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In the first, we introduce suitably defined 3+1-dimensional analogues of the MT2 variable,

which take into account all relevant on-shell kinematic constraints in a given event topology.

The second approach utilizes the conventional MT2 variable, but its kinematic endpoint is

suitably reinterpreted on a case by case basis, depending on the specific event topology at

hand. We provide the general prescription for this reinterpretation, including the formulas

relating the measured MT2 endpoint (as a function of the test masses of all the invisible

particles) to the underlying physical mass spectrum. We also provide analytical formulas

for the shape of the differential distribution of the doubly projected MT2⊥ variable for

the ten possible event topologies with one visible particle and up to two invisible particles

per decay chain. We illustrate our results with the example of leptonic chargino decays

χ̃+ → `+νχ̃0 in supersymmetry.
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1 Introduction

The Large Hadron Collider (LHC) at CERN is continuing its quest for new physics Beyond

the Standard Model (BSM). Among the multitude of possible BSM scenarios, models

with neutral and stable WIMPs (weakly interacting massive particles) are of particular

interest. First, such models are greatly motivated by the dark matter problem, as WIMPs

are suitable dark matter candidates. Second, the initial BSM searches at the LHC have

already placed stringent limits on heavy resonances which decay visibly and can be fully

reconstructed. In contrast, the limits on parent particles which decay semi-invisibly (to

a collection of visible SM particles and one or more WIMPs) are much weaker. First,

the background issue in these analyses is more complicated: since the parent cannot be

fully reconstructed, the search is not a mere “bump hunt”, where the background can be

simply subtracted from the side-bands. Second, the symmetry which protects the lifetime

of the WIMP dark matter candidate typically requires that the new particles are multiply

produced, leading to lower production cross-sections (as opposed to single production). In
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Figure 1. (a) The generic event topology for the pair production of two parent particles A and

A′. Particle A (A′) decays to a set of Nvis (N ′vis) particles which are visible in the detector and

a set of Ninv (N ′inv) invisible particles. The invisible particles are not necessarily limited to SM

neutrinos, and can have arbitrary masses. (b) The simplified event topology typically used in MT2

studies. Each V is either a single SM particle, or an effective composite visible particle which is

constructed from the corresponding visible particles in figure (a). The decay chain for each parent

A terminates in a single invisible particle C.

the simplest and most popular models, the new symmetry is a Z2 parity, which implies

that the new particles are pair produced, as illustrated in figure 1.

Figure 1(a) depicts the generic event topology in a typical SUSY-like missing energy

event. Two parent particles A and A′ are produced, and each one decays to a certain

number of visible particles (denoted by solid lines), and a certain number of invisible

particles (denoted by dashed lines). At this point, the diagram in figure 1(a) is meant

to represent the most general case: for example, the number of visible particles (Nvis

and N ′vis), as well as the number of invisible particles (Ninv and N ′inv) in each parent

decay chain is completely arbitrary. Furthermore, the invisible particles are not necessarily

limited to SM neutrinos, but may include (several species of) WIMPs with different masses.

Most importantly, no assumption has been made regarding the actual decay topology of the

parents, and the yellow-shaded circles are simply placeholders for the actual 1→ Nvis+Ninv

and 1→ N ′vis +N ′inv Feynman diagrams responsible for the parent decays in the figure.

The kinematic analysis of events of this type is rather challenging. There is a lot

of missing (or a priori unknown) information: the number of invisible particles Ninv and

N ′inv, the momenta (and masses) of the invisible particles, the total invariant mass and

longitudinal momentum of the parent system (A,A′), and the event topologies hiding

behind the yellow-shaded circles in figure 1(a). These problems have inspired a lot of

previous work in the literature on new methods for measuring the masses of the parents and

the invisible daughters under these circumstances (for a recent review, see [1]). Among the

different options existing in the literature, the invariant mass variables appear to be both

useful and theoretically motivated [2]. Being Lorentz-invariant, they are insensitive to the a
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priori unknown longitudinal boost of the (A,A′) system. A special subset of invariant mass

variables which also shares this property, is given by the transverse invariant mass variables,

among which the Oxbridge stransverse mass MT2 [3, 4] is a well-known example directly

applicable to figure 1(a). It has been featured in analyses performed by the Tevatron and

LHC experimental collaborations CDF, D0, CMS and ATLAS [5–9].

In the original proposal [3], the “Oxbridge” MT2 variable was applied to the case of

direct slepton production, corresponding to the simple event topology shown in figure 1(b),

which is a special case of the more general figure 1(a). In figure 1(b), two identical parents

(A) are produced, and each one subsequently decays via a two-body decay to a single

visible SM particle V and a single invisible child particle C. In spite of its simplicity,

the event topology of figure 1(b) covers a number of interesting physics cases, e.g. slepton

production [3, 10], squark production [11–13], chargino production [14, 15], etc. At the

same time, the MT2 concept is very powerful, and can be usefully applied to situations

that are more general than the simple example in figure 1(b).

So let us first review the different directions in which one could generalize figure 1(b).

Some of the following options (a-b) have already been considered in the literature, and we

only mention them here for completeness. The remaining possibilities (c-f), however, have

attracted significantly less attention in the literature, and will be the main focus of this

paper.

(a) In figure 1(b) there is only one visible particle in each decay chain. In the language

of figure 1(a), this implies the assumption Nvis = N ′vis = 1. At the same type,

a typical BSM model like supersymmetry exhibits much longer decay chains, with

several visible particles on each side of the event. This case can be easily handled with

the conventional MT2 approach — one just needs to think of each V as a collection of

visible particles with some net four-momentum Pµ, which is measured in the detector.

Early work along these lines [16–18] led to the discovery of the MT2 “kink” in the

endpoint Mmax
T2 when considered as a function of the unknown test1 mass M̃C for the

child particle:

(
dMmax

T2 (M̃C)

dM̃C

)

M̃C=MC(1−ε)

6=
(
dMmax

T2 (M̃C)

dM̃C

)

M̃C=MC(1+ε)

. (1.1)

The kink in eq. (1.1) is an interesting and unique property of the MT2 variable,

allowing to measure simultaneously (at least as a matter of principle) the true mass

MC of the invisible dark matter candidate C at the end of the decay chain and

the true mass MA of the parent particle initiating the decay chain. What makes

the appearance of the kink possible is the fact that the invariant mass MV of the

visible collection of particles V is not constant, but varies from event to event: M2
V =

PµPµ 6= const.

(b) Another possible generalization is to consider that the parent particles A are produced

inclusively, either in association with jets from initial state radiation, or in the decays

1Following the notation of [19], test input masses for invisible particles will be denoted by a tilde.
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of other, even heavier, new particles. In either case, one again finds an MT2 kink

in eq. (1.1) at the true mass of the daughter particle C [18, 19]. The kink persists

even if the decay chain is extremely short (Nvis = N ′vis = 1) and MV = const. This

is because the origin of the kink is now different — it is due to the net transverse

momentum of the parent system (A,A).

(c) Another limiting assumption in figure 1(b) is that the two missing particles C at

the end of each decay chain are the same (or at least have a common mass MC).

This assumption, however, can be easily relaxed — one simply needs to allow for two

independent mass inputs M̃C1 and M̃C2 in the calculation of MT2 [20]. The resulting

“asymmetric” MT2 variable inherits all the desired properties of the conventional

MT2. In particular, the “kink” in eq. (1.1) in the function Mmax
T2 (M̃C) is generalized

to a kinky “crease” in the surface defined by the function Mmax
T2 (M̃C1 , M̃C2) [20, 21].

While this all sounds very straightforward, one should keep in mind that the original

public codes [22, 23] for calculating the MT2 variable cannot be used in this case,

since the assumption M̃C1 = M̃C2 is already hardwired.2

(d) The other assumption in figure 1(b) is that the two parent particles are the same

(or at least have a common mass MA). In principle, this can also be handled rather

easily. If the parents are different, but the children are the same, then one of the decay

chains must have additional visible particles which are not present on the other side.

Then, one possibility is to try to identify the extra particles and remove them from

consideration, thus reducing the effective event topology back to figure 1(b) [25]. An

alternative strategy is to consider the full event, but allow for different parent masses

M̃A1 and M̃A2 and then use Mmax
T2 to construct the function M̃C(M̃A1 , M̃A2) [21].

(e) Another assumption of figure 1(b) is that there is a single invisible particle in each

decay chain, i.e. that Ninv = N ′inv = 1. Again, there is no compelling reason for this

restriction in light of generic BSM models. First, a ZN parity restricts the number

of dark matter candidates in each decay chain only modulo N . Second, a Z3 parity

can lead to Ninv = 2 as easily as Ninv = 1 [26]. Finally, and most importantly, we

already know that SM neutrinos exist and behave like invisible particles at colliders.

The decay chains in figure 1 can easily3 contain SM neutrino particles, which would

contribute to the total invisible particle count Ninv [27]. Under those circumstances,

one needs to generalize the MT2 variable to account for the extra invisible particles,

and define corresponding variables MT3, MT4, etc. [4], where the numerical subscript

indicates the number of invisible particles Ninv. In doing so, however, one faces the

following fundamental problem. Recall that the most useful property of the original

MT2 variable was that its endpoint Mmax
T2 equals the true parent mass MA when the

test child mass M̃C coincides with the true child mass MC :

Mmax
T2 (M̃Ci = MCi) = MA. (1.2)

2However, see [24] for an update to [23].
3The standard example is the chargino decay in supersymmetry χ̃±1 → `±νχ̃0

1, which gives two invisible

particles — a neutrino ν and a neutralino χ̃0
1.
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However, as we shall explicitly see below in section 3, this property depends crucially

on the assumption that there aren’t any additional invisible particles in the game. In

reality, whenever the collection of particles V in figure 1(b) contains other invisible

particles χ in addition to the invisible child particle C, and there are intermediate on-

shell resonances in the cascade decay chain, the bound of eq. (1.2) is not necessarily

saturated, and one can only write

Mmax
T2 (Mχ +MC) ≤MA. (1.3)

The inequality applies even when the true masses Mχ and MC are being used. The

same holds for the new “generalized” variables MT3, MT4, etc. from [4]. In fact,

these generalized variables are simply related to the asymmetric MT2 variable [20] as

follows4

MT3(M̃C1 , M̃χ1 ; M̃C2) = MT2(M̃C1 + M̃χ1 , M̃C2), (1.4)

MT4(M̃C1 , M̃χ1 ; M̃C2 , M̃χ2) = MT2(M̃C1 + M̃χ1 , M̃C2 + M̃χ2), (1.5)

and so on. Therefore, the endpoints of MT3, MT4, etc. are also not guaranteed to

provide a saturated bound like eq. (1.2) and instead the best one can do with them

is to put a lower limit on MA as in eq. (1.3). One of the main goals of this paper,

therefore, will be to address the problem of multiple invisible particles and propose

how to recover saturated bounds of the type in eq. (1.2).

(f) The final issue is inherently related to the previous point: once we allow for multiple

invisible particles (Ninv > 1) in the decay chains, we must also address the question

of the correct event topology. In other words, we must ask the question, which

Feynman diagram is hiding behind the yellow-shaded placeholder in figure 1(a). Most

studies in the literature already assume that the correct event topology is known and

rarely discuss what happens when this assumption is incorrect [28–32]. Consider, for

example, the simplest possible case of one visible particle on each side (Nvis = N ′vis =

1) and then let us allow up to two invisible particles in a given decay chain (Ninv ≤ 2

and N ′inv ≤ 2). Even for this simple case, there are 10 possible decay topologies which

are explicitly shown in figure 2(a-j). Furthermore, since one cannot be absolutely sure

that the two visible particles originated from opposite decay chains, in principle one

should also contemplate event topologies with Nvis = 2 and N ′vis = 0, and two such

examples are shown in figure 2(k-l).

The main goal of this paper is to illustrate the application of the Oxbridge MT2 variable

in the more general situations described in (c-f) above. We shall be particularly concerned

with the issue (e) of multiple invisible particles and the related problem (f) of the unknown

decay topology. It is quite difficult to construct a kinematic variable (or more generally,

some kind of object) which would single out the correct event topology. An initial attempt

in this direction was made in ref. [33] which considered the decay of a single resonance A

4Here and below our notation is that the additional invisible particle χi appears in the same decay chain

as the invisible child particle Ci. See figure 2 for explicit examples.
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Figure 2. Possible event topologies with two visible particles v1 and v2 in the final state and up

to 2 invisible particles {Ci, χi} per decay chain. B1 and B2 are intermediate on-shell resonances:

MA > MBi > MCi .

(as opposed to pair production as in figure 1) and studied the invariant mass distribution

MV of the visible decay products. It was suggested that there exists a correlation between

the peak, the curvature at the peak, and the endpoint of the MV distribution, which in

favorable scenarios can be used to infer the decay topology and the number of invisibles

Ninv. However, this method requires Nvis ≥ 2 and cannot be used to discriminate the

topologies of figure 2(a-j), for which Nvis = 1 and MV = Mvi = const.

It appears, therefore, that we need to study event topologies on a case by case basis,

i.e., assume in turn each one of the event topologies from figure 2, then test for consistency

with the data. Note that the event topologies differ from each other in two aspects:

1. The number of invisible particles Ninv. For example, the diagrams in figure 2(a,k,l)

have Ninv = N ′inv = 1, the diagrams in figure 2(e-j) have Ninv = N ′inv = 2, while the

diagrams in figure 2(b-d) have Ninv = 2 and N ′inv = 1.

2. Different number of intermediate on-shell resonances Bi. For example, the diagrams

in figure 2(a,d,j,l) have no intermediate resonances, the diagrams in figure 2(b,c,g,i,k)

have one, while the diagrams in figure 2(e,f,h) have two.

As already discussed earlier, both of these effects jeopardize the conventionalMT2 approach,

and some modifications are required. In principle, there are two possible solutions. The

first, presented in section 2, is to modify the conventional MT2 definition on a case by

case basis — depending on the assumed event topology. The new definitions will use the
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appropriate number of invisible particles, and will also take into account the relevant on-

shell kinematic constraints — one constraint for each intermediate resonance Bi. Because

the mass shell constraints are 3 + 1-dimensional relations, this approach does not use the

transverse MT2 variable per se, but the alternative 3+1 dimensional invariant mass variable

M2 from [2], supplemented with the appropriate mass-shell constraints (see also [34, 35]

and the analogous constrained variables M2C and M3C). The advantage of this approach is

that we do not have to change the interpretation of the corresponding kinematic endpoint

Mmax
2 — it still provides a saturated bound on the parent mass in terms of the masses of

the invisible daughter particles, similarly to eq. (1.2).

On the other hand, from a practical standpoint, the constrained M2 method has a

certain disadvantage: one has to define a new M2 variable for each assumed event topology.

In the majority of the cases, those variables are not equivalent to the conventional MT2,

and therefore cannot be calculated with the existing MT2 codes [22, 23]. Since analytical

formulas are also unavailable, one would have to write a separate code for each variable.

The mass-shell constraints represent an additional complication, since most likely they

will have to be solved analytically first [36–38]. This is why in section 3 we present an

alternative approach whereby one keeps the original definition of MT2 (thus being able

to recycle the existing numerical codes), and instead modifies the interpretation of the

kinematic endpoint Mmax
T2 on a case by case basis. The basic idea was raised in [39], where

it was applied to the MCT variable [40] in the example of chargino decay. Here we show that

one can apply a similar treatment to the MT2 kinematic endpoints, and we also provide

the recipe for a general event topology.

In section 4 and section 5 we extend our method to the case of different children

particles (C1 and C2) and different parent particles (A1 and A2), respectively. Finally, in

section 6 we study the impact of the number of invisible particles Ninv on the shape of

the MT2⊥ distribution [41]. The technique was originally proposed in [27], which focused

on the shape of the MT2 variable. Here we prefer to consider the doubly projected version

MT2⊥ , which is less sensitive to extraneous factors like spin correlations, the underlying

partonic CM energy
√
s, etc. [42]. Thus our analysis completes the generalization of MT2

along the lines (c-f) discussed above. Since the directions (a) and (b) have already been

discussed extensively in the literature, for the sake of clarity and simplicity, throughout

the paper we shall use the simplest assumption Nvis = N ′vis = 1 and we shall introduce

upstream PT (i.e., transverse momentum for the parent system (A,A)) only as necessary.

2 Maximally constrained invariant mass variables

In this section we revisit the event topologies from figure 2 and for each one define the

appropriate invariant mass variable which provides the maximal bound on the parent mass

MA [2].

The event topology of figure 2(a). This is the classic MT2 event topology from

figure 1(b), so the relevant variable is simply MT2 [3] (or its asymmetric version if the

children have different masses [20]). For future reference, it is convenient to introduce here
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the 3 + 1-dimensional version of MT2, denoted simply as M2,5 which will make it very easy

to incorporate additional mass-shell constraints later on.

M2 is defined on a case by case basis, following the general recipe outlined in [2].

The particles in the final state are divided into two groups6 (hence the subscript “2” on

M2), one for each parent. Then, the larger of the two parent masses is minimized over

the momenta of the invisible particles. The minimization is performed subject to all ex-

isting kinematic constraints and assumptions. The measurement of the missing transverse

momentum /~PT always provides one constraint on the net sum of the invisible transverse

momenta, and another constraint is due to the assumption that the parents have equal

masses (see discussion of item (d) in the Introduction).

In the case of the diagram in figure 2(a), there are no further constraints, and we get

M2
2(a)(M̃C1 ; M̃C2) = min

PC1
,PC2

{
(Pv1 + PC1)2

}
(2.1)

(Pv1 + PC1)2 = (Pv2 + PC2)2

P 2
C1

= M̃2
C1

P 2
C2

= M̃2
C2

~PTC1 + ~PTC2 = /~PT

Upon performing the minimization over the longitudinal momenta PzC1 and PzC2 , one finds

that eq. (2.1) is equivalent [2, 34] to the usual MT2 when the children’s masses are taken

to be the same

M2(a)(M̃C ; M̃C) = MT2(M̃C), (2.2)

or to the asymmetric MT2 [20]

M2(a)(M̃C1 ; M̃C2) = MT2(M̃C1 , M̃C2), (2.3)

if the children’s masses are kept different.

The event topology of figure 2(b). Proceeding as before, for the diagram in figure 2(b)

we get

M2
2(b)(M̃χ1 , M̃C1 ; M̃C2) = min

Pχ1 ,PC1
,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.4)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
C2

= M̃2
C2

(Pχ1 + PC1)2 = M2
B1

~PTχ1 + ~PTC1 + ~PTC2 = /~PT

5Not to be confused with the wino mass parameter in supersymmetry.
6The division into two groups is motivated by the two parent hypothesis. If we do not make this

assumption and instead treat the event as a whole, we are led to the global inclusive variable
√
ŝmin [43, 44],

which in the language of [2] is denoted as M1.
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With PB1 ≡ Pχ1 + PC1 , this can be equivalently written as

M2
2(b)(M̃χ1 , M̃C1 ; M̃C2) = min

PB1
,PC2

{
(Pv1 + PB1)2

}
. (2.5)

(Pv1 + PB1)2 = (Pv2 + PC2)2

P 2
B1

= M2
B1

P 2
C2

= M̃2
C2

~PTB1 + ~PTC2 = /~PT

From here, comparing to eq. (2.1) and taking into account eq. (2.3), it follows that

M2(b)(M̃χ1 , M̃C1 ; M̃C2) = M2(a)(MB1 ; M̃C2) = MT2(MB1 , M̃C2). (2.6)

As expected, the kinematics of figure 2(b) is described by the asymmetric MT2 variable [20],

with the intermediate invisible resonance B1 treated effectively as a final state invisible

particle.

The event topology of figure 2(c). We get

M2
2(c)(M̃χ1 , M̃C1 ; M̃C2) = min

Pχ1 ,PC1
,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.7)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
C2

= M̃2
C2

(Pv1 + PC1)2 = M2
B1

~PTχ1 + ~PTC1 + ~PTC2 = /~PT

This variable is new — it cannot be related to existing versions of the MT2 variables as in

eqs. (2.3), (2.6).

The event topology of figure 2(d). Here there are no mass-shell constraints and we

have

M2
2(d)(M̃χ1 , M̃C1 ; M̃C2) = min

Pχ1 ,PC1
,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.8)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
C2

= M̃2
C2

~PTχ1 + ~PTC1 + ~PTC2 = /~PT

It is easy to show that the minimization in eq. (2.8) selects the collinear momentum con-

figuration [2, 43]

~Pχ1 =
M̃χ1

M̃C1

~PC1 (2.9)
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and eq. (2.8) can be rewritten as

M2
2(d)(M̃χ1 , M̃C1 ; M̃C2) = min

PΨ1
,PC2

{
(Pv1 + PΨ1)2

}
. (2.10)

(Pv1 + PΨ1)2 = (Pv2 + PC2)2

P 2
Ψ1

= (M̃χ1 + M̃C1)2

P 2
C2

= M̃2
C2

~PTΨ1 + ~PTC2 = /~PT

in terms of an effective composite invisible particle Ψ1 with mass

M̃Ψ1 ≡ M̃χ1 + M̃C1 (2.11)

and 3-momentum

~PΨ1 ≡ ~Pχ1 + ~PC1 =
M̃Ψ1

M̃C1

~PC1 =
M̃Ψ1

M̃χ1

~Pχ1 . (2.12)

Comparing to eq. (2.1), we recognize this as the asymmetric MT2 variable in eq. (2.3) [20]

M2(d)(M̃χ1 , M̃C1 ; M̃C2) = M2(a)(M̃χ1 + M̃C1 ; M̃C2) = MT2(M̃χ1 + M̃C1 , M̃C2). (2.13)

The event topology of figure 2(e). This is our first example with four invisible par-

ticles:

M2
2(e)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,Pχ2 ,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.14)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + Pχ2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
χ2

= M̃2
χ2

P 2
C2

= M̃2
C2

(Pχ1 + PC1)2 = M2
B1

(Pχ2 + PC2)2 = M2
B2

~PTχ1 + ~PTC1 + ~PTχ2 + ~PTC2 = /~PT

By introducing PBi ≡ Pχi + PCi , (i = 1, 2), this can be equivalently rewritten as

M2
2(e)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

PB1
,PB2

{
(Pv1 + PB1)2

}
(2.15)

(Pv1 + PB1)2 = (Pv2 + PB2)2

P 2
B1

= M2
B1

P 2
B2

= M2
B2

~PTB1 + ~PTB2 = /~PT

and therefore is again reduced to the asymmetric MT2 [20]

M2(e)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(a)(MB1 ;MB2) = MT2(MB1 ,MB2). (2.16)

Notice that M2(e) does not depend on the test masses M̃χ1 , M̃C1 , M̃χ1 and M̃C2 . In fact,

the two invisible decays Bi → χi + Ci, (i = 1, 2), have no observable consequences.
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The event topology of figure 2(f). This is similar to the previous case, except the

order in which particles χ1 and v1 appear in the decay chain is reversed

M2
2(f)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,Pχ2 ,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.17)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + Pχ2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
χ2

= M̃2
χ2

P 2
C2

= M̃2
C2

(Pv1 + PC1)2 = M2
B1

(Pχ2 + PC2)2 = M2
B2

~PTχ1 + ~PTC1 + ~PTχ2 + ~PTC2 = /~PT

Once again, the B2 mass shell constraint causes the inputs M̃χ2 and M̃C2 to drop out and

we get

M2
2(f)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,PB2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.18)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + PB2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
B2

= M2
B2

(Pv1 + PC1)2 = M2
B1

~PTχ1 + ~PTC1 + ~PTB2 = /~PT

This variable is also different from MT2, but is related to M2(c):

M2(f)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(c)(M̃χ1 , M̃C1 ; M̃B2). (2.19)

The event topology of figure 2(g). This case is similar to figure 2(e), but the B1 mass

shell constraint is removed:

M2
2(g)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,Pχ2 ,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.20)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + Pχ2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
χ2

= M̃2
χ2

P 2
C2

= M̃2
C2

(Pχ2 + PC2)2 = M2
B2

~PTχ1 + ~PTC1 + ~PTχ2 + ~PTC2 = /~PT
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Introducing the effective particle Ψ as in eqs. (2.11), (2.12), we get

M2
2(g)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

PΨ1
,PB2

{
(Pv1 + PΨ1)2

}
. (2.21)

(Pv1 + PΨ1)2 = (Pv2 + PB2)2

P 2
Ψ1

= (M̃χ1 + M̃C1)2

P 2
B2

= M2
B2

~PTΨ1 + ~PTB2 = /~PT

and therefore

M2(g)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(a)(M̃χ1 + M̃C1 ;MB2) = MT2(M̃χ1 + M̃C1 ,MB2). (2.22)

The event topology of figure 2(h). This is another new and non-trivial case:

M2
2(h)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,Pχ2 ,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.23)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + Pχ2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
χ2

= M̃2
χ2

P 2
C2

= M̃2
C2

(Pv1 + PC1)2 = M2
B1

(Pv2 + PC2)2 = M2
B2

~PTχ1 + ~PTC1 + ~PTχ2 + ~PTC2 = /~PT

The variable M2(h) cannot be reduced to one of the previous variables and would have to

be evaluated separately.

An interesting variation of the M2(h) variable arises in the symmetric case when the

intermediate on-shell particles B1 and B2 are the same, with MB1 = MB2 . Then, one can

replace the two mass shell constraints for B1 and B2 with the requirement that the B1 and

B2 masses are equal, but without specifying the actual numerical value:

M2
2(h)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,Pχ2 ,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.24)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + Pχ2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
χ2

= M̃2
χ2

P 2
C2

= M̃2
C2

(Pv1 + PC1)2 = (Pv2 + PC2)2

~PTχ1 + ~PTC1 + ~PTχ2 + ~PTC2 = /~PT

The advantage of this approach is that one does not need to know the value of MB1 = MB2

beforehand.
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The event topology of figure 2(i). This is similar to the previous case, except the B2

mass shell constraint is absent:

M2
2(i)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,Pχ2 ,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.25)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + Pχ2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
χ2

= M̃2
χ2

P 2
C2

= M̃2
C2

(Pv1 + PC1)2 = M2
B1

~PTχ1 + ~PTC1 + ~PTχ2 + ~PTC2 = /~PT

With the help of the effective invisible particle Ψ, this can be again simplified:

M2
2(i)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,PΨ2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.26)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + PΨ2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
Ψ2

= (M̃χ2 + M̃C2)2

(Pv1 + PC1)2 = M2
B1

~PTχ1 + ~PTC1 + ~PTΨ2 = /~PT

Comparing to eq. (2.7), we see that this variable is related to M2(c):

M2(i)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(c)(M̃χ1 , M̃C1 ; M̃χ2 + M̃C2). (2.27)

The event topology of figure 2(j). Here there are no mass shell constraints and we

have

M2
2(j)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

Pχ1 ,PC1
,Pχ2 ,PC2

{
(Pv1 + Pχ1 + PC1)2

}
. (2.28)

(Pv1 + Pχ1 + PC1)2 = (Pv2 + Pχ2 + PC2)2

P 2
χ1

= M̃2
χ1

P 2
C1

= M̃2
C1

P 2
χ2

= M̃2
χ2

P 2
C2

= M̃2
C2

~PTχ1 + ~PTC1 + ~PTχ2 + ~PTC2 = /~PT

Introducing two effective invisible particles Ψ1 and Ψ2, this reduces to

M2
2(j)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = min

PΨ1
,PΨ2

{
(Pv1 + PΨ1)2

}
. (2.29)

– 13 –



J
H
E
P
0
3
(
2
0
1
3
)
1
3
4

(Pv1 + PΨ1)2 = (Pv2 + PΨ2)2

P 2
Ψ1

= (M̃χ1 + M̃C1)2

P 2
Ψ2

= (M̃χ2 + M̃C2)2

~PTΨ1 + ~PTΨ2 = /~PT

Comparing to eq. (2.1), we see that

M2(j)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(a)(M̃χ1 + M̃C1 ; M̃χ2 + M̃C2)

= MT2(M̃χ1 + M̃C1 , M̃χ2 + M̃C2).
(2.30)

In conclusion of this section, let us summarize its main points. We considered the

ten event topologies in figure 2(a-j) and defined the corresponding maximally constrained

invariant mass variables, which fell into three categories.

• The variable M2(a) and its cousins M2(b), M2(d), M2(e), M2(g), and M2(j), all of which

can be computed in terms of the asymmetric MT2:

M2(b)(M̃χ1 , M̃C1 ; M̃C2) = M2(a)(MB1 ; M̃C2)

= MT2(MB1 , M̃C2)

M2(d)(M̃χ1 , M̃C1 ; M̃C2) = M2(a)(M̃χ1 + M̃C1 ; M̃C2)

= MT2(M̃χ1 + M̃C1 , M̃C2)

M2(e)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(a)(MB1 ;MB2)

= MT2(MB1 ,MB2)

M2(g)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(a)(M̃χ1 + M̃C1 ;MB2)

= MT2(M̃χ1 + M̃C1 ,MB2)

M2(j)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(a)(M̃χ1 + M̃C1 ; M̃χ2 + M̃C2)

= MT2(M̃χ1 + M̃C1 , M̃χ2 + M̃C2)

• The variable M2(c) and its friends M2(f) and M2(i):

M2(f)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(c)(M̃χ1 , M̃C1 ; M̃B2)

M2(i)(M̃χ1 , M̃C1 ; M̃χ2 , M̃C2) = M2(c)(M̃χ1 , M̃C1 ; M̃χ2 + M̃C2)

• The variable M2(h).

The advantage of these maximally constrained invariant mass variables is that their end-

points provide saturated bounds on the parent mass MA. In other words, we recover the

main feature in eq. (1.2) of MT2 which was lost due to the presence of the mass shell

constraints. More specifically, when we choose the test masses M̃χi and M̃Ci to be the true

ones (denoted without a tilde), the corresponding M2 kinematic endpoint gives the parent

mass MA:

Mmax
2(...)(Mχi ,MCi) = MA. (2.31)
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A

A

C

C

V

V

(a)

A

A

Ψ1

Ψ2

V

V

Mmax
T2 interpretationMT2 calculation

(b)

Figure 3. The effective topology used for (a) the calculation of the MT2 variable and (b) the

interpretation of its endpoint Mmax
T2 in the different cases from figure 2. In panel (b), Ψ1 and Ψ2

are effective particles whose masses are calculated in terms of the physical masses MA, MB , MC

and Mχ according to the rules in figure 4.

Here the subscript (. . .) stands for the event topology specifier: (a), (b), . . . (j). This also

reveals the main problem with the maximally constrained variables M2(...) — while we

recovered a saturated bound in eq. (2.31), we only managed to do so at the cost of in-

troducing a separate M2 variable for each event topology. Furthermore, in many cases,

these variables cannot be calculated with the existing public codes. This motivates an

alternative, more practical approach, which will be the subject of the next section.

3 Effective event topology and reinterpretation of the kinematic end-

point of the usual MT2 variable

3.1 General setup

In this section, we revisit the 10 event topologies in figure 2(a-j) and insist that we analyze

all of them by means of the conventional MT2 variable, which is computable by the public

codes. In other words, for the calculation of the MT2 variable, we will disregard any

differences between the diagrams in figure 2(a-j) and instead pretend that the events arise

from the classic MT2 event topology shown in figure 3(a): two parents with equal masses

MA are produced, and each one subsequently undergoes a two body decay to a single visible

particle V with constant mass7 MV = const and a single invisible particle C with mass

MC . As usual, we assume that the two children particles are identical (or at the very least,

that they have a common mass MC).

Following the usual procedure, we can then build the MT2(M̃C) distribution and ex-

tract its endpoint Mmax
T2 (M̃C). It is only at this point that we need to worry about the

actual origin of the events. In order to account for the differences between the diagrams

in figure 2(a-j), we propose to interpret the measured endpoint Mmax
T2 (M̃C) in terms of the

7For simplicity, in this paper we consider massless V particles, i.e. MV = 0.
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A
A
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χv
χv

B C

A
A

B
C

vχ
χ v

B C
A C

χ v
χv

A C

A Ψ

v
v

A Ψ

MΨ = MC MΨ = MB

MΨ = MA

{
1 − MB

MA

(
1 − M2

C

M2
B

)
eη
}1/2

(a) (b)

(c) (d)

(e)

A C

v

A C

v

MΨ = Mχ + MC

Figure 4. Equivalence diagrams for the interpretation of Mmax
T2 in Fig 3(b). Each decay chain

(a-d) can be replaced with the effective vertex (e). The mass MΨ of the effective particle Ψ should

be suitably chosen as shown in each panel (a-d).

effective event topology shown in figure 3(b): we still produce two identical parents, but

now they decay to effective invisible particles Ψ1 and Ψ2, respectively. The interpretation

of the endpoint Mmax
T2 (M̃C) is still given by the usual formula [16, 17]

Mmax
T2 (M̃C) = µ+

√
µ2 + M̃2

C , (3.1)

where

µ ≡ MA

2

[(
1−

M2
Ψ1

M2
A

)(
1−

M2
Ψ2

M2
A

)]1/2

, (3.2)

and it is only the masses MΨ1 and MΨ2 of the effective particles that would have to be

calculated on a case by case basis, depending on the assumed event topology from figure 2.

The effective masses MΨi , (i = 1, 2) are in general functions of the true masses of the par-

ticles appearing in the corresponding event topology from figure 2. In order to derive those

functions, we use the technique originally suggested in [39] for the case of the contransverse

variable MCT . The main idea is to consider the extreme momentum configuration which

gives the maximum value Mmax
T2 . The rules for constructing the effective mass MΨ for a

given cascade decay chain are listed in figure 4. Most of them should be pretty intuitive,

given our discussion in the previous section, where we already had to introduce an effective

particle Ψ. For example, we already encountered figure 4(d) in eq. (2.11) and we also saw

the replacement of figure 4(b) in eq. (2.6). Perhaps the one non-trivial example is that of

figure 4(c), where the effective particle mass is formed as

MΨi(MA,MBi ,MCi ,Mχi) = MA

{
1− MBi

MA

(
1−

M2
Ci

M2
Bi

)
eηi

}1/2

, (3.3)

where

ηi = cosh-1

(
M2
A +M2

Bi
−M2

χi

2MAMBi

)
. (3.4)
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We present the derivation of eq. (3.3) in appendix A. When the invisible particle χ is

massless (Mχ = 0), the effective mass MΨi in eq. (3.3) reduces to

MΨi(MA,MBi ,MCi , 0) = MCi

(
MA

MBi

)
. (3.5)

The advantage of the MT2 endpoint reinterpretation approach is that one never has

to stray from the conventional procedure — it is only at the very last stage of the analysis

that the event topology issue comes into play. The Mmax
T2 endpoint is always interpreted

universally as in eq. (3.1), and only the parameter µ from eq. (3.2) depends on the event

topology from figure 2:

µ(a) =
MA

2

√√√√
(

1−
M2
C1

M2
A

)(
1−

M2
C2

M2
A

)
, (3.6)

µ(b) =
MA

2

√√√√
(

1−
M2
B1

M2
A

)(
1−

M2
C2

M2
A

)
, (3.7)

µ(c) = eη1/2 MA

2

√√√√MB1

MA

(
1−

M2
C1

M2
B1

)(
1−

M2
C2

M2
A

)
, (3.8)

µ(d) =
MA

2

√√√√
(

1− (MC1 +Mχ1)2

M2
A

)(
1−

M2
C2

M2
A

)
, (3.9)

µ(e) =
MA

2

√√√√
(

1−
M2
B1

M2
A

)(
1−

M2
B2

M2
A

)
, (3.10)

µ(f) = eη1/2 MA

2

√√√√MB1

MA

(
1−

M2
C1

M2
B1

)(
1−

M2
B2

M2
A

)
, (3.11)

µ(g) =
MA

2

√√√√
(

1− (MC1 +Mχ1)2

M2
A

)(
1−

M2
B2

M2
A

)
, (3.12)

µ(h) = e(η1+η2)/2 MA

2

√√√√MB1MB2

M2
A

(
1−

M2
C1

M2
B1

)(
1−

M2
C2

M2
B2

)
, (3.13)

µ(i) = eη1/2 MA

2

√√√√MB1

MA

(
1−

M2
C1

M2
B1

)(
1− (MC2 +Mχ2)2

M2
A

)
, (3.14)

µ(j) =
MA

2

√(
1− (MC1 +Mχ1)2

M2
A

)(
1− (MC2 +Mχ2)2

M2
A

)
, (3.15)

with ηi still given by eq. (3.4).
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3.2 Application to chargino decays

A well-motivated and relevant physics case illustrating the decay topologies in figure 4 is

provided by the chargino decays in supersymmetry. If we identify the parent particle A

with the chargino χ̃+ and the visible SM particle with a charged lepton `+, the invisible

daughter particles could be: a neutralino χ̃0, a sneutrino ν̃, or a SM neutrino ν. Then each

of the decay chains in figure 4(a-d) can be interpreted as follows:

• The topology of figure 4(a): A → v + C. This corresponds to a two-body decay of

the chargino to a lepton and sneutrino: χ̃+ → `+ + ν̃, with the sneutrino being the

lightest supersymmetric particle (LSP).

• The topology of figure 4(b): A→ v + B, followed by B → χ+ C. This is similar to

the previous case, where we identify B with the sneutrino: χ̃+ → `+ + ν̃, only this

time the sneutrino decays further invisibly: ν̃ → ν + χ̃0.

• The topology of figure 4(c): A → χ + B, followed by B → v + C. Here there are

two possible examples. The first one is analogous to the sneutrino decay considered

above — only this time the intermediate particle is a charged slepton ˜̀+ and we get

χ̃+ → ν + ˜̀+, followed by ˜̀+ → `+ + χ̃0. The invisible particle masses are identified

as MC = Mχ̃0 and Mχ = Mν = 0. Another possibility is to have the chargino decay

to an on-shell W boson: χ̃+ → χ̃0 + W+, followed by W+ → `+ + ν, in which case

the invisible masses are MC = Mν = 0 and Mχ = Mχ̃0 .

• The topology of figure 4(d): A→ v+χ+C. This is realized if the chargino two-body

decays are closed and it decays via a virtual slepton or W boson: χ̃+ → `+ + ν + χ̃0.

By pairing up these 4 cases, we can obtain all 10 event topologies from figure 2(a-j).

As a specific scenario realizing these patterns, let us consider the Tchislepslep sim-

plified model [45], where Mχ̃+ > Mν̃L 'M˜̀+
L
> Mχ̃0 . The masses of the sneutrino and the

charged slepton are taken to be equal because they belong to the same SU(2)W doublet

(they are both left-handed). The two possible chargino decays are given by figure 4(b)

and figure 4(c) and have equal branching fractions. The three possible ways of pairing

up figure 4(b) and figure 4(c) lead to the event topologies of figure 2(e), figure 2(f) and

figure 2(h):

• Sneutrino-sneutrino. When both charginos decay through a sneutrino as in fig-

ure 4(b), we obtain the event topology of figure 2(e) with the identifications MA =

Mχ̃+ , MB1 = MB2 = Mν̃ , MC1 = MC2 = Mχ̃0 , and Mχ1 = Mχ2 = Mν = 0. Therefore

the MT2 endpoint in eq. (3.1) should be interpreted with the µ(e) parameter taken

from eq. (3.10):

µ(e) ≡ µν̃ν̃ =
Mχ+

2

(
1− M2

ν̃

M2
χ̃+

)
. (3.16)

• Slepton-sneutrino. The hybrid pairing of figure 4(b) and figure 4(c) leads to the event

topology of figure 2(f) with the identifications MA = Mχ̃+ , MB1 = M˜̀+ , MB2 = Mν̃ ,

– 18 –



J
H
E
P
0
3
(
2
0
1
3
)
1
3
4

(0) [GeV]T2M
0 50 100 150 200 250 300 350 400 450 500

 
T2

 d
 M

/ 
d 

N

0

500

1000

1500

2000

2500

3000

3500

4000

Topology (e)
Topology (f)
Topology (h)

Tchislepslep @LHC 8TeV, 80K events

Figure 5. Distributions of the MT2 variable (for zero test mass M̃C = 0) for the Tchislepslep

simplified model, with Mχ̃+ = 500 GeV, Mν̃L 'M˜̀+
L

= 400 GeV and Mχ̃0 = 100 GeV. The chargino

branching fractions are fixed as B(χ̃+ → `+ + ν̃) = B(χ̃+ → ν + ˜̀+) = 50%. Results are shown

for direct chargino pair production at the LHC with 8 TeV CM energy. The vertical dashed lines

mark the expected endpoints for each event topology: sneutrino-sneutrino (red), sneutrino-slepton

(blue) and slepton-slepton (green).

MC1 = MC2 = Mχ̃0 , and Mχ1 = Mχ2 = Mν = 0. The MT2 endpoint for such events

is interpreted with µ(f) from eq. (3.11):

µ(f) ≡ µ ˜̀̃ν =
Mχ+

2

√√√√
(

1−
M2
χ̃0

M2
˜̀

)(
1− M2

ν̃

M2
χ̃+

)
. (3.17)

• Slepton-slepton. When both charginos decay through a slepton as in figure 4(c),

we obtain the event topology of figure 2(h) with the identifications MA = Mχ̃+ ,

MB1 = MB2 = M˜̀+ , MC1 = MC2 = Mχ̃0 , and Mχ1 = Mχ2 = Mν = 0. The MT2

endpoint for such events is interpreted with µ(h) from eq. (3.13):

µ(h) ≡ µ ˜̀̀̃ =
Mχ+

2

(
1−

M2
χ̃0

M2
˜̀

)
. (3.18)

The Tchislepslep scenario is illustrated in figure 5, where we show MT2 distributions

from Monte Carlo simulations for direct chargino pair production, at the LHC with 8 TeV

CM energy. The electroweak mass spectrum is chosen as Mχ̃+ = 500 GeV, Mν̃L ' M˜̀+
L

=

400 GeV and Mχ̃0 = 100 GeV, while the chargino branching fractions are fixed as B(χ̃+ →
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`+ + ν̃) = B(χ̃+ → ν + ˜̀+) = 50%. For simplicity, we calculate MT2 with zero test mass

(M̃C = 0), so that the endpoint formula in eq. (3.1) simplifies to

Mmax
T2 (M̃C = 0) = 2µ =





180 GeV for sneutrino− sneutrino events,

290 GeV for slepton− sneutrino events,

469 GeV for slepton− slepton events.

(3.19)

where the µ parameter was calculated from eqs. (3.16)–(3.18), depending on the event

type. In figure 5, sneutrino-sneutrino events are plotted in red, slepton-sneutrino events

are plotted in blue and slepton-slepton events are plotted in green. The color-coded vertical

dashed lines mark the corresponding MT2 endpoints expected from eqs. (3.16)–(3.19).

We conclude this section with a discussion of the TChiww SMS model, in which the

sleptons and sneutrinos are heavy, and both charginos decay through an on-shell W boson

instead (provided, of course, that Mχ̃+ > MW +Mχ̃0). The corresponding topology is the

one from figure 2(h), where Ci = ν and χi = χ̃0 is the neutralino LSP. The effective masses

from eq. (3.3) are

MΨ1 = MΨ2 = Mχ̃+

√
1− MW

Mχ̃+

eη, (3.20)

where

η = cosh-1

(
M2
χ̃+ +M2

W −M2
χ̃0

2Mχ̃+MW

)
. (3.21)

Then the MT2 endpoint (with zero test mass M̃χ̃0) is given by

Mmax
T2 (0) = MW eη. (3.22)

Finally, if the mass splitting between the chargino and the neutralino is small (Mχ̃+ −
Mχ̃0 < MW ), the chargino decays as in figure 4(d). The event topology is given in figure 2(j)

and the MT2 endpoint (again with zero test mass M̃χ̃0) is

Mmax
T2 (0) = Mχ̃+

(
1−

M2
χ̃0

M2
χ̃+

)
. (3.23)

4 Reinterpretation of the kinematic endpoint of the asymmetric MT2

variable

In the effective topology of figure 3(a), the test masses for the two invisible children were

chosen to be the same: M̃C . However, as demonstrated in [20], it is straightforward to

generalize the standard MT2 calculation in figure 3(a) to allow for different test masses for

the two children particles. In other words, we could use the effective diagram in figure 3(b)

not only for the interpretation of the kinematic endpoint, but also for the actual calculation

of the (asymmetric) MT2 variable itself, in terms of two different test masses,8 M̃Ψ1 and

M̃Ψ2 [20]:

MT2D(M̃Ψ1
,M̃Ψ2

) ≡ min
~PTΨ1

+~PTΨ2
=/~PT

{max {MTA1 (~PTΨ1
,M̃Ψ1

), MTA2 (~PTΨ2
,M̃Ψ2

)}} , (4.1)

8Recall our notation that test masses always carry a tilde.
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where MTAi is the transverse mass of the parent particle Ai

MTAi (
~PTΨi

,M̃Ψi
) ≡

[
M2
Vi + M̃2

Ψi + 2

(√
M2
Vi

+ ~P 2
TVi

√
M̃2

Ψi
+ ~P 2

TΨi
− ~PTVi · ~PTΨi

)]1/2

.

(4.2)

and the subscript “D” in eq. (4.1) is used to remind the reader that the asymmetric MT2

variable uses two different test mass inputs. In eq. (4.2), MVi and ~PTVi are correspondingly

the invariant mass and transverse momentum of the effective visible particle Vi resulting

from the decay of Ai. Similarly, M̃Ψi and ~PTΨi are the test mass and test transverse

momentum of the effective invisible particle Ψi (see figure 3(b)). As usual, ~PTΨ1 and ~PTΨ2

are subject to the missing transverse momentum constraint, and then varied to find the

minimum of the function in eq. (4.1).

When the visible particles are massless (MVi = 0), as we are considering here, the

kinematic endpoint of MT2D is given by [20]

Mmax
T2D(M̃Ψ1

,M̃Ψ2) =




µ+

√

µ2 + M̃2
+ +

M̃4
−

4µ2




2

− M̃4
−

4µ2




1/2

, (4.3)

where the parameter µ encoding the dependence on the physical masses is still given by

eq. (3.2), while the two test masses enter through the combinations

M̃2
+ =

1

2

(
M̃2

Ψ1
+ M̃2

Ψ2

)
, (4.4)

M̃2
− =

1

2

∣∣∣M̃2
Ψ1
− M̃2

Ψ2

∣∣∣ . (4.5)

Obviously, one can always go from the asymmetric MT2D variable in eq. (4.1) back to

the original MT2 variable [3], simply by setting the two test masses to be equal:

MT2D(M̃Ψ,M̃Ψ) = MT2(M̃Ψ). (4.6)

Furthermore, the MT2D endpoint in eq. (4.3) only allows us to measure one parameter: µ,

and the same can be said about the usual MT2 endpoint in eq. (3.1) as well. A natural

question then is whether there is any benefit at all from introducing the more complicated

variable MT2D. We see two motivations for considering MT2D:

• In the context of manifestly asymmetric event topologies like the ones shown in

figure 2(b), figure 2(c), figure 2(d), figure 2(f), figure 2(g) and figure 2(i), the language

of MT2D is more appropriate because the masses of the effective invisible particles

Ψ1 and Ψ2 are different, even if the masses of the particles C1 and C2 at the end of

the decay chains are the same.

• More importantly, by considering the asymmetric MT2D variable, one could in princi-

ple find not just one constraint among the three unknown parameters MA, MΨ1 and

MΨ2 , but the actual values of all three parameters themselves [20, 21]. To this end,

one needs to consider events in which the parent AA system recoils against upstream
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objects (from initial state radiation or prior decays) with a net upstream transverse

momentum UT . One then measures the endpoint in eq. (4.3) and compares the results

in different UT bins. In general, the results for the MT2D endpoint will depend on

the value of UT . However, when the test masses M̃Ψi are equal to the corresponding

true values MΨi , the UT dependence disappears and Mmax
T2D becomes independent of

the upstream momentum [20]:

∂Mmax
T2D

∂UT

∣∣∣∣
M̃Ψi

=MΨi

= 0. (4.7)

The true location of the invisible masses MΨi is often also revealed as the crossing

point of several creases in the two-dimensional hyper-surface defined by the function

Mmax
T2D(M̃Ψ1

,M̃Ψ2) [21].

5 Interpretation in the case of different parent particles

As another application of the effective topology method, in this section we revisit the case

of different parent particles (MA1 6= MA2) as illustrated in figure 6(a). A well-motivated

example of such a “coproduction” channel is provided by associated gluino-squark produc-

tion which was studied in [25, 46], finding a correlation between the endpoint Mmax
T2 of the

conventional MT2 variable and the larger of the two parent masses:

M
(max)
T2 (M̃C = MC) = max (MA1 ,MA2) . (5.1)

This result, also suggested in [12], is the analogue of eq. (1.2) for the case of different

parents. Here we point out that the relation in eq. (5.1) does not hold in general. The

main result in this section will be the proper interpretation of the MT2 kinematic endpoint

in the case of different parents (figure 6(a)). The discussion will be organized as follows:

in section 5.1 we first treat the case with no upstream momentum (UT = 0) and then in

section 5.2 we discuss the more general case with UT 6= 0.

5.1 Events with no upstream momentum (UT = 0)

We start from the known fact that the MT2 endpoint is invariant under “back-to-back”

boosts in the transverse plane [17]. In the conventional case of figure 1(b) with identi-

cal parents, this boost brings both parent particles to rest. However, when the parents

have different masses as in figure 6(a), no back-to-back boost can bring the parents to

rest simultaneously, and the “back-to-back” boost invariance of Mmax
T2 will be lost. More

specifically, if the parent system (A1, A2) is produced with some total CM energy
√
ŝ, the

parent particles Ai are boosted by the respective factors

η1

(√
ŝ
)

= cosh-1

(
ŝ+M2

A1
−M2

A2

2ŝMA1

)
, (5.2)

η2

(√
ŝ
)

= cosh-1

(
ŝ+M2

A2
−M2

A1

2ŝMA2

)
. (5.3)
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A2 A1

A2

C

C

χ v1

v2

Equivalent interpretationDifferent parents

Mχ = (M2
A2

− M2
A1

)/
√

ŝ

(b)

Figure 6. (a) A generic event topology with different parent particles and (b) the effective event

topology for its interpretation as discussed in the text.

For definiteness and without loss of generality, from now on we shall assume that MA2 >

MA1 , so that max (MA1 ,MA2) = MA2 . Then from eqs. (5.2), (5.3) it also follows that

η2 < η1. Thus if we perform a “back-to-back” boost on the particles A1 and A2 with the

boost factor η2 corresponding to the heavier particle, the result will be that particle A2

will be brought to rest, while the lighter parent particle A1 will have some residual boost

δη(
√
ŝ) ≡ η1(

√
ŝ)− η2(

√
ŝ) = cosh-1




M2
A2

+M2
A1
−
(
M2
A2
−M2

A1√
ŝ

)2

2MA2MA1


 . (5.4)

Comparing this to eq. (3.4), we see that eq. (3.4) and eq. (5.4) become identical if we

identify

Mχ(
√
ŝ) ≡

M2
A2
−M2

A1√
ŝ

. (5.5)

The physical meaning of eq. (5.5) is the following — the events in figure 6(a), which repre-

sent pair production of different parent particles, are instead reinterpreted as in figure 6(b),

which shows the pair production of identical parents A2, one of which decays into A1 plus

a hypothetical invisible particle χ whose mass is given by eq. (5.5). At this point it is

important to note that the mass Mχ as defined in eq. (5.5) is not constant, but carries

dependence on the CM energy
√
ŝ, which is inherited from eqs. (5.2), (5.3). At hadron

colliders, events are produced with varying
√
ŝ, thus in general Mχ takes values in the

interval

0 ≤Mχ(
√
ŝ) ≤MA2 −MA1 , (5.6)

where the lower bound corresponds to
√
ŝ → ∞ and the upper bound is obtained at

threshold
√
ŝ = MA1 +MA2 .

Once we have an event topology with equal parents as in figure 6(b), we already know

how to interpret the MT2 endpoint — we just follow the prescription from section 3. The
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topology of figure 6(b) is of the type shown in figure 2(c), so for the upper decay chain

we need to introduce an effective invisible particle Ψ1 as prescribed in figure 4(c) and

eqs. (3.3), (3.4):

MΨ1 = MA2

{
1− MA1

MA2

(
1− M2

C

M2
A1

)
eη(
√
ŝ)

}
, (5.7)

η(
√
ŝ) = cosh-1

{
M2
A2

+M2
A1
−M2

χ(
√
ŝ)

2MA2MA1

}
= δη(

√
ŝ). (5.8)

Then, the kinematic endpoint of the usual MT2 variable is found from eq. (3.1):

Mmax
T2 (

√
ŝ, M̃C) = µ(

√
ŝ) +

√
µ(
√
ŝ)2 + M̃2

C , (5.9)

with µ(
√
ŝ) given by eq. (3.8)

µ(
√
ŝ) = eη(

√
ŝ)/2 · MA2

2

√√√√MA1

MA2

(
1− M2

C

M2
A1

)(
1− M2

C

M2
A2

)
. (5.10)

Notice that the kinematic endpoint Mmax
T2 in eq. (5.9) this time depends not only on

the test child mass M̃C , but also on the partonic CM energy
√
ŝ. At the LHC,

√
ŝ is not

constant, but varies from one event to another in accordance with the parton distribution

functions (PDFs). Therefore, the kinematic endpoint in eq. (5.9) will in general9 get

smeared. As we can see from eqs. (5.4), (5.10), µ(
√
ŝ) is an increasing function of

√
ŝ. Since√

ŝ itself varies from its threshold value
√
ŝ = MA1 +MA2 to

√
ŝ→∞, the function µ(

√
ŝ)

takes values in

µmin ≤ µ(
√
ŝ) ≤ µmax, (5.11)

where

µmin = lim√
ŝ→MA1

+MA2

µ(
√
ŝ) =

MA2

2

√√√√MA1

MA2

(
1− M2

C

M2
A1

)(
1− M2

C

M2
A2

)
, (5.12)

µmax = lim√
ŝ→∞

µ(
√
ŝ) =

MA2

2

√√√√
(

1− M2
C

M2
A1

)(
1− M2

C

M2
A2

)
= µmin

√
MA2

MA1

. (5.13)

Now it follows from eq. (5.9) that even if we choose the test mass M̃C to be the true mass

MC , the corresponding MT2 kinematic endpoint Mmax
T2 (MC) will still vary with

√
ŝ between

a minimum value of

Mmax
T2 (
√
ŝ = MA1 +MA2) = µmin +

√
µ2

min +M2
C (5.14)

and a maximum value of

Mmax
T2 (
√
ŝ→∞) = µmax +

√
µ2

max +M2
C . (5.15)

9Modulo the special case where A1 and A2 are produced in the decay of some heavy narrow resonance

X as X → A1A2 [42, 48].
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Figure 7. Unit-normalized MT2 distributions for the asymmetric event topology of figure 6(a)

with different parent particles A1 and A2 and no upstream momentum (UT = 0). The particle

mass spectrum is chosen as MA1
= 1000 GeV, MA2

= 200 GeV and MC = 100 GeV. The MT2

variable is computed with the correct value for the test mass M̃C = MC = 100 GeV. The blue

histogram uses only events at threshold (
√
ŝ = MA1 +MA2) and its expected endpoint, marked by

the vertical blue dashed line, is given by eq. (5.16). The red histogram shows the corresponding

result in the infinite energy limit
√
ŝ → ∞ (in practice, we take

√
ŝ = 100MA2

) and the expected

endpoint from eq. (5.17) is denoted by the vertical red dashed line. The black vertical dashed line is

the prediction from eq. (5.1). The green dotted line is the result from Pythia 6.4 [47] simulation at

LHC8 for a realistic physics example corresponding to the event topology of figure 6(a): associated

squark-chargino (q̃, χ̃±) production, followed by q̃ → q + χ̃0 and χ̃±1 → `± + ν̃, for the same mass

spectrum, (Mq̃,Mχ̃± ,Mν̃ ,Mχ̃0) = (1000, 200, 100, 100) GeV.

This is illustrated in figure 7, where we plot the MT2 distributions for these two

extreme cases:
√
ŝ = MA1 + MA2 (blue) and

√
ŝ → ∞ (red). We consider asymmetric

events with different parents as in figure 6(a) and choose the mass spectrum as follows

MA1 = 1000 GeV, MA2 = 200 GeV and MC = 100 GeV. The blue and red vertical dashed

lines mark the locations of the expected endpoints in eqs. (5.14) and (5.15), respectively.

With the mass spectrum chosen for the figure, one gets

Mmax
T2 (
√
ŝ = MA1 +MA2 , M̃C = MC) = 409.8 GeV, (5.16)

Mmax
T2 (
√
ŝ→∞, M̃C = MC) = 873.1 GeV. (5.17)

figure 7 demonstrates that in these two limiting cases, the endpoints of the MT2 distribu-

tions agree perfectly with our expectations in eqs. (5.16), (5.17) and stay well below the

conjecture of eq. (5.1), which is indicated by the black vertical dashed line.

For intermediate, more realistic values of
√
ŝ, the upper endpoints of the corresponding

MT2 distributions will populate the region between those two extreme values, but will cer-
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tainly not exceed the theoretical maximum in eq. (5.17). As an illustration, in figure 7 we

also show results (the green dotted histogram) from a realistic physics example simulated

with Pythia 6.4 [47]. We considered associated squark-chargino production in supersym-

metry, pp→ q̃χ̃±, followed by q̃ → q+ χ̃0 and χ̃±1 → `±+ ν̃, with the same mass spectrum

as before, (Mq̃,Mχ̃± ,Mν̃ ,Mχ̃0) = (1000, 200, 100, 100) GeV. Such events fall into the dif-

ferent parent category of figure 6(a). With the available statistics, the MT2 endpoint for

the green dotted histogram happens to be around 800 GeV, which, as expected, is in be-

tween eq. (5.16) and eq. (5.17). We see that the realistic MT2 distribution indeed does not

saturate the bound of eq. (5.1). Therefore, the correct interpretation of the MT2 endpoint

in the case of different parents should be made with the help of eqs. (5.9), (5.10) instead.

5.2 Events with upstream momentum (UT 6= 0)

In the previous subsection 5.1, we considered events with no upstream momentum (UT =

0), where the parents A1 and A2 are produced back-to-back in the transverse plane. In

reality, however, the inclusive (A1, A2) production is always associated with some amount

of upstream momentum, either from initial state radiation or from decays of other, heavier

particles. In this subsection we consider the effect of upstream momentum (UT 6= 0) and

show that our previous conclusions still hold.

It is well known that the kinematic endpoint Mmax
T2 in general depends on the upstream

momentum UT , but this dependence is removed for a very special choice of the test masses,

namely, when the test masses are equal to the true masses of the children particles, see

eq. (4.7).10 This property has been previously demonstrated only for the case of identical

parent particles and now we would like to test whether it also holds for the case of different

parent particles in figure 6(a).

As we already explained, the case of different parents in figure 6(a) can be equivalently

treated as a case of identical parents, which decay asymmetrically as in figure 6(b). In turn,

this process can be described in terms of the asymmetric MT2D variable from eq. (4.1),

whose endpoint Mmax
T2D(M̃Ψ1 , M̃Ψ2) will become independent of UT with the following choice

of test masses

M̃Ψ1 =
MA2

MA1

MC , M̃Ψ2 = MC . (5.18)

These values are in principle measurable experimentally, by studying the UT dependence

of the Mmax
T2D endpoint as a function of the test masses, and finding the choice where this

dependence is minimized [20].

Notice that if we try to use the symmetric version of the MT2(M̃C) variable, where the

input masses are equal (M̃C1 = M̃C2 ≡ M̃C), we will get a less stringent bound. Even if

the test mass is taken to be the true one (M̃C = MC), we still find a chain of inequalities

Mmax
T2 (MC) < Mmax

T2D

(
MA2

MA1

MC ,MC

)
≤MA2 . (5.19)

10The dependence on UT completely disappears for the case of the doubly projected MT2⊥ variable

introduced in [41], which uses only the transverse momentum components orthogonal to ~UT .
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Figure 8. The same as figure 7, but for events with upstream momentum UT . For the threshold

limit (
√
ŝ = MA1 + MA2) and for the infinite energy limit (

√
ŝ → ∞), large UT was put in by

hand, while for the realistic LHC 8 TeV simulation, UT was generated from initial state radiation

in Pythia 6.4.

Of course, when the test masses M̃Ψ1 and M̃Ψ2 are chosen away from the special values

in eq. (5.18), the endpoint Mmax
T2D as usual will be an increasing function of UT . The same

will also be true for its symmetric counterpart Mmax
T2 , whose UT dependence is illustrated

in figure 8, which is the analogue of figure 7 in the presence of upstream momentum UT . As

before, the vertical blue and red dashed lines mark the locations of the expected endpoints

in eqs. (5.16), (5.17) in the absence of UT . The figure shows that, as expected, in the

presence of upstream momentum, the endpoints are shifted higher, and in the extreme

case of infinite
√
s, the endpoint eventually reaches the naive expectation from eq. (5.1):

lim√
ŝ,UT→∞

Mmax
T2 (M̃C = MC) = MA2 . (5.20)

Note that this limit is reached only in the unphysical case when both
√
ŝ and UT are sent to

infinity. In the realistic simulation of squark-chargino production (the green dotted line),

where UT is generated from initial state radiation, the MT2 endpoint is similar to the one

observed in figure 7 and again does not saturate the bound eq. (5.20).

5.3 Application to associated gluino-LSP production

So far we have not at all discussed the event topologies in figures 2(k) and 2(l), which can

describe, e.g. associated gluino-neutralino production, where the gluino decay to the LSP

gives 2 jets. Those topologies can be thought of as extreme examples of the “different

parent” case just considered. Thus, Mmax
T2 will again depend on the center of mass energy
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√
ŝ of the AC2 system, which at hadron colliders will vary from one event to another. This

will lead to a smearing of the endpoint Mmax
T2 . Thus we will consider the situation where

the production energy
√
ŝ of particles A and C2 is fixed, as at a future linear collider.

The event topology of figure 2(k). The UT -invariant point of M
(max)
T2D will appear at

(
M̃Ψ1 , M̃Ψ2

)
= (MΨ1 , MΨ2) , (5.21)

where

MΨ1 =

√
ŝ

2

{
1− 2MA√

ŝ

(
1−

M2
B1

M2
A

)
eηs

}1/2

, (5.22)

MΨ2 =

√
ŝ

2

{
1− 2MB1√

ŝ

(
1−

M2
C1

M2
B1

)
eηs−ηb

}1/2

, (5.23)

ηs = cosh-1

(
ŝ+M2

A −M2
C2

2
√
ŝMA

)
, (5.24)

ηb = cosh-1

(
M2
A +M2

B1
−M2

C1

2MAMB1

)
. (5.25)

The corresponding value of M
(max)
T2D will be

M
(max)
T2D (MΨ1 ,MΨ2) =

√
ŝ

2
. (5.26)

The event topology of figure 2(l). With the effective topology technique, we find the

UT -invariant point at

(
M̃Ψ1 , M̃Ψ2

)
= (MΨ, MΨ) , (5.27)

MΨ =

√
ŝ

2

{
1− MA√

ŝ

(
1−

M2
C1

M2
A

)
eηs

}1/2

, (5.28)

with ηs still given by eq. (5.24). The endpoint is found at

Mmax
T2D (MΨ,MΨ) = Mmax

T2 (MΨ) =

√
ŝ

2
. (5.29)

6 The shapes of MT2⊥ distributions

Until now we have been focusing on the measurable kinematic endpoints of different vari-

ables. At the same time, one could also attempt to study the shapes of the corresponding

differential distributions. Unfortunately, (to the best of our knowledge) analytical formu-

las for the shapes of the MT2 and MT2D distributions are absent. Their derivation would

be rather complicated, because the shapes are affected by several factors: the production

energy
√
ŝ, spin correlations, upstream momentum UT , etc. In order to remove the UT
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effect, ref. [41] introduced a 1D-projection of MT2, called MT2⊥ . MT2⊥ is calculated the

same way as MT2, except that it uses the projections of the transverse momenta on the

dimension which is orthogonal to the ~UT direction [49]. It turned out that this doubly

projected variable is also independent of
√
ŝ and avoids large spin correlation effects [42].

In this section we provide analytical formulas for the shapes of the MT2⊥ distributions for

various event topologies from figure 2. We will also discuss the endpoint behavior of these

distributions, extending the technique proposed in [27] to count the number of invisible

particles Ninv.

With two massless visible particles, MT2⊥(M̃Ψ) is related to MT2⊥(0) as follows

x ≡MT2⊥(0) =
MT2⊥(M̃Ψ)2 − M̃2

Ψ

MT2⊥(M̃Ψ)
. (6.1)

The corresponding distributions are related as

dN

dMT2⊥(M̃Ψ)
=

(
MT2⊥(M̃Ψ)2 + M̃2

Ψ

MT2⊥(M̃Ψ)2

)
· dN

dx
(6.2)

Thus we only need to describe the shape of x, since the shape of MT2⊥(M̃Ψ) will then be

easily obtained from eq. (6.2). In the following equations, we used the same notation for µ

and ηi as in eqs. (3.2), (3.4), respectively. We also introduce individual µi defined as

µi =
MA

2

(
1−

M2
Ψi

M2
A

)
, (6.3)

so that µ is the geometric mean of µ1 and µ2, as in eq. (3.2),

µ =
√
µ1µ2. (6.4)

In the following we list our results for dN/dx.

The event topologies of figures 2(a), 2(b) and 2(e). The answer is very simple [41]

dN

dx
∝ x log

(
2µ

x

)
. (6.5)

The event topologies of figures 2(c) and 2(f). We find

dN

dx
∝ x

∫ 1

x
2µ

dp

p
J (1)

on (p) , (6.6)

where

J (i)
on (p) ≡ ηi −Θ

(
p− e−ηi

)
ln (p eηi) . (6.7)

Here Θ (x) is a unit step function and J
(i)
on (p) is a phase space weight from the cascade

decay chain. After integrating out eq. (6.6), we get

dN

dx
∝ x ·





2η1 ln
(

2µ

x e
η1
2

)
if 0 ≤ x < 2µ e−η1 ,

[
ln
(

2µ
x

)]2
if 2µ e−η1 ≤ x ≤ 2µ.

(6.8)
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The event topologies of figures 2(d) and 2(g). We find

dN

dx
∝ x

∫ 1

x
2µ

dq

q
J

(1)
off (q) , (6.9)

J
(i)
off (q) ≡

∫ M2
A

M2
Ψi

(1−q2)+q2

1

ds

s

√√√√(s− 1)

(
s− |MCi −Mχi |2

M2
Ψi

)
. (6.10)

The function J
(i)
off (q) is a three-body phase space weight. Integrating eq. (6.10) above,

we get

J
(i)
off (q) =

M2
A −M2

Ψi

M2
∆i

√
Ri − q2

√
1− q2 − MΨi

M∆i

log

(
MΨi

√
Ri − q2 −M∆i

√
1− q2

MΨi

√
Ri − q2 +M∆i

√
1− q2

)

−
(
M2

Ψi
+M2

∆i

M2
∆i

){
1

2
log

(
M2
A −M2

Ψi

M2
Ψi
−M2

∆i

)
+ log

(√
Ri − q2 +

√
1− q2

)}
,

(6.11)

with

M∆i = |MCi −Mχi |, Ri =
M2
A −M2

∆i

M2
A −M2

Ψi

. (6.12)

When χi is massless,

J
(i)
off (q) =

(
M2
A −M2

Ci

M2
Ci

)
(1− q2)− ln

[
M2
A

M2
Ci

(1− q2) + q2

]
, (6.13)

and the corresponding distribution becomes

dN

dx
∝ x

[
M2
A −M2

C1

M2
C1

{
−1 +

x2

4µ2
− 2 ln

(
x

2µ

)}
−4 ln

(
MC1

MA

)
ln

(
x

2µ

)

+Li2

(
2µ1

MA

)
− Li2

(
x2

2µ2MA

)]
, (6.14)

where Li2 (x) is Spence’s function, defined as

Li2 (x) = −
∫ x

0
dz

ln (|1− z|)
z

. (6.15)

The event topology of figure 2(h). Without loss of generality, η2 ≤ η1 and we have

dN

dx
∝ x ·





ln

(
2µ

xe
η1+η2

2

)
if 0 ≤ x < x0,

ln

(
2µ

xe
η1+η2

2

)
− 1

6η1η2

[
ln
(

2µ
xeη1+η2

)]3
if x0 ≤ x < x1,

η2

6η1

(
η2 − 3 ln

(
2µ
x

)
+ 3

η2

[
ln
(

2µ
x

)]2
)

if x1 ≤ x < x2,

1
6η1η2

[
ln
(

2µ
x

)]3
if x2 ≤ x ≤ x3,

(6.16)

where

x0 = 2µ e−(η1+η2), x1 = 2µ e−η1 , (6.17)

x2 = 2µ e−η2 , x3 = 2µ. (6.18)
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Figure 9. The same as figure 5, but for the doubly projected MT2 variable MT2⊥ . The solid lines

show the corresponding theoretical predictions following from eqs. (6.5), (6.8), (6.16).

The event topology of figure 2(i). We find

dN

dx
∝ x ·





∫ xeη1
2µ
x
2µ

dq
q ln

(
2µ q
x

)
J

(2)
off (q) +

∫ 1
xeη1
2µ

dq
q (η1) J

(2)
off (q) , if 0 ≤ x < x1,

∫ 1
x
2µ

dq
q ln

(
2µ q
x

)
J

(2)
off (q) , if x1 ≤ x ≤ x3.

(6.19)

The event topology of figure 2(j). We leave it in integral form

dN

dx
∝ x

∫ 1

x
2µ

dq

q
J

(1)
off (q) J

(2)
off

(
x

2µ q

)
. (6.20)

For illustration, in figure 9 we show the corresponding MT2⊥ distributions for the

Tchislepslep SMS model considered in figure 5. In addition to the histograms which

were obtained from numerical simulations, we also show the corresponding theoretical

predictions following from eqs. (6.5), (6.8), (6.16). We see that the analytical results match

very well the simulated MT2⊥ differential distributions.

As detailed in [27], it should, in principle, be possible to distinguish between topologies

with different numbers of invisible particles Ninv simply by fitting the endpoint fall-off

of kinematic distributions; this was shown to have a near-universal dependence on Ninv

for judiciously chosen variables [27]. The near-endpoint behavior of the doubly-projected

variable MT2⊥ for the various topologies in figure 2 is detailed in table 1 as a function

ofε, the distance away from the endpoint. Note firstly that the fall-off for the doubly-

projected variable MT2⊥ is faster than that for the usual stransverse mass MT2. This is

due to an additional dimension of the full phase space being ‘projected out’, and making
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Ninv
On-shell topologies Off-shell topologies

topology near-endpoint behavior topology near-endpoint behavior

2 (a) ε

3 (c),(f) ε2 (d),(g) ε3

4
(h) ε3 (i) ε4

(j) ε5

Table 1. Near-endpoint behavior of the doubly-projected stransverse mass MT2⊥ distribution, for

all topologies in figure 2, as a function of ε, the distance away from the endpoint. It is assumed

that one invisible particle on each leg of the decay is massive (corresponding to the LSP), while

any others are massless (corresponding to additional neutrinos emitted in the decay). The fall-off

for alternative mass spectra can be trivially obtained by taking the relevant limit in the shape

expressions given above.

it more difficult to distinguish between different numbers of invisibles Ninv for large Ninv

using the endpoint behavior alone. Secondly, although the near-endpoint behavior has a

universal dependence on Ninv for massless invisible particles [27], this is not true when

any invisible particles obtain a non-negligible mass. In the latter case we see that the fall-

off is always slower for true cascade decays (with on-shell resonances), since the presence

of an on-shell intermediate particle effectively reduces the dimension of the full phase

space, hence fewer dimensions are projected out. In fact, for cascades, the near-endpoint

behavior is entirely independent of the invisible particle masses. Finally, note that there

are discrete ambiguities between the endpoint fall-off of cascades, and decays with off-shell

intermediates, for different Ninv. In these particular cases, then, one would need to fit

using the full shape formula, given above.

7 Conclusions and summary

Our work in this paper removes some of the restrictions which so far have prevented the

more widespread usage of the MT2 variable. We demonstrated how the MT2 variable (and

its variants) can be usefully applied in more general situations, e.g.:

• Decay chains with multiple invisible particles. In sections 2 and 3 we considered cases

where the new physics decay chain gives rise to several invisible particles. Previous

MT2 studies have typically assumed that there is only one invisible particle in the

decay chain (the dark matter WIMP), which appears at the end of the decay chain.

At the same time, there are many scenarios in which additional invisible particles

can be present. The most popular example of this sort are chargino decays in super-

symmetry, which yield SM neutrinos in addition to the invisible LSP. We proposed

two methods for dealing with the problem of additional invisibles: by introducing

topology-dependent new variables (in section 2) and by reinterpreting the measured

kinematic endpoints of the conventional MT2 distributions (in section 3).

• Events with different invisible child particles. In section 4 we pointed out that the

reinterpretation method carries over to the case where the invisible child particles
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at the end of the decay chains are different. The key idea is to use the asymmetric

MT2D variable introduced in [20].

• Events with different parent particles. Much of the previous literature on MT2 dealt

only with events in which the two parent particles initiating the decay chains are

identical. As for events with different parent particles, it was thought that the MT2

endpoint in that case reveals the mass of the heavier parent. In section 5 we showed

that this conjecture is false, and we gave the correct interpretation of the MT2 end-

point for the case of different parent particles.

Apart from a good theoretical understanding of the measured MT2 endpoint in terms

of the underlying mass spectrum in all those different situations, it is also important to

have a good knowledge of the shapes of the respective differential MT2 distributions. In

section 6 we considered the doubly projected variableMT2⊥ proposed in [41] and derived the

corresponding shapes for a number of different cases shown in figure 2(a-j). Our formulas

can be used for improving the precision of mass measurements based on MT2⊥ kinematic

endpoints [8]. Furthermore, by comparing the different shape predictions to the data, one

could also, in principle, deduce the correct event topology and/or the number of invisible

particles in the event, although in practice this may be unfeasible due to limited statistics

near the endpoint.
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A Derivation of the effective particle mass

In this section, we derive the formula (3.3) for the effective mass MΨi for the case of

the decay chain in figure 4(c). The main idea is to investigate the allowed range for the

transverse momentum PvT of the visible particle v (it will be convenient to do this analysis

in the rest frame of particle A).

Starting in the rest frame of B, the allowed range for PvT is given by

0 ≤ P (B)
vT ≤

MB

2

(
1− M2

C

M2
B

)
, (A.1)

where the superscript (B) denotes that the momentum is measured in the B rest frame.

Next, the rest frame of B is related to the rest frame of A by a Lorentz boost along

the direction of the momentum of B in the A rest frame, ~P
(A)
B :

(
cosh η sinh η

sinh η cosh η

)(
MB

0

)
=

(
E

(A)
B

P
(A)
B

)
, (A.2)
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where E
(A)
B and P

(A)
B are respectively the energy and the magnitude of the momentum of

B in the A rest frame:

E
(A)
B =

M2
A +M2

B −M2
χ

2MA
, (A.3)

P
(A)
B =

√(
M2
A − (MB +Mχ)2

) (
M2
A − (MB −Mχ)2

)

2MB
. (A.4)

Given the Lorentz boost factor η, the allowed range for the transverse momentum P
(A)
vT of

v in the A rest frame is

0 ≤ P (A)
vT ≤

MB

2

(
1− M2

C

M2
B

)
(cosh η + sinh η) =

MB

2

(
1− M2

C

M2
B

)
eη, (A.5)

where η is found from (A.2):

η = cosh-1

(
M2
A +M2

B −M2
χ

2MAMB

)
, (A.6)

which was already shown in (3.4). Now, we are ready to present the equivalent diagram

of figure 4(e), in which particle A decays into v and Ψ so that the allowed range of the

transverse momentum of v for the equivalent diagram is the same as the range found

in (A.5). For a generic two-body decay A → v + Ψ, the allowed range of the transverse

momentum P
(A)
vT of v is

0 ≤ P (A)
vT ≤

MA

2

(
1− M2

Ψ

M2
A

)
, (A.7)

where MΨ is the mass of the effective particle Ψ. Now, by comparing (A.7) and (A.5), we

obtain the desired value of MΨ:

MΨ(MA,MB,MC ,Mχ) = MA

{
1− MB

MA

(
1− M2

C

M2
B

)
eη
}1/2

, (A.8)

which was the result shown in (3.3).
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