temperature moves to a higher value for a

stronger magnetic field. This tendency is consistent with many other works based on chiral

effective models. However this is at odds with the recent lattice QCD calculation with

light quarks [43, 46]. The plots in figure 2 suggest that the inclusion of the wave function

renormalization alone does not resolve the discrepancy between the lattice QCD and chiral

effective models.

In figure 3, we plot the pseudo-critical temperature versus magnetic field (in units of

m2
π) for each approximation. In all the three cases Tpc rises monotonically with |eB|, and

Tpc in LPA and full FRG shows a milder increase than Tpc in the mean-field approximation,

owing to the effect of mesonic fluctuations. This tendency is in discord with the previous

work with two light flavors [27], where Tpc of LPA showed a stronger increase than that

of the mean field. We speculate that the difference comes from the absence of the charged

pions in our work.
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Figure 4. Parallel (left) and perpendicular (right) wave function renormalization factors of mesons.

Figure 3, somewhat unexpectedly, also shows that Tpc from full FRG rises more steeply

than Tpc of LPA and behaves like that of the mean-field approximation. In the next

subsection we will try to give a possible explanation to this trend based on the pion pole

mass behavior at finite temperature.

3.3 Meson modes under magnetic field

In the last subsection we discussed the dynamical quark mass and the chiral restoration

temperature. In what follows, we will present and discuss results related to the meson

properties. The neutral mesons change their nature under strong external magnetic field

because they are made of charged quarks. The most prominent feature is an anisotropy

of the neutral meson modes. To investigate this issue in a quantitative manner we have

calculated various observables related to the anisotropy of the neutral meson modes.

Let us begin with the wave function renormalization factors, which are the most central

objects in our beyond-LPA analysis. In figure 4 we show Z‖ and Z⊥ at finite temperature

and external magnetic field. There one can observe several marked features:
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(a) At high temperature, both Z‖ and Z⊥ diminish substantially and become insensitive

to the magnetic field.

(b) Z‖ increases sharply with |eB|.

(c) By contrast, Z⊥ decreases with |eB|. However Z⊥ shows only weak dependence on

|eB| at all temperatures.

These features can be understood, at least qualitatively, from the flow equations in (2.7)

and (2.8). First of all, we remark that the meson contributions to ∂kZ
‖
k and ∂kZ

⊥
k are

suppressed at all temperatures, except for the vicinity of Tpc. (We have checked this

explicitly by numerically integrating the flow equation.) The reason is as follows. In the

meson loop diagram (cf. figure 10), both σ and π are circulating around the loop. Since σ

is always heavy (except near Tpc) and π also gets heavy at high temperature, the meson

loop contribution turns out to be always suppressed as compared to the fermion loop

contribution. Therefore the flows of Z‖ and Z⊥ are mostly dominated by the fermionic

contributions in (2.7) and (2.8). Now we are ready to interpret (a)–(c) above.

At high temperature, fermions acquire a large screening mass q4 ∼ πT due to the

antiperiodic boundary condition along the x4 direction. Then the fermionic contribution

to (2.7) and (2.8) is strongly suppressed and consequently Z
‖
k and Z⊥k almost cease to flow.

Indeed, Z⊥k=0 ' 0.265 at T/Tpc = 2, which is close to the initial value, Z⊥k=Λ = 0.236. Thus

we expect that both Z‖ and Z⊥ tend to their initial values at sufficiently high temperature.

This should be true in a magnetic field, too, as long as
√

eB does not exceed the screening

scale ∼ πT . This is an intuitive explanation to (a).

As for (b), the increase of Z‖ is most likely attributable to the enhancement of the

lowest Landau level (n = 0) contribution in (2.8). The contribution from the higher Landau

levels is clearly suppressed for large |eB| and they decouple from the flow of Z
‖
k .

Let us finally turn to (c). The weak dependence of Z⊥ on the magnetic field, in stark

contrast to Z‖, is quite natural in view of the fact that the flow of Z⊥, (2.7), has no

explicit dependence on |eB|. (This fact itself is a result of complicated nontrivial cancel-

lations of |eB|-dependence among infinite series, as demonstrated in the appendix B.2.1.)

The slight decrease of Z⊥ as a function of |eB| is more subtle; we speculate that this ten-

dency originates from the enhancement of the constituent quark mass in a magnetic field

(cf. figure 1). Because ρk grows with |eB| owing to the magnetic catalysis, the fermionic

contribution in (2.7) is suppressed, and the growth of Z⊥k toward k = 0 is slowed down.

Thus the decrease of Z⊥k=0 seems to be a natural consequence of large |eB|.
The ratio of Z⊥ to Z‖ gives the squared transverse velocity, v2

⊥. Even at eB = 0, v2
⊥

deviates from 1 owing to the finite temperature effect. To see the effect of the external

magnetic field, it is convenient to normalize v2
⊥ by that at eB = 0.5m2

π. In figure 5 we show

the temperature dependence of v2
⊥ thus normalized for varying external magnetic field. For

all temperatures, the velocity decreases with eB. This behavior is consistent with previous

works that studied neutral mesons at T = 0 [10, 11, 55]. Our new finding here is that

v⊥ has a strong temperature dependence: at high temperature (& Tpc) even the magnetic

field as strong as 20m2
π does not modify v2

⊥ significantly. This tendency can naturally be
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Figure 5. Squared transverse velocity v2
⊥ = Z⊥/Z‖ with varying external magnetic field. The

velocity is normalized by that at eB = 0.5m2
π.

understood by recalling the temperature dependence of Z‖ and Z⊥ (cf. (a)). Therefore the

“dimensional reduction” of neutral mesons is unlikely to modify the nature of the chiral

crossover in a qualitative way.

In figure 6 (top), we show the renormalized pion masses obtained in full FRG. As

remarked in section 2.4, the screening masses acquire a directional dependence in a strong

magnetic field.7 For comparison, in figure 6 (bottom) we also present the pion mass from

LPA. In all three cases, we observe that the neutral pion mass decreases in a magnetic field.

This trend is consistent with lattice simulations [45, 76], chiral perturbation theory [77–80],

and an analytical study [81].

Furthermore, by comparing full FRG with LPA we find that m
‖
π and m⊥π grow more

steeply with T than mπ in LPA for T & Tpc. This difference originates from the fact that

Z‖ and Z⊥ decrease rapidly with T (cf. figure 4). Because of this rapid growth of the pion

pole mass in full FRG at high T , the mesonic contributions to the flow are suppressed as

compared to LPA. Therefore it is natural that in figure 3 the pseudo-critical temperature

of full FRG shows the same trend with the mean-field approximation rather than LPA.

In figure 7, we present temperature dependence of the renormalized longitudinal and

transverse pion decay constants (see (2.26) and (2.27) for their definitions). At each tem-

perature, both pion decay constants increase with eB, but with different rates. Because Z‖

increases with the external magnetic field, it enhances the increase of fbare
π . On the other

hand, Z⊥ decreases with the external field. Then the increase of fbare
π is partially canceled

by Z⊥. However the decrease of Z⊥ is not rapid enough to decrease f⊥π with the external

magnetic field.

Finally, in figure 8, we show the direction-dependent renormalized screening masses

of the sigma meson. Both sigma masses have minimums near the critical temperature.

Above Tpc, the pion and sigma masses for each direction are almost degenerate, signaling

the effective restoration of chiral symmetry.

7Within our truncation the pole mass and the longitudinal screening mass are identical, although they

can be different in QCD at finite temperature.

– 16 –



J
H
E
P
0
3
(
2
0
1
4
)
0
0
9

 0

 100

 200

 300

 400

 500

 600

 0  0.5  1  1.5  2

m
π⁄⁄  [

M
eV

]

T/Tpc,B=0

eB = 0.5mπ
2

5mπ
2

10mπ
2

15mπ
2

20mπ
2

 0

 100

 200

 300

 400

 500

 600

 0  0.5  1  1.5  2

m
π⊥

 [
M

eV
]

T/Tpc,B=0

eB = 0.5mπ
2

5mπ
2

10mπ
2

15mπ
2

20mπ
2

 0

 100

 200

 300

 400

 500

 600

 0  0.5  1  1.5  2

m
π 

[M
eV

]

T/Tpc,B=0

LPA

eB = 0.5mπ
2

5mπ
2

10mπ
2

15mπ
2

20mπ
2

Figure 6. The longitudinal (top, left) and transverse (top, right) pion screening masses from full

FRG, and the pion mass from LPA (bottom), with varying external magnetic field.
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Figure 7. The longitudinal (left) and transverse (right) pion decay constants for varying external

magnetic field.

Below Tpc, m
‖
π and m⊥σ are far more sensitive to the external magnetic field than

m⊥π and m
‖
σ. The reason is as follows. The bare pion mass decreases with the external
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Figure 8. The longitudinal (left) and transverse (right) sigma screening masses with varying

external magnetic field.

magnetic field while the bare sigma mass increases. On the other hand, Z‖ increases and

Z⊥ decreases with the external magnetic field, respectively. As for m
‖
π and m⊥σ , the wave

function renormalization and the bare meson masses conspire to increase the renormalized

masses. Regarding m⊥π and m
‖
σ, the effects of the wave function renormalization and the

bare meson masses interfere with each other and the resulting change in the screening mass

is reduced.

Above Tpc, both the wave function renormalizations and the bare meson masses become

less sensitive to the external magnetic field. Then the renormalized screening masses also

become insensitive to the external magnetic field.

4 Conclusion

In the present work, we have examined influences of the external magnetic field on the chiral

symmetry breaking of strongly interacting matter. In order to elucidate the dynamics of

neutral mesons in the simplest possible setting, we have solved the quark-meson model

with one light flavor. The quantum and thermal fluctuations of mesons and quarks were

incorporated with the method of the functional renormalization group (FRG) equation.

We have carried out the derivative expansion of the average effective action up to second

order in the mesonic momentum. With this extended truncation, we have successfully taken

into account a spatial anisotropy of the neutral meson modes which is induced through

their coupling to quarks. Although this effect has not been considered in previous FRG

studies [27–30, 35], it is expected to be the origin of the inverse magnetic catalysis [55] and

our work is the first attempt to test this conjecture using FRG. By devising a novel regulator

that is suitable for analysis in a magnetic field, we have derived flow equations for the scale-

dependent effective potential and the wave function renormalization at finite temperature

and external magnetic field. Then we have solved the flow equations numerically using

the Taylor expansion method, and compared the obtained results with those from the

leading-order derivative expansion (the so-called LPA) and the conventional mean-field

approximation.
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Our main findings are as follows.

? At all temperatures, the constituent quark mass increases with the external magnetic

field. Accordingly, the pseudo-critical temperature Tpc of chiral restoration is found

to increase linearly with the magnetic field. The slope of Tpc is close to the mean-field

value. We gave a microscopic explanation to this result based on the structure of the

flow equations.

? The velocity v⊥ of the neutral mesons moving perpendicular to the magnetic field

is found to decrease with the magnetic field at all temperatures, with the largest

reduction in v⊥ being observed at zero temperature. In contrast, at high temperature

& Tpc, v⊥ becomes rather insensitive to the magnetic field.

? We computed the pion decay constants and the screening masses of the neutral mesons

for the parallel and perpendicular directions to the external magnetic field. Below

Tpc they show a large directional dependence, reflecting the anisotropy of the wave

function renormalizations.

Finally we comment on possible future directions. First and foremost, the behavior of

Tpc in this work is not qualitatively consistent with the lattice simulation performed at

the physical point [43, 46], and we must seek for a proper explanation of the inverse

magnetic catalysis, e.g., in the dynamics of gluons which were not taken into account in

this work. Indeed the importance of the Polyakov loop was underlined in [57]. However the

preceding analyses [21, 27, 35, 82] seem to suggest that just adding the Polyakov loop in a

phenomenological way does not resolve the discrepancy with the lattice data. One way to

address this problem within FRG would be to start from the QCD Lagrangian itself rather

than effective models.

It would be also interesting to extend our Ansatz of the effective action to two flavors, so

that the dynamics of charged mesons is taken into account. From a technical point of view,

it is desirable to find a more useful regulator function that does not break the rotational

symmetry explicitly. Finally, to make contact with experiments and observations, we should

allow for a time-dependent magnetic field and evaluate its impact on chiral dynamics. We

leave these issues for future work.
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A Derivation of the flow equation for Uk

In this appendix we will give a detailed derivation of (2.6). First of all, in a purely bosonic

constant background, the effective action is related to the effective potential as Γk/V4 =
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�

Figure 9. Diagrammatic representation of the flow equation (A.1). The dashed line (the solid line

with arrow) represents a scale-dependent meson (fermion) propagator, respectively. The black blob

stands for the insertion of ∂kRk.

Uk(ρ) − hσ where V4 ≡ βL3 denotes the Euclidean space-time volume. Consequently,

from (2.1), the flow equation for the effective potential is obtained as

∂kUk =
1

V4

{
1

2
Tr

[
1

Γ
(2,0)
k + RB

k

∂kR
B
k

]
︸ ︷︷ ︸

bosons

− Tr

[
1

Γ
(0,2)
k + RF

k

∂kR
F
k

]
︸ ︷︷ ︸

fermions

}
. (A.1)

The corresponding diagrams are shown in figure 9. We note that the dependence of

Uk on the magnetic field entirely comes from the second term, because the bosons carry no

electric charge. The bosonic contribution and the fermionic contribution will be evaluated

in the appendices A.1 and A.2, respectively.

A.1 Bosonic contribution to ∂kUk

From (A.1) and (2.2), we get

∂kUk

∣∣∣
bose

=
1

2
Tr

[
1

Γ
(2,0)
k + RB

k

∂kR
B
k

]
/V4 (A.2)

=
1

2
Tr

[
1

−Z
‖
k(∂

2
4 + ∂2

3) − Z⊥k (∂2
1 + ∂2

2) + RB
k + U ′k(ρ)

∂kR
B
k

]
/V4

+
1

2
Tr

[
1

−Z
‖
k(∂

2
4 + ∂2

3) − Z⊥k (∂2
1 + ∂2

2) + RB
k + U ′k(ρ) + 2ρU ′′k (ρ)

∂kR
B
k

]
/V4

(A.3)

=
1

2
T
∑

p4: even

∫
d3p

(2π)3

{
(k2 − p2

3)∂kZ
‖
k + 2kZ

‖
k

}
θ(k2 − p2

3)

×
[

1

Z
‖
k(p

2
4 + k2) + Z⊥k p2

⊥ + U ′k(ρ)
+

1

Z
‖
k(p

2
4 + k2) + Z⊥k p2

⊥ + U ′k(ρ) + 2ρU ′′k (ρ)

]
(A.4)

= k2

(
1 +

k

3

∂kZ
‖
k

Z
‖
k

)∫ ′ d2p⊥
(2π)3

(
1

Eπ(ρ)
coth

Eπ(ρ)

2T
+

1

Eσ(ρ)
coth

Eσ(ρ)

2T

)
,

(A.5)

with p⊥ ≡ (p1, p2). The definitions of Eπ(ρ) and Eσ(ρ) are given in (2.11).
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A.2 Fermionic contribution to ∂kUk

From (A.1) and (2.3), we get

∂kUk

∣∣∣
fermi

= − Tr

[
1

Γ
(0,2)
k + RF

k

∂kR
F
k

]
/V4 (A.6)

= −Nc Tr

[
1

/∂4 + (/∂3 + RF
k ) + /D⊥ + g(σ + iγ5π)

∂kR
F
k

]
/V4 ( /D⊥ ≡ γ1D1 + γ2D2)

(A.7)

= −Nc Tr

[
/∂3 + RF

k

∂2
4 + (/∂3 + RF

k )2 + /D
2
⊥ − 2g2ρ

∂kR
F
k

]
/V4 (A.8)

= −Nc T
∑
p4: odd

∫
dp3

2π
Tr

[ −i/p3

k

|p3|
−p2

4 − k2 + /D
2
⊥ − 2g2ρ

−i/p3

|p3|
θ(k2 − p2

3)

]
/L2 (A.9)

= − 1

π
Nck

2 T
∑
p4: odd

Tr

[
1

p2
4 + k2 − /D

2
⊥ + 2g2ρ

]
/L2 . (A.10)

The trace can be evaluated using the eigenfunctions of /D
2
⊥, with the result

∂kUk

∣∣∣
fermi

= − 2

π
Nck

2 T
∑
p4: odd

( |eB|
2π

∞∑
n=0

) ∑
s=±1/2

1

p2
4 + k2 + (2n + 1 − 2s)|eB| + 2g2ρ

(A.11)

= − 2

π
Nck

2 |eB|
2π

∞∑
n=0

′
αn

2En(ρ)
tanh

En(ρ)

2T
, (A.12)

with αn and En(ρ) defined in (2.10). The factor 2 in front of (A.11) stands for the degen-

eracy of eigenvalues of /D
2
⊥ arising from the symmetry [ /D

2
⊥, γ5] = 0. As a check, we also

computed ∂kUk

∣∣∣
fermi

using the fermion propagator in a magnetic field (B.51) and found

that the result agrees with (A.12) exactly, as it should.

Finally the sum of (A.12) and (A.5) yields ∂kUk in (2.6).

B Derivation of the flow equations for Z⊥k and Z
‖
k

The flow of Z⊥k and Z
‖
k receives contribution from the diagrams in figure 10. We shall

evaluate the meson-loop diagram in appendix B.1 and the fermion-loop diagram in ap-

pendix B.2. For brevity we use shorthand notations

∫
x

≡
∫ β

0
dx4

∫
d3x and

∫
p

≡ T
∑
p4

∫
d3p

(2π)3
. (B.1)
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p p p p

@k�(2,0)(p) ⇠

Figure 10. Diagrammatic representation of the flow equation for the mesonic two-point function.

The dashed line (the solid line with arrow) represents a scale-dependent meson (fermion) propa-

gator, respectively. The black blob stands for the insertion of ∂kRk. (Another one-loop diagram

with a single four-meson vertex is not shown here as it does not contribute to the wave function

renormalization.)

B.1 Bosonic contribution to ∂kZk

Let us denote by ∂̃k a derivative that only acts on the k-dependence of the regulator RB
k .

With (2.1) and RB
k in (2.2), the contribution of bosons to the flow equation is found to be

∂kΓk

∣∣∣
bose

=
1

2
∂̃k Tr log[Γ

(2,0)
k + RB

k ] (B.2)

=
1

2
∂̃k Tr log

[
−Z⊥k (∂2

1 + ∂2
2) − Z

‖
k(∂

2
3 + ∂2

4) + RB
k︸ ︷︷ ︸

≡ Hk

+

(
∂2Uk
∂σ2

∂2Uk
∂σ∂π

∂2Uk
∂π∂σ

∂2Uk
∂π2

)]
(B.3)

=
1

2
∂̃k Tr log

[
Hk +

(
U ′k(ρ) + U ′′k (ρ)σ2 U ′′k (ρ)σπ

U ′′k (ρ)σπ U ′k(ρ) + U ′′k (ρ)π2

)]
. (B.4)

We evaluate this in the background (σ, π) = (σk, t(x)) where σk is the running minimum

of the potential: σk ≡ argmin
σ

{
Uk(ρ) − hσ

}
. Then ρ = 1

2σ2
k + 1

2 t2 ≡ ρk + 1
2 t2. Therefore

∂kΓk

∣∣∣
bose

∣∣∣
O(t2)

=
1

2
∂̃k Tr log

[
Hk +

(
U ′k(ρk + t2

2 ) + 2ρkU
′′
k (ρk + t2

2 ) U ′′k (ρk + t2

2 )σkt

U ′′k (ρk + t2

2 )σkt U ′k(ρk + t2

2 ) + U ′′k (ρk + t2

2 )t2

)] ∣∣∣∣∣
O(t2)

(B.5)

=
1

2
∂̃k Tr log [A + B + C]

∣∣∣
O(t2)

(B.6)

=
1

2
∂̃k Tr

[
A−1C − 1

2
A−1BA−1B

]
, (B.7)

with the definitions

A ≡
(

Hk + U ′k(ρk) + 2ρkU
′′
k (ρk) 0

0 Hk + U ′k(ρk)

)
≡
(

Hk + m̂2
σ 0

0 Hk + m̂2
π

)
, (B.8)

B ≡
(

0 U ′′k (ρk)σkt

U ′′k (ρk)σkt 0

)
, (B.9)

C ≡
(

1
2U ′′k (ρk)t

2 + ρkU
′′′
k (ρk)t

2 0

0 3
2U ′′k (ρk)t

2

)
. (B.10)
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The first term in (B.7) can be neglected as it does not generate a kinetic term ∼ tpt−p. As

for the second term,

1

2
∂̃k Tr

[
−1

2
A−1BA−1B

]
= −ρk

[
U ′′k (ρk)

]2
∂̃k Tr

[
A−1

11 tA−1
22 t
]

(B.11)

= −ρk
[
U ′′k (ρk)

]2
∂̃k

∫
pq

(A−1
11 )ptp−q(A

−1
22 )qtq−p (B.12)

= −ρk
[
U ′′k (ρk)

]2
∂̃k

∫
p
tpt−p

∫
q
(A−1

11 )p+q(A
−1
22 )q . (B.13)

On the other hand, we have

∂kΓk = ∂k

∫
x

{Z⊥k
2

∑
i=1,2

(∂it)
2 +

Z
‖
k

2

∑
i=3,4

(∂it)
2 + . . .

}
(B.14)

=
1

2
∂kZ

⊥
k

∫
p
tpt−p(p

2
1 + p2

2) +
1

2
∂kZ

‖
k

∫
p
tpt−p(p

2
3 + p2

4) + . . . . (B.15)

Comparing (B.15) with (B.13), we are led to the important formulae

∂kZ
⊥
k

∣∣∣
bose

= −ρk
[
U ′′k (ρk)

]2
lim
p→0

∂2

∂p2
1

∂̃k

∫
q
(A−1

11 )p+q(A
−1
22 )q , (B.16)

∂kZ
‖
k

∣∣∣
bose

= −ρk
[
U ′′k (ρk)

]2
lim
p→0

∂2

∂p2
3

∂̃k

∫
q
(A−1

11 )p+q(A
−1
22 )q . (B.17)

Without loss of generality one can assume p = (p1, 0, p3, 0). With a bit of algebra, we find

∂̃k

∫
q
(A−1

11 )p̂(A
−1
22 )q

∣∣∣
p̂=q+p

= ∂̃k

∫
q

1

Z⊥k (p̂2
1 + p̂2

2) + Z
‖
k(p̂

2
3 + p̂2

4) + RB
k (p̂) + m̂2

σ

1

Z⊥k (q2
1 + q2

2) + Z
‖
k(q

2
3 + q2

4) + RB
k (q) + m̂2

π

∣∣∣∣∣
p̂=q+p

(B.18)

= − T
∑

q4: even

{
I(Z

‖
kq

2
4 + m̂2

σ, Z
‖
kq

2
4 + m̂2

π; p) + (m̂2
σ ↔ m̂2

π)
}

, (B.19)

with

I(ζ, ζ ′; p) ≡∫
d3q

(2π)3

[
2kZ

‖
k + (k2 − q2

3)∂kZ
‖
k

]
θ(k2 − q2

3)[
Z⊥k (q2

1 + q2
2) + Z

‖
kk

2 + ζ
]2{

Z⊥k
(
(q1 − p1)2 + q2

2

)
+ Z

‖
k(q3 − p3)2 + RB

k (q − p) + ζ ′
} .

(B.20)

The next task is to extract the O(p2) part of I(ζ, ζ ′; p). To take care of RB
k (q − p) in

the denominator, we decompose this integral into two pieces as I(ζ, ζ ′; p) = I1(ζ, ζ ′; p) +
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I2(ζ, ζ ′; p), with

I1(ζ, ζ ′; p) ≡∫
d3q

(2π)3

[
2kZ

‖
k + (k2 − q2

3)∂kZ
‖
k

]
θ(k2 − q2

3) θ
(
k2 − (q3 − p3)

2
)[

Z⊥k (q2
1 + q2

2) + Z
‖
kk

2 + ζ
]2{

Z⊥k
(
(q1 − p1)2 + q2

2

)
+ Z

‖
k(q3 − p3)2 + RB

k (q − p) + ζ ′
} , (B.21)

I2(ζ, ζ ′; p) ≡∫
d3q

(2π)3

[
2kZ

‖
k + (k2 − q2

3)∂kZ
‖
k

]
θ(k2 − q2

3)
{
1 − θ

(
k2 − (q3 − p3)

2
)}[

Z⊥k (q2
1 + q2

2) + Z
‖
kk

2 + ζ
]2{

Z⊥k
(
(q1 − p1)2 + q2

2

)
+ Z

‖
k(q3 − p3)2 + RB

k (q − p) + ζ ′
} , (B.22)

A straightforward but tedious calculation yields

lim
p→0

∂2

∂p2
1

I1(ζ, ζ ′; p) =

− 16k2
(
Z⊥k
)2(

Z
‖
k +

k

3
∂kZ

‖
k

)∫
d2q⊥
(2π)3

q2
⊥

(Z⊥k q2
⊥ + Z

‖
kk

2 + ζ)3(Z⊥k q2
⊥ + Z

‖
kk

2 + ζ ′)2
,

(B.23)

lim
p→0

∂2

∂p2
3

I1(ζ, ζ ′; p) = −2k∂kZ
‖
k

∫
d2q⊥
(2π)3

1

(Z⊥k q2
⊥ + Z

‖
kk

2 + ζ)2(Z⊥k q2
⊥ + Z

‖
kk

2 + ζ ′)
, (B.24)

lim
p→0

∂2

∂p2
1

I2(ζ, ζ ′; p) = 0 , (B.25)

lim
p→0

∂2

∂p2
3

I2(ζ, ζ ′; p) =∫
d2q⊥
(2π)3

1

(Z⊥k q2
⊥ + Z

‖
kk

2 + ζ)2

(
− 4k2(Z

‖
k)

2

(Z⊥k q2
⊥ + Z

‖
kk

2 + ζ ′)2
+

2k∂kZ
‖
k

Z⊥k q2
⊥ + Z

‖
kk

2 + ζ ′

)
. (B.26)

Combining all the above and performing a change of variable (q2
⊥ → Z

‖
k

Z⊥
k

q2
⊥), we get

lim
p→0

∂2

∂p2
1

I(ζ, ζ ′; p) = −16
k2

(Z
‖
k)

2

(
1 +

k

3

∂kZ
‖
k

Z
‖
k

)∫
d2q⊥
(2π)3

q2
⊥(

q2
⊥ + k2 + ζ

Z
‖
k

)3(
q2
⊥ + k2 + ζ′

Z
‖
k

)2

(B.27)

= − 2

π2

k2

(Z
‖
k)

2

(
1 +

k

3

∂kZ
‖
k

Z
‖
k

)∫ ∞
0

dw
w(

w + k2 + ζ

Z
‖
k

)3(
w + k2 + ζ′

Z
‖
k

)2 ,

(B.28)

lim
p→0

∂2

∂p2
3

I(ζ, ζ ′; p) = −4
k2

Z
‖
kZ
⊥
k

∫
d2q⊥
(2π)3

1(
q2
⊥ + k2 + ζ

Z
‖
k

)2(
q2
⊥ + k2 + ζ′

Z
‖
k

)2 (B.29)

= − 1

2π2

k2

Z
‖
kZ
⊥
k

∫ ∞
0

dw(
w + k2 + ζ

Z
‖
k

)2(
w + k2 + ζ′

Z
‖
k

)2 . (B.30)
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Plugging these into (B.16) and (B.17), we find

∂kZ
⊥
k

∣∣∣
bose

= ρk
[
U ′′k (ρk)

]2
T
∑

q4: even

lim
p→0

∂2

∂p2
1

{
I(Z

‖
kq

2
4 + m̂2

σ, Z
‖
kq

2
4 + m̂2

π; p) + (m̂2
σ ↔ m̂2

π)
}

(B.31)

= − k2

π2

ρk
[
U ′′k (ρk)

]2
(Z
‖
k)

2

(
1 +

k

3

∂kZ
‖
k

Z
‖
k

)
T
∑

q4: even

∫ ∞
0

dw(
w + k2 + q2

4 + m̂2
σ

Z
‖
k

)2(
w + k2 + q2

4 + m̂2
π

Z
‖
k

)2 ,

(B.32)

and

∂kZ
‖
k

∣∣∣
bose

= ρk
[
U ′′k (ρk)

]2
T
∑

q4: even

lim
p→0

∂2

∂p2
3

{
I(Z

‖
kq

2
4 + m̂2

σ, Z
‖
kq

2
4 + m̂2

π; p) + (m̂2
σ ↔ m̂2

π)
}

(B.33)

= − k2

π2

ρk
[
U ′′k (ρk)

]2
Z
‖
kZ
⊥
k

T
∑

q4: even

∫ ∞
0

dw(
w + k2 + q2

4 + m̂2
σ

Z
‖
k

)2(
w + k2 + q2

4 + m̂2
π

Z
‖
k

)2 . (B.34)

In deriving (B.32) we have used a mathematical formula∫ ∞
0

dw
w

(w + α)3(w + β)2
+

∫ ∞
0

dw
w

(w + α)2(w + β)3
=

1

2

∫ ∞
0

dw

(w + α)2(w + β)2
(B.35)

which holds for α > 0 and β > 0.

The expressions (B.32) and (B.34) are not so useful for numerical analysis since they

involve infinite sums as well as integrals over the whole real axis. One can simplify them

by using Feynman’s integral formula and then taking the Matsubara sums analytically:

T
∑

q4: even

∫ ∞
0

dw(
w + k2 + q2

4 + m̂2
σ

Z
‖
k

)2(
w + k2 + q2

4 + m̂2
π

Z
‖
k

)2

= T
∑

q4: even

∫ 1

0
dx 6x(1 − x)

∫ ∞
0

dw(
w + k2 + q2

4 + xm̂2
σ+(1−x)m̂2

π

Z
‖
k

)4 (B.36)

= T
∑

q4: even

∫ 1

0
dx 2x(1 − x)

1(
k2 + q2

4 + xm̂2
σ+(1−x)m̂2

π

Z
‖
k

)3 (B.37)

=

∫ 1

0
dx 2x(1 − x)

(
6T 2 + Q2csch2 Q

2T

)
coth

Q

2T
+ 3TQ · csch2 Q

2T

32 · T 2 · Q5
, (B.38)

with

Q = Q(x) ≡
√

k2 +
xm̂2

σ + (1 − x)m̂2
π

Z
‖
k

. (B.39)

We used this expression in our actual numerical computation.
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B.2 Fermionic contribution to ∂kZk

From (2.1),

∂kΓk

∣∣∣
fermi

= −∂̃k Tr log[Γ
(0,2)
k + RF

k ] (B.40)

= −Nc ∂̃k Tr log[ /D + RF
k + g(σ + iγ5π)] . (B.41)

As in the previous section, we evaluate this in an inhomogeneous background (σ(x), π(x)) =

(σk, t(x)), with σk the running minimum of the potential: σk ≡ argmin
σ

{
Uk(ρ) − hσ

}
.

Then

∂kΓk

∣∣∣
fermi

= −Nc ∂̃k Tr log[ /D + RF
k + gσk + igγ5t] . (B.42)

Introducing the regulator-dependent fermion propagator G ≡ 1

/D + RF
k + gσk

one can ex-

pand (B.42) to O(t2) to obtain

∂kΓk

∣∣∣
fermi

∣∣∣
O(t2)

= −1

2
Ncg

2∂̃k Tr[Gγ5tGγ5t] (B.43)

= −1

2
Ncg

2∂̃k Tr[G̃γ5tG̃γ5t] (B.44)

= −1

2
Ncg

2

∫
p
tpt−p ∂̃k

∫
q
tr[G̃p+qγ5G̃qγ5] , (B.45)

where ‘tr’ is a trace over spinor indices, and G̃ is the translationally invariant part of G.

This replacement is justified because the so-called Schwinger phase [83] in G drops out of

the trace in (B.43).

Comparing (B.45) with (B.15) we obtain

∂kZ
⊥
k

∣∣∣
fermi

= −Ncg
2

∫
q
∂̃k lim

p→0

d

dp2
1

tr[G̃p+qγ5G̃qγ5] , (B.46)

∂kZ
‖
k

∣∣∣
fermi

= −Ncg
2

∫
q
∂̃k lim

p→0

d

dp2
3

tr[G̃p+qγ5G̃qγ5] . (B.47)

A closed expression for G̃p was derived in [83] in the absence of the regulator RF
k (see

also [11, 38]). The formula, after analytic continuation to the Euclidean space-time, reads

G̃p

∣∣∣
RFk =0

=
1

/D + gσk
(p) (B.48)

= 2 exp

(
− p2

⊥
|eB|

) ∞∑
n=0

(−1)nDn(p)

p2
4 + p2

3 + 2|eB|n + g2σ2
k

, (B.49)

with p2
⊥ ≡ p2

1 + p2
2 and

Dn(p) ≡
[
i(p4γ4 + p3γ3) + gσk

]{
Ln

(
2p2
⊥

|eB|

)
P+ − Ln−1

(
2p2
⊥

|eB|

)
P−
}

− 2i(p1γ1 + p2γ2)L
(1)
n−1

(
2p2
⊥

|eB|

)
. (B.50)

– 26 –



J
H
E
P
0
3
(
2
0
1
4
)
0
0
9

Here P± ≡ 1
2(1l ∓ iγ1γ2) are the spin projectors8 while Ln(x) and L

(α)
n (x) are the (gen-

eralized) Laguerre polynomials. In what follows, we promise Ln(x) = L
(α)
n (x) ≡ 0 for

n < 0.

In the presence of the regulator RF
k in (2.3) the propagator is modified as ( /D+gσk)

−1 →
( /D + RF

k + gσk)
−1 =

(
− i/p3

[1 + rk(p3)] + . . .
)−1

. It follows that one can incorporate RF
k

into the propagator by simply replacing p3 with p3[1 + rk(p3)]. Therefore we have

G̃p = 2 exp

(
− p2

⊥
|eB|

) ∞∑
n=0

(−1)nD
(k)
n (p)

p2
4 + p2

3[1 + rk(p3)]2 + 2|eB|n + g2σ2
k

, (B.51)

with D
(k)
n (p) ≡ Dn

(
p1, p2, p3[1 + rk(p3)], p4

)
.

Before proceeding, let us introduce shorthand notations for some useful quantities:

q3 ≡ q3 + p3 , (B.52)

Fn(q4, q3) ≡ q2
4 + q2

3[1 + rk(q3)]
2 + 2|eB|n + g2σ2

k , (B.53)

F0(q4, q3, q3) ≡ q2
4 + q3q3[1 + rk(q3)][1 + rk(q3)] + g2σ2

k . (B.54)

Our remaining task is to plug (B.51) into (B.46) and (B.47). As this is a lengthy calculation

we divide this into a few smaller steps. Firstly, we have from (B.51)

tr[G̃p+qγ5G̃qγ5] = 4 exp

(
−(q + p)2

⊥ + q2
⊥

|eB|

) ∞∑
m=0

∞∑
n=0

(−1)m+n tr
[
D

(k)
m (q + p)γ5D

(k)
n (q)γ5

]
Fm(q4, q3)Fn(q4, q3)

.

(B.55)

Without loss of generality we may assume p = (p1, 0, p3, 0). With a bit of algebra, the

trace in the numerator becomes

tr
[
D(k)
m (q + p)γ5D

(k)
n (q)γ5

]
= 2F0(q4, q3, q3)

{
Lm

(
2(q + p)2

⊥
|eB|

)
Ln

(
2q2
⊥

|eB|

)
+ Lm−1

(
2(q + p)2

⊥
|eB|

)
Ln−1

(
2q2
⊥

|eB|

)}

+ 16(q2
⊥ + q1p1)L

(1)
m−1

(
2(q + p)2

⊥
|eB|

)
L

(1)
n−1

(
2q2
⊥

|eB|

)
,

(B.56)

and the integration over the transverse momenta yields∫
d2q⊥
(2π)2

exp

(
−(q + p)2

⊥ + q2
⊥

|eB|

)
tr
[
D(k)
m (q + p)γ5D

(k)
n (q)γ5

]
= F0(q4, q3, q3)

|eB|
4π

e−W (−W )m−n×

×
{

n!

m!

[
L(m−n)
n (W )

]2
θ(m, n ≥ 0) +

(n − 1)!

(m − 1)!

[
L

(m−n)
n−1 (W )

]2
θ(m, n ≥ 1)

}
+

|eB|2
π

e−W (−W )m−n
n!

(m − 1)!
L

(m−n)
n−1 (W )L(m−n)

n (W ) θ(m, n ≥ 1) (B.57)

8The relative sign is reversed owing to the Euclidean convention. In this work we are using Hermitian

gamma matrices defined as {γµ, γν} = 2δµν with (γµ)† = γµ.
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where W ≡ p2
1

2|eB| , and θ(•) is defined as unity if (•) is true, and zero otherwise. In

deriving (B.57) we have used two mathematical formulas:∫
d2q⊥
(2π)2

exp

(
−(q + p)2

⊥ + q2
⊥

|eB|

)
Lk

(
2q2
⊥

|eB|

)
L`

(
2(q + p)2

⊥
|eB|

)
=

|eB|
8π

k!

`!
e
− p2⊥

2|eB|

(
− p2

⊥
2|eB|

)`−k [
L

(`−k)
k

(
p2
⊥

2|eB|

)]2

for k, ` ≥ 0 , (B.58)

and∫
d2q⊥
(2π)2

exp

(
−(q + p)2

⊥ + q2
⊥

|eB|

)
(q2
⊥ + q⊥ · p⊥)L

(1)
k−1

(
2q2
⊥

|eB|

)
L

(1)
`−1

(
2(q + p)2

⊥
|eB|

)
=

|eB|2
16π

k!

`!
e
− p2⊥

2|eB|

(
− p2

⊥
2|eB|

)`−k
`L

(`−k)
k−1

(
p2
⊥

2|eB|

)
L

(`−k)
k

(
p2
⊥

2|eB|

)
for k, ` ≥ 1 .

(B.59)

From (B.55) and (B.57) we obtain∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5]

=
|eB|
π

F0(q4, q3, q3)

∞∑
m=0

∞∑
n=0

e−WWm−n

Fm(q4, q3)Fn(q4, q3)
×

×
{

n!

m!

[
L(m−n)
n (W )

]2
+

(n − 1)!

(m − 1)!

[
L

(m−n)
n−1 (W )

]2
θ(m, n ≥ 1)

}
+

4

π
|eB|2

∞∑
m=1

∞∑
n=1

e−WWm−n

Fm(q4, q3)Fn(q4, q3)

n!

(m − 1)!
L

(m−n)
n−1 (W )L(m−n)

n (W ) . (B.60)

From here on we shall consider ∂kZ
⊥
k

∣∣∣
fermi

and ∂kZ
‖
k

∣∣∣
fermi

separately.

B.2.1 Flow of Z⊥k

In the following we set p3 = 0 without losing generality. Let us rewrite (B.46) as

∂kZ
⊥
k

∣∣∣
fermi

= −Ncg
2 T

∑
q4: odd

∫
dq3

2π
∂̃k lim

p→0

d

dp2
1

∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5] (B.61)

= −Ncg
2 T

∑
q4: odd

∫
dq3

2π
∂̃k

(
1

2|eB| lim
W→0

d

dW

∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5]

)
.

(B.62)

We will carry out these operations in this order. First, recall that for α ∈ Z,

L(α)
n (x) ∼

x→0



(
n + α

n

)
[α ≥ 0]

(−1)α

(−α)!
x−α [−n ≤ α ≤ −1]

(−1)n

(
−α − 1

n

)
[α ≤ −n − 1]

. (B.63)
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Using this, it is not difficult to show that all terms in (B.60) with |m − n| ≥ 2 are O(W 2)

in the limit W → 0 and do not contribute to (B.62). Therefore we obtain

1

2|eB| lim
W→0

d

dW

∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5] (B.64)

=
F0(q4, q3)

2π

(
g1︸︷︷︸

m=n+1

+ g2︸︷︷︸
m=n−1

+ g3︸︷︷︸
m=n

)
+

2|eB|
π

(
g4︸︷︷︸

m=n+1

+ g5︸︷︷︸
m=n−1

+ g6︸︷︷︸
m=n

)
, (B.65)

where

g1 =
∞∑
n=0

2n + 1

Fn+1(q4, q3)Fn(q4, q3)
, g2 = g1 , g3 = − 1

F0(q4, q3)2
−
∞∑
n=1

4n

Fn(q4, q3)2
, (B.66)

g4 =

∞∑
n=1

n(n + 1)

Fn+1(q4, q3)Fn(q4, q3)
, g5 = g4 , g6 = −

∞∑
n=1

2n2

Fn(q4, q3)2
. (B.67)

Plugging all into (B.65), we get

1

2|eB| lim
W→0

d

dW

∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5]

=
1

2π

(
− 1

F0(q4, q3)
+

2

F1(q4, q3)

)
+

F0(q4, q3)

π

∞∑
n=1

(
2n + 1

Fn+1(q4, q3)Fn(q4, q3)
− 2n

Fn(q4, q3)2

)

+
4|eB|

π

∞∑
n=1

(
n(n + 1)

Fn+1(q4, q3)Fn(q4, q3)
− n2

Fn(q4, q3)2

)
(B.68)

where we have deliberately grouped the series into parentheses so that the sums are con-

vergent. We performed these sums over n with Mathematica, finding

=
1

2π

(
− 1

F0(q4, q3)
+

2

F1(q4, q3)

)
+

F0(q4, q3)

π

1

4|eB|2
{

2Dψ(1)(1 + D) +
1

1 + D
− 2

}
+

4|eB|
π

1

4|eB|2
{

D − D2ψ(1)(1 + D)
} (

D ≡ F0(q4, q3)

2|eB|

)
(B.69)

= − 1

2πF0(q4, q3)
+

1

2π|eB| , (B.70)

where ψ(1)(x) is the first derivative of the digamma function.

Using ∂̃kF0(q4, q3) = 2k θ(k2 − q2
3) one can easily show

∂̃k

(
1

2|eB| lim
W→0

d

dW

∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5]

)
=

1

π

k

(q2
4 + k2 + 2g2ρk)

2
θ(k2 − q2

3) . (B.71)

Plugging this into (B.62) we finally obtain

∂kZ
⊥
k

∣∣∣
fermi

= −Ncg
2 T

∑
q4: odd

∫
dq3

2π

[
1

π

k

(q2
4 + k2 + 2g2ρk)

2
θ(k2 − q2

3)

]
(B.72)

= − 1

π2
Ncg

2k2 T
∑
q4: odd

1

(q2
4 + k2 + 2g2ρk)

2
(B.73)

= − 1

π2
Ncg

2k2

(
1

4E0(ρk)
3

tanh
E0(ρk)

2T
− 1

8E0(ρk)
2T

sech2 E0(ρk)

2T

)
, (B.74)

with E0(ρk) =
√

k2 + 2g2ρk . The sum of (B.73) and (B.32) yields ∂kZ
⊥
k in (2.7).
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B.2.2 Flow of Z
‖
k

Let us rewrite (B.47) as

∂kZ
‖
k

∣∣∣
fermi

= −1

2
Ncg

2 T
∑
q4: odd

lim
p→0

∂2

∂p2
3

∫
dq3

2π
∂̃k

∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5] . (B.75)

We shall carry out the calculations on the r.h.s. in this order. Let us take the limit p1 → 0

(i.e., W → 0) to focus on the p3-dependence. Using (B.63) one can easily show that all

terms in (B.60) with |n − m| ≥ 1 vanish as W → 0, leaving∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5]
∣∣∣
W→0

=

∞∑
n=0

1

Fn(q4, q3)Fn(q4, q3)

{
αn

|eB|
π

F0(q4, q3, q3) +
4

π
|eB|2n

}
.

(B.76)

Then ∫
dq3

2π
∂̃k

(∫
d2q⊥
(2π)2

tr[G̃p+qγ5G̃qγ5]
∣∣∣
W→0

)
= X1 + X2 + X3 , (B.77)

with the definitions

X1 ≡ −
∫

dq3

2π

∞∑
n=0

∂̃kFn(q4, q3)

Fn(q4, q3)
2Fn(q4, q3)

{
αn

|eB|
π

F0(q4, q3, q3) +
4

π
|eB|2n

}
, (B.78)

X2 ≡ −
∫

dq3

2π

∞∑
n=0

∂̃kFn(q4, q3)

Fn(q4, q3)Fn(q4, q3)2

{
αn

|eB|
π

F0(q4, q3, q3) +
4

π
|eB|2n

}
, (B.79)

X3 ≡
∫

dq3

2π

∞∑
n=0

1

Fn(q4, q3)Fn(q4, q3)
αn

|eB|
π

∂̃kF0(q4, q3, q3) . (B.80)

After elementary but quite lengthy calculations, we obtain (assuming p3 > 0)

X1 = − 1

π2
|eB|k(2k − p3)

∞∑
n=0

αn(q
2
4 + k2 + 2g2ρk) + 4|eB|n

[q2
4 + En(ρk)

2]3
+

2

π2
|eB|k3p3

∞∑
n=0

αn
[q2

4 + En(ρk)
2]3

− 2

π
|eB|k

∫ −k
−k−p3

dq3

2π

∞∑
n=0

αn(q
2
4 − kq3 + 2g2ρk) + 4|eB|n

[q2
4 + En(ρk)

2]2(q2
4 + q2

3 + 2|eB|n + 2g2ρk)
, (B.81)

X2 = X1 , (B.82)

X3 = − 2

π
|eB|

∫ −k
−k−p3

dq3

2π

∞∑
n=0

αnq3

[q2
4 + En(ρk)

2](q2
4 + q2

3 + 2|eB|n + 2g2ρk)

+
1

π2
|eB|k(2k − 3p3)

∞∑
n=0

αn
[q2

4 + En(ρk)
2]2

, (B.83)

where we have used En(ρ) defined in (2.10), and used

∂̃kFn(q4, q3) = 2k θ(k2 − q2
3) , (B.84)

∂̃kFn(q4, q3) = 2k θ(k2 − q2
3) , (B.85)

∂̃kF0(q4, q3, q3) = q3q3

{
θ(k2 − q2

3)

|q3|
[1 + rk(q3)] +

θ(k2 − q2
3)

|q3|
[1 + rk(q3)]

}
. (B.86)
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Note that the first line of (B.81) and the second line of (B.83) vanish in the limit limp→0
∂2

∂p23
.

Using this fact, we find

lim
p→0

∂2

∂p2
3

(X1 + X2 + X3) =
1

π2
|eB|

∞∑
n=0

αn
[q2

4 + En(ρk)
2]2

. (B.87)

Substituting this into (B.75) we finally arrive at

∂kZ
‖
k

∣∣∣
fermi

= − 1

2π2
Ncg

2|eB| T
∑
q4: odd

∞∑
n=0

αn
[q2

4 + En(ρk)
2]2

. (B.88)

The sum of (B.88) and (B.34) yields ∂kZ
‖
k in (2.8).

To speed up numerical computation we analytically summed over n, with the result

∂kZ
‖
k

∣∣∣
fermi

= − Nc

2π2
g2|eB|

{
1

4E0(ρk)
3

tanh
E0(ρk)

2T
− 1

8E0(ρk)
2T

sech2 E0(ρk)

2T

+
T

2|eB|2
∑
q4: odd

ψ(1)

(
1 +

q2
4 + E0(ρk)

2

2|eB|

)}
. (B.89)

Since ψ(1)(x) ∼ 1/x for x � 1, the sum is convergent.

C Flow of the Taylor coefficients of Uk

The flows (2.17) of parameters in the Taylor expansion of Uk depend on ∂kU
′
k

∣∣∣
ρk

and

∂kU
′′
k

∣∣∣
ρk

. The latter can be obtained from (2.6) by taking the derivative with ρ and sub-

stituting the polynomial expression (2.15). After elementary calculations, we arrive at

∂kU
′
k

∣∣∣
ρk

= − k2

8π2

(
1 +

k

3

∂kZ
‖
k

Z
‖
k

)
a

(2)
k

Z⊥k


coth

(
1

2T

√
k2 +

a
(1)
k

Z
‖
k

)
√

k2 +
a
(1)
k

Z
‖
k

+ 3

coth

(
1

2T

√
k2 +

a
(1)
k +2ρka

(2)
k

Z
‖
k

)
√

k2 +
a
(1)
k +2ρka

(2)
k

Z
‖
k


− Nc

2π2
g2k2|eB|

∞∑
n=0

αn

(
sech2En(ρk)

2T

2T · En(ρk)
2

− tanh En(ρk)
2T

En(ρk)
3

)
, (C.1)
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and

∂kU
′′
k

∣∣∣
ρk

=
k2

8π2

(
1 +

k

3

∂kZ
‖
k

Z
‖
k

) (
a

(2)
k

)2
2Z⊥k Z

‖
k


coth

(
1

2T

√
k2 +

a
(1)
k

Z
‖
k

)
(

k2 +
a
(1)
k

Z
‖
k

)3/2
+

csch2

(
1

2T

√
k2 +

a
(1)
k

Z
‖
k

)
2T

(
k2 +

a
(1)
k

Z
‖
k

)

+

9 coth

(
1

2T

√
k2 +

a
(1)
k +2ρka

(2)
k

Z
‖
k

)
(

k2 +
a
(1)
k +2ρka

(2)
k

Z
‖
k

)3/2
+

9 csch2

(
1

2T

√
k2 +

a
(1)
k +2ρka

(2)
k

Z
‖
k

)
2T

(
k2 +

a
(1)
k +2ρka

(2)
k

Z
‖
k

)


− Nc

2π2
g4k2|eB|

∞∑
n=0

αn

(
− 3

2T

sech2En(ρk)
2T

En(ρk)
4

+ 3
tanh En(ρk)

2T

En(ρk)
5

− 1

2T 2

sech2En(ρk)
2T tanh En(ρk)

2T

En(ρk)
3

)
.

(C.2)

The convergence of the Landau level sums in (C.1) and (C.2) is rather slow, due to the

terms
tanh

En(ρk)

2T
En(ρk)3

and
tanh

En(ρk)

2T
En(ρk)5

that decay only slowly especially when k2+2g2ρk � 2|eB|.
From a computational point of view, it is advantageous to split the zero temperature part

from the thermal part as tanh En(ρk)
2T = 1 +

(
tanh En(ρk)

2T − 1
)

and perform the summation

in the zero temperature part analytically as

∞∑
n=0

αn
En(ρk)

3
= − 1

E0(ρk)
3

+
1√

2|eB|3/2
ζ

(
3

2
,
E0(ρk)

2

2|eB|

)
, (C.3)

∞∑
n=0

αn
En(ρk)

5
= − 1

E0(ρk)
5

+
1

2
√

2|eB|5/2
ζ

(
5

2
,
E0(ρk)

2

2|eB|

)
, (C.4)

where ζ(x, y) is the Hurwitz zeta function. Then all the terms in the remainder are sup-

pressed by a Boltzmann factor ∼ e−En(ρk)/T and only a small number of Landau levels

contribute to the sum. We found that this trick speeds up numerical computation of the

flow equation considerably.
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