
J
H
E
P
0
3
(
2
0
1
0
)
0
6
5

Published for SISSA by Springer

Received: February 1, 2010

Accepted: February 25, 2010

Published: March 11, 2010

Interpreting multiple dualities conjectured from

superconformal index identities

A. Khmelnitsky

Department of Physics, CERN — Theory Division,

CH-1211 Geneva 23, Switzerland

Institute for Nuclear Research of the Russian Academy of Sciences,

60th October Anniversary Prospect, 7a, 117312 Moscow, Russia

E-mail: khmeln@inr.ac.ru

Abstract: We consider field theory side of new multiple Seiberg dualities conjectured

within superconformal index matching approach. We study the case of SU(2) supersym-

metric QCD and find that the numerous conjectured duals are different faces of handful

of master theories. These different faces are inequivalent to each other in a very peculiar

sense. Some master theories are fully known; we construct superpotentials for others. We

confirm that all index identities correspond to theories flowing to one and the same theory

in the infrared, thus supporting the conjecture of index matching for Seiberg dual theories.

However, none of the index identities considered in this paper actually implies an entirely

new, unknown duality.

Keywords: Supersymmetry and Duality, Duality in Gauge Field Theories

ArXiv ePrint: 0912.4523

Open Access doi:10.1007/JHEP03(2010)065

mailto:khmeln@inr.ac.ru
http://arxiv.org/abs/0912.4523
http://dx.doi.org/10.1007/JHEP03(2010)065


J
H
E
P
0
3
(
2
0
1
0
)
0
6
5

Contents

1 Introduction and summary 1

2 Nc = 2, Nf = 4 SQCD and its duals 3

3 Duality in the presence of accidental symmetry 5

4 Reduction to Nf = 3 8

4.1 Flowing to the infrared 8

4.2 Making contact with index matching 13

1 Introduction and summary

New method of exploring Seiberg dualities has been suggested recently. In refs. [1, 2], the

generalisation of the Witten index for superconformal field theories was introduced, and it

was conjectured that the indices of theories related by Seiberg duality should coincide [3].

The coincidence was checked for several known dual theories [4, 5]. The index is a character

of a relevant representation of certain subgroup of superconformal group and counts ground

states invariant under the action of a particular supercharge. Thus, the conjecture seems

natural to hold for models flowing to the same infrared conformal fixed point.

Superconformal indices for gauge theories are given in terms of elliptic hypergeometric

integrals, and duality relations correspond to their highly non-trivial transformation prop-

erties [6–9]. Thus, the coincidence of indices is new independent argument in favour of

duality conjecture. Comprehensive list of dualities and corresponding relations for elliptic

hypergeometric integrals, as well as introduction to this recently emergent branch of special

function theory and its relation to Seiberg dualities can be found in ref. [10].

On the other hand, known transformation properties of elliptic hypergeometric inte-

grals lead to conjectures of new dualities between supersymmetric gauge theories [5, 10].

Although this method provides only field content of conjectured duals, it must be possible

to construct complete field theories including their superpotentials. A remarkable feature

of the superconformal index approach is that it suggests a multiplicity of duals to a sin-

gle “electric” theory. By making use of this approach, Spiridonov and Vartanov [5] (SV

in what follows) have recently conjectured 71 dual descriptions for supersymmetric QCD

with Nc = 2 colours and Nf = 4 quark flavours whereas only three were known before

that. For the SQCD with Nf = 3 flavours, they have suggested 35 dual gauge theories.

In the latter case, the low energy description in terms of non-gauge theory was found in

ref. [11], but no non-trivial dual gauge theory was known.

In this paper we study the phenomenon of multiple duals. We consider duals conjec-

tured by SV for Nc = 2, Nf = 4, 3 SQCD and find that the relationship between theories
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behind the superconformal index identities can be called duality with reservations. There

are two types of extra dualities. The first one is inherent in electric theories whose duals

have enhanced accidental symmetries in the infrared (for the discussion of enhanced sym-

metries in the Seiberg duality context see, e.g., ref. [12]). Per se, these electric theories

have only a few “master” duals. Dualities proliferate once some flavour current is coupled

to external gauge field. Multiple dual theories then have the same field content, but differ

by the structure of currents coupled to the external field.

Dualities of the second type are obtained from known ones by introducing a relevant

operator into superpotential. This leads to new infrared behaviour of both electric and

magnetic theories obtained by integrating out some heavy fields or after symmetry breaking.

As the theories flow to the infrared, they can pass through intermediate stages; some of

these intermediate theories are captured by the superconformal index approach. These

theories are proper duals in the sense that they have the same infrared description, but

usually they are not considered as new non-trivial independent dualities.

On the positive side, the superconformal index identities are in remarkable correspon-

dence with field theory dualities understood in the above extended way. Field theories

related by these identities do flow to the same infrared theory, and all index identities have

their field theory counterparts. Thus, our study can be considered as a check of the conjec-

ture that superconformal indices of Seiberg dual theories do match and contain important

group-theoretical information on the structure of a theory.

The paper is organized as follows. In section 2 we summarize known dualities of Nc = 2,

Nf = 4 SQCD. This theory has three “master” magnetic descriptions with different field

contents and superpotentials [13–15]. Although the original electric theory has global

symmetry group SU(8), two of its duals have lower symmetries. The latter symmetries get

enhanced in the infrared, where the full SU(8) is restored [12]. Hence, part of SU(8) global

symmetry is accidental in magnetic descriptions.

Since part of SU(8) is accidental in the two magnetic theories, there is an ambiguity

in identifying the operators of the electric theory and their magnetic counterparts. We

consider this point in section 3. The ambiguity becomes physical when the currents cor-

responding to Cartan generators of SU(8) are coupled to external gauge fields. Numerous

magnetic theories in external gauge fields obtained in this way are inequivalent, and be-

come identical in the infrared only. This construction is in one-to-one correspondence with

SV counting based on superconformal index identities, hence giving the interpretation of

multiple SV dualities in Nf = 4 theory.

In section 4 we discuss Nf = 3 theory as descendant of Nf = 4. We will see explicitly

that upon giving a mass to one electric quark flavour, all four Nf = 4 theories (electric and

three magnetic) flow to one and the same theory in the infrared. However, they do that

through different intermediate steps. These steps depend on the way the quark mass term

is introduced into the magnetic theory, so there are several intermediate theories. Some

intermediate theories are precisely the duals suggested by SV via superconformal index

approach. In this way, and with account for the phenomenon described in section 3, all

SV duals are identified. Thus, we find that on the one hand, the superconformal index

technique does produce valid results, and on the other hand, no entirely new non-trivial

dualities are uncovered in this way.
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Field content Quark gauge invariants Superpotential Moduli

Qi (4,1)+1

Q̃j̃ (1,4)−1

Bij ≡ Qi · Qj (6,1)+2

B̃ĩj̃ ≡ Q̃ĩ · Q̃j̃ (1,6)−2

M i
j̃
≡ Qi · Q̃j̃ (4,4)0

(

Bij M i
j̃

−M j

ĩ
B̃ĩj̃

)

qi (4,1)−1

q̃j̃ (1,4)+1

Bij (6,1)+2

B̃ĩj̃ (1,6)−2

Cij ≡ qi · qj (6,1)−2

C̃ĩj̃ ≡ q̃ĩ · q̃j̃ (1,6)+2

N i
j̃
≡ qi · q̃j̃ (4,4)0

1
4µǫijklB

ij qk · ql+
1
4µǫĩj̃k̃l̃B̃ĩj̃ q̃k̃ · q̃l̃

(

Bij N i
j̃

−N j

ĩ
B̃ĩj̃

)

qi (4,1)+1

q̃j̃ (1, 4̄)−1

M i
j̃

(4,4)0

Cij ≡ qi · qj (6̄,1)+2

C̃ ĩj̃ ≡ q̃ĩ · q̃j̃ (1, 6̄)−2

N j̃
i ≡ qi · q̃

j̃ (4̄, 4̄)0

1
µM i

j̃
qi · q̃

l̃

(

ǫijklCkl M i
j̃

−M j

ĩ
ǫ̃ij̃k̃l̃C̃

k̃l̃

)

qi (4̄,1)−1

q̃j̃ (1, 4̄)+1

Bij (6,1)+2

B̃ĩj̃ (1,6)−2

M i
j̃

(4,4)0

Cij ≡ qi · qj (6̄,1)−2

C̃ ĩj̃ ≡ q̃ĩ · q̃j̃ (1, 6̄)+2

N j̃
i ≡ qi · q̃

j̃ (4̄, 4̄)0

1
µM i

j̃
qi · q̃

l̃+
1
2µBij qi · qj+

1
2µ B̃ĩj̃ q̃ĩ · q̃j̃

(

Bij M i
j̃

−M j

ĩ
B̃ĩj̃

)

Table 1. Nc = 2, Nf = 4 supersymmetric QCD and its duals.

2 Nc = 2, Nf = 4 SQCD and its duals

Let us recall known properties of supersymmetric QCD with SU(2) gauge group and

Nf = 4 flavours of quarks, Qi in 2 representation and Q̃j̃ in 2 representation (i, j̃ =

1, 2, 3, 4). Its feature is that fundamental and antifundamental representations of the gauge

group are equivalent, so “left” quarks Q and “right” quarks Q̃ are combined into one mul-

tiplet of SU(8) flavour group.

The theory is believed to have non-trivial infrared fixed point [13]. It has at least three

Seiberg duals, i.e., theories which flow to the same fixed point in the infrared. All of them

have SU(2) gauge group and at least SU(4)L × SU(4)R × U(1)B global symmetry. They

differ by field content, field representations and superpotentials. The pattern of the dual

theories can be understood by considering their moduli spaces.

The moduli space is parametrized by all possible gauge invariants (modulo classical

relations implied by their definitions) giving extremum to the superpotential. In original

electric theory, there is no superpotential and moduli space is spanned by expectation values

of gauge invariants constructed from quarks. These are mesons M i
j̃

= Qi · Q̃j̃, baryons

Bij = Qi ·Qj and antibaryons B̃ĩj̃ = Q̃ĩ · Q̃j̃ . Because of enhanced flavour symmetry, they

form together antisymmetric tensor representation of SU(8). Thus, all other descriptions

of this infrared fixed point must have the same moduli space. In case of smaller flavour

group, additional symmetry should accidentally emerge in the infrared.

Electric SQCD and all three duals are described in table 1, with the representations

of the common global symmetry group SU(4)L × SU(4)R × U(1)B . The original theory
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and the third (last) dual possess SU(8) flavour symmetry. For the first two duals, it is

impossible to arrange elementary fields in the SU(8) multiplets, and flavour SU(8) emerges

accidentally in the infrared.

The tree duals are constructed by introducing to SQCD some of the moduli of electric

theory as elementary fields. Then one has to get rid of similar composite moduli in order

to restore the proper moduli space structure. To this end, a superpotential is introduced.

Representations of magnetic quarks q, q̃ are then completely fixed by demanding the co-

incidence of moduli spaces. In order to match elementary scalars to electric composites of

canonical dimension 2, a new energy scale µ is introduced.

The first dual description in our table was considered by Csáki et al. [14] and contains

baryons Bij and antibaryons B̃ĩj̃ of electric QCD as elementary fields. The presence of

these fields explicitly breaks SU(8) symmetry down to SU(4)L × SU(4)R × U(1)B . There

is the superpotential, which gives the mass to composite magnetic baryons Cij ≡ qi · qj

and antibaryons C̃ĩj̃ ≡ q̃ĩ · q̃j̃. This superpotential is crucial to match moduli spaces. The

moduli space of this dual theory is parametrized by SU(8) antisymmetric tensor containing

elementary baryons and composite mesons1 N i
j̃
≡ qi · q̃j̃. With this identification of moduli

spaces, one relates electric gauge invariants to magnetic ones surviving in the infrared.

Thus, one identifies baryons Bij and antibaryons B̃ĩj̃ present in both theories, and mesons

M i
j̃

of electric theory with magnetic ones N i
j̃
. Composite baryons Cij, C̃ĩj̃ are absent in

the infrared because of the superpotential; they do not have electric counterparts.

The generalisation of this duality to higher rank gauge groups has been found recently

by using superconformal index identities (SU − SP series of [10]).

The second dual was considered in the original paper by Seiberg [13] as part of the

series of dual theories with SU(Nc) gauge groups. Electric mesons M i
j̃

are introduced

as elementary fields and, together with composite baryons Cij ≡ qi · qj and antibaryons

C̃ ĩj̃ ≡ q̃ĩ·q̃j̃ , they parametrize the moduli space. Superpotential takes care of now redundant

composite mesons N j̃
i ≡ qi · q̃

j̃ . One identifies mesons M i
j̃

of electric and dual theories, and

electric baryons Bij, B̃ĩj̃ with the Hodge-duals of magnetic baryons ǫijklCkl and ǫ̃ij̃k̃l̃C̃
k̃l̃.

Similarly to the first dual, the existence of elementary mesons explicitly breaks SU(8)

symmetry down to SU(4)L × SU(4)R × U(1)B .

The third dual theory was proposed by Intriligator and Pouliot in [15], where they

generalise the original Seiberg series of dual theories to SP (Nc) gauge groups. The full

set of electric colour singlets is added as fundamental fields, and all composite singlets

are made massive by the superpotential. Thus, the moduli space is trivially the same as

electric one, and all electric composites are identified with corresponding elementary fields

in the dual theory. As the full set of SQCD gauge invariants fits in SU(8) multiplet, this

dual has SU(8) global symmetry and does not exhibit accidental symmetry in the infrared.

1In electric theory, there are classical relations between mesons and baryons. In SU(8) language, they

state that the rank of the antisymmetric matrix parameterizing the moduli space does not exceed 2. In

magnetic theory, the rank of the moduli matrix is constrained partly by the superpotential and partly by

the fact that baryon vev of rank greater than 2 leads to runaway vacuum.
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3 Duality in the presence of accidental symmetry

The first and second duals of the previous section possess only SU(4)L × SU(4)R × U(1)B
global symmetry, which gets promoted in the infrared to the full SU(8) of the electric

theory. This is not in contradiction with the concept of Seiberg duality which relates

different theories with the same infrared properties. The dual theories may have not only

different gauge groups and field contents, but also different global symmetries.

It is worth mentioning that the ’t Hooft anomaly matching conditions [16] are some-

what peculiar in this situation. As the flavour group of the magnetic theory is smaller than

that of its infrared descendant, anomaly matching conditions in the magnetic theory apply

to smaller set of global currents. In other words, not all anomaly relations of the electric

theory have their magnetic counterparts, simply because the magnetic theory has smaller

set of global currents.

Once the global groups of electric theory and its magnetic dual are different, there

is an ambiguity in identifying the operators of the two theories. Operators related by

global symmetry in electric theory may no longer have this property in magnetic theory;

this ambiguity becomes irrelevant in the infrared only. Hence, a small deformation of

the electric theory may have several duals emanating from one and the same undeformed

magnetic master theory. As an example, as proposed in ref. [12], one can modify electric and

magnetic theories by introducing small terms into their superpotentials. These terms are

related by duality correspondence, and it is expected that duality remains valid for modified

theories. Above the infrared, this correspondence is ambiguous, and unique superpotential

term in theory with larger symmetry corresponds to a family of inequivalent terms in

dual theory.

Consider small mass term for a pair of quarks in electric theory of the previous section.

For definiteness, take it as m Q4 · Q̃4̃ . Its magnetic counterpart in the first dual theory,

obtained according to the above default identification, is m q4 · q̃4̃ (up to a constant factor,

see eq. (4.3)). However, the SU(8) rotation of the mass term, innocent in electric theory,

gives rise to terms m B34, m B̃3̃4̃ in the superpotential of the magnetic theory, as well

as their linear combinations with m q4 · q̃4̃. These cannot be rotated back to m q4 · q̃4̃ by

SU(4)×SU(4)×U(1) of the “magnetic theory”. In the infrared, q4·q̃4̃ is replaced by magnetic

meson N4
4̃
, and all mass terms in the dual theory are related by the accidental SU(8).

Likewise, the modifications of the second dual theory in addition to default magnetic

counterpart m M4
4̃

contain also superpotential terms m q1 · q2, m q̃1̃ · q̃2̃ and their linear

combinations with m M4
4̃
. These cannot be related to each other by SU(4) × SU(4) ×

U(1) transformations.

We see that once introduced, the mass term leads to a family of inequivalent dual

theories emanating from one master theory. In this sense, Nc = 2, Nf = 4 SQCD with small

mass term for quark flavour has two continuous families of dual descriptions, namely, the

first and second magnetic duals with inequivalent families of terms in the superpotentials.

Our point is that it is this kind of multiplicity that has been found by SV using

superconformal index matching. For Nc = 2, Nf = 4 SQCD, the matching approach

suggests that there are 72 theories dual to each other. These include the original electric
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theory, the third dual from our table and two sets of 35 dual theories corresponding to

the first and second magnetic duals. Duals in each set have identical field content and

Lagrangian, namely, those of the first or second magnetic theories. The only difference

between them is the way the anomalies match with electric theory, i.e., the way SU(4)L ×

SU(4)R × U(1)B is embedded into SU(8). This part of multiplicity is precisely due to the

ambiguity in relating operators in dual theories.

As they stand, all 35 duals are equivalent to their master theory. To make this multi-

plicity physical, one deforms the electric theory. Instead of using SU(8) breaking terms in

superpotential as proposed in [12], we introduce external gauge field that weakly couples

to global current of the Cartan subgroup of SU(8). Then the family of dualities found by

SV in the superconformal index context are dualities between the theories in the external

field coupled to inequivalent global currents.

To proceed further, we note that SU(4)L × SU(4)R × U(1)B of the first and second

magnetic theories is embedded in electric SU(8) in non-trivial way.

Consider SU(8) Cartan generator represented on electric quarks by diag(xi, x̃j) with

i, j = 1, 2, 3, 4. Let us find its representation on magnetic quarks using the identification

of gauge invariants. Suppose that this operator is represented on magnetic quarks and

elementary baryons of the first dual theory by diag(zi, z̃j) and diag(yi, ỹj), respectively.

Demanding that the elementary magnetic baryons have the same charges as composite

electric ones, we obtain xi = yi and x̃j = ỹj. Invariance of the superpotential terms

ǫijklB
ij qk · ql and ǫĩj̃k̃l̃B̃ĩj̃ q̃k̃ · q̃l̃ (see table 1) gives for the charges of the magnetic quarks

zi = yi −
1

2

∑

k

yk = xi −
1

2

∑

k

xk ,

z̃j = ỹj −
1

2

∑

l

ỹl = x̃j −
1

2

∑

l

x̃l .

Charges of magnetic quarks of the second dual theory with elementary mesons are obtained

in a similar way,

zi = −xi +
1

2

∑

k

xk ,

z̃j = −x̃j +
1

2

∑

l

x̃l .

Remarkably, these relationships were found by SV as transformations acting on arguments

of superconformal indices that lead to the duality identities. The arguments of index are

precisely the global group elements, parametrized by eigenvalues of their matrix representa-

tion. It turns out that these transformations together with permutations of quarks generate

the Weyl group W (E7) of the exceptional root system E7, which defines transformational

properties of hyperelliptic integrals that give indices of dual theories.

Consider now baryon charge represented on electric quarks by

QB = diag(+1,+1,+1,+1,−1,−1,−1,−1) .

– 6 –



J
H
E
P
0
3
(
2
0
1
0
)
0
6
5

With the above identifications, we see that magnetic quarks of the first (second) dual theory

have the opposite (same) baryon charges as electric ones, in accord with table 1. There

are two other representations of baryon charge on electric quarks that lead to inequivalent

representations on magnetic quarks. We choose them in electric theory as follows,

Q′

B = diag(+1,+1,+1,−1,−1,−1,−1,+1) ,

Q′′

B = diag(+1,+1,−1,−1,−1,−1,+1,+1) .

The corresponding representations on magnetic quarks are

Q′

B1 = diag(0, 0, 0,−2, 0, 0, 0,+2) ,

Q′′

B1 = diag(+1,+1,−1,−1,−1,−1,+1,+1)

for the first dual and

Q′

B2 = diag(0, 0, 0,+2, 0, 0, 0,−2) ,

Q′′

B2 = diag(−1,−1,+1,+1,+1,+1,−1,−1)

for the second dual.

Coupling of external field to the baryon current breaks SU(8) symmetry of electric

theory down to SU(4) × SU(4) × U(1)B . The pattern of symmetry breaking in magnetic

theories depends on the representation of baryon charge. Coupling of the external field to

the charge QB does not break SU(4) × SU(4) × U(1)B symmetry at all. Coupling to Q′

B

and Q′′

B breaks each of SU(4) down to SU(3)×U(1) and SU(2)×SU(2)×U(1), respectively.

Hence, the resulting magnetic theories in external field are physically different. The fact

that anomalies of weird baryon charges Q′

B and Q′′

B match to those of electric baryon

current gives extra evidence that magnetic theory possesses the full SU(8) symmetry in

the infrared.

Thus, upon coupling different representations of the baryon current to external field,

each of the two duals split into three inequivalent theories. These are the Seiberg duals to

electric SQCD in external field coupled to the baryon current. Note that one of the above

dualities is precisely the explicit example given by SV in tables 5, 6 of [5]; the fields are

split into representations of

SU(3)L × U(1)L × SU(3)R × U(1)R × U(1)B

and U(1)B charges coincide with our Q′

B . Electric counterparts of the U(1)L/R charges are

given by

QL = diag(−1,−1,−1, 0, 0, 0, 0, 3)

QR = diag(0, 0, 0, 3,−1,−1,−1, 0) .

In magnetic theories, these are precisely the U(1)-subgroups remaining after SU(4)L/R split

into SU(3) × U(1) in external field interacting with the charge Q′

B .

– 7 –
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Considering in this way all other Cartan generators,2 coupled to external fields it

is straightforward to obtain the two complete sets of 35 dual theories suggested by SV.

They correspond to 1
2
C4

8 splittings of eight eigenvalues into two groups acting on left and

right magnetic quarks, respectively, modulo interchanging the notions of left and right.

Remarkably, there is one-to-one correspondence between this procedure and the index

approach: no extra dualities are obtained in our field-theoretic way as compared to SV.

We see that multiplicity of dual descriptions suggested by superconformal index match-

ing reveals some new aspects of duality. We have found that most of 72 dual theories

suggested by superconformal index matching can be considered independent only in quite

unconventional sense, namely, by coupling different global currents of the same theory to

external field. Without this additional construction, there are only four theories dual to

each other. It is worth noting, though, that several aspects of multiple duality, like the

rôle of W (E7) transformations that somehow relate all four duals, remain unclear.

4 Reduction to Nf = 3

One way of studying known dualities and obtaining new ones is to consider the flow of dual

theories under integration out some of the fields. SV proposed a reduction procedure for

elliptic hypergeometric integral identities that starts with an established relation between

superconformal indices of two theories and gives a relation for theories with lower rank of

global symmetry group. One expects that this reduction corresponds to integration out

some of the matter fields in pertinent field theories. SV considered the reduction that

effectively removes one quark flavour from Nc = 2, Nf = 4 SQCD and its duals. As a

result, a set of 36 gauge theories dual to each other was proposed. Only tree of them

have different field content. One of these theories is Nf = 3, Nc = 2 SQCD without extra

fields, while two others are Nf = 3, Nc = 2 SQCD with two different sets of additional

gauge singlets.

At the same time, it is known that electric and the second and third dual theories flow

to the same theory in the infrared. The low energy theory does not have gauge symmetry

and is a theory of one SU(6) antisymmetric tensor field V with superpotential proportional

to Pfaffian of V [11].

These two views on the result of integrating out one quark flavor from Nc = 2, Nf = 4

SQCD are in apparent contradiction. To see what happens, let us systematically study

how the theories listed in table 1 flow towards the infrared. Of particular interest are the

theories that emerge as intermediate steps: we will see in section 4.2 that some of them

are precisely the duals suggested by the index matching approach.

4.1 Flowing to the infrared

Let us leave aside for the time being the conjectures based on superconformal index ap-

proach, and integrate out one quark flavor and its magnetic counterparts in all four theories

described in section 2. For the second and the third dual descriptions this procedure was

2In fact, it is sufficient to consider the least symmetric Cartan generators that break SU(8) down

to [U(1)]7.
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briefly described in the original papers [13, 15]. Here we follow the work [12] where iden-

tifications of operators in electric and magnetic theories were discussed.

We are going to add either the mass term for the fourth flavor, m Q4·Q̃4̃, or oblique mass

term hQ3 ·Q4. Although these terms are related by SU(8) transformation in electric theory,

they have different counterparts in the first dual theory with the default identification of

the operators. This has been discussed in section 3. Accordingly, the flow of the first dual

theory to the infrared proceeds through different steps for the two mass terms. The same

applies to the second dual theory. One can see that our choice of the mass terms exhausts

all possible patterns of flow; considering other mass terms adds nothing new.

We discuss electric theory first. Keeping explicit SU(4)L × SU(4)R × U(1)B part of

SU(8) global symmetry, we begin with the mass term m Q4 ·Q̃4̃. For m ≫ Λ, the dynamical

scale of electric theory, massive quarks are integrated out, and one arrives at SQCD with

Nf = 3 flavours. Below its own dynamical scale Λ3 = (m Λ2)1/3 this theory confines and

generates dynamical superpotential [11]

Wdyn =
1

mΛ2

{

1

4
ǫrst BrsM t

t̃
B̃r̃s̃ ǫr̃s̃t̃ − det M

}

=
Pf V

Λ3
3

. (4.1)

Here r, r̃, . . . = 1, 2, 3 are the indices of SU(3)L × SU(3)R flavour group that remains after

integration out. The actual full global symmetry is SU(6), and V is antisymmetric SU(6)

tensor composed of mesons and baryons.

Let us now consider oblique mass term hQ3 · Q4. It breaks flavour group in another

manner: SU(4)L × SU(4)R × U(1)B ⊂ SU(8) → SU(2)L × SU(4)R × U(1) ⊂ SU(6). Inte-

grating out massive quarks, we arrive at SQCD with two surviving left quarks Qa, a = 1, 2

and four right quarks Q̃j̃. This is still Nf = 3 SQCD. Below the scale (hΛ2)1/3 quarks

are confined in mesons Ma
j̃
, baryons Bab and antibaryons B̃ĩj̃. Dynamically generated

superpotential is given by eq. (4.1) with Q̃4̃ substituted for Q3:

Wdyn =
1

4hΛ2

{

Ma
ĩ
M b

j̃
−

1

4
BabB̃ĩj̃

}

ǫĩj̃k̃l̃ ǫab B̃k̃l̃ . (4.2)

This description also possesses the full SU(6) global symmetry. It is equivalent to the pre-

vious one after field redefinition, as should be the case since the two low energy descriptions

originate from one and the same theory with mass terms related by SU(8) transformation.

Thus, the electric theory flows through Nf = 3 SQCD with no gauge singlet fields,

whose low energy description is the theory of SU(6) antisymmetric tensor field.

Let us consider what happens with the first dual theory as we add each of the mass

terms. Before writing counterparts of the mass terms we note one subtlety in the operator

identification. While electric composite baryons and antibaryons match the corresponding

elementary magnetic fields directly3 (see table 1), composite mesons match up to non-

trivial factor:

M i
j̃
≃

√

−Λ2

µ2
N i

j̃
≃

√

−Λ2

µ2
qi · q̃j̃ ,

3Because of different canonical dimensions of these fields, this matching involves a scale µ.
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where the scale µ is introduced on dimensional grounds. This identification ensures that

the duality transformation applied twice gives back the original theory.

With this qualification, the electric theory with mass term m Q4 · Q̃4̃ is dual to the the

magnetic one with the following superpotential,

W =
1

4µ
ǫijklB

ij qk · ql +
1

4µ
ǫĩj̃k̃l̃B̃ĩj̃ q̃k̃ · q̃l̃ + m

√

−Λ2

µ2
q4 · q̃4̃ . (4.3)

For large m, quarks q4 and q̃4̃ are heavy. Integrating them out we arrive at the theory with

Nf = 3 quark flavours and the same set of elementary baryons as in the original magnetic

Nf = 4 theory. The tree level superpotential after integration out is given by

Wtree =
1

2µ
ǫrst qr · qsBt4 +

1

2µ
ǫr̃s̃t̃q̃r̃ · q̃s̃ B̃t̃4̃ −

1

4mµ2

√

µ2

−Λ2
ǫrst ǫr̃s̃t̃BrsB̃r̃s̃ qt · q̃t̃ , (4.4)

where all indices take the values 1, 2, 3. This theory has its own scale given by

Λ̃3 ≡

(

m
Λ

µ
Λ̃2

)1/3

=
(

m Λ̃µ
)1/3

,

where Λ̃ ≡ µ2/Λ is the scale of the initial magnetic theory. Below this scale the theory

confines and generates dynamical superpotential analogous to (4.1):

Wdyn =
1

mΛ̃2

√

µ2

−Λ2

{

1

4
ǫrst Crs N t

t̃ C̃r̃s̃ ǫr̃s̃t̃ − detN

}

,

where Crs ≡ qr · qs and C̃r̃s̃ ≡ q̃r̃ · q̃s̃ are composite magnetic baryons and antibaryons of

Nf = 3 theory.

Upon rescaling the meson field N i
j̃

to match the electric one M i
j̃
, we obtain the theory

of interacting mesons and baryons (the latter are Brs, Br4, Crs and their antibaryons)

with the superpotential given by the sum of Wdyn and Wtree:

W =
1

mΛ2

{

1

4
ǫrst BrsM t

t̃
B̃r̃s̃ ǫr̃s̃t̃ − det M

}

+

1

2µ
ǫrst CrsBt4 +

1

2µ
ǫr̃s̃t̃ C̃r̃s̃ B̃t̃4̃ −

1

4mµ2
ǫrst Crs M t

t̃ C̃r̃s̃ ǫr̃s̃t̃ . (4.5)

According to our definition of B, the canonically normalized field is B/µ. Since C is the

composite field arising because of strong coupling at Λ̃3, its canonically normalized form

is C/Λ̃3 ≃ q · q/Λ̃3. Hence, this superpotential gives masses of the same scale Λ̃3 to all

baryons absent in electric Nf = 3 theory. Integrating them out we are left with the same

theory as in the electric case with the superpotential given by the first line of eq. (4.5), cf.

eq. (4.1).

Hence, the electric theory and its first dual flow to the same theory of interacting

singlets. Notably, the flow of the first dual proceeds through the intermediate descrip-

tion. This is Nf = 3 SQCD with six baryons Brs, Br4, six antibaryons B̃r̃s̃, B̃s̃4̃ and

superpotential given by eq. (4.4). The flavour group of this theory is

SU(3)L × SU(3)R × U(1)B × U(1)4 , (4.6)
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where the last factor is inherited from the initial magnetic theory together with extra

baryons Br4, B̃s̃4̃. In electric theory, this symmetry acts only on massive quarks and

disappears once these quarks have been integrated out.

Let us now turn to the second electric mass term hQ3 ·Q4. It corresponds to the term

hB34 in the first magnetic dual. The full superpotential is now given by

W =
1

4µ
ǫijklB

ij qk · ql + hB34 +
1

4µ
ǫĩj̃k̃l̃B̃ĩj̃ q̃k̃ · q̃l̃ . (4.7)

It generates non-zero expectation value for magnetic quarks,

q1 · q2 = −µh ≡ v2 , (4.8)

which completely breaks the gauge group. Let us choose the quark vev to be (qa)α = v δa
α,

where α, . . . = 1, 2 is colour index. Then for h ≫ Λ̃, the fields (qa)a as well as (q3)α,

(q4)α and baryons, except for B12, obtain masses and are integrated out. The fields (q1)2,

(q2)1 and B12 remain massless but completely decouple. Thus we are left with eight

quark components (q̃j̃)α and antibaryons B̃ĩj̃ with superpotential given by the last term in

eq. (4.7).

Using the quark vev we rescale quark fields to match them to electric mesons:

(q̃ĩ)α ≡ −ǫαb
1

v

√

µ2

−Λ2
M b

ĩ
.

Tree level superpotential now reads

Wtree =
1

4hΛ2
ǫab Ma

ĩ
M b

j̃
B̃k̃l̃ ǫ

ĩj̃k̃l̃ .

It matches the first term in eq. (4.2).

The remaining part of superpotential is generated dynamically. To check this, one

gives large vevs to all baryon and antibaryon fields except for B34. Due to superpoten-

tial (4.7), baryon vevs provide masses to all quarks except for q1 and q2. Integrating the

massive quarks out one obtains a theory with one quark flavour composed of q1 and q2

and unbroken SU(2) colour group. This theory confines and generates non-perturbative

dynamical superpotential [11]

Wdyn =
(Λ̃1)

5

〈q1 · q2〉
.

Here Λ̃1 is the scale of the resulting Nf = 1 theory. It is determined by baryon vevs and

the scale of original theory,

(Λ̃1)
5 = Pf

[

Bab ⊕ B̃ĩj̃

]

µ−3Λ̃2 =
µ

16Λ2
ǫab Bab ǫĩj̃k̃l̃ B̃ĩj̃ B̃k̃l̃ ,

where we have used the relation ΛΛ̃ = µ2 between the scales of electric and magnetic

theories. Using this expression and the quark vev (4.8), one obtains the dynamically

generated superpotential

Wdyn = −
1

16hΛ2
ǫab Babǫĩj̃k̃l̃ B̃ĩj̃ B̃k̃l̃ ,
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which is precisely the second term in eq. (4.2). In this way we arrive at the same theory

of the antisymmetric SU(6) tensor field we have obtained starting from electric theory.

As in the previous case, part of the superpotential is given by tree-level terms while the

other part is generated non-perturbatively. As opposed to the previous case, however, the

term hB34 breaks the gauge group and the theory does not pass through any intermediate

description during the flow.

Now let us turn to the second dual theory. Adding the electric mass term m Q4 · Q̃4̃

induces the term m M4
4̃

in this magnetic dual. The resulting flow resembles closely that

of the first dual with the term hB34. As described by Seiberg [13], the term m M4
4̃

in

superpotential leads to non-vanishing quark vev 〈q4 ·q̃
4̃〉, which completely breaks the gauge

symmetry. The quark components that remain massless are identified with electric baryons.

The superpotential arises here as the sum of dynamical and tree-level contributions, just as

in the case considered above. This flow does not proceed through intermediate descriptions.

The oblique mass term hQ3 · Q4 in electric theory leads to more interesting flow of

the second dual. It was considered in detail in ref. [12]. This flow is similar to that of the

first dual under addition of the mass term m
√

−Λ2

µ2 q4 · q̃4̃. In the second dual, the electric

baryons match to the magnetic ones as

Bij ≃

√

−Λ2

µ2
ǫijkl Ckl ≡

√

−Λ2

µ2
ǫijkl qk · ql , (4.9)

and the same for antibaryons. Thus, electric mass term hQ3 ·Q4 corresponds to the term

h

√

−Λ2

µ2
q1 · q2 .

For h ≫ Λ̃, it gives mass to quarks q1 and q2. This term breaks SU(4)L part of the flavour

symmetry to diagonally embedded SU(2)12 × SU(2)34. The full superpotential now reads

W =
1

µ
M i

ĩ
qi · q̃

j̃ + h

√

−Λ2

µ2
q1 · q2 .

Integrating out massive quarks one obtains SQCD with Nf = 3 quark flavours, mesons M i
j̃

and tree-level superpotential

Wtree =
1

µ
Mf

ĩ
qf · q̃j̃ −

1

2hµ2

√

µ2

−Λ2
ǫab Ma

ĩ
M b

j̃
q̃ĩ · q̃j̃ , (4.10)

where a, b = 1, 2 and f, g = 3, 4 are the indices of the representations of SU(2)12 and

SU(2)34, respectively. At this stage the theory has global symmetry

SU(2)12 × SU(2)34 × SU(4)R × U(1)B (4.11)

where U(1)B is a combination of the initial baryon charge and the third Cartan generator

of SU(4)L that does not belong to SU(2)12 or SU(2)34. In comparison to the electric
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Nf = 3 SQCD, this theory has extra SU(2)12 symmetry. This symmetry is the magnetic

counterpart of electric SU(2) that acts on quarks Q3 and Q4 and is preserved by the oblique

mass term hQ3 ·Q4. This electric SU(2) completely disappears after the heavy quarks are

integrated out. As opposed to electric theory, the intermediate magnetic theory contains

mesons that transform non-trivially under SU(2)12. Hence, SU(2)12 is a non-trivial part of

global symmetry of the second dual theory at this stage of its flow.

SQCD sector of this theory has Nf = Nc +1 flavors, and thus confines. The additional

dynamical superpotential for its own composite mesons N ĩ
f and baryons Cfg, C̃ ĩj̃ is gen-

erated. The baryon fields Cfg, C̃ ĩj̃ can be replaced by Bab, B̃ĩj̃ by making use of the field

redefinition (4.9). In this way we obtain the theory of baryons Bab, antibaryons B̃ĩj̃ and

mesons Ma
ĩ
, Mf

ĩ
, N ĩ

f with superpotential

Wdyn =
1

4hΛ2

{

Ma
ĩ
M b

j̃
−

1

4
BabB̃ĩj̃

}

ǫĩj̃k̃l̃ ǫab B̃k̃l̃+

1

µ
Mf

ĩ
N ĩ

f +
1

2hµ2
ǫfg N ĩ

f N j̃
g B̃ĩj̃ . (4.12)

This superpotential gives masses to all fields that are absent in the electric low energy

description, namely, to Mf

ĩ
and N ĩ

f . After integrating them out, the remaining fields fit

into SU(6) antisymmetric tensor representation, and the theory is equivalent to the common

low energy description we obtained in previous cases.

For completeness, let us describe the flow of the third dual description [15]. It possesses

full SU(8) flavour symmetry. Thus, any electric mass term has the same effect in the dual

theory. It is easier to consider the flow of this theory in SU(8) notations. The matter fields

are magnetic quarks qI , I = 1, . . . 8, and elementary gauge singlet antisymmetric tensor

V IJ that contains all mesons and baryons. The latter corresponds to the moduli of electric

theory. Superpotential of this dual takes the form

W =
1

µ
V IJ qI · qJ .

Modulo SU(8) transformation, the magnetic counterpart of any electric mass term is m V 12.

With this term in superpotential, quarks q1 and q2 obtain vev 〈q1 · q2〉 = −µ m that breaks

the gauge group. Then all quarks and the fields V 1I and V 2I become massive. Integrating

them out one is left with the remaining components of V IJ which transform as antisym-

metric tensor under the surviving SU(6) flavour group, and no tree-level superpotential.

Superpotential (4.1) is generated by instantons of the broken gauge group as described

in [11].

Hence, once mass term of any form is added, every theory given in table 1 flows to

one and the same theory of SU(6) antisymmetric tensor field with superpotential given by

eq. (4.1). This flow, however, is different for different duals and for different forms of the

mass term.

4.2 Making contact with index matching

Finally, let us make contact with dualities for Nf = 3 SQCD suggested by SV using the

reduction of superconformal index identities of Nf = 4. The conjecture is that there exist

– 13 –



J
H
E
P
0
3
(
2
0
1
0
)
0
6
5

36 dual gauge theories, apart from the low energy description in terms of the antisymmetric

SU(6) tensor. All of them are SU(2) SQCD with Nf = 3 flavours of quarks and additional

singlet fields. Apart from the obvious electric Nf = 3 SQCD, there are two options for

the field content and global symmetry. All other theories are different only in the sense

explained in the previous section.

In notations of ref. [5], one of these two conjectured duals possesses SU(3)L×SU(3)R×

U(1)B×U(1)add global symmetry and besides SQCD sector contains 12 gauge singlet fields:

M1 in 3A and N1 in 3 of SU(3)L, and M2 in 3A and N2 in 3 of SU(3)R, see table 12 of [5].

This theory is nothing but the theory obtained as an intermediate step in the flow of the

first dual. In our notations, M1, N1 are baryons Brs, Br4, and M2, N2 are antibaryons

B̃r̃s̃, B̃r̃4̃. The group U(1)add is U(1)4 entering (4.6). In addition, we have found that the

superpotential of this theory is given by eq. (4.4).

Like its progenitor, the first dual for Nf = 4 SQCD, this theory has lower flavour

group SU(3) × SU(3) × U(1)B × U(1)4 in comparison with SU(6) of the electric Nf = 3

SQCD. Thus, in the same way as in the previous section, multiple dualities emerge in this

theory when global currents are coupled to external field. In this case, there are 20 duals

that correspond to C3
6 ways to split six eigenvalues of the Cartan generator of the SU(6)

global symmetry into those acting on left and right magnetic quarks. We note here that

unlike in Nf = 4 case, interchanging left and right quarks in the magnetic theory does not

leave that theory intact, as it changes the sign of the U(1)4 charge of baryons Br4; hence

the above counting.

The second dual proposed by SV possesses SU(2)L × SU(2)add × SU(4)R × U(1)B
global symmetry with 16 gauge singlet fields: M in (1,2,4) representation and N in

(2,1,4) representation (cf. table 13 of [5]). We identify this theory with the intermediate

description obtained during the flow of the second Nf = 4 dual theory with M identified

with the mesons Mf

ĩ
and N with the mesons Ma

ĩ
, see (4.11). Its tree-level superpotential

is given by (4.10).

By coupling global currents of this theory to external field one obtains 15 dualities, in

the sense of the previous section. These correspond to C2
6 ways to label six eigenvalues of

the Cartan generator of SU(6) as two left and four right.

As a result, the total number of dualities (in external field sense) is 1 + 20 + 15 = 36,

taking into account electric Nf = 3 SQCD. Without the external field, there are two

new dual descriptions for Nc = 2, Nf = 3 SQCD conjectured from index matching and

supported by our study. Both are valid Seiberg dual theories, which show identical infrared

behaviour. These descend from Nc = 2, Nf = 4 SQCD dualities by integrating out one

flavour, and are Nc = 2, Nf = 3 SQCD with additional singlets. Tree level superpotentials

in the two theories are given by (4.4) and (4.10), respectively. Unlike in many other cases,

one can explicitly follow the flow of all three theories to the infrared and check that they

have one and the same low energy description.
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