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1 Introduction

One of the great successes of noncommutative geometry [8] is in its application to high-

energy physics. Replacing the spacetime manifold by a noncommutative manifold, one puts

the full Standard Model of elementary particles on equal geometrical footing as Einstein’s

General theory of Relativity. This is worked out in full detail in [7] (see also [9] and the

companion [5]), including the physical predictions that are a consequence of this description.

Being a geometrical description of the Standard Model that is comparable to General

Relativity makes it immediate that its quantization comes with the usual problems, actually

typical for the latter theory. At the moment, one works with the noncommutative manifold

as setting the classical starting point — indeed allowing for a derivation of the full Standard

Model Lagrangian at the classical level. Then, one adopts the physics textbook perturbative

quantization of it, and arrive at physical predictions via the known Standard Model RG-

equations. It needs no stressing that the situation around its quantization should be

improved, and in the present letter we intend to take a first step in this direction.

We start with the full asymptotic expansion of the spectral action of Chamseddine and

Connes [3, 4] in the case of the Yang-Mills system on a flat background manifold. By naive

power counting we show — after a suitable gauge-fixing — that the full spectral action

is superrenormalizable as a higher-derivative gauge theory [20, 21] (cf. [15, section 4.4]).

Then, we demonstrate that the needed counterterms are gauge invariant polynomials that

can safely be added to the spectral action. This shows renormalizability of the full spectral

action for the Yang-Mills action, compatibly with gauge invariance.

2 The Yang-Mills system

The object of study in this paper is the spectral action for the Yang-Mills (YM) system on

a flat background manifold. It is given by the relatively simple formula:

S[A] := Tr f(DA/Λ).
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This spectral action has firm roots in the noncommutative geometrical description of the

Yang-Mills system, we refer to [7] for more details. For our purposes, it suffices to know

that DA is a Dirac operator with coefficients in a SU(N)-vector bundle equipped with a

connection A. That is, locally we have

DA = iγµ∇µ + γµAµ.

with ∇µ the spin connection on a Riemannian spin manifold M . For simplicity, we take

M to be flat (i.e. vanishing Riemann curvature tensor) and 4-dimensional. Furthermore,

we will assume that f is a Laplace transform:

f(x) =

∫

t>0
e−tx2

g(t)dt,

even though this assumption could be avoided by using spectral densities instead ([14] and

also [23, section 8.4])

Proposition 1 ([4]). In the above notation, there is an asymptotic expansion (as Λ → ∞):

S[A] ∼
∑

m≥0

Λ4−mf4−m

∫

M
am(x,D2

A), (2.1)

in terms of the Seeley-De Witt invariants of D2
A. The coefficients are defined by fk :=∫

t−k/2g(t)dt.

Recall that the Seeley-De Witt coefficients am(x,D2
A) are gauge invariant polynomials

in the fields Aµ. Indeed, the Weitzenböck formula gives

D2
A = −(∂µ − iAµ)(∂µ − iAµ) + i

∑

µ<ν

γµγνFµν

in terms of the curvature Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] of Aµ. Consequently, a Theorem

by Gilkey [16, Theorem 4.8.16] shows that (in this case) am are polynomial gauge invariants

in Fµν and its covariant derivatives. The order ord of am is m, where we set on generators:

ord Aµ1;µ2···µk
= k.

Consequently, the curvature Fµν has order 2, and Fµ1µ2;µ3···µk
has order k. For example,

a4(x,D2
A) is proportional to Tr FµνFµν and more generally:

a4+2k(x,D2
A) = ck Tr Fµν∆k

A(Fµν) + O(F 3)

for some constants ck and the Laplacian ∆A = −(∂µ − iAµ)2 (see also [1] and references

therein). The remainder is of third and higher order in F , plus its covariant derivatives,

adding up to an order equal to 4 + 2k.

Remark 2. It is the term a4 that gives rise to the Yang-Mills action functional, the higher-

order terms are usually ignored (being proportional to an inverse power of the ‘cut-off’ Λ).

More recently, also the higher-order terms, or even the full spectral action were studied in

specific cases in [6, 17] and from a more general point of view in [22].
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Proposition 3. The quadratic term S0[A] in S[A] is given asymptotically (as Λ → ∞) by

S0[A] ∼
∑

k≥0

Λ−2kf−2kck

∫
Tr F̂µν∆k(F̂µν)

where we have set F̂µν = ∂µAν − ∂νAµ and ∆ = −∂µ∂µ.

We assume that the first term is the usual (free part of the) Yang-Mills action, that

is, we adjust the positive function f so that f0c0 = 1/4. For the other coefficients, we have

the following neat expression.1

Lemma 4. The coefficients f−2k are related to the 2k’th derivatives of f at zero:

f−2k =
(−1)kf (2k)(0)

(2k − 1)!!
.

Proof. With f(x) =
∫

e−tx2

g(t)dt we derive for its derivatives:

f (2k)(x) =

∫

t>0
e−tx2/2H2k(

√
tx)tkg(t)dt

in terms of the Hermite polynomials Hn(x) ≡ (−1)nex2/2(d/dx)ne−x2/2. Evaluating both

sides at zero gives the desired result, using in addition that H2k(0) = (−1)k(2k − 1)!!.

We end this section by introducing a formal expansion (that starts with 1)

ϕΛ(∆) = (f0c0)
−1

∑

k≥0

Λ−2kf−2kck∆
k

so that we can write more concisely

S0[A] ∼ 1

4

∫
Tr F̂µνϕΛ(∆)(F̂µν)

This form motivates the interpretation of S0[A] (and of S[A]) as a higher-derivative gauge

theory. As we will see below, this indeed regularizes the theory in such a way that S[A]

defines a superrenormalizable field theory.

3 Gauge fixing in the YM-system

We add a gauge-fixing term of the following higher-derivative form:

Sgf [A] ∼ 1

2ξ

∫
Tr ∂µAµϕΛ(∆) (∂νA

ν) (3.1)

We derive the propagator by inverting the non-degenerate quadratic form given by S0[A]+

Sgf [A]:

Dab
µν(p; Λ) =

[
gµν − (1 − ξ)

pµpν

(p2 + iη)

]
δab

(p2 + iη)ϕΛ(p2)

1The coefficients f2k for positive k were found to be the k + 1’th moments of f , cf. [9, section 1.11] for

more details.
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which for the moment is a formal expansion in Λ. We will come back to it in more detail

in the next section.

As usual, the above gauge fixing requires a Jacobian, conveniently described by a

Faddeev-Popov ghost Lagrangian:

Sgh[A,C,C] ∼
∫

Tr ∂µCϕΛ(∆) (∂µC + [Aµ, C]) (3.2)

Here C,C are the Faddeev-Popov ghost fields and their propagator is

D̃ab(p; Λ) =
δab

(p2 + iη)ϕΛ(p2)
.

Proposition 5. The sum S[A] + Sgf [A] + Sgh[A,C,C] is invariant under the BRST-

transformations:

sAµ = ∂µC + [Aµ, C]; sC = −1
2 [C,C]; sC = ξ−1∂µAµ. (3.3)

Proof. First, s(S) = 0 because of gauge invariance of S[A]. We compute

s(Sgf) =
1

ξ

∫
Tr (∂µAµ)ϕΛ(∆) (∂ν∂

νC + ∂ν([Aν , C])

On the other hand,

s(Sgh) =
1

ξ

∫
Tr (∂µ∂νAν)ϕΛ(∆) (∂µC + [Aµ, C])

which modulo vanishing boundary terms is minus the previous expression.

Note that s2 6= 0, which can be cured by standard homological methods: introduce

an auxiliary (aka Nakanishi-Lautrup) field h so that C and h form a contractible pair

in BRST-cohomology. In other words, we replace the above transformation in (3.3) on

C by sC = −h and sh = 0. If we replace Sgf + Sgh by sΨ with Ψ an arbitrary gauge

fixing fermion, it follows from gauge invariance of S and nilpotency of s that S + sΨ is

BRST-invariant. The above special form of Sgf + Sgh can be recovered by choosing

Ψ =

∫
Tr ϕΛ(∆)(C)

(
1
2ξh + ∂µAµ

)
.

Remark 6. One might wonder what gauge fixing condition is implemented by Sgf as

in (3.1), given the presence of the term ϕΛ(∆). Under suitable conditions on the func-

tion f , the function x 7→ ϕΛ(x) is positive, turning the bilinear form

(ω1, ω2) :=

∫
Trω1 ∧ ∗(ϕΛ(∆)ω2)

into an inner product. On the Lagrangian level, we can equally well implement the Lorenz

gauge fixing condition ∂ · A = 0 using this inner product instead of the usual L2-inner

product. This gives rise to Sgf [A] = (∂ · A, ∂ · A)/2ξ. Similarly, Sgf is given by the inner

product (C, ∂µC + [Aµ, C]).
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Figure 1. Vertices in the spectral action, together with their weights in powers of momenta.

4 Renormalization of the spectral action for the YM-system

As said, we consider the spectral action for the Yang-Mills system as a higher-derivative

field theory. This means that we will use the higher derivatives of Fµν that appear in the

asymptotic expansion as natural regulators of the theory, similar to [20, 21] (see also [15,

section 4.4]). However, note that the regularizing terms are already present in the spectral

action S[A] and need not be introduced as such. Let us consider the expansion (2.1) up

to order n (which we assume to be at least 8), i.e. we set f4−m = 0 for all m > n. Also,

assume a gauge fixing of the form (3.1) and (3.2).

Then, we easily derive from the structure of ϕΛ(p2) that the propagators of both the

gauge field and the ghost field behave as |p|−n+2 as |p| → ∞. Indeed, in this case:

ϕΛ(p2) =

n/2−2∑

k=0

Λ−2kf−2kckp
2k.

Moreover, the weights of the interaction in terms of powers of momenta is given by

the table (figure 1). We will use vk to indicate the number of gauge interaction vertices of

valence k, and with ṽ the number of ghost-gauge vertices.

Let us now find an expression for the superficial degree of divergence ω of a graph

consisting of I internal gauge edges, Ĩ internal ghost edges, vk valence k gauge vertices and

ṽ ghost-gauge vertices. In 4 dimensions, we find at loop order L:

ω = 4L − I(n − 2) − Ĩ(n − 2) +

n∑

i=3

vi(n − i) + ṽ(n − 3).

Lemma 7. Let E and Ẽ denote the number of external gauge and ghost edges, respectively.

The superficial degree of divergence of the graph equals

ω = (4 − n)(L − 1) + 4 − (E + Ẽ).

– 5 –
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Proof. We use the relations

2I + E =
∑

i

ivi + ṽ; 2Ĩ + Ẽ = 2ṽ

where E and Ẽ are the number of external gauge and ghost legs, respectively. Indeed,

these formulas count the number of half (gauge/ghost) edges in a graph in two ways: from

the number of edges and from the valences of the vertices. We use them to substitute for

2I and 2Ĩ in the above expression for ω so as to obtain

ω = 4L − In − Ĩn + n

(∑

i

vi + ṽ

)
− (E + Ẽ)

from which the result follows at once from Euler’s formula L = I + Ĩ − ∑
i vi − ṽ − 1.

As a consequence, ω < 0 if L ≥ 2 (provided n ≥ 8): all Feynman graphs are finite

at loop order greater than 1. If L = 1, then there are finitely many graphs which are

divergent, namely those for which E + Ẽ ≤ 4. We conclude that the spectral action for the

Yang-Mills system is superrenormalizable.

Of course, the spectral action being a gauge theory, there is more to renormalizability

than just power counting: we have to establish gauge invariance of the counterterms. We

already know that the counterterms needed to render the perturbative quantization of the

spectral action finite are of order 4 or less in the fields and arise only from one-loop graphs.

The key property of the effective action at one loop is that it is BRST-invariant:

s(Γ1) = 0.

In particular, assuming a regularization compatible with gauge invariance, the divergent

part Γ1,∞ is BRST-invariant. Results from [2, 10–13] on BRST-cohomology for Yang-Mills

type theories ascertain that the only BRST-closed functional of order 4 or less in the fields

is represented by

δZ

∫
FµνFµν

for some constant δZ. The counterterm Γ1,∞ can thus be added to S and absorbed by a

redefinition of the fields and coupling constant:

A0 =
√

1 + δZA; g0 =
g√

1 + δZ

Equivalently, one could leave A and g invariant, and redefine f0 7→ f0 + δZ, leaving all

other coefficients f4−m invariant. Intriguingly, renormalization of the spectral action for

the YM-system can thus be accomplished merely by shifting the function f in such a way

that f(0) 7→ f(0) + δZ, whilst leaving all its higher derivatives at 0 invariant.

Remark 8. The above form for Γ1,∞ can actually be established by an explicit computation

in dimensional regularization following [18, 19]. We intend to present the full details

elsewhere.
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