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1 Introduction

There is gathering evidence that on-shell amplitudes are far simpler than one would naively

expect from conventional quantum field theory. This observation goes back more than two

decades, when Parke and Taylor [1] showed that tree-level maximally helicity violating

(MHV) gluon amplitudes take an incredibly simple form. In recent years further progress

has been made, particularly regarding amplitudes in gauge and gravity theories. Largely

inspired by Witten’s twistor formulation of 4D Yang-Mills [2], techniques like the CSW

rules [3] and the BCFW recursion relations [4, 5] have provided a better theoretical un-

derstanding of gauge theories, as well as a practical toolbox of methods for calculating

amplitudes. Since then, recursion relations have also been derived for gauge theories with

massive particles [6] and pure gravity [7–10].

In a nutshell, the BCFW recursion relations are a way of writing on-shell tree ampli-

tudes as a sum over products of lower point on-shell tree amplitudes evaluated at complex

momenta. Calculationally, they are an incredibly efficient method for computing ampli-

tudes since they directly relate physical amplitudes, making no reference to an underlying

Lagrangian or the machinery of Feynman diagrams. Indeed, despite their usual versatility,
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Feynman diagrams simply become too cumbersome and numerous to be effective when

the number of external legs becomes large. Moreover, Feynman diagrams are, arguably, a

somewhat un-physical representation of multi-particle scattering since they are not even

individually gauge invariant. In contrast, the recursion relations make no reference to

off-shell data, and are indicative of a completely on-shell (albeit complexified) S-matrix

formulation of quantum field theory.

Ultimately, recursion relations are possible because tree amplitudes are rational func-

tions of the external momenta. Thus, given a complex deformation of the momenta pa-

rameterized by a complex number z, the amplitude will be a meromorphic function of z.

Assuming furthermore that the amplitude vanishes as z → ∞, then it is characterized

entirely by its poles. Since each pole can be thought of as a factorization channel of the

amplitude, the residue at each pole is simply a product of lower point amplitudes. The

bottom line is that vanishing large z behavior is a sufficient condition for the existence of

recursion relations.

In this paper we argue that this criterion is satisfied by tree amplitudes in two derivative

gauge and (super)gravity theories coupled to scalars and fermions. For example, in a theory

of spin ≤ 1, any amplitude with at least one gluon can be recursed, while in a theory of

spin ≤ 2, this is true of any amplitude with at least one graviton. Some notable examples

for which this holds are QCD, N = 4 SYM and N = 8 supergravity. Our proof follows the

approach of [11], and likewise holds for an arbitrary number of dimensions.

The outline of the paper is as follows. In section 2 we review the derivation of recursion

relations for a generic tree amplitude. We show that vanishing large z behavior implies that

an amplitude can be recursed. In sections 3 and 4 we argue that this criterion is satisfied

in a broad class of amplitudes in gauge and (super)gravity theories coupled to scalars and

fermions. We conclude in section 5.

2 A proof of recursion relations

The BCFW recursion relations were originally proven for Yang-Mills theory in D = 4

dimensions using the spinor helicity formalism [4, 5]. The proof was later extended to

arbitrary D in [11], where it was also emphasized that recursion relations are a generic

property of tree-level amplitudes that vanish at large complex momenta. In this section we

review these arguments, keeping the discussion general and assuming nothing about the

particle content or interactions of the underlying theory.

To begin, consider a tree amplitude with N + 2 external legs in D dimensions. We

label two of the legs by 1 and 2, and their momenta by p1 and p2, respectively. We label

the other N momenta by ki. It is possible to deform p1 and p2 in a complex momentum

direction q while still maintaining momentum conservation:

p1(z) = p1 + zq (2.1)

p2(z) = p2 − zq
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where z is a complex parameter. We define q2 = q ·p1,2 = 0, so that p1,2(z) are still on-shell

momenta, albeit complex momenta. Since our main concern is the large z behavior of

amplitudes, it is natural to refer to p1,2(z) as “hard” and ki as “soft”.

Applying the Cauchy’s residue theorem, we know that

∮ M(z)

z
=

∑

zI

Res

(M(zI)

zI

)
= 0 (2.2)

where zI label the poles of M(z)/z. If M(z) → 0 as z → ∞, then there is no pole an

infinity and the sum is only over residues at finite zI . From the pole at z = 0 we obtain

M(0), which we immediately recognize as the tree amplitude at real external momenta.

Since tree amplitudes are rational functions of the external momenta, we know that the

rest of the poles occur when a sum of external momenta go on-shell. To see this explicitly,

let us partition all the soft momenta into two groups I1 and I2, associated with particles 1

and 2, respectively. We assume these groups are of size N1 and N2, so N1 +N2 = N . We

label the soft momenta by ki1 and ki2 , where i1 ∈ I1 and i2 ∈ I2, and the sum of the soft

momenta in each group by KI1 =
∑
ki1 and KI2 =

∑
ki2 . In this language, the condition

of momentum conservation becomes p1(z)+p2(z)+KI1 +KI2 = 0. Next, consider the pole

that occurs when p1(z) +KI1 goes on-shell. We denote the value of z at this pole by zI1 .

Near zI1 , the amplitude factorizes into two lower point amplitudes evaluated at zI1:

MN+2(p1,2(z), ki) →
∑

h

MN1+2(p1(z), ki1 , h)
1

(p1(z) +KI1)
2
MN2+2(p2(z), ki2 ,−h) (2.3)

where we have included superscripts that label the number of external legs in each am-

plitude. Here h sums over the species and polarization of the intermediate particle going

on-shell. Thus, the sum over poles is equivalently a sum over factorization channels of

the amplitude, where the residue at each pole is the product of lower point amplitudes

evaluated at the pole. Rewriting the sum over poles as a sum over the partitions I1 and

I2, we obtain the recursion relation

MN+2(p1,2, ki) =
∑

I1,h

MN1+2(p1(zI1), ki1 , h)
1

(p1 +KI1)
2
MN2+2(p2(zI1), ki2 ,−h) (2.4)

In diagrammatic form, it is

p1 p2

=
∑

I1∪I2,h h

p1 p2

I1 I2

(2.5)

where h sums over species and polarizations. We have argued that the above recursion

relations hold as long as the pole at infinity is absent, i.e. as long as M(z → ∞) = 0.

Naively, one would expect this criterion to fail for gauge and gravity amplitudes, since they
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contain derivative interactions. However, in [11] it was shown that the opposite is true — an

enhanced “spin Lorentz symmetry” yields vanishing large z behavior in pure gauge theories

and even better behavior in gravity! In this paper we show that amplitudes in generic two

derivative gauge and gravity theories also satisfy the criterion that M(z → ∞) = 0. We

begin with theories of spin ≤ 1.

3 Spin ≤ 1 amplitudes

In this section we consider a generic gauge theory coupled to scalars and fermions. We

argue that M(z) → 0 as z → ∞ for any amplitude with at least one gluon. Consequently,

any such amplitude obeys an on-shell recursion relation. Our reasoning is independent

of any particular choice of charges for the matter fields, but requires that the theory be

limited to two derivative interactions. For example, our result holds for QCD and N = 4

SYM.

Our approach follows closely that of [11]. There the authors present a particularly nice

physical interpretation for the large z behavior of amplitudes, which we now review. To

begin, consider M(0), the tree amplitude at real external momenta, in the limit where p1,2

are very hard. Taking particles 1 and 2 to be incoming and outgoing, we can interpret this

process as a hard particle shooting through a haze of soft particles. In this eikonal limit, all

of the soft dynamics can parameterized by a classical background through which the hard

particle propagates. Thus, to determine the large momentum scaling of the amplitude,

it suffices to compute the two point function of hard fluctuations in a soft background.

This intuition persists in the case where p1,2 are complexified to p1,2(z). Here the hard

limit is defined by z → ∞, but like before, all of the z-independent soft physics goes into

determining some classical background. Thus, the bottom line is that the large z behavior

of an amplitude can be determined by using the background field method. Our proof occurs

in three steps:

• Expand around a background: Expand the action in terms of hard fluctuations

around a soft background. To evaluate M(z → ∞), simply take the large z limit of

the two point function of fluctuations in this background.

• Choose a gauge to remove derivative interactions: Derivatives from gauge

interactions naively spoil large z behavior. Remove large z contributions from these

interactions by going to light-cone gauge for the background (q ·A=0) and choosing

an appropriate Rξ gauge for the fluctuation. Note that background light-cone gauge

cannot be chosen for certain “unique diagrams,” [11] so these diagrams must be

checked explicitly.

• Check remaining diagrams: Choosing a gauge removes most derivative interac-

tions, but we still have to check a small number of diagrams explicitly. These include

i) diagrams with no hard propagators (of which the unique diagrams are a subset),

and ii) diagrams with only hard fermion propagators. Because the enhanced spin

Lorentz symmetry of pure gauge theory [11] persists in a gauge theory coupled to

scalars and fermions, we find that these contributions all vanish at large z.
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3.1 Background field lagrangian

For concreteness, let us consider Yang-Mills theory minimally coupled to an adjoint scalar

and a fundamental fermion. Our arguments will not depend on this particular choice of

charges. The action is

L = −1

2
trFµνF

µν + trDµΦDµΦ + Ψ̄i/DΨ + λΨ̄ΦΨ (3.1)

Next, let us expand around a background for every field, using lowercase/uppercase to

denote fluctuations/backgrounds:

Aµ → Aµ + aµ, (3.2)

Ψα → Ψα + ψα,

Φ → Φ + φ

Expanding in powers of the gluon fluctuations yields

L = L(0) + L(1) + L(2) + . . . (3.3)

L(2) = −1

2
trD[µaν]D

[µaν] − itr [aµ, aν ]Fµν − tr [aµ,Φ][aν ,Φ]ηµν

L(1) = tr aµJ
µ

(1)

= 2tr aµ ([Φ, iDµφ] + [φ,DµΦ]) + Ψ̄/aψ + ψ̄/aΨ

whereDµ is a background gauge covariant derivative and Jµ

(1) is the gauge current expanded

to linear order in the scalar and fermion fluctuations.

The above action only contains terms that are quadratic in the fluctuations a, ψ, and

φ. This is because we have made the very important assumption that tadpoles in the

fluctuation vanish, i.e. the background fields obey their equations of motion. In terms

of amplitudes this corresponds to putting soft external legs on-shell, which is of course

necessary if on-shell recursion relations are to hold.

3.2 Eliminating O(z) vertices

In order to determine M(z), we simply compute the two point function of hard fluctuations

in the presence of the soft background. We then take the large z limit. Since we are

concerned with large z behavior, our first worry is interactions with derivatives acting on

the hard fields, a, ψ and φ. Naively, these derivatives generate powers of z that blow up as

z → ∞. Since these terms only show up in D[µaν]D
[µaν], DµφD

µφ, and the mixing term,

aµ[Φ, iDµφ], the dangerous terms are all proportional to either q ·A or q ·a. This statement

actually holds for any two derivative theory, renormalizable or not.

Terms with q dotted into the background gluon can be eliminated by choosing back-

ground light-cone gauge, that is q · A = 0.1 However, as shown in [11], it is actually

1In higher derivative theories, for example Euler-Heisenberg theory, there are additional O(z) terms of

the form qµF µν that cannot be removed by background light-cone gauge. For this reason we restrict to two

derivative theories.
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Figure 1. The unique diagram. Since gluons 1 and 2 meet directly at a vertex, the momentum

flowing into the soft gluon is p1 + p2. For this reason, background field light-cone gauge cannot be

chosen for this diagram.

impossible to choose this particular gauge for a class of so-called unique diagrams. To see

this, consider the gauge choice Aµ → A′
µ, where q · A′ = 0 and

A′

µ = Aµ + pµΩ (3.4)

Clearly, Ω becomes singular if q · p = 0, which only happens if p = p1 + p2, corresponding

to the unique diagram (see figure 1) in which particles 1 and 2 meet directly at a trilinear

vertex with a soft gluon. Since we are only concerned with diagrams in which particle 1

is a gluon, the only unique diagram occurs when particle 2 is also a gluon, simply because

there is no interaction between two gluons and a non-gluon.2 This unique diagram arises

in pure gauge theory, and was shown to vanish at large z [11].

Next, let us consider terms involving q dotted into the fluctuation. These terms arise

from (Dµa
µ)2 and the mixing term. We recognize the latter as simply the mixing term

between gauge bosons and goldstone bosons in a gauge theory with spontaneous symmetry

breaking. Consequently, both terms can be removed in the usual way by an appropriate

Rξ gauge choice for the fluctuation:

Lξ =
1

ξ
tr (Dµa

µ + iξ[Φ, φ])2 (3.5)

For the choice of ξ = 1, all derivative interactions are removed, and the quadratic gluon

action becomes

L(2) = −1

2
tr ηabDµaaD

µab − itr [aa, ab]F
ab − tr [aa,Φ][ab,Φ]ηab (3.6)

where we have re-written some Greek indices as Latin indices in order to emphasize the

spin Lorentz symmetry, which is nothing more than the fact that the kinetic term enjoys

an enhanced Lorentz symmetry that acts only on the ab indices. In the z → ∞ limit, this

term dominates over everything, so the spin Lorentz symmetry is a symmetry of the leading

order in z contribution. As discussed in [11], this spin Lorentz symmetry is necessary to

show that pure gauge theory amplitudes vanish at large z.

2This is actually not true for all two derivative theories. In the presence of an axion or a singlet scalar,

there can be operators of the form aFµν F̃ µν and bFµνF µν , which introduce new unique diagrams. We

assume that such interactions are absent.
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a) b) c)

d) e)

Figure 2. All diagrams with no hard propagators. The blobs represent insertions of a classical

background that parameterizes all of the soft physics. In diagrams a) − c) particles 1 and 2 are

both gluons, while d) and e) are mixed diagrams. Diagrams a) (the unique diagram) and b) occur

in pure gauge theory; after dotting into the appropriate polarizations, they vanish at large z [11].

Diagram c) is proportional to ηab, so it preserves the spin Lorentz symmetry and is O(1/z) after

dotting into polarizations. Diagrams d) and e) are O(1/z) after dotting into polarizations.

3.3 Checking explicit diagrams

Any Feynman diagram is simply a product of interaction vertices and propagators. Since

our choice of gauge has fixed every interaction to go as O(1), the only question is how

propagators scale at large z. A hard boson propagator goes as 1/(p+ zq)2 = O(1/z), while

a hard fermion propagator actually scales as O(1):

1

/p(z)
=

/p+ z/q

p2 + 2zp · q
z→∞
=

/q

2p · q (3.7)

Thus, any diagram with at least one hard boson propagator will necessarily vanish at large

z. In contrast, i) any diagram with no hard propagators, and ii) any diagram with only

hard fermion propagators will naively go as O(1) at large z. In this section we explicitly

check that these two classes of diagrams do not spoil the large z behavior.

To begin, we assume that particles 1 and 2 are both gluons, leaving the mixed case for

a later section. First, let us consider all diagrams with no hard propagators (see figures

2a-2c), all of which have the structure that particles 1 and 2 meet directly at a vertex.

Consequently, these diagrams only contain one interaction vertex involving hard fields,

and it can be read directly off the quadratic gluon action in equation (3.6). Since the

action differs from that of a pure gauge theory simply by tr [aa,Φ][ab,Φ]ηab, the two point

function of hard gluons gets an additional contribution

δMab
1 = Aηab (3.8)

on top of the pure gauge theory, where here A parameterizes the soft physics of the

scalar background.

Next, consider the contribution from diagrams with only hard fermion propagators.

Since our gauge choice leaves only O(1) interactions and hard fermion propagators go as

O(1), these diagrams naively contribute at O(1). However, this leading order piece actually

– 7 –
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vanishes! To see this, we observe that the leading order in z contribution is obtained by

taking a /q from every hard propagator numerator. Excluding even one /q introduces a factor

of 1/z, yielding a subleading contribution. For this reason, any helicity flipping insertions,

such as masses or Yukawas, contribute only at O(1/z).

Consequently, for the leading order contribution, the only allowed interactions along

the fermion line are gauge interactions. Thus, the corresponding Feynman diagram is

comprised of alternating insertions of gluons and /q terms (see figure 3):

Mac1...cnb ∼ γa/qγc1/q . . . /qγcn/qγb (3.9)

∼ (qc1 . . . qcn)γa/qγb

where here a and b label the hard gluons at either end of the fermion line, and in the second

line we have anti-commuted gamma matrices and used that /q/q = q2 = 0. Without loss of

generality we can split Mac1...cnb into components that are symmetric and anti-symmetric

in a and b. The symmetric piece is proportional to γ(a/qγb) = 2q(aγb) − 2ηab/q. Finally, after

dotting the ci into soft gluon polarization vectors and sandwiching the whole expression

between soft fermion polarization spinors, we obtain the contribution to the two point

function of hard gluons:

δMab
2 = B[ab] + q(aCb) − ηab(q · C) (3.10)

where B[ab] and Ca are functions of the soft backgrounds and B[ab] is anti-symmetric.

Summing the contributions from diagrams with no hard propagators and diagrams

with only hard fermion propagators, we find that the full amplitude becomes

Mab = Mab
gluon + δMab

1 + δMab
2 (3.11)

= Mab
gluon +Aηab +B[ab] + q(aCb) − ηab(q · C) + O(1/z)

where Mab
gluon is the contribution from the pure gauge theory, which was calculated in [11].

Dotting into polarizations, the amplitude becomes M = ǫ−1aMabǫ2b, where without

loss of generality we have defined gluon 1 to have negative helicity and gluon 2 to be

arbitrary. In D = 4 dimensions, q is basically the same as the polarization vectors for the

real momenta p1 and p2; in particular, ǫ−1 = ǫ+2 = q and ǫ+1 = ǫ−2 = q∗. This of course

makes sense because ǫ1,2 and q obey the same defining equations, q2 = q · p1,2 = 0. If we

now complex deform p1,2 → p1,2(z), then the polarizations must be modified appropriately

to remain normalized to unity and orthogonal to p1,2(z). Given these constraints the

polarizations take the form [11]

ǫ−1a = qa
gauge
= −p1a

z
(3.12)

ǫ±2a =

{
qa, (+)

q∗a + zp1a, (−)

where ǫ−1 = q is gauge equivalent to ǫ−1 = −p1/z because they are related by a gauge

transformation:

ǫ−1µ → ǫ−1µ + p1µ(z)

(
−1

z

)
(3.13)

– 8 –
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/q /q /q

Figure 3. An example of a diagram with only hard fermion propagators. Naively, the leading z

contribution goes as O(1) and comes from taking a q from every propagator numerator. However,

after dotting into the external polarization for particle 1, we find that every such diagram vanishes.

where the gauge transformation of course involves the complexified momentum. We note

that in D > 4 dimensions, there are an additional D − 4 z-independent polarizations ǫT

which span the vector space orthogonal to p1,2, q and q∗.

By dotting polarizations into Mab, we find that the (−,+), (−,−), and (−, T ) ampli-

tudes are

M−,+ = qaMabqb (3.14)

= qa(Aη
ab +B[ab] + q(aCb) − ηab(q · C))qb + O(1/z)

→ O(1/z)

M−,− = −1

z
p1aMab(q∗b + zp1b) (3.15)

= −p1a(Aη
ab +B[ab] + q(aCb) − ηab(q · C))p1b + O(1/z)

→ O(1/z)

M−,T = −1

z
p1aMabǫTb (3.16)

→ O(1/z)

where we have used the result from [11] to throw out the contribution from the pure gauge

theory, Mgluon. By convention gluon 1 can always be chosen to have negative helicity, so

M−,+, M−,−, and M−,T characterize any amplitude with two gluons. Since this amplitude

vanishes at large z, the recursion relations hold.

3.4 Mixed gluon amplitudes

So far we have shown that recursion relations exist for amplitudes with at least two external

gluons. As it turns out, this statement actually holds more generally, in particular for

amplitudes with only a single external gluon. To see this, consider an amplitude where

particle 1 is a gluon and particle 2 is a scalar or fermion. As before, we can fix all of the

interactions to be O(1) using background field light-cone gauge and the appropriate Rξ

gauge. However, since particle 2 is no longer a gluon, the explicit diagrams that we must

check are now different.

First, let us consider all diagrams with only hard fermion propagators. As before,

the leading order in z contribution comes from taking a /q from every fermion propagator

– 9 –
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numerator. No matter whether particle 2 is a scalar or a fermion, these diagrams take

the form

Ma... ∼ γa/q . . . (3.17)

where the hard gluon polarization is dotted into a. This is always the case because particle

1 has to connect to two fermion lines, and since it is a gluon this coupling has to be a gauge

interaction. Since we can choose the gluon to have negative helicity, ǫ−a = qa, this leading

order contribution vanishes. Thus, the contribution from diagrams with only hard fermion

propagators starts at O(1/z).

This leaves diagrams with no hard propagators (see figures 2d and 2e). Both mixed

diagrams arise from the L(1) = tr aµJ
µ

(1), which naively contains terms that mix the hard

gluon with the derivative of a hard scalar or a hard fermion. However, our choice of Rξ

gauge eliminates these terms and so the diagrams go only as O(1). If we then dot the

diagrams into the gluon polarization, ǫ−a = −pa/z, we find that the diagram vanishes if

particle 2 is a scalar (since it has no polarization to introduce any additional factors of z),

but if particle 2 is a fermion, the diagram can still go as O(1). An explicit check of this

fermion diagram is straightforward, since it is simply a single vertex Feynman diagram.

After dotting into polarizations, we find that the leading contribution goes as O(1/z), for

any fermion polarization. Thus, we have shown that M(z → ∞) = 0 even when particle 2

is scalar or fermion. This completes our proof that any amplitude with at least one gluon

obeys a recursion relation.

4 Spin ≤ 2 amplitudes

In this section we consider a generic theory of gravity coupled to spin 0, 1
2 , 1,

3
2 fields. Our

procedure will mirror that of the spin ≤ 1 case. We find that M(z → ∞) = 0 for any

amplitude with at least one graviton, so this amplitude obeys a recursion relation. Our

result holds for (N = 8) supergravity.

4.1 Background field lagrangian

Consider (super)gravity coupled to a two derivative theory of matter (spin ≤ 1) fields:

L =
√−gR+ Lmatt(Φ,Ψα, Aµ,Λµα, gµν) (4.1)

We expand the action in terms of hard fluctuations around a soft background

gµν → gµν + hµν (4.2)

Λµα → Λµα + λµα

Aµ → Aµ + aµ

Ψα → Ψα + ψα

Φ → Φ + φ

– 10 –
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In powers of the graviton fluctuation, the action becomes

L = L(0) + L(1) + L(2) + . . . (4.3)

L(2) =
√−g

(
1

4
∇ρhµν∇ρhµν − 1

4
∇µh∇µh+

1

2
∇µh∇νh

µν − 1

2
∇ρhµν∇µhνρ

+
1

2
hµνhρσX

µνρσ + ∇λhµνhρσY
λµνρσ

)

L(1) =
√−g

(
1

2
hµνT

µν

(1)

)

Here Xµνρσ and Y λµνρσ are functions of the graviton and matter backgrounds and T µν

(1)
is

the stress-energy tensor expanded to linear order in the matter fluctuations. For now we

will ignore the precise form of Xµνρσ and Y λµνρσ , but return to them in a later section.

Also, we have assumed that the background fields obey their equations of motion, so the

fluctuations do not have tadpoles.

4.2 Eliminating O(z2) and O(z) vertices

As in the gauge theory case, our first concern will be interactions that involve derivatives

acting on the hard fields. In particular, we have to worry about mixing terms between the

graviton and the derivatives of matter fields, which arise from L(1). However, these dan-

gerous contributions can always be eliminated by an appropriate Rξ gauge. For example,

consider a free scalar coupled to gravity:

L(1) =
√−g

(
1

2
hµνT

µν

(1)

)
=

√−ghµν

(
gµρgνσ − 1

2
gµνgρσ

)
∇ρφ∇σΦ (4.4)

IbP
= −√−g

(
∇µhµν − 1

2
∇νh

)
φ∇νΦ + . . .

Since this term includes a derivative acting on a hard field, it will naively introduce z’s

into amplitudes. However, if we choose a (deDonder) Rξ gauge term [12]

Lξ =

√−g
2ξ

(
∇µhµν − 1

2
∇νh+ ξφ∇νΦ

)2

(4.5)

which for ξ = 1 eliminates these dangerous terms. Since this gauge choice is simply unitary

gauge for the graviton, we know that it will still work if there are also fermions and gluons in

the theory. After sending L → L+Lξ, we find that the quadratic graviton action becomes

L(2) =
√−g

(
1

4
∇ρhµν∇ρhµν − 1

8
∇µh∇µh+

1

2
hµνhρσX

µνρσ + ∇λhµνhρσY
λµνρσ

)
(4.6)

As written, the above Lagrangian does not have a manifest spin Lorentz symmetry. How-

ever, this can be rectified using a trick from [13], whereby a dilaton χ is introduced simply

to remove the ∇µh∇µh kinetic term. Then, we perform a field redefinition

hµν → hµν + gµν

√
2

D − 2
χ, χ→ 1

2
gµνhµν +

√
D − 2

2
χ (4.7)
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Because of how the dilaton couples to matter, this field redefinition effectively eliminates

any coupling between matter and the trace of the graviton, h. Moreover, since dilaton num-

ber is conserved, the dilaton completely decouples from any tree-level Feynman diagram

that does not have external dilaton legs. We will be concerned only with such diagrams.

After the field redefinition the quadratic graviton action takes the form

L(2) =
√−g

(
1

4
∇ρhµν∇ρhµν +

1

2
hµνhρσX

µνρσ + ∇λhµνhρσY
λµνρσ

)
(4.8)

The combination of the Rξ gauge and the field redefinition now makes the spin Lorentz

symmetry manifest. To see this, let us rewrite the action in terms of a left and right

vierbein, e and ē and a left and right connection, ω and ω̄:

gµν = eaµe
b
νηab = ēāµē

b̄
νηāb̄ (4.9)

hµν = eaµē
ā
νhaā

∇ρhµν = eaµē
ā
ν∇ρhaā

∇ρhaā = ∂ρhaā + ω b
ρ ahbā + ω̄ b̄

ρ āhab̄

Of course there is still only a single diffeomorphism redundancy, and the left/right distinc-

tion is introduced only to emphasize that there are two copies of the spin Lorentz symmetry

acting on the barred and unbarred indices of the graviton. We can see this because the

action now takes the form

L(2) =
√−g

(
1

4
gλκηabηāb̄∇λhaā∇κhbb̄ +

1

2
haāhbb̄X

aābb̄ + ∇λhaāhbb̄Y
λaābb̄

)
(4.10)

At high energies, the leading contribution is proportional to ηabηāb̄, which enjoys a double

spin Lorentz symmetry.

Next, let us choose light-cone gauge for the background graviton field, i.e. for the

metric gµν . This will eliminate large z contributions coming from derivatives acting on the

background. As in [11], we can choose a gauge in which qµ is always in the direction of the

negative helicity polarization, so

g−− = g−i = ω−

ab = ω̄−

āb̄
= 0 (4.11)

g−+ = 1

where i labels all directions orthogonal to the ± polarizations, that is, the p1,2 and ǫT

directions. This gauge choice ensures that q is the same as the negative helicity polarization

vector in the local Lorentz frame, i.e. q2 = q · p1,2 = q · ǫT = 0, and q · q∗ = 1, where

contractions are with respect ηab = ηāb̄. This background light-cone gauge eliminates all

large z contributions from derivative interactions except in the unique diagrams, which

were shown to vanish in [11].

Just as in the gauge case, any diagram with at least one boson propagator will get an

additional factor of 1/z, and thus will vanish at large z. All that is left to check is diagrams

with no hard propagators, and diagrams with only hard fermion propagators.

– 12 –
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4.3 What are Xaābb̄ and Y λaābb̄?

Before checking the remaining diagrams, it will be useful to first determine Xaābb̄ and

Y λaābb̄. To begin, one might ask why higher derivative terms like ∇λ∇κhaāhbb̄ are absent

from the graviton action. To see this, observe that the graviton enters Lmatt only through

the metric (contributing to Xaābb̄), while derivatives of the graviton enter only through

covariant derivatives (contributing to Y λaābb̄). Since we assume a two derivative action,

the only covariant derivatives come from the kinetic terms. For spin 0 and 1, ∂µφ = ∇µφ

and ∇[µaν] = ∂[µaν], so the covariant derivatives are simply partial derivatives and thus

bosons do not contribute to Y λaābb̄! For spin 1
2 and 3

2 , there is a single covariant derivative

which introduces a derivative acting on the graviton: thus, Y λaābb̄ gets contributions from

the fermion kinetic terms and Xaābb̄ gets contributions from everything else.

It is possible to deduce the form of Xaābb̄ and Y λaābb̄ simply by combining spurions

made up from the background fields. Let us begin with Xaābb̄, which has a manifest

aā ↔ bb̄ symmetry because it couples to haāhbb̄. Since Xaābb̄ has indices, any background

field spurion from which it is constructed must also have indices. These spurions come

from the kinetic terms:

∂aΦ∂bΦ, Ψ̄γa∂bΨ, F abF cd, Λ̄aγbcd∂eΛf , Rabcd (4.12)

where we have not specified whether indices are left or right. Next, we simply combine

these spurions with the metric in order to obtain a four index tensor. For example, since

the spin 0 and 1
2 spurions only have two indices, we simply multiply them by ηab or ηāb̄.

Thus, the scalar contributes the four index tensors ηab∂āΦ∂ b̄Φ and ηāb̄∂aΦ∂bΦ. We might

in principle have multiplied by ηaā, but the field redefinition in equation (4.7) eliminates

any couplings of matter to the trace of the graviton, so this contribution vanishes. On the

other hand, the spin 1 and 2 spurions have exactly four indices, so they contribute F abF āb̄

and Rabāb̄. Lastly, the spin 3
2 spurion has six indices and so must be contracted with a

metric to yield a four index tensor. Any single contraction will leave at least two anti-

symmetric indices. Since there is a aā↔ bb̄ symmetry, this contribution is anti-symmetric

in both ab and āb̄. Consequently Xaābb̄ is of the form:

Xaābb̄ = A(ab)ηāb̄ + Ā(āb̄)ηab +B[ab][āb̄] (4.13)

where B[ab][āb̄] has the symmetries of the Riemann tensor.

In contrast, Y λaābb̄ only receives contributions from covariant derivatives in the fermion

kinetic terms. This is because ∇µ = ∂µ +ωµabγ
ab/8, and when linearized ωµab contains the

derivative of the graviton. Moreover, without loss of generality we can take Y λaābb̄ to be

odd under aā↔ bb̄ because the even part can always be integrated by parts and absorbed

into Xaābb̄. Before linearizing, ωµab enters the action as:

L ⊃ iωµab

(
Ψ̄γµγabΨ +

1

12
Λ̄ργ

ρσµγabΛσ

)
(4.14)

Y λabcd has to be constructed from a spurion with the same tensor structure as the quantity

in parentheses. Let us call this spurion Cµab, where the ab indices are anti-symmetrized.

– 13 –



J
H
E
P
0
3
(
2
0
1
0
)
0
9
8

Since Y λaābb̄ is odd under aā ↔ bb̄, anti-symmetry in ab implies symmetry in āb̄ and vice

versa. Thus, in order to construct a four index tensor with the right symmetry properties,

we multiply the spurion by ηab or ηāb̄. Thus Y λaābb̄ is

Y λaābb̄ = Cλ[ab]ηāb̄ + C̄λ[āb̄]ηab (4.15)

To see some explicit formulae for Xaābb̄ and Y λaābb̄, see appendix A. That said, only the

generic structure shown above will be necessary for showing vanishing large z behavior.

4.4 Checking explicit diagrams

In this section we show that all diagrams with no hard propagators and all diagrams with

only hard fermion propagators vanish at large z. For now, consider the case where particles

1 and 2 are both gravitons.

Diagrams with no hard propagators contain only one interaction vertex involving hard

momenta, so their contribution to the amplitude can be read directly off the action:

δMaābb̄
1 = Xaābb̄ + (p1 + zq)λY

λaābb̄ (4.16)

= Aabηāb̄ + Āāb̄ηab +B[ab][āb̄] + z(C [ab]ηāb̄ + C̄ [āb̄]ηab)

where Aab = A(ab) +p1λC
λab and qλC

λab = Cab and the same for the barred variables. It is

interesting to note that δMaābb̄
1 has precisely the same tensor structure as the pure gravity

amplitude computed in [11].

Next, let us consider diagrams with only hard fermion propagators. For the most

part these diagrams are the same as in the spin ≤ 1 case. The only subtlety is that the

propagator for a spin 3
2 fermion is different from that of a spin 1

2 fermion. The kinetic term

for the gravitino fluctuation is:

L 3

2

=
i

12
λ̄ργ

ρσµ∇µλσ (4.17)

However, by choosing a gauge γµλµ = 0 and anti-commuting gamma matrices, we obtain

L 3

2

= − i

2
λ̄µ/∇λµ (4.18)

which is simply four copies of a spin 1
2 fermion. Notice the manifest spin Lorentz symmetry

acting on gravitino index!

Like before, the leading in z contribution comes from taking a factor of /q from every

fermion propagator numerator. Applying the same arguments as in the gauge theory case,

the contribution from diagrams with only hard fermion propagators becomes

δMaābb̄
2 = D[ab]āb̄ + D̄[āb̄]ab + q(aEb)āb̄ − ηabqcE

cāb̄ (4.19)

+ q(āĒ b̄)ab − ηāb̄qc̄Ē
c̄ab

which is very similar to the corresponding expression in the gauge theory (see equa-

tion (3.10)) except that there are two additional indices.

– 14 –
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Summing contributions from all diagrams with no hard propagators and all diagrams

with only hard fermion propagators, we obtain the amplitude

Maābb̄ = Maābb̄
grav + δMaābb̄

1 + δMaābb̄
2 (4.20)

= Maābb̄
grav +Aabηāb̄ + Āāb̄ηab +B[ab][āb̄] + z(C [ab]ηāb̄ + C̄ [āb̄]ηab)

+D[ab]āb̄ + D̄[āb̄]ab + q(aEb)āb̄ − ηabqcE
cāb̄ + q(āĒ b̄)ab − ηāb̄qc̄Ē

c̄ab + O(1/z)

where Maābb̄
grav is the contribution from pure gravity considered in [11]. Without loss of

generality, we take graviton 1 to have negative helicity and graviton 2 to be arbitrary. The

graviton polarizations are symmetric, traceless products of gauge polarizations, so they

take the form

ǫ−−

1aā = qaqā
gauge
= p1ap1ā/z

2 (4.21)

ǫ±±

2aā =

{
qaqā, (++)

(q∗a + zp1a)(q
∗
ā + zp1ā), (−−)

Using equation (4.20), we find that the (−−,++), (−−,−−), and (−−, T ) amplitudes

go as:

M−−,++ = qaqāMaābb̄qbqb̄ (4.22)

→ O(1/z)

M−−,−− =
1

z2
p1ap1āMaābb̄(q∗b + zp1b)(q

∗

b̄
+ zp1b̄) (4.23)

→ O(1/z)

M−−,T =
1

z2
p1ap1āMaābb̄ǫTb ǫ

T
b̄

(4.24)

→ O(1/z2)

Thus, we have shown all amplitudes with at least two gravitons vanish at large z.

4.5 Mixed graviton amplitudes

In theories of (super)gravity coupled to scalars and fermions, any tree amplitude with at

least two gravitons obeys a recursion relation. However, in analogy with the gauge case,

gravitational theories also admit recursion relations for amplitudes with only one graviton.

Our argument parallels that of the spin ≤ 1 theory. Again, by fixing light-cone gauge for

the background and an Rξ gauge for the fluctuation we can remove all O(z2) and O(z)

interactions. Then we just have to check explicit diagrams in which particle 1 is a graviton

and particle 2 is not.

First, let us consider diagrams with only hard fermion propagators. No matter the

identity of particle 2, these diagrams take the form

Ma... ∼ γa/q . . . (4.25)

where a is a graviton index. This has to be true because particle 1 connects to two fermion

lines, and gravitons can only couple to fermions in a very specific way. Finally, dotting
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Ma... into a negative helicity graviton polarization ǫ−−

1aā = qaqā, we see that this leading in

z contribution vanishes.

Diagrams with no hard propagators come from the term hµνT
µν

(1) , which naively includes

interactions involving derivatives of hard matter fields. However, the deDonder Rξ gauge

removes such terms. Consequently, the interaction vertex goes at most as O(1). Next,

dotting the mixed diagram into the graviton polarization ǫ−−

1aā = papā/z
2, we realize that

if particle 2 is a scalar, fermion, or gluon, then its polarization goes at most as z and so

this contribution to the amplitude vanishes at large z. Finally, by explicitly checking the

diagram where particle 2 is a gravitino, we find that all of the mixed diagrams vanish at

large z. This completes our proof that recursion relations hold for any amplitude with at

least one graviton.

5 Conclusion

Recursion relations are a generic feature of tree amplitudes that vanish at large complexified

momentum. In this paper we show that this criterion holds for a broad class of amplitudes

in two derivative gauge and (super)gravity theories in any number of dimensions. In

particular, for a theory of spin ≤ 1, any amplitude with at least one gluon can be recursed;

for a theory of spin ≤ 2 this is true of any amplitude with at least one graviton. Said

another way, recursion relations hold as long there is at least one external leg with the

highest spin possible. This is sensible because a higher spin particle enjoys a greater

gauge redundancy that is essential for obtaining nice large z behavior in an amplitude. In

particular, only by choosing light-cone gauge for the backgrounds and an additional Rξ

gauge for the fluctuations were we able to eliminate large z contributions. Moreover, the

Rξ gauge was especially critical for proving vanishing large z behavior in amplitudes with

only one gluon or only one graviton.

Given the existence of a broad new class of on-shell recursion relations, it is reasonable

to ask whether any of these tools may be used to generate new closed form expressions

for amplitudes in generic field theories. Unfortunately, since these generic recursion rela-

tions require the presence of a least one external leg with the highest spin possible, any

sequence of recursions invariably terminates at an amplitude whose external legs are not

of maximal spin. For instance, consider an on-shell amplitude in QCD with only external

gluons. Applying on-shell recursion relations, one finds that the recursion ultimately stalls

once all the lower point amplitudes involve only external fermions. That said, the possi-

bility of deriving new closed form expressions is certainly an intriguing one, and requires

further study.

Finally, we remark on the interesting fact that the spin ≤ 2 amplitude (equation (4.20))

has precisely the same structure as the square of the spin ≤ 1 amplitude (equation (3.11)).

This is a non-trivial consistency check against the famous KLT relation [14] that equates

closed string tree amplitudes with sums over products of open string tree amplitudes. At

low energies this statement persists as a relation between amplitudes in Yang-Mills and

gravity, and in fact for the case of MHV, new formulas for the the KLT relations have been

derived directly from the BCFW recursion relations [15]. Since the KLT relations also
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relate amplitudes in N = 4 SYM and N = 8 supergravity (a subset of the theories under

consideration in this paper), we should expect such a relation between our expressions for

spin ≤ 1 and spin ≤ 2 amplitudes.
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A Exact expressions for X
µνρσ and Y

λµνρσ

In this section we write down some exact expressions for Xµνρσ and Y λµνρσ . First, let us

parse these tensors according to the spin of the field contributing: s = 0, 1
2 , 2. An explicit

calculation shows [16]:

Xµνρσ
s=0 = ηµρ∂νΦ∂σΦ − 1

2
ηµν∂ρΦ∂σΦ − 1

4
ηµρηνσ∂λΦ∂λΦ +

1

8
ηµνηρσ∂λΦ∂λΦ (A.1)

Xµνρσ

s= 1

2

=
3

8
ηµρΨ̄iγν∇̂σΨ − 1

4
ηµνΨ̄iγρ∇̂σΨ − 1

4
ηµρηνσΨ̄i/̂∇Ψ +

1

8
ηµνηρσΨ̄i/̂∇Ψ

Xµνρσ
s=2 = −Rµρνσ + 2ηµρRνσ + ηµνRρσ +

1

2
ηµρηνσR− 1

4
ηµνηρσR

Y λµνρσ
s=0 = 0

Y λµνρσ

s= 1

2

=
1

48
gνσΨ̄γµρλΨ

Y λµνρσ
s=2 = 0

where Ψ̄∇̂µΨ = Ψ̄∇µΨ−∇µΨ̄Ψ and we have only included contributions from the kinetic

terms. Aside from terms that couple to the trace of the graviton (which are removed by

the dilaton field redefinition) these expressions match the general structure deduced in

equations (4.13) and (4.15).
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