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1 Introduction

Although matrix models [1–3] have been proposed as nonperturbative formulations of su-

perstring/M theory, it is still difficult to compute perturbative string amplitudes from

these models. Regarding two of them [1, 3], since the models are formulated relying on

nonperturbative objects (D-branes), it is not straightforward to see perturbative aspects of

fundamental strings. The remaining one [2] is based on the Schild gauge formulation of the

type IIB superstring theory. It is a fully interacting theory, and its analytical treatment to

carry out the computation of a perturbative S-matrix has not been found yet.

In this situation, it will be an interesting direction to make correspondence between a

supersymmetric matrix model and simpler noncritical superstring theory, in both of which

perturbative scattering amplitudes are computable and the correspondence is explicitly

confirmed. In fact, we pointed out in the previous paper [4] correspondence of a super-

symmetric double-well matrix model to two-dimensional type IIA superstring theory on a

nontrivial Ramond-Ramond (RR) background from the viewpoint of symmetries and spec-

trum. In this paper, we further investigate dynamical aspects of the correspondence. We

compute various amplitudes in the type IIA theory, and compare with the calculation of

matrix-model correlators obtained in [4]. We carefully introduce cocycle factors to vertex

operators in the IIA theory in order to realize correct transformation laws and target-space

statistics. In the calculation of amplitudes, the RR background is treated in a perturbative

manner by insertions of the corresponding RR vertex operators. Amplitudes evaluated at

the on-shell momenta are often indefinite or divergent, for which we find a reasonable reg-

ularization scheme preserving mutual locality of physical vertex operators. We thus obtain

several kinds of regularized amplitudes in the type IIA theory including precise numerical

factors, which allows direct comparison with the corresponding correlators in the matrix

model at the quantitative level. As a result, we find that they indeed have exactly the same

dependence on parameters of the theory. Furthermore, we obtain a number of relations

among coefficients that connect quantities in the type IIA theory to those in the matrix

model. Remarkably, all of them are consistent with each other, which provides strong

evidence for the validity of the correspondence.

The rest of this paper is organized as follows. In the next section, we present some

results for amplitudes of the supersymmetric double-well matrix model computed in [4].
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In section 3, a brief review of two-dimensional type IIA superstring theory is given, to-

gether with discussion of cocycle factors in detail that is important for precise evaluation

of amplitudes. We also explain how to take into account an RR background of the IIA

theory. In section 4, we compute basic amplitudes among vertex operators in the type

IIA theory on the trivial background. In section 5, the results of the basic amplitudes are

transcribed to amplitudes in the type IIA theory on the RR background, that are com-

pared with the matrix-model results presented in section 2. As a result of the comparison,

they agree with each other as functions of parameters in the theory, and various relations

are obtained among coefficients which link quantities in the type IIA theory with those in

the matrix model. The (R−, R+) vertex operators representing the background contain

nonlocal vertex operators which violate the Seiberg bound [5]. They do not satisfy the

Dirac equation constraint. It would be acceptable in the sense that they do not describe

on-shell particles but represent the background. However, since the nonlocal operators

turn out not to be BRST-closed, we discuss consistency of amplitudes in the presence of

them in section 6. The results obtained so far are summarized and some future directions

are discussed in section 7. An identity concerning matrix-model amplitudes is proved in

appendix A. We give a brief summary of the worldsheet superconformal symmetry in the

type IIA theory in appendix B, and discuss cocycle factors for 0-picture NS vertex opera-

tors in appendix C. Integral formulas needed to evaluate IIA string amplitudes in the text

are presented in appendix D. Appendix E is devoted to a note on the picture changing

manipulation of Friedan-Martinec-Shenker [6] in a certain amplitude in the presence of the

nonlocal operator.

2 Results of the supersymmetric matrix model

In the previous paper [4], we investigated the supersymmetric matrix model:

S = Ntr

[

1

2
B2 + iB(φ2 − µ2) + ψ̄(φψ + ψφ)

]

, (2.1)

where B, φ are Grassmann even, and ψ, ψ̄ are Grassmann-odd N ×N Hermitian matrices,

respectively. The action S is invariant under supersymmetry transformations generated by

Q and Q̄:

Qφ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (2.2)

and

Q̄φ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0, (2.3)

which lead to the nilpotency: Q2 = Q̄2 = {Q, Q̄} = 0. Various correlation functions were

computed, and correspondence of the matrix model to two-dimensional type IIA superstring

theory was pointed out from symmetry properties and spectrum. Let us present results in

the matrix model for later comparison with the type IIA theory. We express the connected

correlation function among n single-trace operators 1
N trOi (i = 1, · · · , n) as

〈

n
∏

i=1

1

N
trOi

〉

C

=
∞
∑

h=0

1

N2h+2n−2

〈

n
∏

i=1

1

N
trOi

〉

C,h

, (2.4)

– 2 –



J
H
E
P
0
3
(
2
0
1
4
)
0
0
6

where 〈 · 〉C,h denotes the connected correlator on a handle-h random surface with the

N -dependence factored out. When µ2 ≥ 2, the planar limit of the matrix model has

an infinitely degenerate supersymmetric vacua parametrized by filling fractions (ν+, ν−),
which represent configurations that ν±N of the eigenvalues of φ are around the minimum

x = ±|µ| of the double-well potential 1
2(x

2 − µ2)2. µ2 = 2 is a critical point at which the

matrix model exhibits the third-order phase transition between a supersymmetric phase

(µ2 > 2) and a nonsupersymmetric phase (µ2 < 2) [7]. In the limit µ2 → 2 + 0 from the

supersymmetric phase, the operators of the scalar matrix φ:

Φ2k+1 =
1

N
trφ2k+1 + (mixing) (k = 0, 1, 2, · · · ) (2.5)

( “mixing” represents lower power operators of φ introduced in order to remove nonuniversal

singular terms in µ2 → 2 + 0)1 show critical behavior as power of logarithm:

〈Φ2k+1〉0|sing. = (ν+ − ν−)

[

2k+2

π

(2k + 1)!!

(k + 2)!
ωk+2 lnω + (less singular)

]

, (2.6)

〈Φ2k+1Φ2ℓ+1〉C,0
∣

∣

∣

sing.

= −(ν+ − ν−)
2 2k + 1

4π2
22k+m

[

m
∑

p=1

(2p+ 2k − 1)!!

(p+ k)!

(2m− 2p+ 2k − 1)!!

(m− p+ k + 1)!

+2
(2k − 1)!!

k!

(2m+ 2k − 1)!!

(m+ k)!

]

ω2k+m+1(lnω)2

+(less singular), (2.7)

where

ω = (µ2 − 2)/4 (2.8)

and ℓ = k +m. The symbol |sing. means that entire functions of ω are removed from the

expression.2 Also, for fermionic operators3

Ψ2k+1 =
1

N
trψ2k+1 + (mixing), Ψ̄2k+1 =

1

N
tr ψ̄2k+1 + (mixing), (2.9)

〈

Ψ2k+1Ψ̄2ℓ+1

〉

C,0

∣

∣

∣

sing.
= δk,ℓ vk (ν+ − ν−)

2k+1ω2k+1 lnω + (less singular). (2.10)

The coefficient vk has been computed for k = 0, 1 as v0 =
1
π and v1 =

6
π .

According to appendix A, the sum with respect to m in (2.7) is reduced to a simple

expression:

〈Φ2k+1Φ2ℓ+1〉C,0
∣

∣

∣

sing.
= −(ν+ − ν−)2

2π2
1

k + ℓ+ 1

(2k + 1)!

(k!)2
(2ℓ+ 1)!

(ℓ!)2
ωk+ℓ+1(lnω)2

+(less singular). (2.11)

1The explicit form of the “mixing” for the first few Φ2k+1 is presented in eqs. (4.40) in [4].
2In general, matrix models can be regarded as a sort of lattice models for string theory. Then, entire

functions are analogous to lattice artifacts that are irrelevant to continuum physics.
3Ψ1 and Ψ̄1 have no “mixing” term. The “mixing” terms for Ψ3 and Ψ̄3 are given in eqs. (6.29), (6.30)

in [4].
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Some genus-one amplitudes are presented in appendix A in [4]. Among them,
〈

1

N
trB

〉

1

= 0 (2.12)

means that the torus free energy is a constant independent of µ2. It is reasonable to expect

that the constant vanishes. Actually, from the result of eq. (3.42) in [7], the partition

function in the sector of the filling fraction (ν+, ν−) becomes

Z(ν+,ν−) = (−1)ν−N . (2.13)

It is valid in all order in 1/N expansion, indicating that the free energy defined by

− ln |Z(ν+,ν−)| is zero at each topology, and that the expectation is correct. (The sign

factor (−1)ν−N could not be seen from the conventional string perturbation theory.)

3 Two-dimensional type IIA superstring

In this section, we explain the two-dimensional type IIA superstring theory, which is dis-

cussed in [8–12]. Then, we mention correspondence of physical vertex operators in the type

IIA theory with operators in the matrix model [4].

The target space is (ϕ, x) ∈ (Liouville direction)× (S1 with self-dual radius), and the

holomorphic energy-momentum tensor on the string worldsheet is given by

T = Tm + Tgh, (3.1)

Tm = −1

2
(∂x)2 − 1

2
ψx∂ψx −

1

2
(∂ϕ)2 +

Q

2
∂2ϕ− 1

2
ψℓ∂ψℓ,

Tgh = −2b∂c− ∂bc− 3

2
β∂γ − 1

2
∂βγ (3.2)

with Q = 2. Here, ψx and ψℓ are superpartners of x and ϕ, respectively and b, c (β, γ)

represent conformal (superconformal) ghosts. OPEs for the fields are

x(z)x(w) ∼ − ln(z − w), ϕ(z)ϕ(w) ∼ − ln(z − w),

ψx(z)ψx(w) ∼
1

z − w
, ψℓ(z)ψℓ(w) ∼

1

z − w
,

c(z)b(w) ∼ 1

z − w
, γ(z)β(w) ∼ 1

z − w
, (3.3)

and the others are regular.

In order to treat the Ramond sector in the RNS formalism, it is convenient to bosonize

ψx, ψℓ, β and γ as

Ψ ≡ ψℓ + iψx =
√
2e−iH , Ψ† ≡ ψℓ − iψx =

√
2eiH , (3.4)

γ = eφ η, β = ∂ξ e−φ (3.5)

with

H(z)H(w) ∼ − ln(z − w), φ(z)φ(w) ∼ − ln(z − w), η(z)ξ(w) ∼ 1

z − w
. (3.6)

Some properties of worldsheet superconformal generators are summarized in appendix B.

– 4 –
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Vertex operators are constructed by combining the NS “tachyon” vertex operator (in

the (−1) picture):

Tk(z) = e−φ+ikx+pℓϕ(z), T̄k̄(z̄) = e−φ̄+ik̄x̄+pℓϕ̄(z̄) (3.7)

and the R vertex operator (in the (−1
2) picture):

Vk, ǫ(z) = e−
1
2
φ+ i

2
ǫH+ikx+pℓϕ(z), V̄k̄, ǭ(z̄) = e−

1
2
φ̄+ i

2
ǭH̄+ik̄x̄+pℓϕ̄(z̄) (3.8)

with ǫ, ǭ = ±1. Here the local scale invariance on the worldsheet imposes pℓ = 1 ± k for

Tk, Vk, ǫ and pℓ = 1 ± k̄ for T̄k̄, V̄k̄, ǭ. We consider a branch of pℓ = 1 − |k|, pℓ = 1 − |k̄|
satisfying the locality bound (pℓ ≤ Q/2) [5] for a while. Target-space supercurrents are

q+(z) ≡ V−1,−1(z) = e−
1
2
φ− i

2
H−ix(z), q̄−(z̄) ≡ V̄+1,+1(z̄) = e−

1
2
φ̄+ i

2
H̄+ix̄(z̄). (3.9)

As discussed in [8–12], physical vertex operators should satisfy locality with the supercur-

rents, mutual locality, superconformal invariance (including the Dirac equation constraint)

and the level matching condition. Two consistent sets of physical vertex operators are found

in ref. [11], which are called as “momentum background” and “winding background”. As

considered in [4], we focus on the “winding background”. It is given by

(NS, NS) : Tk T̄−k

(

k ∈ Z+
1

2

)

,

(R+, R−) : Vk,+1 V̄−k,−1

(

k ∈ Z+
1

2

)

,

(R−, R+) : Vk,−1 V̄k̄,+1

(

k, k̄ ∈ Z, |k| = |k̄|
)

,

(NS, R−) : Tk V̄k,−1

(

k ∈ Z+
1

2

)

,

(R+, NS) : Vk,+1 T̄k

(

k ∈ Z+
1

2

)

(3.10)

before imposing the Dirac equation constraint. It requires the states corresponding to the

Ramond vertex operators to be annihilated by the zero-mode of worldsheet superconformal

generator Tm,F : G
m
0 = 1√

2
(G+

0 +G−
0 ) (see appendix B). Consequently,

k = ǫ|k|, k̄ = ǭ|k̄|. (3.11)

Then, imposing the Dirac equation constraint amounts to

(NS, NS) : Tk T̄−k

(

k ∈ Z+
1

2

)

,

(R+, R−) : Vk,+1 V̄−k,−1

(

k =
1

2
,
3

2
, · · ·

)

,

(R−, R+) : V−k,−1 V̄k,+1 (k = 0, 1, 2, · · · ) ,

(NS, R−) : T−k V̄−k,−1

(

k =
1

2
,
3

2
, · · ·

)

,

(R+, NS) : Vk,+1 T̄k

(

k =
1

2
,
3

2
, · · ·

)

. (3.12)

Note that the spectrum (3.12) is invariant under not only the N = 1 but also the N = 2

superconformal symmetry. In particular, each of G+
0 and G−

0 annihilates the Ramond

states in (3.12).
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3.1 Cocycle factors

Here, we introduce cocycle factors to realize correct transformation laws and target-space

statistics for vertex operators.4

Vertex operators without cocycle factors have the following two problems. First, the

OPE between q+ and Tk (k ∈ Z+ 1
2):

q+(z)Tk(w) =
1

(z − w)
1
2
+k

: q+(z)Tk(w) : (3.13)

implies that the radial ordering should be defined as

R(q+(z)Tk(w)) =

{

q+(z)Tk(w) (|z| > |w|)
(−1)−

1
2
−k Tk(w) q+(z) (|z| < |w|).

(3.14)

The factor (−1)−
1
2
−k ensures continuity at |z| = |w|. Then, the target-space supercharge

Q+ =
∮

dz
2πi q+(z) acts on Tk in a manner

Q+Tk(w)− (−1)−
1
2
−kTk(w)Q+ =

∮

w

dz

2πi
R(q+(z)Tk(w))

=

∮

w

dz

2πi

1

(z − w)
1
2
+k

: q+(z)Tk(w) :, (3.15)

so that the transformation law can be given by the contour integral. The k-dependent sign

factor is due to the fact that the supercurrents (3.9) carry x, x̄-momenta, which is peculiar

to noncritical superstring theory [8–10]. On the other hand, target-space statistics suggests

that Q+ should act on an (NS, NS) field Tk T̄−k in the form of a commutator. It will become

consistent with (3.15), if we make T̄−k and q+ noncommuting such as

T̄−k(w̄) q+(z) = (−1)−
1
2
−kq+(z) T̄−k(w̄) (3.16)

by introducing cocycle factors. If this condition is met, it automatically follows that Q+

transformation of Vk,+1T̄k is given by an anticommutator in accordance with the target-

space statistics. (See the first formula in (3.17).)

For other vertex operators, we have the radial orderings:

R(q+(z)Vk, ǫ(w)) =

{

q+(z)Vk, ǫ(w) (|z| > |w|)
(−1)−

1
4
− ǫ

4
−k Vk, ǫ(w) q+(z) (|z| < |w|),

R(q̄−(z̄) T̄k̄(w̄)) =

{

q̄−(z̄) T̄k̄(w̄) (|z| > |w|)
(−1)

1
2
−k̄ T̄k̄(w̄) q̄−(z̄) (|z| < |w|),

R(q̄−(z̄) V̄k̄, ǭ(w̄)) =

{

q̄−(z̄) V̄k̄, ǭ(w̄) (|z| > |w|)
(−1)

1
4
− ǭ

4
−k̄ V̄k̄, ǭ(w̄) q̄−(z̄) (|z| < |w|).

(3.17)

4The argument in this subsection also holds for vertex operators of the nonlocal branch pℓ = 1 + |k|.
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Second, the OPE between an (NS, NS) field Tk T̄−k and an (NS, R−) field Tk V̄k,−1

(k, k′ ∈ Z+ 1
2):

Tk(z)T̄−k(z̄)Tk′(w)V̄k′,−1(w̄)

= r−
3
2
−2pℓp

′

ℓ eiθ(−
1
2
+2kk′) : Tk(z)Tk′(w) : : T̄−k(z̄) V̄k′,−1(w̄) : (3.18)

with z − w = r eiθ, z̄ − w̄ = r e−iθ leads to the radial ordering

R(Tk(z)T̄−k(z̄)Tk′(w)V̄k′,−1(w̄))

=

{

Tk(z)T̄−k(z̄)Tk′(w)V̄k′,−1(w̄) (|z| > |w|)
(−1)−

1
2
+2kk′ Tk′(w)V̄k′,−1(w̄)Tk(z)T̄−k(z̄) (|z| < |w|).

(3.19)

It is consistent with the target-space statistics when −1
2 + 2kk′ is even, but not otherwise.

Similar is the situation for the radial ordering of other fields.

Let us introduce cocycle factors to resolve these problems. We put the hat (ˆ) on

vertex operators with cocycle factors. For the target-space supercurrents,

q̂+(z) = eπβ(
1
2
pφ̄−i 12ph̄−ipx̄) q+(z), ˆ̄q−(w̄) = e−πβ(

1
2
pφ+i

1
2
ph+ipx) q̄−(w̄), (3.20)

where β is a constant to be determined. pφ, ph and px (pφ̄, ph̄ and px̄) are momentum

modes of holomorphic part (anti-holomorphic part) of free bosons:

φ(z) = φ0 − ipφ ln z + · · · , φ̄(z̄) = φ̄0 − ipφ̄ ln z̄ + · · · ,
H(z) = h0 − iph ln z + · · · , H̄(z̄) = h̄0 − iph̄ ln z̄ + · · · ,
x(z) = x0 − ipx ln z + · · · , x̄(z̄) = x̄0 − ipx̄ ln z̄ + · · · (3.21)

with · · · representing oscillator modes. From the commutation relations

[φ0, pφ] = [φ̄0, pφ̄] = i, etc, (3.22)

we see noncommuting properties

q+(z) e
−πβ( 1

2
pφ+i

1
2
ph+ipx) = e−iπβ e−πβ(

1
2
pφ+i

1
2
ph+ipx) q+(z), (3.23)

eπβ(
1
2
pφ̄−i 12ph̄−ipx̄) q̄−(w̄) = e−iπβ q̄−(w̄) e

πβ( 1
2
pφ̄−i 12ph̄−ipx̄), (3.24)

which lead to

q̂+(z) ˆ̄q−(w̄) = e−i2πβ ˆ̄q−(w̄) q̂+(z). (3.25)

The target-space statistics requires

β ∈ Z+
1

2
. (3.26)

Hereafter we assume that β satisfies this condition. Modified target-space supercharges are

given by

Q̂+ =

∮

dz

2πi
q̂+(z),

ˆ̄Q− =

∮

dz̄

2πi
ˆ̄q−(z̄). (3.27)

– 7 –
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For vertex operators, we introduce cocycle factors as

T̂k(z) = eπβ(pφ̄+ikpx̄) Tk(z),
ˆ̄Tk̄(z̄) = e−πβ(pφ+ik̄px) T̄k̄(z̄),

V̂k, ǫ(z) = eπβ(
1
2
pφ̄+i

ǫ
2
ph̄+ikpx̄) Vk, ǫ(z),

ˆ̄Vk̄, ǭ(z̄) = e−πβ(
1
2
pφ+i

ǭ
2
ph+ik̄px) V̄k̄, ǭ(z̄). (3.28)

It turns out to be a choice resolving the above problems.

In the first problem, since

T̄k̄(w̄) e
πβ( 1

2
pφ̄−i 12ph̄−ipx̄) = eiπβ(−

1
2
+k̄) eπβ(

1
2
pφ̄−i 12ph̄−ipx̄) T̄k̄(w̄),

e−πβ(pφ+ik̄px) q+(z) = eiπβ(−
1
2
+k̄) q+(z) e

−πβ(pφ+ik̄px) (3.29)

hold, we have
ˆ̄Tk̄(w̄) q̂+(z) = ei2πβ(−

1
2
+k̄) q̂+(z)

ˆ̄Tk̄(w̄) (3.30)

that realizes (3.16) for (3.26). Then, Q̂+ acts on a hatted (NS, NS) field in the form of a

commutator:
[

Q̂+, T̂k(w)
ˆ̄T−k(w̄)

]

=

∮

w

dz

2πi
R(q̂+(z)T̂k(w))

ˆ̄T−k(w̄) (3.31)

with

R(q̂+(z)T̂k(w)) = eπβ(
1
2
pφ̄−i 12ph̄−ipx̄) eπβ(pφ̄+ikpx̄)R(q+(z)Tk(w)). (3.32)

In (3.32), the cocycle factors do not include any modes in the holomorphic sector and can

be treated as constants in the radial ordering.

For other cases, owing to the noncommuting properties

ˆ̄Vk̄, ǭ(w̄) q̂+(z) = ei2πβ(−
1
4
+ ǭ

4
+k̄) q̂+(z)

ˆ̄Vk̄, ǭ(w̄),

ˆ̄q−(z̄) T̂k(w) = ei2πβ(−
1
2
−k) T̂k(w) ˆ̄q−(z̄),

ˆ̄q−(z̄) V̂k, ǫ(w) = ei2πβ(−
1
4
− ǫ

4
−k) V̂k, ǫ(w) ˆ̄q−(z̄), (3.33)

the modified supercharges consistently act on hatted fields as

[

Q̂+, V̂k, ǫ(w)
ˆ̄V−k,−ǫ(w̄)

]

=

∮

w

dz

2πi
R(q̂+(z)V̂k, ǫ(w))

ˆ̄V−k,−ǫ(w̄),

{

Q̂+, T̂k(w)
ˆ̄Vk,−1(w̄)

}

=

∮

w

dz

2πi
R(q̂+(z)T̂k(w))

ˆ̄Vk,−1(w̄),

{

Q̂+, V̂k,+1(w)
ˆ̄Tk(w̄)

}

=

∮

w

dz

2πi
R(q̂+(z)V̂k,+1(w))

ˆ̄Tk(w̄),

[

ˆ̄Q−, T̂k(w)
ˆ̄T−k(w̄)

]

= (−1)−
1
2
−k T̂k(w)

∮

w̄

dz̄

2πi
R(ˆ̄q−(z̄) ˆ̄T−k(w̄)),

[

ˆ̄Q−, V̂k, ǫ(w)
ˆ̄V−k,−ǫ(w̄)

]

= (−1)−
1
4
− 1

4
ǫ−k V̂k, ǫ(w)

∮

w̄

dz̄

2πi
R(ˆ̄q−(z̄) ˆ̄V−k,−ǫ(w̄)),

{ ˆ̄Q−, T̂k(w)
ˆ̄Vk,−1(w̄)} = (−1)−

1
2
−k T̂k(w)

∮

w̄

dz̄

2πi
R(ˆ̄q−(z̄) ˆ̄Vk,−1(w̄)),

{

ˆ̄Q−, V̂k,+1(w)
ˆ̄Tk(w̄)

}

= (−1)−
1
2
−k V̂k,+1(w)

∮

w̄

dz̄

2πi
R(ˆ̄q−(z̄) ˆ̄Tk(w̄)). (3.34)
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In the second problem, due to the cocycle factors, we have the following noncommuting

relations:

ˆ̄Tk̄(z̄) T̂k′(w) = ei2πβ(−1−k̄k′) T̂k′(w)
ˆ̄Tk̄(z̄), (3.35)

ˆ̄Tk̄(z̄) V̂k′, ǫ(w) = ei2πβ(−
1
2
−k̄k′) V̂k′, ǫ(w)

ˆ̄Tk̄(z̄), (3.36)

ˆ̄Vk̄, ǭ(z̄) T̂k′(w) = ei2πβ(−
1
2
−k̄k′) T̂k′(w)

ˆ̄Vk̄, ǭ(z̄), (3.37)

ˆ̄Vk̄, ǭ(z̄) V̂k′, ǫ(w) = ei2πβ(−
1
4
− 1

4
ǫǭ−k̄k′) V̂k′, ǫ(w)

ˆ̄Vk̄, ǭ(z̄). (3.38)

Let us see the OPE considered in (3.18) in the presence of the cocycle factors. By us-

ing (3.35),

T̂k(z)
ˆ̄T−k(z̄) T̂k′(w)

ˆ̄Vk′,−1(w̄) = ei2πβ(−1+kk′) r−
3
2
−2pℓp

′

ℓ eiθ(−
1
2
+2kk′)

× : T̂k(z) T̂k′(w) : :
ˆ̄T−k(z̄)

ˆ̄Vk′,−1(w̄) : (3.39)

is obtained when |z| > |w|. In the normal ordering of holomorphic fields : T̂k(z) T̂k′(w) : ,

the cocycle factors can be treated as constants. It is similar for : ˆ̄T−k(z̄)
ˆ̄Vk′,−1(w̄) : . On

the other hand, when |z| < |w|, we use (3.37) to have

T̂k′(w)
ˆ̄Vk′,−1(w̄) T̂k(z)

ˆ̄T−k(z̄) = eiπ(−
1
2
+2kk′) ei2πβ(−

1
2
−kk′) r−

3
2
−2pℓp

′

ℓ eiθ(−
1
2
+2kk′)

× : T̂k(z) T̂k′(w) : :
ˆ̄T−k(z̄)

ˆ̄Vk′,−1(w̄) : . (3.40)

Note that (3.39) has the same form as (3.40) since

ei2πβ(−1+kk′) = eiπ(−
1
2
+2kk′) ei2πβ(−

1
2
−kk′) (3.41)

holds for (3.26) and k, k′ ∈ Z + 1
2 . Thus, the radial ordering of the hatted fields becomes

consistent with the target-space statistics:

R(T̂k(z)
ˆ̄T−k(z̄) T̂k′(w)

ˆ̄Vk′,−1(w̄))

=

{

T̂k(z)
ˆ̄T−k(z̄) T̂k′(w)

ˆ̄Vk′,−1(w̄) (|z| > |w|)
T̂k′(w)

ˆ̄Vk′,−1(w̄) T̂k(z)
ˆ̄T−k(z̄) (|z| < |w|).

(3.42)

Similarly, we can show that the radial ordering of all other hatted vertex operators is

consistent. Cocycle factors for 0-picture NS fields are discussed in appendix C.

3.2 Correspondence to matrix model operators

In order to make correspondence to the matrix model, we first note that the vertex operators

V̂ 1
2
,+1

ˆ̄V− 1
2
,−1, T̂− 1

2

ˆ̄V− 1
2
,−1, V̂ 1

2
,+1

ˆ̄T 1
2
, T̂− 1

2

ˆ̄T 1
2

(3.43)

form a quartet under Q̂+ and ˆ̄Q−:
[

Q̂+, V̂ 1
2
,+1

ˆ̄V− 1
2
,−1

]

= T̂− 1
2

ˆ̄V− 1
2
,−1,

{

Q̂+, T̂− 1
2

ˆ̄V− 1
2
,−1

}

= 0,
{

Q̂+, V̂ 1
2
,+1

ˆ̄T 1
2

}

= T̂− 1
2

ˆ̄T 1
2
,

[

Q̂+, T̂− 1
2

ˆ̄T 1
2

]

= 0, (3.44)
[

ˆ̄Q−, V̂ 1
2
,+1

ˆ̄V− 1
2
,−1

]

= −V̂ 1
2
,+1

ˆ̄T 1
2
,

{

ˆ̄Q−, V̂ 1
2
,+1

ˆ̄T 1
2

}

= 0,
{

ˆ̄Q−, T̂− 1
2

ˆ̄V− 1
2
,−1

}

= T̂− 1
2

ˆ̄T 1
2
,

[

ˆ̄Q−, T̂− 1
2

ˆ̄T 1
2

]

= 0, (3.45)
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which are isomorphic to (2.2) and (2.3) in the matrix model under identification between

supercharges in both sides. It leads to the correspondence of single-trace operators in the

matrix model to integrated vertex operators in the type IIA theory:

Φ1 =
1

N
trφ ⇔ Vφ(0) ≡ g2s

∫

d2z V̂ 1
2
,+1(z)

ˆ̄V− 1
2
,−1(z̄),

Ψ1 =
1

N
trψ ⇔ Vψ(0) ≡ g2s

∫

d2z T̂− 1
2
(z) ˆ̄V− 1

2
,−1(z̄),

Ψ̄1 =
1

N
tr ψ̄ ⇔ Vψ̄(0) ≡ g2s

∫

d2z V̂ 1
2
,+1(z)

ˆ̄T 1
2
(z̄),

1

N
tr (−iB) ⇔ VB(0) ≡ g2s

∫

d2z T̂− 1
2
(z) ˆ̄T 1

2
(z̄), (3.46)

where the bare string coupling gs is put in the r.h.s. to count the number of external lines

of amplitudes in the IIA theory. Furthermore, it can be naturally extended as

Φ2k+1 =
1

N
trφ2k+1 + (mixing) ⇔ Vφ(k) ≡ g2s

∫

d2z V̂k+ 1
2
,+1(z)

ˆ̄V−k− 1
2
,−1(z̄),

Ψ2k+1 =
1

N
trψ2k+1 + (mixing) ⇔ Vψ(k) ≡ g2s

∫

d2z T̂−k− 1
2
(z) ˆ̄V−k− 1

2
,−1(z̄),

Ψ̄2k+1 =
1

N
tr ψ̄2k+1 + (mixing) ⇔ Vψ̄(k) ≡ g2s

∫

d2z V̂k+ 1
2
,+1(z)

ˆ̄Tk+ 1
2
(z̄) (3.47)

for higher k(= 1, 2, · · · ). As discussed in [4], if we regard ψ (ψ̄) as a target space fermion

in the (NS, R) sector (the (R, NS) sector) in the corresponding type IIA theory, φ and

B are interpreted as an operator in the (R, R) sector and that in the (NS, NS) sector,

respectively. Then, (ν+ − ν−) represents the RR charge (up to a proportional constant).

The correspondence (3.46) and (3.47) are consistent with this interpretation.

The (R−, R+) vertex operators behave as singlets under Q̂+ and ˆ̄Q−. Actually,
[

Q̂+, V̂−k,−1(z)
ˆ̄Vk,+1(z̄)

]

=
[

ˆ̄Q−, V̂−k,−1(z)
ˆ̄Vk,+1(z̄)

]

= 0 (3.48)

for k = 0, 1, 2, · · · is shown by taking the OPEs. The vertex operators can be expressed as

Q̂+- and
ˆ̄Q−-exact forms:

V̂−k,−1(z) =

[

Q̂+,
1

k!
: (∂kq̂−1

+ )V̂−k,−1(z) :

]

,

ˆ̄Vk,+1(z̄) =

[

ˆ̄Q−,
1

k!
: (∂̄k ˆ̄q−1

− ) ˆ̄Vk,+1(z̄) :

]

, (3.49)

where the homotopy operators

q̂−1
+ (z) = eπβ(−

1
2
pφ̄+i

1
2
ph̄+ipx̄) q−1

+ (z), q−1
+ (z) ≡ e

1
2
φ+ i

2
H+ix(z),

ˆ̄q−1
− (z̄) = e−πβ(−

1
2
pφ−i 12ph−ipx) q̄−1

− (z̄), q̄−1
− (z̄) ≡ e

1
2
φ̄− i

2
H̄−ix̄(z̄) (3.50)

give the inverses of the supercurrents in the sense that
∮

z

dw

2πi
q̂+(w) q̂

−1
+ (z) = 1,

∮

z̄

dw̄

2πi
ˆ̄q−(w̄) ˆ̄q

−1
− (z̄) = 1. (3.51)
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However, : (∂kq̂−1
+ )V̂−k,−1(z) : and : (∂̄k ˆ̄q−1

− ) ˆ̄Vk,+1(z̄) : appearing in the r.h.s. of (3.49)

are not physical operators, because they belong to the NS sector but have integer x- and

x̄-momenta.5 Thus, we conclude that the (R−, R+) vertex operators are singlets under

the target-space supersymmetry.

In the correspondence (3.46) and (3.47), the (R−, R+) vertex operators seem to have no

counterparts in the matrix model. The result of the amplitudes (2.6) and (2.10) implies that

correlators of operators with nonzero Ramond charges do not vanish from the viewpoint

of the correspondence. Hence it is anticipated that the matrix model represents the type

IIA theory on a nontrivial background of (R−, R+) operators.

3.3 Type IIA theory on RR background

The worldsheet action of the type IIA theory consists of the free CFT part and the Liouville-

like interaction part:

SIIA = SCFT + Sint, (3.52)

SCFT =
1

2π

∫

d2z

[

∂ϕtot∂̄ϕtot+
Q

4

√

ĝR̂ϕtot+∂xtot∂̄xtot+∂Htot∂̄Htot

]

+(ghosts), (3.53)

Sint = µ1V(0,0)
B (0) ≡ µ1

∫

d2z T̂
(0)

− 1
2

(z) ˆ̄T
(0)
1
2

(z̄), (3.54)

where d2z = d(Re z) d(Im z), each boson with the suffix “tot” represents the sum of its

holomorphic and anti-holomorphic parts, and the 0-picture NS fields T̂
(0)

− 1
2

(z) and ˆ̄T
(0)
1
2

(z̄)

do not have the ǫ = −1 and ǭ = +1 parts in (C.6):

T̂
(0)

− 1
2

(z) = T̂
(0)

− 1
2
,+1

(z) = eπβ(iph̄−i
1
2
px̄) i√

2
eiH−i 1

2
x+ 1

2
ϕ(z),

ˆ̄T
(0)
1
2

(z̄) = ˆ̄T
(0)
1
2
,−1

(z̄) = e−πβ(−iph+i
1
2
px) i√

2
e−iH̄+i 1

2
x̄+ 1

2
ϕ̄(z̄). (3.55)

Here and in what follows, superscripts indicating the picture numbers are put on vertex

operators except that they have the natural pictures ((−1) for NS fields and (−1
2) for R

fields). The form of Sint corresponds to the term Ntr(−iµ2B) in the matrix model action

via (3.46) (up to a choice of the picture under identification of 1/N and gs). The Liouville

coupling µ1 is related to µ2 in the matrix model, which is clarified in section 5.

In the trivial background, the genus-zero amplitude with insertion of integrated vertex

operators Vi =
∫

d2z V̂i(z, z̄) reads
1

Vol(CKG(S2))
〈∏i Vi〉 with

〈

∏

i

Vi
〉

=

∫

DĝxtotDĝϕtotDĝHtotDĝ(ghosts) e
−SIIA

∏

i

Vi. (3.56)

Dividing by the conformal Killing group of the sphere is equivalent to fixing the positions

of three vertex operators with cc̄ inserted at each of the fixed positions:

1

Vol(CKG(S2))

〈

∏

i

Vi
〉

=

〈

3
∏

i=1

cc̄V̂i(zi, z̄i)
∏

j≥4

Vj
〉

. (3.57)

5Although they are in the 0-picture, the same conclusion holds after the picture is changed to −1,

because the values of x- and ϕ-momenta are intact in the picture changing operation.
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We take a usual choice of (z1, z2, z3) = (∞, 1, 0). As the amplitude on a nontrivial (R−,

R+) background, we consider6

〈〈

∏

i

Vi
〉〉

≡
〈(

∏

i

Vi
)

eWRR

〉

=

〈(

∏

i

Vi
)

(

1 +WRR +
1

2!
(WRR)

2 + · · ·
)

〉

, (3.58)

where the background is incorporated as a linear combination of vertex operators in the

(R−, R+) sector with numerical coefficients ak:

WRR = qRR

∑

k∈Z
ak µ

k+1
1 VRR

k , (3.59)

VRR
k ≡

{

∫

d2z V̂k,−1(z)
ˆ̄V−k,+1(z̄) (k = 0,−1,−2, · · · )

∫

d2z V̂
(nonlocal)
−k,−1 (z) ˆ̄V

(nonlocal)
k,+1 (z̄) (k = 1, 2, · · · ).

(3.60)

qRR is an RR charge related to (ν+−ν−) in the matrix model. VRR
k (k = 0,−1,−2, · · · ) are

the (R−, R+) vertex operators in (3.12). On the other hand, for VRR
k (k = 1, 2, · · · ), we

choose (R−, R+) vertex operators of the nonlocal branch (pℓ = 1+ |k|). Since the nonlocal
vertex operators are invariant under Q̂+ and ˆ̄Q− as well as the local ones, WRR consists of

the maximal set of (R−, R+) vertex operators preserving the target-space supersymmetry.7

Notice that we do not regard the (R−, R+) operators as particles in asymptotic states, but

as a background. From this point of view it will be natural to include nonlocal operators

in addition to the local ones in WRR.
8 Actually, as we will see later, the inclusion of

nonlocal operators is crucial to match the matrix-model amplitudes with the type IIA

ones. It should be pointed out that the nonlocal operators do not satisfy the Dirac equation

constraint. More precisely, they are invariant under a half of the worldsheet supersymmetry

transformations (G−
0 , Ḡ

+
0 ) but not under the other half (G+

0 , Ḡ
−
0 ). This point will be

discussed in some detail in section 6. It seems somewhat similar to a boundary operator,

and tempts us to interpret it as a certain brane-like object, which however preserves linear

combinations of holomorphic and anti-holomorphic generators (for example, G+
0 + iḠ−

0 and

G−
0 + iḠ+

0 for an A-brane configuration [16]). Such a brane could exist without breaking

the target-space supersymmetry in our case, since the supersymmetry does not induce

translations in the target space. It would be interesting to proceed analysis from the

viewpoint of this interpretation.

The treatment of the background (3.58) is a perturbation from the trivial background,

and valid for small |qRR|. We exactly compute the path-integral with respect to the constant

6Similar treatment of an RR flux background is discussed in ref. [13].
7Ref. [11] considers different nonlocal RR vertex operators with ǫ, ǭ flipped in addition to pℓ = 1 + |k|.

They satisfy the Dirac equation constraint, but do not preserve the target-space supersymmetry.
8According to ref. [14], we find some similarity in the c = 1 Liouville theory. Nonlocal W∞ operators

(forbidden by the Seiberg bound) there deform the linear dilaton background to a two-dimensional black-

hole one [15] with an infinitesimally small mass.
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mode of the Liouville coordinate ϕtot as performed in refs. [17, 18] to obtain
〈

∏

i

Vi
〉

= 2Γ(−s)µs1
1

VL

〈(

∏

i

Vi
)

V(0,0)
B (0)s

〉

CFT

, (3.61)

where s = −2
∑

i pℓ i+Qχ(S
2) (χ(M) denotes the Euler number of the manifoldM), VL is

the volume of the Liouville direction, and the suffix “CFT” means the correlator computed

under the free CFT action SCFT in (3.54). Calculation of the amplitude (3.61) can be

explicitly carried out only when s is a nonnegative integer. Then, according to [19], the

divergent factor Γ(−s) is regularized as

Γ(−s) → (−1)s

s!
ln

1

µ1
. (3.62)

As usual in computations in the RNS formalism, the total picture in each of holomor-

phic and anti-holomorphic sectors should be adjusted to 2h − 2 for a handle-h Riemann

surface. Although cocycle factors in (3.54) and (3.60) might seem to induce nonlocal in-

teractions, we will see in the following that they merely give phase factors to amplitudes

reflecting target-space statistics.

4 Basic amplitudes

As a preparation to obtain IIA amplitudes on the RR background, we compute some basic

CFT amplitudes in the form (3.61). We will consider various amplitudes which contain RR

fields and are relevant to comparison with the matrix model results. The nonlocal branch

(pℓ = 1 + |k|) as well as the local one (pℓ = 1 − |k|) are considered for (R−, R+) vertex

operators. Amplitudes which consist only of “tachyons” are briefly mentioned at the end

of this section.

Before computation, we notice that in the spectrum (3.12) the target-space bosons

coming from the (NS, NS) and (R±, R∓) sectors are “winding-like” k̄ = −k, while the

target-space fermions from the (NS, R−) and (R+, NS) sectors are “momentum-like”

k̄ = k. Then it immediately follows that momentum/winding in the x-direction is conserved

separately in the bosons and fermions. As a corollary, we conclude that if we have a fermion

in the (NS, R−) sector, there must be a one in the (R+, NS) sector and vice versa to obtain

a nontrivial amplitude.

4.1 (NS, NS)-(R+, R−)-(R−, R+)

We first compute the three-point amplitude among the fields of (NS, NS), (R+, R−) and

(R−, R+):

V̂1(z1, z̄1) = T̂k1(z1)
ˆ̄T−k1(z̄1)

(

k1 ∈ Z+
1

2

)

,

V̂2(z2, z̄2) = V̂k2,+1(z2)
ˆ̄V−k2,−1(z̄2)

(

k2 =
1

2
,
3

2
, · · ·

)

,

V̂3(z3, z̄3) = V̂k3,−1(z3)
ˆ̄V−k3,+1(z̄3) (k3 = 0,−1,−2, · · · ), (4.1)
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which is compared to the matrix model amplitude (2.6) in section 5.1. From the con-

servation of H and H̄ charges (or equivalently, integrals over the zero-modes h0 and h̄0
in (3.61)), only the s = 0 case is possibly nonvanishing. The s = 0 amplitude reads

〈

3
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

=

(

2 ln
1

µ1

)

1

VL

×〈0|T̂k1(z1) ˆ̄T−k1(z̄1) V̂k2,+1(z2)
ˆ̄V−k2,−1(z̄2) V̂k3,−1(z3)

ˆ̄V−k3,+1(z̄3)|0〉. (4.2)

Here, the bra vacuum 〈0| has the background charge (+2,+2) for the bosonized super-

conformal ghost (φ, φ̄) and the background charge −Q
2 χ(S

2) = −2 for the Liouville field,

while the ket vacuum |0〉 is neutral for both of these charges. By using (3.36) and (3.38),

the last line in (4.2) becomes

ei2πβ(−
3
2
+
∑

i<j kikj)〈0|T̂k1(z1) V̂k2,+1(z2) V̂k3,−1(z3)

× ˆ̄T−k1(z̄1)
ˆ̄V−k2,−1(z̄2)

ˆ̄V−k3,+1(z̄3)|0〉. (4.3)

We move the three cocycle factors in the last line to act on |0〉. Since |0〉 is annihilated by

pφ, ph and px, the cocycle factors do not work anymore:

ˆ̄T−k1(z̄1)
ˆ̄V−k2,−1(z̄2)

ˆ̄V−k3,+1(z̄3)|0〉 = T̄−k1(z̄1) V̄−k2,−1(z̄2) V̄−k3,+1(z̄3)|0〉. (4.4)

Similarly, by moving the three cocycle factors in the first line to act on 〈0|, the phase factor
ei4πβ arises picking up the background charge for φ̄. However, because of β ∈ Z + 1

2 the

phase is trivial. Thus,

〈0|T̂k1(z1) V̂k2,+1(z2) V̂k3,−1(z3) = 〈0|Tk1(z1)Vk2,+1(z2)Vk3,−1(z3). (4.5)

Now, the amplitude is factorized into the holomorphic and the anti-holomorphic part as
〈

3
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

=

(

2 ln
1

µ1

)

1

VL
ei2πβ(−

3
2
+
∑

i<j kikj)

×〈0|Tk1(z1)Vk2,+1(z2)Vk3,−1(z3)|0〉 〈0|T̄−k1(z̄1) V̄−k2,−1(z̄2) V̄−k3,+1(z̄3)|0〉.
(4.6)

The last line in (4.6) is computed by the Wick contraction. We end up with

〈

3
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

= δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

ei2πβ(−
3
2
− 1

2

∑
i k

2
i )

×|z1 − z2|−1|z1 − z3|−1|z2 − z3|−1
∏

i<j

|zi − zj |2(kikj−pℓipℓj ), (4.7)

where the factor 1
VL

in (4.6) is canceled with VL from the delta-function of the conservation

of the Liouville momentum:

δ

(

∑

i

pℓi − 2

)

= VL δ∑
i pℓi , 2

, (4.8)
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and the phase factor in (4.6) was recast by using the x-winding conservation
∑

i ki = 0.

We fix three positions as (z1, z2, z3) = (∞, 1, 0) with inserting cc̄ at each of them. The

result is
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

ei2πβ(−
3
2
− 1

2

∑
i k

2
i ).

(4.9)

The kinematical constraints (
∑

i ki = 0 and
∑

i pℓi = 2) are met by

(k1, k2, k3) =

(

−1

2
,
1

2
, 0

)

, (pℓ1 , pℓ2 , pℓ3) =

(

1

2
,
1

2
, 1

)

(4.10)

for the local branch of V̂3, and by

(k1, k2, k3) =

(

−1

2
, k +

1

2
, −k

)

, (pℓ1 , pℓ2 , pℓ3) =

(

1

2
, −k + 1

2
, k + 1

)

(4.11)

with k = 1, 2, · · · for the nonlocal branch. Notice that if we did not allow the nonlocal

branch, k2 could not take values in N+ 1
2 .

4.2 2(R+, R−)-2(R−, R+)

Let us compute the four-point amplitude of two (R+, R−) and two (R−, R+) fields:

V̂a(za, z̄a) = V̂ka,+1(za)
ˆ̄V−ka,−1(z̄a)

(

ka =
1

2
,
3

2
, · · ·

)

,

V̂b(zb, z̄b) = V̂kb,−1(zb)
ˆ̄V−kb,+1(z̄b) (kb = 0,−1,−2, · · · ) (4.12)

with a = 1, 2 and b = 3, 4. It gives the counterpart of the matrix model result (2.7) or (2.11)

as we see in section 5.2. Only the s = 0 case in the amplitude (3.61) can be nontrivial from

the conservation of H and H̄ charges. A parallel argument to (4.2)–(4.7) leads to
〈

4
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

= δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

e−iπβ
∑

i k
2
i

×|z1 − z3|−1|z1 − z4|−1|z2 − z3|−1|z2 − z4|−1
∏

i<j

|zi − zj |2(kikj−pℓipℓj ). (4.13)

The corresponding string amplitude on the trivial background is obtained from (4.13) by

fixing the first three positions as (z1, z2, z3) = (∞, 1, 0) and integrating the rest (z4). Then,

we have
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

e−iπβ
∑

i k
2
i I(1,0), (4.14)

where I(1,0) is the integral I(1,0) defined by (D.1) with

α = ᾱ = k3k4 − pℓ3pℓ4 , β = β̄ = k2k4 − pℓ2pℓ4 −
1

2
. (4.15)
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The kinematics restricts ki and pℓi as follows. For both of V̂b belonging to the local branch,

(k1, k2, k3, k4) =

(

1

2
,
1

2
, 0, −1

)

or

(

1

2
,
1

2
, −1, 0

)

(4.16)

with the corresponding Liouville momenta

(pℓ1 , pℓ2 , pℓ3 , pℓ4) =

(

1

2
,
1

2
, 1, 0

)

or

(

1

2
,
1

2
, 0, 1

)

, (4.17)

respectively. For one of V̂b (say, V̂3) local and the rest (V̂4) nonlocal,

(k1, k2, k3, k4) =

(

n1 +
1

2
, n2 +

1

2
, −1, −n1 − n2

)

,

(pℓ1 , pℓ2 , pℓ3 , pℓ4) =

(

−n1 +
1

2
, −n2 +

1

2
, 0, n1 + n2 + 1

)

(4.18)

with n1, n2 = 0, 1, 2, · · · but (n1, n2) 6= (0, 0). The case of both of V̂b nonlocal is not allowed.

If we try to plug these on-shell values into I(1,0) in (D.12) (or (D.14)) directly to get

I(1,0), it becomes indefinite or divergent. Thus we adopt the following prescription as a

regularization. All the powers of the integrand in I(1,0) are uniformly shifted, i.e. α, ᾱ, β, β̄

are shifted by the same small quantity ε. Note that the uniform shift preserves the mutual

locality of vertex operators and thus the equality between (D.12) and (D.14) (see (D.15)).

In the regularized result, we take 1
ε proportional to the volume of the Liouville direction:

1

ε
= cL

(

2 ln
1

µ1

)

(4.19)

with cL being a proportional constant. Since the divergence can be interpreted as a reso-

nance in string theory, it seems plausible to regard 1
ε as the Liouville volume. Namely, it

essentially has the same origin as in (3.62). Similar treatment is found in c = 1 noncritical

bosonic string theory [20].

4.2.1 Case of both of V̂b local

For the case of both of V̂b local, α = ᾱ = 0 and β = β̄ = −1 at (4.16) and (4.17). Then,

I(1,0) = π
Γ(1 + ε) Γ(ε)

Γ(1 + 2ε)

Γ(−2ε)

Γ(−ε) Γ(1− ε)
=
π

2

1

ε
+O(1)

=
π

2
cL

(

2 ln
1

µ1

)

+O(1). (4.20)

Plugging (4.20) into (4.14), we have

〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)2

e−iπβ
∑

i k
2
i
π

2
cL. (4.21)
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4.2.2 Case of one of V̂b local

For the case of one of V̂b (say, V̂3) local and the rest (V̂4) nonlocal, α = ᾱ = n1 + n2 and

β = β̄ = −n1 − 1 at (4.18). As a result of the regularization with (4.19),

I(1,0) = π
Γ(n1 + n2 + 1 + ε) Γ(−n1 + ε)

Γ(n2 + 1 + 2ε)

Γ(−n2 − 2ε)

Γ(−n1 − n2 − ε) Γ(n1 + 1− ε)

=
π

2

(

(n1 + n2)!

n1!n2!

)2

cL

(

2 ln
1

µ1

)

+O(1). (4.22)

Then, the amplitude finally becomes
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)2

e−iπβ
∑

i k
2
i
π

2

(

(n1 + n2)!

n1!n2!

)2

cL. (4.23)

As a consistency check, we can see that the case of V̂4 local and V̂3 nonlocal gives the

identical result. It should be so, since V̂b are target-space bosons.

4.3 (NS, R−)-(R+, NS)-(R−, R+)

Next we turn to the amplitude including the target-space fermions. We consider the three-

point amplitude of (NS, R−) and (R+, NS) fermions and an (R−, R+) field:

V̂1(z1, z̄1) = T̂k1(z1)
ˆ̄Vk1,−1(z̄1)

(

k1 = −1

2
,−3

2
, · · ·

)

,

V̂2(z2, z̄2) = V̂k2,+1(z2)
ˆ̄Tk2(z̄2)

(

k2 =
1

2
,
3

2
, · · ·

)

,

V̂3(z3, z̄3) = V̂k3,−1(z3)
ˆ̄V−k3,+1(z̄3) (k3 = 0,−1,−2, · · · ), (4.24)

which corresponds to the matrix-model amplitude (2.10) with k = ℓ = 0 as is seen in

section 5.3. The s = 0 case alone satisfies the conservation of H and H̄ charges in (3.61).

After a similar calculation as in the previous one, we have
〈

3
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

= δk1+k2, 0 δk3, 0 δ
∑

i pℓi , 2

(

2 ln
1

µ1

)

ei2πβ(−1+k21)

×|z1 − z2|−1|z1 − z3|−1|z2 − z3|−1
∏

i<j

(zi − zj)
kikj−pℓipℓj (z̄i − z̄j)

k̃ik̃j−pℓipℓj

(4.25)

with k̃1 = k1, k̃2 = k2, k̃3 = −k3. Here as we mentioned at the beginning of this section,

δk1+k2, 0 and δk3, 0 represent the conservations of x-momentum and of x-winding, respec-

tively. The string amplitude is obtained as
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= δk1+k2, 0 δk3, 0 δ
∑

i pℓi , 2

(

2 ln
1

µ1

)

ei2πβ(−1+k21).

(4.26)
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The kinematics allows only the possibility

(k1, k2, k3) =

(

−1

2
,
1

2
, 0

)

, (pℓ1 , pℓ2 , pℓ3) =

(

1

2
,
1

2
, 1

)

(4.27)

with the local branch of V̂3. Its nonlocal branch is not allowed.

4.4 (NS, R−)-(R+, NS)-3(R−, R+)

In order to obtain the counterpart of (2.10) with k = ℓ = 1, we consider the five-point

amplitude of (NS, R−) and (R+, NS) fermions and three (R−, R+) fields:

V̂1(z1, z̄1) = T̂
(0)
k1

(z1)
ˆ̄Vk1,−1(z̄1)

(

k1 = −1

2
,−3

2
, · · ·

)

,

V̂2(z2, z̄2) = V̂k2,+1(z2)
ˆ̄T
(0)
k2

(z̄2)

(

k2 =
1

2
,
3

2
, · · ·

)

,

V̂a(za, z̄a) = V̂ka,−1(za)
ˆ̄V−ka,+1(z̄a) (ka = 0,−1,−2, · · · ) (4.28)

with a = 3, 4, 5. From the conservation of H and H̄ charges, the case other than s = 0, 2

in (3.61) vanishes. Furthermore, the conservation of x-winding (
∑

a ka− s
2 = 0) singles out

the s = 0 case as the nontrivial one and then ka = 0 for all a.9

From the Wick contraction,
〈

5
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

=
−1

2
(pℓ1 − k1)(pℓ2 + k2) δk1+k2, 0 δ

∑
a ka, 0

δ∑
i pℓi , 2

×
(

2 ln
1

µ1

)

ei2πβ(−3+ 1
2

∑5
i=1 kik̃i) |z1 − z2|

×
(

2
∏

i=1

5
∏

a=3

|zi − za|−1

)

∏

i<j

(zi − zj)
kikj−pℓipℓj (z̄i − z̄j)

k̃ik̃j−pℓipℓj , (4.29)

where k̃1 = k1, k̃2 = k2, but k̃a = −ka. Note that the ǫ = −1 part of T̂
(0)
k1

or the ǭ = +1

part of ˆ̄Tk2 does not contribute to the amplitude, which ensures the correct target-space

statistics as discussed in appendix C.

The kinematics restricts ki and pℓi as

(k1, k2, ka) =

(

−3

2
,
3

2
, 0

)

, (pℓ1 , pℓ2 , pℓa) =

(

−1

2
, −1

2
, 1

)

(4.30)

and all of V̂a local. It leads to the string amplitude

〈

3
∏

i=1

cc̄V̂i(zi, z̄i)
∏

j=4,5

∫

d2zj V̂j(zj , z̄j)

〉

∣

∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

=
−1

2
δk1+k2, 0 δk3+k4+k5, 0 δ

∑
i pℓi , 2

(

2 ln
1

µ1

)

ei2πβ(−1+k21) I(1,1). (4.31)

9The fact that s = 0 and ka = 0 for all a is also the case with general k = ℓ 6= 0, 1, where we have a

(2k + 3)-point amplitude with (NS, R−) and (R+, NS) fermions and 2k + 1 (R−, R+) fields.
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Here, I(1,1) is the integral I(1,1) given by (D.2) with

α = ᾱ = k3k4 − pℓ3pℓ4 , α′ = ᾱ′ = k3k5 − pℓ3pℓ5 ,

β = k2k4 − pℓ2pℓ4 −
1

2
, β′ = k2k5 − pℓ2pℓ5 −

1

2
,

β̄ = −k2k4 − pℓ2pℓ4 −
1

2
, β̄′ = −k2k5 − pℓ2pℓ5 −

1

2
,

2σ = k4k5 − pℓ4pℓ5 . (4.32)

To evaluate I(1,1) at the on-shell momenta (4.30) by (D.31), we use the regularization

mentioned above. Namely, all the powers of the integrand in I(1,1) (α, β, α
′, β′, ᾱ, β̄, ᾱ′,

β̄′, 2σ) are uniformly shifted by ε. Then, γ and γ′ given by (D.27) become

γ → γ − 3ε, γ′ → γ′ − 3ε. (4.33)

Under the shift, we have

C12[ᾱi, ᾱ
′
i] = C12[ᾱ′

i, ᾱi] = −3

ε
+O(1),

C23[αi, α
′
i] = C23[α′

i, αi] =
1

ε
+O(1) (4.34)

from the expressions (D.32) and (D.33). Here, the formula

3F2(x, y, z ;x− y + 1, x− z + 1; 1) =
Γ(x2 + 1)Γ(x− y + 1)Γ(x− z + 1)Γ(x2 − y − z + 1)

Γ(x+ 1)Γ(x2 − y + 1)Γ(x2 − z + 1)Γ(x− y − z + 1)
(4.35)

is useful. The factors s(β), s(β′), s(β+2σ) and s(β′+2σ) in (D.31) become O(ε) quantities,

which absorb the divergent factors from C12’s and C23’s. Thus, the final result of I(1,1) is
finite:

I(1,1) = 6π2. (4.36)

From (4.31) and (4.36), we end up with
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)
∏

j=4,5

V̂j(zj , z̄j)

〉

∣

∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= δk1+k2, 0 δk3+k4+k5, 0 δ
∑

i pℓi , 2

(

2 ln
1

µ1

)

ei2πβ(−1+k21) (−3π2). (4.37)

4.5 (NS, NS)-(NS, R−)-(R+, NS)-(R+, R−)

Let us compute the four-point amplitude of (NS, NS), (R+, R−) bosons and (NS, R−),

(R+, NS) fermions:

V̂1(z1, z̄1) = T̂
(0)
k1

(z1)
ˆ̄T
(0)
−k1(z̄1)

(

k1 ∈ Z+
1

2

)

,

V̂2(z2, z̄2) = T̂k2(z2)
ˆ̄Vk2,−1(z̄2)

(

k2 = −1

2
,−3

2
, · · ·

)

,

V̂2(z2, z̄2) = V̂k3,+1(z3)
ˆ̄Tk3(z̄3)

(

k3 =
1

2
,
3

2
, · · ·

)

,

V̂4(z4, z̄4) = V̂k4,+1(z4)
ˆ̄V−k4,−1(z̄4)

(

k4 =
1

2
,
3

2
, · · ·

)

. (4.38)
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The conservation of H and H̄ charges shows that the amplitude (3.61) for s = 0,−2 can be

nontrivial. Although the s = −2 case is not calculable by the standard CFT technique, the

kinematical constraint from the Liouville momentum leads to
∑

i |ki| = 1, which however

is not met because of |ki| ≥ 1
2 for all i. Thus, the s = −2 amplitude should vanish, and the

s = 0 case alone remains to be considered.10 The Wick contraction leads to
〈

4
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

=
−1

2
(pℓ1 + k1)

2 δk1+k4, 0δk2+k3, 0 δ
∑

i pℓi , 2

(

2 ln
1

µ1

)

ei2πβ(−
3
2
−k21+k22)

×|z1 − z4|−1|z2 − z3|−1(z1 − z3)
−1/2(z2 − z4)

−1/2(z̄1 − z̄2)
−1/2(z̄3 − z̄4)

−1/2

×
∏

i<j

(zi − zj)
kikj−pℓipℓj (z̄i − z̄j)

k̃ik̃j−pℓipℓj (4.39)

with k̃1 = −k1, k̃2 = k2, k̃3 = k3, k̃4 = −k4. The kinematical constraints allow

k1 = k2 = −1

2
, k3 = k4 =

1

2
, pℓi =

1

2
for all i. (4.40)

Then, the corresponding string amplitude is expressed as
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4 V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

=
1

2
(pℓ1 + k1)

2 δk1+k4, 0 δk2+k3, 0 δ
∑

i pℓi , 2

(

2 ln
1

µ1

)

e−i3πβ I(1,0), (4.41)

where I(1,0) is given by I(1,0) in (D.1) with

α = k3k4 − pℓ3pℓ4 , ᾱ = −k3k4 − pℓ3pℓ4 −
1

2
,

β = k2k4 − pℓ2pℓ4 −
1

2
, β̄ = −k2k4 − pℓ2pℓ4 . (4.42)

We calculate I(1,0) at the on-shell value (4.40) by the regularization method to obtain

I(1,0) =
π

2

1

ε
=
π

2
cL

(

2 ln
1

µ1

)

. (4.43)

However, since the factor (pℓ1 + k1)
2 vanishes for (4.40), we conclude that the amplitude

is trivial:
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4 V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= 0. (4.44)

The result (4.44) can be intuitively understood. From the H and H̄ charge conserva-

tion, only the (ǫ, ǭ) = (−1,+1) part of

V̂1 = T̂
(0)
k1

ˆ̄T
(0)
−k1 =

∑

ǫ,ǭ=±1

T̂
(0)
k1, ǫ

ˆ̄T
(0)
−k1, ǭ (4.45)

is allowed to contribute to the amplitude. But, that part disappears at the on-shell (4.40)

from (C.2), and the amplitude must vanish. It supports the validity of the regulariza-

tion method.
10Note that arguments based on the charge or momentum/winding conservation can be applied even in

the case of negative s, since it concerns solely the corresponding zero-modes.
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4.6 2(NS, NS)-2(R+, R−)

The four-point amplitude of

V̂1(z1, z̄1) = T̂k1(z1)
ˆ̄T−k1(z̄1),

V̂2(z2, z̄2) = T̂
(0)
k2

(z2)
ˆ̄T
(0)
−k2(z̄2)

(

k1, k2 ∈ Z+
1

2

)

,

V̂b(zb, z̄b) = V̂kb,+1(zb)
ˆ̄V−kb,−1(z̄b)

(

kb =
1

2
,
3

2
, · · ·

)

(4.46)

with b = 3, 4 can be computed by following the same lines as in section 4.5. H and

H̄ charges conserve only for s = 0,−2, and the kinematical constraint for the Liouville

momentum allows only the s = 0 case. From the result

〈

4
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

=
−1

2
(pℓ2 + k2)

2 δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

e−iπβ
∑

i k
2
i

×





∏

a=1,2

∏

b=3,4

|za − zb|−1





∏

i<j

|zi − zj |2(kikj−pℓipℓj ), (4.47)

we have the expression of the string amplitude

〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4 V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

=
−1

2
(pℓ2 + k2)

2 δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

e−iπβ
∑

i k
2
i I(1,0). (4.48)

Here, I(1,0) is (D.1) with

α = ᾱ = k3k4 − pℓ3pℓ4 , β = β̄ = k2k4 − pℓ2pℓ4 −
1

2
. (4.49)

I(1,0) evaluated at the on-shell value

k1 = k2 = −1

2
, k3 = k4 =

1

2
, pℓi =

1

2
for all i (4.50)

by the regularization becomes

I(1,0) =
π

2
cL

(

2 ln
1

µ1

)

. (4.51)

Since the factor (pℓ2 + k2)
2 vanishes at the on-shell, we find

〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4 V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= 0. (4.52)
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4.7 4(NS, NS)

For readers who are interested in “tachyon” amplitudes, we present the s = 0 amplitude

of four (NS, NS) “tachyons”11

V̂a(za, z̄a) = T̂ka(za)
ˆ̄T−ka(z̄a)

(

ka ∈ Z+
1

2
, a = 1, 2

)

,

V̂b(zb, z̄b) = T̂
(0)
kb

(zb)
ˆ̄T
(0)
−kb(z̄b)

(

kb ∈ Z+
1

2
, b = 3, 4

)

(4.53)

as
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4 V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= (pℓ3pℓ4 − k3k4)
2 δ∑

i ki, 0
δ∑

i pℓi , 2

(

2 ln
1

µ1

)

e−iπβ
∑

i k
2
i I(1,0), (4.54)

where I(1,0) is (D.1) with

α = ᾱ = k3k4 − pℓ3pℓ4 − 1, β = β̄ = k2k4 − pℓ2pℓ4 . (4.55)

From (D.12) or (D.14), we can formally rewrite (4.54) to the form:
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4 V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

e−iπβ
∑

i k
2
i (−π)

3
∏

i=1

Γ(kik4 − pℓipℓ4 + 1)

Γ(−kik4 + pℓipℓ4)
. (4.56)

The factors of the gamma functions are common in “tachyon” amplitudes in two-

dimensional (super)string theory, for example eq. (3.14) in [19].

However, at the on-shell momenta

k1 = k2 =
1

2
, k3 = k4 = −1

2
, pℓi =

1

2
for all i, (4.57)

our regularization scheme gives

I(1,0) = πcL

(

2 ln
1

µ1

)

. (4.58)

Then we obtain the vanishing amplitude12

〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4 V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= 0. (4.59)

The result (4.59) immediately implies that the three-point function of “tachyons” for

s = 1 also vanishes from (3.61) and (3.62). Together with the conservation of H, H̄ charges

and the Liouville momentum, we conclude that it vanishes for any s.

11Since it is not used to check the correspondence with the matrix model in this paper, readers who want

to see the correspondence quickly can skip this subsection.
12Although in (4.56) we have included contributions from the 0-picture tachyons with ǫ = ǭ which have

incorrect target-space statistics as shown in appendix C, it is easy to check that they themselves vanish at

the on-shell value (4.57).
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5 Check of the correspondence

In this section, we compute various amplitudes in the IIA theory on the RR background

based on the result in the previous section, and show that the correspondence (3.46)

and (3.47) hold at the level of the amplitudes.

Here we consider leading nontrivial contributions in the perturbation by WRR. Then,

the RR charge qRR will be identified with the quantity (ν+ − ν−) in the matrix model:13

ν+ − ν− = qRR, (5.1)

where a proportional constant is absorbed into ak in (3.59). By a constant shift of the

Liouville field ϕtot = ϕ + ϕ̄, we can adjust the value of µ1 to be equal to ω, where ω is

the parameter in the matrix model (2.8).14 Then, the ω-dependence of the matrix model

action (2.1) and the µ1-dependence of the Liouville-like interaction term (3.54) suggest the

identification15

N tr(−iB) ∼= 1

4
V(0,0)
B (0). (5.2)

It is consistent with the last line in (3.46) up to the choice of the picture with

1

N
∼= gs. (5.3)

To make (3.46) and (3.47) more precise, we introduce numerical coefficients ck, dk and d̄k
and write

Φ2k+1
∼= ck Vφ(k), Ψ2k+1

∼= dk Vψ(k), Ψ̄2k+1
∼= d̄k Vψ̄(k). (5.4)

As we will see later, these coefficients appear to contain no divergence. It is contrast to

the correspondence of two-dimensional bosonic string theory to the c = 1 matrix model

or the Penner model, where momentum-dependent divergent factors, the so-called leg fac-

tors, should be put to connect quantities in the string theory with those in the matrix

model [20, 22].

5.1 〈N tr(−iB) Φ2k+1〉C,0

The matrix-model amplitude 〈N tr(−iB) Φ2k+1〉C,0 is obtained by differentiating (2.6) with

respect to ω:

〈N tr(−iB) Φ2k+1〉C,0
∣

∣

∣

sing.
= −1

4

∂

∂ω
〈Φ2k+1〉0|sing.

= −1

4
(ν+ − ν−)

2k+2

π

(2k + 1)!!

(k + 1)!
ωk+1 lnω + (less singular). (5.5)

13A similar observation is made in a matrix model for noncritical type 0B string theory [21], where

eigenvalues asymmetrically filled in two potential wells are interpreted as an RR field.
14Here we have implicitly assumed that µ1 > 0.
15The additional term − 1

4
∂

∂µ1
WRR could appear in the r.h.s. of (5.2) due to the µ1-dependence of the

RR background. It gives small corrections of the order (ν+ − ν−) compared to the leading 1
4
V(0,0)
B (0). In

this section, we focus on contributions from the leading and neglect these corrections.
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Note that this is equal to the leading contribution to 〈Ntr(−iB) Φ2k+1〉C at large N as seen

from (2.4). The corresponding IIA amplitude is N g−2
s

〈〈

1
4V

(0,0)
B ckVφ(k)

〉〉

, where we put

an overall normalization constant N independent of fields, and the bare string coupling g−2
s

due to the sphere topology (a string tree amplitude).16 The leading nontrivial contribution

in the small (ν+ − ν−)-expansion comes from the linear order of WRR in (3.58). Under an

appropriate choice of the picture, it reads

N g−2
s

〈〈

1

4
V(0,0)
B (0) ckVφ(k)

〉〉

=
1

4
N g−4

s ck (ν+ − ν−)
∑

ℓ∈Z
aℓ ω

ℓ+1
〈

VB(0)Vφ(k)VRR
ℓ

〉

= −1

4
(ν+ − ν−) 2N ckak ω

k+1(lnω) ei2πβ(−k
2− 1

2
k+ 1

4
).

(5.6)

(4.9)–(4.11) were used in the last equality. We find that dependence on ω as well as ν±
completely coincides in (5.5) and (5.6) for any k. In particular, as we have noticed at the

end of section 4.1, the existence of the nonlocal branch enables this agreement to hold for

any k ∈ N. Furthermore by identifying their coefficients, we have a relation

N ĉkâk e
iπβ 3

4 =
2

π

(2k + 1)!

k!(k + 1)!
(5.7)

with

ĉk ≡ ck e
−iπβ(k+ 1

2
)2 , âk ≡ ak e

−iπβk2 . (5.8)

5.2 〈Φ2k1+1 Φ2k2+1〉C,0

The large-N leading part of the two-point function 〈Φ2k1+1Φ2k2+1〉C in the matrix model

reads from (2.11) as

1

N2
〈Φ2k1+1Φ2k2+1〉C,0

∣

∣

∣

∣

sing.

=
1

N2

{

− (ν+ − ν−)2

2π2
1

k1 + k2 + 1

(2k1 + 1)!

(k1!)2
(2k2 + 1)!

(k2!)2
ωk1+k2+1(lnω)2

+ (less singular)

}

. (5.9)

The corresponding IIA amplitude is N g−2
s 〈〈ck1Vφ(k1) ck2Vφ(k2)〉〉, whose leading nontrivial

contribution comes from the quadratic order of WRR as

N g−2
s 〈〈ck1Vφ(k1) ck2Vφ(k2)〉〉 =

1

2
N g−2

s ck1ck2 (ν+ − ν−)
2

×
∑

ℓ1,ℓ2∈Z
aℓ1aℓ2 ω

ℓ1+ℓ2+2
〈

Vφ(k1)Vφ(k2)VRR
ℓ1 VRR

ℓ2

〉

. (5.10)

16In general, g2h−2
s is put for a string h-loop amplitude.
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From the result in section 4.2, we have

〈

Vφ(k1)Vφ(k2)VRR
ℓ1 VRR

ℓ2

〉

= g4s (δℓ1, k1+k2 δℓ2,−1 + (ℓ1 ↔ ℓ2))

× (2 lnω)2 e−iπβ{
∑2

i=1(ki+
1
2
)2+

∑2
i=1 ℓ

2
i } π

2

(

(k1 + k2)!

k1!k2!

)2

cL. (5.11)

There appears the square of the Liouville volume (2 lnω)2. One of them is from the integral

over the Liouville constant mode as in (3.62) as usual, while the other from the resonance

of on-shell particles and the background as mentioned in (4.19). Thus we obtain

N g−2
s 〈〈ck1Vφ(k1) ck2Vφ(k2)〉〉

= (ν+ − ν−)
2N g2s cL ĉk1 ĉk2 âk1+k2 â−1 2π

(

(k1 + k2)!

k1!k2!

)2

ωk1+k2+1 (lnω)2. (5.12)

(5.9) and (5.12) indeed have the same dependence on ν± and ω for any k1 and k2. Moreover,

the dependence on k1 and k2 of the coefficient in (5.12) is written in a factorized form as

f(k1) f(k2) g(k1 + k2), where f and g are some functions. It serves as a nontrivial check

to see that the matrix model result exhibits the same factorization as well. It is not

manifest at all in the original expression (2.7), but (2.11) and therefore (5.9) are indeed so.

Identifying (5.9) with (5.12) leads to

(

ĉk1
(2k1 + 1)!

) (

ĉk2
(2k2 + 1)!

)

(âk1+k2 (k1 + k2)! (k1 + k2 + 1)!) = − 1

4π3
1

N cL â−1
. (5.13)

Notice that the r.h.s. is independent of k1 and k2, and thus that the product of the first

two factors in the l.h.s. must give a function of k1 + k2. It determines the k-dependence of

ĉk and âk as

ĉk = ĉ0 e
γk (2k + 1)!, âk =

â0 e
−γk

k!(k + 1)!
(k = 0, 1, 2, · · · ) (5.14)

with γ being a numerical constant and

ĉ20 â0 = − 1

4π3
1

N cL â−1
. (5.15)

As another nontrivial check, we can see that (5.14) correctly reproduces the

k-dependence of (5.7) which is obtained from a separate amplitude. Then, we have

N ĉ0 â0 e
iπβ 3

4 =
2

π
. (5.16)

From (5.15) and (5.16), ĉ0 and â0 are expressed as

ĉ0 = − 1

8π2
1

cL â−1
eiπβ

3
4 , c0 =

1

8π2
1

cL a−1
,

a0 = â0 =
16π

N cL â−1 e
iπβ 1

2 =
16π

N cL a−1 e
−iπβ 1

2 . (5.17)

(Note that ei2πβ = −1 due to (3.26).)
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5.3
〈

Ψ1 Ψ̄1

〉

C,0

The large-N leading part of
〈

Ψ1 Ψ̄1

〉

C
, which is given by the k = ℓ = 0 case of the matrix-

model amplitude (2.10),

1

N2

〈

Ψ1 Ψ̄1

〉

C,0

∣

∣

∣

∣

sing.

=
1

N2

{

(ν+ − ν−)
1

π
ω lnω + (less singular)

}

, (5.18)

is compared withN g−2
s 〈
〈

d0Vψ(0) d̄0Vψ̄(0)
〉

〉. Its leading nontrivial contribution with respect

to small (ν+ − ν−) comes from the linear order of WRR in (3.58):

N g−2
s 〈
〈

d0Vψ(0) d̄0Vψ̄(0)
〉

〉 = N g−2
s d0 d̄0 (ν+ − ν−)

∑

ℓ∈Z
aℓ ω

ℓ+1
〈

Vψ(0)Vψ̄(0)VRR
ℓ

〉

= N g2s d0 d̄0 (−2a0) (ν+ − ν−)ω(lnω) e
−iπβ 3

2 . (5.19)

In the last line, we used (4.26) and (4.27). This takes the same form as in (5.18) as a

function of ν± and ω. From the further comparison of their coefficients, we have

N d0 d̄0 a0 e
iπβ 1

2 =
1

2π
. (5.20)

This and (5.16) give a relation of d0, d̄0 to c0:

d0 d̄0 =
1

4
c0, (5.21)

which is relevant to the target-space supersymmetry as is seen later.

5.4
〈

Ψ3 Ψ̄3

〉

C,0

The large-N leading of
〈

Ψ3 Ψ̄3

〉

C
reads from the k = ℓ = 1 case of (2.10) as

1

N2

〈

Ψ3 Ψ̄3

〉

C,0

∣

∣

∣

∣

sing.

=
1

N2

{

(ν+ − ν−)
3 6

π
ω3 lnω + (less singular)

}

. (5.22)

It corresponds to the IIA amplitude N g−2
s 〈
〈

d1Vψ(1) d̄1Vψ̄(1)
〉

〉, whose leading nontrivial

contribution in the (ν+ − ν−)-expansion arises from the cubic order of WRR:

N g−2
s 〈
〈

d1Vψ(1) d̄1Vψ̄(1)
〉

〉 = 1

3!
N g−2

s d1 d̄1 (ν+ − ν−)
3

×
∑

ℓ1,ℓ2,ℓ3∈Z
aℓ1 aℓ2 aℓ3 ω

ℓ1+ℓ2+ℓ3+3
〈

Vψ(1)Vψ̄(1)VRR
ℓ1 VRR

ℓ2 VRR
ℓ3

〉

. (5.23)

By making use of (4.30) and (4.37), the final expression becomes

N g−2
s 〈
〈

d1Vψ(1) d̄1Vψ̄(1)
〉

〉 = (ν+ − ν−)
3N g2s d1 d̄1 a

3
0 π

2 ω3(lnω) e−iπβ
3
2 . (5.24)

We again find that (5.22) and (5.24) have exactly the same dependence on ν± and ω.

Comparing their coefficients gives

N d1 d̄1 a
3
0 e

iπβ 1
2 = − 6

π3
. (5.25)
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Together with (5.20) and (5.21), the relation (5.25) leads to

d1 d̄1 =

(

−12

π2
1

a20

)

d0 d̄0 = − 3

π2
c0
a20
. (5.26)

As we have seen so far, it is remarkable that the single choice of the RR back-

ground (3.59) and (3.60) realizes the agreement between several kinds of IIA amplitudes

((5.6), (5.12), (5.19) and (5.24)) and the corresponding matrix-model correlators, with re-

spect not only to the dependence of ν± and ω but also to prefactors (depending on x,

x̄-momenta/powers of matrices).

5.5 Target-space supersymmetry

Corresponding to (5.4), let us identify the supercharges in the matrix model Q and Q̄ with

those in the IIA theory as

Q ∼= α Q̂+, Q̄ ∼= ᾱ ˆ̄Q− (5.27)

by putting the coefficients α, ᾱ.

From (5.2) and (5.4), each of the quartet (Φ1, Ψ1, Ψ̄1,
1
N tr(−iB)) with respect to Q,

Q̄ should be precisely mapped to each of (c0Vφ(0), d0Vψ(0), d̄0Vψ̄(0), 1
4VB(0)) with respect

to Q̂+,
ˆ̄Q−. This assertion implies

d0 = α c0, d̄0 = ᾱ c0, α ᾱ c0 =
1

4
, (5.28)

from which we obtain (5.21) again. Note that the argument here does not refer to any

amplitudes. Nevertheless, it reproduces the relation (5.21) which was derived from ampli-

tudes in the previous subsection. This also shows consistency of the correspondence, in

particular, the identification of the supercharges in both sides.

5.6
〈

Ntr(−iB)Ψ1 Ψ̄1 Φ1

〉

C,0
and

〈

(tr(−iB))2 Φ2
1

〉

C,0

The matrix model correlator 1
N4

〈

Ntr(−iB)Ψ1 Ψ̄1Φ1

〉

C,0
is computed as

1

N4

〈

Ntr(−iB)Ψ1 Ψ̄1Φ1

〉

C,0
= −1

8

∂

∂ω

1

N4

〈

1

N
trφ−1 1

N
trφ

〉

C,0

, (5.29)

which is proportional to (ν+−ν−)2 as discussed in appendix B.2 in [4]. Here 1
N trφ−1 arises

by the contraction of Ψ1 and Ψ̄1 [4]. Thus, there is no contribution of the order (ν+−ν−)0,
which corresponds to the IIA amplitude

g−2
s

〈

1

4
V(0,0)
B (0) d0Vψ(0) d̄0Vψ̄(0) c0Vφ(0)

〉

(5.30)

without insertions of WRR. According to (4.40) and (4.44), it vanishes, and we see that

the correspondence holds at the order (ν+ − ν−)0. To check the correspondence up to the

order of (ν+ − ν−)2, we have to compute a six-point CFT amplitude. We leave it as a

future subject.
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Similarly, 1
N4

〈

(tr(−iB))2Φ2
1

〉

C,0
in the matrix model vanishes at the order (ν+−ν−)0.

It corresponds to the IIA amplitude

g−2
s

〈

1

4
VB(0)

1

4
V(0,0)
B (0) {c0Vφ(0)}2

〉

(5.31)

that is proportional to (4.52) with (4.50). The result is also zero, showing the validity of

the correspondence.

5.7 Torus partition function

In this subsection we confirm that the IIA theory on the RR background is a consistent

superstring theory by checking that it has a modular invariant torus partition function.

We also see that the result is consistent with the torus free energy of the matrix model.

The genus-one amplitude among vertex operators Vi is
∫

F

d2τ

Vol(CKG(T 2))

〈

cc̄(0)BB̄
∏

i

Vi
〉

. (5.32)

Here, the volume of the conformal Killing group of T 2 is nothing but the area of the torus of

the worldsheet. The corresponding c, c̄-ghost zero-modes are fixed by the insertion cc̄(0).

B, B̄ are b, b̄-ghost insertions associated with the integration with respect to the torus

moduli τ . The integration is over the fundamental region F .

In a similar manner as in section 3.3, the torus partition function under the RR back-

ground is expressed as

〈〈1〉〉 =
〈

eWRR
〉

=

∫

F

d2τ

Vol(CKG(T 2))

∞
∑

n=0

1

n!
2Γ(−s)µs1

1

VL

〈

cc̄(0)BB̄ (WRR)
n V(0,0)

B (0)s
〉

CFT
(5.33)

with s = −2
∑

i pℓi due to χ(T 2) = 0. Note that every vertex operator in WRR has non-

positive x-winding from (3.60). For s ≥ 0, the s = 0 case alone possibly give nonvanishing

contribution to 〈〈1〉〉, and only VRR
k=0 remains in WRR. Furthermore, the conservation of the

Liouville momentum
∑

i pℓi = 0 tells us that even the remaining VRR
k=0 gives no effect. Thus,

just the first term of n = 0 in the sum
∑∞

n=0
1
n! (WRR)

n can contribute to the partition

function. Because this argument relies only on the conservation of the x-winding and the

Liouville momentum, it holds irrespective of a way to distribute the picture charges.

Next, let us consider the s < 0 case. Although the computation cannot be carried out

by the standard CFT technique, we can argue that the partition function should be nil

from the conservation of the picture and H charges. Since the x-winding of VRR
k is k ∈ Z,

its conservation law means

s = −2,−4,−6, · · · . (5.34)

The total picture must be (0, 0) to provide a nontrivial amplitude of the torus topology. We

consider contribution from (WRR)
n (n = 0, 1, 2, · · · ) to (5.33). Any RR field there has the

(−1
2 , −1

2)-picture originally as in (3.8), (3.59) and (3.60). Hence n should be even and there
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must be insertion of n2 picture raising operators (QBRST(2ξ · )) in the holomorphic sector so

that the total picture will be zero:
(

−1
2

)

×n+1× n
2 = 0. (Similarly in the anti-holomorphic

sector.) Then let us see what happens to its H charge. Every RR field in (WRR)
n has the

H charge ǫ
2 = −1

2 as in (3.60), and each of the picture raising operators increases the H

charge at most by one as seen from (B.8)–(B.10) and (B.15).17 Thus the total H charge of

(WRR)
n with the n

2 picture raising operators will be at most
(

−1
2

)

× n+ 1× n
2 = 0, while

that of V(0,0)
B (0)s is s. Recalling (5.34), we see that the total H charge of the amplitude

cannot be conserved, and the contribution from (WRR)
n to the partition function should

be zero.

Now we conclude that the torus partition function becomes

〈〈1〉〉 = 〈1〉|s=0 =

(

2 ln
1

µ1

)

1

VL

∫

F

d2τ

Vol(CKG(T 2))

〈

cc̄(0)BB̄
〉

CFT
. (5.36)

As expected from the fact that the two-dimensional string has no dynamical degrees of

freedom of oscillator modes, contributions from oscillators cancel leaving those from x-

winding/momentum [23]:

1

VL

∫

F

d2τ

Vol(CKG(T 2))

〈

cc̄(0)BB̄
〉

CFT
=

∫

F
(dτ)

[

Z(NS,NS)(τ, τ̄) + Z(R+,R−)(τ, τ̄)

+Z(NS,R−)(τ, τ̄) + Z(R+,NS)(τ, τ̄)
]

(5.37)

with (dτ) ∝ d2τ/(Im τ)2 modular invariant. On the integrand in the r.h.s., neither the

level matching condition18 nor the Dirac equation constraint is imposed [10, 11]. Holomor-

phic and anti-holomorphic x-momenta (k, k̄) in the (NS, NS) state sum are restricted as

follows.19 k, k̄ ∈ Z+ 1
2 for the corresponding vertex operator (e−φ+ikx+pℓϕ e−φ̄+ik̄x̄+pℓϕ̄) to

be local with the target-space supercurrents q+ and q̄−. Also, from the locality between

two (NS, NS) vertex operators with the momenta (k, k̄) and (k′, k̄′), we have kk′− k̄k̄′ ∈ Z.

These two conditions lead to

k − k̄ ∈ 2Z or k + k̄ ∈ 2Z. (5.38)

(Then 1
2k

2− 1
2 k̄

2 ∈ Z is satisfied and Z(NS,NS)(τ+1, τ̄+1) = Z(NS,NS)(τ, τ̄).) The former con-

tains the “momentum background”, while the latter does the “winding background” (3.10)

that we are considering. The restriction is an analog of the GSO projection in critical

17For example, the explicit form of the (+ 1
2
)-picture R vertex operator (pℓ = 1− |k|, k = ǫ|k|) reads

QBRST(2ξ(z)Vk, ǫ(z)) = ∂(2cξVk, ǫ)(z)−
i√
2
(pℓ − ǫk + 1) e

1

2
φ+iǫ 3

2
H+ikx+pℓϕ(z)

+
i√
2
∂(ϕ− iǫx+ 2iǫH) e

1

2
φ−iǫ 1

2
H+ikx+pℓϕ(z)

+
1

2
bη e

3

2
φ+iǫ 1

2
H+ikx+pℓϕ(z). (5.35)

18The level matching condition is taken into account by performing the integral of Re τ .
19A similar argument is presented in [9].
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string theory [8]. Thus,

Z(NS,NS)(τ, τ̄) =
∑

n,m∈Z
q

1
2
(n+ 1

2
)2 q̄

1
2
(2m−n− 1

2
)2 =

1

2
|θ2(τ)|2, (5.39)

where q = ei2πτ , and θ2(τ) is one of Jacobi’s theta functions: θ2(τ) =
∑

r∈Z+ 1
2
q

1
2
r2 . The

identical condition (5.38) also arises for the other three sectors. The latter of (5.38) is

taken in the (R+, R−) sector, while the former is in the (NS, R−) and (R+, NS) sectors,

in such a way to contain the “winding background” (3.10). The result is

Z(R+,R−)(τ, τ̄) = Z(NS,NS)(τ, τ̄),

Z(R+,NS)(τ, τ̄) = Z(NS,R−)(τ, τ̄)

= −
∑

n,m∈Z
q

1
2
(n+ 1

2
)2 q̄

1
2
(n−2m+ 1

2
)2

= −Z(NS,NS)(τ, τ̄). (5.40)

(5.39) and (5.40) give the vanishing torus partition function:20

〈〈1〉〉 = 0. (5.41)

This is consistent with the matrix model results (2.12) and (2.13) which mean the zero

torus free energy.

We obtain the same result even if the integrand is assumed to be slightly generalized

to linear combinations as

Z(NS,NS)(τ, τ̄) + aZ(R+,R−)(τ, τ̄) + b Z(NS,R−)(τ, τ̄) + c Z(R+,NS)(τ, τ̄), (5.42)

where coefficients a, b and c are fixed so that (5.42) is modular invariant. From (5.39)

and (5.40),

(5.42) =
1 + a− b− c

2
|θ2(τ)|2, (5.43)

for which to be modular invariant there is no other possibility than the prefactor 1+a−b−c
being null. Then the torus partition function vanishes.

Note that our conclusion of the vanishing torus partition function is not usually ex-

pected from the supercurrents (3.9) carrying x, x̄-momenta [8–10]. However, in our case

where the (R−, R+) vertex operators represent the fixed RR background and does not

take part in the torus partition sum, contributions from the remaining three sectors are

balanced as seen in the above. Furthermore, the RR background itself does not spoil the

supersymmetry, which is consistent with the fact that the (R−, R+) fields are singlets

under the supersymmetries, as shown in section 3.2. As a result, we obtain what is naively

expected from a supersymmetric theory.

20The result of the torus partition sum is different from that on the trivial background computed in [9, 10].

The partition sums in the (NS, R−) and (R+, NS) sectors obtained there are the half of our result, and

cancellation with the (NS, NS) sector is observed (See eqs. (3.14), (3.15) in [9] and appendix B.1 in [10].).

We guess that the Dirac equation constraint is imposed in the (NS, R) and (R, NS) sectors but not in the

(R, R) sector in [9, 10]. In contrast, we do not consider the Dirac equation constraint for any R sectors

in (5.37). Their result is modular invariant as well as ours.
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6 Remarks on nonlocal RR vertex operators

The nonlocal vertex operators appearing in the background WRR do not satisfy the Dirac

equation constraint as we have pointed out below (3.60). It would be acceptable from the

point of view of representing a background and not on-shell particles. As a consequence,

however they are not BRST-closed:

QBRST

(

V
(nonlocal)
k,−1 (z)

)

= ∂
(

cV
(nonlocal)
k,−1

)

(z)− i

2
√
2
(pℓ − k − 1) η e

1
2
φ+i 1

2
H+ikx+pℓϕ(z),

QBRST

(

cV
(nonlocal)
k,−1 (z)

)

=
i

2
√
2
(pℓ − k − 1) cη e

1
2
φ+i 1

2
H+ikx+pℓϕ(z). (6.1)

Nevertheless, we can formally see that this violation of the BRST invariance

does not contribute to amplitudes among BRST-closed physical vertex operators

(QBRST(cVi, phys(z)) = 0). For example,

〈

3
∏

i=1

c(zi)Vi, phys(zi)
∏

j≥4

∫

dzj Vj,phys(zj)

∫

dz QBRST

(

V
(nonlocal)
k,−1 (z)

)

〉

= 0 (6.2)

by deforming the contour of the BRST current.21 Actually in relevant amplitudes in the

previous sections, no more than one nonlocal operator is inserted.

We emphasize that (6.1) does not immediately mean inconsistency of the theory. In-

deed, the nonlocal vertex operators have the conformal weight (1, 1) preserving the world-

sheet conformal symmetry. Namely, they are marginal perturbations around the flat back-

ground given by SCFT in (3.53),22 under which the theory should make sense as a string

theory. We have also seen in section 5.7 that the theory is modular invariant. Furthermore,

the breaking (6.1) solely comes from the breaking of the global worldsheet supersymmetry

G+
0 . Thus we can construct a BRST-like charge Q0 +Q−

1 , where

Q±
1 ≡ −

∮

dz

2πi
γ(z)T±

m, F (z) = −
∮

dz

2πi
eφ η T±

m, F (z) (6.3)

with (B.8) and (B.17). This charge is nilpotent and annihilates the physical vertex op-

erators (3.12) as well as the nonlocal vertex operators. This situation is reminiscent of

boundary states as mentioned in section 3.3. For amplitudes containing boundary states

in that case, physical vertex operators inserted in the bulk are invariant under each of

the holomorphic and anti-holomorphic BRST operators, while the boundary states break

21We might also give somewhat similar but more formal argument by assuming the existence of the CFT

state even corresponding to the nonlocal operator. As mentioned below (3.60), G+
0

∣

∣

∣
V

(nonlocal)
k,−1

〉

6= 0, but

we could see G−

0 G
+
0

∣

∣

∣
V

(nonlocal)
k,−1

〉

= 0, which implies that the breaking of the BRST invariance would have

zero norm
∥

∥

∥
G+

0

∣

∣

∣
V

(nonlocal)
k,−1

〉
∥

∥

∥
= 0 in the matter CFT sector and would be decoupled in our case where the

matter CFT is unitary. However, that is not always true as we see that the integrand in B of (E.9) is not

zero at z4 = 0.
22Note that we treat the RR background as a perturbation around the flat background (recall Sint in (3.54)

is also regarded as a perturbation) as shown in (3.58) and (5.33).
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the invariance under a half of them and preserve the other half (a certain linear combi-

nation of them). As discussed in [24, 25], it requires intricate examinations to confirm

the BRST invariance for such amplitudes due to b-ghost insertions associated with the

boundary states and to continuation to off-shell momenta as a regularization. Although

it is not easy to prove decoupling of the BRST-exact operators and independence of the

way to distribute the picture charges in a generic amplitude, the literature investigates this

issue by taking some concrete amplitudes and gets affirmative consequences. Similarly, let

us see evidences supporting that (6.1) does not ruin consistency of the theory at least for

amplitudes discussed in the previous sections.

6.1 Target-space gauge symmetry

(6.1) may imply that BRST-exact operators potentially do not decouple from amplitudes

in the presence of the nonlocal operators. In general, decoupling of BRST-exact opera-

tors guarantees gauge symmetry in target space, and its breaking would run into serious

inconsistency of theory.

Note that in the two-dimensional superstring we are considering, only the RR vertex

operators concern gauge particles, and they do not couple to its gauge potential, but directly

to gauge invariant U(1) RR field strength. Thus there must be no gauge transformation

in the target space expressed by BRST-exact operators. Actually, as is shown in the

following, we cannot construct any BRST-exact shift to the (−1)-picture NS field cTk(z) =

c e−φ+ikx+pℓϕ(z):
cTk(z) → cTk(z) +QBRST(U(z)) (6.4)

in a consistent manner. U(z) should have the ghost number zero, the picture (−1) and the

weight zero. Moreover, it should have the term eikx+pℓϕ of the weight 1
2 which is common to

cTk. Hence the prefactor of eikx+pℓϕ appearing in U(z) has the weight (−1
2). As discussed

in [25], let us consider the operators consisting of b, c, ξ, η and φ with the ghost number

zero and the picture P given by23

A+ ≡ e(n+P )φ η (∂η) · · · (∂n−1η) b (∂b) · · · (∂n−1b) (n = 0, 1, 2 · · · ),
A− ≡ e(n+P )φ (∂ξ) (∂2ξ) · · · (∂|n|ξ) c (∂c) · · · (∂|n|−1c) (n = 0,−1,−2, · · · ) (6.5)

with their weights

[A+]=
1

2

{

−P 2 − 2(n+ 1)P + n(n+ 2)
}

, [A−]=
1

2

{

−P 2 + 2(|n| − 1)P + n2
}

. (6.6)

The prefactor of eikx+pℓϕ in U(z) has the form of A+ or A− with P = −1 multiplied by

polynomials of derivatives of x, ϕ, H and φ. It may also be multiplied by factors of a form

: ∂kb∂ℓc : or : (∂p+1ξ)∂qη : (k, ℓ, p, q ≥ 0) that do not change the ghost number or the

picture number. Note that such multiplicative fields increase or keep the weight, but never

decrease it. Thus, the weight must be

[A+] ≤ −1

2
or [A−] ≤ −1

2
(6.7)

23Note that ξ and η have the picture charges (+1) and (−1), respectively.
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for P = −1. However, any integer n does not satisfy this condition, meaning that such

U(z) does not exist. Similar argument is possible for other vertex operators.24

6.2 Picture changing operation

Since the picture changing operation discussed in [6] relies on the BRST invariance of

vertex operators, one may wonder if (6.1) prevents it. Here we concretely demonstrate the

picture changing operation in the presence of the nonlocal operators. Relevant amplitudes

investigated in this paper are in sections 4.1 and 4.2.

Let us consider the holomorphic part of the amplitude in section 4.1:25

〈0|cTk1(z1) cVk2,+1(z2) cV
(nonlocal)
k3,−1 (z3)|0〉. (6.8)

We change the picture assignment of the NS and R+ fields from the (−1) and (−1
2) pictures

to the 0 and (−3
2) pictures by use of

(cTk1)
(0) (z1) = QBRST (2ξ(z1) cTk1(z1))

= cT
(0)
k1

(z1)−
1

2
η eφ+ik1x+pℓ1ϕ(z1), (6.9)

cVk2,+1(z2) = QBRST

(

2ξ(z2) (cVk2,+1)
(−3/2) (z2)

)

, (6.10)

where T
(0)
k (z) is given by (C.2). Note that the picture changing operation does not commute

with the multiplication of the c ghost. The (−3
2)-picture field is obtained by the inverse

picture changing operator Y (z) = 2c (∂ξ) e−2φ(z) as

(cVk,+1)
(−3/2) (z) = lim

w→z
Y (w) cVk,+1(z) = 2c(∂c)(∂ξ) e−

5
2
φ+i 1

2
H+ikx+pℓϕ(z). (6.11)

We introduce the ξ zero-mode to move to the large Hilbert space:

〈0|ξ0cTk1(z1) cVk2,+1(z2) cV
(nonlocal)
k3,−1 (z3)|0〉

∣

∣

∣

large
. (6.12)

Here, ξ0 can be replaced with ξ(z1) =
∑

n∈Z ξn z
−n
1 because 〈0| · · · |0〉|large = 0 when · · ·

does not contain ξ0. Plugging (6.10) into (6.12) and manipulating the contour of the BRST

current leads to

(6.12) = −〈0| (cTk1)(0) (z1) ξ(z2) (cVk2,+1)
(−3/2) (z2) cV

(nonlocal)
k3,−1 (z3)|0〉

∣

∣

∣

large

−2〈0|ξ(z1)cTk1(z1) ξ(z2) (cVk2,+1)
(−3/2) (z2)QBRST

(

cV
(nonlocal)
k3,−1 (z3)

)

|0〉
∣

∣

∣

large
. (6.13)

The first and second terms come from the BRST currents encircling the points z1 and

z3, respectively. We move ξ(z2) to the bra vacuum in the first term, and go back to the

expression on the small Hilbert space:

〈0| (cTk1)(0) (z1) (cVk2,+1)
(−3/2) (z2) cV

(nonlocal)
k3,−1 (z3)|0〉, (6.14)

24We have explicitly seen that no BRST-exact shift is allowed for the 0-picture NS field and R fields with

the pictures (− 1
2
), (+ 1

2
) and (− 3

2
).

25A parallel argument can be applied to the anti-holomorphic part.
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that is the realization of the picture changing operation. Although the second term would

seem to remain due to (6.1), a closer look shows that this is not the case. Actually, it reads

−i
√
2(pℓ3 − k3 − 1) 〈0|ξc e−φ+ik1x+pℓ1ϕ(z1) ξ(∂ξ)c(∂c) e−

5
2
φ+i 1

2
H+ik2x+pℓ2ϕ(z2)

×cη e 1
2
φ+i 1

2
H+ik3x+pℓ3ϕ(z3)|0〉

∣

∣

∣

large
. (6.15)

Notice (6.15) does not conserve any of the (ξ, η) fermion number, the c ghost number, the

φ charge and the H charge. Thus, we see that (6.15) vanishes, and that the usual result of

picture changing

〈0|cTk1(z1) cVk2,+1(z2) cV
(nonlocal)
k3,−1 (z3)|0〉

= 〈0| (cTk1)(0) (z1) (cVk2,+1)
(−3/2) (z2) cV

(nonlocal)
k3,−1 (z3)|0〉 (6.16)

is obtained.

A similar argument for the amplitude in section 4.2 again leads to the usual result

〈0|cVk1,+1(z1) cVk2,+1(z2) cVk3,−1(z3)

∫

dz4 V
(nonlocal)
k4,−1 (z4)|0〉

= 〈0| (cVk1,+1)
(+1/2) (z1) (cVk2,+1)

(−3/2) (z2) cVk3,−1(z3)

∫

dz4 V
(nonlocal)
k4,−1 (z4)|0〉

= 〈0| (cVk1,+1)
(+1/2) (z1) cVk2,+1(z2) (cVk3,−1)

(−3/2) (z3)

∫

dz4 V
(nonlocal)
k4,−1 (z4)|0〉 (6.17)

in spite of the presence of the nonlocal operator. (6.16) and the first equality of (6.17) can

be regarded as evidence that the correspondence (3.46) and (3.47) holds independently of

the choice of the picture in the IIA theory.

We should notice that the usual result of picture changing does not hold for every

amplitude in the presence of the nonlocal operators. Appendix E presents an amplitude

where the picture changing operation induces a nonvanishing term containing the BRST

transformation of nonlocal operators. Since we have not identified the matrix-model coun-

terpart to the positive-winding “tachyons” (V̂1, V̂2 with k1, k2 =
1
2 ,

3
2 , · · · in (E.1)), it is not

clear which amplitude in the matrix model corresponds to the amplitude discussed there.

In general, the BRST charge acting on b ghosts in higher-genus amplitudes amounts to

picking up contribution from boundaries of the moduli space [26]. It could give a hint to

understand the nonvanishing effect from the nonlocal operators in a geometrical manner.

As far as IIA string amplitudes whose correspondence to matrix-model amplitudes is

given in this paper, we have seen in the above that the picture changing manipulation

works as usual around the natural pictures.

7 Discussions

In this paper, we computed various amplitudes in two-dimensional type IIA superstring

theory on a nontrivial (R−, R+) background, where the background is expressed by vertex

operators as a small perturbation. By comparing the results with correlators in the matrix

model calculated in [4], we checked the correspondence of the type IIA theory to the super-

symmetric double-well matrix model, which was previously discussed from the viewpoint

of symmetries and spectrum in [4].
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To enable the comparison at the quantitative level, we explicitly constructed cocycle

factors to vertex operators in such a way that the target-space statistics is respected. The

evaluation of IIA string amplitudes at the on-shell momenta often needs to be regularized.

We found a certain regularization scheme which seems reasonable from the viewpoint of

resonance structure in the amplitudes. As a result of the comparison, there arise various

relations among coefficients that connect quantities of the matrix model to those of the

type IIA theory. Remarkably, all of such relations obtained so far are consistent with each

other, which convinces us of the validity of the correspondence.

We mainly investigated two-point amplitudes of the IIA theory on the nontrivial (R−,

R+) background. By taking into account the background in the perturbation theory, how-

ever they amount to the computation of three-, four- and five-point functions on the trivial

background. Since the analysis of spectrum in the previous paper [4] is based on the ver-

tex operators (3.12) on the trivial background, the computation here is important to see

the effect of the RR background. Some amplitudes have the factor of the square of the

Liouville volume. Its physical interpretation is as follows. One of the volume factors is

from the integral over the Liouville constant mode as usual, while the other factor is due

to the resonance of external particles and the background. Although it increases technical

complexity, it will be meaningful to examine the correspondence for higher-point or higher-

genus amplitudes. Also, we considered leading nontrivial contributions to the amplitudes

in the perturbation of the background WRR. It is interesting to analyze subleading con-

tributions. Then, we would have to take into account deformation of the BRST charge as

backreaction from the background, and the relation (5.1) would be renormalized as

ν+ − ν− = qRR

(

1 +
∞
∑

n=1

unq
2n
RR

)

(7.1)

with un coefficients.

So far we have not yet clarified the matrix-model counterpart to the positive winding

“tachyons” g2s
∫

d2z T̂k+ 1
2
(z) ˆ̄T−k− 1

2
(z̄) (k = 0, 1, 2 · · · ), while the negative winding ones

(k = −1,−2, · · · ) would correspond to { 1
N tr(−iB)k+1} up to some mixing terms. We

expect to make it clear by introducing source terms of an external matrix to the matrix

model as discussed in the case of the Penner model in [22, 27]. If it succeeds, it will be

interesting to investigate the correspondence for amplitudes concerning the “tachyons” (for

example, what we presented in section 4.7 and appendix E.1). Then it would become clear

how the picture changing issue of the type IIA theory on the (R−, R+) background in

appendix E is understood in the matrix model.

The investigation here and in the previous paper [4] focuses on massless degrees of

freedom in the type IIA string theory. As discussed in the two-dimensional NSR string [28–

30], the type IIA theory also has massive states at fixed momenta called “discrete states”.

In the matrix model, it seems natural that such massive states correspond to single-trace

operators involving several kinds of matrices like 1
N tr (φk ψ2ℓ+1), 1

N tr (φk ψℓBm ψ̄n) and so

on. It is intriguing to extend the correspondence to include the massive excitations.

The correspondence we have discussed concerns fundamental string degrees of freedom

in the type IIA theory. If we push forward this interpretation, each element of the matrix
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variables in the matrix model could be regarded as a sort of short string or string bit

carrying a unit of winding or momentum along the S1 direction, which is somewhat similar

to the matrix string theory [3]. We could also consider the correspondence from another

direction based on a relation of solitonic objects (D-branes) in the IIA theory with the

matrix model as in [21, 31–34], where matrix elements are interpreted as open string

degrees of freedom on a bunch of D-branes, and the matrix models describe closed string

dynamics via open-closed string duality. The single-trace operators could be regarded as

sources of closed strings rather than the strings themselves. It would be worth considering

both of the interpretations in a complementary manner to obtain deeper correspondence

between the matrix model and the type IIA superstring theory.
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A Summation of m in (2.7)

In this appendix, we show the equality between the r.h.s. of (2.7) and of (2.11). Note that

it is equivalent to prove that S̃(k,m) = Ĩ(k,m) with

S̃(k,m) ≡
m
∑

p=1

B

(

p+ k +
1

2
,
1

2

)

B

(

k +m− p+
1

2
,
3

2

)

, (A.1)

Ĩ(k,m) ≡ m

2k +m+ 1
B

(

k +
1

2
,
1

2

)

B

(

k +m+
1

2
,
1

2

)

. (A.2)

We see that both of S̃(k,m) and Ĩ(k,m) obey the same recursion relation. For (A.1)

S̃(k + 1,m− 2) = S̃(k,m)−B

(

k +
3

2
,
1

2

)

B

(

k +m− 1

2
,
3

2

)

−B

(

k +
1

2
,
3

2

)

B

(

k +m+
1

2
,
1

2

)

= S̃(k,m)− 2k +m

2(k + 1)(k +m+ 1
2)
B

(

k +
1

2
,
1

2

)

B

(

k +m+
1

2
,
1

2

)

,

(A.3)
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and for (A.2)

Ĩ(k+1,m−2) = Ĩ(k,m)− 2k+m

2(k+1)(k+m+ 1
2)
B

(

k+
1

2
,
1

2

)

B

(

k+m+
1

2
,
1

2

)

. (A.4)

Since S̃ and Ĩ satisfy the same initial conditions:

S̃(k, 0) = Ĩ(k, 0) = 0,

S̃(k, 1) = Ĩ(k, 1) = 1

2(k + 1)
B

(

k +
1

2
,
1

2

)

B

(

k +
3

2
,
1

2

)

(A.5)

for k = 0, 1, · · · , we can conclude that S̃(k,m) = Ĩ(k,m).

B Worldsheet superconformal symmetry

Superconformal generators

TF = Tm, F + Tgh, F , (B.1)

Tm, F =
i

2
ψx∂x+

i

2
ψℓ∂ϕ− i

2
Q∂ψℓ, (B.2)

Tgh, F =
1

2
bγ − ∂βc− 3

2
β∂c (B.3)

and the energy-momentum tensors (3.2) have the OPEs:

TA(z)TB(w) ∼ δA,B

[

cB/2

(z − w)4
+

2

(z − w)2
TB(w) +

1

z − w
∂TB(w)

]

,

TA(z)TB, F (w) ∼ δA,B

[

3/2

(z − w)2
TB, F (w) +

1

z − w
∂TB, F (w)

]

,

TA, F (z)TB, F (w) ∼ δA,B

[

cB/6

(z − w)3
+

1

z − w

1

2
TB(w)

]

(B.4)

with A, B = m, gh. The central charges for the matter sector ((x, ψx) and (ϕ, ψℓ)) and the

ghost sector ((b, c) and (β, γ)) are

cm =
3

2
+

(

3

2
+ 3Q2

)

= 3 + 3Q2, cgh = −26 + 11 = −15. (B.5)

Thus the total central charge c = cm + cgh vanishes by using Q = 2. In terms of modes

TA(z) =
∑

n∈Z
LA

nz
−n−2, TA, F (z) =

1

2

∑

r

GA

rz
−r−3/2 (B.6)

(r ∈ Z+ 1
2 for the NS sector, r ∈ Z for the R sector), the OPEs (B.4) represent the N = 1

superconformal algebra

[LA

n, L
B

m] = δA,B

[

(n−m)Ln+m +
cB
12

(n3 − n)δn+m,0

]

,

[LA

n, G
B

r ] = δA,B

[(n

2
− r
)

GB

n+r

]

,

{GA

r , G
B

s} = δA,B

[

2LB

r+s +
cB
3

(

r2 − 1

4

)

δr+s,0

]

. (B.7)
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The matter part has an enlarged symmetry, namely the N = 2 superconformal sym-

metry. By dividing the superconformal generator as

Tm, F = T+
m, F + T−

m, F , (B.8)

T+
m, F ≡ i

4

[

Ψ†∂(ϕ+ ix)−Q∂Ψ†
]

=
i

2
√
2

[

eiH∂(ϕ+ ix)−Q∂eiH
]

, (B.9)

T−
m, F ≡ i

4
[Ψ∂(ϕ− ix)−Q∂Ψ] =

i

2
√
2

[

e−iH∂(ϕ− ix)−Q∂e−iH
]

, (B.10)

and defining the U(1) current as

J ≡ −1

2
ΨΨ† + iQ∂x = i∂H + iQ∂x, (B.11)

one can see the OPEs for the N = 2 superconformal algebra:

Tm(z)Tm(w) ∼ cm/2

(z − w)4
+

2

(z − w)2
Tm(w) +

1

z − w
∂Tm(w),

Tm(z)T
±
m, F (w) ∼ 3/2

(z − w)2
T±
m,F (w) +

1

z − w
∂T±

m,F (w),

Tm(z)J(w) ∼ 1

(z − w)2
J(w) +

1

z − w
∂J(w),

T+
m, F (z)T

−
m, F (w) ∼ cm/12

(z − w)3
+

1

(z − w)2
1

4
J(w) +

1

z − w

(

1

4
Tm(w) +

1

8
∂J(w)

)

,

J(z)T±
m, F (w) ∼ ±1

z − w
T±
m,F (w),

J(z)J(w) ∼ cm/3

(z − w)2
,

T±
m, F (z)T

±
m, F (w) ∼ 0. (B.12)

In terms of modes

T±
m, F (z) =

1

2
√
2

∑

r

G±
r z

r−3/2, J(z) =
∑

n∈Z
Jnz

−n−1, (B.13)

(B.12) are recast as

[Lm
n , L

m
m] = (n−m)Lm

n+m +
cm
12

(n3 − n)δn+m,0,

[Lm
n , G

±
r ] =

(n

2
− r
)

G±
n+r,

[Lm
n , Jm] = −mJn+m,

{G+
r , G

−
s } = 2Lm

r+s + (r − s)Jr+s +
cm
3

(

r2 − 1

4

)

δr+s,0,

[Jn, G
±
r ] = ±G±

n+r,

[Jn, Jm] =
cm
3
nδn+m,0,

{G±
r , G

±
s } = 0. (B.14)
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The BRST charge

QBRST =

∮

dz

2πi
jBRST(z),

jBRST(z) ≡ c(z)

(

Tm(z) +
1

2
Tgh(z)

)

− γ(z)

(

Tm, F (z) +
1

2
Tgh, F (z)

)

(B.15)

is decomposed into the three pieces

QBRST = Q0 +Q1 +Q2, (B.16)

Q0 ≡
∮

dz

2πi
[c(z) (Tm(z) + Tβγ(z)) + bc∂c(z)] ,

Q1 ≡ −
∮

dz

2πi
γ(z)Tm, F (z) = −

∮

dz

2πi
eφ η Tm, F (z),

Q2 ≡ −1

4

∮

dz

2πi
bγ2(z) =

1

4

∮

dz

2πi
e2φ(∂η)ηb(z) (B.17)

according to the superconformal ghost charges. Here, Tβγ = −3
2β∂γ− 1

2∂βγ is the βγ-part

of Tgh. One can check the nilpotency of the BRST charge (Q2
BRST = 0).

Although we discussed only the holomorphic part, we can repeat a parallel argument

for the anti-holomorphic part.

C Cocycle factors for 0-picture NS fields

The 0-picture holomorphic NS field T
(0)
k is obtained by the picture changing operation

QBRST (2ξ(z)Tk(z)) ≡
∮

z

dw

2πi
jBRST(w) 2ξ(z)Tk(z) = ∂(2cξTk)(z) + T

(0)
k (z), (C.1)

where the first term does not contribute upon the z integration and can be neglected. The

second term represents

T
(0)
k (z) = T

(0)
k,+1(z) + T

(0)
k,−1(z), T

(0)
k, ǫ(z) ≡

i√
2
(pℓ − ǫk) eiǫH+ikx+pℓϕ(z). (C.2)

The anti-holomorphic field is similarly given by

T̄
(0)

k̄
(z̄) = T̄

(0)

k̄,+1
(z̄) + T̄

(0)

k̄,−1
(z̄), T̄

(0)

k̄, ǭ
(z̄) ≡ i√

2
(pℓ − ǭk̄) eiǭH̄+ik̄x̄+pℓϕ̄(z̄). (C.3)

The OPEs

q+(z)T
(0)
k, ǫ(w) =

1

(z − w)
ǫ
2
+k

: q+(z)T
(0)
k, ǫ(w) : , (C.4)

q̄−(z̄) T̄
(0)

k̄, ǭ
(w̄) =

1

(z̄ − w̄)−
ǭ
2
−k̄ : q̄−(z̄) T̄

(0)

k̄, ǭ
(w̄) : (C.5)

show that the degree of the poles differs by one depending on the values of ǫ, ǭ. It suggests

that the ǫ = ±1 parts of T
(0)
k have different target-space statistics. Similar is the case

of T̄
(0)

k̄
.
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In the same manner as in section 3.1, we introduce the cocycle factor to the 0-picture

NS fields:26

T̂
(0)
k (z) = T̂

(0)
k,+1(z) + T̂

(0)
k,−1(z), T̂

(0)
k, ǫ(z) ≡ eπβ(iǫph̄+ikpx̄) T

(0)
k, ǫ(z),

ˆ̄T
(0)

k̄
(z̄) = ˆ̄T

(0)

k̄,+1
(z̄) + ˆ̄T

(0)

k̄,−1
(z̄), ˆ̄T

(0)

k̄, ǭ
(z̄) ≡ e−πβ(iǭph+ik̄px) T̄ (0)

k̄, ǭ
(z̄). (C.6)

Then, we find

ˆ̄T
(0)

k̄, ǭ
(z̄) q̂+(w) = ei2πβ(

ǭ
2
+k̄) q̂+(w)

ˆ̄T
(0)

k̄, ǭ
(z̄), (C.7)

ˆ̄q−(z̄) T̂k, ǫ(w) = ei2πβ(−
ǫ
2
−k) T̂k, ǫ(w) ˆ̄q−(z̄), (C.8)

and

ˆ̄T
(0)

k̄, ǭ
(z̄) T̂k′(w) = ei2πβ(−k̄k

′) T̂k′(w)
ˆ̄T
(0)

k̄, ǭ
(z̄), (C.9)

ˆ̄T
(0)

k̄, ǭ
(z̄) V̂k′, ǫ′(w) = e2πβ(−

1
2
ǭǫ′−k̄k′) V̂k′, ǫ′(w)

ˆ̄T
(0)

k̄, ǭ
(z̄), (C.10)

ˆ̄Tk̄(z̄) T̂
(0)
k′, ǫ(w) = ei2πβ(−k̄k

′) T̂
(0)
k′, ǫ(w)

ˆ̄Tk̄(z̄), (C.11)

ˆ̄Vk̄, ǭ(z̄) T̂
(0)
k′, ǫ′(w) = ei2πβ(−

1
2
ǭǫ′−k̄k′) T̂ (0)

k′, ǫ′(w)
ˆ̄Vk̄, ǭ(z̄), (C.12)

ˆ̄T
(0)

k̄, ǭ
(z̄) T̂

(0)
k′, ǫ′(w) = ei2πβ(−ǭǫ

′−k̄k′) T̂ (0)
k′, ǫ′(w)

ˆ̄T
(0)

k̄, ǭ
(z̄). (C.13)

(NS(0), NS(0)) sector. From the above result, we see that the target-space supercharges

Q̂+,
ˆ̄Q− act on the (ǫ, ǭ) = (+1,−1), (−1,+1) parts of the (NS(0), NS(0)) field

T̂
(0)
k (z) ˆ̄T

(0)
−k (z̄) =

∑

ǫ,ǭ=±1

T̂
(0)
k, ǫ(z)

ˆ̄T
(0)
−k, ǭ(z̄) (C.14)

in the form of a commutator, but on the (ǫ, ǭ) = (+1,+1), (−1,−1) parts in the form of

an anti-commutator, so that they can be expressed as the contour integral of the radial

ordering. Moreover, among fields in the natural picture ((−1)-picture for NS, (−1/2)-

picture for R), target-space fermions ((NS, R−), (R+, NS)) commute with the (ǫ, ǭ) =

(+1,−1), (−1,+1) parts, but anti-commute with the (ǫ, ǭ) = (+1,+1), (−1,−1) parts.

Target-space bosons ((NS, NS), (R+, R−), (R−, R+)) commute with the all parts of (ǫ, ǭ).

Thus, we conclude that the (ǫ, ǭ) = (+1,−1), (−1,+1) parts have the correct target-space

statistics, while the (ǫ, ǭ) = (+1,+1), (−1,−1) parts do not.

Interestingly, the (ǫ, ǭ) = (+1,+1), (−1,−1) parts do not contribute to any amplitudes

computed in this paper. It is likely that the target-space statistics is correctly realized at

the level of the amplitudes.

26Note that the cocycle factor for T
(0)
k, ǫ(z) is different from the one for Tk(z) in (3.28). If we put appropriate

cocycle factors to the BRST charge (B.17) corresponding to exponential operators appearing there and

similarly to the anti-holomorphic BRST charge, the result (C.6) will be directly obtained from the picture

changing operation.
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(NS(0), R−) sector. Similarly, we see that the ǫ = +1 part of the (NS(0), R−) field

T̂
(0)
k (z) ˆ̄Vk,−1(z̄) =

∑

ǫ=±1

T̂
(0)
k, ǫ(z)

ˆ̄Vk,−1(z̄) (C.15)

has the correct target-space statistics, but the ǫ = −1 part does not.

The ǫ = −1 part does not contribute to the amplitudes in this paper, and the target-

space statistics is correct in the amplitudes.

(R+, NS(0)) sector. In the (R+, NS(0)) field

V̂k,+1(z)
ˆ̄T
(0)
k (z̄) =

∑

ǭ=±1

V̂k,+1(z)
ˆ̄T
(0)
k, ǭ(z̄), (C.16)

the ǭ = −1 part obeys the correct statistics, while the ǭ = +1 part does not.

We see that the ǭ = +1 part gives no contribution to the computed amplitudes. The

correct statistics is realized in the amplitudes.

D Integral formulas

In this appendix, we present formulas for the two integrals

I(1,0) ≡
∫

d2z zα z̄ᾱ (1− z)β (1− z̄)β̄ , (D.1)

I(1,1) ≡
∫

d2z d2w zα z̄ᾱ (1− z)β (1− z̄)β̄ wα
′

w̄ᾱ
′

(1− w)β
′

(1− β̄)β̄
′ |z − w|4σ, (D.2)

where z = x+ iy, z̄ = x− iy, w = u+ iv, w̄ = u− iv, d2z = dx dy and d2w = du dv. The

powers appearing in the integrands α, ᾱ, · · · , β′, β̄′, σ are independent.

More general integrals including (D.1), (D.2) are computed in [35]. However, in order

to make this paper reasonably self-contained and to remark on the conventions for complex

phases in integrands that is not mentioned in [35], we give computational details.

D.1 I(1,0)

As discussed in [35, 36], we rotate the integration contour of y by almost −90 degrees as

y → e−i(
π
2
−ǫ) y = −i(1 + iǫ) y, (D.3)

and the real axis by −ǫ, so x → (1 − iǫ)x, 1 − x → (1 − iǫ)(1 − x). Then, in terms of

η ≡ x+ y, χ ≡ x− y, (D.1) becomes

I(1,0) =
−i
2

∫ ∞

−∞
dη dχ (η− iǫχ)α (χ− iǫη)ᾱ (1− η− iǫ(1−χ))β (1−χ− iǫ(1− η))β̄ . (D.4)

We assumed no contribution from the infinity in the contour deformation (D.3), which is

justified when

Re (α+ ᾱ+ β + β̄) < −1. (D.5)
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The complex phase in the integrand should be carefully treated. We consider the following

two phase conventions. The one (I) is

{(η − iǫχ)(χ− iǫη)}α (χ− iǫη)ᾱ−α

×{(1− η − iǫ(1− χ))(1− χ− iǫ(1− η))}β (1− χ− iǫ(1− η))β̄−β, (D.6)

and the other (II) is

{(η − iǫχ)(χ− iǫη)}ᾱ (η − iǫχ)α−ᾱ

×{(1− η − iǫ(1− χ))(1− χ− iǫ(1− η))}β̄ (1− η − iǫ(1− χ))β−β̄ . (D.7)

For example, {(η − iǫχ)(χ− iǫη)}α means

{(η − iǫχ)(χ− iǫη)}α = (ηχ− iǫ)α =

{

|ηχ|α (ηχ > 0)

e−iπα|ηχ|α (ηχ < 0).
(D.8)

By noting the phase in the case (II), we see that (D.4) can be divided into the three parts

according to integration regions of χ:

I(1,0) =
−i
2

∫ 0

−∞
dχ

∫ ∞

−∞
dη (η + iǫ)α (χ− iǫ)ᾱ (1− η − iǫ)β (1− χ)β̄

+
−i
2

∫ ∞

1
dχ

∫ ∞

−∞
dη (η − iǫ)α χᾱ (1− η + iǫ)β (1− χ− iǫ)β̄

+
−i
2

∫ 1

0
dχ

∫ ∞

−∞
dη (η − iǫ)α χᾱ (1− η − iǫ)β (1− χ)β̄ . (D.9)

Since the integrand of the first line (the second line) in (D.9) is regular with respect to the

upper (lower) half plane of η, the η-integral vanishes by closing the contour with a large

semi-circle there. Contribution from the large semi-circle can be neglected when

Re (α+ β) < −1. (D.10)

The χ-integral in the last line gives B(ᾱ+1, β̄+1), and the η-integral can be computed as

∫ ∞

−∞
dη (η − iǫ)α (1− η − iǫ)β = −2i sin(πβ)

∫ ∞

1
dη ηα(η − 1)β

= −2i sin(πβ)B(β + 1,−α− β − 1), (D.11)

where the first equality holds in the region (D.10). Thus, we end up with

I(1,0) = − sin(πβ)B(ᾱ+ 1, β̄ + 1)B(β + 1,−α− β − 1)

= π
Γ(ᾱ+ 1)Γ(β̄ + 1)

Γ(ᾱ+ β̄ + 2)

Γ(−α− β − 1)

Γ(−α) Γ(−β) (D.12)

for the case (II). The derivation of (D.12) is valid for

− 1 < Reα, Re ᾱ, Reβ, Re β̄ < −1

2
. (D.13)
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We define I(1,0) for generic α, ᾱ, β, β̄ by analytic continuation from (D.13).

On the other hand, the result for the case (I) is obtained from (D.12) by the replacement

χ↔ η, α↔ ᾱ and β ↔ β̄:

I(1,0) = π
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)

Γ(−ᾱ− β̄ − 1)

Γ(−ᾱ) Γ(−β̄) , (D.14)

which is obtained in ref. [35].

(D.12) and (D.14) are different in general, but become coincident when

s(α) s(β)

s(α+ β)
=
s(ᾱ) s(β̄)

s(ᾱ+ β̄)
with s(x) ≡ sin(πx). (D.15)

For amplitudes among mutually local vertex operators as we discuss in the text, the pa-

rameters satisfy α− ᾱ, β − β̄ ∈ Z, and thus (D.15).

D.2 I(1,1)

Similar contour deformation as in the previous subsection for y as well as for v leads to

I(1,1) =

(−i
2

)2 ∫ ∞

−∞
dη1 dχ1 dη1̂ dχ1̂ (η1 − iǫχ1)

α (χ1 − iǫη1)
ᾱ (1− η1 − iǫ(1− χ1))

β

×(1− χ1 − iǫ(1− η1))
β̄ (η1̂ − iǫχ1̂)

α′

(χ1̂ − iǫη1̂)
ᾱ′

×(1− η1̂ − iǫ(1− χ1̂))
β′

(1− χ1̂ − iǫ(1− η1̂))
β̄′

×
(

η1 − η1̂ − iǫ(χ1 − χ1̂)
)2σ (

χ1 − χ1̂ − iǫ(η1 − η1̂)
)2σ

, (D.16)

where we put η1 = x+ y, χ1 = x− y, η1̂ = u+ v, χ1̂ = u− v. The phase convention of (I)

for the integrand is

{(η1 − iǫχ1)(χ1 − iǫη1)}α (χ1 − iǫη1)
ᾱ−α {(1− η1 − iǫ(1− χ1))(1− χ1 − iǫ(1− η1))}β

×(1− χ1 − iǫ(1− η1))
β̄−β {(η1̂ − iǫχ1̂)(χ1̂ − iǫη1̂)

}α′

(χ1̂ − iǫη1̂)
ᾱ′−α′

×
{

(1− η1̂ − iǫ(1− χ1̂))(1− χ1̂ − iǫ(1− η1̂))
}β′

(1− χ1̂ − iǫ(1− η1̂))
β̄′−β′

×
{

(η1 − η1̂ − iǫ(χ1 − χ1̂))(χ1 − χ1̂ − iǫ(η1 − η1̂))
}2σ

, (D.17)

and that of (II) is

{(η1 − iǫχ1)(χ1 − iǫη1)}ᾱ (η1 − iǫχ1)
α−ᾱ {(1− η1 − iǫ(1− χ1))(1− χ1 − iǫ(1− η1))}β̄

×(1− η1 − iǫ(1− χ1))
β−β̄ {(η1̂ − iǫχ1̂)(χ1̂ − iǫη1̂)

}ᾱ′

(η1̂ − iǫχ1̂)
α′−ᾱ′

×
{

(1− η1̂ − iǫ(1− χ1̂))(1− χ1̂ − iǫ(1− η1̂))
}β̄′

(1− η1̂ − iǫ(1− χ1̂))
β′−β̄′

×
{

(η1 − η1̂ − iǫ(χ1 − χ1̂))(χ1 − χ1̂ − iǫ(η1 − η1̂))
}2σ

. (D.18)

Similarly to the previous subsection, (D.16) in the case (II) can be divided into twelve

parts according to integration regions of χ1, χ1̂. Among them, only two parts corresponding

to 0 < χ1̂ < χ1 < 1 and to 0 < χ1 < χ1̂ < 1 are nonvanishing. Then, we have

I(1,1) =

(−i
2

)2
{

C12[ᾱi, ᾱ
′
i]P

12[αi, α
′
i] + C21[ᾱi, ᾱ

′
i]P

21[αi, α
′
i]
}

, (D.19)
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where

C12[ᾱi, ᾱ
′
i] =

∫ 1

0
dχ1

∫ χ1

0
dχ1̂ χ

ᾱ
1 (1− χ1)

β̄ χᾱ
′

1̂
(1− χ1̂)

β̄′

(χ1 − χ1̂)
2σ,

C21[ᾱi, ᾱ
′
i] =

∫ 1

0
dχ1

∫ 1

χ1

dχ1̂ χ
ᾱ
1 (1− χ1)

β̄ χᾱ
′

1̂
(1− χ1̂)

β̄′

(χ1̂ − χ1)
2σ,

P 12[αi, α
′
i] =

∫ ∞

−∞
dη1 dη1̂ (η1 − iǫ)α (1− η1 − iǫ)β (η1̂ − iǫ)α

′

(1− η1̂ − iǫ)β
′

×(η1 − η1̂ − iǫ)2σ,

P 21[αi, α
′
i] =

∫ ∞

−∞
dη1 dη1̂ (η1 − iǫ)α (1− η1 − iǫ)β (η1̂ − iǫ)α

′

(1− η1̂ − iǫ)β
′

×(η1̂ − η1 − iǫ)2σ. (D.20)

In P 12 (P 21), −iǫ in the last factor indicates that the contour of η1̂ avoids that of η1 upward

(downward). We have used the notation in [35], where α1 = α, α2 = β, α′
1 = α′, α′

2 = β′,
etc. Since integration variables are dummy, we see

C21[ᾱi, ᾱ
′
i] = C12[ᾱ′

i, ᾱi], P 21[αi, α
′
i] = P 12[α′

i, αi]. (D.21)

Next, we obtain a relation between C12 and P 12 by introducing

Q12[ᾱi, ᾱ
′
i] ≡

∫ 1

0
dχ1 dχ1̂ χ

ᾱ
1 (1− χ1)

β̄ χᾱ
′

1̂
(1− χ1̂)

β̄′

(χ1 − χ1̂ − iǫ)2σ. (D.22)

Splitting the integration region [0, 1]× [0, 1] into the part of χ1 > χ1̂ and that of χ1 < χ1̂

yields

Q12[ᾱi, ᾱ
′
i] = C12[ᾱi, ᾱ

′
i] + e−i2πσ C12[ᾱ′

i, ᾱi]. (D.23)

On the other hand, we deform the integration contours of P 12[αi, α
′
i] to surround the

cut [1,∞):

P 12[αi, α
′
i] = −2is(β)

[

−eiπβ′

∫ 1

∞
dη1 dη1̂ η

α
1 (η1 − 1)β ηα

′

1̂
(η1̂ − 1)β

′

(η1 − η1̂ + iǫ)2σ

+e−iπβ
′

∫ 1

∞
dη1 dη1̂ η

α
1 (η1 − 1)β ηα

′

1̂
(η1̂ − 1)β

′

(η1 − η1̂ − iǫ)2σ
]

.

(D.24)

Changing variables η1 = 1/ξ1 and η1̂ = 1/ξ1̂, we have

P 12[αi, α
′
i] = −2is(β)

{

e−iπβ
′

Q32[α′
i, αi]− eiπβ

′

ei2πσ Q32[αi, α
′
i]
}

, (D.25)

where

Q32[αi, α
′
i] ≡

∫ 1

0
dξ1 dξ1̂ ξ

γ
1 (1− ξ1)

β ξγ
′

1̂
(1− ξ1̂)

β′

(ξ1 − ξ1̂ − iǫ)2σ, (D.26)

γ ≡ −α− β − 2σ − 2(≡ α3), γ′ ≡ −α′ − β′ − 2σ − 2(≡ α′
3), (D.27)
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and Q32[α′
i, αi] is obtained by β ↔ β′, γ ↔ γ′ in (D.26). Changing variables ξ1 = 1− χ1̂,

ξ1̂ = 1− χ1 in (D.26) means

Q32[αi, α
′
i] = Q23[α′

i, αi], Q32[α′
i, αi] = Q23[αi, α

′
i]. (D.28)

Together with (D.23), (D.25) and (D.28), we obtain

P 12[αi, α
′
i] = (−2i)2s(β)

{

s(β′)C23[αi, α
′
i] + s(β′ + 2σ)C23[α′

i, αi]
}

(D.29)

and

P 21[αi, α
′
i]=P

12[α′
i, αi]=(−2i)2s(β′)

{

s(β)C23[α′
i, αi]+s(β + 2σ)C23[αi, α

′
i]
}

. (D.30)

Plugging (D.29) and (D.30) into (D.19) expresses I(1,1) in terms of C12’s and C23’s:

I(1,1) = s(β) s(β′)
{

C12[ᾱi, ᾱ
′
i]C

23[αi, α
′
i] + C12[ᾱ′

i, ᾱi]C
23[α′

i, αi]
}

+s(β) s(β′ + 2σ)C12[ᾱi, ᾱ
′
i]C

23[α′
i, αi]

+s(β′) s(β + 2σ)C12[ᾱ′
i, ᾱi]C

23[αi, α
′
i]. (D.31)

Once we know C12[αi, α
′
i], all of the C

12’s and C23’s appearing in (D.31) are obtained by

replacing parameters. For example, the change (α, α′, β, β′) → (β, β′, γ, γ′) in C12[αi, α
′
i]

gives C23[αi, α
′
i]. As a result of the direct computation, C12[αi, α

′
i] is represented by

hypergeometric functions:

C12[αi, α
′
i] =

Γ(α′ + 1)Γ(2σ + 1)

Γ(α′ + 2σ + 2)

∫ 1

0
dχ1 χ

α+α′+2σ+1
1 (1− χ1)

β

× F (−β′, α′+1, α′+2σ+2; χ1)

=
Γ(α+α′+2σ+2)Γ(β+1)Γ(α′+1)Γ(2σ+1)

Γ(α+α′+β+2σ+3)Γ(α′+2σ+2)

×3 F2(−β′, α′+1, α+α′+2σ+2; α′+2σ+2, α+α′+β+2σ+3; 1), (D.32)

from which

C23[αi, α
′
i] =

Γ(β+β′+2σ+2)Γ(γ+1)Γ(β′+1)Γ(2σ+1)

Γ(β+β′+γ+2σ+3)Γ(β′+2σ+2)

×3 F2(−γ′, β′+1, β+β′+2σ+2; β′+2σ+2, β+β′+γ+2σ+3; 1). (D.33)

We get the result in the phase convention (I) from that in (II) by the replacement

(α, α′, β, β′, γ, γ′) ↔ (ᾱ, ᾱ′, β̄, β̄′, γ̄, γ̄′). (D.34)

It can be checked that string amplitudes in the text that are expressed by I(1,1) give the

same results irrespective of the conventions (I) and (II).
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E 2(NS, NS)-2(R−, R+) amplitude and its picture changing

In this appendix, we compute the four-point genus-zero amplitude of two (NS, NS) and

two (R−, R+) fields:

V̂1(z1, z̄1) = T̂k1(z1)
ˆ̄T−k1(z̄1),

V̂2(z2, z̄2) = T̂
(0)
k2

(z2)
ˆ̄T
(0)
−k2(z̄2)

(

k1, k2 ∈ Z+
1

2

)

,

V̂b(zb, z̄b) = V̂kb,−1(zb)
ˆ̄V−kb,+1(z̄b) (kb = 0,−1,−2, · · · ) (E.1)

with b = 3, 4. Although the matrix-model counterpart of the (NS, NS) fields V̂1 and V̂2 has

not been found, we consider this amplitude because it exhibits nontrivial behavior in the

picture changing operation when V̂3 or V̂4 is nonlocal.

E.1 The amplitude

From the conservation of H and H̄ charges, s = 0, 2 cases can give a nontrivial result. We

here consider the s = 0 case. Following the same procedure as in section 4 yields
〈

4
∏

i=1

V̂i(zi, z̄i)

〉∣

∣

∣

∣

∣

s=0

=
−1

2
(pℓ2 − k2)

2 δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

e−iπβ
∑

i k
2
i

×





∏

a=1,2

∏

b=3,4

|za − zb|−1





∏

i<j

|zi − zj |2(kikj−pℓipℓj ). (E.2)

The corresponding string amplitude reads
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

=
−1

2
(pℓ2 − k2)

2 δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)

e−iπβ
∑

i k
2
i I(1,0), (E.3)

where I(1,0) is the same form as what appears in (4.14), i.e. the integral I(1,0) in (D.1)

with (4.15). The kinematical condition is satisfied by the same momenta as in (4.16)–

(4.18). The case of both of V̂b nonlocal is forbidden. Thus, we use the result of the

regularization (4.20) and (4.22), and end up with
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= 0 (E.4)

for both of V̂b local, and
〈

3
∏

i=1

cc̄V̂i(zi, z̄i)

∫

d2z4V̂4(z4, z̄4)

〉∣

∣

∣

∣

∣

s=0, (z1,z2,z3)=(∞,1,0)

= δ∑
i ki, 0

δ∑
i pℓi , 2

(

2 ln
1

µ1

)2

e−iπβ
∑

i k
2
i (−π)n22

(

(n1 + n2)!

n1!n2!

)2

cL (E.5)

for V̂3 local and V̂4 nonlocal. The result is also identical for V̂4 local and V̂3 nonlocal.
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E.2 Picture changing operation

(E.5) is not symmetric under n1 ↔ n2 corresponding to V̂1 ↔ V̂2. Since V̂1 and V̂2 are

(NS, NS) fields with the pictures (−1,−1) and (0, 0) respectively, the amplitude would

be symmetric if the picture changing operation worked as usual. Let us see the situation

explicitly focusing on the holomorphic part:

〈0|cTk1(z1) cT
(0)
k2

(z2) cVk3,−1(z3)

∫

dz4V
(nonlocal)
k4,−1 (z4)|0〉. (E.6)

Here, cT
(0)
k2

(z2) can be replaced with (cTk2)
(0)(z2) defined in (6.9), because the difference

of them (the second term in the r.h.s. of (6.9) with changing (k1, z1) to (k2, z2)) does

not contribute to the amplitude from the conservation of various charges. After the same

procedure as in section 6.2, we have

〈0|cTk1(z1) cT
(0)
k2

(z2) cVk3,−1(z3)

∫

dz4V
(nonlocal)
k4,−1 (z4)|0〉

= 〈0|cT (0)
k1

(z1) cTk2(z2) cVk3,−1(z3)

∫

dz4V
(nonlocal)
k4,−1 (z4)|0〉+ B, (E.7)

where B remains, because V̂
(nonlocal)
k4,−1 (z4) is not BRST-closed:

B ≡ −i√
2
(pℓ4 − k4 − 1) 〈0|

∏

a=1,2

{

ξc e−φ+ikax+pℓaϕ(za)
}

c e−
1
2
φ−i 1

2
H+ik3x+pℓ3ϕ(z3)

×
∫

dz4 η e
1
2
φ+i 1

2
H+ik4x+pℓ4ϕ(z4)|0〉

∣

∣

∣

∣

large

. (E.8)

This satisfies charge conservations, and the Wick contraction leads to a nonvanishing result

B =
−i√
2
(pℓ4 − k4 − 1) (z1 − z2)(z1 − z3)

1/2(z2 − z3)
1/2

×
∫

dz4

(z1 − z4)1/2(z2 − z4)1/2

∏

i<j

(zi − zj)
kikj−pℓipℓj 〈0| :

4
∏

i=1

eikix+pℓiϕ(zi) : |0〉. (E.9)

This should be nonzero because (E.5) is not symmetric under V̂1 ↔ V̂2.

Open Access. This article is distributed under the terms of the Creative Commons
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