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1 Introduction

For a long time it was believed that four is the maximal dimension in which conformal field

theories can exist. However, string/M-theory suggest that the group theoretical bound of

six dimensions on superconformal theories [1] is actually saturated [2]. The understanding

of effective (2,0) theories for multiple M5-branes is one of the pressing questions of M-

theory in this context. They are classified by ADE groups, but an explicit understanding

still seems far off.

One of the problems is of pure geometrical origin and independent of any underlying

dynamics or supersymmetry and addresses the question of non-abelian tensor (two-form)

gauge fields. For example, various no-go theorems exclude the non-abelian extension of the

abelian tensor gauge symmetry [3]. In [4] this problem was encompassed in the context of

a tensor hierarchy [5, 6] by introducing additional form-degrees of freedom, in particular

an ordinary gauge field and non-propagating three- and (optionally) four-form gauge fields.

This structure shows similarity with concepts of higher gauge theories, Q structures, and

non-abelian gerbes [7–12], extended to higher degree forms. A very particular realization

of this gauge symmetry was given in [13].

The other problem is that the supposed (2, 0) theory of multiple M5-branes is intrin-

sically strongly coupled, i.e. it has no free parameter for a weak coupling expansion which

would make the existence of a Lagrangian description plausible. This problem is analo-

gous to the situation of M2-branes. Also in that case, and for the same reason, it was

believed that a Lagrangian description does not exist. Nevertheless, a single maximally

supersymmetric three-dimensional CFT (BLG-model) [14, 15] and a more general class

with less supersymmetry (ABJM-models) [16] have been found. The decisive observation

in the latter case is that by placing the M2-branes at an orbifold singularity instead of
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placing them in flat space one gains a dimensionless parameter which allows for a weak

coupling limit and thus makes a Lagrangian description possible. The resulting CFT’s have

the same field content as a maximally, i.e. N = 8 supersymmetric theory but realize only

N = 6 supersymmetry. From the field theory point of view this means that the reduced

supersymmetry is less restrictive and therefore allows for a Lagrangian formulation.

In a similar spirit, in [4, 17] we constructed interacting (1, 0) superconformal models

for non-abelian tensor and vector multiplets. The BPS sector of these models has been

analyzed in [18]. Also in six dimensions, N = (1, 0) supersymmetry is not as restrictive as

to prevent any nontrivial local dynamics (as in the maximal (2, 0) case), but strong enough

to essentially determine the dynamics. As a further step towards the sought-after (2,0)

models, in this paper we complete the (1, 0) tensor multiplet interactions to the full field

content of the (2, 0) theories by coupling the non-abelian tensor/vector models of [4, 17]

to superconformal hypermultiplets.

Superconformal hypermultiplets are described by a gauged non-linear sigma model [19].

Conformal invariance requires the target space to be a hyper-Kähler cone (HKC) [20,

21]. The possible gauge groups are subgroups of the isometry group of the underlying

quaternionic Kähler manifold (QK). Supersymmetry requires that the vector multiplets

that gauge these isometries are embedded in a particular way into the vector multiplets of

the superconformal vector/tensor system. There is no direct coupling between the tensor

and hypermultiplets prior to eliminating the auxiliary fields, but the vector multiplets form

the ‘glue’ between this two multiplets in a non-trivial way, beyond simple minimal gauge

couplings. Though the restriction of the gauge group by the QK isometry group suggests

some selection mechanism there remains a large freedom in the construction. Even the

restriction to compact quaternionic Kähler manifolds provides for all classical groups a

corresponding manifold, the Wolf spaces [22], and an associated HKC. We discuss in detail

the case of the flat HKC and show that one can embed arbitrary matrix representations of

semi-simple groups including abelian factors in the corresponding isometry group which in

this case is Sp(n)/Z2. It is however not surprising that pure classical considerations do not

lead to the selection of ADE groups since these are determined by anomaly cancellation

conditions and is thus an essential quantum effect. For abelian tensor multiplets this was

discussed in [23].

From the different types of superconformal tensor/vector models of [17] the coupling

to the hypermultiplets selects those whose field equations can be integrated to an action

(modulo the known subtleties related to the description of self-dual tensor fields). Upon

extending the system to include non-propagating four-form potentials, the dynamics may

equivalently be expressed by a set of non-abelian first-order duality equations. This de-

scription appears rather natural with the coupling to hypermultiplets. The resulting super-

multiplet structure is rather intriguing. While the gauge structure based on the three-form

leads to an on-shell supermultiplet that mixes the tensor and vector multiplet with the non-

dynamical three-form, the inclusion of the four-form also intertwines the hypermultiplets

with the previous ones. Even more intriguing is the observation, that in the supersymmetry

transformation of the four-form the tensor and hypermultiplet contributions combine in a

manifestly (2, 0) way.
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Another question that we address in this paper is the elimination of the vector multiplet

auxiliary fields. As has been mentioned, the vector multiplet forms the ‘glue’ between the

tensor and hypermultiplet. A particular important coupling comes through the auxiliary

field, which is described by the algebraic field equation,

dIrs

(

Y s
ij φ

I − 2λ̄s(iχ
I
j)

)

− 1

2λ
θr

m µijm = 0 , (1.1)

where Y is the auxiliary field and λsi the gaugino of the vector multiplet, while φ, χ belong

to the tensor multiplet. The moment maps µ of the hypermultiplet Lagrangian couple

with a free dimensionless coupling constant λ. The other two objects are invariant tensors

of the gauge group. This equation in fact contains the full information about the vector

multiplet dynamics, the rest is fixed by supersymmetry. Generically this equation implies

constraints on the elementary fields [4, 17]. The inclusion of the hypermultiplets does not

alter this observation. We show that one has to include abelian factors, or tensor multiplet

singlets, in order to avoid constraints for the elementary fields. In that case one finds a

unique solution for the auxiliary fields Y . In contrast to the standard YM-hyper couplings

of [19] however, eliminating the auxiliary fields does not generate a bosonic potential but

only quadratic and quartic fermionic interactions.

The resulting moduli space for the scalars is thus not constrained by any potential. In

particular the VEV for the tensor scalar fields can in principle take any value. However,

we find certain couplings between the tensor scalars and the vector multiplet for which

the VEV 〈φ〉 acts as the inverse (square) of the Yang-Mills coupling constant. Therefore

at the conformal point 〈φ〉 = 0 the theory is no longer perturbatively defined. Also the

auxiliary field equation (1.1) is degenerate in this point. It implies constraints on the

hypermultiplets and thus changes the target space geometry. This is of course the indication

of the well known, but not so well understood, phenomenon of the tensionless string phase

transition [24, 25]. Consequently the models are well defined only on the Coulomb branch,

where the conformal symmetry is spontaneously broken. However, since the breaking is

spontaneous the original conformal symmetry might be still useful in the perturbative

regime through the broken Ward identities, although they might look very complicated.

The literature mentions evidence that this conformal fixed point might be described by a

local field theory (see e.g. [23]). With the given set of degrees of freedom that we considered

here, which comprises the full field content of (2, 0) tensor multiplets, superconformal

symmetry predicts essentially unique models where this phenomenon can be at most seen

as a highly non-perturbative effect.

A last comment regarding ADE classification: N = (1, 0) theories are chiral and there-

fore anomaly cancellation is an important ingredient. As mentioned above, the anomaly

cancellation conditions of [23] lead to a selection of ADE gauge groups, though the ten-

sors are abelian in that case. For the models presented here, we have to postpone such a

discussion until a full quantum treatment is available. However, we make the following ob-

servation: The necessity to include abelian factors to avoid constraints in (1.1) also provides

the structure for the particular couplings that were considered in [23], see equation (4.18)

below. These couplings, that are an essential input for the anomaly cancellation conditions,
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are thus naturally present in our theories. Let us finally mention other approaches towards

the field equations [11, 26, 27] and amplitudes [28] of the (2,0) theory whose relation to the

presented construction will be interesting to understand. We also want to mention possible

relations two supergravity theories [30, 31]

The paper is organized as follows: In section 2 we discuss the geometrical background

for the superconformal hypermultiplets. In section 3 we describe the Lagrangians for the

hyper- and the tensor/vector system, respectively, and the embedding of the hypermulti-

plet gauging into the latter. We also discuss the ‘first-order’ description, which includes the

non-dynamical four-form and its supermultiplet structure. In section 4 we discuss the elimi-

nation of the auxiliary fields and the necessity of abelian factors and resulting interactions.

2 Geometrical setting

The target space of rigid supersymmetric sigma models with eight supercharges has to be a

hyper-Kähler (HK) manifold1 (M4n, g, ~J ) [33, 34]. Hence, M4n is a (real) 4n-dimensional,

with local coordinates qα=1,...,4n, and provides an Sp(1)-triplet of covariant constant com-

plex structures ~J and a metric g which is hermitian w.r.t. all of them. This hyper-complex

structure forms a quaternionic algebra and defines a triplet of hyper-Kähler forms ~ω:

J iJ j = − δij + εijkJk , ∇α
~J = 0 , ~ωαβ := gαγ ~J

γ
β , (2.1)

where ∇α is the Levi-Civita connection. This actually implies the existence of an whole

S2 ≃ CP 1 of complex structures {I = ~a · ~J | ~a2 = 1}, and that the Kähler forms are closed,

d ~ω = 0. The latter, or the requirement of reduced holonomy Hol(g) ⊆ Sp(n) may be taken

as an equivalent definition of a HK manifold. In the following we pick J3 as the particular

complex structure to define complex coordinates2 za, z̄ā = (za)∗ such that J3 is diagonal

and the fundamental holomorphic (2, 0) form is given by:

J3 a
b = i δab , J3 ā

b̄ = −i δāb̄ , ω(+) :=
1

2
(ω1 + i ω2) . (2.2)

The holomorphic (2, 0) form ω(+) implies that a HK manifold is also a holomorphic sym-

plectic manifold. Furthermore (ω(+))n defines a nowhere vanishing section of the canonical

bundle and thus M4n is Ricci-flat.

Hyper Kähler cones. For a sigma model with the given amount of supersymmetry to

be conformal the HK target space M4n has to be of special type, namely a hyper-Kähler-

cone (HKC) [20]. These spaces are characterized by the existence of a homothetic Killing

vector field,

∇α χ
β = δβα . (2.3)

This implies for the Lie derivative Lχ gαβ = 2 gαβ and thus χα generates dilatations3 on

M4n, see also [35]. The homothetic Killing vector defines i.) a hyper-Kähler potential

1If one considers only equations of motions no metric g is needed and the requirements for susy are less

restrictive [29, 32]. However, we will always assume the existence of an action.
2The real coordinates we define then as [qα] = 1

√

2
[(za + z̄ā),−i(za − z̄ā)]t .

3We define the homothetic Killing vector with unit normalization (2.3). The actual dilatation generator

will be defined with a constant factor, appropriate for the six-dimensional world volume.
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χ(q) : M4n → R, i.e. a single Kähler potential for all complex structures I [36], and

ii.) the Killing vectors ~kα which generate the Sp(1) isometry that acts on the complex

structures and becomes the R-symmetry of the supersymmetry algebra:

χ(q) :=
1

2
gαβχ

αχβ ⇔ gαβ = ∇α∂βχ(q) , ~kα :=
1

2
~Jα

βχ
β , (2.4)

from which follows L
~α~k
J j = −αi εijkJk = ~α~t j

k J
k. The equation for the metric can be con-

sidered as an equivalent definition of a HKC, where χα is then obtained as χα = gαβ∂βχ(q),

and it imposes rather strong conditions. Not only are the non-vanishing components of the

metric as usual derived from a Kähler potential (in complex coordinates gab̄ = ∂a∂b̄χ), but

it also implies that ∇a∂bχ = 0.

The superconformal case is closely related to the situation with local supersymmetry

and the coupling to supergravity. The latter requires that the target space is a 4(n− 1)

dimensional quaternionic Kähler manifold Q4(n−1) [37]. There exists a one-to-one corre-

spondence between HKC’s M4n and quaternionic Kähler manifolds Q4(n−1) via the “su-

perconformal quotient” [20, 38] and the Swann bundle M4n → Q4(n−1) [36]. The coupling

to supergravity gauges the above described Sp(1) isometry. This is in contrast with the

rigid superconformal case with global Sp(1) R-symmetry, that we consider here. However,

we are interested in the construction of gauged superconformal models and the possible

gauge groups are given by those isometries of the HKC M4n that can be gauged while

preserving super- and conformal symmetry. These are the triholomorphic isometries which

commute with the Sp(1) isometries (2.4) and the dilatations (2.3). As a matter of fact,

these are the isometries of the underlying quaternionic Kähler manifold Q4(n−1) [21, 38].

Thus Iso(Q4(n−1)) describes the possible gauge groups of the superconformal sigma models

with the corresponding HKC target space M4n → Q4(n−1).

It is conjectured [39] that the Wolf spaces [22] are all possible (positive curvature)

compact quaternionic manifolds Q4(n−1). These are symmetric spaces and there exists one

for each simple Lie group. The quaternionic projective space,

Q4(n−1) = HPn−1 =
Sp(n)

Sp(1)× Sp(n− 1)
, (2.5)

whose HKC is the flat space R4n, will be of particular interest for us. The isometry group

in this case is Sp(n)/Z2 [40] and thus we can realize representations of gauge groups that

can be embedded in in Sp(n)/Z2. For the rest of this paper, we will restrict to discussing

gaugings on the level of the Lie algebra, i.e. for Sp(n).

Triholomorphic isometries, moment maps. As has been indicated, the isometries

that can be gauged in accordance with superconformal symmetry have to be i.) triholomor-

phic and commute with the Sp(1) isometries in order to preserve supersymmetry [34, 41],

and ii.) commute with the homothetic Killing vector field in order to preserve confor-

mal invariance [38]. Therefore the corresponding Killing vector fields X(m̂) are defined by

the conditions,

LX(m̂)
gαβ = 0 , LX(m̂)

~ωαβ = 0 , [X(m̂),~k ] = [X(m̂), kD ] = 0 , (2.6)
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where we have introduced the properly normalized dilatation Killing vector kαD = wq χ
A,

with wq = 2 for a six-dimensional world volume. Given that the Kähler forms ~ω are closed

the triholomorphicity condition reduces to LX(m̂)
~ω = d(iX(m̂)

~ω) = 0. This in turn implies

the existence of Sp(1)-triplets of (local) moment maps (Killing potentials) ~µ(m̂),

d ~µ(m̂) := −iX(m̂)
~ω ⇒ ∂α~µ(m̂) = ~ωαβX

β
(m̂) , (2.7)

which reflects the mentioned symplectic structure of the HK manifold. The moment maps

~µ(m̂) will define the potential-coupling to the vector multiplet, that one obtains after gauging

the isometries. Therefore the global existence of the moment maps is a necessary (and

sufficient [42]) condition to gauge the associated isometries. The moment maps (2.7) are

defined only up to constants, which however are eventually fixed by the requirement of

conformal symmetry, see (B.14).

Gauging. The gauging of isometries, especially in the given context, has been consid-

ered in [19–21, 41]. The triholomorphic Killing vector fields X(m̂) generate the isometry

group Ĝ = Iso(Q4(n−1) ) of the quaternionic Kähler manifold associated to the HKC M4n.

Generically we will gauge a subgroup G ⊆ Ĝ, generated by the subset of triholomorphic

isometries {X(m) } ⊆ {X(m̂) } that satisfy,

[X(m), X(n) ] = −fmn
pX(p) . (2.8)

The fmn
p are the structure constants of the associated Lie algebra g := Lie(G).

The target space coordinates qα will eventually depend on the six-dimensional world

volume coordinates xµ. In the process of gauging the isometry transformations are made

local w.r.t. the world volume:

δΛ q
α(x) := Λm(x)Xα

(m) . (2.9)

Correspondingly one introduces gauge fields on the world-volume and covariant derivatives,

Dµq
α = ∂µq

α −Am
µ X

α
(m) , δΛA

m
µ = ∂µΛ

m −An
µ Λ

p fnp
m , (2.10)

which results in the covariant transformation law,

δΛ (Dµq
α) = Λm (Tm)

α
β Dµq

β with (Tm)
α
β = ∂βX

α
(m) . (2.11)

We finally note that in the case that G ⊂ Ĝ is a normal subgroup the original global

isometry group is preserved by the gauging and one has in addition to the gauge invariance

G the global symmetry H = Ĝ/G. However, in the generic case the original symmetry Ĝ

is broken down to G by the gauging [19].

Flat target space, Sp(n) isometries. We conclude this section with an explicit dis-

cussion for the case that the target space is flat R
4n which will be the case of particular

interest in the following. Nevertheless, all of the subsequent constructions apply to general

HKC target spaces. For flat target space, all connection coefficients can be set to zero

– 6 –
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and also the curvature tensor in (3.3) vanishes. The basic HK structures take in complex

coordinates the simple form,

χ =
2n
∑

a=1

|za|2 , ω3 = −i dza∧ dzā , ω(+) =
1

2
Ωab dz

a
∧ dzb , (2.12)

with the Sp(n) invariant symplectic form Ωab (a, b = 1, . . . , 2n), while the homoth-

etic/dilatation and Sp(1) Killing vectors are given by,

χa =
1

2
kaD = za , k3 a =

1

2
za , k+ a = 0 , k− a =

1

2
(Ω z̄)a . (2.13)

The conjugate components of the vectors are simply obtained by complex conjugation,

k3 ā = (k3 a)∗, k+ ā = (k− a)∗, etc.. For the resulting triholomorphic isometries (2.6) and

moment maps (2.7) one obtains,

Xa
(m̂) = u(m̂)

a
b z

b with u†(m̂) = −u(m̂) and ut(m̂) = Ωu(m̂)Ω ,

µ3(m̂) = i (z̄ u(m̂) z) , µ
(+)
(m̂) =

1

2
(Ωu(m̂))ab z

azb . (2.14)

The matrices u(m̂) thus generate the group Sp(n), which is the isometry group of the un-

derlying quaternionic manifold HP (2.5). It is easy to see that all isometries commute:

[Xm̂, kD ] = [Xm̂, ~k ] = [~k, kD ] = 0. This would be not the case for the translational tri-

holomorphic isometries of R4n. However, the Sp(1) R-isometry is obviously not manifestly

realized on the complex coordinates za, since it rotates the complex structures (2.4).

In order to realize the Sp(1) R-isometry in a manifest way we introduce the pseudo-

real coordinates,

qi a =

[

q1

q2

]

:= κ

[

Ω z̄

−i z

]

= f iaα q
α ⇒ (qi a)∗ = εijΩab q

j b , (2.15)

where κ is a phase such that κ2 = i. The constant flat vielbeine, f iaα, f
α
ia are given

explicitly in (B.1). Dilatations, Sp(1) and Sp(n) action on these coordinates are of the

covariant form,

δλ kDq
i a = 2λ qi a , δ

~α~k
qi a = ~α~t i

j q
i b , δλm̂ X(m̂)

qi a = λm̂ u(m̂)
a
b q

i b , (2.16)

where ~t i
j = − i

2~σ
i
j . The coordinates q

i a thus transform in the fundamental representation

(2,2n) under Sp(1) × Sp(n). The basic data for the HKC and the Lagrangian (3.3) are

given by

g = εij Ωab dq
i a ⊗ dqj b , ωij = Ωab dq

i a
∧ dqj b ,

Xi a
(m̂) = u(m̂)

a
b q

i b , µij(m̂) = (Ωu(m̂) )ab q
i aqj b . (2.17)

The next step is to choose subgroups G ⊆ Sp(n) and their representations which can be

embedded in the sp(n) matrices u(m̂). Denoting the corresponding matrices by u(m) one

finds from (2.8), (2.15),

[u(m), u(n) ] = fmn
p u(p) . (2.18)
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ADE embeddings. We choose a canonical form for the 2n× 2n component matrix Ω of

the symplectic form (3.1), (2.12), which then specifies the general structure of any sp(n)

matrix u (2.14):

Ω =

[

1

−1

]

⇒ u =

[

A B

−B∗ −At

]

with: A† = −A , Bt = B . (2.19)

This allows for diverse embeddings of different groups. For example with B = 0 one obtains

the embedding U(n) →֒ Sp(n) with two copies of the hypermultiplets with the second in the

contragredient representation of the first one. A different U(n) = SO(2n)∩Sp(n) →֒ Sp(n)

embedding is obtained by by choosing A and B to be real. If one sets B = 0 in the latter

case one obtains the embedding SO(n) →֒ Sp(n), again with two copies of hypermultiplets,

one in the contragredient representation of the other. It is thus clear that one can embed

all classical groups, including abelian factors, and taking the dimension n large enough any

representation therof.

This means that at this stage there is no restriction to ADE gauge groups as one would

expect for effective theories of multiple M5-branes. However, it is not to be expected to

happen at the classical level. In terms of effective CFT’s the restriction to ADE gauge

groups results from anomaly cancelation conditions [23], and is thus an essential quantum

effect. We have to postpone such a discussion in the context of our models to subsequent

investigation.

3 Superconformal Lagrangian

Hypermultiplets. Supersymmetry requires the tangent bundle of the hyper-Kähler cone

M4n to be of the form TM(4n) = HSp(1) ⊗ PSp(n) [37], hence the structure group is

Sp(1)× Sp(n). The sections of the trivial (pull-back) bundle HSp(1) are the constant susy

parameters ǫi and thus the Sp(n) bundle PSp(n) defines the holonomy group. This gives

the mentioned HK condition Hol(g) ⊆ Sp(n). Consequently there exists a local vielbein

fαia and its inverse f iaα which satisfy the vielbein postulate and provide an expression for

the metric:

gαβ = εij Ωab f
ia
α f

jb
β ⇔ gαβ f

α
ia f

β
jb = εij Ωab ,

∇α f
ia
β + ωα

a
b f

ib
β = 0 ⇔ δij ωα

a
b = f iaβ∇α f

β
jb . (3.1)

Here, ωα
a
b is the Sp(n)-connection. We collect further properties of HK manifolds in

appendix B.

The susy transformations for the hypermultiplets are given by [19, 29],

δqα = fαia ǭ
i ψa ,

δψa =
1

2
/Dqα ǫi f

ia
α − δqα ωα

a
b ψ

b , (3.2)

where Dµ is the covariant derivative (2.10). The dilatation and special supersymmetry

transformations will be given below. The conformally supersymmetric Lagrangian for

– 8 –
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the gauged sigma model coupled to the off-shell vector multiplet (Am
µ , λ

im, Y m
ij ) can be

obtained by restricting the general supersymmetric model of [19] to a HKC target space

and the gauging of isometries satisfying (2.6). The resulting Lagrangian is4

Lhyp = − 1

2
gαβ Dµq

αDµqβ + ψ̄aγ
µ
Dµψ

a − 1

8
Wabcd ψ̄

aγµψb ψ̄cγµψ
d

+ 4 ψ̄a λ̄
m
i f

ia
αX

α
(m) + Y m

ij µ
ij
(m) , (3.3)

where Xα
(m) are the triholomorphic Killing vectors (2.8) and µ(m)

i
j = i~σ i

j ~µ(m) are the

associated moment maps (2.7). The Sp(n) curvature tensor Wabcd is defined in (B.7). The

gauge covariant derivative for the fermions is given by

Dµψ
a ≡ ∂µψ

a −Am
µ t(m)

a
b ψ

b + ∂µq
α ωα

a
b ψ

b , (3.4)

where t(m)
a
b is defined as t(m)

a
b = 1

2f
ia
α∇βX(m)

α fβib, and satisfies the algebra (2.18).

Under gauge transformations, (3.4) transforms as

δΛ ψ
a = La

b ψ
b , δΛ(Dµψ

a ) = La
b Dµψ

b , La
b ≡

[

Λm t(m)
a
b − δΛ q

α ωα
a
b

]

. (3.5)

Finally, we recall the standard off-shell supersymmetry transformations of the vector

multiplet:

δAm
µ = −ǭγµλm , δλim =

1

8
γµνFm

µνǫ
i − 1

2
Y ij mǫj , δY ij m = −ǭ(i /Dλj)m . (3.6)

Tensor-vector multiplet. The Lagrangian (3.3) is supersymmetric under (3.2) and the

standard off-shell susy transformation rules (3.6) for the vector multiplet. The gauging

should be accompanied by kinetic terms for the vector multiplet, however the pure Yang-

Mills action is not conformally invariant in six dimensions. To achieve conformal invariance

a compensating supermultiplet is needed. This role can be played by a collection of tensor

multiplets and the corresponding model has been constructed in [4]. The field content of

this conformal tensor-vector model is given by a set of nT tensor multiplets {φI , BI
µν , χ

I}
and nV vector multiplets {Ar

µ, λ
r, Y r

ij}, labeled by indices I and r, respectively. In addition,

the model in its most general form requires the introduction of the non-propagating 3-

form potentials Cµνρ r. The vectors Am gauging the HKC isometries, cf. (2.10), and its

superpartners will be identified with a subset of these fields below. To begin with, we

shall recall the superconformal invariant interactions of these multiplets that admit an

action formulation (modulo the standard subtleties of actions for self-dual tensor fields), as

constructed in [4] to which we refer for details. We shall then discuss the superconformal

invariance of the total action which also includes the hypermultiplets.

For vector and two-form tensor fields, the full covariant non-abelian field strengths are

given by

Fr
µν ≡ 2∂[µA

r
ν] − fst

rAs
µA

t
ν + hrI B

I
µν ,

HI
µνρ ≡ 3D[µB

I
νρ] + 6 dIrsA

r
[µ∂νA

s
ρ] − 2fpq

sdIrsA
r
[µA

p
νA

q
ρ] + hrICµνρ r , (3.7)

4By a rescaling of the vector multiplet (Am, λm i, Y m

ij ) (and associated gauge parameters Λm) one may

introduce an explicit coupling constant.
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in terms of the antisymmetric structure constants fst
r = f[st]

r, a symmetric d-symbol

dIrs = dI (rs), and the tensor hrI inducing general Stückelberg-type couplings among

forms of different degree. Indices I, J are raised and lowered with a constant symmet-

ric tensor ηIJ . The covariant derivatives are defined as Dµ ≡ ∂µ − Ar
µXr. The field

strengths (3.7) are defined such that they transform covariantly under the set of non-

abelian gauge transformations

δAr
µ = DµΛ

r − hrIΛ
I
µ ,

∆BI
µν = 2D[µΛ

I
ν] − 2 dI rs Λ

rFs
µν − hrIΛµν r ,

hrI∆Cµνρ r = hrI

(

3D[µΛνρ] r + 6 dIrsFs
[µν Λ

I
ρ] + 2dIrsHI

µνρ Λ
s
)

, (3.8)

where we have used the compact notation

∆BI
µν ≡ δBI

µν − 2dIrsA
r
[µ δA

s
ν] ,

∆Cµνρ r ≡ δCµνρ r − 6 dIrsB
I
[µν δA

s
ρ] − 4 dIrs d

I
pq A

s
[µA

p
ν δA

q
ρ] . (3.9)

This tensor/vector gauge system is completely defined by the choice of the constant tensors

hrI , d
I
rs, frs

t. Consistency of the tensor hierarchy, i.e. covariance of the field strengths (3.7)

requires that the gauge group generators in the various representations are given by

(Xr)s
t = (XV

r )s
t ≡ − frs

t + htI d
I
rs ,

(Xr)I
J = (XT

r )I
J ≡ 2 dJrsh

s
I − 2hsJdIsr , (3.10)

in terms of the constant tensors parametrizing the system. Further constraints on these

tensors follow from closure of the algebra (or generalized Jacobi identities)

[Xr, Xs] = −(Xr)s
tXt , (3.11)

and gauge invariance of the tensor dIrs, see [4] for the explicit form of these constraints. The

‘action’ describing the superconformal invariant couplings of the non-abelian tensor/vector

system is given by

LVT =
1

8
dIrs φ

I
(

Fr
µνFµν s − 4Y r

ijY
ij s + 8λ̄r /Dλs

)

− 1

8
DµφI Dµφ

I − 1

2
χ̄I /Dχ

I

− 1

96
HI

µνρHµνρ
I − 1

24
dIrsHI

µνρ λ̄
rγµνρλs − 1

2
dIrs

(

Fr
µν λ̄

sγµνχI − 4Y r
ij λ̄

i sχj I
)

+ (dJsrh
s
I − 4dIsrh

s
J)φ

I λ̄rχJ +
1

4
dIrsh

r
Jh

s
K φIφJφK

− 1

6
dIrsd

I
uv λ̄

rγµλuλ̄sγµλ
v − 1

48
Ltop , (3.12)

where the topological term Ltop is given by integrating

dV δLtop = 6
{

2dIrs δA
r
∧Fs

∧HI −∆BI
∧

(

hrI H(4)
r − dIrsFr

∧Fs
)

− hrI∆Cr∧HI
}

,
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with H(4) defined in (3.23) below. Finally, it is important to note that for the tensor

multiplet, this action has to be supplemented with the first-order self-duality equation

HI −
µνρ = −dIrsλ̄rγµνρλs , (3.13)

to be imposed after having derived the second-order equations of motion. This is due to

the well known fact that p-form potentials with self-dual field strengths do not admit a

manifestly Lorentz covariant action formulation. Moreover, it has been observed in [4] that

the metric ηIJ defining the kinetic terms in the tensor sector is necessarily of indefinite

signature, i.e. a priori the spectrum of the Lagrangian (3.12) contains ghosts whose fate

will require a more extensive analysis.

The action of the above Lagrangian is invariant under the following supersymmetry

transformations

δAr
µ = −ǭγµλr ,

δλi r =
1

8
γµνFr

µνǫ
i − 1

2
Y ij rǫj +

1

4
hrIφ

Iǫi ,

δY ij r = −ǭ(i /Dλj)r + 2hrI ǭ
(iχj)I ,

δφI = ǭχI ,

δχi I =
1

48
γµνρHI

µνρǫ
i +

1

4
/DφIǫi +

1

2
dIrsλ̄

i rγµλj s γµǫj ,

∆BI
µν = −ǭγµνχI ,

hrI∆Cµνρ r = −2hrIdJrs
(

ǭγµνρλ
sφJ

)

. (3.14)

Next, we turn to the description of the full action describing the superconformal couplings

of the hypermultiplets to the non-abelian tensor/vector system.

The full Lagrangian. To put together the actions for the hypermultiplet and the ten-

sor/vector system, we need to identify the vectors Am
µ used to gauge the HKC isometries, cf.

(2.10), as well as its superpartners, as a subset of the the vectors Ar
µ and their superpartners

according to

Am = Arθr
m , λm = λrθr

m , Y m
ij = Y r

ijθr
m , (3.15)

with the constant embedding tensor θr
m. For consistency, the embedding of the vector

fields (3.15) has to be supplemented with the following constraints on the embedding tensor:

hrI θr
m = 0 , frs

t θt
m = θr

n θs
p fnp

m . (3.16)

The first condition guarantees that the modification of the susy transformations (3.14)

does not affect the variation of the hypermultiplet action. Whereas the second condition

guarantees that the embedding is homomorphic. The full Lagrangian is given by the sum

L = LVT +
1

2λ
Lhyp . (3.17)
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where we introduced a relative (dimensionless) coupling constant λ. Both Lagrangians are

separately supersymmetric so that λ is a free parameter.

The fact that both actions are separately supersymmetric requires the first of the

conditions in (3.16). Note also that while the field equations of the tensor multiplets do

not involve the hypermultiplet, those of the vector- and hypermultiplets evidently mix.

The invariance of the total action guaranties the fact that all the field equation transform

into each other under supersymmetry. Nonetheless, given the fact that the field equation

for the auxiliary field Y ij
r contains a contribution coming from the moment map of the

hypermultiplet sector, it is instructive to examine how the vector multiplet field equations

behave under supersymmetry. These field equations take the form

δY ij
r : E ij

r +
1

2λ
θr

mµij(m) = 0 , (3.18)

δλir : E i
r +

2

λ
θr

mXα
(m)f

ia
α ψa = 0 , (3.19)

δAr
µ : Eµr +

1

2λ
θr

m

(

Dµq
αX(m)α − t(m)

a
bψ̄aγµψ

b
)

= 0 , (3.20)

where E ij
r , E i

r and Eµr represent the contributions from the Lagrangian LVT to the field

equations of the vector multiplet. These contributions are established to transform into

each other in [4], and one can check that the supersymmetry variation of the contributions

multiplying the embedding tensor θr
m also transform into each other, as expected.

Higher p-forms and duality equations. It has been shown in [4] that the ten-

sor/vector system described by (3.12) can be extended on-shell to include higher order

p-forms that are related by first-order duality equations to the physical fields. Let us

briefly discuss how this extension is modified in the presence of hypermultiplets.

The p-form field content of (3.12) is given by vector and tensor fields Aµ
r and Bµν

I

and the three-form potentials Cµνρ r which however only appear under projection with the

tensor hrI . In a first step, the model may be extended to the full set of three-forms Cµνρ r,

as well as four-form potentials C
(4)
µνρσm. Supersymmetry and gauge transformations of the

former are given by

∆Cµνρ r = −2dJrs
(

ǭγµνρλ
sφJ

)

,

∆Cµνρ r = 3D[µΛνρ] r + 6 dIrsFs
[µν Λ

I
ρ] + 2dIrsHI

µνρ Λ
s − θr

m Λµνρm , (3.21)

respectively. Here, θr
m is the embedding tensor of (3.15) and Λµνρm is the gauge parameter

of the four-form potentials. Closing the supersymmetry algebra on the three-form poten-

tials leads to the field equations (3.18). The hypermultiplet contribution of (3.18) is now

absorbed into the resulting Stückelberg transformation Λµνρm on the three-form potential

which explains the appearance of the embedding tensor θr
m in (3.21). Furthermore, closure

of the supersymmetry algebra implies the first-order duality equation

2dIrs
(

Fs
µνφ

I − 2 λ̄sγµνχ
I
)

=
1

4!
εµνλρστ H(4)λρστ

r . (3.22)
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where the field strength H(4)
r is defined as

H(4)
r = DCr + θr

mC
(4)
m − 2dIrs

(

Fs
∧BI − 1

2
hsJ B

I
∧BJ (3.23)

+
1

3
dIpq A

s
∧Krq +

1

36
fuv

q dIpq A
s
∧Ap

∧Au
∧Av

)

,

with Krq being the Chern-Simons form. In turn, it satisfies the Bianchi identity

DH(4)
r = −2 dIrsFs

∧HI + θr
mH(5)

m , (3.24)

with H(5)
m denoting the field strength of the four-form potentials C

(4)
m . Equation (3.22) is

the non-abelian first-order duality equation that relates the three-form potentials Cµνρ r to

the vector fields and unlike the field equations (3.18)–(3.20) has no contributions from the

hypermultiplet. Nevertheless, its derivative is precisely compatible with the second-order

Yang-Mills equation (3.20), provided the field strength H(5)
m in turn satisfies the first-order

duality equation

1

5!
εµνρλστ θr

mH(5) νρλστ
m =

[

(Xr)IJ
(

φIDµφ
J − 2χ̄Iγµχ

J
)

+ 4(Xr)u
s dIsv φ

I λ̄uγµλ
v
]

+
2

λ
θr

m

(

X(m)αDµq
α − ψ̄a γµ t(m)

a
b ψ

b
)

, (3.25)

relating the four-form potentials C
(4)
m to the scalar fields of the model (including hypers).

Accordingly, the supersymmetry transformation rule for the 4-form potentials in presence

of hypermultiplets is modified to

θr
m∆Cµνρσm = (Xr)IJ φ

[I ǭγµνρσχ
J ] − 2

λ
θr

mXα
(m)f

ia
α ǭiγµνρσψa , (3.26)

combining contributions from tensor and hypermultiplets.

Superconformal symmetries. We conclude with a presentation of the supercon-

formal symmetry transformations [35]. Denoting the fields in the theory by Φ =

(φI , BI
µν , χ

I , Ar
µ, Y

ij , λr, Cµνρ r), the conformal transformations are given by

δCΦ = LξΦ+ λDΩΦ , (3.27)

where Lξ is the Lie derivative with respect to the conformal Killing vector defined by

∂(µξν) = Ωηµν , which also defines Ω, and λD are the Weyl weight for Φ given by

(2, 0, 5/2, 0, 2, 3/2, 0). The Lie derivative for the fermionic fields Ψ = (ψa, χI , λr), in par-

ticular, takes the form LξΨ = ξµ∂µΨ+ 1
4∂µξνγ

µνΨ. On the other hand, the hypermultiplet

fields transform as

δCq
α = Lξq

α + 4Ωχα ,

δCψ
a = Lξψ

a +
5

2
Ωψa − Ωχαωα

a
b ψ

b , (3.28)

with the homothetic Killing vector and spin connection from (2.3) and (3.1), respectively.

The conformal supersymmetry transformations, on the other hand, involve conformal
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Killing spinors, consisting of a pair (η+, η−) that satisfy ∂µη+ − 1
2γµη− = 0. The su-

perconformal transformations take the form of supersymmetry transformations in which

the constant supersymmetry parameter ǫ is replaced by η+, and the parameter η− arises

only in δη−χ
I = −1

2φ
Iη−. Note that the bosonic conformal transformation together with

supersymmetry ensures the full superconformal symmetry since the commutator of confor-

mal boost with supersymmetry yields the special supersymmetry generator [43].

4 Eliminating auxiliary fields

In the previous sections we have coupled the hypermultiplet Lagrangian of [19] to the

tensor/vector system of [4]. The non-trivial interactions between vector-, tensor- and hy-

permultiplets are reflected in equation (3.18)

dI rs φ
I Y ij s − 1

2λ
θr

mµij(m) = 2 dI rs λ̄
s(iχj)I , (4.1)

for the auxiliary fields Y ij s of the Yang-Mills multiplet. In particular, eliminating the

auxiliary fields will introduce non-trivial couplings between tensor- and hypermultiplets of

the model.

In this section, we will further analyze the form and the consequences of equation (4.1)

and derive the couplings induced by elimination of the auxiliary fields. The explicit form

of (4.1) depends on the field content of the model and the particular choice of the constant

tensors dI rs, θr
m, parametrizing the model. As discussed above, these constant tensors

are subject to a number of algebraic constraints derived from (3.11). A general class of

solutions to these constraints has been constructed in [17] based on a semi-simple Lie

algebra g under which all fields transform in non-trivial representations. Explicitly, w.r.t.

this algebra the vector and tensor multiplets split into

Ar
µ →

(

Am
µ , B

A
µ

)

, λr →
(

λm, νA
)

, Y r
ij →

(

Y m
ij , Z

A
ij

)

,

BI
µν →

(

BA
µν , Cµν A

)

, χI →
(

χA, ζA
)

, φI →
(

φA, ϕA

)

, (4.2)

where indices m and A refer to the adjoint and an arbitrary fixed representation R of g,

respectively. The model thus combines nV = dim g + dimR vector multiplets and nT =

2dimR tensor multiplets. The non-vanishing components of the gauge invariant constant

tensors that define the model (referred to as Type III in [17]) are

ηA
B = ηBA = δBA , hBA = δBA ,

fmA
B = −1

2
(Tm)A

B , fmn
p ,

dBmA =
1

2
(Tm)A

B , dABC = d(ABC) , dABm = d(AB)m , dAmn . (4.3)

Here, fmn
p, and (Tm)A

B denote the structure constants and representation matrices of g,

respectively, and d(ABC), d(AB)m, dAmn, are g-invariant tensors with the indicated symmetry
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properties, which obviously exist only for particular choice of g and R. In particular, the

cubic scalar potential of (3.12) is exclusively triggered by the constant tensor dABC :

Lpot ∝ dABC φ
AφBφC . (4.4)

For the hypermultiplet couplings, we choose the embedding tensor θr
m as

θm
n = δm

n , θA
n = 0 , (4.5)

such that only the vector fields Am
µ participate in the gauging, and the algebra g is identified

with the algebra of gauged isometries (2.8) in the hyper-sector. In contrast, the vector fields

BA
µ as well as the tensors Cµν A can be eliminated from the Lagrangian by field redefinition

(see [17] for details).

As we have discussed in the introduction, a particularly interesting class of models is

supposed to describe a field content that can be regrouped into multiplets of (2, 0) super-

symmetry. In particular, this requires that tensor- and hypermultiplets arise in the same

representation (i.e. nH = nT), such that they may recombine into (2, 0) tensor multiplets.

The algebra g is embedded into the orthogonal group SO(nT) via the generators (Xm)IJ
from (3.10). Correspondingly, in this case its action in the hypermultiplet sector is realized

via the embedding (2.19) (with B = 0) into the SO(nT) subalgebra of isometries on the

flat target space of hypermultiplets. Indeed, with this realization it follows that part of the

structures such as the supersymmetry variation (3.26) combining tensor- and hyper-scalars

can be embedded into the manifest (2, 0) form

∆Cµνρσm = (Xm)IJ φ
ı̂̂,I ǭı̂γµνρσχ

J
̂ , (4.6)

with Sp(2) R-symmetry indices ı̂, ̂ = 1, . . . , 4, and the five scalar fields φ[̂ı̂] combining the

tensor- and hyper-scalars. Truncating the (2,0) susy parameter as ǫı̂ → (ǫi, ǫ̃i) → (ǫi, 0),

equation (4.6) indeed reduces to (3.26).

In the context of the M5-brane dynamics, the most interesting models describe tensor

multiplets in the adjoint representation of the gauge group, i.e. correspond to the choice

R = Adjg . For the rest of this section, we will study a slightly more general class corre-

sponding to choosing R = Adjg ⊕ 1. The role of the extra singlet will become clear in the

following. Explicitly thus, tensor multiplets split into

(Bm
µν , χ

m, φm) , (B0
µν , χ

0, φ0) , (Cµνm, ζm, ϕm) , (Cµν0, ζ0, ϕ0) . (4.7)

Furthermore, for the constants in (4.3), we choose the non-vanishing g-invariant tensors

dAmn :

{

c1 δmn for A = 0 ,

0 otherwise ,

dABm :

{

c2 δmn for (A,B) = (0, n) or (A,B) = (n, 0) ,

0 otherwise ,
(4.8)
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and set to zero all components of d(ABC) . In particular, absence of d(ABC) implies that there

is no (unstable) cubic potential (4.4) for the tensor scalars. The part of the total Lagrangian

containing the auxiliary fields then takes the form (suppressing R-symmetry indices)

LY = Tr

[

Y [Z,ϕ]− c1φ
0Y 2 − 2c2φ

0Y Z +
2

λ
µY

−2Y {ν̄, ζ}+ 2Z{λ̄, ζ}+ 4c1Y λ̄χ
0 + 4c2Y ν̄χ

0 + 4c2Zλ̄χ
0

]

, (4.9)

where all the fields are matrix valued and in the adjoint representation of g . The resulting

field equations (4.1) for the auxiliary fields can be written as

[Y, ϕ] + 2c2φ
0Y = J , (4.10)

[Z,ϕ]− 2φ0(c1Y + c2Z) +
2

λ
µ = K , (4.11)

where J and K are bilinear in fermions which can be easily read off from (4.9). The form of

these equations shows that for generic values of the parameters c1,2, the auxiliary fields Y

and Z are uniquely determined and can be eliminated from the Lagrangian. On the other

hand, for c1,2 = 0 only part of Y and Z is determined which implies constraints on the

sources J and K. To make this explicit, it is convenient to consider the Lie algebra com-

mutators in the Cartan-Weyl basis, in which the generators are denoted by ( ~H,Eα, E−α).

Furthermore let us take the field ϕ to lie in the Cartan subalgebra as

ϕ = ~ϕ · ~H . (4.12)

The non-vanishing commutators are

[ ~H,E±α] = ±~αE±α , [Eα , Eβ] = NαβE
α+β , [Eα , E−α] =

2

|α|2 ~α · ~H , (4.13)

where ~α is the root vector and Nαβ are numbers associated with the specific Lie algebra.

Thus, expanding

Y = ~Y · ~H + YαE
α + Y−αE

−α , idem Z, J,K , (4.14)

from (4.10) it readily follows that5

Y =
1

2c2φ0
~J · ~H +

JαE
α

2c2φ0 + ~α · ~ϕ +
J−αE

−α

2c2φ0 − ~α · ~ϕ . (4.15)

Solving (4.11) similarly and substituting the solution for Y we then find

Z = − 1

2c2φ0

(

~K + 2c1φ
0 ~J − 2

λ
~µ

)

· ~H − 1

2c2φ0 − ~α · ~ϕ

(

Kα+
2c1φ

0Jα
2c2φ0 + ~α · ~ϕ − 2

λ
µα

)

Eα

− 1

2c2φ0 + ~α · ~ϕ

(

K−α +
2c1φ

0J−α

2c2φ0 − ~α · ~ϕ − 2

λ
µ−α

)

E−α . (4.16)

5The fields (Y, Z, J,K, µ) are understood to be rotated by the similarity transformation that puts the

scalar field ϕ in the Cartan subalgebra in the Cartan-Weyl basis.
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For generic values of the constants c1, c2 the auxiliary fields are thus fully determined

and can be eliminated from the Lagrangian. Let us note that due to the form of the

couplings (4.8), elimination of the auxiliary fields Y , Z does not introduce any bosonic

potential for the hyperscalars (unlike for the standard YM-hyper couplings [19] where

elimination of the auxiliary fields introduces a potential quadratic in the hyper-Kähler

moment maps µij) . The resulting moduli space for the scalars thus is not constrained by

any potential.

On the other hand, if c2 = 0, the auxiliary fields in the Cartan subalgebra re-

main undetermined and we find the constraints ~J = 0 and ~K = 2~µ/λ. In this case,

using the expansions (4.14) with ~Y and ~Z as undetermined entries, and the remain-

ing components from (4.15) and (4.16), and finally setting c1 = 0 for simplicity, the

Lagrangian (4.9) becomes

LY = −~Y ·
(

~K − 2

λ
~µ

)

+ ~Z · ~J

− 2

|α|2~α · ~ϕ

[

Jα

(

K−α − 2

λ
µ−α

)

− J−α

(

Kα − 2

λ
µα

)]

. (4.17)

This exhibits the role of the undetermined auxiliary fields as Lagrange multipliers. In par-

ticular the constraint ~µ = λ
2
~K modifies the hyper-Kähler geometry and eliminates degrees

of freedom from the hyper-sector. What we have shown in the above is that such constraints

can precisely be avoided by introducing abelian factors among the tensor multiplets with

the specific couplings (4.8). Let us finally note, that in the Lagrangian (3.12), the choice

of (4.8) in particular gives rise to interaction terms of the form

LφF2 = −1

2
c1 ηmn φ

0 Fµν
mFµν n , (4.18)

and thus to exactly those interactions that were taken into account for the anomaly can-

celation conditions in [23]. This led to the selection of ADE gauge groups. Here, we have

seen that such couplings are naturally present in the theory.

5 Conclusions

In this paper, we have constructed six-dimensional superconformal models with non-abelian

tensor and hypermultiplets. They comprise the field content of (2, 0) theories, coupled to

(1, 0) vector multiplets. The hypermultiplets are described by gauged nonlinear sigma

models with a hyper-Kähler cone target space and minimal coupling to the superconformal

tensor/vector models of [4]. Elimination of the auxiliary fields from the vector multiplets

then further induces non-trivial couplings between hyper and tensor multiplets. We have

shown that proper elimination of the auxiliary fields requires abelian factors among the

tensor multiplets but unlike standard YM-hyper couplings does not give rise to a scalar

potential. Furthermore, elimination of the auxiliary fields provides couplings (4.18) that

were previously considered for anomaly cancellations with abelian tensor multiplets and

resulted in the selection of ADE gauge groups. We have shown that on the level of the
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equations of motion, the system may be extended to include non-propagating three- and

four-forms, related by a set of non-abelian first-order duality equations to the physical fields.

It remains an intriguing open question, how much of the presented structures can be

carried over to (2, 0) supersymmetric theories. Whereas the tensor and hyper multiplets

combine into the field content of (2, 0) tensor multiplets and exhibit some unifying struc-

tures such as (4.6), it is clear that the dynamical degrees of freedom from the propagating

vector multiplets will have to be eliminated upon such a supersymmetry enhancement.

The other main open question is of course the quantization of the models, and the

fate of the conformal symmetry at the quantum level. For superconformal hypermultiplet

actions with and without higher derivative terms such questions have been addressed in [44,

45]. For the models presented here at the classical level, a key issue will be whether the

ghost states resulting from the tensor sector of (3.12) can be decoupled with the help of the

large extended tensor gauge symmetry. This may require to set up a proper Hamiltonian

formalism for the self-dual tensor fields along the lines of [46, 47]. Last but not least, the

study of anomalies in the generalized gauge symmetries of the models we have presented

here will be of great interest.
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A Conventions

Indices. In the main text different kind of indices appear which are collect in table 1.

The vector representation of Sp(1) is usually denoted by an arrow (occasionally indices

i, j = 1, 2, 3 are used), or given in the bi-spinor notation,

xij := i~σ i
j ~x , xij = εjk xik ⇒ (xij)∗ = εik εjℓ x

kℓ = xij , (A.1)

with εik εjk = δij and ε12 = ε12 = 1.

Spinors. We work with a flat world-volume metric of signature (−+++++) and Levi-

Civita tensor ε012345 = 1, {γµ, γν} = 2ηµν and γ7 := γ012345. The spinor chiralities are

given by

γ7 ǫ
i = ǫi , γ7 λ

ir = λir , γ7 χ
iI = −χiI , γ7 ψ

a = −ψa . (A.2)

For Sp(1) indices we use standard standard northwest-southeast conventions according to

ǫi = εijǫj , ǫi = ǫjεji, etc. , and analogously for the Sp(n) indices, i.e. ψa = Ωab ψb, ψa =

ψbΩba. All spinors satisfy a symplectic Majorana condition,

ǭi := ǫTi C = (ǫi)†iγ0 , ψ̄a := ψT
a C = (ψa)

†iγ0 , (A.3)
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Label Range Comment

µ, ν, . . . 0, . . . , 5 world-volume Lorentz indices

α, β, . . . 1, . . . 4n real target space coordinates

a, b, . . . 1, . . . , 2n Sp(n) indices, complex coordinates

i, j, . . . 1, 2 Sp(1) indices

m̂, n̂, . . . 1, . . . , dim(Ĝ) isometries of Q4(n−1)

m, n, . . . 1, . . . , dim(G) gauged isometries of Q4(n−1)

I, J, . . . 1, . . . , nT tensor multiplets

r, s, . . . 1, . . . , nV vector multiplets

Table 1. Conventions for the various indices.

where the charge conjugation matrix satisfy γTµ = −CγµC−1. Note that indices are exclu-

sively raised/lowered with the symplectic forms, i.e. ǭi = −(ǫi)
†iγ0 etc.. The same relations

hold for λir and χiI . We refer to the appendix of [4] for further useful relations.

B Target space geometry

We collect here some basic relations for the geometrical quantities of the HK target space.

Many of the following relations are the six-dimensional versions of the ones given in [20].

Vielbeine. The Sp(n) vielbeine and connection are defined in (3.1), such that metric

takes the flat form (2.17). Thus for the special case of a flat target space, i.e. gαβ = δαβ ,

the explicit form of the vielbeine is given by (κ2 = i),
[

f1 aα

f2 aα

]

=
κ√
2

[

Ω −iΩ
−i1 1

]

,
[

fα1 a f
α
2 a

]

=
κ̄√
2

[

−Ω i1

−iΩ 1

]

. (B.1)

Besides the metric also the hypercomplex structure and Kähler forms (2.1) can be

expressed in terms of the vielbeine:

ωij
αβ = 2Ωab f

(i a
α f

j) b
β , ~Jα

β = −i fαia ~σ i
j f

ja
β , (B.2)

where for the constant flat space vielbeine the first relation reduces to the expression given

in (2.17). With this the orthogonality of the vielbeine can be written as,

f iaαf
α
jb = δij δ

a
b , fαjaf

ia
β =

1

2

(

δij δ
α
β + i ~σ i

j
~J α

β

)

, (B.3)

and they satisfy the pseudo reality condition (f iaα)
∗ = εij Ωab f

jb
α. With the definition of

the connection (2.17) this gives,

ωα
a
b = Ωac ωα

d
cΩdb = −(ωα

b
a)

∗ ⇒ ( Ωωα )[ab] = 0 . (B.4)

Hence the connection coefficients are Sp(n) matrices (2.14).
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Curvatures. The curvatures of the Levi-Civita and Sp(n) connection are given by

Rγ
δαβ = 2

(

∂[αΓ
γ
β]δ + Γγ

[α|ǫΓ
ǫ
β]δ

)

, Ra
bαβ = 2

(

∂[αωβ]
a
b + ω[α

a
c ωβ]

c
b

)

(B.5)

The integrability condition of the vielbein postulate (3.1) implies that these curvature are

related in the following way,

Rδ
δαβ = fγia f

ib
δ Ra

bαβ , δiiRa
bαβ = f iaγ f

δ
jbR

γ
δαβ . (B.6)

The symmetries of the Riemann tensor and the first Bianchi identity further imply,

fαiaf
β
jbf

γ
kcf

δ
ℓdRαβγδ = εij εklWabcd , fγkcf

δ
ℓdRab γδ = −εkℓWabcd , (B.7)

where Wabcd = W(abcd) is the totally symmetric curvature tensor, with reality property

(Wabcd)
∗ = W abcd, that appears in the Lagrangian (3.3). Sp(n) indices are raised/lowered

as described in appendix A. From the second Bianchi identity it follows that

∇[αRβγ]δǫ = 0 ⇒ fαiaDαWbcde = fαi(aDαWbcde) , (B.8)

where Dα is the covariant derivative w.r.t. the Sp(n) connection.

Isometries. The vielbeine introduced here are adjusted to the HSp(1) ⊗ PSp(n) structure

of the tangent space (3.1). They therefore relate the coordinate basis to vector fields of the

form,

eia = θi ⊗ ea = fαia∂α , (B.9)

with an analogous relation for the dual basis with the inverse vielbein. The Lie derivative

of these vector fields along a vector field X is then given by,

LX eia =

[

δj i(X
α ωα

b
b − tba )−

1

2
~σ j

i~t
b
a

]

ejb , t b
a =

1

2
f ibα(∇βX

α)fβia , (B.10)

where t b
a was introduced below (3.4) and ~t b

a = fβa ~σ f
b
α(∇βX

α). For diffeomorphism

or isometries that commute Sp(1) isometries (2.4), and thus preserve the HSp(1) ⊗ PSp(n)

structure, the latter matrices vanish. In that case one has,

LX ea = (Xα ωα
b
b − tba ) eb ⇒ LX Wa = XαDαWa + tbaWb etc. (B.11)

In the case that X is also an isometry, ∇(αXβ) = 0 one finds,

Ωac tdcΩdb = tab = −(tba)
∗ ⇒ ( Ω t )[ab] = 0, (B.12)

These relations are the same as for the Sp(n) connection (B.4). In the case that the

isometries X(m) obey [X(m) , X(n)] = −fmn
pX(p) one also finds,

Dα t(m)
a
b = Ra

bαβ X
β
(m) , [ t(m) , t(n) ]

a
b = fmn

p t(p)
a
b +Ra

bαβ X
α
(m)X

β
(n) . (B.13)

We finally mention the equivariance condition for the moment maps of triholomorphic

isometries X(m) (2.7). The identity i[X(m),X(n)] ~ω = [LX(m)
, iX(n)

] ~ω implies for triholomor-

phic isometries,

LX(m)
~µn = ~ωαβX

α
(m)X

β
(n) = −fmn

p~µp + const. , (B.14)

where superconformal symmetry fixes the constant to be zero.
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