
J
H
E
P
0
3
(
2
0
1
0
)
0
7
6

Published for SISSA by Springer

Received: October 21, 2009

Revised: November 25, 2009

Accepted: February 22, 2010

Published: March 15, 2010

A finely-predicted Higgs boson mass from a

finely-tuned weak scale

Lawrence J. Hall and Yasunori Nomura

aBerkeley Center for Theoretical Physics, Department of Physics, University of California,

Berkeley, CA 94720, U.S.A.
bTheoretical Physics Group, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, U.S.A.
cInstitute for the Physics and Mathematics of the Universe,

University of Tokyo, Kashiwa 277-8568, Japan

E-mail: LJHall@lbl.gov, YNomura@lbl.gov

Abstract: If supersymmetry is broken directly to the Standard Model at energies not very

far from the unified scale, the Higgs boson mass lies in the range (128 – 141) GeV. The

end points of this range are tightly determined. Theories with the Higgs boson dominantly

in a single supermultiplet predict a mass at the upper edge, (141 ± 2) GeV, with the

uncertainty dominated by the experimental errors on the top quark mass and the QCD

coupling. This edge prediction is remarkably insensitive to the supersymmetry breaking

scale and to supersymmetric threshold corrections so that, in a wide class of theories, the

theoretical uncertainties are at the level of ±0.4 GeV. A reduction in the uncertainties

from the top quark mass and QCD coupling to the level of ±0.3 GeV may be possible

at future colliders, increasing the accuracy of the confrontation with theory from 1.4% to

0.4%. Verification of this prediction would provide strong evidence for supersymmetry,

broken at a very high scale of ≈ 1014±2 GeV, and also for a Higgs boson that is elementary

up to this high scale, implying fine-tuning of the Higgs mass parameter by ≈ 20 – 28 orders

of magnitude. Currently, the only known explanation for such fine-tuning is the multiverse.

Keywords: Supersymmetry Breaking, Beyond Standard Model, Superstring Vacua

ArXiv ePrint: 0910.2235

Open Access doi:10.1007/JHEP03(2010)076

mailto:LJHall@lbl.gov
mailto:YNomura@lbl.gov
http://arxiv.org/abs/0910.2235
http://dx.doi.org/10.1007/JHEP03(2010)076


J
H
E
P
0
3
(
2
0
1
0
)
0
7
6

Contents

1 Overview 1

2 A supersymmetric boundary condition on λ 6

3 A precise prediction for the Higgs boson mass 7

3.1 SM below m̃ 8

3.2 Additional multiplets far below m̃ 14

3.3 Relation to other work 16

4 Theories with high scale supersymmetry breaking 17

4.1 An approximate Peccei-Quinn symmetry 18

4.2 Models with a single Higgs supermultiplet 20

5 Evidence for the multiverse from the Higgs boson mass 22

A Supersymmetric threshold corrections at m̃ 27

1 Overview

The Standard Model (SM), taken to include neutrino masses, has reigned supreme for

over three decades. Despite strenuous efforts, at lepton and hadron colliders and from

astrophysical observation, there is no hard evidence to contradict the Standard Model

together with General Relativity (SM + GR) as the entire effective theory of nature up to

extraordinarily high energies.

Over these decades, there have been many theoretical arguments for physics beyond

the SM, with supersymmetry figuring very prominently and having two very different

theoretical motivations:

• String theory contains a quantum theory of gravity, and is the leading candidate the-

ory for the unification of all the fundamental interactions. It requires supersymmetry

in a spacetime with extra spatial dimensions, but leaves open the question of the size

of supersymmetry breaking, which experiment allows to be anywhere in the range of

the weak scale to the string scale.

• If supersymmetry breaking in the SM sector, m̃, is of order the weak scale, v, then

the smallness of the weak scale relative to the Planck scale can be naturally under-

stood. In particular, a fine-tuning of the Higgs mass parameter to thirty orders of

magnitude is avoided, and an elegant radiative mechanism for breaking of electroweak

symmetry emerges.
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Taken together, the theoretical motivation for supersymmetry is high, with the hope that

superpartners are in reach of current hadron colliders.

Have experiments given any hint, positive or negative, on whether supersymmetric

particles are at the weak scale?

• Since the first experiments at LEP, it has become clear that the three SM gauge

couplings unify more precisely if the theory is supersymmetric, with m̃ of order

v. Threshold corrections at the unified scale required for unification are fully an

order of magnitude smaller with weak scale supersymmetry than without. These

corrections can arise from a mild non-degeneracy of one or two small multiplets at

the unified scale with supersymmetry, but more multiplets or larger splittings are

required without supersymmetry.

• The lightest weak scale superpartner can be stable, providing a Weakly Interact-

ing Massive Particle (WIMP) candidate for Dark Matter (DM). It is intriguing that

WIMPs, particles with order unity dimensionless couplings and order v dimension-

ful couplings, lead to the observed abundance of DM, at least within a few orders

of magnitude.

• A light Higgs boson, as expected in the simplest theories with weak scale super-

symmetry, has not been found. These theories now require a tuning of parameters,

typically at the percent level, to reproduce the observed weak gauge boson masses.

In the first years after LEP, the first two items above provided a strong motivation for

taking supersymmetry as the leading candidate for understanding the weak scale. How-

ever, the absence of a light Higgs boson is certainly a problem for simple natural theories.

Furthermore, together with experimental bounds on superpartner masses, it pushes these

theories into regions where the superpartner WIMP candidates are also unnatural. This

unease with weak scale supersymmetry is compounded by the lack of any signals of new

flavor or CP violation beyond the SM, such as b → sγ, and by cosmological issues, such as

the gravitino problem. Over the years there were many opportunities for supersymmetry

to become manifest, leaving us today with many reasons to question weak scale super-

symmetry. The single remaining success is gauge coupling unification, and while this is

certainly significant, one wonders whether a decrease in the unified threshold corrections

by an order of magnitude might be an unfortunate accident. Even without supersymmetry,

unification can occur, either by enhancing these threshold corrections or by certain matter

surviving below the unified scale. Indeed, the evolution of the gauge couplings in the SM

shows evidence for unification [1], as shown in figure 1, and precision unification requires

only a small perturbation to this picture.

What, then, is the origin of the weak scale? It has been suggested that the weak

scale may result from anthropic, or environmental, selection [2]. In particular, if the Higgs

mass parameter scans effectively in the multiverse, but not the Yukawa couplings, then

the requirement of the stability of some complex nuclei requires that the weak scale be no

more than a factor two larger than we measure [2, 3]. In this picture, most universes have

weak interactions broken at a very high scale or by QCD dynamics, but they contain no

– 2 –



J
H
E
P
0
3
(
2
0
1
0
)
0
7
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

0.2

0.4

0.6

0.8

1.

1.2

1.4

E @GeVD

g
a

Figure 1. Evolution of the three gauge couplings, ga (a = 1, 2, 3), in the SM. The SU(5) normal-

ization for the hypercharge gauge coupling is taken.

complex nuclei and consequently no observers. This view is often dismissed on the grounds

that no evidence can be obtained for the multiverse, but this is incorrect. For example,

consider Split Supersymmetry [4]: the weak scale is determined by environmental selection

and supersymmetry is broken at some high scale m̃ ≫ v, but the fermionic superpartners

are taken at the TeV scale to account for DM. In this theory, collider measurements of

the fermionic superpartner interactions could lead to a convincing determination of m̃ and

demonstration that the Higgs field is elementary at the scale m̃. This would imply a

fine-tuning in the Higgs mass parameter of 1 in m̃2/v2, which could be as large as 1020.

Fine-tuning that has no symmetry explanation is key evidence of the multiverse.

While environmental selection in the multiverse is speculative, we think it is the leading

explanation for the order of magnitude of the cosmological dark energy [5] providing the

only understanding for 120 orders of magnitude of fine-tuning. Indeed, we are greatly

motivated by this result. Dark energy does not need any addition to the SM minimally

coupled to gravity, and the prediction for the equation of state, w = −1, agrees well with

current data, wobs ≃ −1.0 ± 0.1 [6, 7]. Of course, this requires a huge number of vacua,

a landscape, that allows for sufficiently fine scanning of the cosmological constant, and it

brings us back to the first theoretical motivation for supersymmetry, string theory, which is

believed to have a landscape of sufficient size to allow the selection of both the cosmological

constant and the weak scale [8–11].

In this paper we assume that the weak scale is determined by environmental selection.

Where does that leave supersymmetry? While the motivation from fine-tuning is gone,

the motivation from string theory is strengthened, since the landscape has its origin in

string theory. In seeking observational evidence for supersymmetry, the two key questions

are then
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• What is m̃?

• Are there any non-SM particles near the weak scale?

We stress that, with the weak scale arising from environmental selection, we have lost

the logical connection from naturalness between m̃ and v, and hence the expectation of

superpartners at the weak scale.

The argument that some non-SM particles must survive to the weak scale, becoming

WIMPs to account for DM, is not correct. How is the strong CP problem to be solved? The

small size of CP violation in the strong interaction must be understood from conventional

symmetry arguments; environmental selection cannot explain the smallness of the QCD

angle, θ̄ ≪ 1, because there is no known catastrophic boundary involving θ̄. Indeed, string

theory is expected to contain a QCD axion, and therefore the Peccei-Quinn solution to

the strong CP problem [12]. This leads to the expectation that axions [13, 14] are DM,

with its density possibly determined by environmental requirements, removing any need

for WIMP DM. Of course, there could be WIMP DM in addition to axion DM, but it is

not necessary.

In this paper we therefore study the following simple framework: the supersymmetry

breaking scale m̃ is very high, perhaps near the high energy cutoff of the field theory

M∗, above which a string description becomes a necessity. Below m̃, the effective theory

is SM + GR. Experimentally this sounds like a “nightmare” scenario, since the LHC

may discover only the Higgs boson, with no hint of any physics beyond the SM. This is,

however, not true. We find that, although supersymmetry is broken at such high scales, a

supersymmetric boundary condition on the Higgs quartic parameter is expected, leading

to a narrow range for the Higgs boson mass of about (128 – 141) GeV. Discovering a

Higgs boson in this mass range would certainly be interesting, but it would be far more

significant if the Higgs boson mass is close to the upper edge of this range. This upper edge

corresponds to the special situation that the Higgs boson resides dominantly in a single

supermultiplet, and yields the prediction

MH = (141 ± 2) GeV. (1.1)

Remarkably, the largest contribution to the uncertainty results from the experimental errors

on the top quark mass and the QCD coupling, which can be improved by future experiments

to ±0.3 GeV. The scenario can therefore be tested to high precision.

It is important that the prediction of eq. (1.1) does not depend sensitively on param-

eters that we cannot measure at low energies. In a large class of theories, with m̃ ranging

over a few orders of magnitude and with a variety of superpartner spectra, the theoreti-

cal uncertainties are extremely small, about ±0.4 GeV or less, reflecting both an infrared

quasi-fixed point behavior of the Higgs quartic coupling and a reduced top Yukawa cou-

pling at high energies. Since the uncertainties arising from our lack of knowledge of the

underlying high energy theory are so small, a measurement of this special value for the

Higgs boson mass would provide strong evidence for the framework.

In fact, the prediction of eq. (1.1) survives even when the theory below m̃ is mildly

extended beyond the SM. The conditions for such a precise prediction are that additional
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multiplets must make limited contributions to the beta functions of the SM gauge couplings,

and that any new couplings to the Higgs boson must not be large.

A confirmation of the above Higgs mass prediction, together with the LHC finding

no new physics beyond the SM, would provide significant evidence against our current

paradigm and point to a very different picture of fundamental physics. In fact, the obser-

vation of this single number would have many implications:

(i) Supersymmetry would be “discovered,” but with superpartners somewhere near M∗,

rather than at the weak scale. The discovery of supersymmetry would point to string

theory, but the large breaking scale would radically change string compactification

phenomenology. All the ideas for new TeV physics — supersymmetry, technicolor,

composite Higgs, and so on — would be replaced by the extension of the validity of

the SM, perhaps augmented by a few small multiplets, up to very high energies.

(ii) Axions provide the only compelling solution to the strong CP problem, and hence

axion DM would seem highly probable. As the axion decay constant fA is expected

to be very high, a pressing question becomes why the universe is not overclosed by

axions. This question has already been addressed: an environmental requirement on

the density of DM may select the initial axion misalignment angle in our universe to

be small [15–17]. WIMP DM, whether superpartners or not, would be unnecessary,

although not excluded.

(iii) The apparent success of supersymmetric gauge coupling unification would be seen

to be an accident, that misled much of the field for two decades. The evolution of

gauge couplings would still point to unification, as shown for the case of the SM in

figure 1. The SM alone requires larger unified threshold corrections, and leads to a

lower, more uncertain, unification scale, Mu ∼ 1014±1 GeV. Another possibility is

that a few light multiplets additional to the SM lead to a precise unification, as in

the case of a single vector-like lepton doublet near the weak scale.

(iv) Most important, there would be a huge fine-tuning in the Higgs boson mass parameter

of 20 orders of magnitude or more. The Higgs mass prediction would show that the

Higgs boson is elementary up to very high energies, and there is no known symmetry

mechanism that could tame the fine-tuning, given the high scale of supersymme-

try breaking. This would provide strong evidence that the electroweak symmetry

breaking scale results from environmental selection.

To avoid these conclusions, one must either assume that the success of the Higgs mass

prediction at the GeV level is an accident, or come up with an alternative understanding

of the large amount of fine-tuning.

In the final section of the paper, we argue that certain other values of the Higgs boson

mass could also demonstrate both an elementary Higgs boson to high scales and an ab-

sence of supersymmetry beneath the high scale, again providing evidence for environmental

selection in the multiverse.
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2 A supersymmetric boundary condition on λ

If the SM becomes supersymmetric at scale m̃, then there is a boundary condition on the

quartic Higgs coupling

λ(m̃) =
g2(m̃) + g′2(m̃)

8
cos22β, (2.1)

where g and g′ are the SU(2)L and U(1)Y gauge couplings, g = g2 and g′ =
√

3/5g1.

The SM Higgs doublet is a combination of doublets of opposite hypercharge in the super-

symmetric theory, described by a mixing angle β. If m̃ is very large, does this boundary

condition survive? For example, suppose supersymmetry is broken by the highest com-

ponent VEV, FX , of a chiral superfield X, so that m̃ ∼ FX/M∗. In general, the Kähler

potential includes the higher dimension operator X†X(H†H)2/M4
∗ where H is the Higgs

superfield, so that the quartic coupling deviates from the supersymmetric boundary con-

dition by an amount δλ ∼ F 2
X/M4

∗ ∼ m̃2/M2
∗ . With supersymmetry at the weak scale,

m̃ ≪ M∗, so this correction is negligible; but for high scale supersymmetry breaking, does

this correction destroy any Higgs mass prediction?

Many parameters, including m̃, are expected to vary in the multiverse. High scale

supersymmetry results if the landscape distribution for m̃ increases sufficiently rapidly at

large m̃. For a given value of m̃, we can determine whether a larger value is more probable

by comparing whether the increase in probability from the m̃ distribution compensates for

the more precise cancellation needed to keep v below the environmental bound. We expect

that a larger m̃ is more probable if, at the value of m̃ under consideration, the m̃ distri-

bution grows more rapidly than quadratically. As m̃ continues to grow, the distribution

may become milder than quadratic, so that in typical universes observers find m̃ ≪ M∗.

However, in this case the form of the distribution introduces a new mass scale. It seems

more probable that the stronger peaking of the distribution persists all the way to near

the cutoff M∗, so that typical observers find m̃ close to M∗. This apparently destroys the

boundary condition for λ completely. We argue below, however, that even in this case the

supersymmetric boundary condition may well persist.

The new physics around the cutoff M∗ is likely to be accompanied by the compact

spatial manifold that results from string theory. How large do we expect this new scale

to be? With m̃ near M∗, it is reasonable to assume that it is not far from the scale of

SM gauge coupling unification, Mu ≈ 1014 GeV. In this case the volume of the manifold

is large, in units of the string scale, to account for the very large value of the Planck

scale, MPl ≈ 1018 GeV. There are two ways that such a setup may act to preserve the

supersymmetric boundary condition. First, the strength of supersymmetry breaking may

not really reach M∗. For small supersymmetry breaking, an increase in m̃ is unlikely to

affect the dynamics at M∗. However, as m̃ approaches M∗, it may lead to a destabilization

of the vacuum that yields the desired SM physics at low energy; m̃ may be prevented from

reaching M∗ for an environmental reason. The second possibility is that supersymmetry

breaking is maximal but, because it is now occurring in a higher dimensional manifold, it

is no longer true that it leads to sizable δλ. Below we discuss ways in which the spatial

properties of supersymmetry breaking can suppress δλ.
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Supersymmetry breaking may either occur locally somewhere in the manifold, or it

may be delocalized, as with Scherk-Schwarz or moduli breaking. Local breaking of super-

symmetry may typically occur far from the localization of the SM matter and Higgs sector.

In this case a non-local mediation mechanism is required and, given the large spatial sep-

aration, supersymmetry breaking in the SM Higgs sector is suppressed even if the local

breaking of supersymmetry is maximal. The non-local transmission may be by loops of

quanta propagating in the bulk, which may include SM gauge fields. The effects of tree-

level transmissions are suppressed by the relevant volume factors; in particular, the gravity

mediation contribution to δλ is suppressed by (M∗/MPl)
2. Once SM superpartners acquire

mass, integrating them out gives loop threshold corrections to δλ. These are computed in

the next section and found to be small.

What if supersymmetry breaking is non-local? In this case m̃ is determined by α/R,

where α (≤ 1/2) is an angle appearing in the compactification boundary conditions and

R is the size of the relevant extra dimension, which we take to be sufficiently larger than

the cutoff scale for the classical spacetime picture to be valid. Ignoring gravity, any tree-

level corrections to δλ are suppressed by powers of α/M∗R. There are loop threshold

corrections to δλ from integrating out superpartners and Kaluza-Klein (KK) excitations of

SM particles. The contributions from KK modes decouple if α is small and, as mentioned,

the contributions from superpartners are small. Even for α = 1/2, the contribution from

KK modes is loop suppressed. The size of the gravity mediation contribution depends on

the stabilization mechanism for the extra dimensions. The correction to δλ, however, is

suppressed by at least (α/M∗R)2 and typically much more.

Thus, even for maximal supersymmetry breaking, which likely leads to m̃ not far

from Mu, the supersymmetric boundary condition for λ may very well survive. Indeed,

the boundary condition is expected to be destroyed only in the very specific situation

that supersymmetry breaking and the SM Higgs sector have coincident locations in the

extra dimensions, and the supersymmetry breaking is maximal, with FX hard up against

the cutoff.

3 A precise prediction for the Higgs boson mass

A prediction for the Higgs boson mass results from a supersymmetric boundary condi-

tion on the Higgs quartic coupling at m̃; however, the uncertainties might be very large.

Indeed, in the Minimal Supersymmetric Standard Model (MSSM) one-loop threshold cor-

rections from top squark loops at m̃ lead to corrections to the Higgs boson mass as large as

≈ 40%. For weak scale supersymmetry, collider measurements of superpartner properties

could determine the threshold corrections, but this is clearly not possible for supersym-

metry breaking at unified scales. In this section we show that this naive expectation, of

large uncertainties to the Higgs mass prediction from threshold corrections, is completely

incorrect; rather, the largest uncertainties come from the experimental uncertainties on

the top quark mass, mt, and the QCD coupling, αs, which are already small and can be

reduced by future precise measurements.

– 7 –



J
H
E
P
0
3
(
2
0
1
0
)
0
7
6

2 4 6 8 10

120

130

140

150

tanΒ

M
H
@G
e
V
D

Figure 2. The Higgs mass prediction in the SM for theories where the boundary condition for the

quartic coupling at m̃ is given by eq. (2.1), for fixed values of m̃ = 1014 GeV and αs(MZ) = 0.1176.

The solid red curve gives the Higgs mass prediction for mt = 173.1 GeV, while the shaded red

band shows the uncertainty that arises from the experimental uncertainty in the top quark mass of

±1.3 GeV. The horizontal blue lines show the corresponding asymptotes of the prediction for large

tan β. For tanβ < 1, an identical figure results provided the horizontal axis is labeled by cotβ.

In section 3, we compute the Higgs boson mass when the theory below m̃ is the SM,

paying attention to possible threshold corrections from the scale m̃. In section 3, we explore

the sensitivity of the prediction to additional states with SM gauge interactions far below

m̃, and in section 3.3 we discuss the relation to other work.

All figures and analytical results are obtained using two-loop renormalization group

(RG) scaling of all couplings from m̃ to the weak scale, together with one-loop threshold

corrections at the weak scale, including the one-loop effective potential for the Higgs field.

In addition, we include the two- and three-loop QCD threshold corrections in converting

the top-quark pole mass to the MS top Yukawa coupling, since they are anomalously large.

Experimental values of mt = 173.1 ± 1.3 GeV [18] and αs(MZ) = 0.1176 ± 0.002 [19]

are used.

3.1 SM below m̃

In a general supersymmetric model, the SM Higgs doublet may be a combination

of supersymmetric Higgs doublets having opposite hypercharge so that, before including

threshold corrections, the boundary condition on the quartic coupling is given by eq. (2.1).

The resulting prediction is actually a correlation between the Higgs boson mass and the

parameter tan β, as shown by the solid red curve in figure 2. Remarkably, even as β

varies over all possible values, the Higgs mass lies in a narrow, high-scale supersymmetry,

window of ≃ (128 – 141) GeV. Furthermore, for large values of tan β the Higgs mass rapidly

asymptotes to ≃ 141 GeV, shown by the blue line, reaching 1 GeV of this asymptote at

tan β ≃ 6.
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Figure 3. The evolution of the quartic coupling with energy E in the SM with the supersymmetric

boundary condition of eq. (3.1), for fixed values of m̃ = 1014 GeV, mt = 173.1 GeV and αs(MZ) =

0.1176. The solid curve is for δ = 0, while the long (short) dashed curves are for δ = ±0.1 (±0.2).

As discussed in the next section, in many simple supersymmetric theories the parameter

tan β is too large to be relevant or even does not exist, so that from now on we study the

boundary condition

λ(m̃) =
g2(m̃) + g′2(m̃)

8
{1 + δ(m̃)} , (3.1)

where δ includes all threshold corrections from the scale m̃, and is expected to be ≪ 1 if

m̃ is chosen close to the superparticle masses. The effect of finite tan β can be included as

a contribution to δ

δβ = − 4

tan2β
+ O

(

1

tan4β

)

. (3.2)

The Higgs mass prediction following from eq. (3.1) takes the form MH = MH(m̃, δ(m̃)),

with both an explicit dependence on m̃ and an implicit one via δ. Since m̃ is an arbitrary

matching scale, MH is independent of m̃: the explicit and implicit dependences cancel.

However, MH does depend on the spectrum of superpartners via the expression for δ, with

a typical sensitivity that can be estimated by studying the explicit dependence of MH on

m̃, or equivalently on δ. As shown below, for a wide range of m̃ and δ, these sensitivities

of MH(m̃, δ) are extremely mild.

In figure 3, we show the numerical solution for the running coupling λ(E) as a func-

tion of energy E, for δ = 0, ±0.1, and ±0.2 for m̃ = 1014 GeV. These curves show an

important convergence property: the effects of the very large threshold corrections at m̃ are

greatly reduced in the infrared. The quartic coupling is being strongly attracted towards

an infrared quasi-fixed point so that, at the weak scale, the fractional uncertainty in the

coupling is reduced by about a factor of 6. This convergence of the infrared flow reduces
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Figure 4. The explicit dependence of the Higgs mass prediction on m̃ in the SM, with αs(MZ) =

0.1176. The narrow red shaded region has mt = 173.1 GeV, with the three solid curves corre-

sponding to (from bottom) δs = 0, 0.02 and 0.04. The upper (lower) dashed red curve shows

the prediction when the top quark mass is increased (decreased) by 1.3 GeV. The vertical blue

lines correspond to values of m̃ in the region suggested by gauge coupling unification in the SM,

Mu = 1014±1 GeV.

the sensitivity of the Higgs boson mass to δ

δMH = 0.10 GeV

(

δ

0.01

)

, (3.3)

where δ has been arbitrarily normalized to 0.01. Note that the attraction is not quite

so strong as to erase the sensitivity of low energy measurements to the value of the su-

persymmetric boundary condition. This therefore still allows us to probe the existence of

supersymmetry at high scales.

In figures 2 and 3 we have taken m̃ = 1014 GeV because, as we argued in the previous

section, we expect supersymmetry breaking to be not far from the scale of unification,

which from figure 1 is seen to be of order 1014 GeV. However, figure 1 also shows that

Mu has large uncertainties, and the superparticle masses may not be exactly at Mu. An

uncertainty in the Higgs boson mass induced by varying m̃ from 1014 GeV, however, is

extremely small

δMH = 0.14 GeV

(

log10

m̃

1014 GeV

)

, (3.4)

as shown by the curves of figure 4 for a fixed value of δ. As m̃ increases above 1012 GeV,

it is apparent that the Higgs mass is remarkably insensitive to even large variations in m̃.

The Higgs mass changes by only 300 MeV when m̃ is changed by two orders of magnitude.

The origin of this insensitivity can be seen from figure 3; the curves for λ(E) have a very

small gradient above 1010 GeV and, in addition, there is the convergence effect on scaling

down to the weak scale.
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We have seen that the predicted value of MH is rather insensitive to δ and m̃, but what

definition of m̃ should we choose, and what is the value of δ with that m̃? A convenient

choice for m̃ is such that the leading-log contributions to δ from the superpartners and

the heavy Higgs doublet vanishes. At the leading-log level, these threshold corrections

are accounted for by choosing to match the full supersymmetric theory with the SM at an

arbitrary scale m̃, and inserting a term in δ proportional to ln(mı̃/m̃) for each superpartner

ı̃ that is integrated out. We can then make the choice of m̃ = m̃(mı̃) in such a way that

the sum of these logarithmic terms vanishes.

In the appendix we compute the complete leading-log corrections to δ from all super-

partners of SM particles and from the heavy Higgs doublet. We find that these corrections

vanish if we choose m̃ to be

m̃ ≃ m1.6
λ

m0.6
t̃

, (3.5)

where mλ and mt̃ are the gaugino and top squark masses. An important point is that,

although m̃ defined in this way does not exactly coincide with any particular superparticle

mass, it is in the vicinity of mλ and mt̃, so we expect m̃ to be not far from 1014 GeV.

Because the explicit dependence of MH on m̃ is very mild, this is enough to make a precise

prediction for MH .

This choice of m̃ completely eliminates the leading-log supersymmetric corrections.

The supersymmetric threshold correction, δs, therefore contains only finite terms. For

example, the contribution from loops of top squarks at m̃ is

δs =
3y4

t

32π2λ

(

2A2
t

m2
t̃

− A4
t

6m4
t̃

)

≃ 0.007

(

2A2
t

m2
t̃

− A4
t

6m4
t̃

)

, (3.6)

where At is the trilinear coupling of the top squarks to the Higgs boson. The numerical size

of this correction is much smaller than in the MSSM because, on scaling up to very large

values of m̃, the top Yukawa coupling yt is reduced by about a factor two and the effect

is proportional to the fourth power of yt. For At = mt̃ (3mt̃), eq. (3.6) gives δs ≃ 0.013

(0.031), leading to an increase of MH of 0.1 (0.3) GeV. We expect that the size of the

other finite supersymmetric threshold corrections, which we have not computed, does not

exceed this order. The effect of the supersymmetric correction is shown by the three solid

red curves in figure 4 for δs = 0, 0.02 and 0.04.

Other threshold corrections may be present, depending on the nature of the theory

near m̃. The Higgs mass prediction will be affected by any additional significant couplings

of the Higgs boson at or below m̃. Except for the top coupling, which we have already

included, the Yukawa couplings to the quarks and charged leptons give negligible effects. If

neutrino masses are of Dirac type, then the neutrino Yukawa couplings are also very small

and are irrelevant. However, for Majorana masses arising from the seesaw mechanism,

there is the possibility of a correction to the Higgs mass if the right-handed neutrino mass,

MR, is less than m̃, in which case

δν =
1

8π2

(

m2
νM

2
R

λv4
− 2

mνMR

v2

)

ln
m̃

MR
≃ 0.004

MR

1014 GeV

(

1.4
MR

1014 GeV
− 1

)

ln
m̃

MR
,

(3.7)
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where in the last expression we have taken mν = 0.05 eV, corresponding to the heaviest neu-

trino mass for the normal hierarchy spectrum. The correction is small; |δMH | <∼ 0.1 GeV

for MR ≈ 1014 GeV and completely negligible for MR ≪ 1014 GeV. In the special

case m̃ > MR > 1014 GeV, the correction rapidly grows, giving δMH ≈ 1 GeV for

MR = 5 × 1014 GeV, corresponding to a neutrino Yukawa coupling of ≈ 1. We stress

that δν vanishes if right-handed neutrinos are above m̃.

Having discussed the threshold corrections at the scale m̃, we now turn to uncertainties

that result from scaling between m̃ and v. Indeed, at present the largest uncertainty in the

Higgs mass prediction arises from the experimental uncertainties in mt and αs, which enter

the RG equation for λ at one and two loops, respectively. The present 1.3 GeV uncertainty

in mt leads to a 1.8 GeV uncertainty in the Higgs mass, as illustrated by the dashed curves

of figure 4. A conservative estimate of the uncertainty in αs is ±0.002 [19], leading to

δMH = ∓1.0 GeV. A recent analysis of all relevant data argues that the uncertainty in αs

is a factor three smaller [20].

The final uncertainties arise from higher loop effects in RG scaling and in the top quark

threshold correction. First, the correction from three-loop QCD RG scaling decreases the

Higgs mass by 0.2 GeV. We have not computed three-loop running from the top Yukawa

coupling and λ, but do not expect these to be significantly larger than the three-loop QCD

running. Second, in going from the top quark pole mass to the MS top Yukawa coupling,

the QCD corrections reduce the Higgs mass by 11.9, 2.7 and 0.8 GeV from one, two and

three loops, respectively. As the loop level is increased, the successive reductions of the

corrections by 23% and 30% suggest that the four-loop effect will be of order 30% of the

three-loop correction, i.e. 0.24 GeV. Hence, we arrive at a conservative estimate of the

higher loop uncertainties in the Higgs mass prediction of ±0.5 GeV.

Collecting these results leads to our final prediction for the Higgs boson mass in the SM

MH = 141.0 GeV + 1.8 GeV

(

mt − 173.1 GeV

1.3 GeV

)

− 1.0 GeV

(

αs(MZ) − 0.1176

0.002

)

+ 0.14 GeV

(

log10

m̃

1014 GeV

)

+ 0.10 GeV

(

δ

0.01

)

± 0.5 GeV, (3.8)

where δ = δβ + δs + δν + · · · . As explained above, δβ,ν may vanish, so that only δs is

mandatory; thus we have chosen to scale δ by a numerical factor following from eq. (3.6).

Our result shows that currently the largest uncertainties arise from the experimental error

on mt and αs. The uncertainties from high energy theories are very small, and only

about ±0.4 GeV if we vary m̃ within two orders of magnitude from 1014 GeV and take

δ ≈ O(0.01 – 0.03).

How might this situation change in the future? Studies at a future linear collider argue

that the experimental uncertainties can be reduced to δmt ≈ 100 MeV (defined at short

distances) and δαs ≈ 0.0012 [21–24], which induce uncertainties in the Higgs mass predic-

tion of 0.14 GeV and 0.6 GeV, respectively. The same study estimates the experimental

uncertainty in the Higgs boson mass to be ≈ 100 MeV, so that the confrontation of the

prediction with experiment is now limited by 0.6 GeV from δαs. With a Giga-Z sample,

a linear collider may reach the much reduced uncertainty of δαs ≈ 0.0005 [20]. Hence, in
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the future the prediction may take the form

MH = (141.0 + ∆) GeV + 0.14 GeV

(

mt−173.1 GeV

0.1 GeV

)

− 0.25 GeV

(

αs(MZ)−0.1176

0.0005

)

+ 0.14 GeV

(

log10

m̃

1014 GeV

)

+0.10 GeV

(

δ

0.01

)

, (3.9)

where experimental uncertainties are scaled by 1σ error bars. We have assumed sufficiently

precise higher loop theoretical calculations, shifting the central value by ∆ GeV, with

|∆| <∼ 0.5.

So far we have assumed that m̃ is sufficiently less than Mu that the boundary condition

does not receive tree-level modifications from the enlargement of the SM gauge group, or

threshold corrections, δu, from heavy states in the unified theory. If the unified gauge

group is SU(5) there is no tree-level correction, but δu is model dependent. Nevertheless,

even when m̃ and Mu are very close, it is reasonable for δu to be comparable to the

threshold corrections required for gauge coupling unification, which are 6% in g2, leading

to δMH ∼ 0.6 GeV. If m̃ > Mu then the prediction will depend on the form of the RG

equations in the non-supersymmetric unified theory between m̃ and Mu. Although these

are model dependent, it is worth stressing that the effect of any such corrections on the

Higgs mass will be reduced due to the IR focusing effect of the quasi-fixed point in the SM

RG equation for λ.

If the SM gauge group is enlarged at m̃ by U(1)χ (⊂ SO(10)/SU(5)), there is a tree-level

modification to the boundary condition

δχ =
4g2

χq2
χ

g2 + g′2
→ 1

4
, (3.10)

where gχ and qχ are the U(1)χ gauge coupling and charge of the Higgs field. The last

expression follows from taking gχ equal to its unified value in SO(10), giving δMH ≃
2.4 GeV. This correction becomes power suppressed as the U(1)χ breaking scale is increased

above m̃.

A tree-level modification to the boundary condition may result from a coupling of the

Higgs fields to an extra singlet state S, given by the superpotential [ηSHuHd]θ2 . This

effect, however, is strongly suppressed for large tan β

δη =
η2

λ tan2β
. (3.11)

For example, for a natural value of η ∼ ga ∼ yt ∼ 0.5, the correction to the Higgs boson

mass is smaller than 1 GeV for tan β >∼ 6. The leading-log correction from this coupling

is also very small; it simply shifts the scale m̃ from eq. (3.5) but, as we have seen, the

sensitivity of MH to m̃ is extremely mild. The finite threshold correction from η is given

by the same expression as that from yt with 3y4
t , At, and the left- and right-handed top

squark masses replaced by η4, Aη, and the scalar masses of S and Hd, and so it is also
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expected to be only of order δs. Our prediction of eq. (3.8), therefore, is fairly robust to

the possible existence of couplings to singlets at m̃, although the high-scale supersymmetry

window of figure 2 can be affected by these couplings.

3.2 Additional multiplets far below m̃

The Higgs mass prediction of the previous section applied to the case that the effective

theory below m̃ is the SM. How does the prediction change as additions are made to the

low energy theory? For example, if experiment is able to confirm this prediction to within

±1 GeV, can we conclude that there are likely no other states at the weak scale beyond

the SM? We do not consider the possibility of adding light scalars below m̃; without an

environmental selection, such scalars are extremely improbable in the landscape. Thus the

scalar potential at the weak scale is that of the SM, with the physical Higgs boson mass

depending on the single unknown parameter λ(v). How sensitive is this parameter to the

addition of light fermions or gauge bosons?

The prediction does not survive if the SM gauge group is embedded in some larger

group far below m̃. For example, if the gauge group from m̃ to near the weak scale is

SU(4)C × SU(2)L × SU(2)R, then the central value of the prediction changes. On the

other hand, an additional gauge sector has no effect on the prediction if none of the new

fermions carry SM quantum numbers, and if the SM particles are neutral under the new

gauge interaction. The prediction will change if the Higgs boson or top quark carries the

new gauge interaction and the new gauge coupling is not small.

Without extending the SM gauge group, the addition of light fermions will significantly

modify the Higgs boson mass prediction if

• There are additional, large, renormalizable couplings involving either the Higgs boson

or the top quark.

• The resulting additions to the beta function coefficients of the SM gauge interactions,

∆ba, are significant.

While the former is model dependent, we can numerically study the latter in a rather model

independent way.

If the additional fermions are all color singlets, contributions to ∆b1,2 increase the

Higgs mass, as shown by the contours of figure 5(a), where it is assumed that the mass

of the additional fermions are 1 TeV.1 The addition of a single vector-like lepton doublet

increases the Higgs mass by about 350 MeV, and is marked with a dot. Note that ∆b2

is quantized in units of 2/3. In order for the Higgs boson mass to stay within 1 GeV

of our prediction, only four additions with non-trivial SU(2)L are possible: one, two, or

three vector-like doublets or one weak triplet. The case of one vector-like lepton doublet,

shown by the dot in figure 5(a), is particularly important, since it leads to gauge coupling

unification that is as precise as for weak scale supersymmetry.

1If the masses are reduced to 100 – 200 GeV, large additional corrections to the Higgs mass of order

1 GeV are induced, as the extra states give threshold corrections to the values of the gauge couplings

extracted from data. These corrections rapidly decouple as the mass of the extra states increases, and are

not included anywhere in this section.
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Figure 5. Contours of the shift in the Higgs mass prediction when additional fermions of mass

1 TeV are added to the SM. These fermions contribute ∆b1,2 to the U(1)Y , SU(2)L beta functions,

but do not have significant Yukawa couplings to the Higgs boson or top quark. (a) None of the

additional fermions are colored. The bold dot represents the addition of a single vector-like lepton

doublet. (b) The only additional colored fermions are a single vector-like triplet. The bold dots

represent the addition of 5 + 5̄ (lower) and 5 + 5̄ with a vector-like lepton doublet (upper).

The most general theory with a single vector-like lepton doublet (L,Lc), with no

singlets, is described by the Lagrangian

L = LSM + mLLc + yLeh†. (3.12)

The new Yukawa coupling ensures that the heavy lepton is unstable, which is crucial since

otherwise the theory is excluded by limits on the direct detection of DM. The charged and

neutral heavy leptons, LE and LN , will be pair produced at colliders, and each decays to an

electroweak boson and a lepton LE → (h,Z)(e, µ, τ), Wν and LN → W (e, µ, τ), (h,Z)ν.
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An alternative possibility is that the vector-like lepton mixes with a neutral Majorana

fermion so that, if the additional fermions are odd under some parity, the lightest neutral

mass eigenstate is stable and, since it is Majorana, evades the DM direct detection limits.

Indeed, these states result if the Higgsinos of the MSSM together with the bino or some

other singlet fermion have masses far below m̃ [25, 26]. In this case, new Yukawa interac-

tions coupling the Higgs boson to the additional fermions may be present. In this theory,

a Higgs mass prediction follows from a supersymmetric boundary condition on the quartic

coupling [27], and depends on the size of the additional Yukawa interactions.

Adding colored fermions at the weak scale rapidly alters the Higgs mass prediction. For

example, a single vector-like color triplet without electroweak quantum numbers reduces

the Higgs mass prediction by about 1 GeV. In figure 5(b) we show contours of the change

in the Higgs mass prediction for the case of a single vector-like color triplet when there

are also contributions to ∆b1,2, coming from the colored triplet itself or from additional

electroweak states. Two simple theories are shown by dots; one has states corresponding to

SU(5) multiplets 5 + 5̄, and the other has a further vector-like lepton doublet. This latter

case has high precision gauge coupling unification and a Higgs mass prediction very close

to the SM. If accessible, the colored triplet, D, would be pair produced at the Tevatron or

the LHC, with each decaying as D → (h,Z)(d, s, b), W (u, c, t) via the Yukawa interaction

qDh†. If L mix with a singlet, the lightest state can be stable and contribute to DM.

However, the colored state D must still decay via qDh†, since if this interaction is absent

D can decay only via dimension six operators and is cosmologically stable.

Figure 5 shows that only a very few weak-scale multiplets with small SM charges can

be added to the theory if the Higgs mass prediction is to survive at the ±1 GeV level.

Another possibility is to add multiplets at some scale m intermediate between v and m̃.

In the case that these states are non-colored, since the electroweak gauge couplings evolve

slowly, figure 5(a) is still approximately correct providing the axis labeling is changed

from ∆ba to ∆ba(ln(m̃/m)/ ln(m̃/v)). Twice as many multiplets can be placed at
√

m̃v

compared to v. Adding colored states at v had a large effect on the Higgs mass because,

although the effect is two loop via the effect on the top Yukawa, the QCD coupling is large

at the weak scale. By contrast, on adding states at intermediate scales, such as
√

m̃v, the

change in the Higgs mass is dominated by ∆b1,2 which gives an effect at one loop, rather

than the two-loop effect from ∆b3.

To conclude, experimental confirmation of the Higgs mass prediction of eq. (3.8), to

an accuracy of 1 GeV, removes almost all alternatives to the SM at the TeV scale. The

addition of a vector-like lepton doublet remains as an interesting possibility.

3.3 Relation to other work

The theories illustrated by figure 5 give a mild perturbation of less than ±1 GeV about the

SM Higgs mass prediction. The case of Split Supersymmetry [4] cannot be considered as a

mild perturbation. Indeed Split Supersymmetry is taken to include a very wide ranges of m̃

and tan β, so that the Higgs mass can range from the present experimental limit of 114 GeV

up to about 155 GeV [28]. Taking m̃ very high does not yield a central value close to the

SM prediction: the light gluino contribution to ∆b3 alone would decrease the Higgs mass
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prediction by about 3 – 5 GeV, but much more important are the new Yukawa couplings

involving the Higgs boson, which increase the Higgs mass by 13 to 19 GeV depending on m̃

and tan β. For Split Supersymmetry with large tanβ and m̃ ∼ Mu ∼ 1016 GeV, a precise

prediction for the Higgs mass emerges

MHsplit
≃ 154 GeV. (3.13)

The precision of this special value of the Higgs mass within Split Supersymmetry can be

defended at a level similar to that of eq. (3.8) for the SM. Indeed, the threshold correc-

tions involving electroweak gauginos are now at the weak scale, and could potentially be

determined by measuring the electroweak gaugino masses and couplings.

Motivated by Split Supersymmetry, several groups have investigated supersymmetry

breaking at a high scale, including models with supersymmetry breaking at a Peccei-Quinn

breaking scale of 1011 GeV [29] and models with gauge coupling unification at 1016–17 GeV

via non-SU(5) hypercharge normalization [30–32]. In these models, a supersymmetric

boundary condition on the quartic coupling yields a Higgs mass prediction and, for large

values of tan β and taking account different values of the top quark mass, these predictions

are not far from our central value of 141 GeV. This is a reflection of the remarkable

insensitivity of the Higgs mass to variations in the unified scale and threshold corrections,

as given in eqs. (3.3) and (3.4). Indeed, it will be difficult to use the Higgs mass prediction

to distinguish between these schemes — for example, changing the unification scale from

1014 GeV to 1016 GeV changes the Higgs mass by less than 0.3 GeV. Furthermore, the

supersymmetric boundary condition on the Higgs quartic coupling does not depend on the

Kac-Moody level relevant for gauge coupling unification. On the other hand, the Higgs

mass decreases significantly at low values of tan β, as shown in figure 2, so that there is

sensitivity to models that predict particular low values of tan β [33].

4 Theories with high scale supersymmetry breaking

We have explored the consequences of taking the SM as the correct effective theory up

to some very high scale of supersymmetry breaking m̃ ∼ Mu, where the unification scale

Mu ∼ 1014±1 GeV, as illustrated in figure 1. What is the new physics that emerges at

this scale? Since supersymmetry and the multiverse are both motivated by string theory,

it is plausible that the higher dimensions of space are being encountered. This offers the

elegant possibility that breaking of both unified gauge symmetry and supersymmetry are

associated with these extra dimensions; in particular, the unified gauge symmetry may

be broken intrinsically by the compactification. While a solution to the doublet-triplet

splitting problem is no longer needed, such a framework has many appealing phenomeno-

logical features:

• Proton stability is naturally accounted for, without the need for imposing any addi-

tional symmetries. Since supersymmetry is broken at the high scale, there is no need

to impose R parity to avoid proton decay at dimension 4. Indeed, proton stability

is automatic at both dimension 4 and 5. With four-dimensional (4D) unification at
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1014 GeV, proton decay from gauge-mediated dimension 6 operators are disastrous,

but this is easily avoided in higher dimensional theories [34].

• In simple theories the boundary conditions in extra dimensions, which involve very

few parameters, can break both unified gauge symmetry and supersymmetry. This

gives simple KK towers of superpartners and unified states, allowing the calcu-

lation of threshold corrections to both gauge coupling unification and the Higgs

quartic coupling.

• The requirement of two independent Higgs fields is removed: although different states

of the supersymmetric theory couple to up and down quark sectors, these states may

be part of the same supermultiplet in higher dimensions [35].

• The Higgs boson can be a slepton, allowing a unification of the matter and Higgs

sectors of the SM. This is not possible with low energy supersymmetry because of

the masses and interactions that accompany the associated R parity violation, but

these constraints decouple as the scale of supersymmetry is raised.

In section 4.1 we show that, in theories where the boundary condition takes the form of

eq. (2.1), an approximate symmetry, whether originating in four or more dimensions, leads

to a sufficiently large tan β that the precise Higgs mass prediction of figure 4 applies, with

a very small correction from δβ of eq. (3.2). In section 4.2 we present a new, distinct class

of theories which is particularly interesting in the context of high scale supersymmetry

breaking. In these theories, tan β does not exist and the boundary condition is given by

eq. (3.1). Although the Higgs boson mass in these theories can receive somewhat larger

uncertainties than the ones discussed in section 3, they are still at the level of a GeV.

4.1 An approximate Peccei-Quinn symmetry

In the case that the supersymmetric theory at m̃ is 4D, or that the two Higgs doublets of the

supersymmetric theory, hu,d, arise from different supermultiplets of a higher dimensional

theory, the SM Higgs doublet is a linear combination of hu,d

h = hu sin β + h†
d cos β. (4.1)

The boundary condition on the SM Higgs quartic coupling is then given by eq. (2.1) and

depends on the mixing angle β. However, for tan β >∼ 10 the Higgs boson mass becomes

very insensitive to β, varying by less than 0.4 GeV. A mechanism for large tan β can

therefore lead to a very tight prediction for the Higgs boson mass.

If the theory possesses an approximate Peccei-Quinn symmetry, then the Higgsino

mass parameter is suppressed, µ ∼ ǫm̃, and the mass matrix for the Higgs doublets hu,d

takes the generic form
(

h†
u hd

)

(

m̃2
2 ǫm̃2

3

ǫm̃2
3 m̃2

1

)(

hu

h†
d

)

, (4.2)

where ǫ is the small symmetry breaking parameter. The parameters m̃2
1,2,3 are typically

of order m̃2 and scan independently in the multiverse. Given that environmental selection
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requires one eigenvalue of the above matrix to be of order v2, what is the most probable

value of tan β we observe? In particular, is it more probable to have the determinant nearly

vanish by having m̃2
1,2 both suppressed by ǫ, giving tan β ≈ 1, or by having one of them

suppressed by ǫ2, so that tan β ≈ 1/ǫ? (We ignore the possibility of tan β ≈ ǫ since this

is experimentally disfavored.) It turns out that the case of tan β ≈ 1 is less probable by

a factor of ǫ, since it implies that the heavier mass-squared eigenvalue is of order ǫm̃2,

requiring extra fine-tuning beyond that necessary to obtain the weak scale. Hence, the

approximate symmetry leads to the expectation

tan β ≈ 1

ǫ
. (4.3)

How small might ǫ be? With dimensionless couplings of order unity, the bottom to

top quark mass ratio takes the form

mb

mt
≈ ǫ + c

m̃

M∗
, (4.4)

where the first term arises from the b quark Yukawa coupling while the second term repre-

sents a possible contribution from higher dimension operators [c(QD + LE)H†
uX†/M2

∗ ]θ4 ,

where c ≪ 1 or m̃ ≪ M∗ to preserve the boundary condition on λ, as discussed in sec-

tion 2. Thus the approximate Peccei-Quinn symmetry leads to an understanding of the

small mb/mt ratio for any

ǫ <∼
mb

mt
. (4.5)

Conservatively, taking the upper limit to be 0.1 leads to a contribution from δβ to the Higgs

boson mass of only −0.4 GeV and, for most values of ǫ that lead to an understanding for

mb/mt, the contribution from δβ is negligible. Indeed, it is interesting to note that ǫ may be

extremely small so that, for all practical purposes, h = hu and the b quark mass originates

entirely from the higher dimension operator. In this case the Higgsino becomes light, and

may be the vector-like lepton doublet of eq. (3.12).

The Peccei-Quinn symmetry described here may be responsible for the solution to

the strong CP problem, in which case we expect ǫ ∼ fa/m̃, where fa is the axion decay

constant, the scale at which the Peccei-Quinn symmetry is spontaneously broken. For

example, this could result from a 4D superpotential interaction of the type [SHuHd]θ2 ,

with order unity coupling and the scalar component of S acquiring a VEV of size fa. This

would lead to µ ∼ fa as well as the suppressed Peccei-Quinn breaking mass in eq. (4.2).

With fa ∼ 1012 GeV and m̃ ∼ 1014 GeV, one expects tan β ∼ 1/ǫ ∼ 102, so that the

correction to the Higgs mass prediction from δβ is negligible.

In theories with extra spatial dimensions, the Higgs fields hu,d have profiles in the

bulk, and the small parameter ǫ may result from a small overlap of the wavefunctions for

hu and hd. In this case, there is no need to impose an approximate symmetry on the

higher dimensional theory; rather, it emerges in the 4D theory as a result of locality in

the higher dimensions. This origin for the small off-diagonal term in eq. (4.2) is somewhat

general; no matter how many extra dimensions, a small ǫ results providing hu and hd

profiles are peaked in differing locations. Strong peaking of the wavefunctions might arise,
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for example, from higher dimensional mass terms or from localizations on background fields

with kink solutions. In fact, this suppression of the huhd mass term is unique among the

supersymmetry breaking masses of the MSSM states: once the gauginos have a large mass,

the squark, slepton and diagonal Higgs mass terms cannot be protected from low-energy

radiative corrections, while the Higgsino and off-diagonal Higgs mass terms can be.

A simple example accommodating the above mechanism occurs in a supersymmetric

SU(5) theory in 5D, with the unified SU(5) symmetry broken by boundary conditions on

the orbifold S1/Z2 [34, 36]. Supersymmetry may be broken on one of the branes by the

highest component VEV of a chiral superfield X. By localizing hd towards the brane

where X resides, while hu towards the other, we can obtain the pattern of the Higgs mass

matrix in eq. (4.2). The quark and lepton fields propagate in the bulk, so that the up-type

and down-type Yukawa couplings arise from the branes where hu and hd are localized,

respectively. Dangerous dimension six proton decay due to gauge boson exchange is also

avoided if the matter fields are in the bulk because of the split-multiplet structure. An

alternative possibility to break supersymmetry is by the F -component VEV of the radius

modulus, or equivalently, through nontrivial boundary conditions [37–40]. The pattern of

eq. (4.2) can also be obtained in this case, by having a similar configuration for the Higgs

and matter fields in the extra dimension.

4.2 Models with a single Higgs supermultiplet

In general, the SM Higgs boson is a linear combination of states at the scale m̃. There is,

however, an interesting possibility that it comes from a single supermultiplet in higher di-

mensions. Consider, for example, a supersymmetric SU(3)C×SU(2)L×U(1)Y gauge theory

in 5D, with the extra dimension y compactified on S1/Z2: 0 ≤ y ≤ πR. We introduce three

generations of quark and lepton hypermultiplets {Mi,M
c
i } (M = Q,U,D,L,E and i =

1, 2, 3) and a single Higgs hypermultiplet {H,Hc} in the bulk, with the boundary conditions

(

Mi(+,+)

M c
i (−,−)

)

,

(

H(+,−)

Hc(−,+)

)

. (4.6)

Here, we have denoted a hypermultiplet in terms of two 4D N = 1 chiral superfields,

and the first and second signs in parentheses represent boundary conditions at y = 0

and πR, respectively (+ for Neumann and − for Dirichlet). To cancel brane-localized

gauge anomalies induced by {H,Hc}, we also introduce an “inert Higgs” hypermultiplet

{H ′,H ′c}, which has the same boundary conditions but the opposite quantum numbers as

{H,Hc}. This multiplet, however, does not lead to any low energy consequences.

Without supersymmetry breaking, the spectrum of the low energy theory consists of

4D SU(3)C ×SU(2)L ×U(1)Y vector supermultiplets V a (a = 1, 2, 3) and three generations

of quark and lepton chiral supermultiplets Qi, Ui,Di, Li, Ei. The KK towers of these states

have masses n/R (n = 1, 2, . . .), while those of the H and H ′ hypermultiplets have (n +

1/2)/R (n = 0, 1, . . .). We now introduce supersymmetry breaking via the F -component

VEV of the radius modulus, or through nontrivial boundary conditions. This shifts the
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tree-level spectrum of low-lying states as

{

mAa
µ

= 0,

mλa = α
R ,

{

mqi,ui,di,li,ei
= 0,

mq̃i,ũi,d̃i,l̃i,ẽi
= α

R ,

{

mh = 1/2−α
R ,

mh̃ = 1
2R ,

{

mh′ = 1/2−α
R ,

mh̃′ = 1
2R ,

(4.7)

where α (0 ≤ α ≤ 1/2) is the parameter specifying the strength of supersymmetry break-

ing [40], and the component fields are defined by V a(Aa
µ, λa), Qi(q̃i, qi) (and similarly for

Ui,Di, Li, Ei), H(h, h̃), and H ′(h′, h̃′). For α = 1/2, this is essentially the theory of ref. [35].

An important difference, however, is that we now take the compactification scale 1/R to

be around the unified scale, rather than at the TeV scale, so that the h (and h′) states

generically obtain masses of order 1/4πR at one loop, which are much larger than the weak

scale. However, environmental selection can still set m2
h to be of order the weak scale by

adjusting various contributions to m2
h (for example by making α deviate slightly from 1/2

or by introducing 5D masses for bulk fields; see below). The low energy particle content is

then exactly that of the SM:

Aa
µ, qi, ui, di, li, ei, h. (4.8)

All the other states decouple at the scale 1/R.

The Yukawa couplings are obtained by introducing brane-localized operators

S =

∫

d4x dy

{

δ(y)

[

(ηu)ij

M
3/2
∗

QiUjH

]

θ2

(4.9)

+δ(y − πR)

[

(ηd)ij

M
3/2
∗

QiDjH
c +

(ηe)ij

M
3/2
∗

LiEjH
c

]

θ2

+ h.c.

}

,

where M∗ is the cutoff scale of the theory, which we take to be a factor of a few larger than

1/R. The SM Higgs boson, h(x), lies in the scalar components of H and Hc as

{

h(x, y) = 1√
πR

h(x) cos
( y

2R

)

,

hc†(x, y) = − 1√
πR

h(x) sin( y
2R ),

(4.10)

so that the 4D Yukawa couplings are given by

L = (yu)ijqiujh + (yd)ijqidjh
† + (ye)ij liejh

†, (4.11)

with yu,d,e = (ηu,d,e)ij/(πM∗R)3/2. Here, we have assumed vanishing 5D masses for the

bulk hypermultiplets. The form of eq. (4.11) is precisely that of the SM.

How does the selection of m2
h work? In the limit of α = 1/2 and vanishing 5D masses,

the dominant radiative correction to m2
h comes from top quark/squark loops

δm2
h

∣

∣

top
= −63ζ(3)

32π4

y2
t

R2
≃ −0.0045

R2
, (4.12)

where we have used yt ≃ 0.43, evaluated at ≈ 1014 GeV. Therefore, by making α slightly

deviate from 1/2

α ≃ 1

2
−
√

−δm2
h

∣

∣

top
R2 ≃ 0.43, (4.13)
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we can set m2
h to have the correct, weak scale (and negative) value.2 Alternatively, we may

introduce 5D bulk masses for top hypermultiplets. In this case the top-loop contribution

of eq. (4.12) is suppressed [41], so that it can be canceled with the gauge loop contribution

δm2
h

∣

∣

gauge
=

7ζ(3)

64π4

3g2 + g′2

R2
≃ 0.0014

R2
, (4.14)

even for α = 1/2, leaving the correct value for m2
h.

An interesting property of the theory considered here is that the tree-level Higgs quartic

coupling is given by

λ =
g2 + g′2

8
, (4.15)

regardless of the value of α—there is no free parameter such as β in 4D supersymmetric

theories. This is a consequence of the SU(2)R symmetry and the fact that the SM Higgs

boson resides in a single higher dimensional supermultiplet. Therefore, at the leading

order, the theory just below 1/R is precisely the SM but with the Higgs quartic coupling

constrained as in eq. (4.15). The relation of eq. (4.15) can receive corrections from brane-

localized kinetic terms. These effects are suppressed by the volume factor (and possibly also

by a loop factor), which we estimate to give an O(10%) correction to λ. This is translated

into an uncertainty of the Higgs mass prediction at the level of a GeV.

It is straightforward to construct unified models along the lines discussed here. For

example, we can consider a supersymmetric SU(5) theory in 6D with SU(5) broken along

one extra dimension while supersymmetry along the other. For α 6= 1/2, we can even use

the same dimension to break both supersymmetry and a unified symmetry. We simply need

to embed the model discussed above into SU(5), and break SU(5) by boundary conditions at

y = πR (and supersymmetry by eq. (4.13)). In this theory, some of the unified states have

a tree-level mass of (1/2−α)/R and thus lighter than 1/R by about an order of magnitude,

and the colored triplet Higgsinos obtain their masses through brane-localized operators.

Unification of the SM gauge couplings receives corrections both from KK towers and brane-

localized gauge kinetic operators. The deviation from single-scale exact unification in the

SM may arise from these corrections.

5 Evidence for the multiverse from the Higgs boson mass

The Standard Model is remarkably successful, correctly predicting the results of three

decades of particle physics experiments at both the high energy and high precision frontiers.

From the absence of proton decay, to precision measurements of the electroweak sector, to

rare quark and lepton flavor violation and even CP violation, the SM has consistently and

repeatedly passed every experimental challenge. Indeed, the electroweak and flavor data

now constrain new physics at the TeV scale so strongly, that the resulting difficulties in

developing alternative natural theories have become a main focus of much research. Why

then do we resist the simplest possibility, that the SM is the correct description of nature

2The precise value of α would be changed by the existence of brane-localized terms, such as δ(y)[HH ′]θ2 ,

but our basic conclusion does not change. Below we assume that these terms are absent.
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up to unified energy scales? This question seems particularly pressing since the SM, valid

to very high energies, predicts 110 GeV <∼ MH <∼ 190 GeV, precisely the range selected by

limits from direct searches and from precision electroweak data.

There are two key deficiencies of the SM, one theoretical and one observational. On the

theoretical side, the lack of naturalness of the Higgs mass parameter has been the essential

driving force for a variety of extensions of the theory at the TeV scale. However, the

cosmological constant is a numerically more severe fine-tuning problem, and has no known

symmetry solution. The realization that this problem has an environmental solution [5]

motivated the discovery of a possible environmental understanding for the weak scale [2].

The discovery of dark energy [42, 43] provided remarkable evidence for environmental

selection: dark energy with w = −1 is a necessary consequence of the environmental

solution of the cosmological constant problem, and requires no physics beneath unified

scales beyond the SM and general relativity. The absence of dark energy would have

demonstrated that environmental selection had failed its greatest opportunity. Of course,

an enormous landscape of vacua is required, as well as a cosmological mechanism for

populating these vacua to form a multiverse. The realization that string theory [8–11] and

eternal inflation [44–47] may yield such a multiverse, opens the door to a firm theoretical

foundation for the environmental selection of both the cosmological constant and the weak

scale.

Dark matter provides the other key deficiency of the SM, but it is a theoretical extrap-

olation to attribute this DM to particles with weak scale mass. Even if DM is composed of

cold particles, nothing is known observationally about their mass. The WIMP hypothesis

provides an intriguing possibility that the abundance of DM may be derived from the weak

scale, but is subject to uncertainties of several orders of magnitude. If the SM is valid to

unified scales, the most compelling candidate for DM is axions. The strong CP problem

requires a symmetry solution, since there is no environmental need for low θ̄. The ax-

ion solution, theoretically motivated by string theory, cannot be implemented at the weak

scale, and requires fA >∼ 109 GeV. Even if fA is as large as the unified scale, environmen-

tal selection can act on the initial axion misalignment angle to avoid overproduction of

DM [15–17].

Over more than three decades, much effort has been expended on extensions of the

SM at the TeV scale. Is there any experimental evidence that any of these alternatives are

to be preferred over the SM? While there is no direct experimental evidence for any such

extension, in the case of weak scale supersymmetry gauge coupling unification occurs with

greater precision than in the SM. When first discovered at LEP, this result appeared highly

significant. Precise data outweighed the well-known cosmological and flavor problems of

supersymmetry, which received renewed attention. However, the LEP2 limit on the Higgs

boson mass provided contrary data, that imposed a precise numerical naturalness problem

on supersymmetry. Is the reduction of the unified threshold corrections on gauge coupling

unification by an order of magnitude worth the required fine-tuning of the theory at the

percent level?

With environmental selection on a multiverse, the minimal effective theory below the

unified scale, SM + GR, has no deficiencies. Instead of introducing problems by aug-
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menting the SM at the TeV scale, it seems worthwhile seeking additional evidence for

environmental selection in the minimal effective theory. In this paper we presented a pre-

cise and robust prediction for the Higgs boson mass. We argued that a supersymmetric

boundary condition on the Higgs quartic coupling is likely, yielding a Higgs boson mass

range of (128 – 141) GeV. The upper edge of 141 GeV is particularly interesting, arising

from the special situation that the SM Higgs boson lies dominantly in a single supermul-

tiplet as occurs, for example, with an approximate Peccei-Quinn symmetry. Corrections

at the supersymmetry breaking scale m̃ are remarkably small: 0.1 – 0.3 GeV from top

squark loops and 0.3 GeV from varying m̃ by two orders of magnitude. The dominant

uncertainty in the prediction, of ±2 GeV, arises from the present uncertainties in mt and

αs, but measurements at future collider experiments could reduce this to ±0.3 GeV, so

that the prediction could be tested down to the level of 0.4%.

Going beyond this minimal scenario, there are several physical origins of corrections

in the GeV region. If neutrino masses arise from the seesaw mechanism, the corrections

to the Higgs boson mass are negligible except, in a certain region of parameter space with

m̃ ≫ 1014 GeV, the Higgs mass could be raised by about a GeV.3 Higher dimensional

theories having a single Higgs supermultiplet lead to the Higgs mass being near the upper

edge of 141 GeV, but brane-localized kinetic terms lead to uncertainties of about a GeV.

Finally, while adding states at the weak scale beyond those of the SM typically destroys

the prediction, there are a few minimal cases that yield mild perturbations; for example, a

single vector-like lepton increases the Higgs boson mass only by 0.35 GeV.

Are there other special values for the Higgs boson mass that would provide evidence

for the multiverse? In figure 6 we show the Higgs mass as a function of the quartic coupling

at the unified scale Mu, assuming only that the effective theory below Mu is the SM. The

top panel gives a wide range of λ(Mu), while the bottom panel expands the region of small

λ(Mu). We draw attention to four special values of the Higgs mass:4

• MH ∼ 190 GeV: results from a very wide range of λ(Mu) >∼ 2, including the case of

strong coupling, λ(Mu) ≈ 2π.

• MH ≃ 141 GeV: results from the supersymmetric boundary condition λ(Mu) =

{g2(Mu) + g′2(Mu)}/8, as explored in detail in this paper.

• MH ≃ 128 GeV: results from λ(Mu) = 0.

• MH ≃ 112 GeV: this is the smallest Higgs boson mass theoretically allowed, since

smaller values would lead to cosmological instabilities in the electroweak vacuum. A

value close to this may result from a multiverse distribution function that is peaked

strongly towards large and negative λ(Mu) [49].

Since Mu is not well determined by gauge coupling unification, an important question

is the sensitivity of these four special Higgs mass values to variations in Mu. In the first

3This implies that leptogenesis [48] can be accommodated without affecting the Higgs mass prediction.
4To simplify the presentation, we take the scale at which the quartic coupling takes special values to be

Mu. In fact, depending on the case, this scale could be m̃ or M∗, but we do not expect these scales to differ

by many orders of magnitude.
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Figure 6. The Higgs boson mass as a function of λ(Mu) for the SM valid up to Mu, with a wide

range of λ(Mu) in the top panel and an expansion of the region of small λ(Mu) in the bottom panel.

The values of Mu and αs are fixed at Mu = 1014 GeV and αs(MZ) = 0.1176, respectively, and the

shaded bands represent the variation of the Higgs boson mass for mt = 173.1± 1.3 GeV. For large

λ(Mu), the top panel shows that the Higgs boson mass asymptotes to about 190 GeV. The bottom

panel shows the supersymmetric range of λ(Mu), with a corresponding Higgs boson mass range of

(128 – 141) GeV, as well as the electroweak vacuum stability bound of λ(Mu) >∼ −0.05.

three cases the sensitivity depends on how close the RG trajectory is to the quasi-fixed

point trajectory. The case of strong coupling is very far from the fixed point and has

significant sensitivity, with the Higgs mass varying by ±10 GeV for Mu = 1014±2 GeV. A

Higgs mass in this range would be indicative of a multiverse that has a high probability

for a large quartic coupling, but the evidence would be rather weak. The cases of λ(Mu) =

{g2(Mu)+g′2(Mu)}/8 and λ(Mu) = 0 are much closer to the quasi-fixed point, giving Higgs

mass variations of only ±0.3 GeV and ±1.0 GeV, respectively, for the same variation in

Mu. Thus a Higgs mass near 128 GeV would provide strong evidence for the multiverse,

although not quite as strong as might occur for a value near 141 GeV. The case of the

smallest Higgs mass is more complicated, since it involves tunneling, but it is also insensitive

to variations in Mu. Thus a value of the Higgs mass very close to the minimal value would

also yield evidence for the multiverse, although for this to occur requires a very sharp

variation in the multiverse probability distribution for λ(Mu).
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Although this paper has focused on the Higgs boson mass near 141 GeV, a value

near 128 GeV is also very interesting. These two values are the upper and lower edge

values allowed by the supersymmetric boundary condition of eq. (2.1), corresponding to

β = 0 or π/2 and β = π/4 respectively. Studying the mass matrix for the two Higgs

doublets in the supersymmetric theory, the former occurs when a diagonal entry is much

larger than the off-diagonal entry, while the latter occurs if the off-diagonal entry is much

larger than the splitting between the diagonal entries, as would occur if the mass matrix

were invariant under a symmetry that interchanged the two doublets. Our discussions of

the corrections to the Higgs mass for the large tan β case apply also to the case of tan β

near unity except, as noted above, the convergence effect from the quasi-fixed point of the

quartic coupling is not quite as strong. For example, the top squark loops at m̃ lead to an

uncertainty in the Higgs mass of 0.2 GeV for At = mt̃. Also the uncertainty in the Higgs

mass arising from the present experimental uncertainties on mt and αs is ±3 GeV, 50%

larger than at the 141 GeV edge. Finally we should note that a Higgs mass near 128 GeV

occurs in any theory where the SM Higgs doublet is a pseudo Nambu-Goldstone boson, with

a vanishing tree-level potential at Mu. An example of this occurs when the Higgs boson is

identified as an extra-dimensional component of a gauge field in a non-supersymmetric 5D

theory [50].

Much of the excitement in particle physics in the coming decade will follow from

unraveling the origin of the weak scale. Three clear options are

• Weak scale supersymmetry. This will confirm the indirect evidence of gauge coupling

unification, and allow many measurements that provide a window to much higher

energy scales.

• New strong dynamics. A composite Higgs, or even a Higgsless theory, would make

the TeV scale extremely rich, and may even herald new spatial dimensions.

• Environmental selection. Precision measurements of SM parameters may point to a

multiverse and the need for a clearer understanding of the catastrophic boundaries

at which selection takes place.

Strong evidence for the multiverse would result if the LHC discovered a Higgs boson mass

close to 141 GeV, or 128 GeV, and no new physics beyond the SM. This would add greatly

to the evidence from the cosmological constant problem and the discovery of dark energy.

The two fine-tuning problems of SM + GR would have a common solution, with other

solutions either unknown or disproved. Through nuclear stability, the multiverse accounts

for the values of the up quark, down quark and electron masses remarkably well [51, 52].

Furthermore, the multiverse may also explain the cosmological mystery of why the time

scales of structure formation, galaxy cooling and vacuum domination do not differ by many

orders of magnitude, but are all comparable to the present age of the universe [53]. Instead

of discovering more symmetries, the LHC may play a key part in the accumulation of

evidence for more universes.
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A Supersymmetric threshold corrections at m̃

The leading-log corrections to the supersymmetric boundary condition, λ = (g2 + g′2)/8,

when matching between the SM and a theory with the states of the MSSM, at a scale

m̃, are

δLL =
1

32π2λ

(

12y4
t ln

m
1
2

Q̃3
m

1
2

Ũ3

m̃
− 3g2

2y
2
t ln

mQ̃3

m̃
− 9

5
g2
1y

2
t ln

m
− 1

3

Q̃3
m

4
3

Ũ3

m̃

− 7

3
g4
2 ln

m
3
2
χm

2
7

λm
1
7

h̃
m

− 9
14

Q̃
m

− 3
14

L̃
m

− 1
14

H

m̃

+
24

25
g4
1 ln

m
− 3

16
χ m

− 1
8

h̃
m

1
16

Q̃
m

1
2

Ũ
m

1
8

D̃
m

3
16

L̃
m

3
8

Ẽ
m

1
16

H

m̃

)

, (A.1)

where mλ, mh̃, mQ̃i,Ũi,D̃i,L̃i,Ẽi
(i = 1, 2, 3), and mH are the gaugino, Higgsino, squark and

slepton, and heavy Higgs boson masses, mχ ≡ max{mλ,mh̃}, and mΦ̃ ≡ (mΦ̃1
mΦ̃2

mΦ̃3
)1/3

(Φ = Q,U,D,L,E). Here, we have taken the wino and bino masses to be equal, mλ, which

is generically a good approximation since m̃ is not far from Mu. The dependence on the

matching scale m̃ cancels that from the RG scaling in the SM, given by eq. (3.4).

Since m̃ ∼ Mu, it is appropriate to make an approximation g1 = g2 ≡ gu, leading to

δLL =
1

32π2λ

{

(

12y4
t − 24

5
g2
uy2

t

)

ln
m

1
2

Q̃3
m

1
2

Ũ3

m̃
(A.2)

− 103

75
g4
u ln

m
276
103
χ m

50
103

λ m
34
103

h̃
m

− 117
103

Q̃
m

− 36
103

Ũ
m

− 9
103

D̃
m

− 51
103

L̃
m

− 27
103

Ẽ
m

− 17
103

H

m̃

}

.

As discussed in section 3, a useful choice of m̃ is the one that makes δLL vanish. This

scale can be estimated by assuming that the second line of eq. (A.2) is dominated by the

gaugino piece:

δLL ≃ 1

32π2λ

{(

12y4
t − 24

5
g2
uy2

t

)

ln
mt̃

m̃
− 326

75
g4
u ln

mλ

m̃

}

, (A.3)

where mt̃ ≡ (mQ̃3
mŨ3

)1/2, and we have taken mh̃ < mλ. The logarithmic terms for each

particle dropped from the second line of eq. (A.2) have coefficients that are smaller than in

the gaugino term by a factor of 8 or more. In fact, a random deviation of these superparticle
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masses from m̃ by a similar amount to mt̃ and mλ will not contribute to δLL as much as

the terms shown in eq. (A.3). By equating the expression of eq. (A.3) to zero, we obtain

m̃ ≃





m
163g4

u

λ

m
450y4

t −180g2
uy2

t

t̃





1

163g4
u−450y4

t
+180g2

uy2
t

≃ m1.6
λ

m0.6
t̃

. (A.4)

This is the expression quoted in eq. (3.5).
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