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1 Introduction and summary of results

During the last year an interesting “holographic” connection between Ricci-flat metrics and

fluids was uncovered: in [1] an approximate regular (d + 2)-dimensional Ricci-flat metric

corresponding to a solution of the incompressible non-relativistic Navier-Stokes equations

in (d+ 1) dimensions was presented, valid to leading non-trivial order in a non-relativistic

hydrodynamic expansion, and in [2] we provided a systematic and unique construction of

this metric to all orders. The construction has been extended to first non-trivial order to

spherical horizons in vacuum gravity [3–5], to de Sitter horizons [6] and to higher-derivative

theories coupled to matter [7, 8]. Important earlier related works include the membrane

paradigm [9–11] and the more recent construction of solutions of AdS gravity describing

the hydrodynamic regime of CFTs in the context of the AdS/CFT correspondence [12–15],

see also earlier results in [16]. Another instance of the fluid/gravity correspondence in
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Figure 1. The analogue of the thermal state in

our construction is Rindler spacetime, with past

and future horizons H− and H+ respectively. The

dual fluid lives on a constant acceleration surface

Σc with flat induced metric. Lines of constant τ

and constant r in the coordinate system (2.1) are

shown in grey.

asymptotically flat spacetimes can be found in the blackfold approach [17, 18]. Further

developments were reported in [19–28].

The existence of fluid solutions in gravity is expected/predicted by holography on gen-

eral grounds. A generic feature of QFTs is the existence of a hydrodynamic description

capturing the long-wavelength behaviour near to thermal equilibrium. One then expects to

find the same feature on the dual gravitational side, i.e., there should exist a bulk solution

corresponding to the thermal state, and nearby solutions corresponding to the hydrody-

namic regime. Global solutions corresponding to near-equilibrium configurations should

be well approximated by the solutions describing the hydrodynamic regime at sufficiently

long distances and late times. This picture in indeed beautifully realised in the AdS/CFT

correspondence, where the thermal state corresponds to a bulk black hole [29], and nearby

solutions describing the hydrodynamic regime, corresponding to solutions of relativistic

conformal fluid mechanics, were constructed in [12]. These solutions were obtained by

starting from the general equilibrium configuration, promoting the parameters character-

ising it (temperature, relativistic velocities, etc.) to slowly varying functions of spacetime,

and then solving the bulk field equations iteratively in a derivative expansion. A further

non-relativistic limit leads to a correspondence between metrics of constant negative cur-

vature and solutions of the incompressible non-relativistic Navier-Stokes equations of the

underlying conformal fluid [13, 14].

In our construction the analogue of the thermal state is Rindler spacetime (see fig-

ure 1), and the first step in [2] was to obtain the general equilibrium configuration. Nearby

solutions describing the approach to equilibrium were then obtained by promoting the pa-

rameters appearing in the equilibrium solution to slowing varying functions of spacetime.

Finally, the bulk equations were solved iteratively by applying a non-relativistic hydrody-

namic expansion, which we will call the ǫ expansion. More precisely, the incompressible

Navier-Stokes equations have a scaling symmetry (that, in particular, scales space and
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time non-relativistically), and higher-derivative corrections to the Navier-Stokes equations

are naturally organised according to their scaling. At third order in the ǫ expansion, one

finds a bulk metric corresponding to solutions of the incompressible non-relativistic Navier-

Stokes equations [1], while at higher orders the bulk metric corresponds to solutions of the

Navier-Stokes equations corrected by specific higher-derivative corrections [2].

In [2] it was observed that all information could be recovered from a relativistic dis-

sipative fluid by taking a non-relativistic limit. As explained in [2], the ǫ-expansion never

decreases the number of derivatives, but it may increase it, so the complete answer up

to a given order in ǫ may be obtained starting from a relativistic dissipative stress tensor

containing a sufficient number of dissipative terms but the converse is not in general true.

Indeed, the relativistic expansion is considerably more compact: we found that almost the

entire information up to order ǫ5 is encoded in just one first order and four second order

coefficients, while two further second order transport coefficients were undetermined at this

order in the ǫ expansion. In fact, only two terms in the non-relativistic stress tensor up to

order ǫ5 were not recovered, but both of these required starting from a relativistic stress

tensor of third order in gradients.

These results indicate that there is a manifestly relativistic construction, and one of

the aims of this paper is to flesh this out: instead of solving the bulk equations iteratively in

the non-relativistic hydrodynamic expansion, we will solve them in a relativistic derivative

expansion. This new expansion is significantly more powerful, and allows a treatment of the

entropy currents which would be hard without going to very high order in the previous non-

relativistic expansion. We are also able to compute the previously undetermined coefficients

in the second order expansion of the fluid stress tensor, as well as recovering our earlier

results for the other coefficients. Thus the current treatment is the Ricci-flat analogue of

the AdS treatment [12], while our previous construction is the analogue of [13, 14].

Let us now summarise the results for the stress tensor up to second order in gradients,

which in the gauge where Tabu
bhac = 0 takes the form

Tab = ρuaub + phab +Π⊥
ab, Π⊥

abu
a = 0. (1.1)

One of the main results is that the fluid dual to vacuum Einstein gravity has zero equilib-

rium energy density

ρeq = 0 . (1.2)

Moreover, the stress tensor, including dissipative terms, satisfies the quadratic constraint,

dTabT
ab = T 2. (1.3)

This constraint determines ρ as a function of p and Π⊥
ab and, as such, it may be considered

as a generalised equation of state. When the relation is applied at equilibrium it leads to

a quadratic equation with one of the two roots being (1.2).

The remaining freedom in defining the fluid variables is usually removed by redefining

the energy density so that Tabu
aub = ρeq. This so-called Landau gauge cannot be reached

here since the equilibrium energy density is zero. Instead, we take the isotropic gauge
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by imposing that Π⊥
ab does not contain terms proportional to hab. A general fluid in flat

spacetime and at first order in gradients is determined by two first order coefficients: the

shear viscosity and bulk viscosity. A short computation shows, however, that when the

equilibrium energy density is zero the conservation of the stress tensor at leading order

implies that the fluid is incompressible (to this order). The bulk viscosity may then be

replaced by another parameter ζ ′ which measures variations of the energy density at first

order in gradients, ρ(1) = ζ ′D ln p. Up to second order in gradients, one needs 11 additional

second order coefficients (in flat spacetime), namely

ρ = ζ ′D ln p+
1

p

(

d1KabKab + d2ΩabΩ
ab + d3(D ln p)2 + d4DD ln p+ d5(D⊥ ln p)2

)

,

(1.4)

Π⊥
ab = −2ηKab +

1

p

(

c1Kc
aKcb + c2Kc

(aΩ|c|b) + c3Ω
c

a Ωcb + c4h
c
ah

d
b∂c∂d ln p

+c5KabD ln p+ c6D
⊥
a ln pD⊥

b ln p
)

. (1.5)

One of our main results in this paper is the computation of all the above coefficients for

the fluid dual to vacuum Einstein gravity,

ζ ′ = 0, d1 = −2, d2 = d3 = d4 = d5 = 0,

η = 1, c1 = −2, c2 = c3 = c4 = c5 = −c6 = −4 . (1.6)

As noted earlier, for theories satisfying the constraint (1.3), the energy density (1.4) is not

independent but rather follows from (1.3), so all in all the dual fluid is determined by one

first order (the shear viscosity) and six second order coefficients (the c coefficients).

A general feature of systems away from equilibrium is that they possess an entropy

current with non-negative divergence. At equilibrium this current should reduce to the

conserved entropy current, J a
eq = sequ

a, where seq the entropy density at equilibrium. In

the hydrodynamic regime, the entropy current may differ from this expression by terms

of higher order in gradients. Here we classify the possible entropy currents with non-

negative divergence for fluids with vanishing equilibrium energy density up to second order

in gradients (in flat spacetime). It turns out that first order gradients are not allowed and

that there is a five-parameter family of allowed entropy currents depending on second order

gradients:

J a = sequ
a

(

1 +
1

p2

(

a1KabKab + a2ΩabΩ
ab − 1

2
(4a2 − 5b1 + 4b2 + b3)(D⊥ ln p)2

)

)

+
seq
p2

(

b1h
ac∂bKb

c + b2D
a
⊥D ln p+ b3Ka

bD
b
⊥ ln p+ (2b1 − 2b2 − b3)Ω

abD⊥
b ln p

+ (4a2 − 5b1 + 3b2 + b3)D
a
⊥ ln pD ln p

)

. (1.7)

A two-parameter subset of these entropy currents is in fact trivially conserved.
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One may then ask what is the entropy current associated with the fluid dual to vacuum

Einstein gravity. To compute this we have adapted the construction of [30], defining the

boundary entropy current by pulling back a suitable horizon quantity along certain null

geodesics. This leads to an entropy current of the form (1.7), i.e., with non-negative

divergence, with coefficients

a1 = 1, a2 =
1

2
, b1 = −1, b2 = −2, b3 = 1. (1.8)

Given the unconventional properties of the fluid dual to vacuum Einstein gravity, it is

reassuring that the entropy current indeed has non-negative divergence.

It was observed in [1] that from the bulk perspective, the non-relativistic expansion

could be expressed as a combination of a Weyl rescaling plus a particular near-horizon

limit. A similar bulk interpretation also exists for the relativistic expansion we consider

here. As one takes the near-horizon limit, however, there are different quantities that

one keeps fixed in the two cases, so the two limits are distinct. Of course, as discussed

earlier, one may always take a further non-relativistic limit to go from the relativistic to

the non-relativistic case.

This paper is organised as follows. In the next section, we present the relativistic

construction of the near-equilibrium solutions. Then, in section 3, we present the solution

to second order in gradients, and in section 4, we discuss the classification of entropy

currents to second order in gradients and the holographic computation of the entropy

current. In section 5, we discuss the near-horizon limits and we conclude in section 6.

Finally, in the appendix we present a basis for scalars, vectors and tensors, up to the order

required for the hydrodynamic analysis.

Note added. During the completion of this paper we were informed about the forthcom-

ing publication [31] which has significant overlap with the material presented here. The

results of [31] are in agreement with those presented here.

2 Relativistic construction of near-equilibrium solutions

2.1 Seed metric

We start with Minkowski spacetime in Rindler coordinates,

ds2 = −rdτ2 + 2dτdr + dxidx
i. (2.1)

The metric γab on the surface Σc defined by r = rc is

γabdx
adxb = −rcdτ

2 + dxidx
i, (2.2)

where the coordinates xa = (τ, xi). To obtain the zeroth order seed metric we perform the

following changes of coordinate: first, we send

r → r + 1/p2 − rc, τ → √
rcpτ, (2.3)
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taking the metric to

ds2 = 2p (
√
rcdτ) dr − p2 (r − rc) (

√
rcdτ)

2 + γabdx
adxb, (2.4)

and second, we perform the boost

√
rcτ → −uax

a, xi → xi − ui
√
rcτ + (1 + γ)−1uiujx

j (2.5)

where

ua =
1√

rc − v2
(−rc, vi), γ = (1− v2/rc)

−1/2. (2.6)

Since this boost preserves γabdx
adxb, we arrive at the metric

ds2 = −2puadx
adr +

[

γab − p2(r − rc)uaub
]

dxadxb. (2.7)

A simple calculation reveals that, with this metric, the Brown-York stress tensor on Σc

takes the form of a perfect fluid in equilibrium:

Tab = phab, hab = γab + uaub . (2.8)

The position of the Rindler horizon is now rH = rc − 1/p2, as may be seen by writing the

metric in the form

ds2 = −2puadx
adr + [hab − p2(r − rH)uaub]dx

adxb. (2.9)

In the remainder of this paper we will set rc → 1 (taking γab → ηab). This may be

accomplished without loss of generality via the scaling

(r, τ, xi, rc, p, vi) → (λ2r, τ, λxi, λ
2rc, λ

−1p, λvi). (2.10)

Acting on the equilbrium metric this sends ds2 → λ2ds2, after which the constant overall

conformal factor may be dropped. One may similarly restore rc at any point by reversing

this procedure.

2.2 Integration scheme

We start with the zeroth order seed metric (2.7) in the form

ds2 = −2puadx
adr + [ηab + (1− θ)uaub]dx

adxb, θ = 1 + p2(r − 1) (2.11)

where we have scaled rc to unity and introduced the quantity θ for our later convenience.

The position of the horizon is now rH = 1 − 1/p2. Note also that the relativistic fluid

velocity is normalised such that ηabuaub = −1. In this metric, the velocity and pressure ua
and p should now be regarded as functions of xa = (τ, xi). The inverse of this metric is

grr = r − rH, gra =
1

p
ua, gab = hab, (2.12)

where we define

hab ≡ ηab + uaub, ua ≡ ηabub. (2.13)

– 6 –
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Weighting derivatives such that ∂r ∼ 1 and ∂a ∼ ǫ̃, adding a piece g
(n)
µν to the metric

at order ǫ̃n engenders a change in the Ricci tensor

δR(n)
rr = −1

2
hab∂2

rg
(n)
ab ,

δR(n)
ra =

1

2p
ub∂2

rg
(n)
ab − 1

4
ua

[

1

p
∂r(θg

(n)
rr ) + 2ub∂rg

(n)
br − phbc∂rg

(n)
bc

]

,

δR
(n)
ab = − 1

2p2
∂r
(

θ∂rg
(n)
ab

)

− ucu(a∂rg
(n)
b)c

− 1

4
uaub

[

θ

p2
∂r
(

θg(n)rr

)

+
2θ

p
uc∂rg

(n)
cr + (2ucud − θhcd)∂rg

(n)
cd

]

. (2.14)

A convenient gauge choice is g
(n)
rµ = 0 for n ≥ 1. This choice eliminates metric components

for which we do not have natural boundary conditions, and moreover ensures that worldlines

of constant xa are bulk null geodesic to all order (see section 4.2). The linearised Ricci

tensor tensor is then

δR(n)
rr = −1

2
hab∂2

rg
(n)
ab ,

δR(n)
ra =

1

2p
ub∂2

rg
(n)
ab +

p

4
uah

bc∂rg
(n)
bc ,

δR
(n)
ab = − 1

2p2
∂r
(

θ∂rg
(n)
ab

)

− ucu(a∂rg
(n)
b)c − 1

4
uaub

[

(2ucud − θhcd)∂rg
(n)
cd

]

. (2.15)

Setting 0 = δR
(n)
µν + R̂

(n)
µν , we obtain the integrability conditions

0 = ∂r

(

habR̂
(n)
ab − θ

p2
R̂(n)

rr

)

− R̂(n)
rr , 0 = θR̂(n)

ra + pubR̂
(n)
ab . (2.16)

The first of these is the r-component of the Bianchi identity at order ǫ̃n; while for the

second, the a-component of the Bianchi identity enforces

θR̂(n)
ra + pubR̂

(n)
ab = f (n)

a (x). (2.17)

Evaluating the Gauss-Codazzi identity on Σc at order ǫ̃
n, we find

∇bTab

∣

∣

(n)

Σc

= [2∇b(Kγab −Kab)]
(n) = [−2RaµN

µ](n) = −2

p
f (n)
a (x). (2.18)

Thus, conservation of the Brown-York stress tensor at each order ensures that one may

integrate the bulk equations.

The radial Hamiltonian constraint evaluated on Σc is given by

K2 −KabK
ab = 0, (2.19)

which upon using the definition of the Brown-York stress tensor, Tab =
1

8πG(Kγab −Kab),

becomes the quadratic constraint given earlier in (1.3). As was discussed in [2] and reviewed

– 7 –
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in the introduction, this constraint plays the role of a generalised equation of state: given

p and Π⊥
ab it determines ρ.

Note that the radial Hamiltonian constraint in AdS plays exactly the same role, i.e.,

it determines the equation of state. Indeed, in the presence of a cosmological constant the

radial Hamiltonian constraint (in Fefferman-Graham gauge) becomes

K2 −KabK
ab = d(d− 1), (2.20)

where have set the AdS radius to unity and assumed a flat boundary metric. Expanding

about conformal infinity, the extrinsic curvature is given by [32]

Kab = ηab +K(d)ab + . . . , (2.21)

where the subscript indicates dilatation weight and the dots represent higher order terms

that do not contribute when we evaluate the constraint at conformal infinity. Inserting the

holographic stress tensor [32]

Tab = 2(K(d)ηab −K(d)ab), (2.22)

into the AdS Hamiltonian constraint (2.20) then yields

T a
a = 0, (2.23)

which implies the equation of state of a conformal fluid.1

Returning to the case of the Rindler fluid, a particular integral of (2.15) is

g̃
(n)
ab = α̃(n)uaub + 2β̃

(n)
(a ub) + γ̃

(n)
ab , uaβ̃(n)

a = 0, uaγ̃
(n)
ab = 0, (2.24)

where

α̃(n) = c
(n)
1 (x) + (1− r)c

(n)
2 (x) + 2p2

∫ 1

r
dr′
∫ 1

r′
dr′′

(

hcdR̂
(n)
cd − 1

2
R̂(n)

)

,

β̃(n)
a = c

(n)
3a (x) + (1− r)c4a(x) + 2p

∫ 1

r
dr′
∫ 1

r′
dr′′hbaR̂

(n)
br ,

γ̃
(n)
ab = c

(n)
5ab(x) + c

(n)
6ab(x) ln θ − 2p2

∫ 1

r
dr′

1

θ

∫ r′

r∗

dr′′hcah
d
bR̂

(n)
cd , (2.25)

where R̂(n) = g(0)µνR̂
(n)
µν . Note that to satisfy the rr equation, we must have that

2R̂(n)
rr = hab∂2

r γ̃
(n)
ab = −p4

θ2
habc

(n)
6ab +

2p2

θ
habR̂

(n)
ab − 2p4

θ2

∫ r

r∗

dr′habR̂(n)
ab . (2.26)

Using the first integrability condition in the form

∂r(h
abR̂

(n)
ab ) =

1

θ
∂r

(

θ2

p2
R̂(n)

rr

)

, (2.27)

1 If we instead consider a general boundary metric then the r.h.s. of (2.23) contains the holographic

Weyl anomaly.
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one can show that

2R̂(n)
rr = −2p2

θ2

[

θhabR̂
(n)
ab − θ2

p2
R̂(n)

rr

]

∗
+

2p2

θ
habR̂

(n)
ab − 2p4

θ2

∫ r

r∗

dr′habR̂(n)
ab , (2.28)

where [. . .]∗ indicates evaluating at r = r∗. One then obtains an equation for r∗, namely

habc
(n)
6ab =

2

p2

[

θhabR̂
(n)
ab − θ2

p2
R̂(n)

rr

]

∗
. (2.29)

Later, we will choose to set the coefficients of all logarithmic terms to zero. For the trace

component above, this entails setting the lower limit of integration such that r∗ = rH ≡
1− 1/p2, whereupon θ∗ = 0.

Allowing now for gauge transformations ξ(n)µ at order ǫ̃n, as well as re-definitions

δu(n)a(x) and δp(n)(x) of the fluid velocity and pressure, the solution above generalises to

g(n)rr = −2pua∂rξ
(n)a, (2.30)

g(n)ra = −ua[p∂rξ
(n)r − (1− θ)ub∂rξ

(n)b + δp(n)] + ηab∂rξ
(n)b − pδu(n)a , (2.31)

g
(n)
ab = g̃

(n)
ab − uaub[p

2ξ(n)r + 2pδp(n)(r − 1)] + 2(1− θ)u(aδu
(n)
b) . (2.32)

To impose the gauge choice g
(n)
rµ = 0, we must then set

ξ(n)r = (1− r)
δp(n)

p
+ ξ̃(n)r(x), ξ(n)a = ξ(n)ua + ξ

(n)a
⊥ , (2.33)

where uaξ
(n)a
⊥ = 0 and

ξ(n) = ξ̃(n)(x), ξ
(n)a
⊥ = −(1− r)pδu(n)a + ξ̃

(n)a
⊥ (x). (2.34)

The remaining metric components then take the form:

α(n) = c
(n)
1 − p2ξ̃(n)r + (1− r)(c

(n)
2 + pδp(n)) + 2p2

∫ 1

r
dr′
∫ 1

r′
dr′′(hcdR̂(n)

cd − 1

2
R̂(n)),

β(n)
a = c

(n)
3a + (1− r)(c4a + p2δu(n)a ) + 2p

∫ 1

r
dr′
∫ 1

r′
dr′′hbaR̂

(n)
br ,

γ
(n)
ab = c

(n)
5ab + c

(n)
6ab ln θ − 2

∫ 1

r
dr′

1

r′ − rH

∫ r′

r∗

dr′′hcah
d
bR̂

(n)
cd . (2.35)

Imposing the boundary condition g
(n)
ab = 0 for n ≥ 1 on Σc then fixes

c
(n)
1 = p2ξ̃(n)r, c

(n)
3a = 0, c

(n)
5ab = 0. (2.36)

Moreover, for regularity on the future horizon r = rH, we must set

c
(n)
6ab = 0, r∗ = rH. (2.37)
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In summary then, our integration scheme is the following. The rr and ra metric

components are given to all orders by

grr = 0, gra = −pua, (2.38)

while the ab metric components may be decomposed in fluid variables as

g
(n)
ab = α(n)uaub + 2β

(n)
(a ub) + γ

(n)
ab . (2.39)

Beginning with the seed metric g
(0)
ab = −θuaub + hab, the metric at all subsequent orders is

then given by

α(n) = (1− r)F (n)(x) + 2p2
∫ 1

r
dr′
∫ 1

r′
dr′′(hcdR̂(n)

cd − 1

2
R̂(n)),

β(n)
a = (1− r)F (n)

a (x) + 2p

∫ 1

r
dr′
∫ 1

r′
dr′′hbaR̂

(n)
br ,

γ
(n)
ab = −2

∫ 1

r
dr′

1

r′ − rH

∫ r′

rH

dr′′hcah
d
bR̂

(n)
cd . (2.40)

Here, the arbitrary functions

F (n)(x) = c
(n)
2 (x) + pδp(n)(x), F (n)

a (x) = c4a(x) + p2δu(n)a (x), (2.41)

encode the choice of gauge for the dual fluid, and will be fixed as we discuss in the following

section. Note also that F
(n)
a is transverse: uaF

(n)
a = 0.

2.3 The Brown-York stress tensor

The variation in the extrinsic curvature of Σc at order ǫ̃
n due to g

(n)
ab is

δK
(n)
ab

∣

∣

Σc

=
1

2
£Ng

(n)
ab =

1

2
N r∂rg

(n)
ab =

1

2p
∂rg

(n)
ab . (2.42)

(Note here that the normal Nµ|Σc
= p−1δµr + δµaua to all orders, since the bulk metric at

Σc is effectively fixed.) Evaluating this explicitly, we find

δK
(n)
ab

∣

∣

Σc

= − 1

2p
F (n)uaub −

1

p
u(aF

(n)
b) + p

∫ 1

rH

dr′hcah
d
bR̂

(n)
cd . (2.43)

The variation in the Brown-York stress tensor due to g
(n)
ab is thus

δT
(n)
ab

∣

∣

Σc

= 2(ηabδK
(n) − δK

(n)
ab )

=
1

p
F (n)hab +

2

p
u(aF

(n)
b) + 2p

∫ 1

rH

dr′(ηabh
cd − hcah

d
b)R̂

(n)
cd . (2.44)

The complete Brown-York stress tensor on Σc at order ǫ̃
n is then

T
(n)
ab

∣

∣

Σc

= δT
(n)
ab + T̂

(n)
ab , (2.45)

where T̂
(n)
ab represents the contribution at order ǫ̃n due to the metric up to order ǫ̃n−1.
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2.4 Gauge choices for fluid

We will define the relativistic fluid velocity ua such that

0 = hbaTbcu
c, (2.46)

which then uniquely fixes F
(n)
a :

F (n)
a = phbaT̂

(n)
bc uc. (2.47)

To fix F (n), we impose that there are no corrections to the pressure, i.e., that the

coefficient of hab in Tab is fixed to be exactly p. From (2.44), we see that F (n) is then

determined uniquely.

3 Solution

In the previous section, we saw how to systematically construct the near-equilibrium solu-

tion in terms of a relativistic gradient expansion starting from the seed solution. We saw

moreover that the solution is unique once we impose the bulk gauge conditions, the gauge

conditions on the fluid stress tensor, and regularity at each order in the expansion. In the

present section, we will now explicitly compute this solution to second order.

3.1 First order

Computing the Ricci curvature of the seed metric, we obtain

R̂(1) = 0, R̂(1)
rµ = 0, R̂

(1)
ab =

(

Dp+
p

2
∂cu

c
)

uaub + pu(aab) + u(a∂b)p, (3.1)

where D ≡ ua∂a, D
⊥
a ≡ hba∂b and the acceleration ac = Duc. Since habR̂

(1)
ab vanishes, the

integration step is trivial and we have

g
(1)
ab = (1− r)

[

F (1)uaub + 2F
(1)
(a ub)

]

. (3.2)

Evaluating the Brown-York stress tensor on Σc, we find

Tab

∣

∣

Σc

=
(

p+ 2D ln p+
1

p
F (1)

)

hab + 2u(a

(

2ab) +
1

p
F

(1)
b)

)

− 2Kab, (3.3)

where we write the fluid shear and vorticity

Kab = hcah
d
b∂(cud), Ωab = hcah

d
b∂[cud], (3.4)

so that

∂aub = Kab +Ωab − uaab. (3.5)

Note here that conservation of the stress tensor at zeroth order yields the conditions

∂cu
c = O(∂2), ac +D⊥

c ln p = O(∂2), (3.6)

and that we used both of these to simplify the form of the stress tensor at first order.
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Our gauge condition for the pressure immediately sets

F (1) = −2Dp, (3.7)

while that for the fluid velocity at first order reads

0 = hbaTbcu
c = −1

p
F (1)
a − 2aa ⇒ F (1)

a = −2paa. (3.8)

In conclusion then,

g
(1)
ab = 2(r − 1)(uaubDp+ 2pa(aub)) (3.9)

while

Tab

∣

∣

Σc

= phab − 2Kab +O(∂2), (3.10)

from which we may read off the viscosity η = 1. We also deduce that the first order

coefficient ζ ′ = 0, where ζ ′ is defined in (1.1)–(1.4).

3.2 Second order

The fluid equations of motion at second order may be directly obtained from conservation

of the first order stress tensor (1.1) with ζ ′ = 0, η = 1 as

∂bu
b − 2

p
KbcKbc = O(∂3) , aa +D⊥

a ln p− 2

p
hca∂bKb

c = O(∂3) . (3.11)

Next, from the first order metric (3.9), one may obtain the second order piece of the Ricci

tensor R̂
(2)
µν . The computation is straightforward but laborious. Using (A.3)–(A.10) and

the fluid equations (3.11), the result may be expressed in the basis of tensors given in the

appendix. We find

R̂(2)
rr = −p2ΩabΩba ,

R̂(2)
ra = pua

(

(D⊥ ln p)2 +KbcKbc + p2(r − 1)ΩbcΩ
bc
)

+ phca∂bKb
c + p(Kab +Ωab)D

b
⊥ ln p ,

R̂
(2)
ab = uaubθ(r)

(

(D⊥ ln p)2 +KcdKcd + p2(r − 1)ΩcdΩ
cd
)

+ 2u(aθ(r)
(

(Kb)c +Ωb)c)D
c
⊥ ln p

+ hcb)∂dKd
c))
)

+ 2KabD ln p+ 2hcah
d
b∂c∂d ln p− 2D⊥

a ln pD⊥
b ln p+Kc

aKcb +Ω c
a Ωcb

+ 2Kc(aΩ
c
b) + 2p2(r − 1)Ωc(aΩ

c
b) . (3.12)

(Note the equations NµRµa = O(∂3) are satisfied, as required by (2.18).)

As noted earlier, the stress tensor at second order T
(2)
ab evaluated on Σc is the sum of

two pieces: the piece δT
(2)
ab resulting from the second order contribution to the metric g

(2)
ab ,

and the piece T̂
(2)
ab resulting from evaluating the stress tensor to second order using the

metric up to first order. Computing the stress tensor at first order without using the first

order fluid equations of motion, we obtain

Tab = phab − 2Kab + 2K(hab − uaub)− 2u(a

(

ab) +D⊥
b) ln p

)

+O(∂2) . (3.13)
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Using the equations of motion at second order (3.11), we deduce that

T̂
(2)
ab =

4

p
KcdKcd(hab − uaub)−

4

p
u(a

(

hcb∂dKd
c

)

. (3.14)

Next, inserting the second order Ricci tensor (3.12) into (2.44), and making use of the

substitutions listed in the appendix, we find

δT
(2)
ab = hab

(

1

p
F (2) − 2

p
(KabKab)

)

+
2

p
uaub

(

KabKab
)

+
2

p
u(aF

(2)
b)

− 2

p

(

hd(aD
⊥
b)D

⊥
d ln p−D⊥

a ln pD⊥
b ln p− hcah

d
bDKcd + 2Kc(aΩ

c
b) − Ωc(aΩ

c
b)

)

.

(3.15)

Combining these two contributions to the second order stress tensor, our fluid gauge con-

ditions in section 2.4 are met when

F (2) = −2KabKab, F (2)
a = 2hca∂dKd

c . (3.16)

The fluid stress tensor then takes the expected form (1.1), with ρ and Π⊥
ab as given in (1.4)–

(1.5) and with the advertised second order coefficients (1.6).

As a consistency check, we note that our expression for ρ(2),

ρ(2) = −2

p
KabKab , (3.17)

as well as the coefficients c1, c2, c3 and c4 listed in (1.6) coincide with our earlier results

obtained in [2] using the non-relativistic ǫ-expansion to order O(ǫ6). The two remaining

coefficients, c5 and c6, that were not determined in the analysis of [2] have moreover now

been computed.

Recalling that the second order metric takes the form

g
(2)
ab = α(2)uaub + 2β

(2)
(a ub) + γ

(2)
ab , (3.18)

using the solution algorithm (2.40) with our result (3.12) as input, we obtain

α(2) = 2(r − 1)KabKab + p2
(

1

2
KabKab + (D⊥ ln p)2

)

(r − 1)2 +
p4

2
(r − 1)3ΩabΩ

ab ,

β(2)
a = −2(r − 1)hca∂dKd

c + p2(r − 1)2(hba∂cKc
b + (Kab +Ωab)D

b
⊥ ln p) ,

γ
(2)
ab = 2(r − 1)

(

2hcah
d
b∂c∂d ln p+ 2KabD ln p− 2D⊥

a ln pD⊥
b ln p+K c

aKcb

+ 2Ω c
a Ωcb + 2Kc(aΩ

c
b)

)

+ p2(r − 1)2ΩcaΩ
c
b . (3.19)

As a check of this result, one may proceed to expand the metric we have just calculated

to O(ǫ6) in the non-relativistic ǫ-expansion. One should then recover all terms of up to

second order in gradients in the metric of [2], modulo a small complication which is that

the metric in [2] was computed in a slightly different radial gauge. (The choice of fluid

gauge in [2] is also slightly different.) To get round this, we simply repeated the analysis
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of [2] with our current gauge choices. Comparing with the ǫ-expansion of g
(2)
ab , we then

found that the two results are indeed consistent.

In summary, the complete metric up to second order is given by

grr = 0, gra = −pua, gab = αuaub + 2β(aub) + γab , (3.20)

where

α = −1− p2(r − 1) + 2pD ln p(r − 1) + α(2) ,

βa = 0 + 2paa(r − 1) + β(2)
a ,

γab = hab + 0 + γ
(2)
ab . (3.21)

The inverse metric up to second order is

grr =
1

p2

(

− α+ habβaβb

)

,

gra =
1

p

(

ua + habβb

)

,

gab = hab − hachbdγ
(2)
cd . (3.22)

3.3 Fluid divergence at third order

Given the stress tensor at second order, it is straightforward to obtain the fluid equations of

motion at third order. We will need to make use of the third order fluid continuity equation

ua∂bTab = 0 in our forthcoming discussion of the entropy current. Let us then derive this

equation for a general fluid stress tensor of the form (1.1) in combination with (1.4)–(1.5).

Using the basis of tensors given in the appendix, we obtain

∂au
a =

1

p

[

2ηKabKab − ζD2 ln p
]

+
1

p2

[

(−c4 + 2d1)Kab∂a∂b ln p+ (−c1 + 2d1)KabKc
aKbc

+(−c3 + 2d1−4d2)KabΩa
cΩbc + 3d2ΩabΩ

abD ln p+ (−c6−2d1)KabD⊥
a ln pD⊥

b ln p

+(c4 − c5 + d1 − 2ηζ)D ln pKabKab − d4D
3 ln p+ (−2d3 + d4 + ζ2)D2 ln pD ln p

+d3(D ln p)2 + d5(D⊥ ln p)2D ln p− 2d5DDa
⊥ ln pD⊥

a ln p
]

+O(∂4) . (3.23)

Interestingly, upon inserting the coefficients (1.6) this equation simplifies to

∂au
a =

2

p
KabKab − 2

p2
(KabKc

aKbc +D ln pKabKab) +O(∂4)

=
2

p
KabKac

(

δbc −
1

p
Kb

c −
D ln p

p
δbc

)

+O(∂4) . (3.24)

In particular, the right-hand side is non-negative since the third order terms are small

corrections to the non-negative second order term. This is a special property of the fluid

dual to vacuum gravity: in the general case, the divergence might be negative for flows

where Kab is small and other terms in the expression (3.23) dominate.
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4 Entropy current

4.1 General fluid entropy current

A general entropy current is by definition a current which has non-negative divergence

given the fluid equations of motion. We will derive in this section the constraints on the

form of the entropy current at first and second order in the derivative expansion using

solely the fluid equations of motion (3.11). In particular, our considerations do not depend

on the second order part of the bulk metric.

Using dimensional analysis and the classification of first order scalars and vectors given

in the appendix, the general entropy current at first order has the form

J a = seq

(

ua +
α

p
uaD ln p+

β

p
Da

⊥ ln p

)

+O(∂2) . (4.1)

Here, we normalised the current using the equilibrium entropy density seq = 1/(4G). Using

the relationships in the appendix, the divergence of this entropy current is

1

seq
∂aJ a =

2− β

p
KabKab+

β

p
ΩabΩ

ab+
α

p

(

D2 ln p− (D ln p)2
)

− β

p
(D⊥ ln p)2+O(∂3). (4.2)

Since the two terms ΩabΩ
ab ≥ 0 and −(D⊥ ln p)2 ≤ 0 of opposite sign might dominate

the divergence when the shear tensor is small, we need β = 0. Also, since the term

D2 ln p− (D ln p)2 of indefinite sign might dominate the divergence when the shear tensor

is small, we need α = 0. The entropy current Ja = sequ
a is therefore the only possible

expression at first order.

From the classification of second order scalars and vectors in the appendix, the general

entropy current at second order takes the form

J a = sequ
a
(

1 +
1

p2
(a1KabKab + a2ΩabΩ

ab + a3(D ln p)2 + a4D
2 ln p+ a5(D⊥ ln p)2)

)

+
seq
p2

(

b1h
ac∂bKb

c + b2D
a
⊥D ln p+ b3Ka

bD
b
⊥ ln p+ b4Ω

abD⊥
b ln p+ b5D

a
⊥ ln pD ln p

)

,

(4.3)

where the coefficients ai, bi are constrained by that the fact that the divergence of the

current is non-negative. This divergence is given by

∂aJ a =
8π

p
KabKab+

4π

p2

(

KabD⊥
a D

⊥
b ln p(−2a1 − b1 + 4b2 + b3) +Ka

bKb
cKc

a(−2− 2a1 + 2b2)

+Ka
bΩ

b
cΩ

c
a(−2a1 + 4a2 − 4b1 + 6b2) +D ln pΩabΩ

ab(−4a2 + 3b1 − b2 + b4 + b5)

+ ∂aKa
cD

c
⊥ ln p(−2b1 + 2b2 + b3 + b4) + (D ln p)3(−2a3)

+D ln pKabKab(−2− 2a1 − b2 − b5) +D3 ln p(a4) +D2 ln pD ln p(2a3 − 2a4)

+KabD⊥
a ln pD⊥

b ln p(2a1 + b1 − 3b2 − 2b3 + b4 + b5)

+ (D⊥ ln p)2D ln p(−2a5 − b2 − b5) +DDa
⊥ ln pD⊥

a ln p(2a5 + b2 + b5)
)

+O(∂4).

(4.4)
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The first term is leading in gradients and therefore the current has non-negative divergence

in most cases. It might turn out, however, that the shear tensor is small and then third

order gradients might be leading. Of these third order terms, some might form a perfect

square with the term 8π
p KabKab when higher order gradients are taken into account, leading

to a non-negative contribution to the divergence. There are other terms, however, which

clearly cannot form a perfect square and which may be large even though the shear is small.

These latter terms must therefore vanish giving rise to the necessary positivity conditions

0 = −4a2 + 3b1 − b2 + b4 + b5, (4.5)

0 = −2b1 + 2b2 + b3 + b4, (4.6)

0 = a3, (4.7)

0 = a4, (4.8)

0 = 2a5 + b2 + b5. (4.9)

Further conditions might be found by studying the constraints up to third order or by

deriving the constraints associated with putting the fluid in a curved spacetime. We will

not perform such an analysis here. The constraints (4.5)–(4.9) should be obeyed by any

physical entropy current. Using these constraints to eliminate a3, a4, a5, b4 and b5 in (4.3)

leads immediately to the five-parameter family of entropy currents with non-negative di-

vergence (1.7) given in the introduction.

As a final remark, we note that certain entropy currents may be written as the diver-

gence of an anti-symmetric potential, i.e.,

J a = ∂bX [ab] . (4.10)

Entropy currents of this form are trivially conserved and describe lower-dimensional con-

servation laws at the boundary of the fluid domain. Since we consider only an infinitely

extended domain, we will ignore such boundary terms. The trivial entropy currents may

then be straightforwardly classified as

J a = ∂b

(

t1
seq
p2

Ωab + t2
2seq
p2

u[aD
b]
⊥ ln p

)

. (4.11)

Making use of the relations in the appendix, one finds that the trivial entropy currents

take the general form (4.3) with

a1 = −t2, a2 = −t1 + t2, a3 = a4 = 0, a5 = −t2,

b1 = −t1, b2 = −t2, b3 = −t1 + 2t2, b4 = −t1, b5 = 3t2 , (4.12)

which obviously satisfy the constraints (4.5)–(4.9). Removing these trivial entropy currents,

one can reduce the five-parameter family of entropy currents (1.7) to a three-parameter

family of non-trivial entropy currents.

4.2 Defining the holographic entropy current

Our bulk metric takes the form

ds2 = −2p(x)ua(x)dx
adr + gab(r, x)dx

adxb, (4.13)
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implying wordlines of constant xa are null geodesics to all orders. These null geodesics

define a natural map between points on the horizon and on the boundary. In the spirit

of [30], we will obtain a boundary entropy current by pulling back a suitable horizon

quantity along these null geodesics. In this section we present our prescription in detail

and derive a formula for the entropy current which extends that of [33, 34] to allow the use

of a non-affinely parametrised horizon generator.

We begin by foliating the bulk spacetime with a family of null hypersurfaces defined

by S(r, x) = constant, with the horizon corresponding to the surface S(rH(x), x) = 0. In

the equilibrium case, the horizon is defined to be the Rindler horizon of the bulk solution.

In the near-equilibrium case, we will assume that the fluid is returned to equilibrium in

the limit of late times through the action of dissipative forces. The horizon of the near-

equilibrium solution is then defined as the unique null hypersurface which asymptotes to

the Rindler horizon of the late-time equilibrium solution. Expanding the location of the

horizon rH(x) in fluid gradients, the zeroth order term must therefore match the location

of the Rindler horizon of the equilibrium solution, giving rH(x) = 1 − 1/p2 + O(∂). The

higher order corrections may then be obtained by requiring the horizon to be null; we will

return to solve for these in the next subsection.

On the horizon then, we have

0 =
dS

dxa
∣

∣

H =
[

∂rS∂arH + ∂aS
]

H. (4.14)

An affinely parametrised normal vector to our family of null hypersurfaces is ℓµ = ∂µS,

since

ℓν∇νℓµ =
1

2
∂µ(ℓ

2) = 0. (4.15)

The vanishing of ℓ2 = ℓµ∂µS everywhere also implies

ℓr = −(∂rS)
−1ℓa∂aS. (4.16)

Denoting the expansion evaluated on the horizon by θH ≡ (∇µl
µ)H, we have

√−gHθH = ∂µ(
√−gℓµ)|H = ∂a(

√−gℓa)|H − ∂r(
√−g(∂rS)

−1ℓa∂aS)|H

= ∂a[(
√−gℓa)H]− ∂r(

√−gℓa)|H[∂arH + (∂rS)
−1∂aS]H −√−gHℓaH∂r((∂rS)

−1∂aS)|H

= ∂a[(
√−gℓa)H]−√−gHℓaH∂r((∂rS)

−1∂aS)|H, (4.17)

where to obtain the second line we used the chain rule in the form ∂a[(
√−gℓa)H] =

∂a(
√−gℓa)|H + ∂r(

√−gℓa)H∂arH.
Close to the horizon, we may Taylor expand S(r, x) as

S(r, x) =
(

r − rH(x)
)

S1(x) +
1

2

(

r − rH(x)
)2
S2(x) +O(r − rH)

3, (4.18)

where the absence of a zeroth order term is required by S(rH, x) = 0. A simple calcu-

lation shows that S1 is nonzero for the Rindler horizon of the equilibrium solution; since

corrections at higher order in gradients cannot cancel this leading term, S1 is everywhere
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nonzero in the near-equilibrium case as well. In terms of this Taylor expansion, we obtain

the exact relations

∂r((∂rS)
−1∂aS)|H = ∂a lnS1, ℓµH = S1(g

µr − gµb∂brH)H = S1ξ
µ
H, (4.19)

where

ξµ = gµν∂ν
(

r − rH(x)
)

(4.20)

and we have chosen ℓµH to be future-directed ensuring that S1 > 0. (Note ξµH is future-

directed for the equilibrium solution, and hence for the near-equilibrium solution also.)

Since ℓ2H = 0, we must have ξ2H = 0. Solving this latter condition in the hydrodynamic

gradient expansion provides us with the location of the horizon rH(x), to which we will

return shortly.

Combining (4.17) and (4.19), we have

√−gHθH = ∂a(
√−gHℓ

a
H)−

√−gHℓ
a
H∂a lnS1 = S1∂a

(√−gHℓ
a
H

S1

)

, (4.21)

and hence, introducing the boundary metric gΣ, we may write

√−gHθH
4GN

√−gΣS1
=

1√−gΣ
∂a(

√−gΣJ a) = ∇(Σ)
a J a, (4.22)

where the entropy current

J a =
1

4GN

√−gH√−gΣ

ℓaH
S1

=
1

4GN

√−gH√−gΣ
ξaH . (4.23)

From the Raychaudhuri equation,

θ̇H = −1

d
θ2H − σabσ

ab|H ≤ 0, (4.24)

where the dot denotes the derivative with respect to the affine parameter along the horizon

and σab is the shear of the geodesic congruence, while the vorticity vanishes since ℓµ is

hypersurface orthogonal. Since the fluid returns to equilibrium in the limit of late times,

and θH = 0 for the equilibrium solution, it therefore follows that in the near-equilibrium

case θH ≥ 0 at all times. (Note this conclusion relies on the fact that θH is the expansion

with respect to the affine generator ℓµH. If instead one tried to use the expansion defined

with respect to the non-affine generator ξµH then the Raychaudhuri equation would acquire

extra terms of indefinite sign, invalidating the argument.)

Given then that θH is non-negative and S1 > 0, from (4.22) the divergence of the

entropy current must also be non-negative:

∇(Σ)
a J a ≥ 0. (4.25)

Examining (4.23), we note that while the expansion θH is necessarily that of the affinely

parametrised generator ℓµH, the current J a may nevertheless be expressed in terms of the

non-affinely parametrised generator ξµH.
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Finally, let us discuss briefly two potential sources of ambiguity in the definition of the

holographic entropy current. Firstly, pulling back to the boundary along a different set

of bulk null geodesics will lead to a different boundary entropy current. Such ambiguities

have been discussed in [30] and correspond boundary to boundary diffeomorphisms. A

second potential source of ambiguity, mentioned in [30] and discussed in [33, 34], concerns

the choice of bulk horizon (such as apparent horizon, etc.). We leave further investigation

of these interesting issues to future work, and in the following, we focus exclusively on the

entropy current defined in (4.23).

4.3 Location of the horizon

To evaluate the entropy current according to our formula (4.23), the first step is to compute

rH(x), the location of the horizon. As explained above, this follows from solving the null

condition ξ2H = 0, which from (4.20) reads

0 = grr(rH)− 2gra(rH)∂arH + gab(rH)∂arH∂brH. (4.26)

The solution takes the form of a gradient expansion

rH(x) = r
(0)
H + r

(1)
H + r

(2)
H + . . . (4.27)

where r
(0)
H = 1− 1/p2 is the equilibrium position of the horizon obtained by solving

grr(0)(r
(0)
H ) = p−2 + r

(0)
H − 1 = 0 , (4.28)

and r
(n)
H contains terms of n-th order in gradients. At each order n in gradients, the

equation reduces to a linear problem due to the fact that the only term involving r
(n)
H is

grr(0)(r
(n)
H ) = r

(n)
H .

At first order, (4.26) reads

0 = r
(1)
H − 1

p2
α(1)(r

(0)
H )− 2

p
ua∂ar

(0)
H , (4.29)

with solution

r
(1)
H =

2

p3
D ln p . (4.30)

At second order, we obtain the equation

0 = r
(2)
H − 2

p
D ln p r

(1)
H − 1

p2
α(2)(r

(0)
H ) +

4

p2
(D⊥ ln p)2 − 2

p
Dr

(1)
H

− 4

p2
Da

⊥ ln pD⊥
a r

(0)
H + hab∂ar

(0)
H ∂br

(0)
H , (4.31)

with solution

r
(2)
H =

1

p4

(

4DD ln p− 8(D ln p)2 − 3

2
KabKab − 1

2
ΩabΩ

ab + (D⊥ ln p)2
)

. (4.32)
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Having obtained rH(x), we may now evaluate the non-affine horizon generator ξµH
according to (4.20), making use of the inverse metric (3.22) evaluated on the horion. We

find

ξaH =
ua

p
+

1

p3

(

2Da
⊥ ln pD ln p−2Da

⊥D ln p−hab∂cKc
b+(Ka

b+Ωa
b)D

b
⊥ ln p

)

+O(∂3). (4.33)

We will not need ξrH in what follows. The piece of ξaH normal to the fluid velocity is simply

the equilibrium term, with no corrections at either first or second order. The remaining

piece of ξaH tangent to the fluid velocity has only second order corrections.

4.4 Evaluating the holographic entropy current

In our case the boundary metric is simply Minkowski and 1/4GN = 4π, so the entropy

current (4.23) reduces to

J a = 4π
√−gHξ

a
H. (4.34)

With ξaH given in (4.33) above, it remains only to evaluate the determinant factor
√−gH.

As an initial step, we first evaluate the determinant of the seed metric

ds2(0) = −2puadx
adr + ḡabdx

adxb, (4.35)

where, in the above and in the following, for clarity we will temporarily write

ḡab = g
(0)
ab = ηab − p2(r − 1)uaub . (4.36)

Since
(

0 −puT

−pu ḡ

)

=

(

1 −puT

0 ḡ

)(

−p2uT ḡ−1u 0

−pḡ−1u 1

)

, (4.37)

we find

det g(0) = −p2uaubḡ
ab det ḡ, (4.38)

where the inverse metric

ḡab = hab − uaub
(

1 + p2(r − 1)
) , ḡabḡbc = δac , (4.39)

and the determinant det ḡ = −(1+ p2(r− 1)) may be evaluated by the usual formula. The

seed metric therefore has determinant

det g(0) = −p2. (4.40)

The determinant of the full metric up to second order in gradients may now be obtained

perturbatively. Writing

gµν = g(0)µν + g(1)µν + g(2)µν +O(∂3) (4.41)

and expanding the formula det g = exp(tr ln g), we find

det g = det g(0)

(

1+gµν(0)g(1)µν+gµν(0)g(2)µν −
1

2
gµν(0)g(1)νρg

ρσ
(0)g(1)σµ+

1

2
(gµν(0)g(1)µν)

2

)

+O(∂3).

(4.42)
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Since in addition,

g(1)rµ = g(2)rµ = 0, gab(0) = hab, γ(1)ab ≡ hcah
d
bg(1)cd = 0, (4.43)

making use of (4.40), we find simply

det g = −p2(1 + habγ(2)ab) +O(∂3). (4.44)

Evaluating this formula on the horizon rH = 1− 1/p2 +O(∂), we obtain

√−gH = p+
1

p
KabKab +

1

2p
ΩabΩ

ab +O(∂3), (4.45)

and thus the entropy current

J a = 4πua
(

1 +
1

p2
KbcKbc +

1

2p2
ΩbcΩ

bc

)

+
4π

p2

(

2Da
⊥ ln pD ln p− 2Da

⊥D ln p− hab∂cKc
b + (Ka

b +Ωa
b)D

b
⊥ ln p

)

+O(∂3).

(4.46)

The entropy current takes the general form (4.3) with coefficients

a1 = 1, a2 =
1

2
, a3 = a4 = a5 = 0, −b1 = b3 = b4 = 1, −b2 = b5 = 2. (4.47)

From (4.4), we obtain

∂aJ a =
8π

p
KabKab +

4π

p2

(

− 8KabD⊥
a D

⊥
b ln p− 8Ka

bKb
cKc

a − 8Ka
bΩ

b
cΩ

c
a

+ 8KabD⊥
a ln pD⊥

b ln p− 4D ln pKabKab
)

+O(∂4). (4.48)

All five entropy conditions (4.5)–(4.9) are obeyed, confirming that the divergence of the

entropy current is non-negative as expected.

5 Near-horizon limits

It was observed in [1] that the non-relativistic hydrodynamic expansion can be expressed

as a near-horizon limit when combined with a specific Weyl rescaling. In this section we

show that the relativistic expansion can also be expressed as an alternative near-horizon

limit combined with a Weyl rescaling.

We noticed in section 2.1 that the equilibrium solution admits the scaling transforma-

tion (2.10) that generates a global Weyl rescaling of the metric. This Weyl rescaling still

exists for the complete metric with higher-derivative corrections that we found in section 3

(with the factors of rc restored). Indeed, the metric has coordinates r, τ, xi and parameters

rc, p(τ, x) and vi(τ, x), where the relativistic velocity ua is decomposed as in (2.6). Equiv-

alently, one can express the solution using the position of the horizon rH(τ, x) instead of

the pressure after inverting the relation (4.27). The scaling

(r, τ, xi, rc, rH, vi) →
(

λ2 r, τ, λ xi, λ
2 rc, λ

2 rH, λ vi
)

(5.1)
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is equivalent to a Weyl rescaling

ds2 → λ2 ds2 (5.2)

of the full near-equilibrium metric. Since we are interested in Ricci-flat metrics this constant

overall factor may be dropped.

We now want to consider the near-horizon limit rc → rH → 0 while preserving rH < rc
and rc − v2 > 0 (recall that

√
rc also plays the role of the speed of light). Thus, in general

we must scale the parameters

(rc, rH, vi) → (λ̃rc, λ̃
arH, λ̃

bvi) (5.3)

such that a ≥ 1 and b ≥ 1/2. According to this point of view, any suitable choice of a and

b defines an acceptable near-horizon limit.

Recall that the non-relativistic ǫ-expansion — defined as the homogenous scaling trans-

formation of the incompressible Navier-Stokes equations — is given by

(r, τ, xi, rc, rH, vi) →
(

r,
τ

ǫ2
,
xi
ǫ
, rc, ǫ

2rH, ǫvi
)

(5.4)

Recall also that the incompressible Navier-Stokes equations are an attractor under the ǫ

scaling in the sense that when ǫ → 0 all higher order corrections become small.

Combining this expansion with a Weyl rescaling (5.1), setting λ = ǫ, leads to

(r, τ, xi, rc, rH, vi) →
(

ǫ2r,
τ

ǫ2
, xi, ǫ

2rc, ǫ
4rH, ǫ

2vi

)

, (5.5)

which defines a near-horizon limit (5.3) with λ̃ = ǫ2 and a = 2, b = 1, i.e., we consider the

limit

rc → 0,
rH
r2c

= fixed,
vi
rc

= fixed. (5.6)

Let us now consider the relativistic limit

(r, τ, xi, rc, rH, vi) →
(

r,
τ

ǫ̃
,
xi
ǫ̃
, rc, rH, vi

)

, (5.7)

i.e., the pressure p and ua are zeroth order quantities, only derivatives carry weight ∂µ ∼ ǫ̃.

The ideal relativistic fluid equations (3.6) are an attractor under the relativistic scaling in

the sense that when ǫ̃ → 0, all higher order corrections become small.

Combining this expansion with a Weyl rescaling (5.1) with λ = ǫ̃ leads to the near-

horizon limit

(r, τ, xi, rc, rH, vi) →
(

ǫ̃2r,
τ

ǫ̃
, xi, ǫ̃

2rc, ǫ̃
2rH, ǫ̃vi

)

, (5.8)

which is (5.3) with λ̃ = ǫ̃2 and a = 1 and b = 1/2, i.e., we consider the limit

rc → 0,
rH
rc

= fixed,
v2

rc
= fixed. (5.9)

In particular, this means that we keep fixed relativistic velocities as
√
rc plays the role of the

speed of light. Notice that under (5.8) the normalised horizon generator ζ = 1√
rc−v2

(∂τ +

vi∂i) (where ζ2|Σc
= −1, see [2]), is invariant and the temperature and pressure satisfy

a simple scaling law T → T/ǫ̃ and p → p/ǫ̃, while the transformations under the non-

relativistic scaling (5.5) are more complicated.
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6 Conclusions

In this paper we presented a construction of a (d+ 2)-dimensional Ricci-flat metric corre-

sponding to a (d + 1)-dimensional relativistic fluid with specific transport coefficients. In

a specific non-relativistic limit we recover the results discussed in our previous work [2].

We have further obtained a holographic entropy current with a non-negative divergence,

in accordance with the second law of thermodynamics. We also showed how to reinterpret

the relativistic hydrodynamic expansion as certain near-horizon limit.

There are many interesting directions that one may wish to pursue further. Some

of the numerous questions that were raised in [2] have now been addressed, both in the

literature discussed in the introduction, and in the present work. Nonetheless, many inter-

esting questions remain. Perhaps most far-reaching of these are the questions concerning

holography. How concrete can we make this holographic duality? Can we move away from

the hydrodynamic regime? Can we set up holography for general spacetimes by using the

discussion here as a local holographic reconstruction of small neighbourhoods which should

then be patched together to obtain a global description? Answering any of these questions

would be a significant step towards formulating a general theory of holography.
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A Basis of hydrodynamic scalars and vectors

At equilibrium, the long wavelength dynamics of relativistic quantum field theories in flat

spacetime at vanishing charge density can usually be described by a set of fundamental fluid

variables consisting of the energy density ρ, pressure p and the fluid vector ua, constrained

by an equation of state ρ = ρ(p). For many applications it is usually more convenient and

natural to trade the pressure for the temperature T and treat (T, ua) as the fundamental

variables. At non-zero energy density either choice of fundamental variables is equally valid

but the equation of state of the equilibrium fluid dual to vacuum Einstein gravity is ρ = 0.

Conservation of the stress tensor Tab = phab +O(∂) then leads to the incompressible ideal

fluid equations

∂au
a = 0 +O(∂2), aa = −D⊥

a ln p+O(∂2) . (A.1)

The fluid is incompressible at first order in gradients precisely because the equilibrium

energy density is zero. As a consequence, the bases of hydrodynamic scalars and vectors

traditionally used to describe the fluid dynamics at higher orders in gradients, see e.g. [35],
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Order in gradients 0 1

Scalars p D ln p

Vectors orthogonal to ua – Da
⊥ ln p

Symmetric non-isotropic tensors orthogonal to ua – Kab

Table 1. Basis of scalars, vectors and tensors at zeroth and first order in gradients.

are not applicable to this special case. In this appendix we construct a convenient basis

for the hydrodynamics of fluids with zero equilibrium energy density, using (p, ua) as the

fundamental variables, and we provide the relations which can be used to express other

linearly dependent fluid scalars (up to third order in gradients), vectors and tensors (up to

second order in gradients) in terms of this basis.

At zeroth order, there is only one scalar, p, and one vector, ua, along with one symmet-

ric tensor orthogonal to ua, hab ≡ ηab+uaub. At first order in gradients, the scalar ∂au
a, or

equivalently Ka
a, is higher order in gradients due to the incompressibility equation. There-

fore D ln p is the only independent scalar at this order. The vectors orthogonal to ua are the

acceleration aa and the pressure gradient orthogonal to the fluid velocity Da
⊥ ln p. However,

the equations of motion imply that only one of them, which we choose to be Da
⊥ ln p, is

independent. The symmetric tensors orthogonal to ua are Kab and D ln p hab. The latter is

isotropic, i.e., proportional to hab. There is an one-to-one mapping between non-isotropic

symmetric tensors and traceless symmetric tensors. Isotropic symmetric tensors (propor-

tional to hab) may be classified by their multiplicative prefactor. Putting together these

considerations, one can derive a basis for scalars, vectors and tensors up to first order in

gradients, which is summarised in table 1. Dependent scalars and vectors can be expressed

in terms of this basis using the first order equations of motion given in (A.1). Note that

derivatives of the fluid velocity ua can be expressed as

∂aub = Kab +Ωab − uaab . (A.2)

At second order in derivatives, one can use the fluid equations (A.1) and their first

derivative to derive the following relationships:

∂aD
a
⊥ ln p = −KabKab +ΩabΩ

ab +O(∂3), (A.3)

D⊥
a D

a
⊥ ln p = hab∂a∂b ln p+O(∂3) = −KabKab +ΩabΩ

ab + (D⊥ ln p)2 +O(∂3), (A.4)

ucud∂c∂d ln p = DD ln p+ (D⊥ ln p)2 +O(∂3), (A.5)

hca∂bΩ
b
c = hca∂bKb

c + (Kab − Ωab)D
b
⊥ ln p+O(∂3), (A.6)

hcdDKcd = DK = O(∂3), (A.7)

hc(aD
⊥
b)D

⊥
c ln p = hcah

d
b∂c∂d ln p+KabD ln p+O(∂3), (A.8)

∂(aD
⊥
b) ln p = uaub(D⊥ ln p)2 +KabD ln p+ hcah

d
b∂c∂d ln p

+ u(a

(

2(Kb)c +Ωb)c)D
c
⊥ ln p−D⊥

b)D ln p+D⊥
b) ln pD ln p

)

+O(∂3),

(A.9)

hcah
d
bDKcd = −hcah

d
b∂c∂d ln p−KabD ln p+D⊥

a ln pD⊥
b ln p−K c

aKcb − Ω c
a Ωcb

+O(∂3). (A.10)
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Order in gradients 2

Scalars KabKab, ΩabΩ
ab, (D ln p)2, DD ln p, (D⊥ ln p)2

Vectors orthogonal to ua hc
a∂bKb

c, D
⊥
a D ln p, KabD

b
⊥ ln p, ΩabD

b
⊥ ln p, D⊥

a ln pD ln p

Symmetric non-isotropic tensors Kc
aKcb, Kc

(aΩ|c|b), Ω
c

a Ωcb, h
c
ah

d
b∂c∂d ln p, Kab D ln p,

orthogonal to ua D⊥
a ln pD⊥

b ln p

Table 2. Basis of scalars, vectors and tensors at second order in gradients.

Note also the following exact relation

[D,D⊥
a ] = aaD + uaa

bD⊥
b − (Kb

a +Ω b
a )D⊥

b . (A.11)

Taking these relations into account, we can choose as a basis the five scalars and the five

vectors orthogonal to the fluid velocity ua that are indicated in table 2. One also finds six

independent symmetric non-isotropic tensor fields orthogonal to ua. Dependent quantities

may be expressed in terms of this basis using the relationships given above. Our result is

consistent with that of [35]: the number of independent fields at second order coincides

(even though the basis of scalars, vectors and tensors is different).

At third order in gradients, we obtain the following relationships using the fluid equa-

tions (A.1) and their first and second derivatives:

KabDKab = −KabD⊥
a D

⊥
b ln p+KabD⊥

a ln pD⊥
b ln p−Ka

bKb
cKc

a −Ka
bΩ

b
cΩ

c
a

+O(∂4), (A.12)

ΩabDΩab = −ΩabΩ
abD ln p+ 2Ka

bΩ
b
cΩ

c
a +O(∂4), (A.13)

D∂aD
a
⊥ ln p = 2KabD⊥

a D
⊥
b ln p− 2KabD⊥

a ln pD⊥
b ln p+ 2Ka

bKb
cKc

a + 6Ka
bΩ

b
cΩ

c
a

− 2ΩabΩ
abD ln p+O(∂4), (A.14)

Kab∂a∂b ln p = KabD⊥
a D

⊥
b ln p−KabKabD ln p+O(∂4), (A.15)

∂aΩ
a
bD

b
⊥ ln p = ∂aKa

bD
b
⊥ ln p+KabD⊥

a ln pD⊥
b ln p+O(∂4), (A.16)

ΩabD⊥
a D

⊥
b ln p = ΩabΩ

abD ln p+O(∂4), (A.17)

Da
⊥ ln pD⊥

a D ln p = Da
⊥ ln pDD⊥

a ln p+ (D⊥ ln p)2D ln p+KabD⊥
a ln pD⊥

b ln p

+O(∂4), (A.18)

∂aD
a
⊥D ln p = 4KabD⊥

a D
⊥
b ln p−KabD⊥

a ln pD⊥
b ln p+ 2Ka

bKb
cKc

a + 6Ka
bΩ

b
cΩ

c
a

−KabKabD ln p− ΩabΩ
abD ln p+ 3Da

⊥ ln pDD⊥
a ln p

+ (D⊥ ln p)2D ln p+ 2∂aKa
bD

b
⊥ ln p+O(∂4), (A.19)

Db
⊥∂aKa

b = −4Ka
bΩ

b
cΩ

c
a + ∂aKabD⊥

b ln p+KabD⊥
a ln pD⊥

b ln p

+ 3ΩabΩ
abD ln p−KabD⊥

a D
⊥
b ln p+O(∂4). (A.20)
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Order in gradients 3

Scalars KabD⊥
a D

⊥
b ln p, Ka

bKb
cKc

a, Ka
bΩ

b
cΩ

c
a, D ln pΩabΩ

ab, ∂aKa
cD

c
⊥ ln p,

KabD⊥
a ln pD⊥

b ln p, D ln pKabKab, D3 ln p, D2 ln pD ln p, (D ln p)3

(D⊥ ln p)2D ln p, DDa
⊥ ln pD⊥

a ln p

Table 3. Basis of scalars at third order in gradients.

Note that the higher order correction terms to the fluid equations (A.1) only appear at

subleading orders in gradients in these relations. Taking these relations into account, we

may choose a basis of twelve scalars2 at third order, as indicated in table 3.
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