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1 Introduction

Holographic techniques have been used recently in order to understand the strong dynamics

of gauge theories. QCD is one of the obvious targets of such a program, but strongly

coupled gauge theories may also emerge in other contexts, namely in the physics beyond

the Standard model (non-perturbative electroweak symmetry breaking is an example), as

well as in condensed matter contexts.

An interesting mild generalization of QCD, involves SU(Nc) YM coupled to Nf Dirac

fermions transforming in the fundamental representation (that we will still call quarks).

This is a theory, that can be studied in the (Nc, Nf ) plane.
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As usual simplifications arise in the large-Nc limit. The standard ’t Hooft large-Nc

limit, [1], lets Nc → ∞ keeping Nf and λ = g2YMNc finite. In this limit, the effect of

the quarks are suppressed by powers of
Nf

Nc
→ 0, and therefore it corresponds to the

“quenched” limit. In particular interesting dynamical effects as the conformal window,

and exotic phases at finite density, driven by the presence of the quarks are not expected

to be visible in the ’t Hooft large-Nc limit.

In [2] Veneziano introduced an alternative large-Nc limit in which

Nc → ∞ , Nf → ∞ ,
Nf

Nc
= x fixed , λ = g2YMNc fixed (1.1)

in order to make the chiral U(1) anomaly visible to leading order in the 1/Nc expansion.

This is the large-Nc limit we will study in this paper.

There are several interesting issues that are accessible in the Veneziano limit.

• The “conformal window” with an IR fixed point. The window extends from x = 11
2

to smaller values of x, and includes the Banks-Zaks (BZ) weakly-coupled region as

x→ 11
2 [3].

• The phase transition at a critical x = xc from the conformal window to theories with

chiral symmetry breaking in the IR.

• A transition region near and below xc, where the theory is expected to exhibit “walk-

ing behavior”. The theory flows towards the IR fixed point but misses it ending up

with chiral symmetry breaking, so that the coupling constant varies slowly over a

long range of energies.

• New phenomena at finite density, involving color superconductivity [4] and flavor-

color locking [5].

The point x = xc is the point of a quantum phase transition where the theory passes

from an IR Conformal theory (above xc) to a theory with a non-trivial chiral condensate

(below xc). Such transitions were termed conformal phase transitions in [6], and have been

recently argued to be due to the fusion of a UV and IR fixed points [7]. The scaling of the

condensate is similar to that of the 2D Berezinskii-Kosterlitz-Thouless (BKT) transition [8],

and is also known as Miransky scaling, [9]. Several such quantum phase transitions have

been described recently in holographic theories in [10–17].

The location of the lower edge of the conformal window is determined by non-

perturbative dynamics. Several estimates of the value for xc, and for the critical value of Nf

at finite Nc have been put forward by using different methods [18–28], and the boundary

of the conformal window is also being studied actively on the lattice (see, e.g., [29–31]).

The walking region near xc as well as the value of xc, have been of interest for a

while, due to their potential relevance for the realization of walking technicolor, [32–34].

Technicolor has been used as a generic name for non-perturbative electroweak symmetry

breaking mimicking the one induced by QCD, [35–37]. Although non-perturbative effects in

a new strongly coupled gauge theory can induce electroweak symmetry breaking, generating
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the quark and lepton masses is an extra problem. A new interaction (extended technicolor)

is usually invoked to generate the requisite couplings. However their magnitude (and

therefore the Standard model masses) are controlled by the dimension of the scalar operator

that breaks the electroweak symmetry. In free field theory its dimension is 3, as it is a

fermion bilinear. However, for the SM masses to have realistic values the dimension must

be reduced to at least around 2, i.e., the anomalous dimension of the operator should be

at least one. This is indeed expected to be generated by a “walking” theory [18, 19, 38].

Notice that coupling between the technicolor sector and the standard model may decrease

the dimension substantially [39].

There are issues that so far have made such non-perturbative approaches to be in

apparent conflict with data, like the value of the S parameter, [40]. It was argued that

in cases where the strongly coupled theory is near a conformal transition the S-parameter

can be quite different potentially evading the experimental constraints,1 [44].

There have been several bottom-up models of technicolor [45–55], mostly inspired

from the hard wall models for mesons, [56, 57]. Lately there have also been top-down

holographic models of walking behavior, [15, 58–60]. They use several contexts like flavored

MN solutions, [58], D7 −D7 pairs, [60] or D3 −D7 systems, [15].

A theory that can be compared is N = 1 supersymmetric QCD with Nf flavors. The

ground states of this theory have been found by Seiberg, [61–63], and we understand several

issues associated to low energy dynamics, including the Seiberg duality. Such a theory

gives already several important hints on the structure expected in non-supersymmetric

QCD, [64]. Defining again x =
Nf

Nc
, we have the following regimes:

• At x = 0 the theory has confinement, a mass gap and Nc distinct vacua associated

with a spontaneous breaking of the leftover R symmetry ZNc .

• At 0 < x < 1, the theory has a runaway ground state.

• At x = 1, the theory has a quantum moduli space with no singularity. This reflects

confinement with chiral symmetry breaking.

• At x = 1+ 1
Nc

, the moduli space is classical (and singular). The theory confines, but

there is no chiral symmetry breaking.

• At 1+ 2
Nc

< x < 3
2 the theory is in the non-abelian magnetic IR-free phase, with the

magnetic gauge group SU(Nf −Nc) IR free.

• At 3
2 < x < 3, the theory flows to a CFT in the IR. Near x = 3 this is the Banks-Zaks

region where the original theory has an IR fixed point at weak coupling. Moving to

lower values, the coupling of the IR SU(Nc) gauge theory grows. However near x = 3
2

the dual magnetic SU(Nf − Nc) is in its Banks-Zaks region, and provides a weakly

coupled description of the IR fixed point theory.

• At x > 3, the theory is IR free.

1Recent studies that extrapolate from the Banks-Zaks region suggest that the modification of the S-

parameter near the conformal window may be modest, [41–43].
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The region 3
2 < x < 3 is comparable to the conformal window that is expected in (non-

supersymmetric) QCD. Indeed, the IR coupling of the original gauge theory is becoming

stronger as x decreases, but for x above 3/2, a new set of IR states becomes weakly

coupled, namely the magnetic gluons and quarks. These states have been interpreted as

the ρmesons and their supersymmetric avatars, [65]. They are massless and weakly coupled

in this region. The regime 1 + 2
Nc

< x < 3
2 does not seem to have an analogue in QCD.

The IR theory is again an IR non-abelian gauge theory, therefore trivially scale invariant

in the far IR, but also free.

It was suggested already in [66] that the presence of a conformal window in N = 1

supersymmetric QCD is associated with the violation of the Breitenlohner-Freedman (BF)

bound. In [67] a setup reminiscent of the one described here, but simpler was investigated

in section 2. In particular, a non-critical AdS5 solution was found in 5 dimensions in the

presence of backreacting flavorD4−D̄4 branes, and the spectrum of the open string tachyon

fluctuations were analyzed as a function of
Nf

Nc
. However, the model was too simple to have

a violation of the BF bound. A non-trivial solution was found however in 8 dimensions,

using a deformation of the hermitian KKL spaces, [68] generalizing the N=1 example

of [66]. A recent attempt to describe related physics was done in [69].

1.1 Bottom-up models for QCD in the quenched approximation

To construct a bottom-up holographic model for QCD in the Veneziano limit2 we need to

first understand pure YM. The simplest bottom model for pure YM in four dimensions

is the hard-wall model, first introduced in [70]. Despite its simplicity it could capture a

few qualitative features of the strong interaction. More sophisticated models accounted

for the running of the YM coupling constant, incorporating therefore the dilaton into the

gravitational action, [71–74]. By simply adjusting a dilaton potential they could exhibit

many of the properties of large-Nc YM including confinement, a mass gap, asymptotic

linear trajectories and realistic glueball spectra at zero temperature. Moreover they fared

rather well at finite temperature, [75, 76], and after the tuning of two phenomenological

parameters in the dilaton potential,3 [77], they could agree with lattice data both at zero

and finite temperature, [78]. The properties of IHQCD at finite temperature were further

explored in [79, 80]. Alternative Einstein-dilaton models exhibiting a cross-over rather than

a first order deconfining transition, and matching YM finite temperature dynamics were

also developed in [81, 82]. Such bottom up models, were used to compute transport prop-

erties of YM, like the bulk viscosity and the diffusion properties of heavy quarks, [83–85].

Backgrounds having an IR fixed point or a “walking” region, where the system flows close

to an fixed point, were studied within in the IHQCD model in [28, 86–89]. In these studies

the fixed point was introduced via the input β-function, without proper modeling of the

dynamics of the quarks, even though Nf/Nc was large.

To go beyond YM a new ingredient is needed, namely the flavor branes. An important

field in this context is the order parameter for chiral symmetry breaking, dual to a complex

2We will call such a model V-QCD from now on.
3The bottom-up Einstein-dilaton model for large-Nc YM was termed Improved Holographic QCD

(IHQCD).
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bifundamental field T . In the hard wall [56, 57] and soft wall [90] models for mesons, such

a field was added using a quadratic action, and chiral symmetry breaking proceeded by

giving to such a field a vev by hand.

In [91] it was remarked that as the flavor sector of gauge theories in string theory arises

from D-brane-antibrane pairs, the bifundamental field T could be naturally be identified

with the brane-antibrane tachyon field that had been studied profusely (around flat space)

in string theory by Sen and others, [92]. The non-linear action proposed by Sen, [93] could

be therefore used as a well-motivated starting point in order to study the holographic

dynamics of chiral symmetry breaking. Several general features of this approach were

explored in [91],

• Chiral symmetry breaking is dynamical and is induced/controlled by the tachyon

Dirac-Born-Infeld (DBI) action.

• Confining asymptotics of the geometry were shown to trigger chiral symmetry break-

ing.

• A Gell-Mann-Oakes-Renner relation is generically satisfied.

• The Sen DBI tachyon action induces linear Regge trajectories or mesons.

• The Wess-Zumino (WZ) terms of the tachyon action, computed in string the-

ory [94]–[96], produce the appropriate flavor anomalies, include the axial U(1)

anomaly and η′-mixing, and implement a holographic version of the Coleman-

Witten theorem.

In the context above, the analysis was done in the quenched approximation: the flavor

sector does not backreact on the metric and dilaton. Similar results were also obtained by

considering tachyon condensation in the Sakai-Sugimoto model [97–100].

In [101, 102] an implementation of these ideas was performed by choosing a concrete

confining background, that is simple and asymptotically AdS. This was the Kuperstein-

Sonnenschein background, [103], with a constant dilaton and an AdS6 soliton. In this

background the tachyon DBI action was analyzed with the following results

• The model incorporates confinement in the sense that the quark-antiquark potential

computed with the usual AdS/CFT prescription confines. Moreover, magnetic quarks

are screened.

• The string theory nature of the bulk fields dual to the quark bilinear currents is

readily identified: they are low-lying modes living in a brane-antibrane pair.

• Chiral symmetry breaking is realized dynamically and consistently, because of the

tachyon dynamics. The dynamics determines the chiral condensate uniquely as a

function of the bare quark mass. It is interesting to note what the “regularity”

conditions are for the tachyon that determine the vev (chiral condensate) as a function

of the source (bare quark mass). By varying the condensate, the solutions for the

tachyon fall into three classes: (a) a two-parameter family of solutions that start at
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the UV and where the tachyon derivative diverges at a finite radial direction (where

the tachyon remains finite), (b) a two-parameter family of solutions where the tachyon

remains finite in the far IR, and (c) a one parameter family of solutions, in between

(a) and (b), where the tachyon diverges in the IR (and therefore reaches its ground

state). Only the solutions of the family (c) are regular, and their single parameter

can be mapped to the UV mass parameter.

• The mass of the ρ-meson grows with increasing quark mass, or, more physically, with

increasing pion mass.

• By adjusting the same parameters as in QCD (ΛQCD, mud) a good fit can be obtained

of the light meson masses.

1.2 Holographic models in the Veneziano limit

To construct V-QCD we will put together the experience from IHQCD and the tachyon

implementation in the quenched approximation. Putting the two together we will see

that, under reasonable assumptions, we obtain a phase diagram which is qualitatively

in agreement with what to expect from QCD in the Veneziano limit. Moreover we will

verify that changes of the bulk tachyon and dilaton potentials that are mild give the same

qualitative physics. In this sense we can state confidence in our results.

The bulk action we will consider is

S = Sg + Sf , Sg =M3N2
c

∫

d5x
√
g

[

R− 4

3

(∂λ)2

λ2
+ Vg(λ)

]

(1.2)

with λ the ’t Hooft coupling (exponential of the dilaton φ) and the flavor action is

Sf = −xM3N2
c

∫

d5x Vf (λ, T )
√

det(gµν + h(λ)∂µT∂νT †) . (1.3)

To find the vacuum (saddle point) solution we must set the gauge fields AL,R
µ to zero, as

they are not expected to have vacuum expectation values at zero density. We also take the

tachyon field T to be diagonal and suppressed the WZ terms as they also do not contribute

to the vacuum solution.

The pure glue potential Vg has been determined from previous studies, [77] and we

will use the same here. The tachyon potential Vf (λ, T ) must satisfy some basic properties,

that are determined by the dual theory or general properties of tachyons in string theory:

(a) To provide the proper dimension for the dual operator near the boundary (b) To

exponentially vanish like log Vf ∼ −T 2 + · · · for T → ∞. The function h(λ) captures the

transformation from the string frame to the Einstein frame in five dimensions and will be

chosen appropriately.

As with IHQCD, we will arrange that the theory is logarithmically asymptotically

AdS, and will implement the two-loop β-function plus one-loop anomalous dimension for

the chiral condensate. Although the geometrical picture is not expected to be reliable

near the boundary, the renormalization group (RG) flows that emerge are reliable at least

in the IR. The UV boundary conditions we choose can be thought of as a convenient way
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of anchoring the theory in UV. We can always define a finite cutoff and evolve the theory

from there in the IR.

We first analyze the fixed points of the bulk theory. Choosing a potential that imple-

ments the Banks-Zaks fixed point, its presence exists for a range of the parameter x. We

will make choices where this is the whole range: 0 < x < 11
2 . In such a fixed point the dila-

ton is constant and the tachyon vanishes identically. We have also checked that choices of

potential for which the fixed point exists for x∗ < x < 11
2 , have qualitatively similar physics.

We define appropriate β-functions for the YM coupling and the quark mass. We then

rewrite the equations following [71–73] as first order equations that specify the flow of

the couplings, as well as non-linear first order equations that determine the β-functions in

terms of the potentials that appear in the bulk action (1.2), (1.3).

We can calculate the dimension of the chiral condensate in the IR fixed point theory

from the bulk equations. We find that it decreases monotonically with x for reasonably

chosen potentials. It crosses the value 2 at x = xc where xc corresponds to the end of the

conformal window as argued in [7]. We make the following observations which are relevant

for technicolor studies:

• The lower edge of the conformal window xc lies in the vicinity of 4. Requiring the

holographic β-functions to match with QCD in the UV, we find that quite in general

3.7 . xc . 4.2 (1.4)

which is in good agreement with other estimates [18–28].

• The fact that the dimension of the chiral condensate at the IR fixed point approaches

two (and the anomalous dimension approaches unity) as x → xc is in line with the

standard expectation from field theory approaches [18, 19, 38]. It is also to a large

extent independent of the details of the model.

It is important to stress that in the full analysis of this paper, the backreaction of the

flavor sector on the glue sector is fully included. This is very important for the “walking”

region, in the vicinity of x = 4, where we expect the backreaction to be important. Indeed

we do not expect to see a Conformal Phase Transition in the quenched limit of QCD.

Apart from x, there is a single parameter in the theory, namely m
ΛQCD

where m is the

UV value of the (common) quark mass. For each value of x, we solve the bulk equations

with fixed sources corresponding to fixed m,ΛQCD, and determine the vevs so that the

solution is “regular” in the IR. The notion of regularity is tricky even in the case of

IHQCD (pure glue), as there is a naked singularity in the far IR. For the dilaton this has

been resolved in [71–73, 76]. For the tachyon the notion of regularity is different and has

been studied in detail in [101, 102].

Implementing the regularity condition in the IR and solving the equations from the

IR to the UV (this has been done mostly numerically), there is a single parameter that

determines the solutions as well as the UV coupling constants and vevs, and this is the

a real number T0 controlling the value of the Tachyon in the IR. This reflects the single

dimensionless parameter m
ΛQCD

of the theory.

For different values of x and m we find the following qualitatively different regions:

– 7 –
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• When xc ≤ x < 11/2 and m = 0, the theory flows to an IR fixed point. The IR

CFT is weakly coupled near x = 11
2 and strongly coupled in the vicinity of xc. Chiral

symmetry is unbroken in this regime (this is known as the conformal window).

• When xc ≤ x < 11/2 and m 6= 0, the tachyon has a non-trivial profile, and there is

a single solution with the given source, which is “regular” in the IR.

• When 0 < x < xc and m = 0, there is an infinite number of regular solutions

with non-trivial tachyon profile, and a special solution with an identically vanishing

tachyon and an IR fixed point.

• When 0 < x < xc and m 6= 0, the theory has vacua with nontrivial profile for the

tachyon. For every non-zero m, there is a finite number of regular solutions that

grows as m approaches zero.

In the region x < xc where several solutions exist, there is a interesting relation between

the IR value T0 controlling the regular solutions, and the UV parameters, namely m. This

is determined numerically, and a relevant plot describing the relation between m and T0
at fixed x is in figure 6 (left). As m and −m are related by a chiral rotation by π, we can

take m ≥ 0.

The solutions are characterized by the number of times n the tachyon field changes

sign as it evolves from the UV to the IR. For all values of m there is a single solution

with no tachyon zeroes. In addition, for each positive n there are two solutions which exist

within a finite range 0 < m < mn, where the limiting value mn decreases with increasing

n, and one solution for m = 0. In particular, for large enough fixed m, we find that only

the solution without tachyon zeroes exists.

For m 6= 0, out of all regular solutions, the “first” one without tachyon zeroes has the

smallest free energy. The same is true for m = 0, namely the solution with non-trivial

tachyon without zeroes is energetically favored over the solutions with positive n as well

as over the special solution with identically vanishing tachyon, which appears only for

m = 0 and would leave chiral symmetry unbroken. Therefore, chiral symmetry is broken

for x < xc.

The multiplicity of regular solutions is closely related to the regime where the IR

dimension of the chiral condensate is smaller than 2, and the associated Efimov vacua.

They seem to be associated with the fixed point theory that here exists for all values of

x but is not reachable by flowing from the UV of QCD for x < xc. On the other hand,

the presence of a fixed-point theory in the landscape of possible theories does not seem

necessary for the appearance of multiple saddle points. Indeed, in [101, 102] which employed

the quenched approximation and where no such fixed points exist, a second saddle point

was found that provided a regular tachyon solution. It was verified however that this second

saddle point was perturbatively unstable as meson fluctuations were tachyonic.

In the region just below xc we find Miransky or BKT scaling for the chiral condensate.

As x→ xc, we obtain

σ ∼ Λ3
QCD exp

(

− 2K̂√
xc − x

)

. (1.5)
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For x ≥ xc, let mIR(x) be the mass of the tachyon at the IR fixed point and ℓIR(x) the IR

AdS radius. The coefficient K̂ is then fixed as

K̂ =
π

√

d
dx

[

m2
IRℓ

2
IR

]

x=xc

. (1.6)

We stress that the behavior at and below the BKT transition is to a large extent

independent of the details of the model. In particular, we do not need any information on

the nonlinear terms in the tachyon EoM and on how the IR boundary conditions are fixed.

The construction of the holographic V-QCD model opens the road for addressing

several interesting questions.

1. The calculation of the spectrum of mesons and glueballs. This is in principle a

straightforward albeit tedious exercise, [104]. In the Veneziano limit, mixing is ex-

pected between glueballs and mesons to leading order in 1/Nc. This will affect the

0++ glueball that will mix with the 0++ flavor-singlet σ-mesons. On the other hand

the 2++ glueballs, the 1−− and 1++ vector mesons and the 0+− mesons do not mix,

with the exception of the flavor singlet 0+− meson (analogous to η′) that will mix with

the 0+− glueball due to the axial anomaly. A particularly interesting question here is

the behavior of the mass of the lightest 0++ state (the technidilaton, [105]) as x→ xc.

2. The structure and phase diagram of the theory at finite temperature, [106]. In

the quenched approximation [101, 102] the restoration of chiral symmetry was seen

above the (first order) deconfinement transition. The expected structure is not clear

here and several options exist.

3. The calculation of the energy loss of heavy quarks in a quark-gluon plasma with

non-negligible percentage of quarks.

4. The construction of the baryon states in this theory and the calculation of their

properties.

5. The structure of the phase diagram at finite density and the search for exotic phases

namely color superconductivity and color-flavor locking.

It is plausible that the setup may provide a model for high-Tc superconductors by

interpreting the x parameter as a “doping” parameter. The reason is that x controls the

IR dimension of the “Cooper pair” associated with a quark-antiquark boundstate, charged

under the axial charge. As x decreases, the IR dimension of this operator decreases, and

the bound state becomes more and more deeply bound. At x = xc, there is an onset of

“axial” superconductivity (at zero temperature), that persists down to x = 0.

At finite temperature, this picture suggests that the system might resemble the over-

doped regime of strange metals, with x = xc the start of the superconduction dome and

x = 0 the optimal doping. The connection between the value of x and doping in real

systems may not be so far fetched as the changes in the system associated with the change

of carriers, is accompanied by a change in the effective number of flavors of strongly inter-

acting effective degrees of freedom.
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The structure of this paper is as follows. In section 2 we give a brief review on QCD in

the Veneziano limit and its phase structure. In section 3 we review the IHQCD model, and

discuss the earlier results on mass spectra and the phase structure at finite temperature.

Adding the flavor branes is discussed in detail in section 4. The V-QCD model is finally

introduced in section 5. Analysis of the model is started by studying the fixed points in

section 6. We go on transforming the equations of motion (EoMs) to equations for the

holographic β-functions, and discuss their UV/IR asymptotics and solutions in section 7.

In section 8 we analyze the background, in particular how the UV expansions map to

perturbation theory of QCD, and where the edge of the conformal window appears. We

also construct and present the numerical solutions for the background in the physically in-

teresting regions. In section 9 we find the vacua with lowest free energy and check that they

support the expected phase diagram. In section 10 we study the system near but below the

conformal window, and show that the chiral condensate, as well as many other observables,

obey the BKT scaling law. In particular, we check the scaling by comparing numerical

results to formulas, that are derived analytically. Finally, we conclude and summarize the

main results in section 11. Technical details are presented in appendices A–H.

2 QCD in the Veneziano limit

The conventional large-Nc limit of QCD involves a large number of colors Nc → ∞, but

a fixed number of flavors, Nf → finite, [1]. In this limit, fermion loops are suppressed,

and the dominant diagrams are classified by the genus of the associated Riemann surface.

Fundamentals (quarks) are associated with open strings and boundaries, and the number

of flavors is measuring the Chan-Paton factors of the open strings.

There is an alternative large-Nc in QCD, in which

Nc → ∞ , Nf → ∞ ,
Nf

Nc
= x fixed (2.1)

This was first introduced by Veneziano in [2] in order to have the QCD axial anomaly, of

order O(NcNf ) appear in the leading order in the large-Nc expansion.

This alternative large-Nc limit is very interesting in order to preserve important effects

due to quarks. In the conventional ’t Hooft limit such effects are subleading, and this is

known as the quenched limit for flavor. Many efforts have been made in the last few years

to consider unquenched flavor, in order to estimate the contribution of quarks to the physics

of the quark-gluon plasma. Such efforts are summarized in the recent review, [107].

The following effects are not easily visible in the conventional ’t Hooft limit:

• The “conformal window” with a non-trivial fixed point, that extends from x = 11
2 to

smaller values of x. The region x→ 11
2 has an IR fixed point while the theory is still

weakly coupled, as was analyzed by Banks and Zaks, [3].

• It is expected that at critical xc, the conformal window will end, and for x < xc, the

theory will exhibit chiral symmetry breaking in the IR. This behavior is expected to

persist down to x = 0. Above x > xc the IR theory is CFT, at strong coupling that

progressively becomes weak as x→ 11
2 .
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• Near and below xc, there is the transition region to conventional QCD IR behavior.

In this region the theory is expected to be “walking”, so that the theory flows towards

the IR fixed point but misses it ending up with chiral symmetry breaking. But the

approach to the fixed point involves a slow variation of the YM coupling constant for

a long range of energies. This has been correlated with a nontrivial dimension for

the quark mass operator near two, rather than three (the free field value).

• The existence of this “walking” region makes the theory extremely interesting for

applications to strong-couplings solutions to the hierarchy problem (technicolor).

• New phenomena are expected to appear at finite density driven by strong coupling

and the presence of quarks. These involve color superconductivity [4] and flavor-color

locking [5].

To discuss the structure expected as a function of the finite ratio x, defined in (2.1)

we write the two-loop QCD β-function. With Nf (non-chiral) flavors in the fundamental,

the β-function reads

β(g) = − g3

(4π)2

{

11

3
Nc −

2

3
Nf

}

− g5

(4π)4

{

34

3
N2

c − Nf

Nc

[

13

3
N2

c − 1

]}

+ · · · (2.2)

Using the ’t Hooft coupling, and setting
Nf

Nc
→ x we obtain

λ ≡ g2Nc , λ̇ = −b0λ2 + b1λ
3 +O(λ4) (2.3)

with

b0 =
2

3

(11− 2x)

(4π)2
,

b1
b20

= −3

2

(34− 13x)

(11− 2x)2
. (2.4)

The Banks-Zaks region is x = 11/2− ǫ with ǫ≪ 1 and positive, [3]. We obtain a fixed

point of the β-function at

λ∗ =
(8π)2

75
ǫ (2.5)

which is trustable in perturbation theory, as λ∗ can be made arbitrarily small.

The infrared fixed point has properties that are computable in perturbation theory.

In particular the low-lying operators consist of the conserved stress tensor, Tr[F 2] that is

now slightly irrelevant, and the L,R currents that are still conserved with the exception of

the U(1) axial current that its conservation is broken by the anomaly.

The mass operator, ψ̄LψR has now dimension slightly smaller than three, as attested

by its perturbative anomalous dimension

− d logm

d logµ
≡ γ =

a0
4π
g2 +

a1
(4π)2

g4 + · · · (2.6)

a0 =
3

4π

N2
c − 1

Nc
, a1 =

1

2 (4π)2

[

3
(N2

c − 1)2

2N2
c

− 10

3

N2
c − 1

Nc
Nf +

97

3
(N2

c − 1)

]

. (2.7)

At large Nc this becomes

γ ≃ 3

(4π)2
λ+

(203− 10x)

12 (4π)4
λ2 +O(λ3, N−2

c ) . (2.8)
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One can still perturb this theory by the U(Nc)-invariant mass operator (assuming all

quarks have the same mass), and the theory is expected now to flow to the trivial (QCD-

like) theory in the IR.

It is believed that there is also a value xc with 0 < xc <
11
2 so that for x < xc the

theory flows to a trivial theory (with a mass gap) in the IR, with chiral symmetry breaking

and physics isomorphic to that of standard YM. For 11
2 > x > xc, the theory is expected to

flow to a non-trivial IR fixed point, and chiral symmetry to remain unbroken, as happens in

the BZ region. Generically, the IR theory is strongly coupled except in the region x→ 11
2

where the fixed point theory is weakly coupled (Banks-Zaks fixed point). For x > 11
2 the

theory is IR free.

3 A step back: bottom-up models for large-Nc YM

The holographic dual of large Nc Yang-Mills theory, proposed in [71–73], is based on a

five-dimensional Einstein-dilaton model, with the action:4

S5 = −M3
pN

2
c

∫

d5x
√
g

[

R− 4

3
(∂Φ)2 + V (Φ)

]

+ 2M3
pN

2
c

∫

∂M
d4x

√
h K. (3.1)

Here, Mp is the five-dimensional Planck scale and Nc is the number of colors. The last

term is the Gibbons-Hawking term, with K being the extrinsic curvature of the boundary.

The effective five-dimensional Newton constant is G5 = 1/(16πM3
pN

2
c ), and it is small in

the large-Nc limit.

Of the 5D coordinates {xi, r}i=0...3, xi are identified with the 4D space-time coordi-

nates, whereas the radial coordinate r roughly corresponds to the 4D RG scale. We identify

λ ≡ eΦ with the running ’t Hooft coupling λt ≡ Ncg
2
YM, up to an a priori unknown multi-

plicative factor,5 λ = κλt.

The dynamics is encoded in the dilaton potential,6 V (λ). The small-λ and large-

λ asymptotics of V (λ) determine the solution in the UV and the IR of the geometry

respectively. For a detailed but concise description of the UV and IR properties of the

solutions the reader is referred to section 2 of [76]. Here we will only mention the most

relevant information:

1. For small λ, V (λ) is required to have a power-law expansion of the form:

V (λ) ∼ 12

ℓ2
(1 + v1λ+ v2λ

2 + . . .), λ→ 0 . (3.2)

The value at λ = 0 is constrained to be finite and positive, and sets the UV AdS scale

ℓ. The coefficients of the other terms in the expansion fix the β-function coefficients

4Similar models of Einstein-dilaton gravity were proposed independently in [81, 82] to describe the finite

temperature physics of large Nc YM. They differ in the UV as the dilaton corresponds to a relevant operator

instead of the marginal case we study here. The gauge coupling eΦ also asymptotes to a constant instead

of zero in such models.
5This relation is well motivated in the UV, although it may be modified at strong coupling (see [71–73]).

The quantities we will calculate do not depend on the explicit relation between λ and λt.
6With a slight abuse of notation we will denote V (λ) the function V (Φ) expressed as a function of λ ≡ eΦ.
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IHQCD Nc = 3 Nc = ∞
m0∗++/m0++ 1.61 1.56(11) 1.90(17)

m2++/m0++ 1.36 1.40(4) 1.46(11)

Table 1. Glueball masses.

for the running coupling λ(E). If we identify the energy scale with the metric scale

factor in the Einstein frame, denoted by eA below, we obtain [71–73]:

β(λ) ≡ dλ

d logE
= −b0λ2 + b1λ

3 + . . . , b0 =
9

8
v1, b1 = −9

4
v2 +

207

256
v21 . (3.3)

2. For large λ, confinement and the absence of bad singularities7 require:

V (λ) ∼ λ2Q(log λ)P λ→ ∞,

{

2/3 < Q < 2
√
2/3, P arbitrary

Q = 2/3, P ≥ 0
. (3.4)

In particular, the values Q = 2/3, P = 1/2 reproduce an asymptotically-linear glue-

ball spectrum, m2
n ∼ n, besides confinement. We will restrict ourselves to this case

in what follows.

In [71–73], the single phenomenological parameters of the potential was fixed by look-

ing at the zero-temperature spectrum, i.e. by computing various glueball mass ratios and

comparing them to the corresponding lattice results. The masses are computed by deriv-

ing the effective action for the quadratic fluctuations around the background, [110] and

subsequently reducing the dynamics to four dimensions.

The glueball spectrum is obtained holographically as the spectrum of normalizable

fluctuations around the zero-temperature background. In IHQCD the relevant fields are

the 5D metric, one scalar field (the dilaton), and one pseudoscalar field (the axion that

is subleading in Nc). As a consequence, the only normalizable fluctuations above the

vacuum correspond to spin 0 and spin 2 glueballs (more precisely, states with JPC =

0++, 0−+, 2++), each species containing an infinite discrete tower of excited states.

We only compare the mass spectrum obtained in our model to the lattice results for

the lowest 0++, 0−+, 2++ glueballs and their available excited states. These are limited to

one for each spin 0 species, and none for the spin 2, in the study of [111, 112], which is the

one we use for our comparison. This provides two mass ratios in the CP-even sector and

two in the CP-odd sector.

The glueball masses are computed by first solving numerically Einstein’s equations,

and using the resulting metric and dilaton to setup an analogous Schrödinger problem for

the fluctuations, [71–73]. The results for the parity-conserving sector are shown in table 1,

and are in good agreement with lattice data for Nc = 3.

7For a description of the notion of “bad versus good singularities” and their resolution the reader is

referred to [108, 109].
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Unlike the various mass ratios, the value of any given mass in AdS-length units (e.g.

m0++ℓ) does depend on the choice of integration constants in the UV. Therefore its nu-

merical value does not have an intrinsic meaning. However it can be used as a benchmark

against which all other dimension-full quantities can be measured (provided one always

uses the same UV boundary conditions). On the other hand, given a fixed set of initial

conditions, asking that m0++ matches the physical value (in MeV) obtained on the lattice,

fixes the value of ℓ hence the energy unit.

The holographic renormalization of such Einstein-dilaton theories is quite intricate as

the AdS boundary conditions on the dilaton is unusual (φ → −∞ near the boundary). It

has been derived recently in [113].

3.1 Finite temperature

In the large Nc limit, the canonical ensemble partition function of the model just described,

can be approximated by a sum over saddle points, each given by a classical solution of the

Einstein-dilaton field equations:

Z(β) ≃ e−S1(β) + e−S2(β) + . . . (3.5)

where Si are the euclidean actions evaluated on each classical solution with a fixed temper-

ature T = 1/β, i.e. with euclidean time compactified on a circle of length β. There are two

possible types of Euclidean solutions which preserve 3-dimensional rotational invariance.

In conformal coordinates these are:

1. Thermal gas solution,

ds2 = b2o(r)
(

dr2 + dt2 + dxmdx
m
)

, Φ = Φo(r), (3.6)

with r ∈ (0,∞) for the values of P and Q we are using;

2. Black-hole solutions,

ds2 = b(r)2
[

dr2

f(r)
+ f(r)dt2 + dxmdx

m

]

, Φ = Φ(r), (3.7)

with r ∈ (0, rh), such that f(0) = 1, and f(rh) = 0.

In both cases Euclidean time is periodic with period βo and β respectively for the thermal

gas and black-hole solution, and 3-space is taken to be a torus with volume V3o and V3
respectively, so that the black-hole mass and entropy are finite.8

The black holes are dual to a deconfined phase, since the string tension vanishes at the

horizon, and the Polyakov loop has non-vanishing expectation value. On the other hand,

the thermal gas background is confining.

8The periods and 3-space volumes of the thermal gas solution are related to the black-hole solution values

by requiring that the geometry of the two solutions are the same on the (regulated) boundary. See [76]

for details.
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The thermodynamics of the deconfined phase is dual to the 5D black-hole thermody-

namics. The free energy, defined as

F = E − TS, (3.8)

is identified with the black-hole on-shell action; as usual, the energy E and entropy S

are identified with the black-hole mass, and one fourth of the horizon area in Planck

units, respectively.

The thermal gas and black-hole solutions with the same temperature differ at O(r4):

b(r) = bo(r)

[

1 + G r
4

ℓ3
+ . . .

]

, f(r) = 1− C

4

r4

ℓ3
+ . . . r → 0, (3.9)

where G and C are constants with units of energy. As shown in [76] they are related to the

enthalpy TS and the gluon condensate 〈trF 2〉:

C =
TS

M3
pN

2
c V3

, G =
22

3(4π)2
〈tr F 2〉T − 〈tr F 2〉o

240M3
pN

2
c

. (3.10)

Although they appear as coefficients in the UV expansion, C and G are determined by

regularity at the black-hole horizon. For T and S the relation is the usual one,

T = − ḟ(rh)
4π

, S =
Area

4G5
= 4π (M3

pN
2
c V3) b

3(rh). (3.11)

For G the relation with the horizon quantities is more complicated and cannot be put in a

simple analytic form. However, as discussed in [75], for each temperature there exist only

specific values of G (each corresponding to a different black hole) such that the horizon

is regular.

At any given temperature there can be one or more solutions: the thermal gas is always

present, and there can be different black holes with the same temperature. The solution

that dominates the partition function at a certain T is the one with smallest free energy.

The free energy difference between the black hole and thermal gas was calculated in [75]

to be: F
M3

pN
2
c V3

=
FBH −Fth

M3
pN

2
c V3

= 15G − C

4
. (3.12)

For a dilaton potential corresponding to a confining theory, like the one we will assume,

the phase structure is the following [75]:

1. There exists a minimum temperature Tmin below which the only solution is the ther-

mal gas.

2. Two branches of black holes (“large” and “small”) appear for T ≥ Tmin, but the

ensemble is still dominated by the confined phase up to a temperature Tc > Tmin

3. At T = Tc there is a first order phase transition to the large black-hole phase. The

system remains in the black-hole (deconfined) phase for all T > Tc.

The holographic mode has also been confronted successfully with recent lattice data [78]

at finite temperature, [77].
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4 Adding flavor

A number Nf of quark flavors can be included in our setup by adding space-time filling

“flavor-branes”. In this case they are pairs of space-filling D4 −D4 branes.

To motivate the setup it is important to revisit the low-dimension operators (dimen-

sion=3) in the flavor sector and their realization in string theory. At the spin-zero level we

have the (complex) mass operator

ψ̄i
Rψ

j
L ↔ Tij (4.1)

dual to a complex scalar transforming as (Nf , N̄f ) under the flavor symmetry U(Nf )R ×
U(Nf )L. At the spin-one level we have the two classically conserved currents

ψ̄i
Lσ

µψj
L ↔ Aµ

L,ij , ψ̄i
Rσ̄

µψj
R ↔ Aµ

R,ij (4.2)

They transform in the adjoint of the U(Nf )R respectively the U(Nf )L symmetry. The

flavor symmetry is expected to arise in string theory from Nf flavor branes (R) and Nf

flavor antibranes (L). Due to the quantum numbers, the vectors are the lowest modes of

the fluctuations of the open strings with both ends on the D branes (Aµ
R), or the anti-D

branes, Aµ
L.

The bifundamental scalar T , on the other hand, is the lowest mode of the D − D̄

strings, compatible with its quantum numbers. Its holographic dynamics is dual to the

dynamics of the chiral condensate. This is precisely the scalar that in a brane-antibrane

system in flat space is the tachyon whose dynamics has been studied profusely in string

theory, [93]. It has been proposed that the non-linear DBI-like actions proposed by Sen and

others are the proper setup in order to study the holographic dynamics of chiral symmetry

breaking, [91]. This dynamics was analyzed in a toy example, [101, 102], improving several

aspects of the hard [56, 57], and soft wall models, [90]. We will keep referring to T as the

“tachyon”, as it indeed corresponds to a relevant operator in the UV.

The tachyon dynamics is captured holographically by the open string DBI+WZ action,

which schematically reads, in the string frame,

S[T,AL, AR] = SDBI + SWZ (4.3)

where the DBI action for the D − D̄ pair is

SDBI =

∫

drd4x
Nc

λ
Str

[

V (T )

(

√

− det
(

gµν +D{µT †Dν}T + FL
µν

)

+ (4.4)

+
√

− det
(

gµν +D{µT †Dν}T + FR
µν

)

)]

Here T is the tachyon, a complex Nf ×Nf matrix. AL,R
µ are the world-volume gauge fields

of the U(Nf )L ×U(Nf )R flavor symmetry, under which the tachyon is transforming as the

(Nf , N̄f ), a fact reflected in the presence of the covariant derivatives9

DµT ≡ ∂µT − iTAL
µ + iAR

µT , DµT
† ≡ ∂µT

† − iAL
µT

† + iT †AR
µ (4.5)

9We are using the conventions of [91].
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transforming covariantly under

T → VRTV
†
L , AL → VL(A

L − iV †
LdVL)V

†
L , AR → VR(A

R − iV †
RdVR)V

†
R (4.6)

as well as the field strengths FL,R = dAL,R − iAL,R ∧ AL,R of the AL,R gauge fields.

λ ≡ eΦ = Nce
φ is as usual the ’t Hooft coupling. We have also used the symmetric trace

(≡ Str) prescription although higher order terms of the non-abelian DBI action are not

known. It turns out that such a prescription is not relevant for the vacuum structure in

the flavor sector (as determined by the classical solution of the tachyon) neither for the

mass spectrum. The reason is that we may treat the light quark masses as equal to the

first approximation and then in the vacuum, T = τ1 with τ real, and this is insensitive

to non-abelian ramifications. Expanding around this solution, the non-abelian ambiguities

in the higher order terms do not enter at quadratic order. Therefore, for the spectrum we

might as well replace Str → Tr.

The WZ action on the other hand is given by:10

SWZ = T4

∫

M5

C ∧ str exp
[

i2πα′F
]

(4.7)

where M5 is the world-volume of the D4 -D4 branes that coincides with the full space-time.

Here, C is a formal sum of the RR potentials C =
∑

n(−i)
5−n
2 Cn, and F is the curvature of

a superconnection A. Note also that str in (4.7) stands for supertrace and not symmetric

trace. It acts on the space of D and D̄ branes and is defined in appendix C of [91].

In terms of the tachyon field matrix T and the gauge fields AL and AR living respec-

tively on the branes and antibranes, they are (We will set 2πα′ = 1 and use the notation

of [95]):

iA =

(

iAL T †

T iAR

)

, iF =

(

iFL − T †T DT †

DT iFR − TT †

)

(4.8)

The curvature of the superconnection is defined as:

F = dA− iA ∧A , dF − iA ∧ F + iF ∧A = 0 (4.9)

Note that under (flavor) gauge transformation it transforms homogeneously

F →
(

VL 0

0 VR

)

F
(

V †
L 0

0 V †
R

)

(4.10)

In [91] the relevant definitions and properties of this supermatrix formalism can be found.

By expanding we obtain

SWZ = T4

∫

C5 ∧ Z0 + C3 ∧ Z2 + C1 ∧ Z4 + C−1 ∧ Z6 (4.11)

where Z2n are appropriate forms coming from the expansion of the exponential of the

superconnection. In particular, Z0 = 0, signaling the global cancelation of 4-brane charge,

10This expression was proposed in [94] and proved in [95, 96] using boundary string field theory.
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which is equivalent to the cancelation of the gauge anomaly in QCD. Further, as was

shown in [91]

Z2 = dΩ1 , Ω1 = istr(V (T †T ))Tr(AL −AR)− log det(T )d(StrV (T †T )) (4.12)

This term provides the Stuckelberg mixing between Tr[AL
µ −AR

µ ] and the QCD axion that

is dual to C3. Unlike the ’t Hooft limit, in the Veneziano limit this mixing happens at

leading order in 1/Nc, [2]. Dualizing the full action we obtain

SCP−odd =
M3

2N2
c

∫

d5x
√
gZ(λ) (∂a+ iΩ1)

2

=
M3

2N2
c

∫

d5x
√
gZ(λ)

(

∂µa+ xζ∂µV (τ)− xV (τ)AA
µ

)2
(4.13)

with

ζ =
1

Nf
Im log detT , AL −AR ≡ 1

2Nf
AAII + (Aa

L −Aa
R)λ

a (4.14)

and where we have set the tachyon to its vev T = τ1 . This term is invariant under the

U(1)A transformations

ζ → ζ + ǫ , AA
µ → AA

µ − ∂µǫ , a→ a− xǫV (τ) (4.15)

reflecting the QCD U(1)A anomaly. It is this Stuckelberg term together with the kinetic

term of the tachyon field that is responsible for the mixing between the QCD axion and the

η′. In terms of degrees of freedom, we have two scalars a, ζ and an (axial) vector, AA
µ . We

can use gauge invariance to remove the longitudinal components of AA. Then an appropri-

ate linear combination of the two scalars will become the 0−+ glueball field while the other

will be the η′. The transverse (5D) vector will provide the tower of U(1)A vector mesons.

The next term in the WZ expansion couples the baryon density to a one-form RR field

C1. There is no known operator expected to be dual to this bulk form. However its presence

and coupling to baryon density can be understood as follows. Before decoupling the Nc D3

branes, its dual form C2 couples to the U(1)B on theD3 branes via the standard C2∧FB WZ

coupling. This is dual to a free field, the doubleton, living only at the boundary of the bulk.

Once we add the probe D4+D̄4 branes the free field is now a linear combination of AB and

an Nf/Nc admixture of AV originating on the flavor branes. The orthogonal combination

is the baryon number current on the flavor branes and it naturally couples to C1. Therefore

the C1 field is expected to be dual to the topological baryon current at the boundary.

Finally the form of the last term requires some explanation. By writing Z6 = dΩ5 we

may rewrite this term as
∫

F0 ∧ Ω5 , F0 = dC−1 (4.16)

F0 ∼ Nc is nothing else but the dual of the five-form field strength. This term then provides

the correct Chern-Simons form that reproduces the flavor anomalies of QCD. Its explicit

form in terms of the gauge fields AL,R and the tachyon was given in equation (3.13) in [91].

The action as described is based on the flat space Sen action for the D − D̄ brane-

antibrane system. In the presence of curvature and other non-trivial background fields,
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like the dilaton we expect corrections to the DBI action. Such corrections may affect the

tachyon potential as well as the kinetic terms of the vectors and the tachyon.

However it should be stressed that as shown in [71–73], the glue backgrounds that are

describing YM are asymptotically flat in the IR in the string frame. As the Sen action

is naturally written in the string frame, the flat space results can be used to describe the

asymptotics. Of course here the dilaton is running unlike the flat space case. However

we expect that as it happens for the standard string effective action, higher-derivative

corrections of the dilaton can be redefined away. Therefore, it is only the integrating out of

the non-propagating four-form that will introduce unusual dilaton potential dependence.

This is the reason that our ansatz for the tachyon action is that of Sen with dilaton

dependent coefficients.

5 The bottom-up models

At x =
Nf

Nc
= 0 the IHQCD model, [71–73], is described by the action

Sg =M3N2
c

∫

d5x
√
g

[

R− 4

3

(∂λ)2

λ2
+ Vg(λ)

]

(5.1)

with λ the ’t Hooft coupling (exponential of the dilaton) and a potential that has the

following asymptotics.

lim
λ→0

Vg(λ) =
12

ℓ2
[

1 + v1λ+ v2λ
2 + · · ·

]

, lim
λ→∞

Vg(λ) ∼ λ
4
3

√

log λ . (5.2)

At finite x we must add the flavor sector. For the vacuum structure, and with all

masses of the quarks being equal it is enough to add the U(1) part of the tachyon DBI

action,

Sf = −xM3N2
c

∫

d5x Vf (λ, T )
√

det(gµν + h(λ, T )∂µT∂νT †) (5.3)

where we have set the gauge fields to zero. The total action is S = Sg + Sf . Note that the

overall sign of the DBI action is negative. The function Vg and its asymptotics has been

discussed in detail in [71–73]. We will consider it known, and when needed we will use the

form that was in agreement with YM data, [77]. The tachyon potential Vf (λ, T ) should

satisfy some basic principles. For flat space D-branes, Vs ∼ 1
λe

−µ2T 2

. In our case, near the

boundary, where T → 0, λ → 0, we expect, in analogy with Vg, a regular series expansion

in λ, T

Vf ≃ V0(λ) + V1(λ)T
2 +O(T 4) (5.4)

with V0,1(λ) having regular power series expansions in λ. As we will see later, the functions

V0,1(λ) may be mapped into the perturbative β-functions for the gauge coupling constant,

and the anomalous dimension of the quark mass operator.

Near the condensation point, T → ∞ we expect the potential Vf to vanish exponen-

tially. This is based on very general arguments due to Sen that guarantee that the brane

gauge fields disappear beyond that point.

Finally the function h(λ, T ) was introduced to accommodate the fact that the action

in (5.3) is written in the Einstein frame. In flat space, this factor is unity in the string

frame but becomes nontrivial (h ∼ λ−
4
3 ) in the Einstein frame.

– 19 –



J
H
E
P
0
3
(
2
0
1
2
)
0
0
2

5.1 The equations of motion

Collecting the action of the glue and flavor sectors together,

L=(M3N2
c )

[√−g
(

R− 4

3

(∂λ)2

λ2
+ Vg(λ)

)

− xVf (λ, T )
√

det (gab + h(λ, T )∂aT ∂bT )

]

. (5.5)

We shall take the following Lorentz-invariant Ansatz for the metric:

ds2 = e2A
(

dx21,3 + dr2
)

. (5.6)

In our Ansatz the warp factor A, the scalar λ and the tachyon T depend only on the radial

coordinate r.

The Einstein equations take the form:

Rab −
1

2
gabR = T g

ab + T f
ab , (5.7)

where T g
ab and T

f
ab are the energy momentum tensors of the glue and flavor sectors, respec-

tively. These equations translate into

6A′′ + 6(A′)2 = −4

3

(λ′)2

λ2
+ e2AVg(λ)− xVf (λ, T ) e

2A
√

1 + e−2Ah(λ, T ) (T ′)2 ; (5.8)

12(A′)2 =
4

3

(λ′)2

λ2
+ e2AVg(λ)− xVf (λ, T )

e2A
√

1 + e−2Ah(λ, T ) (T ′)2
, (5.9)

where primes stand for r-derivatives. For x = 0 these equations agree with [71–73]. Finally,

the equations of motion for the dilaton and the tachyon are given by:

λ′′ − (λ′)2

λ
+ 3A′ λ′ =

3

8
λ2 e2A

[

− d Vg
dλ

+ x
∂Vf
∂λ

√

1 + e−2Ah(λ, T ) (T ′)2 (5.10)

+
x

2

∂h

∂λ

e−2AVf (T ′)2
√

1 + e−2Ah(λ, T ) (T ′)2

]

;

T ′′ + e−2A

(

4hA′ +
∂ Vf
∂λ

hλ′

Vf
+
λ′

2

∂h

∂λ

)

(T ′)3 +

(

1

2h

∂h

∂T
− 1

Vf

∂ Vf
∂T

)

(T ′)2+ (5.11)

+

(

3A′ +
λ′

Vf

∂Vf
∂λ

+
λ′

h

∂h

∂λ

)

T ′ − e2A

h Vf

∂Vf
∂T

= 0 .

6 Conformal fixed-point solutions

There are solutions to the equations above that are conformal, and are related to the fixed

points of an “effective potential”. To find them we must set λ′ = T ′ = 0, and λ′′ = T ′′ = 0

in the equations (5.10), (5.11) which imply that we must be at a critical point of the

effective potential,

Veff = Vg(λ)− xVf (λ, T ) , ∂TVeff = ∂λVeff = 0 . (6.1)
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For any solution λ∗, T∗ of the above conditions, we obtain an AdS5 space with

12

ℓ2
= Veff(λ∗, T∗) (6.2)

as is obvious from equations (5.8) and (5.9).

When Vf has the standard dependence on the tachyon [93], there are two solutions to

the condition ∂TVeff = 0, namely T = 0 (chiral symmetry unbroken) and T → ∞, (chiral

symmetry broken).

• T = 0. In this case the second condition of extremality (6.1) is ∂λ(Vg(λ)−xVf (λ, 0)) =
0. In the UV, λ → 0, this potential is constructed to emulate the perturbative β-

function, and therefore has a free-field theory fixed point. This is the UV theory. In

the IR, it will also have a fixed point at λ = λ∗. In the BZ region λ∗ ≪ 1. A priori

there are two possibilities.

1. The fixed point disappears for x ≤ x∗ for a given x∗.

2. The fixed point exists for all 0 < x < 11
2 .

We will discuss these two options later on in this paper.

• T → ∞. In this case as limT→∞ Vf (λ, T ) = 0 we obtain that the second extremality

condition is ∂λVg = 0. This is equivalent to the existence of a fixed point in large-N

YM theory. It has been argued however in [71–73] that this is not true. Therefore,

there is no fixed point with T → ∞.

7 Holographic β-functions

In holographic theories we may define non-perturbative β-functions that capture the de-

pendence of coupling constants on the RG scale. This concept was developed and used

first in [71–73], in order to explore the physics of Einstein dilaton theories and their holo-

graphic relation to YM theory. In particular in [71–73] it was shown that the β function is

intimately related to the generalized superpotential. It was shown later in [76] that such

defined β-functions are indeed related to the quantum breaking of scale invariance, and

appear in the trace of the stress-tensor. Such relations were shown in full generality in [113]

and have been confirmed also in [114].

To define the β-functions we need a notion of energy scale. At the two-derivative

level, such a function is the scale factor eA, and indeed near the AdS boundary it can be

identified as the energy scale. It remains always a decreasing function, and becomes zero in

the ultimate IR. It can therefore be taken as the energy scale in the whole of the bulk space.

We therefore define the β-function and “anomalous” dimension γ as11

dλ

dA
≡ β(λ, T ) ,

dT

dA
≡ γ(λ, T ) . (7.1)

11Notice that, as we shall see later, it is the ratio γ(λ, T )/T (rather than γ(λ, T )) which corresponds

closely to the anomalous dimension of the quark mass in QCD. Excluding the extra T in the definition

simplifies many of the equations below.
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The equations of motion provide equations for the β-functions. To obtain them we must

convert radial derivatives to derivatives with respect to A,

λ′ = A′β , T ′ = A′γ , λ′′ = βA′′+(γβT+ββλ)A
′2 , T ′′ = γA′′+(γγT+βγλ)A

′2 (7.2)

where βT ≡ ∂β
∂T etc. Substituting in (5.9) we obtain

12

(

1− β2

9λ2

)

A′2

e2A
= Vg −

xVf
√

1 + hγ2 A′2

e2A

(7.3)

which can in principle be solved for A′2

e2A
as a function of λ, Vg, Vf , h, β, γ. In general, the

solution is not unique.12 Similarly from (5.8) we obtain

A′′

e2A
= −

(

1 +
2β2

9λ2

)

A′2

e2A
+
Vg − xVf

√

1 + hγ2 A′2

e2A

6
. (7.4)

Then (5.10) and (5.11) become

(

γ
∂β

∂T
+ β

∂β

∂λ
− β2

λ

)

A′2

e2A
+
β

6



2Vg −
xVf

√

1 + hγ2 A′2

e2A

− xVf

√

1 + hγ2
A′2

e2A



 (7.5)

=
3

8
λ2



−∂Vg
∂λ

+ x
∂Vf
∂λ

√

1 + hγ2
A′2

e2A
+
x

2

∂h

∂λ

Vfγ
2e−2AA′2

√

1 + hγ2 A′2

e2A





−1

h

∂ log Vf
∂T

+

(

Vg − xVf

√

1+hγ2
A′2

e2A

)

γ

6
+

(

4 + β
∂ log Vf
∂λ

+
β

2

∂ log h

∂λ

)

hγ3
A′4

e4A
(7.6)

+

[

γ
∂γ

∂T
+ β

∂γ

∂λ
+

(

2

(

1− β2

9λ2

)

+ β
∂ log(hVf )

∂λ

)

γ +

(

1

2

∂ log h

∂T
− ∂ log Vf

∂T

)

γ2
]

A′2

e2A
= 0

where we eliminated A′′ by using (7.4). This is a system of two first-order partial differential

equations for β, γ, with inputs Vf , Vg, h. The equations are highly non-linear. Setting x = 0,

the system reduces to

12

(

1− β2

9λ2

)

A′2

e2A
= Vg (7.7)

(

γ
∂β

∂T
+ β

∂β

∂λ
− β2

λ

)

A′2

e2A
= −3

8
λ2
∂Vg
∂λ

− Vg
3
β . (7.8)

In this case ∂β
∂T = 0 and (7.7) can be rewritten as

∂β

∂λ
=
β

λ
−
(

4 +
9λ2

2β

∂ log Vg
∂λ

)(

1− β2

9λ2

)

. (7.9)

These equations are similar to those in the probe (quenched) limit.

Note also that although the equations of motion are linear in x, the β-system (7.5), (7.6)

is non-linear in x, with the understanding that A′2

e2A
is to be eliminated using (7.3).

12Standard “linear” scalar theories with action given by a kinetic term plus a potential have a unique

solution for A′2

e2A
.

– 22 –



J
H
E
P
0
3
(
2
0
1
2
)
0
0
2

7.1 The UV fixed point

Near the boundary where λ, T → 0, we expect that γ → 0, so that equation (7.3) becomes

12

(

1− β2

9λ2

)

A′2

e2A
= Vg − xVf (λ, 0) + · · · → A′2

e2A
=
Vg − xVf (λ, 0)

12
(

1− β2

9λ2

) + · · · (7.10)

According to the discussion of section 3, the potentials are expected to be regular at λ = 0,

Vg = V0 + V1λ+ V2λ
2 +O(λ3) ,

xVf = W0 +W1λ+W2λ
2 +O(λ3) + (Z0 + Z1λ+ Z2λ

2)T 2 + · · · (7.11)

h = h0 + h1λ+ h2λ
2 +O(λ3) +O(T 2) .

We also take the following Ansatz for the β-functions:

β = −b0λ2 + b1λ
3 + · · ·+O(T 2) + · · · , γ = (γ0 + γ1λ+ γ2λ

2)T + · · · (7.12)

Inserting these into the equations (7.5), (7.6), we find

b0 =
9

8

V1 −W1

V0 −W0
, b1 =

207

256

(V2 −W2)
2

(V0 −W0)2
− 9

4

V1 −W1

V0 −W0
(7.13)

γ20 + 4γ0 −
24Z0

h0W0(V0 −W0)
= 0 (7.14)

γ1 =
12Z0

(γ0 + 2)h0W0(V0 −W0)

(

Z1

Z0
− W1

W0
− h1
h0

− V1 −W1

V0 −W0

)

.

To leading order the solutions around the UV fixed point are

1

λ
=

1

λ0
+ b0A+ · · · , T = T0e

γ0A . (7.15)

In order for T to have the proper UV dimension we must have γ0 = −1. In the massless

case, T is dominated by the vev, and we have to choose γ0 = −3. These solve eq. (7.14) if

24Z0

h0W0(V0 −W0)
= −3 . (7.16)

As we shall point out below, the combination γ(λ, T )/T is mapped to the anomalous

dimension of the quark mass in QCD (2.8). Remarkably, the solution (7.12) is consistent

with QCD perturbation theory: γ(λ, T )/T has a series expansion in λ. The leading term

is fixed according to the UV dimension, and the correction terms are identified with the

anomalous dimension.

7.2 Confining IR asymptotics

In the IR, a confining asymptotic has the property that A′2

e2A
→ ∞. There are two possibil-

ities for the tachyon:
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1. If T = 0, γ = 0 and then Vg → Vg − xVf (T = 0). In this case

A′2

e2A
=
Vg − xVf (λ, 0)

12
(

1− β2

9λ2

) + · · · (7.17)

2. T → ∞ in the IR, Vf → 0 exponentially, and we obtain the pure YM case in the IR.

Here
A′2

e2A
=

Vg

12
(

1− β2

9λ2

) + · · · (7.18)

If we assume that Vf (λ, 0) does not grow faster than Vg(λ) in the IR, the solution in

both cases is the same as in pure YM (x = 0), [71–73],

β ≃ −3λ

2

[

1 +
3

8

1

log λ
+ · · ·

]

. (7.19)

This non-perturbative β-function indicates that the scaling dimension of the dual operator

tr(F 2) in the IR is ∆ = 5
2 read from its linear term. However this does not imply there is

a scaling regime in the IR, as the metric is far from AdS.

The tachyon equation becomes

−∂ log Vf
∂T

+ h

(

Vg − xVf

√

1+hγ2
A′2

e2A

)

γ

6
+

(

4 + β
∂ log Vf
∂λ

+
β

2

∂ log h

∂λ

)

h2V 2
g γ3

144
(

1− β2

9λ2

)2

+

[

γ
∂γ

∂T
+ β

∂γ

∂λ
+

(

2

(

1− β2

9λ2

)

+ β
∂ log(hVf )

∂λ

)

γ +

(

1

2

∂ log h

∂T
− ∂ log Vf

∂T

)

γ2
]

× hVg

12
(

1− β2

9λ2

) = 0 . (7.20)

In the IR, for a class of potentials γ → −∞ and
√

1 + hγ2 A′2

e2A
→ −

√

hVg

12
(

1− β2

9λ2

) γ. We ex-

pect that Vf

√

1 + hγ2 A′2

e2A
→ 0 as Vf vanishes exponentially while γ increases polynomially

with increasing T . We also expect hVg to be approximately constant and
(

1− β2

9λ2

)

→ 3
4 .

We also expect ∂ log h
∂T → 0 and β ∂γ

∂λ to be subleading.

Therefore the leading terms in equation (7.20) are expected to be
(

4 + β
∂ log Vf
∂λ

+
β

2

∂ log h

∂λ

)

hVg γ
3

9
+ γ

∂γ

∂T
− ∂ log Vf

∂T
γ2 = 0 . (7.21)

If we define δ = 1
γ , δ satisfies a linear equation

∂δ

∂T
+
∂ log Vf
∂T

δ =
hVg
9

(

4 + β
∂ log(Vf

√
h)

∂λ

)

(7.22)

with solution

δ =
C

Vf
+
hVg
9Vf

∫ T

T∗

Vf

(

4 + β
∂ log(Vf

√
h)

∂λ

)

dT (7.23)
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with T ∗ large enough so that we are in the IR regime. For γ we obtain

γ =
Vf

C +
hVg

9

∫ T
T∗

Vf

(

4 + β
∂ log(Vf

√
h)

∂λ

)

dT
. (7.24)

Note that if h ∼ λ−
4
3 , then β ∂ log(

√
h)

∂λ ≃ 1. If we also assume that Vf has factorized

dependence, Vf = Vfλ(λ)VfT (T ) we obtain

γ =
Vf

C +
hVg

9

(

5 + β
∂ log(Vfλ)

∂λ

)

∫ T
T∗

VfdT
. (7.25)

Note that from the whole one-family of solutions above, only one is diverging for large T

and this is the only reliable solution.

For a tachyon potential of the form VfT = e−aT 2

the diverging solution is

γ ≃ − 18a

hVg

(

5 + β
∂ log(Vfλ)

∂λ

)T + · · · . (7.26)

For the type of potentials we will be using hVg/
√
log λ approaches a constant which we

denote by b, and Vfλ ∼ λ2 so that

γ ≃ − 18a

b
√
log λ

(

2− 9
8

1
log λ + · · ·

)T + · · · ≃ − 9a

b
√
log λ

T + · · · (7.27)

Note that if we assume a more elaborate tachyon potential of the form Vf =

Vf0(λ)e
−a(λ)T 2

with a(λ) increasing with λ in the IR then the asymptotic behavior of

γ changes and it vanishes in the IR. To capture this behavior from (7.20) we take γ → 0 in

the IR and
√

1 + hγ2 A′2

e2A
→ 1. We also again expect that hVg is approximately constant,

(

1− β2

9λ2

)

→ 3
4 , and

∂ log h
∂T → 0. We also expect that the derivative terms γ ∂γ

∂T and β ∂γ
∂λ

are subleading.

The two leading terms in (7.20) are then expected to be

− ∂ log Vf
∂T

+
hVg β

9

∂ log(hVf )

∂λ
γ = 0 . (7.28)

The solution behaves for large T as

γ ≃ 18a(λ)

βhVga′(λ)
1

T
+ · · · ≃ − 12

b d log ad log λ

√
log λ

1

T
+ · · · (7.29)

where b is defined as above.

7.3 Some simple β functions

We may engineer a β function that interpolates between the one-loop perturbative YM

β-function, and the non-perturbative one in (7.19). We could also have a γ function

interpolating between an operator with dimension ∆UV in the UV, and ∆IR in the IR:

β(λ) = −b0
λ2

1 + 2b0
3 λ

, γ = (∆UV − 4)T
1 + (∆IR − 4)T 2

1 + (∆UV − 4)T 2
. (7.30)
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Figure 1. The solutions for the β (top row) and γ (bottom row) functions for x = 2 (left), x = 3.9

(middle), and x = 4.2 (right). We added the red lines on the top row at β = 0 in order to show the

location of the fixed point. See the text for a detailed explanation.

The flow equations can be integrated to

1

λ
− 2b0

3
log λ = b0A ,

log T

(∆UV − 4)
+

∆UV −∆IR

2(∆UV − 4)(∆IR − 4)
log
(

1+(∆IR − 4)T 2
)

= A .

(7.31)

Such β functions can be converted into potentials Vg, Vf , via the equations (7.5), (7.6).

7.4 Numerical solutions for the β and γ functions

The equations (7.3), (7.5), and (7.6) for the β and γ functions can be solved numerically

for fixed potentials by combining solutions evaluated along the RG flow, as detailed in

appendix A. Figure 1 shows the results for various values of x. We used the potentials of

scenario I from appendix C and required that the solutions flow to the good IR singularity,

as explained in appendix A. Notice that the values x = 3.9 and 4.2 were chosen to lie

slightly above and below the edge of the conformal window, which is at xc ≃ 3.9959 for

the potentials used in the plots.

The plots of the β-functions show a smooth transition as T evolves from small ≪ 1 to

large & 1 values, reflecting the expectation of section 6. For small tachyon, the β-function

has a fixed point corresponding to the maximum of the effective potential Veff , which moves

to lower values of λ as x is increased, whereas for large T the λ-dependence of the β-function

approaches the Yang-Mills form. The γ functions show a transition between the small and
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large T regions as well. For large T and λ, the solutions agree with eq. (7.27). For small

T , the structure is richer. For x = 2 the γ tends to a constant value as T → 0 (except

for very small λ) so that γ(λ, T )/T , which is plotted in figure 1, diverges. This behavior

is pushed for larger λ as we increase x to 3.9, and has disappeared for x = 4.2, and the

γ-function is instead linear in T in accordance with eq. (7.12). These changes are related

to the tachyon changing sign during the flow. If the tachyon has a zero, we hit the T = 0

line before reaching the UV singularity. Then γ approaches a constant value as T → 0, and

eq. (7.12) does not apply. As will be discussed in detail below, tachyon zeroes are indeed

expected for x < xc. Notice also that γ/T tends to −1 as λ → 0 with fixed T at least for

small T , reflecting the expected value of γ0 in eq. (7.12).

8 The background solutions

8.1 Generic properties of the background

We start by discussing the symmetries and integration constants of the equations of motion

of V-QCD, (5.8)–(5.11). We shall assume the exponential Ansatz

Vf (λ, T ) = Vf0(λ) exp
[

−a(λ)T 2
]

(8.1)

for the potential of the tachyon DBI action. Then the background EoMs have the following

symmetries

1. A→ A+ log Λ , Vg → Λ−2Vg , Vf0 → Λ−2Vf0 (8.2)

T → ΛT , a→ Λ−2a ;

2. T → ΛT , a→ Λ−2a , h→ Λ−2h ; (8.3)

3. r → Λ(r − r0) , A→ A− log Λ . (8.4)

The first symmetry can be used to fix the value of the UV AdS radius ℓ, and is usually

associated with the units of energy in the boundary theory. The second one will be used

to fix the normalization of h in the UV. The third one is essentially different from the first

two, since it does not involve the potentials. It will therefore remain as a true symmetry

of the background solutions.

We may choose a set of independent equations of motion which contains one first order

and two second order differential equations. Therefore, their general solution includes five

integration constants. These can be identified as the coefficients of the UV expansions

of the fields as follows (assuming that the solution has the standard UV singularity with

λ → 0, see appendix D). The tachyon UV expansion has the usual free constants related

to the normalizable and non-normalizable solutions, identified as the quark mass m and

the vacuum expectation value σ of the q̄q operator, respectively.

In close analogy, the solution for λ involves two constants, identified as the UV scale

Λ = ΛUV of the expansions, and another constant Â which we will define in section 9, re-

lated to the gluon condensate and the free energy of the system. The fifth integration con-

stant is simply the location of the UV singularity which can take to be r = 0 by the trans-

lation symmetry of eq. (8.4). We shall require that the system has a repulsive, “good” kind

of IR singularity, which fixes the values of the condensates σ and Â in terms of m and ΛUV.
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In addition, we still have the scaling symmetry of eq. (8.4), which can be used to vary

the units of all constants, and reflects the corresponding scale transformation of the dual

field theory. Therefore, the single parameter which characterizes all nontrivially linked

physical backgrounds (for fixed potentials and, in particular fixed x = Nf/Nc) is the ratio

of the “source” coefficients m/ΛUV.
13

For the choices of the functions h, Vg, and Vf of interest to us, the tachyon typically

decouples from the other fields asymptotically in the UV and in the IR. The UV and IR

asymptotics are discussed in detail in appendices D and E, and we shall repeat only the

main features of the physically interesting possibilities here. The physically relevant UV

asymptotics are restricted. As pointed out in [71–73], the fields A and λ can be expanded

in −1/ log r at the UV boundary r = 0 in the probe limit.

Similar expansions work also at finite x = Nf/Nc. The tachyon is required to vanish

linearly T (r) ≃ mr (or faster if m = 0) in r in the UV. Taking ǫ = −1/ log r → 0, the

tachyon T ≃ m exp(−1/ǫ) vanishes exponentially while A and λ have power-like behavior

in ǫ. Since, in addition, the functions h and Vf must be regular in the UV (see section 8.2

below), the tachyon can be set to zero in the leading order action. We find that A and λ

satisfy their probe limit equations of motion, but with the dilaton potential Vg replaced

by Veff(λ) = Vg(λ)− xVf (λ, T = 0), which also verifies that the UV expansions of λ and A

have the same form as in the probe limit.

We shall only discuss cases where the tachyon indeed decouples asymptotically in the

IR. This is the case, if we take a tachyon potential having an exponential T dependence,

Vf (λ, T ) ∝ exp(−aT 2), and the tachyon has a power-law (or faster) divergence as r → ∞.

This is indeed what is suggested by tachyon condensation in string theory. Therefore, the

flavor part of the action is exponentially suppressed in the IR. Consequently, the tachyon

decouples asymptotically from A and λ, and their asymptotic expansions in the IR have

exactly the same form as in the probe limit, and are determined by the potential Vg(λ).

In summary, even though all fields couple nontrivially for general values of the co-

ordinate, the probe limit description will be valid in the UV and IR. In particular, this

guarantees that the interpretation of the integration constants is the same for finite x as

in the probe limit. The decoupling of the tachyon in the IR leads to the system having

similar “good” IR singularities as in the probe case.

An important difference with respect to the probe limit discussion is that the

potentials which characterize the backgrounds in the UV and IR regions will be,

in general, qualitatively different. As discussed above in section 6, the potential

Veff(λ) = Vg(λ)−xVf (λ, T = 0) which controls the UV behavior will be chosen such that it

admits a fixed point (extremum of the potential) at least for large values of x as required

by the Banks-Zaks analysis.

The fixed point of Veff will play an important role in the dynamics in the intermediate

region between UV and IR. In particular, for identically vanishing tachyon, the background

simply flows from the UV fixed point at λ = 0 to the IR fixed point at finite λ. Adding, a

13Due to practical reasons we shall often use a parameter T0 linked to the tachyon behavior in the IR

instead of the quark mass to characterize different backgrounds.
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tiny quark mass (or chiral condensate), the solution in the UV region will not be changed

drastically. However, no matter how small the quark mass is, the tachyon will eventually

become large and start coupling to λ and A, which will drive the system away from the IR

fixed point.

We can make two observations. First, the special case of zero tachyon will be essen-

tially different from all other solutions. This solution has vanishing quark mass and chiral

condensate, and is therefore identified as the solution corresponding to conserved chiral

symmetry. We will discuss this special case separately below.

Second, there is a possibility to have solutions which come very close to the IR fixed

point, but are eventually driven away by the increasing tachyon. Such solutions will be

identified with quasiconformal or “walking” dynamics of the dual field theory, where the

coupling constant remains approximately fixed over a large range of energies. We shall see

below how the phase structure of QCD in the Veneziano limit, which includes a quasicon-

formal region, arises in our class of models.

8.2 Matching UV behavior with the QCD β-functions

We shall now discuss the most important links of the potential functions to the physics of

the dual field theory. We start by an analysis of the UV region, where the behavior of the

system can be mapped to the QCD β-functions [71–73] as already discussed in section 7.

In particular, in the probe limit (x → 0 limit), the UV behavior is controlled by Vg(λ),

that has the expansion

Vg(λ) = V0 + V1λ+ V2λ
2 + · · · (8.5)

Here V0 > 0 can be freely chosen and it fixes the AdS scale for x = 0 as V0 = 12/ℓ20.

The other coefficients can be mapped to the Yang-Mills β-function. At one-loop order we

have [71–73]

Vg(λ) =
12

ℓ20

[

1 +
8

9
bYM
0 λ+ · · ·

]

(8.6)

where b0
YM is the one-loop coefficient of the β-function, from which V1 can be solved.

Moreover, as discussed above, at finite x the UV behavior is similar to the probe limit,

but the role of Vg is taken by the potential Veff(λ) = Vg(λ) − xVf (λ, T = 0). Therefore,

we take

Vf (λ, T = 0) = W0 +W1λ+W2λ
2 + · · · (8.7)

and the relation to the QCD β-function reads

Veff(λ) = Vg(λ)− xVf (λ, 0) =
12

ℓ2

[

1 +
8

9
b0λ+ · · ·

]

(8.8)

where b0 is the leading coefficient of the β-function in the Veneziano limit.

Similarly to V0, the coefficient W0 can be freely chosen, and the other coefficients

can be solved from eq. (8.8). However, there are constraints: the AdS scale must remain

– 29 –



J
H
E
P
0
3
(
2
0
1
2
)
0
0
2

positive for all 0 < x < 11/2, and W0 should also be positive (see appendix C). These boil

down to

0 < W0 <
2

11
V0 . (8.9)

If we allow W0 to depend on x, the upper limit is modified to V0/x.

In addition, as pointed out in section 7, we can map the UV behavior of the tachyon

action to the (anomalous) dimensions of the quark mass and the chiral condensate of the

dual field theory. For definiteness, we parametrize Vf (λ, T ) = Vf0(λ) exp(−a(λ)T 2) and

assume that h depends only on λ. Then the dimension of the quark mass constrains the

UV behavior of h(λ) and a(λ). A detailed analysis is done in appendix D.1.1.

Remarkably, assuming that the potential functions have analytic expansions at λ = 0

is consistent with QCD perturbation theory. Indeed, requiring the dimension of the quark

mass to approach one in the deep UV fixes the leading terms as

h(λ)

a(λ)
=

2ℓ2

3
(1 + h1λ+ · · · ) , (8.10)

and the next-to-leading coefficient h1 can be matched with the one-loop anomalous dimen-

sion of the quark mass γm(λ).

By using eq. (D.10) from appendix, we obtain

− γ0 =
9

8

[

4

3

8

9
b0 +

4

3
h1

]

(8.11)

where γ0 is the leading coefficient of the anomalous dimension, −d logm/d log µ = γm(λ) =

γ0λ+· · · . Notice that, for example, the non-normalizable term in the tachyon solution (D.9)

reads after this identification

1

ℓ
T (r) = mr (− log(rΛ))−γ0/b0

[

1 +O
(

1

log(rΛ)

)]

(8.12)

where the logarithmic correction is consistent with the one-loop solution for the running

quark mass in QCD.

8.3 Condensate dimension and the edge of the conformal window

The most important new feature of the system discussed in this article is the description

of the phase diagram of QCD as a function of x = Nf/Nc in the Veneziano limit. We

shall now indicate which potentials lead to the desired structure. This constraint to a large

extent independent of the one discussed above that was set by the UV expansions.

The phase structure is linked to the dimension of the chiral condensate at the IR fixed

point which is found at the maximum of Veff = Vg − xVf0 in the conformal window (in the

limit of small tachyon background).

We denote the value of the coupling at the fixed point by λ∗ so that

V ′
eff(λ) = V ′

g(λ∗)− xV ′
f0(λ∗) = 0 . (8.13)
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From the action (5.5) we can calculate the IR AdS scale

12

ℓ2IR
= Veff(λ∗) (8.14)

To calculate the dimension we need the mass of T in the IR fixed point, which can be

extracted from the action (5.3) and reads

m2
IR = −2a(λ∗)

h(λ∗)
, (8.15)

where we again parametrized Vf (λ, T ) = Vf0(λ) exp(−a(λ)T 2). From this we obtain

∆IR(4−∆IR) = −m2
IRℓ

2
IR =

24a(λ∗)
h(λ∗) Veff(λ∗)

. (8.16)

The desired phase diagram is only obtained if the expression ∆IR(4−∆IR) = −m2
IRℓ

2
IR

has a certain dependence on x. It must start at a value smaller than 4 at the end of

the BZ region (which is guaranteed as the standard UV boundary conditions fix it to 3

there), grow as x decreases, and become 4 at some value of x so that the BF bound [115] is

saturated [7]. Indeed, the solutions near the edge of the conformal window stabilize such

that the critical xc, defining the location of the conformal phase transition for massless

quarks, is determined by

∆IR(4−∆IR)
∣

∣

∣

x=xc

= 4 . (8.17)

We shall discuss why this is the case in detail later on. Note that in addition to the explicit

dependence on x in the factor xVf0, eq. (8.16) depends on x through λ∗ due to the definition
of eq. (8.13).

We stress that the saturation of the BF bound means that for theories near the critical

xc, ∆IR → 2, or in other words, the anomalous dimension of the quark mass at the fixed

point γ∗ → 1. That is, our model reproduces the standard assumption for the energy

dependence of the chiral condensate near the edge of the conformal window. Recall that

this is extremely important for realizations of walking technicolor.

If the potentials are matched with the UV physics of QCD, the expression (8.16) can be

further simplified. Fixing the tachyon mass in the deep UV we obtain a(0)/h(0) = 3/(2ℓ2).

In the limit T → 0, the β-function β(λ) = dλ/dA satisfies a first order differential equation

which depends on Veff(λ), as can be immediately concluded by comparing our action to

the probe limit one [71–73] for T = 0. In terms of the phase function X, defined by

dλ

dA
= β(λ) = 3λX(λ) , (8.18)

we find [71–73]

λ
dX(λ)

dλ
= −

(

8X(λ) + 3λ
d log Veff(λ)

dλ

)

1−X2(λ)

6X(λ)
. (8.19)

Solving this, we can parametrize the potential in terms of the β-function:

Veff(λ) = Vg(λ)− xVf0(λ) =
12

ℓ2

(

1− β(λ)2

9λ2

)

exp

[

−8

9

∫ λ

0

dλ̂β(λ̂)

λ̂2

]

. (8.20)
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The IR dimensions now satisfy

∆IR(4−∆IR) = 24
a(λ∗)
h(λ∗)

ℓ2

12

(

1− β(λ∗)2

9λ2∗

)−1

exp

[

8

9

∫ λ∗

0

dλβ(λ)

λ2

]

(8.21)

= 3
h(0)

h(λ∗)
a(λ∗)
a(0)

exp

[

8

9

∫ λ∗

0

dλβ(λ)

λ2

]

.

where in the second line we used the fact that β(λ∗) = 0. If we do the matching with

perturbative QCD results in the UV, the β-function can be identified as the QCD β-

function in the Veneziano limit. Then the exponential factor is small in the sense that it is

roughly proportional to b0λ∗ where both the one-loop coefficient of the β-function b0 and

the coupling at the fixed point λ∗ vanish in the BZ limit x → 11/2. Therefore we expect

that ∆IR(4 − ∆IR) depends on x mostly through the functions h and a. In the two-loop

approximation of the β-function we obtain

8

9

∫ λ∗

0

dλβ(λ)

λ2
= −4

9
b0λ∗ . (8.22)

In figure 2 we plot the dependence of ∆IR(4 − ∆IR) on x for the two scenarios of

potential choices of appendix C. The solid lines give the results for the value W0 = 12/11

used in the appendix, and the dashed lines show the sensitivity of the result for the choice

ofW0 as this parameter is varied over its allowed range. In all cases, ∆IR(4−∆IR) intersects

the value of 4, shown as the horizontal dotted line in the plot. This suggests that the class

of potentials that has the desired phase structure quite in general includes those ones that

are matched with the UV behavior of QCD. Moreover, the critical value of x is found

within a quite narrow band

3.7 . xc . 4.2 , (8.23)

and the largest source of uncertainty is the choice of W0.
14 We stress that there is no strict

bound on the allowed values of xc, but the numbers in eq. (8.23) rather give the expected

magnitude for the variation of xc within natural potential choices.

It is also instructive to show the dependence of the anomalous dimension of the quark

mass at the IR fixed point on x (see figure 3). Within our model the anomalous dimension

is defined by γ∗ = ∆IR − 1 where ∆IR is the smaller of the two roots. The result for the

potentials of scenario I of appendix C is shown as the solid blue line in figure 3, and as in

figure 2, the dashed lines show the maximal variation as the parameter W0 is varied over

its allowed range.

Our result is very similar to the prediction obtained by calculating the anomalous

dimension from Dyson-Schwinger equations in the rainbow approximation [116, 117], and

evaluating the result at the zero of the perturbative two-loop β-function (2.3) (dotted red

curve of figure 3). As in our model, the conformal window ends at the point where γ∗ reaches
one and becomes complex in this approach. The deviation from the simple perturbative

estimate (dot-dashed magenta curve), which was obtained by using the two-loop anomalous

14We have checked this also for some additional potentials that are not discussed in this article.
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-mIR
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Figure 2. The squared tachyon mass at the IR fixed point ∆IR(4−∆IR) = −m2
IRℓ

2
IR as a function

of x for the two scenarios described in appendix C. Thick blue, and thin red curves are the results

for the scenarios I and II of appendix C, respectively. The dashed lines show the maximal changes

as W0 is varied from 0 (upper curves) to 24/11 (lower curves).

4.0 4.5 5.0 5.5
x

0.2

0.4

0.6

0.8

1.0

Γ*

Figure 3. The anomalous dimension of the quark mass at the IR fixed point as a function of

x within the conformal window in various approaches. The solid blue curve is our result for the

scenario I of appendix C. The dashed blue lines show the maximal change as W0 is varied from 0

(upper curve) to 24/11 (lower curve). The dotted red curve is the result from a Dyson-Schwinger

analysis, the dot-dashed magenta curve is the prediction of two-loop perturbative QCD, and the

long-dashed green curve is based on an all-orders β-function.

dimension (2.8) instead, is also small. However, an all-orders β-function [118] (long-dashed

green curve) predicts much smaller values of γ∗ for low values of x.

In figure 4 (left) we plot the ratio ℓUV

ℓIR
comparing the AdS scales of the IR and UV

CFTs. This ratio by unitarity is always larger than one, and reflects the loss of degrees

of freedom during the flow. The right hand plot shows the ratio 1
(1+γ∗)

in the conformal

window, which controls the dependence of the ratio of the UV and IR scales on the quark

mass (see also section 8.6 below).
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Figure 4. Left: The ratio ℓUV

ℓIR
comparing the AdS scales of the IR and UV CFTs. This ratio

reflects the loss of degrees of freedom during the flow. The blue line was drawn with the potential

I, and W0 = 11
12 . The other lines correspond to varying the parameter W0 in the potential between

its extreme values W0 = 0 (red) and W0 = 24
11 (magenta). Right: The ratio 1

(1+γ∗)
as a function

of x in the conformal window. It controls the ratio of the UV and IR characteristic scales as
ΛIR

ΛUV
∼
(

m
ΛUV

)
1

(1+γ∗)

.

8.4 Constructing the background solutions

We will select concrete potentials for evaluating the background numerically. These po-

tentials must satisfy the constraints of the previous two subsections in order to produce

the desired phase structure of QCD in the Veneziano limit as well as the perturbative

UV physics. In addition, the system needs to have an acceptable IR singularity where

the tachyon diverges, which adds extra requirements to the large λ behavior of the poten-

tials. However, as we shall demonstrate briefly, different choices for the IR behavior do not

change the qualitative features of the background.

The construction of explicit potentials is detailed in appendix C, where also the IR

behavior is fixed by using the generic analysis of appendix E. For clarity, we repeat the

final result here. The potentials of the scenario I in appendix C read

Vg(λ) = 12 +
44

9π2
λ+

4619

3888π4
λ2

(1 + λ/(8π2))2/3

√

1 + log(1 + λ/(8π2)) (8.24)

Vf (λ, T ) = Vf0(λ)e
−a(λ)T 2

(8.25)

Vf0(λ) =
12

11
+

4(33− 2x)

99π2
λ+

23473− 2726x+ 92x2

42768π4
λ2 (8.26)

a(λ) =
3

22
(11− x) (8.27)

h(λ) =
1

(

1 + 115−16x
288π2 λ

)4/3
. (8.28)

We shall use this choice when calculating the background numerically, unless stated

otherwise.

Recall that only three of the equations of motion (5.8)–(5.11) are independent. We

choose a set of three second-order equations for the numerical calculations, and treat the
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remaining first order equation as an extra constraint. As usual, we choose boundary

conditions that satisfy the constraint, which is then automatically satisfied for all r.15

When solving the equations numerically, it turns out that shooting from the IR is nu-

merically stable.16 We shall first discuss backgrounds where the tachyon has a nontrivial

profile. We fix the boundary conditions in the deep IR by using the asymptotic IR expan-

sions at the “good” IR singularity at r = ∞ (see appendix E.2.2). For the functions given

above, the asymptotics becomes

A(r) = − r2

R2
+

1

2
log

r

R
− logR+

13

8
+ log

[

27 61/4√
4619

]

− 173 R2

3456 r2
+ · · · (8.29)

log λ(r) =
3

2

r2

R2
− 39

16
+ log 8π2 − 151 R2

2304 r2
+ · · ·

T (r) ∼ T0 exp

[

81 35/6(115− 16x)4/3(11− x)

812944 21/6
r

R

]

.

Here we already used the translation symmetry of eqs. (8.4) to set r0 in the formulas (E.18)

and (E.20) to zero,17 and we can further use the scaling symmetry to fix R = 1. After this,

the solution (for fixed x) depends nontrivially on only one free parameter T0 in the IR, as

is characteristic for a good IR singularity.

To continue, we choose an IR cutoff RIR such that the tachyon is large, and therefore

decoupled from the fields A and λ. With the above choices of potentials, a sufficient value

turns out to be T (RIR) = 70: with this choice, the tachyon has decoupled to a good

precision, and RIR/R is large enough for the asymptotic expansions to work. We use the

asymptotic expansions to fix the values of A, λ, T , A′, and T ′ at r = RIR, and solve λ′

from the constraint (the first order EoM). The solution is then obtained by numerically

solving the set of second order equations of motion toward the UV, until some of the UV

asymptotics described in appendix D are reached.

The obtained UV behavior is depicted in figure 5 (left) as a function of the only

remaining free parameters, T0 and x. For comparison, we also present the same plot for

the scenario II of appendix C on the right hand side, where T0 is replaced by the parameter

r1 of eq. (C.21). For clarity, we shall only refer to the variable T0 in the discussion below.

Because of the invariance of the Lagrangian under T → −T , scanning over positive T0 is

enough to catalog all possible solutions. We shall explain the notation and the results here,

15In all numerical calculations, we shall do the coordinate transformation from r to A discussed in

appendix B, because after this, the UV structure of the solutions is reproduced more accurately. However,

as this transformation is straightforward, we shall continue to discuss the solution in the “r-space”.
16There is a potential instability related to the constraint, as it is exactly satisfied only near the IR cutoff

due to numerical effects. For general r there is an error which may grow exponentially as we solve the

system towards the UV. However, we have the freedom of modifying the system of second order equations,

which is used to calculate the solution, by adding multiples of the constraint to some of the equations. In

this way the error can be made to decrease exponentially instead of growing towards the UV, so that the

instability is removed.
17Notice that with this choice of fixing the translation invariance, the UV boundary of the final solution

will not be at r = 0. After obtaining the solution, we can relax this condition and use translation invariance

again to move the UV singularity at r = 0, if desired.
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Figure 5. The UV behavior of the background solutions with good IR singularity for the scenario

I (left) and scenario II (right) defined in appendix C. The thick blue curve represents a change in

the UV behavior, the red dashed curve has zero quark mass, and the contours give the quark mass.

The black dot where the zero mass curve terminates lies at the critical value x = xc. For scenario

I (II) we have xc ≃ 3.9959 (xc ≃ 4.0797). See the text for detailed explanation.

and discuss at qualitative level how the structure arises, whereas the details are discussed

in appendix F. We shall also show concrete examples of the backgrounds as well as their

β- and γ-functions along the holographic RG flow below.

The solid blue line represents a change in the UV asymptotics. The standard UV

asymptotics of appendix D.1.1 is obtained left of the blue line, whereas right of the blue

line the solution “bounces back” at finite λ, as discussed in appendix D.1.2. In the bounce-

back region the β-function evaluated along the RG flow becomes zero at finite λ, after

which λ starts growing toward the UV, and the standard UV boundary is not reached. To

the left of the blue solid curve, the “standard” tachyon UV expansion of appendix D.1.1

defines the quark mass and the chiral condensate, which are not defined right of, or on, the

blue line. The red dashed line hasm = 0. This line exists only for small x and terminates at

a critical value xc ≃ 3.9959 (in scenario I), which matches with the definition of eq. (8.17).

We stress that the solution with zero quark mass does not exist for x ≥ xc. Right

of the red dashed line, the quark mass takes positive values and is monotonic in T0. The

contours give the quark mass, obtained by fitting the deep UV behavior of the tachyon

solution to the expansion of appendix D.18 The backgrounds in the contoured region will

be identified as the physical ones, having lowest free energy.

The value of the mass goes to zero when the solid blue (for x > xc) or the red dashed

(for x < xc) curves are approached from within the contoured region as shown in figure 6,

which is not evident from figure 5 due to limited resolution. Between the blue solid and

red dashed curves, the quark mass is small, but depends on x and T0 in a complicated

manner, as we shall discuss below.

18The mass here is given in IR units, i.e., we actually plot mR = m/ΛIR, since we fixed the scale R of

the IR expansions to unity in the numerics.
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T0

m

T0

m

Figure 6. Left figure: Plot of the UV Mass parameter m, as a function of the IR T0 scale, for

x < xc. Right figure: Similar plot for x ≥ xc. The vertical solid blue and dashed red lines show

where corresponding lines are intersected in figure 5. While these plots are for model functions,

similar plots on how the bare quark mass m depends on T0, for different x for the potentials of

scenario I, can be found in figure 17 in appendix F.

The right hand plot in figure 5, which was obtained after modifying the potentials in

the IR, shows similar qualitative features as the left hand plot. This is the case because

the structure seen in figure 5 arises from the behavior of the solutions in the UV region

and close to it, which is analytically tractable and almost independent of the change of

the potentials, if, e.g., we keep the quark mass fixed (see the discussion in appendix F).

However, the mapping to the IR asymptotics (in particular to T0 or r1) is completely

different in the two scenarios, which causes the differences between the plots.

Let us then discuss how the structure of figure 5 arises from the background solutions

(see appendix F for a detailed analysis). The main point is that the closer we are to the

thick blue curve (when approaching the curve from the right), the closer the background is

to reaching the IR fixed point, when the tachyon finally grows large and drives the system

away from it. Therefore the backgrounds near the blue curve will be quasiconformal, or

“walking”, so that the coupling λ is approximately constant over a large range of ener-

gies. The mass dependence can be then understood be studying the tachyon EoM and in

particular the tachyon mass at the IR fixed point. Notice that as the red dashed curve of

solutions with zero quark mass ends on the blue curve as x→ xc, quasiconformal behavior

is expected in this region.

To understand the behavior near the blue and red curves it is important to plot the

UV parameter, m, versus the IR parameter T0. We show this in figure 6 for x < xc (left)

and x ≥ xc (right).
19 For x ≥ xc, there is a unique saddle point (regular classical solution)

for each value of the quark mass.

The situation for x < xc is more complex and reflects the fact that the chiral condensate

operator violates the BF bound in the (potential) IR fixed point.20 We see from the left of

figure 6 that for each m > 0, there is a finite number of regular classical solutions that we

19As m and −m are related by a chiral rotation by π, we expect that we can take m ≥ 0. The chiral

rotation is reflected in the background solutions in the symmetry T → −T . Consequently, we can turn the

negative mass solutions of figure 6 to solutions with positive mass |m| by changing T0 → −T0.
20Notice that we have chosen potentials where the fixed point exist even at arbitrary small positive values

of x. For another choice of potentials where the fixed point exist only up to a positive limiting value x∗

(see section 6), the structure is expected to be the one described here at least for x∗ < x < xc, and the

structure in the region x ≤ x∗ can be analyzed numerically.
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will label, by an integer n = 1, 2, . . ., with n = 1 being the rightmost solution in the figure

(the one having the maximum T0).

Understanding of the qualitative shape of the left figure 6 is given by the fact that

for x < xc, T ≪ 1 and λ near the fixed point value λ∗, the approximate solution of

the tachyon is given by T ∼ r2 sin [k log r + φ]. Note that the constant k is fixed for

fixed x but the normalization and φ are determined by the boundary conditions and IR

regularity. Therefore the tachyon starts at the boundary, evolves into the sinusoidal form

for a while, and then at end diverges. Different solutions differ in the region in which they

are sinusoidal, and it is this region that controls their number of zeros. This is explained

in more detail in appendix F.

For the solutions with high label n, the tachyon changes sign several times before

diverging in the IR. As we move to the left toward the vertical blue line in figure 6 (left), a

new zero in the tachyon solution appears every time the mass curve crosses the horizontal

axis. For m = 0 we expect an infinite number of regular solutions for all positive integers

n ≥ 1. The presence of several such solutions reflect the violation of the BF bound, and

are reflecting the Efimov minima seen in other contexts (see [7, 10, 11]). This agrees also

with similar recent observations in [15]. The mass mn below which there are n regular

solutions (from figure 6) scales as mn ∼ e−
2πn
k with k a constant given in (F.2), as shown

in appendix F.

The hint of such multiple regular solutions/saddle points was seen already in [101, 102]

that treated the flavor sector in the quenched approximation. Indeed, a second regular

solution was seen beyond the dominant one. In that case a calculation of the spectrum of

mesons in this second solution indicated that this saddle point was unstable, as the spectra

were tachyonic.

It is interesting to point out that the presence of the Efimov-like tower of regular

solutions is not tied uniquely to the existence of an IR fixed point solution in the landscape

of the bulk theory that violates the BF bound. Even modifications of the potentials that

do not allow this IR fixed point may still have the Efimov tower. The qualitative reason is

that once the bulk theory has a regime that is near critical, this is enough to trigger the

presence of such multiple saddle points. This is indeed the case in [101, 102] where in the

quenched approximation a second solution exists even though there are no such IR fixed

point. We have checked that exactly the same happens here in the probe limit x → 0,

where the fixed point is absent, if the potentials of scenario I are used. Moreover, for the

scenario II the full Efimov tower remains even in the probe limit.

There is a more detailed analysis of the regular solutions in appendix F. The comparison

of the free energies of the various regular solutions is made in section 9.

8.5 Background solutions at vanishing quark mass

To summarize the results of the above analysis, we identified the solutions of the contoured

region of figure 5 as the physical ones. For x < xc we found solutions for all m ≥ 0, whereas

for x ≥ 0 we found that m > 0 so that the solution for m = 0 was absent.
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We will discuss now how the background solutions vary as we move around figure 5

(left). We will start with the massless case, where also an additional special background

exist (for all x), for which the tachyon is identically zero.

8.5.1 Solution with identically vanishing tachyon

Let us start by analyzing the special solution with vanishing tachyon, which is not included

in figure 5. In the absence of the tachyon, the system is otherwise the one studied in [71–73],

but with the dilaton potential Vg replaced by Veff = Vg−xVf0. This potential is guaranteed
to have a maximum, corresponding to an IR fixed point, in the Banks-Zaks region since we

matched it with the QCD β-function. For the choice of eqs. (8.24)–(8.28) the fixed point

actually exists for all 0 < x < 11/2.21

There is a single solution to the equations of motion that reaches the IR fixed point,

described in section E.3 of appendix E. It is similar to the backgrounds studied in [86]

where a β-function inspired by supersymmetry was used. Similar backgrounds were also

studied at finite temperature in [87]. We identify this special solution as the background

corresponding to the chiral symmetry conserving phase, as the vev σ vanishes. It is easy to

construct the background numerically by shooting from the vicinity of the IR fixed point,

e.g., by using the expansions of appendix E.3.

We plot the background for x = 2 and 4 in figure 7, where we fixed the scale R of the

IR expansions (E.48) and (E.49) to one. The geometry is expected to asymptote to AdS

both in the UV and in the IR, reflecting the flow from the IR fixed point to the standard

UV one. Actually A is very closely linear in log r for all r, so that the deviation from AdS

is not visible in the plots. Similar observation was made in [86]. While the solution with

vanishing tachyon exist for all x, we will show in the next section that the other massless

solution which involves a nontrivial tachyon profile and therefore chiral symmetry breaking

(red dashed line in figure 5) has lower free energy whenever it exist, i.e., for x < xc.

Therefore, this background which correspond to a field theory flowing to an IR fixed point,

is the physical one (for massless quarks) only for x ≥ xc, and xc is indeed the edge of the

conformal window.

8.5.2 Solutions having nontrivial tachyon dependence

The backgrounds having vanishing quark mass lie on the red dashed line in figure 5. We

plot the corresponding background as a function of r for a few values of x in figure 8.

As we matched with the IR expansions and chose their scale R to be unity, the IR scale

is approximately fixed to O(1). The changing of the background as the critical value

xc ≃ 3.9959 is approached, is best visible in the solutions of λ (the solid red curves).

The dependence of the solutions on x meets the expectations from field theory. For

x = 2 the solution is “running”: λ has simple and smooth dependence on log r. As x is

increased to 3, a small distortion appears which becomes better visible for x = 3.5. The

solution of λ is developing a plateau at λ ≃ 25, as it approaches a fixed point. Indeed for

21This is also the case for the potential associated to scenario II, described in appendix C. We could also

slightly modify the potential so that the fixed point, disappears for x < x∗ < xc. We have also analyzed

such a case and find only minor differences from those analyzed in detail in this paper.
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Figure 7. The backgrounds with identically vanishing tachyon for x = 2 (left) and x = 4 (right).

The red solid, and blue dashed curves are the values of λ, and A as functions of log(r/ℓ), respectively.
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Figure 8. The background for vanishing quark mass for various values of x (see the labels). The

red solid, blue dashed, and magenta dotted curves are the values of λ, A, and log T as functions of

log(r/ℓ), respectively. The thin lines are the UV and IR expansions of the solutions.

x = 3.9 the coupling constant λ “walks”: it takes an approximately constant value as r

changes by a few orders of magnitude. Such walking backgrounds have been studied in the

context of IHQCD by using a model β-function in the probe limit in [88, 89].

We also note that A (dashed blue curves) depends linearly on log r up to the IR

region so that approximately A ≃ − log(r/ℓ), and the metric is thus very close to the AdS

one, even over the quasiconformal region where λ walks. The tachyon (dotted magenta

curves) is small and decoupled from the evolution of A and λ in the UV and in the walking

region.22 It becomes O(1) (the curve crosses zero) only after the coupling has already

22It is difficult to obtain solutions with the value of mass close enough to zero to produce the (quadratically

vanishing) tachyon dependence of the massless solutions when shooting from the IR due to limitations from

numerical precision. Therefore, we matched the background solution at log r ∼ −8 with a tachyon solution

that was obtained by shooting from the UV and assuming decoupling, and plotted a combination of these

to obtain the truly massless tachyon profile. A similar procedure was required for figure 11 below.
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started to diverge. This agrees with our expectation that the UV behavior, the behavior

in the walking region, and in particular the phase structure is basically independent of the

choices of IR behaviors of the potentials and the form of the tachyon action for large T .

We also show the UV and IR expansions of the various fields, given in eqs. (D.2), (D.9)

of appendix D, and in eqs. (8.29), respectively, as thin lines where possible. These lines are

often poorly visible since they overlap with the background. In the running region (x = 2)

the full solution can be obtained to a good approximation by interpolating between the

expansions. As x increases, the region of validity of the UV expansions is pushed to smaller

log r, and neither UV nor IR expansions work in the walking region that grows as x→ xc.

It is also illustrative to discuss the behavior of the system in terms of the β-functions.

For this we recall that in the absence of the tachyon, potentials and β-functions are linked

according to eqs. (8.18), and (8.19). By using this fact we can quantitatively estimate the

validity of the tachyon decoupling in the UV and in the IR that was discussed above. First,

recall that Vf (λ, T ) vanishes exponentially for large T . Therefore, in accordance with the

discussion of section 6, the behavior of λ and A is described by Vg(λ)−xVf0(λ) (Vg(l)) in the

UV (IR) where T → 0 (T → ∞). Eq. (8.19) gives directly the approximate β-function in the

UV, whereas in the IR we must replace Veff(λ) → Vg(λ) as in the Yang-Mills case [71–73].

We show in figure 9 the β-functions corresponding to the UV (dashed blue curves)

and IR (dotted magenta curves) potentials, obtained by solving eq. (8.19), and compare

them to dλ/dA evaluated along the RG flow of the numerical solution (red solid curves) for

various values of x. First, notice that the x dependence of the effective β-function dλ/dA is

as expected from figure 8: for x = 2 it is qualitatively similar to the Yang-Mills β-function,

and as x approaches xc we find a typical quasiconformal behavior where the fixed point is

almost reached at a finite value of the coupling.

As λ→ 0 the effective β-function dλ/dA matches very well with the expectation from

the tachyon decoupling (the dashed blue curves). Similarly, toward the IR (λ → ∞) the

asymptotics of the red curves are similar to the magenta ones, which were obtained by

taking λ→ ∞. However the convergence towards the decoupling limit (blue curves in the

UV, and magenta ones in the IR) is slower in the IR than in the UV. The main reason

for this is understood by studying figure 8. Since we plot the β-functions as functions

of the coupling λ, and λ diverges in the IR much faster than the tachyon, the tachyon

decoupling as λ → ∞ takes place slowly. This is confirmed in figure 10 by plotting the

factor exp(−aT 2) of the tachyon potential, which controls the tachyon decoupling, as a

function of λ. Indeed this factor approaches the constant value of one quickly in the UV,

whereas the convergence to zero in the IR is slower.

Notice the clear similarity in the λ dependencies of this factor and the β-function

dλ/dA in figure 9.

Finally we plot the effective γ-function

γ

T
=

1

T

dT

dA
=
d log T

dA
(8.30)

along the RG flow against λ and log r in figure 11. When the quark mass is zero, γ/T

approaches−3 in the deep UV (see appendix D.1.1). In the UV region γ/T is approximately

– 41 –



J
H
E
P
0
3
(
2
0
1
2
)
0
0
2

20 40 60 80 100 120
Λ

-120

-100

-80

-60

-40

-20

0
ΒHΛL

x = 2

10 20 30 40 50
Λ

-50

-40

-30

-20

-10

0
ΒHΛL

x = 3

5 10 15 20 25 30 35
Λ

-35
-30
-25
-20
-15
-10
-5

0
ΒHΛL

x = 3.5

5 10 15 20 25
Λ

-25

-20

-15

-10

-5

0
ΒHΛL

x = 3.9

Figure 9. The β-functions for vanishing quark mass for various values of x (see the labels). The

red solid, blue dashed, and magenta dotted curves are the β-functions corresponding to the full

numerical solution (dλ/dA) along the RG flow, the potential Veff = Vg − xVf0, and the potential

Vg, respectively.
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Figure 10. The factor exp(−aT 2) plotted against λ along the RG flow for various values of x. The

red solid, blue dashed, magenta dotted, and green dotdashed curves have x = 2, 3, 3.5, and 3.9,

respectively.

independent of x and increases with λ until it reaches −2 near the value λ ≃ λc where

the fixed point develops as x → xc. This is in line with the discussion of the preceding

sections. In particular, when plotted as a function of log r we see that γ/T is close to −2

in the walking region, corresponding to the saturation of the BF bound. We have checked

that this behavior gets more pronounced as we choose values of x even closer to xc so that

a plateau near the value −2 develops in the left hand plot of figure 11.
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Figure 11. The γ-functions along the RG flow for vanishing quark mass as a function of λ (left)

and log r (right) for various values of x. The red solid, blue dashed, magenta dotted, and green

dotdashed curves have x = 2, 3, 3.5, and 3.9, respectively.

8.6 Backgrounds at generic quark masses

We now discuss the solutions of figure 5 for generic quark masses. As pointed out above,

the massive solutions (the contoured region left of the blue and dashed red lines in figure 5)

exist for all values of x. Except for the modified UV asymptotics of the tachyon, no new

classes of qualitatively different backgrounds with respect to the massless case are found.

However, adding a mass introduces a new scale to the system, which affects the back-

ground in a different way depending on its size and the value of x.23 This effect may be

illustrated by studying the ratio of the UV and IR scales of the background, which mea-

sures how close to the IR fixed point the system comes. We define the scales in term of the

UV and IR expansions, i.e., ΛUV = Λ in eqs. (D.2) and ΛIR = 1/R in eqs. (8.29), which

we have fixed to one.

The dependence of ΛUV/ΛIR on the quark mass in UV units m/ΛUV and on x is de-

picted in figure 12, and meets the expectations from field theory. The left-hand plot shows

the ratio as a function of x for various choices for the quark mass. We see that there is a

qualitative difference between the regions with x < xc and x > xc. For x < xc, chiral sym-

metry breaks spontaneously even for m = 0, and there is some range of small masses where

the background is essentially independent of m. This is best seen on the right hand plot,

where ΛUV/ΛIR levels for small masses for values of x below the critical line (lowest curves).

When the mass grows large enough (essentially larger than the scale of the spontaneous

symmetry breaking), it starts to fix the IR scale directly, and ΛUV/ΛIR decreases. For

x > xc there is no spontaneous chiral symmetry breaking, and the IR scale is determined

smoothly by the value of the mass. From the log-log plot on the right we see that the

dependence of ΛUV/ΛIR on m is a power-law. Naively one could expect that the IR scale is

directly given by the quark mass, m ∼ ΛIR, so that ΛUV/ΛIR ∝ (m/ΛUV)
−1 (which is also

the result one gets by approximating T (r)/ℓ = mr and using the arguments of appendix F).

The nontrivial energy dependence of the quark mass modifies the power from −1 to larger

values, as depicted in figure 4 (right).

23See [119, 120] for an analysis within a different framework.
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Figure 12. Left: The ratio of the UV (ΛUV) and IR (ΛIR) scales as a function of x for m/ΛUV =

10−6, 10−5, . . . , 10 from thin to thick lines (top to bottom). The vertical dashed line is at critical

xc ≃ 3.9959. Right: The ratio of the UV and IR scales as a function of m/ΛUV for x = 2, 3.5, 3.9,

4.25, and 4.5 from thin to thick lines (bottom to top).

9 The free energy

We now analyze the free energy for zero quark mass. In this case we identified two distinct

solutions, one with identically vanishing tachyon and the other with nontrivial tachyon

background. We shall show that the latter one is energetically favorable in the region

where it exists (x < xc). We start with the generic definition of free energy for our action.

The free energy is given by the on-shell Euclidean action plus counterterms (which we

will not need in this article). From (5.5) the Euclidean action takes the form:

S = −(M3N2)

∫

d5x

[√
g

(

R− 4

3

(∂λ)2

λ2
+ Vg(λ)

)

−xVf (λ, T )
√

det (gab + h(λ, T )∂aT ∂bT )

]

. (9.1)

By using the Einstein equations (5.7) we can eliminate R, which leads to

Sos = −(M3N2)

∫

d5x

[

− 2

3
e5A Vg(λ) +

2

3
x e5A Vf (λ, T )

√

1 + e−2A h(λ, T )T ′2 (9.2)

−x
3

e3A h(λ, T )T ′2
√

1 + e−2A h(λ, T )T ′2

]

.

Next, one can solve Vg from (5.8) and (5.9):

e5A Vg(λ) = (3A′ e3A)′ +
x

2
e5A Vf (λ, T )

√

1 + e−2A h(λ, T )T ′2

+
x

2
e5A

Vf (λ, T )
√

1 + e−2A h(λ, T )T ′2
, (9.3)

and inserting this into (9.3) the on-shell action can be integrated:

Sos = 2M3N2

∫

d5x (A′ e3A)′ = 2M3N2 V4
[

A′ e3A
]r0

ǫ
. (9.4)
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Here ǫ and r0 are the UV and IR cutoffs, respectively. In all the backgrounds which we

consider here the contribution from the IR vanishes, so we will drop that term. This is a

matter of consistency of the models as we do not in general expect contribution from IR

singularities or boundaries in well defined holographic models.

Following [71–73] the Gibbons-Hawking boundary term is given by

SGH = 2M3N2

∫

∂M
d4x

√
hK = 8M3N2 V4A

′(ǫ) e3A(ǫ) , (9.5)

where we have used that [71–73] K = 4e−AA′. We obtain the following simple and general

expression for the free energy of the system:

E = 6M3N2 V4A
′(ǫ) e3A(ǫ) . (9.6)

9.1 The free energy difference of the m = 0 backgrounds

The free energy calculated above is obviously divergent as ǫ→ 0, and needs to be regular-

ized. However, different solutions with the same UV boundary conditions (the quark mass

m and the UV scale ΛUV) have the same divergent terms as well as counterterms and differ

only through a finite term which can be extracted from the UV expansions. This is the case

in particular for the two backgrounds having zero quark mass, one with vanishing tachyon

and the other with a nontrivial tachyon solution. we now discuss in detail how the free

energy difference between these two backgrounds can be obtained, by expanding all quanti-

ties as series at the UV singularity r = 0. Since the leading UV free energy behaves as 1/ǫ4,

corrections O(r4) to the behavior of A and λ will possibly contribute to the finite terms.

As discussed above, in the UV the tachyon decouples from the equations of motion for

A and λ. For m = 0, the leading corrections to these equations due to the tachyon are

suppressed by T 2 or e−2AT ′2, i.e., by O(r6). Therefore the coupling to tachyon does not

affect the free energy directly in the massless case, and we can set it to zero.

Let us take

Veff(λ) = Vg(λ)− xVf (λ, 0) = Vg(λ)− xVf0(λ) =
12

ℓ2
[

1 + V1λ+ V2λ
2 + · · ·

]

. (9.7)

The finite contribution to the free energy can be studied by writing

A(r) = A0(r) + r4A1(r) +O(r6) (9.8)

λ(r) = λ0(r) + r4λ1(r) +O(r6)

in close analogy to eqs. (3.9), where Ai(r) and λi(r) have now series expansions in 1/ log r

at r → 0. The expansions of for A0 and λ0 are given in eqs. (D.2). Inserting these as well

as suitable Ansätze for A1 and λ1 in the EoMs of A and λ, and expanding up to O(r4)

we find

A1(r) = Â

[

1− 19

12 log(rΛ)
+ · · ·

]

(9.9)

λ1(r) =
Â

V1

[

−5 +
445V 2

1 − 320V2
36V 2

1 log(rΛ)
+ · · ·

]
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where Λ is the same UV scale that appears in the expansions of A0 and λ0, and Â is

a free parameter. It is recognized as an integration constant of the EoMs that did not

appear in the leading order (O(r0)) UV expansions. Two solutions having the same Λ and

m = 0, but different IR behavior, will have different Â as its value is not fixed by the EoMs

asymptotically in the UV. Inserting the results for A1 and λ1 in the expression (9.6) for

the free energy, we find24

∆E = 15M3N2V4ℓ
3∆Â , (9.10)

where ∆E and ∆Â are the differences between the two solutions in free energy and the

constant Â, respectively.

It is useful to also study the corresponding variation in the β-function. We will actually

use the phase variable defined by

X(r) =
λ′(r)

3λ(r)A(r)
=

β

3λ
. (9.11)

We may again write

X(r) = X0(r) + r4X1(r) +O(r6) . (9.12)

Substituting the expansions (9.8), (9.9) in the definition of X, we identify

X1(r) = Â

[

−15

2
log(rΛ) +

5[80V 2
1 − 64V2 − log[− log(rΛ)](23V 2

1 − 64V2)]

24V 2
1

+ · · ·
]

. (9.13)

By using the logarithmic expansion from above, the result can be expressed in terms of λ:

X(λ) = X0(λ)+
20Â

3V1Λ4
exp

[

log(9V1/8)(23V
2
1 − 64V2)

9V 2
1

]

e
− 32

9V1λλ
14
9
− 64V2

9V 2
1 [1+O (λ)] . (9.14)

Finally, we recall that when the tachyon has decoupled, X satisfies

λX ′(λ) =

[

8 +
3λ

X(λ)

d

dλ
log Veff(λ)

]

X(λ)2 − 1

6
. (9.15)

Indeed it is easy to check that the result (9.14) is consistent with this equation, and that

Â is the integration constant which parametrizes all solutions of the differential equation

for given potential V .

The remaining task is to extract the coefficients Â from the chiral symmetry breaking

(with nontrivial tachyon profile) and conserving backgrounds (with identically vanishing

tachyon) which have zero quark mass, and then use the formula (9.10) to calculate the free

energy difference. Extraction of the coefficients is done by studying the variation X1 of the

phase function, and details are given in appendix G.1.

We find that the chiral symmetry breaking solution is the energetically favorable one

in the region where it exists, i.e., for 0 < x < xc. We plot the free energy difference (setting

M3N2V4 = 1) in figure 13 (solid blue curve).

24In order to obtain the correct numerical factor 15 in eq. (9.10) one needs to follow carefully the

regularization procedure detailed in [76]. Even though their analysis assumes a single scalar field it applies

here without changes since the extra field, the tachyon, is negligibly small in the UV.
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Figure 13. The free energy difference between the chiral symmetry conserving (T ≡ 0) and

breaking (T → ∞ as r → ∞) solutions. Solid blue curve is the difference for the chiral symmetry

breaking solution having a monotonic tachyon with no zeroes, and the dashed red curve is the

difference for the solution having one zero.

Notice that ∆E approaches zero both as x → 0 and as x → xc. In the case x → 0,

we do expect that the effect vanishes as indeed the number of flavors, which controls the

backreaction of the tachyon, vanishes. One expects linear dependence ∆E ∝ x: since the

background configurations behave smoothly as x → 0, the energy difference arises due to

the explicit x dependence in the action and due to its linear effect on the background. The

case x→ xc will be discussed in the next section. For xc < x < 5.5 only one solution with

zero quark mass exists (the one with T ≡ 0), as discussed in section 8, so there is no need

for comparison.

There are also solutions with zero quark mass where the tachyon has one or more

zeroes (see appendix F). We have verified that these solutions have larger free energies

than the one without a tachyon zero. The red dashed line in figure 13 is the free energy

difference between the background with vanishing tachyon and the one with a nontrivial

tachyon solution having one zero. The energy difference between the T ≡ 0 solution and

the solutions having more than one tachyon zeroes is even smaller.

Therefore, for x < xc and m = 0, the standard tachyon solution has the lowest free

energy and the chirally symmetric one, T = 0, has the largest free energy. All other

undulating solutions have free energies that are between these two (and closest to the

T = 0 solution).

For |m| > 0, the standard tachyon solution has the lowest free energy and the non-

standard ones, have higher free energy.

10 Scaling below the conformal window

10.1 BKT scaling of the chiral condensate

We shall now argue that the chiral condensate ∝ σ obeys the BKT [8] or Miransky [9]

scaling behavior,

σ ∝ exp

(

− c√
xc − x

)

. (10.1)
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as x approaches the critical value xc where the solution ceases to exist. This argument

will be supported with numerical results in section 10.3. The ratio of the UV and the IR

energy scales will show similar scaling. This behavior is known to arise both in Dyson-

Schwinger [9, 38] and holographic approaches [7, 12–15, 88, 89]. Indeed, our analysis has

many similarities with both Dyson-Schwinger and earlier holographic approaches, and in

particular with the recent study [15] of a related model.

We shall not give a precise proof but only sketch how the scaling arises. It is enough

to study the region near the UV where the tachyon is small T (r) ≪ 1, so the tachyon

decouples from the EoMs of λ and A. We will neglect the logarithmic corrections to the

tachyon (see appendix D.1.1) which play no role in the scaling argument.

In the deep UV, where the coupling is small λ≪ 1, the tachyon behaves as

T (r) ∼ σr3 . (10.2)

As r increases T stays small, and λ starts to approach the fixed point value λ = λ∗ which

maximizes Vg(λ)− xVf0(λ). The behavior of λ and A in this region is given by the T = 0

asymptotics of section E.3:

λ = λ∗ +O
[

(

r

rUV

)−δ
]

(10.3)

A = − log(r − r0) +A0 +O
[

(

r

rUV

)−2δ
]

(10.4)

where δ is a positive parameter defined in eq. (E.51). This approximation is valid for some

intermediate region rUV ≪ r . rIR, where at the scale rIR the tachyon finally becomes

O(1), and drives the system away from the IR fixed point. We choose x near the critical

value, 0 < xc − x≪ 1. The tachyon IR mass was calculated above in section 8:

∆IR(4−∆IR) = −m2
IRℓ

2
IR = G(λ∗, x) , (10.5)

where

G(λ, x) ≡ 24a(λ)

h(λ)(Vg(λ)− xVf0(λ))
. (10.6)

Keeping formally x fixed while varying λ∗, the right hand side will become equal to

four as λ∗ reaches a critical value λc: G(λc, x) = 4. The scaling behavior will appear as

λ∗ → λc from above, and then also x→ xc. We expand around this point:

∆IR(4−∆IR) = G(λ∗, x) = 4 +
∂

∂λ
G(λc, x)(λ∗ − λc) + · · · ≡ 4 + κ(λ∗ − λc) + · · · . (10.7)

For 0 < λ∗ − λc ≪ 1, we obtain

∆IR ≃ 2± i
√

κ(λ∗ − λc) . (10.8)

The tachyon solution becomes

T (r) ≃ Cfp

(

r

rUV

)2

sin

(

√

κ(λ∗ − λc) log
r

rUV
+ φ

)

. (10.9)
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When λ moves away from the fixed point, while moving towards the UV, it will at some

point become smaller than λc so that the asymptotic solution (10.9) fails. However, as we

shall see, the leading scaling originates from the region where λ∗−λ≪ λ∗−λc, and we need

the solution for smaller λ only to make contact with the deep UV behavior and the definition

of σ. Even for λ . λc, κ(λc − λ) is small for almost the whole range of r with rUV < r.

Therefore, within the this region, it is sufficient to neglect κ(λc − λ) and approximate

T (r) ∝ r2. Further, we introduce an intermediate scale r̂ where λ∗ − λ ∼ λ∗ − λc, and

write the approximation as

T (r) ≃ Ĉ

(

r

rUV

)2

; rUV ≪ r . r̂ , λ . λc (10.10)

T (r) ≃ Cfp

(

r

rUV

)2

sin
(

√

κ(λ∗ − λc) log
r

r̂
+ φ̂

)

; r̂ . r ≪ rIR , λc . λ < λ∗ (10.11)

where we use r̂ instead of rUV as the reference value of the logarithm for later convenience.

For r & rIR there is no obvious way to write a good approximation for the tachyon

solution. However, as we shall see, such an approximation is not necessary for finding the

scaling behavior.

The scaling behavior can be found by matching the tachyon solutions in the different

regions. First, we require that the solutions of eq. (10.2) and (10.10) join approximately

continuously at r ≃ rUV. This gives

Ĉ ∼ σr3UV . (10.12)

Notice that σ is not a free parameter here, but it will later be fixed by the matching

procedure. Further requiring approximate continuity at r ≃ r̂ we find25

Cfp ∼ σr3UV ; φ̂ ∼ 1 . (10.13)

The remaining task is to match with the unknown IR behavior at r ≃ rIR. First, rIR was

defined as the scale where the tachyon becomes O(1) and drives the system away from the

fixed point, so T (rIR) ∼ 1, which fixes rIR in terms of σ:

Cfp ∼ σr3UV ∼
(

rUV

rIR

)2

. (10.14)

Finally, we need to match the solution to T ′(rIR), which is O(1/rIR), since the tachyon

EoM is apparently regular in this region. Notice that we must indeed fix this number

to have a solution that asymptotes to the “good” singularity in the IR. The good IR

asymptotics have one free parameter, the normalization of the tachyon in the IR. This is

however already determined by requiring T (rIR) ∼ 1. Therefore, the argument of the sine

function in (10.11) is basically fixed to a given O(1) number at r = rIR, which gives the

desired BKT scaling:
√

κ(λ∗ − λc) log
rIR
r̂

= O(1) (10.15)

25This matching involves a subtlety which does not affect the scaling (see appendix H).
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so that
rIR
r̂

∼ exp

(

K√
λ∗ − λc

)

, (10.16)

with K positive. Finally, we notice that the connection between r̂ and rUV can be obtained

from (10.3) by using the definition of r̂. This results in a power law:

r̂

rUV
∼ (λ∗ − λc)

− 1
δ (10.17)

which can be neglected as a subleading correction to the exponential scaling. Taking this

into account
rIR
rUV

∼ exp

(

K√
λ∗ − λc

)

∼ exp

(

K̂√
xc − x

)

. (10.18)

The inverse of this scaling result is expected to hold for any ratio of IR and UV energy

scales independently of their precise definitions. By using eq. (10.14) we find the scaling

results for σ:

σ ∼ 1

r3UV

exp

(

− 2K√
λ∗ − λc

)

∼ 1

r3UV

exp

(

− 2K̂√
xc − x

)

. (10.19)

Notice that xc and λc were defined by G(λ∗(xc), xc) = 4 and G(λc, x) = 4, respectively, so

that λ∗ = λc at x = xc. Since G is smooth in this region, λ∗−λc could readily be replaced

by xc − x in the results above (after rescaling K).

In the above discussion we neglected several subtleties. These issues are analyzed in

appendix H. In particular, after more careful analysis, we are able to find explicit results

for K and K̂:

K =
π√
κ
=

π
√

∂
∂λG(λc, x)

; K̂ =
π

√

− d
dxG(λ∗(x), x)

∣

∣

x=xc

. (10.20)

As a final remark, we stress that the above sketch was to a large extent independent of

the details of the model. In particular, we did not need any information on the nonlinear

terms in the tachyon EoM and on how the IR boundary conditions are fixed.

10.2 Scaling of the free energy

Let us then study the scaling of the free energy difference ∆E between the solutions without

and with chiral symmetry breaking (at zero quarks mass), which was studied numerically

in section 9. Linearizing the EoMs for A and λ by writing

A(r) = A0(r) + r4A1(r) +O(r6) (10.21)

λ(r) = λ0(r) + r4λ1(r) +O(r6) ,

we related ∆E with the variation of the leading coefficients of A1 and λ1 when expressed

as a series in log r at r = 0. The source of this variation is the difference in the tachyon

solution, and it can be analyzed in the limit x → xc. The tachyon contributes corrections

O(T 2) and (e2A(T ′)2) to the EoMs of A and λ. For zero quark mass these contributions

are O(r6) in the deep UV and thus decoupled from the variations of eqs. (10.21). However,
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as we have pointed out, in the walking region rUV . r . rIR the tachyon is O(r2), and

therefore the tachyon contributions O(r4) do couple to A1 and λ1.
26 Consequently, we

expect that, e.g.,

r4∆A1(r) ∼ T (r)2 ; rUV . r . rIR , (10.22)

where ∆A1(r) denotes the difference in A1 between the solutions with intact and broken

chiral symmetry. We expect that to a good enough approximation, the size of A1 equals

the coefficient Â defined in eq. (9.9) even in the walking region where the UV series does

not converge.27 Therefore, we obtain

∆Â ∼ σ2r2UV (10.23)

and finally the scaling result for the free energy difference reads

∆E
M3N2V4

∼ ∆Â ∼ σ2r2UV ∼ r−4
UV exp

(

− 4K√
λ∗ − λc

)

∼ r−4
UV exp

(

− 4K̂√
xc − x

)

. (10.24)

10.3 Comparison with numerical results

We now compare the analytic results above to numerical solutions. In figure 14 we plot the

tachyon (left) and the coupling λ (right) as functions of log r in an extreme walking case

with x = 3.992 such that xc − x ≃ 0.004. The numerical tachyon solution with zero quark

mass (blue thick curve on the left) was obtained by gluing together the various solutions

described in appendix G.2. We compare the solution to the analytic approximations of

eqs. (10.2), (10.10) and (10.11), shown as thin green dotted, magenta dashed, and solid

red curves, respectively. The parameters of these curves were chosen such that σ has the

extracted value (see appendix G.2), rUV = 1/ΛUV with ΛUV obtained by fitting λ to its

UV expansion, and r̂ is the value where λ reaches λc. The parameters λc, λ∗ and κ were

calculated directly from the potentials, and φ̂ was given an arbitrary small value. The

agreement between the approximation and the full numerical solution is remarkably good.

We have also compared the expected scaling to the values of chiral condensate that

were extracted from the background (see section 8) as detailed in appendix G.2. The results

for various values of x are the dots in figure 15. The solid line is a fit to the BKT scaling

behavior, given by

log
σ

Λ3
= 8.6− 6.8√

xc − x
, (10.25)

which describes the data well. The analytic result of eq. (10.20) gives for the potentials

used

2K̂ = 6.10 (10.26)

which agrees with the fitted result 6.8 within the precision of the fit. We have checked that

using only a few of the data points with the highest x brings the fitted valued of K̂ closer

to the analytical one.

26The next-to-leading terms of A and λ are still O(r4) in this region since there are no sources which

could change this.
27This can be verified by inserting the Ansätze (10.21) to the EoMs and studying the solutions similarly

as done for X1 in appendix G.1.
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Figure 14. The tachyon log T (left) and the coupling λ (right) as functions of log r for an extreme

walking background with x = 3.992. The thin lines on the left hand plot are the approximations

used to derive the BKT scaling (see the text for explanation), and the vertical dashed (dotted) lines

mark log rUV (log r̂).
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Figure 15. Left: log(σ/Λ3) as a function of x (dots), compared to a BKT scaling fit (solid line).

The vertical dotted line lies at x = xc. Right: the same curve on log-log scale, using ∆x = xc − x.

To guide the eye we added the straight dashed line corresponding to the BKT scaling fit without a

constant term, that was fixed to go through the data point with smallest ∆x.

In figure 16 (left) we compare the ratio of the scales ΛUV = Λ and ΛIR = 1/R as

defined by the UV and IR expansions of the background, respectively, to a BKT scaling fit

with K̂ ≃ 3.4. We also checked that the scaling of eq. (10.14),

σ

Λ3
UV

∼
(

rUV

rIR

)2

∼
(

ΛIR

ΛUV

)2

, (10.27)

is satisfied to a high precision on figure 16 (right).

11 Conclusions

We analyzed a novel class of holographic models (V-QCD), which reproduces the main

features of QCD in the Veneziano limit of large Nf and Nc with x = Nf/Nc fixed.

V-QCD is on one hand based on a successful holographic model of Yang-Mills (YM)

theory, and termed improved holographic QCD (IHQCD). IHQCD contains a dilaton
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line). Right: σ/Λ3 plotted against ΛUV/ΛIR on log-log scale. The line is a fit with the expected

power law, with power two, as shown in ( 10.27).

coupled to five-dimensional gravity background. Its characteristic feature is the holographic

renormalization group flow of the YM coupling constant, identified as the exponential of

the dilaton, as a function of the energy scale, identified roughly as the inverse of the bulk

coordinate. On the other hand, the model builds on earlier work on including matter in

holographic models via flavor branes in the quenched approximation, i.e., neglecting the

backreaction of the brane on the dilaton and the background metric. In particular, we use

the tachyon Dirac-Born-Infeld (DBI) action originally introduced by Sen.

Putting together these two frameworks, the dynamics in the Veneziano limit is modeled

by a system of a dilaton and a tachyon coupled to five-dimensional gravity. The dilaton

action is fixed as in IHQCD. For the tachyon we consider a generalized DBI action,

where the dilaton dependence is parametrized in terms of a few potentials, which are a

priori unknown. We may then constrain the unknown potentials, among other methods,

by requiring that the UV physics implements that of (perturbative) QCD and that the

solutions are regular in the IR.

The essential observation for uncovering the dynamics of the system, is the identifica-

tion of the effective potential. It involves terms from both the dilaton and DBI actions, and

takes the role of the dilaton potential of IHQCD. For large x, the perturbative Bank-Zaks

IR fixed point can, and must be implemented trough the effective potential. Even further

away from the Banks-Zaks region, the solutions can continue to flow to the fixed point in

the IR. Interestingly, the fixed point can also be “screened” by the tachyon dynamics, such

that the theory comes very close to it and the coupling almost freezes, but eventually starts

running again in the deep IR. This kind of backgrounds are termed as the quasiconformal

or “walking” ones.

In this article we did a detailed analysis of the backgrounds and the zero-temperature

phase structure of V-QCD. Our main results are as follows:

• We generalize the holographic RG flow of IHQCD to include the evolutions of

both the dilaton and the tachyon, which are controlled by the holographic β- and

γ-functions, respectively. Remarkably, for potentials that are analytic in the UV,

the interplay of the dilaton and the tachyon automatically results in the anomalous
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dimension of the quark mass having physically reasonable UV asymptotics, i.e., a

power series in the ’t Hooft coupling.

• If we require that the UV expansions of the potentials capture the essential QCD

physics, and choose potentials that join smoothly with their UV expansions, the V-

QCD phase diagram is always the physically relevant one. That is, for zero quark mass

we find a phase transition at x = xc. The conformal window, where the backgrounds

have an IR fixed point, extends from x = xc up to the maximal value x = 11/2

where asymptotic freedom is lost. Below x = xc, chiral symmetry is broken, and the

theory has similar behavior in the deep IR as the QCD we have observed in Nature.

• The edge of the conformal window is stabilized such that the dimension of the quark

mass at the IR fixed point approaches two (the anomalous dimension approaches

one) as the edge is approached. Under reasonable assumptions for the potentials,

we find values of xc within a narrow band around the value xc = 4. High value of

the anomalous dimension is of importance for applications to (walking) technicolor.

• Below xc but close to the edge of the conformal window, we find quasi-conformal or

walking backgrounds.

• Backgrounds for (any) nonzero quark mass exist. In the conformal window the

quark mass triggers chiral symmetry breaking, and below xc introducing the quark

mass affects the scales of the theory in a physically reasonable manner.

• For x > xc, the saddle point solution is always unique. At zero quark mass, the only

regular tachyon solution is the trivial solution signaling unbroken chiral symmetry. At

non-zero quark mass, the solution is still unique, but the tachyon is now non-trivial.

For x < xc there are ∞+1 “regular” saddle point solutions at zero quark mass.

One of them is the trivial tachyon solution with unbroken chiral symmetry. The

others are non-trivial tachyon solutions with a non-negative integer number of zeros

realizing the Efimov minima. We call them Efimov saddle points. It is the solution

with no zeros that is the lowest energy one, signaling chiral symmetry breaking.

At non-zero quark masses, there are still a finite number of saddle point solutions.

The one with lowest energy is that with no zeros.

• Finally, as x approaches xc from below for the backgrounds with zero quark mass,

we show that the chiral condensate, as well as the length of energy range where the

background stays close to the fixed point, obey the characteristic Miransky or BKT

scaling law.
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A General solutions for β and γ

It is not difficult to construct numerically β and γ which solve the partial differential

equations (7.5) and (7.6). We can use the fact that they were derived from a set of

ordinary differential equations. More precisely, the equation have the form

β
δβ

δλ
+ γ

δβ

δT
= Fβ (β, γ) (A.1)

β
δγ

δλ
+ γ

δγ

δT
= Fγ (β, γ) (A.2)

where Fβ and Fγ are independent of the partial derivatives of the β- and γ-functions (and

the dependence on potentials was left implicit).

Now we can apply a standard method for solving first order partial differential equa-

tions (PDEs), which in this case applies even for a pair of PDEs. We first look for curves

along which the system reduces to ordinary DEs. Not surprisingly, such curves coincide

with the holographic RG flow. That is, we can implicitly define such family of curves, by

requiring that each curve (λ(A), T (A)), where A parametrizes the curve, satisfies

λ′(A) = β(λ(A), T (A)) ; T ′(A) = γ(λ(A), T (A)) . (A.3)

Then we notice that the differential operators in (A.1) and (A.2) become derivatives along

the curves:

d

dA
β(λ(A), T (A)) = Fβ (β(A), γ(A)) ;

d

dA
γ(λ(A), T (A)) = Fγ (β(A), γ(A)) . (A.4)

Further, the equations along the curves are essentially in one-to-one correspondence with

the system (5.8)–(5.11). Indeed, the original system of DEs can be formally recovered

be eliminating the β and γ functions by using eqs. (A.3). Therefore, any solution of the

original system satisfies the PDEs along the curve (λ(r), T (r)) that it defines.

As the final step of the method, we notice that the PDEs only depended on the

derivatives of β and γ along the curves. The derivatives perpendicular to the curves

can be freely chosen. Therefore, any (continuously parametrized) family of curves which

satisfies (A.3) will define a solution to the PDEs in some region of the (λ, T )-plane. That is,

the general solution to the PDEs is given by the planes that the solutions of eqs. (5.8)–(5.11)

draw in (β, λ, T ) and (γ, λ, T )-spaces as the boundary conditions to the equations are varied

in an arbitrary manner.

Remarkably, the amount of degrees of freedom of the solution matches with the expec-

tation for a system of two first order PDEs, for which the solution should depend on two

arbitrary functions. Since β, γ, λ, and T are all invariant under the symmetry of (8.4),
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the number of integration constants in the system (5.8)–(5.11) which are relevant for the

solution of PDEs is three.

A generic one-dimensional family of these parameters, and consequently a generic

solution to the PDEs, can be defined by giving the dependence of two of these in terms of

the third one which makes two arbitrary functions.

We have demonstrated how the boundary conditions of the PDEs are mapped to those

of the original set of EoMs. Now the analysis of the solutions of the EoMs (see appendices D

and E) suggests at least two natural ways to choose special one-parameter families of the

boundary conditions, and to define special solutions to the PDEs.

1. Require that the solutions to EoMs end in the “good” IR singularity of section E.2.2

(with varying quark mass).

2. Require the more generic IR singularity of section E.2.1 and keep the quark

mass fixed.

(In the second case, the “good” IR singularity is expected to arise as some limit of the

more generic IR behavior so that it appears at a boundary of the region in (λ, T )-space

where the β and γ functions are defined.)

B A coordinate transformation

It turns out that it is convenient to solve the system numerically using A as a coordinate

instead of r. Therefore, we present the system after this transformation:

12− 6q̇

q
+

4λ̇2

3λ2
= q2Vg(λ)− q2x Vf (λ, T )

√

1 +
h(λ, T ) Ṫ 2

q2
(B.1)

12− 4λ̇2

3λ2
= q2Vg(λ)−

q2x Vf (λ, T )
√

1 + q−2h(λ, T ) Ṫ 2

λ̈

λ
+

4λ̇

λ
− q̇

q

λ̇

λ
− λ̇2

λ2
=

3

8
q2λ



−dVg
dλ

+ x

√

1+q−2h Ṫ 2
∂Vg
∂λ

+
x Ṫ 2

2q2
√

1+q−2h Ṫ 2

∂h

∂λ
Vf





T̈ + 4Ṫ − q̇

q
Ṫ = −h Ṫ

3

q2

[

4 + λ̇
∂

∂λ
log(

√
h Vf )

]

+ Ṫ 2 ∂

∂T
log

Vf√
h

−Ṫ λ̇ ∂

∂λ
log (hVf ) +

q2

h

∂

∂T
log Vf

where the dots are derivatives with respect to A and we defined

q(A) = eA
dr

dA
. (B.2)

C Examples of explicit potential choices

We will construct explicit examples of potentials, which give physically reasonable back-

grounds. We consider an Ansatz for Vf of the form

Vf (λ, T ) = Vf0(λ)e
−a(λ)T 2

, (C.1)
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and assume that h does not depend on T . First, we expect in the UV

Vg(λ) = V0 + V1λ+ V2λ
2 + · · · (C.2)

Vf (λ, T = 0) = Vf0(λ) =W0 +W1λ+W2λ
2 + · · · (C.3)

The potentials must also produce the good kind of IR singularity discussed in ap-

pendix E.2.2 with P = 1/2 [71–73], which constrains the asymptotics of Vg to

Vg(λ) ∼ λ4/3
√

log λ ; λ→ ∞ (C.4)

(assuming that Vf0 plays no role in the IR for the chiral symmetry breaking solution as

tachyon and/or λ diverge so that exp(−a(λ)T 2) tends to zero).

In addition, the IR behavior of Vf0 should be chosen such that the fixed point (max-

imum) of Vg(λ) − xVf0(λ), which is guaranteed to be present at large x → 11/2 if we fix

the small λ series of the potential appropriately, continues to exists up to sufficiently low

x. This is most easily achieved if Vf0 diverges faster than Vg as λ → ∞, so that the fixed

point exists for all x. Another possibility, mentioned in section 6, is that the fixed point

exist only for x ≥ x∗, where x∗ > 0 is relatively small. We have checked that choosing such

potentials does not change any results at qualitative level, and do not discuss this choice

further here. We also require that the potentials are analytic at λ = 0. A simple Ansatz

that meets these requirements and involves free coefficients up to two-loop order is

Vg(λ) = V0 + V1λ+ V2
λ2

(1 + λ/λ0)2/3

√

1 + log(1 + λ/λ0) (C.5)

Vf0(λ) = W0 +W1λ+W2λ
2 . (C.6)

Notice that the AdS radius

ℓ =

√

12

V0 − xW0
(C.7)

must be well defined for all x up to x = 11/2, which sets an upper bound for W0 for given

V0. We also expect Vf to be positive at small λ,28 as can be seen from the probe calculation

and analyzed in [67].

Therefore, we take

0 ≤W0 ≤
2

11
V0 . (C.8)

However, as discussed in appendix D.1.1, the sum of the anomalous dimensions of the quark

mass and the chiral condensate is not equal to 4 if W0 = 0 (then δ = 1 in appendix D.1.1).

Therefore, we discard this option. Notice also that if we saturate the upper limit with

W0 = 2
11V0, the AdS radius diverges in the Banks-Zaks limit x → 11/2 unless we choose

an x-dependent V0. Notice also that (C.8) assumed a constant W0. In the generic case of

x-dependent W0 we need to require instead that 0 < W0 < V0/x for all values of x within

the range 0 < x < 11/2.

28Negative W0 is also problematic since, at least for small |W0|, it generates a zero of Vf , which causes

the tachyon solution to become singular.

– 57 –



J
H
E
P
0
3
(
2
0
1
2
)
0
0
2

In addition, we can fix the coefficients Vi,Wi by mapping to the field theory β-functions

as

Vg(λ) =
12

ℓ20

[

1 +
8

9
bYM
0 λ+

23(bYM
0 )2 − 36bYM

1

81
λ2 + · · ·

]

(C.9)

Vg(λ)− xVf0(λ) =
12

ℓ2

[

1 +
8

9
b0λ+

23b20 − 36b1
81

λ2 + · · ·
]

. (C.10)

Here the (scheme independent) QCD β-function in the Veneziano limit with vanishing

quark masses up to two-loop order are

b0 =
2

3

11− 2x

(4π)2
; b1 = −2

3

34− 13x

(4π)4
(C.11)

and bYM
i = bi|x=0. Setting V0 = 12 andW0 = 12/11, which lies in the middle of the allowed

region of eq. (C.8), we obtain

V1 =
44

9π2
V2 =

4619

3888π4
; (C.12)

W1 =
4(33− 2x)

99π2
W2 =

23473− 2726x+ 92x2

42768π4
. (C.13)

Further, we choose λ0 = 8π2 to prevent the higher order terms in the UV expansion of the

potentials from growing unnaturally large.

In addition, we need to choose the functions a(λ) and h(λ) appropriately. As discussed

in section 8 and in appendix D.1.1, we must have

h(λ)

a(λ)
=

2ℓ2

3
(1 + h1λ+ · · · ) (C.14)

Here the coefficient h1 can be matched with the one-loop anomalous dimension of the quark

mass, which reads in the Veneziano limit

γm(λ) =
3

(4π)2
λ+ · · · (C.15)

By matching with eq. (D.10) from appendix, we obtain

− 3

(4π)2
=

9

8

[

4

3

8

9
b0 +

4

3
h1

]

(C.16)

from which

h1 = −115− 16x

216π2
. (C.17)

The IR behavior of the functions h(λ) and a(λ) is linked to the tachyon behavior in

the IR for the solution which breaks chiral symmetry. They are discussed in detail in

appendix E.2.2, where essentially only two different cases, which are consistent with the

good IR singularity, are found. These possibilities are produced by the following choices.
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I We can choose the function a(λ) to be constant, and the function h(λ) to have power-

law IR asymptotics:

h(λ) =
1

(1− 3h1

4 λ)4/3
; a(λ) = a0 =

3

2ℓ2
=

3

22
(11− x) , (C.18)

which corresponds to the special case of ρ = 4/3 and σ = 0 in appendix E.2.2. In

this case the tachyon diverges exponentially,

T (r) ∼ T0 exp

[

81 35/6(115− 16x)4/3(11− x)

812944 21/6
r

R

]

(C.19)

as r → ∞. Here R is the IR scale of the solutions which is defined by

eqs. (E.18), (E.20) and (E.21). T0 is the only free parameter.

II The other choice is practically a generalization of the first one. It has a simple form

of h(λ), but more complicated a(λ):

h(λ) =
1

(1 + λ/λ0)4/3
; a(λ) =

3

22
(11− x)

1− h1λ+ h2λ
2

(1 + λ/λ0)4/3
, (C.20)

so that ρ = 4/3 and σ = 2/3 in appendix E.2.2. The extra term proportional to h2
was added to make σ positive. We choose its coefficient to be small, h2 = 1/λ20. The

tachyon behaves as

T (r) ∼ 27 23/431/4√
4619

√

r − r1
R

(C.21)

for large r. Here r1 is a free parameter.

We have checked that both scenarios lead to qualitatively similar results. In the nu-

merical calculations we use, for definiteness, the choice I, unless stated otherwise.

D UV behavior

In this appendix we shall discuss the UV behavior of the system (5.8)–(5.11) in general.

This analysis should be compared to that carried out in [71–73, 76] in the absence of the

tachyon backreaction. Recall that apart from the two degrees of freedom of the transfor-

mation (8.4), the solutions contain three integration constants. In the discussion below,

the degrees of freedom refer to these three “nontrivial” constants.

We shall not discuss the most general behavior of the solutions, but make some phys-

ically motivated assumptions. In particular, we restrict ourselves to the potentials Vg and

Vf which are bounded as λ → 0, and which are smooth at any finite λ. In general we

are interested two types of potentials: ones that start from a constant value at λ = 0, are

monotonic as λ increases, and approach +∞ as λ→ ∞, and ones that start at a constant

value at λ = 0, increase until they reach a maximum at some λ = λ∗, and thereafter

monotonically decrease to −∞ as λ → ∞. This should be kept in mind while reading

the analysis below, as some of the arguments below may fail for more generic potentials,

even though no assumptions are listed explicitly. Further, we mostly restrict to effective

β-functions βeff = dλ/dA which are negative.
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D.1 Generic behavior

D.1.1 The UV AdS boundary at λ = 0

Near the standard UV singularity, the tachyon must behave schematically as T (r) ∼ mr+

σr3 whereas the other fields have a logarithmic dependence on r. Therefore the tachyon

decouples asymptotically as r → 0, and we may analyze its UV behavior by first solving A

and λ with T = 0 and then by analyzing the tachyon EoM for this background.

Asymptotic behavior of A and λ. We take

Veff(λ) = Vg(λ)− xVf (λ, 0) =
12

ℓ2
[

1 + V1λ+ V2λ
2 + · · ·

]

. (D.1)

Then the (leading) UV expansions of A and λ can be written as

A(r) = − log
r

ℓ
+

4

9 log(rΛ)
(D.2)

+

1
162

[

95− 64V2

V 2
1

]

+ 1
81 log [− log(rΛ)]

[

−23 + 64V2

V 2
1

]

log(rΛ)2
+O

(

1

log(rΛ)3

)

V1λ(r) = − 8

9 log(rΛ)
+

log [− log(rΛ)]
[

46
81 − 128V2

81V 2
1

]

log[rΛ]2
+O

(

1

log(rΛ)3

)

.

Notice that they contain no free parameters (in addition to Λ). In fact, after using the

equations of motion there is one degree of freedom left in the coefficients of the above

expansion, but as it turns out, this freedom can be eliminated by rescaling Λ. We have

removed this extra parameter by requiring that the coefficient of the 1/(log rΛ)2 term in

the expansion of λ vanishes.

Tachyon UV asymptotics. We take

Vf (λ, T ) = e−a(λ)T 2

Vf (λ) (D.3)

and parametrize

Veff(λ) = Vg(λ)− xVf (λ, 0) =
12

ℓ2
[

1 + V1λ+ V2λ
2 + · · ·

]

(D.4)

xVf (λ) = λδ
[

W0 +W1λ+W2λ
2 + · · ·

]

h(λ)

a(λ)
=

2ℓ2

3

[

1 + h1λ+ h2λ
2 + · · ·

]

(D.5)

where δ is a nonnegative integer. Here the leading coefficient of h/a was already fixed in

order to have the correct UV mass of the tachyon [91]. We further assume that

h(λ) = λξ(1 +O(λ)) . (D.6)

It is enough to study the linear terms in the tachyon EoM, which read

T ′′(r) +

[

− 3− δ + ξ

log(rΛ)
+O

(

1

log(rΛ)2

)

]

T ′(r)
r

(D.7)

+

[

3 +
8(h1+ V1)

3V1 log(rΛ)
+O

(

1

log(rΛ)2

)

]

T (r)

r2
= 0 .
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From this, we would naively expect a solution of the form

T (r) ∼ mr (1 +O (1/ log r)) + σr3 (1 +O (1/ log r)) , (D.8)

i.e., the logarithmically suppressed corrections to the EoM show up as logarithmically

suppressed corrections to the functions. However, this is not the case: an Ansatz for the

solution which assumes this kind of corrections fails. The correct asymptotics reads

1

ℓ
T (r) =mr(− log(rΛ))

4
3
− δ

2
− ξ

2
+

4h1
3V1

[

1 +
C1 + C2 log(− log(rΛ))

log(rΛ)
+O

(

1

log(rΛ)2

)]

(D.9)

+σr3(− log(rΛ))
− 4

3
+ 3δ

2
+ 3ξ

2
− 4h1

3V1

[

1 +
D1 +D2 log(− log(rΛ))

log(rΛ)
+O

(

1

log(rΛ)2

)]

where Ci and Di are computable functions of δ, ξ, h1, V1, V2, W1, and W2.

The “surprising” logarithmic power corrections in eq. (D.9) can actually be identified

as the nontrivial running of the quark mass and the condensate in the UV, which arises

as their anomalous dimensions are different from zero. To make this explicit, we calculate

the gamma function T ′/A′ in the UV. For m 6= 0 it is dominated by the linear tachyon

solution:

γ

T
=

T ′

TA′ = −1−
4
3 − δ+ξ

2 + 4h1

3V1

log(rΛ)
+O

(

1

log(rΛ)2

)

(D.10)

whereas for m = 0 we find

γ

T
= −3 +

4
3 − 3(δ+ξ)

2 + 4h1

3V1

log(rΛ)
+O

(

1

log(rΛ)2

)

. (D.11)

The next-to-leading terms in (D.10) and (D.11) are mapped to the one-loop anomalous

dimensions of the quark mass and the chiral condensate in QCD, respectively. Since they

should add up to zero, we must have δ + ξ = 0. The easiest way to satisfy this is to take

δ = 0 = ξ. In particular, the expression h(λ) = λ−4/3 with ξ = −4/3, which was found in

the probe limit [71–73], does not work, since δ was required to be an integer to ensure that

the β-functions have power series with integer powers at λ = 0.

Finally, it is easy to verify that the UV expansion presented here match with those of

section 7.1, which were derived by using the holographic beta functions.

D.1.2 A bounce-back at finite λ

A bounce-back may take place when the potential Veff(λ) = Vg(λ) − xVf (λ, T = 0) has

a maximum at some λ = λ∗ signaling the presence of an fixed point, and V ′(λ) < 0 for

λ > λ∗. If the tachyon is sufficiently small, the effective β-function dλ/dA hits zero, and

becomes positive when the system is evolved towards the UV. Therefore the coupling has a

finite minimum (> λ∗) and the above “standard” UV asymptotics at λ→ 0 is not reached.

All fields are analytic at the point where λ′ = 0. The bounce-back behavior is found in the

white regions of figure 5. Examples of the β and γ-functions evaluated along the RG flow

for the bounce-back scenario are shown as the dotted curves in figure 17 in appendix F.
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D.2 Special case: UV fixed point at finite λ

We have identified one special UV asymptotics, which is found as a limiting case between

the two generic behaviors discussed above (the blue curve of figure 5). In this case the

asymptotic solution is expected to depend on two integration constants. The solution

terminates as the β-function dλ/dA approaches zero at the maximum λ∗ of the effective

potential Veff(λ) = Vg(λ) − xVf (λ, T = 0). This happens at fixed value of r = r∗ where

A also diverges and λ approaches λ∗ from above. Examples of the β and γ-functions

evaluated along the RG flow with this UV fixed point are shown as the thick blue curves

of the middle and right columns of figure 17 in appendix F.

Depending on the value of the tachyon mass at the fixed point (see section 8.3), the

asymptotics may be written in two different forms. Let us recall the definition of the

dimension ∆ at the fixed point:

∆(4−∆) =
24a(λ∗)

h(λ∗)Veff(λ∗)
. (D.12)

When x > xc the right hand side of the definition is smaller than 4 so that there are

two real roots ∆ = ∆±. The geometry approaches the AdS one near the fixed point (which

we place at the origin, r∗ = 0, by using translation symmetry),

A(r) = − log r + log ℓ∗ +A0(Λr)
2∆− + · · · (D.13)

λ(r) = λ∗ + λ0(Λr)
2∆− + · · · (D.14)

T (r) = T0(Λr)
∆− + · · · , (D.15)

where ∆− is the smaller root, ℓ2∗ = 12/Veff(λ∗), and the constants A0, λ0, and T0 satisfy two

constraints which can be solved from the EoMs (5.8)–(5.11). There are two free parameters

which can be taken to be the coefficients of the tachyon solutions with the dimensions ∆±.
The solution associated to ∆+ will appear at the next-to-leading order only if we choose

the coefficient T0 of the above solution to vanish.

When x < xc we have two complex roots ∆± ≡ 2± ik. Now the asymptotics reads

A(r) = − log r + log ℓ∗ + (Λr)4
[

A1 + Â1 sin (2k log(Λr) + φA)
]

+ · · · (D.16)

λ(r) = λ∗ + (Λr)4
[

λ1 + λ̂1 sin (2k log(Λr) + φλ)
]

+ · · · (D.17)

T (r) = T0(Λr)
2 sin (k log(Λr) + φT ) + · · · . (D.18)

The coefficients in the next-to-leading terms for λ and A can be solved from the

EoMs (5.8)–(5.11) by inserting the tachyon asymptotics. The free parameters are T0 and

φT in this case.

E IR behavior

In this appendix we discuss the IR behavior of the system (5.8)–(5.11) in general. As above,

we restrict to simple potentials and to cases where the β-function dλ/dA takes negative
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values in the vicinity of the IR singularity. The IR structure is much richer than the UV

one, mostly because there are much less obvious constraints on the potentials.

We shall discuss here both generic and special IR asymptotics. Of these, the most

interesting ones for us will be the the special ones that depend only on one free parameter

(excluding trivial reparametrization symmetries). They can be identified as the “good” or

acceptable or repulsive, IR singularities, [71–73, 76, 121]. Examples of such singularities

are identified below in section E.2.3 partially based on the analysis of section E.2.2.

E.1 Generic cases

There are two generic IR asymptotics which in fact do not involve divergences of any of

the fields. Therefore, they also appear independently of the details of the potentials to a

large extent. They are not acceptable asymptotics.

E.1.1 Divergence of the derivative of the tachyon

A typical, generic IR behavior is similar to what was found in the probe limit in [71–73],

where the tachyon is regular but its derivative diverges. Indeed, the Ansatz

T (r) = T∗ + T1
√
r∗ − r + T2(r∗ − r) + · · · (E.1)

A(r) = A∗ +A1(r∗ − r) +A2(r∗ − r)3/2 + · · · (E.2)

λ(r) = λ∗ + λ1(r∗ − r) + λ2(r∗ − r)3/2 + · · · (E.3)

solves the equations of motion (5.8)–(5.11) in general. We do not present the complicated

constraint equations which follow for the constants in the expansions, but it is not difficult

to check that the solution has three independent integration constants and is therefore

generic. Since none of the fields diverges at r = r∗, it is natural to take all the potentials

to be analytic at the point of expansion, and the solution is expected to exist to a large

extent independently of the choices for them.

Notice also that there is no real singularity at r = r∗: one can make a coordinate

transformation such that all fields are analytic in the vicinity of this point. A natural

choice that realizes this is to use T as the coordinate. Of course, this leads to all fields

being double-valued functions of r, with the two branches having the same absolute value

of T1 but opposite signs. If this is allowed, it is not hard to find analytic solutions which,

for example, start at a UV singularity at λ = 0, bounce back at a point where the tachyon

derivative diverges, and return to another singularity at λ = 0.

E.1.2 A bounce-back as dλ/dA→ 0

There is also a three-dimensional space of solutions where the coupling reaches a maximum

value, and then starts to decrease with decreasing A so that the β-function dλ/dA becomes

positive. All fields are analytic in r at the point where the β-function is zero. We have not

checked how the solutions continue to evolve in the region of positive β-function.
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E.2 Special IR singularities

In addition to the generic IR behaviors discussed above, we have identified several special

IR singularities, where the fields A and λ diverge. Note that above, the divergence of the

tachyon derivative was proportional to the parameter T1, which could take both positive

and negative values. Solutions with arbitrary small |T1| also exist, as well as the limit

T1 → 0 where the solution, which in general ends in the divergence of A and λ rather than

T . Therefore we expect that spaces of generic solutions with positive and negative T1,

respectively, will be separated by a subspace of solutions with singularity in the IR. The

behavior of the system in this case depends strongly on the asymptotics of the potentials.

However, the tachyon often decouples asymptotically from λ and A, in particular if the

tachyon diverges in the IR, which is the expected behavior for physically relevant singular-

ities [91, 101, 102]. Here we shall assume that the decoupling takes place, since completely

general classification of the singularities seems daunting.

As the tachyon decouples, the classification of singularities for A and λ follows earlier

studies [71–73, 76]. We shall review the results here for clarity. Assuming that the tachyon

tends to T0 in the IR, the effective potential that drives the metric and the coupling in the

IR is

VIR(λ) = Vg(λ)− xVf (λ, T0) (E.4)

where T0 can be infinite in which case VIR(λ) = Vg(λ). We parametrize

VIR(λ) = λ2Q (log λ)P
(

V0 +
V1

log λ
+

V2
(log λ)2

+ · · ·
)

(E.5)

as λ → ∞. The equations of motion are eqs. (5.8) and (5.9) with T (r) ≡ T0 so that

T ′(r) = 0. There are two types of singularities (see [76]): “generic” ones where

X =
1

3λ
β =

1

3λ

dλ

dA
→ −1 (E.6)

in the IR, and “special” ones where X → −3
4Q.

E.2.1 Generic metric singularity

The generic singularities exist for Q ≤ 4/3 and depend on one free parameter. The system

is solved by the Ansatz

A =
1

3
log δr − logR+A1δr

(8−6Q)/3(− log δr)P + · · · (E.7)

λ =
1

δr

(

λ0 + λ1δr
(8−6Q)/3(− log δr)P + · · ·

)

(E.8)

where

δr = (r∗ − r)/R (E.9)

is the “conformally invariant” distance from the singularity, λ0 is the free parameter, and

the dropped terms are suppressed by 1/ log δr. Plugging this in the equations of motion,

A1 =
3V0λ

2Q
0

88− 114Q+ 36Q2
(E.10)

λ1 = − 27(2Q− 1)V0λ
2Q+1
0

16 (44− 57Q+ 18Q2)
. (E.11)
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For Q = 4/3 the singularity exists if P < 1. In this case the asymptotics reads

A =
1

3
log δr − logR+

V0λ
8/3
0

3(1 + P )
(− log δr)P+1 + · · · (E.12)

λ =
1

δr

(

λ0 −
5V0λ

11/3
0

8(1 + P )
(− log δr)P+1 + · · ·

)

. (E.13)

E.2.2 Special metric singularity

This kind of singularity exist for 0 < Q < 4/3 so that the asymptotic value −4Q/3 of

X lies between zero and one. We need to require that the potential is asymptotically

positive, V0 > 0. The solution does not involve any integration constants in addition to the

ones linked to the reparametrization symmetry, which suggest that when combined with a

proper tachyon solution, acceptable IR asymptotics can be identified.

If 2/3 < Q < 4/3 we find a singularity at finite value r∗ of r:

A =
1

9Q2/4− 1
log δr − logR+O (1/ log δr) (E.14)

λ = − Q

Q2 − 4/9
log δr +

1

2Q

[

2 log 2 + (1− 2P ) log 3 + (P − 2) log
(

9Q2 − 4
)

(E.15)

+ log
(

16− 9Q2
)

− P logQ− P log(− log δr)− log V0

]

+O (1/ log δr) ,

where again δr = (r∗ − r)/R. Here R and r∗ are the integration constants which reflect

the reparametrization symmetry, but no other free parameters appear.

If 0 < Q < 2/3 similar formulas hold for r → ∞:

A = − 1

1− 9Q2/4
log r̂ − logR+O (1/ log r̂) (E.16)

λ =
Q

4/9−Q2
log r̂ +

1

2Q

[

2 log 2 + (1− 2P ) log 3 + (P − 2) log
(

4− 9Q2
)

(E.17)

+ log
(

16− 9Q2
)

− P logQ− P log(log r̂)− log V0

]

+O (1/ log r̂) ,

where now r̂ = (r − r0)/R.

If Q = 2/3, and P < 1, there is a singularity at r = ∞. The asymptotic solution reads

A = −
(

r − r0
R

)α

+A0 −
1

2

P

1− P
log

R

r − r0
+

5

6
+
P

4
+

1

2
P log

3

2
+

2V1
3PV0

(E.18)

+
−52P 2V 2

0 + 4P 3V 2
0 + 27P 4V 2

0 + 64V 2
1 − 64PV 2

1 + 128PV0V2
288P (1 + P )V 2

0

(

R

r − r0

)α

+ · · ·

log λ = +
3

2

(

r − r0
R

)α

− 5

4
− 3P

8
− V1
PV0

(E.19)

+
−20P 2V 2

0 − 40P 3V 2
0 + 9P 4V 2

0 − 64V 2
1 + 64PV 2

1 − 128PV0V2
192P (1 + P )V 2

0

(

R

r − r0

)α

+ · · ·

where

α =
1

1− P
(E.20)

R =
2P 31−P

(1− P )eA0
√
V0

. (E.21)

– 65 –



J
H
E
P
0
3
(
2
0
1
2
)
0
0
2

As pointed out in [71–73], this special case produces a good match with the IR physics

of QCD, in particular if we choose P = 1/2. We will confirm below that the potentials

of the tachyon action can be chosen such that the tachyon asymptotics also meets all

requirements known to us, and the produced singularity is of the “good” kind. We will

use these singularities in our analysis, and the above formulas will be used to fix the IR

boundary conditions for the numerical solutions.

If Q = 2/3, and P > 1, we find a singularity at finite value r = r∗ of the coordinate.

The asymptotics transforms to

A = −
(

R

r∗ − r

)ᾱ

+A0 −
1

2

P

1− P
log

R

r∗ − r
+

5

6
+
P

4
+

1

2
P log

3

2
+

2V1
3PV0

(E.22)

+
−52P 2V 2

0 + 4P 3V 2
0 + 27P 4V 2

0 + 64V 2
1 − 64PV 2

1 + 128PV0V2
288P (1 + P )V 2

0

(

r∗ − r

R

)ᾱ

+ · · ·

log λ = +
3

2

(

R

r∗ − r

)ᾱ

− 5

4
− 3P

8
− V1
PV0

(E.23)

+
−20P 2V 2

0 − 40P 3V 2
0 + 9P 4V 2

0 − 64V 2
1 + 64PV 2

1 − 128PV0V2
192P (1 + P )V 2

0

(

r∗ − r

R

)ᾱ

+ · · ·

where ᾱ = 1/(P − 1) and A0 is related to R as in eq. (E.21).

Finally, for Q = 2/3 and P = 1 the metric factor A diverges exponentially as r → ∞,

A = − exp

(

r − r0
R

)

− logR+
r − r0
2R

+
1

2
log 6− 1

2
log V0 +

13

12
+

2V1
3V0

(E.24)

+
128V2 − 21V0

576V0
exp

(

−r − r0
R

)

+ · · ·

log λ = +
3

2
exp

(

r − r0
R

)

− V1
V0

− 13

8
+

−51V0 − 128V2
384V0

exp

(

−r − r0
R

)

+ · · · . (E.25)

E.2.3 Tachyon behavior

To complete the analysis, one should insert each of the above asymptotics to the tachyon

EoM and check what the tachyon asymptotics is for various choices of the potentials Vf
and h, and start looking for the “good” kind of singularities. Once the potentials are

fixed, one can check if a solution, which is consistent with the assumption that the tachyon

decouples, indeed exists. If it does, it can depend on one or two additional parameters.

For the good, fully repulsive singularities the number of free parameters (excluding those

related to the reparametrization symmetry) is equal to one, i.e., we must have a special

metric singularity combined with a one-parameter tachyon asymptotics. In addition we

should require that the tachyon diverges in the IR, since that kind of solutions have bulk

flavor anomalies similar to those of QCD [91, 101, 102].

Here we shall restrict to the special metric IR singularity with Q = 2/3 and P < 1,

since it is expected to include the most interesting cases due to additional constraints from

confinement and excitation spectra [71–73]. We parametrize

Vf (λ, T ) = Vf0(λ) exp
(

−a(λ)T 2
)

; h = h(λ) . (E.26)
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With this parametrization, the tachyon EoM reads

T ′′ + F1T
′ + F2T + F3T

′3 + F4T
′2T + F5T

′T 2 + F6T
′3T 2 = 0 (E.27)

where

F1 = 3A′ + λ′
d

dλ
log(h(λ)Vf0(λ)) ; F2 =

2a(λ)e2A

h(λ)
; (E.28)

F3 = h(λ)e−2A

[

4A′ + λ′
d

dλ
log(

√

h(λ)Vf0(λ))

]

; F4 = 2a(λ) ; (E.29)

F5 = −λ′da(λ)
dλ

; F6 = −e−2Ah(λ)λ′
da(λ)

dλ
(E.30)

and the primes are derivatives with respect to r. Notice that the last two terms vanish if

a(λ) is constant.

We consider generic power-law asymptotics

h(λ) ∼ h0λ
−ρ ; a(λ) ∼ a0λ

σ ; Vf0(λ) ∼W0λ
τ (E.31)

of the potentials at large λ, and introduce a shorthand notation for the asymptotic behavior

in (E.18)–(E.20):

A = −
(

r − r0
R

)α

+
α− 1

2
log

r − r0
R

+Ac +O
(

r − r0
R

)−α

(E.32)

log λ =
3

2

(

r − r0
R

)α

+ λc +O
(

r − r0
R

)−α

(E.33)

where we set r0 = 0. Then the leading behavior of the coefficients Fi at large r is

F1 ∼ −3α(2 + ρ− τ)

2r

( r

R

)α
(E.34)

F2 ∼ 2a0e
2Ac+ρλc+σλc

h0

( r

R

)α−1
exp

[(

3

2
ρ+

3

2
σ − 2

)

( r

R

)α
]

(E.35)

F3 ∼ −h0α(16− 6τ + 3ρ)e−2Ac−ρλc

4R
exp

[(

2− 3

2
ρ

)

( r

R

)α
]

(E.36)

F4 ∼ 2a0e
σλc exp

[

3σ

2

( r

R

)α
]

(E.37)

F5 ∼ −3a0ασe
σλc

2r

( r

R

)α
exp

[

3

2
σ
( r

R

)α
]

(E.38)

F6 ∼ −3a0h0ασe
−2Ac−ρλc+σλc

2R
exp

[(

2 +
3

2
σ − 3

2
ρ

)

( r

R

)α
]

. (E.39)

For σ = 0 the leading terms of F5 and F6, given above, become zero. If a(λ) is

constant for all λ, these terms actually vanish identically. If a(λ) only asymptotes to a

constant value, the leading behavior of F5 and F6 is determined by the next-to-leading

term in the asymptotics of a(λ). These will contribute in some particular cases, as we

discuss below.
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• σ > 0 and ρ < 4/3. The tachyon EoM (E.27) is dominated by the terms ∝ T , T ′T 2,

which have the coefficients F2 and F5, respectively. Solving the tachyon from these

terms gives the asymptotics

T (r) ∼ T0 −
4Re2Ac+ρλc

3ασT0

∫ ∞

r
dr̂ exp

[(

3

2
ρ− 2

)(

r̂

R

)α]

. (E.40)

Substituting this back to the full equation of motion, we see that with the above

constraints for σ and ρ it is indeed a solution. Further, the factor exp
(

−a(λ)T 2
)

vanishes double-exponentially, which confirms the decoupling of the tachyon from

the other fields. In addition to the trivial reparametrization symmetry, the only free

parameter of the asymptotic solution is T0, which suggest that the singularity is of

the “good” kind. However, tachyon solutions that are regular in the IR have bulk

flavor anomalies which differ from those of QCD [91, 101, 102]. Therefore, we discard

this option.

• σ > 0 and ρ = 4/3. The same terms continue to dominate, but the asymptotic

changes. We find instead

T (r) ∼ 2

√

2R

3ασh0
eAc+

2
3
λc
√
r − r1 (E.41)

where r1 is a free parameter. One can again check that this is indeed a solution, and

that the tachyon decouples from A and λ. The terms proportional to T ′2T and T ′3T 2

are suppressed only by r−α, but taking them into account results in a trivial factor

multiplying the equation of motion, so that the solution in eq. (E.41) is unchanged

for any value of α. The asymptotics has only one free parameter, and the tachyon

diverges as r → ∞, so this solution is acceptable.

• σ ≤ 0 and ρ < 4/3− σ. We find two different cases. The asymptotics is qualitatively

similar to (E.40), but arises in a slightly different way. The leading terms are those

proportional to T ′ and T , corresponding to coefficients F1 and F2, respectively, as

well as the double derivative term T ′′. This term being leading, one might expect

that the asymptotics contains two free parameters, and is thus not of the good kind.

This is indeed the case for τ > 2+σ. For τ ≤ 2+σ only one parameter family of the

asymptotic solutions is consistent with the other terms being subleading. However,

since the tachyon becomes constant in the IR, we have the aforementioned problem

with flavor anomalies, and hence we shall discard this solution in any case.

• σ = 0, ρ = 4/3, and τ < 10/3. The leading terms are typically those proportional

to T ′3 and T ′2T . However, if a(λ) is not constant, there is an extra constraint

from the next-to-leading term in the expansion of a(λ). If, for example, a(λ) =

a0+ a1/λ+ · · · , we need to require α > 1. Assuming that all constraints are met, we

find the exponential behavior

T (r) ∼ T0e
Cr (E.42)
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where T0 is a free parameter and

C =
4eAc+4λc/3Ra0
(10− 3τ)αh0

. (E.43)

This special case is the asymptotics that was discussed in the probe limit in [71–73],

and is acceptable. By inserting the expressions for Ac and λc from eqs. (E.18), (E.20),

and (E.21), the coefficient simplifies to

C =
22+P 32−Pa0

(10− 3τ)(1− P )h0V0R
. (E.44)

• σ = 0, ρ = 4/3, and τ > 10/3. The leading terms are proportional to T ′ and T , which
results in the tachyon vanishing asymptotically. In this case the factor exp

(

−a(λ)T 2
)

goes to one rather zero, which suggest that the correct physical picture, as discussed

in the main text, cannot be achieved, even though the tachyon apparently decouples

in the IR.

• σ < 0 and ρ = 4/3 − σ. The leading terms are again proportional to T ′ and T . For

τ < 10/3− σ/2, the solution is exponentially increasing,

T (r) ∼ eCr (E.45)

with

C =
4eAc+4λc/3Ra0

(10− 3τ − 3δ)αh0
. (E.46)

The factor exp
(

−a(λ)T 2
)

vanishes in the IR limit if α < 1, which is the expected

behavior, so the solution is acceptable. For α > 1 or τ > 10/3 − σ/2 the factor

goes to one instead, and it seems that the correct physical picture cannot be ob-

tained. The borderline case α = 1 has either behavior depending on the values of

other parameters.

In all the remaining cases, in particular for large ρ, the asymptotic solution of eq. (E.27)

oscillates with increasing frequency as r → ∞. Therefore, the tachyon is apparently not de-

coupled from the other fields, and the singularity discussed in the subsection does not exist.

In summary, we found good solutions only if ρ = 4/3 and σ ≥ 0, or ρ = 4/3 − σ and

σ < 0. The latter case is included for 0 < α < 1, and the former case we found some extra

constraints at the endpoint σ = 0, which are detailed above. In the numerics we shall fix

P = 1/2 so that α = 2, and use potentials with ρ = 4/3 and σ ≥ 0, see appendix C.

E.3 Singularity at the IR fixed point with T ≡ 0

As discussed in the main text, some of the solutions with identically vanishing tachyon are

expected to correspond to field theories where the chiral symmetry is conserved. Potentials

for Yang-Mills theory were discussed extensively in [71–73, 76]. Therefore, we will only

consider the case of potentials Veff(λ) = Vg(λ)− xVf (λ, 0) which have a (single) maximum

at some λ = λ∗, interpreted as an infrared fixed point.
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In the absence of the tachyon the space of solutions is one-dimensional. We identify

two distinct one-parameter families of solutions: one where the solution bounces back to

smaller couplings as the β-function dλ/dA goes to zero (a special case of the bounce-back

solutions discussed above in section E.1.2) and another where the β-function asymptotes

as dλ/dA ∼ −3λ (a special case of the solutions discussed in section E.2.1). These families

are separated by a single solution where the β-function terminates at zero at the maximum

of the potential λ = λ∗.
The limiting solution has a singularity at r = ∞ where A diverges and λ approaches

λ∗ from below. We expand the potential around λ = λ∗ as

Veff(λ) = V0 + V2(λ− λ∗)
2 + · · · (E.47)

where V2 is negative. The equations of motion are solved by

λ = λ∗ −
(

r − r0
R

)−δ

+ · · · (E.48)

A = − log(r − r0) +A0 +A1

(

r − r0
R

)−2δ

+ · · · (E.49)

where A0 and δ are related to the IR AdS radius and the derivative of the β-function,

respectively, by

ℓ2IR = e2A0 =
12

V0
(E.50)

lim
r→∞

1

λ− λ∗

λ′(r)
A′(r)

= δ =

√

4− 9V2λ2∗
V0

− 2 , (E.51)

and we also find

A1 = − 2δ

9(2δ − 1)λ2∗
. (E.52)

E.3.1 Generalization to T ≪ 1

A generalization of the T ≡ 0 case, which is of high interest to us, is where the tachyon

mass and the condensate are very small in the UV, such that the tachyon remains small

(|T | ≪ 1) even as λ approaches the fixed point (λ∗ − λ ≪ 1). However, for any nonzero

tachyon profile, the tachyon will eventually become O(1) at some high r = rIR, and drive

the flow away from the fixed point. Setting r0 = 0, the above formulas (E.48) and (E.49)

then hold in the limit R≪ r ≪ rIR (with the understanding that depending on the value of

δ, the next-to-leading terms may be affected by the tachyon solution). This approximation

is useful in the quasiconformal, or “walking” region of backgrounds for x below, but close

to the edge of the conformal window at xc. Notice that R is the scale where the coupling

starts to deviate significantly from its fixed point value λ∗, and may be therefore identified

as the UV scale of the theory. Therefore we shall denote R = rUV in this case.

The tachyon profile can also be derived in this region. Inserting the solutions of

eqs. (E.48) and (E.49) into the tachyon EoM (5.11), and taking |T | ≪ 1, we get

T ′′(r) +
3

r
T ′(r) +

2a(λ∗)ℓ2IR
h(λ∗)r2

T (r) = 0 . (E.53)
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There are two kinds of solutions depending on the value of the tachyon mass term. As in

section 8.3 we can define the dimension ∆

∆(4−∆) =
2a(λ∗)ℓ2IR
h(λ∗)

=
24a(λ∗)

h(λ∗)Veff(λ∗)
. (E.54)

If the combination on the right hand side is less than 4, which corresponds to x > xc we

find two real roots ∆±. In this case the tachyon solution is

T (r) ∼ T0

(

r

rIR

)∆−

(E.55)

for rIR ≪ r ≪ rIR, where ∆− is the smaller root (unless we tuned the boundary conditions

such that the quark mass is very small, in which case the solution with ∆− → ∆+ needs

to be included).

For x < xc we have two complex roots ∆± = 2± ik instead, and the tachyon behaves

as

T (r) ∼ T0

(

r

rIR

)2

sin

(

k log
r

rIR
+ φ

)

. (E.56)

This oscillating solution is the root of the rich structure of backgrounds found for x < xc
in section 8, which are also discussed below in appendix F.

F Structure of the background as a function of x and T0

In this appendix we will explain in detail how the phase structure of the background solu-

tions seen in figure 5, and in particular the region with nearly conformal behavior, arises.

The structure in the plots is linked to the transition of the system from the UV region,

where the tachyon is small and the background is characterized by the potential Veff(λ) =

Vg(λ) − xVf0(λ), to the IR region, where the tachyon is large, and the background is

characterized by Vg(λ). First, recall that Veff(λ) has a maximum at some λ = λ∗ which

depends on x. For x → 0 we find from eqs. (8.24) and (8.26) that λ∗ → ∞, whereas for

x → 11/2 we obtain λ∗ → 0. This maximum suggests a presence of an IR fixed point of

the β-function for the coupling λ.

However, for a nontrivial tachyon profile the fixed point is not reached. When ap-

proaching λ = λ∗ from the UV, the solution is driven away from the fixed point as soon as

the tachyon becomes large, T ∼ O(1), and the system enters the region where all EoMs are

nontrivially coupled. The point where this happens, is controlled by the normalization of

the tachyon in the IR, i.e., the value of T0 (Assuming potentials of scenario I). The larger

T0, the smaller is the value of λ where the tachyon decouples.

The solid blue curve in figure 5 is the critical value of T0 where the tachyon decouples

at λ = λ∗. Actually, precisely at this curve the UV asymptotics is that of section D.2, and

the solution ends at the fixed point. If T0 is smaller than the critical value, the tachyon

will become small ≪ 1 during the flow toward the UV when we still have λ > λ∗, so

that the β-function corresponding to the effective potential Veff is positive. As the tachyon

decouples, the β-function flow approaches that defined by Veff . Therefore, to the the region
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with “standard” UV behavior is not reached at all, but the solution bounces back at a finite

value of the coupling (see also figure 17 below) where the β-function (evaluated along the

RG flow) crosses zero. The strong dependence of the blue curve on x is explained by the

dependence of λ∗ on x: for example as x→ 0, the fixed point moves to large values of λ∗,
and the critical tachyon IR value T0 required for avoiding the bounce-back approaches zero.

The argument above is not rigorous, as it involves the location of the decoupling of the

tachyon which is not defined precisely. However, one should notice that as the blue curve is

approached from above, the system is on the verge of reaching an IR fixed point so that the

coupling freezes, i.e., it evolves very slowly for a large range of r. Meanwhile, the tachyon

grows relatively fast with r. Therefore, the value of λ where the tachyon decoupling takes

place becomes more and more precisely defined as the blue curve is approached from above.

This can also be seen in the numerical examples below and in section 8.

To understand how the red dashed curve arises, we need to study the tachyon solutions

in the UV region. Below the red curve, the tachyon solution develops a zero, as is required

by the negative value of the quark mass. This zero actually appears in the region, where

(the absolute value of) the tachyon is still small. If we continue on the plot toward lower

values of T0, the quark mass becomes again zero, and then positive extremely close to the

solid blue curve. This happens as the tachyon develops a second zero in the UV. We

can continue further, and find solutions with an arbitrary number n of zeroes (which are

very hard to construct numerically). See figure 6 (left) in the main text for the qualitative

behavior of the quark mass as the blue curve is approached.

The oscillating behavior of the tachyon in the UV is linked to the violation of the BF

bound: when ∆IR(4 − ∆IR) is smaller than 4, the solutions for ∆IR are complex, which

results in the oscillations of the tachyon solution. We plotted the squared mass of the

tachyon at the IR fixed point in figure 2, where the solid thick blue curve corresponds to

the present choice of parameters.

As we approach the solid blue curve from within the contoured region in figure 5, the

background can be approximated near the fixed point as discussed above in section E.3.1.

By the definition of eq. (8.17), the BF bound is violated at the fixed point for x < xc.

Therefore, as we approach the blue curve from above in this region and the system is

about to develop a fixed point, the tachyon necessarily oscillates as soon as values of λ

close enough to λ∗ are reached. In this case, the tachyon is well approximated by the

solution of eq. (E.56),

T (r) ∼ T0

(

r

rIR

)2

sin

(

k log
r

rIR
+ φ

)

, (F.1)

where k is fixed by the potentials,

k =

√

24a(λ∗)
h(λ∗)Veff(λ∗)

− 4 , (F.2)

but φ and T0 are free parameters, which will be fixed by the boundary conditions. For

x > xc, the BF bound is not violated at the fixed point, and therefore no oscillations are
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expected, and the tachyon dependence is as in eq. (E.55). The (uppermost) curve of zero

quark mass (the red dashed one in the plots) essentially limits the region of oscillating

tachyon: for example on the left hand plot above this curve quark mass is positive (no

tachyon zeroes) and below it the mass is negative (one tachyon zero), see the mass depen-

dence in figure 6. Notice that the red curve must therefore join the blue curve at x = xc.

As we approach the fixed point keeping x fixed, the range rUV ≪ r ≪ rIR where

eq. (F.1) holds grows without limit.29 Here rUV is the scale where the coupling starts to

deviate significantly from its fixed point value λ∗ as we follow the flow toward the UV.

According to eq. (F.1), the number of encountered tachyon zeroes is

πn ∼ k log
rIR
rUV

. (F.3)

We may take one step further, and find the scaling of the quark mass and the chiral

condensate as rIR/rUV → ∞ and n→ ∞. This can be done by matching the “intermediate”

tachyon solution (F.1) with the UV (and IR) solutions (see section 10 and appendix H where

we do the matching procedure more carefully for x → xc). The tachyon is supposed to

become large at r ∼ rIR, so T0 ∼ 1. On the other hand at r ∼ rUV we enter the standard

UV region, where roughly T ∼ mr + σr3. Matching in the UV gives the typical sizes for

m and σ for large n:

mrUV ∼ σr3UV ∼
(

rUV

rIR

)2

∼ exp

(

−2πn

k

)

. (F.4)

In particular, the maximal masses for which solutions with n tachyon nodes exist, or in

other words the sizes of the bumps in figure 6 (left), numbered from right to left, must

obey this scaling law. As the mass scale vanishes exponentially for n → ∞, for any fixed

m 6= 0 there are only finite number of backgrounds as n is limited from above, whereas for

m = 0 we find an infinite tower of solutions.

At this point is appropriate to remind the reader that the solution with no tachyon

nodes (n = 0) always has smaller free energy than the solutions with n > 0 (see section 9).

Also, the n = 0 solution is not found in the scaling region where the system is close to

having a fixed point in general. For m = 0 this solution (red dashed curve of figure 5 enters

the scaling region (which is close to the solid blue curve in the same figure) only in the

limit x→ xc, which will be discussed in detail in section 10.

We conclude with one more observation on the location of the curve of the vanishing

quark mass. The discussion above was relying on the dimension ∆IR at the fixed point, and

29We cannot prove analytically that the scaling region is accessible, because this would require a de-

scription of the solution in the IR region where tachyon is not decoupled. However, we may solve the

EoMs starting from the UV with arbitrary small quark masses and vevs, which are guaranteed to enter the

oscillating region, and have arbitrary many tachyon zeroes. The tricky issue is, if we can tune the solutions

such that it ends in the good IR singularity after the tachyon finally grows large and the oscillations end in

the IR. Due to the oscillating nature of the solution, it is plausible that the good IR singularity is found

after any number of oscillations n, if it is found, e.g., for small n. In the end, this question is settled by

the numerics, which supports our expectations, and solutions with regular IR behavior are indeed found

for any n.
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therefore we could argue how the tachyon behaves in the limit where the background comes

arbitrarily close to the fixed point, i.e., as we approach the blue solid curve from above in

figure 5. However, we can also present rough qualitative arguments on the behavior of the

curve further away from the solid blue curve. Because the tachyon is in any case small in

the interesting region, we can read directly from the linearized tachyon EoM whether it

oscillates or not. The EoM reads

T ′′(r) +

[

3A′ + λ′
d

dλ
log(h(λ)Vf0(λ))

]

T ′(r) +
2a(λ)e2A

h(λ)
T (r) ≃ 0 . (F.5)

Recall that the tachyon is decoupled in this region and evolves independently of the

other fields. Assuming decoupling, the coefficients are essentially independent of T0 and

can be solved directly from the potential Veff(λ) = Vg(λ) − xVf0(λ). A is quite well

approximated by A ≃ − log r,30 the second term in the square brackets of the coefficient

of T ′ is small, and therefore the essential term is, as in the case of the fixed point, the

ratio a(λ)/h(λ), which increases with λ. As λ grows, at some critical λc the ratio becomes

large enough, and the tachyon starts to oscillate. In terms of the γ-function, this means

that γ/T reaches the value of approximately −2. The oscillations do not take place if the

tachyon grows large already for λ < λc so that nonlinear terms contribute in eq. (F.5).

Therefore, for the limiting solutions, the tachyon becomes O(1) roughly at λ = λc. As the

start of the oscillations means that the quark mass goes to zero, this mechanism also fixes

the location of the curve with zero quark mass (red dashed curve in figure 5).

In summary, the solid blue curve of figure 5 is stabilized by the tachyon growing large

at λ = λ∗, whereas the dashed red curve is stabilized by the tachyon growing large at

λ = λc. The two curves meet when λc = λ∗, which gives an alternative way to formulate

the definition of xc.

It is interesting to compare the picture in our model to that arising in the Dyson-

Schwinger approach in the rainbow approximation (see, e.g., [116, 117]). Also in this

framework it is useful to define two values of the coupling, corresponding to λ∗ and λc
above. The definitions are similar as here: λ∗ is the zero of the β-function, and λc is the

value of λ where the anomalous dimension of the chiral condensate reaches unity (so that

∆ of section 8.3 equals two).

Indeed the latter definition corresponds to saturating the BF bound in the present

approach, which in the vicinity of the IR fixed point means the start of the tachyon oscil-

lations, matching with our definition of λc. Similarly as in our model, λc = λ∗ at the edge

of the conformal window. A similar description of the conformal transition was also found

in the holographic model of [15].

F.1 Numerical analysis

We illustrate the analysis above by studying the background numerically near the red

dashed and blue solid curves of figure 5.

30Explicit expressions can be derived in some approximation schemes, e.g., as series in the limit of small

β-function.
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Figure 17. The dependence of the background on T0 near the red and blue lines of figure 5. Top

row: x = 2. Middle row: x = 3.9. Bottom row: x = 4.25. Left column: the quark mass as a

function of T0. The vertical blue solid and dashed red lines mark the solutions terminating at an

UV fixed point, and having m = 0, respectively, as in figure 5. Middle column: β-functions dλ/dA

as T0 is varied over the range of the mass plots (left) with constant steps for T0, shown as thin black

curves of various kinds. Dotted, dashed and solid curves are β-functions for backgrounds with a

bounce-back towards the IR, m < 0, and m > 0, respectively. The limiting cases between these

behaviors are the given by the thick blue solid curves, which terminate at an UV fixed point, and

the thick red dashed ones, which have m = 0. The magenta dotted curve is the β-function when the

tachyon is completely decoupled, solved from eq. (8.19). Right column: γ-functions 1/T × dT/dA

as T0 is varied. The lines are marked as for the β-functions.

We choose as reference values x = 2, 3.9 and 4.25, which have qualitatively different

behavior. For zero mass, they correspond to field theories with running, walking and IR

conformal behavior of the coupling constant. Figure 17 shows, for the above values of x,

the quarks mass in IR units (left column), the variation of the β-function (middle column),

and the variation of the γ-function (right column) as we scan over a range of T0 which

includes the blue and red dashed curves of figure 5.

For x = 2 (top row) the quark mass (left column) is negative for a wide range of T0
between the zero mass solution (dashed red vertical line) and the critical value of T0 where

the UV behavior of the solution changes such that the mass is no longer defined (solid blue

vertical line). The mass curve oscillates as we approach the vertical blue line of critical

T0 as depicted in figure 6, but the oscillations lie too close to line to be resolved at the
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used scale of T0. As x is increased to 3.9 (middle row), the zero mass solution is driven

very close to the critical T0. For x = 4.25 (bottom row), the solutions with negative quark

mass, and in particular the one with zero mass, have disappeared.

In the the middle column we plot as the thin black curves the β-function as T0 is varied

over the range of the left hand plots with a constant step size. The blue thick curve is the

limiting β-function that always terminates at an UV fixed point and corresponds to the

blue curve of figure 5. For x = 2 all β-functions with positive quark mass (black thin solid

curves) are running, including the zero mass solution (red dashed thick curve), whereas all

walking solutions have negative quark mass (thin dashed curves).31 The running curves are

the lowest ones and all of them basically overlap. The dotted thin lines are the β-functions

with bounce-back behavior in the UV, which occur for values of T0 that are smaller than

the critical one. Increasing x to 3.9 (middle row), the zero mass solution moves into

the walking region, and approaches the critical one marked with thick blue curve. As x is

further increased (bottom row), the zero mass solution disappears by joining the blue curve.

Similar, but slightly more complicated behavior is seen for the γ-functions (right col-

umn). The dashing and coloring have the same meaning as for the β-functions. Notice that

γ/T asymptotes to −3 as λ→ 0 for the zero mass solution (red thick dashed curve) whereas

for the solutions with a finite mass it asymptotes to −1, as expected. The solutions with

negative quark mass (thin dashed curves) have a zero of the tachyon, which shows up as a

pole in γ/T . The main change in the plots as x increases from 2 (top) to 4.25 (bottom) is

the movement of the solution with the UV fixed point (blue thick curve) towards smaller

λ, as all solutions it “crosses” change drastically. Otherwise the γ-functions (i.e., those

solutions left of the blue curve) are roughly independent of x.

Finally, we comment on the m→ 0 limit and discuss also figure 12 in this same limit.

For x < xc the background converges smoothly to the m = 0 one with chiral symmetry

breaking in this limit, as also seen from the β- and γ-functions on figure 17 (top and middle

rows). Taking m→ 0 for x < xc in figure 12 defines the enveloping curve of the fixed mass

curves, which diverges for x = xc. (We shall discuss the m = 0 case in more detail in

section 10 below.) For x > xc, the scale ratio ΛUV/ΛIR diverges for m→ 0 (see figure 12),

and we can consider two different limits. If we keep ΛUV fixed as m → 0, the IR scale

is driven to infinity and the background converges pointwise to the one with identically

vanishing tachyon and an IR fixed point, discussed in section 8.5.1. If we instead keep

the IR scale fixed, the background converges towards the one having an UV fixed point

of section D.2 (see the β- and γ-functions shown with the thick blue line on the bottom

row of figure 17). Notice that the backgrounds with vanishing tachyon and x < xc are

not connected to the backgrounds having a finite quark mass by any limiting procedure,

which is in line with our expectation that they are unphysical. Indeed we shall show in

section 9 that these solutions have larger free energy than the ones with nontrivial tachyon

and chiral symmetry breaking.

31As mentioned above, there are also positive quark mass solutions which basically overlap with the thick

blue curve. Our resolution is not enough to resolve these.

– 76 –



J
H
E
P
0
3
(
2
0
1
2
)
0
0
2

G Extracting UV coefficients from numerical solutions

G.1 Extracting free energy differences

As pointed out in section 8, we need to check numerically which one of the two solutions

with vanishing quark mass, the one with chiral symmetry breaking or without, minimizes

the free energy. In order to do this we need to extract Â (for fixed Λ) defined in eq. (9.9)

for both solutions and then calculate the energy difference through eq. (9.10).

The corrections involving Â are highly suppressed ∼ r4 in the region which is under

perturbative control (log(rΛ) is small). Extracting Â directly from the numerical solutions

of A and λ is practically impossible, since it is difficult to require the two solutions to

have the same Λ to a high enough precision. Therefore we study variations in X, which is

invariant in scalings of r. In principle we could match the numerically extracted variation

of X to the correction term in eq. (9.14). This is doable (except for values of x very close

to the critical one xc ≃ 3.9959), but a large uncertainty in the value of Â still remains.

Therefore we proceed as follows. We substitute X0 +X1 in the equation (8.19), where X1

is treated as a small perturbation. From the linearized equation, we can solve X1 exactly:

X1(λ) = XC exp

[

∫ λ

1

16V (λ̂)X0(λ̂)
3/λ̂+ 3V ′(λ̂) + 3X0(λ̂)

2V ′(λ̂)

6V (λ̂)X0(λ̂)2
dλ̂

]

(G.1)

where XC is a constant. So, if X0 is known, this equation gives X1 in eq. (9.12) to all

orders in log(rΛ). Since the UV expansion of X0 is also known, we can use that to expand

X1 and to calculate the relation between the constants Â and XC by using eq. (9.13). A

straightforward calculation gives

Â =
3V1Λ

4XC

20
exp

[

− log(9V1/8)(23V
2
1 − 64V2)

9V 2
1

]

(G.2)

× exp

{

−
∫ 1

0

[

16V (λ̂)X0(λ̂)
3/λ̂+ 3V ′(λ̂) + 3X0(λ̂)

2V ′(λ̂)

6V (λ̂)X0(λ̂)2

−
(

32

9V1λ̂2
+

14

9λ̂
− 64V2

9V 2
1 λ̂

)

]

dλ̂+
32

9V1

}

.

To obtain the free energy difference between two solutions, we calculate numerically the

variation ofX and match with eq. (G.1), where we use either of the two solutions to evaluate

X0 and the integral numerically. Since X1 given by eq. (G.1) is a good approximation

already at small r (log(rΛ) does not need to be small) we can obtain the difference ∆XC

between the solutions to a good precision. The value is then used to calculate numerically

∆Â and ∆E through equations (9.10) and (G.2).

G.2 Extracting the chiral condensate at m = 0

Let us then discuss how the value of the chiral condensate can be extracted from a nu-

merical solution to the differential equations. Recall that our method for constructing the

backgrounds requires tuning the normalization of the tachyon in the IR (T0) such that the
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quark mass vanishes. This procedure is however limited by the numerical precision of the

solution, and therefore exactly zero quark mass cannot be obtained. As it turns out, this

makes direct extraction of the condensate value difficult, since the approximately linear

term ∼ mr of the tachyon dominates over the cubic solution ∼ σr3 in the deep UV. This

is particularly problematic as x approaches xc, since the ratio of the UV and IR energy

scales grows, pushing the asymptotic UV region to smaller r while the condensate value

∝ σ decreases.

Therefore, we employ a subtraction procedure. In the UV, the tachyon solution (with

the mass m1 as small as can be achieved) can be written as

T1(r) = m1Tm(r) + σ1Tσ(r) . (G.3)

The UV expansions of the two (approximately) linearly independent solutions Tm ≃
ℓr(− log(Λr))C and Tσ(r) ≃ ℓr3(− log(Λr))−C are given in appendix D.1.1. We will re-

move the remaining mass term by subtracting another solution

T2(r) = m2Tm(r) + σ2Tσ(r) (G.4)

which is calculated at the same value of x but for different T0 such that m2 is about the

same order as m1. Since the mass terms dominate at very small r, it is easy to extract

m2/m1 to a high precision, and construct32

Tδ(r) = T1(r)−
m1

m2
T2(r) =

(

σ1 −
m1σ2
m2

)

Tσ(r) . (G.5)

If σ is analytic at m = 0,

σi = σ(0) + σ(1)mi + σ(2)m2
i + · · · , (G.6)

we obtain

Tδ(r) =

[

σ(0)
(

1− m1

m2

)

+ σ(2)m1(m1 −m2) + · · ·
]

Tσ(r) . (G.7)

If the massesmi are sufficiently small, the quadratic correction∝ σ(2) as well as higher order

terms can be neglected, and the difference Tδ is proportional to σ(0) to a good precision.

The reliability of the subtraction procedure can be tested by varying, say, m2 and checking

that this does not affect the result.

Now σ(0) can extracted from Tδ in a straightforward manner. However the result still

has quite large error bars in particular for x close to xc, because of numerical uncertainty in

the deep UV. We do an additional trick to remove this problem. The extracted Tδ extends

close enough to the UV singularity to ensure that the tachyon is decoupled from A and λ.

On the other hand, we can obtain a decoupled tachyon solution with zero quark mass by

solving first the background functions A and λ with T ≡ 0, inserting these in the tachyon

EoM, and solving that by shooting from the UV. We can basically extend this solution as

32There is a subtlety here: the UV scales Λ which appear in eq. (D.9) will be different for the two

solutions. This needs to be fixed, e.g., by scaling one of the solutions such that the corresponding solutions

for λ match as λ → 0.
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close to the UV singularity as we want. Matching the two solutions in the region where

both are reliable, we can extend Tδ easily up to r ∼ 10−100 in the UV.

Finally, to extract σ(0) we consider the expansion of the tachyon at small λ:

log Tδ(λ)− log

(

1− m1

m2

)

− log ℓ ≃ log σ(0) + log Tσ(λ)− log ℓ (G.8)

= log
σ(0)

Λ3
− 8

3V1λ
+

(

4

3

h1
V1

+
39V 2

1 − 64V2
12V 2

1

)

log
9V1λ

8
+ · · · ,

which is obtained by using eqs. (D.9) and (D.2). The coefficients Vi and h1 were defined

in eqs. (D.4), and Λ = ΛUV is the scale of the UV expansions. We match this expansion

with the extended Tδ, and extrapolate to λ = 0 to obtain log(σ(0)/Λ3).

H Details on BKT scaling

In this appendix we discuss some technical details on the BKT scaling. First, there is a

subtlety with matching the approximation (10.11) with the tachyon solution in the IR (for

which we were unable to write analytic approximations). Since the approximation contains

a periodic function, the boundary conditions at r ≃ rIR will not fix the tachyon uniquely:

one can let the tachyon oscillate first, and do the matching only after the oscillations have

created n zeroes, where n = 0, 1, 2, . . .. Therefore, in eq. (10.15) we should actually have

(including the solutions where the tachyon changes sign)
√

κ(λ∗ − λc) log
rIR
r̂

∼ πn+O(1) . (H.1)

An analogous result was found in [15] in a case that was analytically more tractable. As

in their case, we expect that the solution with no nodes (n = 0) is the one that minimizes

the free energy, as we already verified numerically in section 9.

One can actually do the matching procedure even more precisely, and in particular

derive results for K and K̂. We need to study the approximation (10.11) more closely:

actually it can be matched with the other solutions only in the vicinity of the zeroes of the

sine function. At r = rIR we have

T (rIR) ≃ Cfp

(

rIR
rUV

)2

sin
(

√

κ(λ∗ − λc) log
rIR
r̂

+ φ̂
)

(H.2)

T ′(rIR) ≃ Cfp
rIR
r2UV

[

2 sin
(

√

κ(λ∗ − λc) log
rIR
r̂

+ φ̂
)

+
√

κ(λ∗ − λc) cos
(

√

κ(λ∗ − λc) log
rIR
r̂

+ φ̂
) ]

.

It appears that the cosine factor in the derivative can be neglected due to the small factor
√

κ(λ∗ − λc) multiplying it. However, in this case the ratio T (rIR)/T
′(rIR) = 1/2rIR is

fixed so we cannot match both the function and its derivative with the (nontrivial) IR part

of the tachyon solution. Therefore, we indeed need to be close to a zero of the sine,

sin
(

√

κ(λ∗ − λc) log
rIR
r̂

+ φ̂
)

= O(
√

λ∗ − λc) , (H.3)

which brings in the required dependence of the solution on both Cfp and φ.
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Matching the solution (10.11) towards the UV is only possible close to its node, as

well.33 This gives

φ̂ = O(
√

λ∗ − λc) . (H.4)

Consequently, the argument of the sine in the approximation (10.11) must change by a

positive multiple of π as we move from the UV to the IR, so that eq. (H.1) is actually

written as
√

κ(λ∗ − λc) log
rIR
r̂

≃ π(n+ 1) . (H.5)

where n is the number of the zeroes of the tachyon solution.34 Notice that eqs. (10.13)

and (10.14) also receive extra factors from the refined scaling argument. We have now

Cfp ∼ σr3UV

1√
λ∗ − λc

∼
(

rUV

rIR

)2 1√
λ∗ − λc

(H.6)

instead of eq. (10.14). The additional square root factors cancel in the result for σ, and

they could in any case be neglected as a subleading correction to the exponential scaling.

In order to write down the results for K and K̂ we recall that the definitions of λc(x)

and xc read

G(λc(x), x) = 4 ; G(λ∗(xc), xc) = 4 , (H.7)

respectively, where λ∗(x) was defined by V ′
g(λ∗(x)) − xV ′

f0(λ∗(x)) = 0. Near the critical

point we have the two expansions

G(λ∗, x) ≃ 4 +
∂

∂λ
G(λc, x)(λ∗ − λc) ≃ 4 +

d

dx
G(λ∗(x), x)

∣

∣

x=xc
(x− xc) (H.8)

where κ = ∂
∂λG(λc, x). By using eq. (H.5) we finally see that

rIR
rUV

∼ exp

[

K(n+ 1)√
λ∗ − λc

]

∼ exp

[

K̂(n+ 1)√
xc − x

]

(H.9)

where

K =
π√
κ
=

π
√

∂
∂λG(λc, x)

; K̂ =
π

√

− d
dxG(λ∗(x), x)

∣

∣

x=xc

, (H.10)

and setting n = 0 gives the result for the solution which has no tachyon zeroes and lowest

free energy.

33Proving this turns out to be more tricky than in the IR, since the solutions (10.10) and (10.11) have

the same power behavior, and therefore they apparently join smoothly for large values of the sine function.

However, this is a fake effect due to the roughness of the approximation (10.10): we have seen that in the

UV the power law of the tachyon actually changes from 2 to 3 within a range of log r which is small with

respect to 1/
√
λ∗ − λc. Therefore the same argument as in the IR applies, and the sine function needs to

be O(
√
λ∗ − λc) in order the matching to work.

34Our arguments do not exclude zeroes of the tachyon solution near the endpoints of the validity of

the approximation (10.11), i.e., near r = r̂ and r = rIR. However it is reasonable to expect that the

approximation joins the UV and IR solutions in a smooth manner, so that no extra nodes appear, which

can also be verified numerically.
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Finally, let us notice the free energy scaling result for the solutions having several

tachyon zeroes. Following the arguments of section (10.2), we see that the energy difference

between the solution with vanishing quark mass and the solution with n tachyon zeroes

scales as

∆E
M3N2V4

∼ r−4
UV exp

[

−4K(n+ 1)√
λ∗ − λc

]

∼ r−4
UV exp

[

−4K̂(n+ 1)√
xc − x

]

. (H.11)

Since we have numerically checked that ∆E is positive, this result verifies that the n = 0

solution has the lowest free energy for x→ xc.
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