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1 Introduction

One of the best studied examples of the AdS/CFT correspondence [1–3] (for reviews see
e.g. [4, 5]) is the duality between AdS3 × S3 ×M4 vacua of type IIB string theory (where
M4 is either T 4 or K3) and certain two-dimensional superconformal field theories with 16
supersymmetries [6–9].
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Deformations of the supersymmetric vacua which preserve half of the supersymmetries
are of particular interest. On the CFT side, such deformations can be associated with
local operators as well as certain extended objects, such as Wilson loops, interfaces and
surface operators. Defects and interfaces that preserve half of the conformal supersymmetry
represent an important example of such extended objects for two-dimensional CFTs, and
will be the focus of the present paper.

There are several methods for obtaining spacetimes that are dual to superconformal
interfaces or defects. First, we can consider a brane intersection where a lower dimensional
brane realizes a CFT on its worldvolume while a higher dimensional brane introduces
a conformal boundary [10]. In particular, one can add a D3 brane to a D1/D5 brane
configuration introducing a 0 + 1-dimensional intersection. Without the additional D3
brane, the D1/D5 branes produce the AdS3 × S3 ×M4 vacuum in the near-horizon limit.
It has been argued [10] that the D3 brane survives this limit and introduces a defect in the
dual theory.

Second, probe branes which have an AdS2 worldvolume inside the AdS3 space provide
a holographic realization of one-dimensional conformal interfaces and defects [10–17]. In
general, κ-symmetry of the worldvolume theory may be used to count the number of
supersymmetries preserved by the probe and to fix the positions of the probe branes in
AdS3 × S3 ×M4 [18].

Third, in many cases the extended supersymmetry of the interface or defect may be
exploited to obtain supergravity solutions in analytic form. It is in this spirit that various
regular Janus solutions with 16 supersymmetries were derived in type IIB supergravity [19–
22] and M-theory [23–26] to obtain holographic duals of interfaces, defects, Wilson loops
and surface operators for super Yang-Mills theories in 2+1 and 3+1 dimensions.1

Conformal superalgebras [32] provide a framework in which the above three meth-
ods may be understood in a unified way [33]. In this paper, we will focus on the third
approach and derive exact supergravity solutions dual to interfaces and defects in 1 + 1-
dimensional CFTs.

Exact half-BPS solutions in type IIB supergravity that preserve eight of the 16 super-
symmetries of the AdS3×S3×M4 vacuum and are locally asymptotic to the vacuum solution
were constructed in a previous paper [34] (see also [35–38] for earlier related work). The
Ansatz for these solutions preserves a SO(2, 1)×SO(3) subgroup of the full SO(2, 2)×SO(4)
isometry group of the vacuum. This SO(2, 1)×SO(3) symmetry correctly reflects the global
bosonic symmetry for a one-dimensional conformal interface, and uniquely extends to the
superalgebra SU(1, 1|2) which has eight supersymmetries.

The exact solutions of [34] display a rich and interesting moduli space, and have two
or more asymptotic AdS3 × S3 ×M4 regions which may be identified, in the dual CFT,
with two-dimensional half-spaces glued together at the one-dimensional interface. In the
different asymptotic regions, the dilaton and axion fields approach different constant values,
and the D1, D5, NS5 and F1 charges take on different values.

1For closely related work, see also [27–31].
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The goal of the present paper is to address a number of important questions which
were raised in [34], but were not answered there:

• The solutions of [34] have non-zero D1, D5, NS5, and F1 charges, but all have van-
ishing D3-brane charge. It would be interesting to find solutions carrying non-trivial
D3-brane charge.

• The solutions of [34] have spacetimes given by an AdS2 × S2 ×M4 fibration over a
Riemann surface Σ with boundary. Moreover, Σ is simply-connected, and may be
conformally mapped to the upper half-plane. A similar analysis was conducted for
half-BPS multi-Janus solutions dual to 2 + 1-dimensional interfaces and defects [20,
21]. In the latter case, the space-time is given by the warped product AdS4×S2×S2×
Σ, and regularity appears to require that Σ has only a single boundary component
and is simply-connected though no rigorous theorem to that effect is yet available. For
the lower-dimensional case of a one-dimensional interface or defect considered here,
however, this question must be re-examined. We intend to generalize the solutions
of [34] to the case where Σ has a more complicated topology, involving more than
one boundary component.

• The half-BPS solutions of [34] are completely regular, and have the same symmetries
and charges associated with probe branes in the AdS3 × S3 vacuum. They may be
viewed as the fully back-reacted solutions where the probe branes have been replaced
by geometry and flux. A final question is whether the localized probe branes may
be recovered by taking a (possibly singular) limit of the fully back-reacted solution.
This reverse process was possible in the original multi-Janus solutions [20, 21], and
is expected to be available here as well.

In the present paper, we show that the answers to the first two questions are intimately
related. We find that regular type IIB supergravity solutions for which Σ has multiple
boundary components do exist, and we construct them explicitly. For Σ with the topology
of an annulus (i.e. two boundary components), the construction is carried out explicitly in
terms of elliptic functions and their related Jacobi theta functions. For Σ with the topology
of a sphere with g + 1 holes, with g ≥ 2, the construction will be given in terms of the
higher genus prime forms and theta functions of the double cover of Σ.

The question as to whether regular solutions for which Σ also has handles can be
obtained will not be addressed in this paper, though many of the tools needed to examine
this question will be developed here.

Finally, the new half-BPS interface and defect solutions we obtain will be an excellent
laboratory for considering the probe limit of regular back-reacted solutions.

1.1 Organization

The structure of this paper is as follows. In section 2 we briefly review the local half-
BPS interface solutions as well as the conditions imposed by global regularity. For more
details and the full derivations we refer the reader to [34]. In section 3, we consider the
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case of a Riemann surface with two disconnected boundary components (i.e. the annulus).
We construct the solutions using theta functions, and solve the constraints imposed by
regularity. We show that the solutions carry non-zero D3-brane charge, and that this charge
is associated with the non-contractible cycle of the annulus. In section 4, we examine the
degeneration of the annulus where one boundary shrinks to a point, and show that, in this
limit, extra asymptotic regions with AdS2×S2×S1×R geometry appear. In section 5, we
generalize the annulus solution to the case of a Riemann surface with an arbitrary number
of boundary components utilizing the doubling trick to construct the solutions in terms
of holomorphic differentials and prime forms on the double Riemann surface. In the final
section, we discuss possible generalizations of the solutions found in this paper and list
several open questions and directions for future research.

2 Local half-BPS interface solutions

In this section, we present a summary of the Ansatz and local half-BPS solutions obtained
in [34] which will be used again here. We also review the regularity and boundary conditions
needed to promote the local results to globally well-defined solutions.

2.1 Ansatz

In the local half-BPS solutions, the spacetime is constructed as a fibration of the product
AdS2×S2×M4 (where M4 is either T 4 or K3) over a two-dimensional Riemann surface Σ
with boundary. This product space is invariant under the global symmetry group SO(1, 2)×
SO(3), and the appropriate Ansatz must reflect this symmetry. The metric is given by,

ds2 = f2
1ds

2
AdS2

+ f2
2ds

2
S2 + f2

3ds
2
M4

+ ρ2dzdz̄ (2.1)

Symmetry requires that all reduced bosonic fields, such as f1, f2, f3, and ρ, depend only on
Σ. It will be convenient to introduce an orthonormal frame associated with this metric; its
components satisfy,

ηi1i2 e
i1 ⊗ ei2 = f2

1ds
2
AdS2

i1,2 = 0, 1

δj1j2 e
j1 ⊗ ej2 = f2

2ds
2
S2 j1,2 = 2, 3

δk1k2 e
k1 ⊗ ek2 = f2

3ds
2
M4

k1,2 = 4, 5, 6, 7

δab e
a ⊗ eb = ρ2dzdz̄ a, b = 8, 9 (2.2)

The standard one-form P and composite U(1) connection Q may be expressed in terms of
the dilaton Φ and axion χ field, as follows,

P = −dΦ +
i

2
e−2Φdχ Q = −1

2
e−2Φdχ (2.3)

Finally, the SO(1, 2)× SO(3) symmetry restricts the three-form G and five-form F5 to be
given by,

G = g(1)
a ea01 + g(2)

a ea23

F5 = hae
a0123 + h̃ae

a4567 (2.4)
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Self-duality of F5 imposes the condition ha = −ε b
a h̃b. In this Ansatz, only the volume form

on M4 is taken into account, while the other cohomology generators of M4 are omitted,
and the corresponding moduli of these spaces are turned off. This explains why the only
dependence on M4 in the Ansatz for G and F5 is through the volume form e4567.

2.2 Local solutions

In [34], the BPS equations and Bianchi identities were reduced to a system of four differ-
ential equations which admits a local solution in terms of two harmonic functions,2 H and
K, and two holomorphic functions, A and B. All supergravity fields of the local solution
can be expressed in terms of these functions. The dilaton and axion are given by,

e4Φ =
1

4K2

(
(A+ Ā)K − (B + B̄)2

)(
(A+ Ā)K − (B − B̄)2

)
(2.5)

χ =
i

2K

(
(A− Ā)K −B2 + B̄2

)
(2.6)

The metric factors take the following form,

f2
1 =

ce−2Φ

2f2
3

|H|
K

(
(A+ Ā)K − (B − B̄)2

)
(2.7)

f2
2 =

ce−2Φ

2f2
3

|H|
K

(
(A+ Ā)K − (B + B̄)2

)
(2.8)

f4
3 = 4

c2e2ΦK

A+ Ā
(2.9)

The constant c is related to the volume of K3 and was set to 1 in [34]. The metric on Σ
can then be written as

ρ4 = e2ΦK
|∂wH|4

H2

A+ Ā

|B|4
(2.10)

The following combinations of three-form fluxes and metric factors can be expressed as
total derivatives,

f2
2ρe
−ΦRe(g(2))z = ∂wb

(2),

f2
2ρe

ΦIm(g(2))z + χf2
2ρe
−ΦRe(g(2))z = ∂wc

(2) (2.11)

There are analogous expressions for g(1)
z which can be found in [34] and that will not be

needed in this paper. The potentials written in terms of our holomorphic and harmonic
functions are

b(2) = −i H(B − B̄)
(A+ Ā)K − (B − B̄)2

+ h̃1, h̃1 =
1
2i

∫
∂wH

B
+ c.c. (2.12)

c(2) = − H(AB̄ + ĀB)
(A+ Ā)K − (B − B̄)2

+ h2, h2 =
1
2

∫
A

B
∂wH + c.c. (2.13)

2To improve notational clarity, we denote here by K the function that was denoted by ĥ in [34].
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Similarly, a combination of F5 and metric factors can be written as a total derivative,

f4
3ρh̃z = ∂wCK , CK =

c2

2i
B2 − B̄2

A+ Ā
− c2

2
K̃ (2.14)

where h̃1, h̃2, K̃ denote the harmonic functions conjugate to h1, h2,K respectively. Finally,
we note that it is possible to rescale our functions by a constant a,

K → a2K, B → aB, H → aH, c→ a−1c (2.15)

leaving all the physical fields invariant.

2.3 Regularity conditions

Any choice of holomorphic functions A,B and harmonic functions H,K will produce
bosonic fields which solve the type IIB supergravity field equations and preserve eight
real supersymmetries. In general, however, such solutions may either have singularities or
be unphysical, e.g. when a real scalar field like the dilaton Φ becomes complex. In order
to guarantee sensible regular solutions, several additional conditions have to be imposed.
One such constraint comes from the fact that the asymptotic regions of the spacetime
correspond locally to AdS3 × S3 ×M4. The complete list of conditions to be satisfied is
as follows:

• The radius of the AdS2 slice, given by the metric coefficient f1, is non-zero and finite
everywhere, except at isolated singular points on the boundary of Σ. Each such
singular point corresponds to an AdS3 × S3 ×M4 asymptotic region.

• The radius of the S2 slice, given by f2, is finite in the interior of Σ, and zero on the
boundary of Σ. The boundary may be defined as the curve on which f2 vanishes.

• The radius of the M4 manifold, given by f3, and the dilaton combination e2Φ are
finite and non-zero everywhere on Σ, including the boundary.

Using the above requirements, it was shown in [34] that the harmonic functions H, K,
A+ Ā and B + B̄ must obey vanishing Dirichlet boundary conditions, while the harmonic
functions i(A− Ā), i(B− B̄) and K̃ must obey Neumann boundary conditions. Moreover,
A, B and the meromorphic part of K can admit only simple poles, and the following
regularity conditions need to be respected,

R1: All singularities of the harmonic functions A + Ā, B + B̄ and K must be common,
the residues of A, B and the meromorphic part of K are related by rArK = r2

B;

R2: The functions A,B,H,K must be regular in the interior of Σ;

R3: The functions A+ Ā, K and H cannot vanish in the interior of Σ;

R4: All the zeros of B and ∂wH must be common.

Finally, there is an extra condition coming from the requirement that the dilaton field must
be real or, more practically, that e4Φ must be positive,
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R5: The following inequality

(A+ Ā)K − (B + B̄)2 > 0 (2.16)

must be obeyed throughout Σ, including on the boundary.

For a Riemann surface with a single boundary component, this follows as soon as conditions
R1 to R4 are satisfied. Similarly, we shall show that this condition does not pose any
further constraint on the solutions constructed in this paper.

3 Two boundary components: the annulus

In [34] the Riemann surface Σ had a single boundary component. The next simplest choice
is a Riemann surface with two boundary components and no handles. By uniformization,
it is always possible to map Σ to the annulus, defined as the domain

Σ ≡
{
w ∈ C, 0 ≤ Re(w) ≤ 1, 0 ≤ Im(w) ≤ t

2

}
(3.1)

where points w + 1 and w are identified, giving indeed the topology of an annulus. The
two boundaries ∂Σ1,2 of the annulus are located at Im(w) = 0 and Im(w) = t/2.

The annulus can be constructed from a Riemann surface without boundary, the so
called double Σ̄, which is a rectangular torus with pure imaginary modular parameter
τ = it.

Σ̄ ≡ {w ∈ C, 0 ≤ Re(w) ≤ 1, 0 ≤ Im(w) ≤ t} (3.2)

where w + 1 is identified with w and w + it is identified with w. The annulus (3.1) is
obtained by quotient of the torus (3.2) by an anti-conformal involution

Σ = Σ̄/I, I(z) = z̄ (3.3)

The boundaries ∂Σ1,2 of the annulus are the fixed point set of the involution I.

3.1 Harmonic and holomorphic functions on the annulus

The construction of the solution for the annulus proceeds in three steps. First, we construct
a basic harmonic function with prescribed singularities and boundary conditions. Second,
we express A, H and K using linear combinations of the basic function. Third, we find the
meromorphic function B which satisfies conditions R1 and R4.

In the sequel, we shall make use two Jacobi theta functions, which are defined as follows3

ϑ1(u|τ) = 2
∞∑
n=0

(−1)nq(n+1/2)2 sin(2n+ 1)u (3.4)

ϑ4(u|τ) = 1 + 2
∞∑
n=0

(−1)nqn
2

cos 2nu (3.5)

3We use conventions consistent with [45].
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Figure 1. (a) The annulus Σ with boundaries at Im(w) = 0, Im(w) = t
2 ; (b) the doubled surface

Σ̄ is a torus with modulus τ = it.

where q = eπiτ = e−πt. With these definitions, the quasi-periodicity conditions are,

ϑ1(u+ π|τ) = −ϑ1(u|π)

ϑ1(u+ πτ |τ) = −e−2iuq−1ϑ1(u|τ) (3.6)

Furthermore under shifts by πτ/2 we have,

ϑ1(u+ πτ/2|τ) = iq−
1
4 e−iuϑ4(u|τ) (3.7)

Note that ϑ1 is an odd function of u and vanishes linearly as u → 0, while ϑ4 is an even
function of u which vanishes at πτ/2.

3.2 Construction of the basic harmonic function

It turns out that the harmonic functions A±Ā, B±B̄,H, and K may be simply constructed
by linear superposition of a basic harmonic function, which has simple properties. The basic
harmonic function h0 on the annulus Σ satisfies the following properties:4

1. h0 has a single simple pole on ∂Σ, so that the (1, 0)-form ∂h0 has one double pole;

2. Away from the pole on ∂Σ, h0 satisfies Dirichlet conditions, i.e. h0 = 0 on ∂Σ.

3. h0 > 0 in the interior of Σ;

The harmonic function h0 can be expressed in terms of Jacobi theta functions,

h0(w, w̄) = i

(
∂wϑ1(πw|τ)
ϑ1(πw|τ)

+
2πiw
τ

)
+ c.c (3.8)

4By abuse of notation, we shall refer interchangeably to the poles of the harmonic function µ(w) +µ(w)

and the poles of its meromorphic part µ(w) only.
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or as an infinite series of images,

h0(w, w̄) =
πi

τ
sin
(π
τ

(w − w̄)
) +∞∑
m=−∞

1∣∣sin (πτ (w +m)
)∣∣2 (3.9)

The meromorphic part of (3.8) has a simple pole on ∂Σ1 located at w = 0 and hence
condition 1 is satisfied. Since the meromorphic part in (3.8) is real when Im(w) = 0, the
harmonic function h0 satisfies vanishing Dirichlet boundary conditions at the first boundary
∂Σ1. Using the transformation property (3.7) one shows that the meromorphic part in (3.8)
is real at Im(w) = t/2 and hence h0 satisfies vanishing Dirichlet boundary conditions at the
second boundary ∂Σ2. Hence condition 2 is satisfied. This property is actually manifest
from the prefactor in (3.9). The harmonic function (3.8) is single valued on the annulus,

h0(w + 1, w̄ + 1) = h0(w, w̄) (3.10)

and vanishes on both boundary components. By the maximum principle for harmonic
functions it follows that h0 > 0 in the interior of the annulus.5 Hence condition 3 is
also satisfied.

The basic harmonic function h0 has a singularity at w = 0 at the first boundary
component ∂Σ1. The location of the singularity can be shifted to any point on the boundary
by a real translation so that h0(w−x, w̄−x) has a singularity at w = x. To obtain harmonic
functions which have singularities on the second boundary component ∂Σ2, we define

w′ ≡ τ

2
− w (3.11)

and for a real y, the harmonic function h0(w′+y, w̄′+y) has a pole on the second boundary
at w = τ/2 + y and satisfies conditions 1-3.

The harmonic function h̃0 conjugate to the basic harmonic function h0 is given by

h̃0(w, w̄) =
(
∂wϑ1(πw|τ)
ϑ1(πw|τ)

+
2πiw
τ

)
+ c.c (3.12)

Note that, unlike h0, the conjugate harmonic function h̃0 is not single-valued on the annulus.
Its monodromy is given as follows,

h̃0(w + 1, w̄ + 1) = h̃0(w, w̄) +
4πi
τ

(3.13)

3.3 Construction of the supergravity solution on the annulus

The harmonic functions A± Ā, B± B̄,H and K may now be expressed as linear combina-
tions of basic harmonic functions with a pole at various points on both boundaries. Note
that for some of the harmonic functions, both the harmonic function and its harmonic
conjugate must be single-valued on the torus. This condition imposes constraints on the
coefficients of the linear combination. In this section we will construct the four harmonic
functions which determine our solution.

5The harmonic function could also be strictly negative, however explicit evaluation of the harmonic

function at special points in the interior shows that it takes positive values.
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• The function H must be single-valued and positive on Σ, and obey vanishing Dirichlet
boundary conditions. We take H to have N poles xH,α with α = 1, · · · , N on ∂Σ1,
and N ′ poles yH,β with β = 1, · · · , N ′ on ∂Σ2. The corresponding residues rH,α and
r′H,β must be positive, but are otherwise left undetermined,

H =
N∑
α=1

rH,αh0(w − xH,α, w̄ − xH,α) +
N ′∑
β=1

r′H,βh0(w′ + yH,β, w̄
′ + yH,β) (3.14)

It is possible to use the translation symmetry of the annulus to fix the position of
the first singularity at xH,1 = 0. Since the conjugate harmonic function H̃ does not
appear in any of the expressions for the supergravity fields of the solution, H̃ does
not need to be single-valued on the annulus. Consequently, there are no additional
conditions involving the residues and the number of parameters is equal to 2N +
2N ′ − 1. Note that each pole xH,α and yH,β of H corresponds to an asymptotic
AdS3 × S3 region. Hence, the full supergravity solution will have a total of N + N ′

asymptotic AdS3 × S3 regions.

• The harmonic function A + Ā must be single-valued and positive in Σ, and obey
vanishing Dirichlet boundary conditions. The conjugate function −i(A − Ā) must
also be single-valued on Σ. As a result, these functions take on the following form,

A+ Ā =
M∑
α=1

rA,αh0(w − xA,α, w̄ − xA,α)

+
M ′∑
β=1

r′A,βh0(w′ + yA,β, w̄
′ + yA,β) (3.15)

−i(A− Ā) =
M∑
α=1

rA,αh̃0(w − xA,α, w̄ − xA,α)

+
M ′∑
β=1

r′A,βh̃0(w′ + yA,β, w̄
′ + yA,β) (3.16)

Single-valuedness of −i(A−Ā) imposes a relation between the residues. Using (3.13),
one obtains the monodromy of this function,

− i(A− Ā)(w + 1, w̄ + 1) = −i(A− Ā)(w, w̄) +
4πi
τ

 M∑
α=1

rA,α −
M ′∑
β=1

r′A,β

 (3.17)

Hence, −i(A− Ā) will be single-valued provided the following relation is obeyed,

M∑
α=1

rA,α =
M ′∑
β=1

r′A,β (3.18)

This condition brings the number of parameters in the definition of A down to 2M +
2M ′. Note that one of the parameters is given by the constant in the definition of
the dual harmonic function −i(A− Ā).

– 10 –



J
H
E
P
0
3
(
2
0
1
0
)
0
6
0

• The meromorphic function B must have the same poles as A (according to the regu-
larity condition R1), and the same zeros as ∂wH (according to R4). Moreover, both
B + B̄ and −i(B − B̄) must be single-valued. The functions B + B̄ and −i(B − B̄)
are not subject, however, to any positivity condition, and are allowed to change sign
inside Σ. We get the following expression for B:

B(w) =
∂wH(w)
N (w)

(3.19)

Here, N (w)dw is a single-valued meromorphic form of weight (1, 0) whose zeros and
poles are determined by the requirement that B and ∂wH have common zeros and
B and A have common poles. Thus, N must cancel the (double) poles of ∂wH, and
reproduce the poles of A. The resulting form may be expressed in terms of the Jacobi
theta function ϑ1,

N (w) = eiπφw

∏M
α=1 ϑ1

(
π(w − xA,α)

∣∣∣τ)∏M ′

β=1 ϑ1

(
π(w′ + yA,β)

∣∣∣τ)∏N
α=1 ϑ1

(
π(w − xH,α)

∣∣∣τ)2∏N ′

β=1 ϑ1

(
π(w′ + yH,β)

∣∣∣τ)2 (3.20)

Here, the exponential prefactor has been included in order to make N properly single-
valued, and φ is a real constant phase. Note that we can fix an overall real constant
in the definition of B using the symmetry (2.15).

It remains to work out the precise conditions required to render N single-valued.
Using the transformation property (3.6) we see that single-valuedness of B, namely
B(w + 1) = B(w) requires M +M ′ + φ to be an even integer. Moreover, in order to
have B + B̄ obey vanishing Dirichlet boundary conditions, we need N (w) to be real
for w = x and w = τ/2 + x with x real. Using (3.7) ϑ1 can be re-expressed in terms
of ϑ4 when evaluated at ∂Σ2,

ϑ1

(
π
τ

2
− π(x− yH,β)

∣∣∣τ) = iq−1/4eiπ(x−yH,β) ϑ4

(
π(yH,β − x)

∣∣∣τ) (3.21)

ϑ1

(
π
τ

2
+ π(x− xH,α)

∣∣∣τ) = iq−1/4e−iπ(x−xH,α) ϑ4

(
π(x− xH,α)

∣∣∣τ) (3.22)

Both ϑ1 and ϑ4 are real when their argument is real and τ is purely imaginary, as we
can see from equations (3.4) and (3.5). Using the above expressions, we see that the
phases ϕ of N (x) and N (τ/2 + x) are respectively given by:

ϕ
(
N (x)

)
= π

x(φ− 2N ′ +M ′)−
M ′∑
β=1

yA,β + 2
N ′∑
β=1

yH,β

−M ′π
2

(3.23)

ϕ
(
N (x+ τ/2)

)
= π

(
x(φ+ 2N −M)− 2

N∑
α=1

xH,α +
M∑
α=1

xA,α

)
−Mπ

2
(3.24)

To cancel the x-dependence of these phases we need φ = M −2N = 2N ′−M ′. Upon
eliminating φ, we have,

M +M ′ = 2(N +N ′) (3.25)
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The earlier requirement that φ+M+M ′ is an even integer then implies that 2N+M ′

must be an even integer, so that both M and M ′ must be even integers. Finally, in
order to have real N (w) on the boundaries we need the x-independent parts of the
phases to vanish as well, and we have,

4
N ′∑
β=1

yH,β − 2
M ′∑
β=1

yA,β ≡ 0 (mod 2) (3.26)

4
N∑
α=1

xH,α − 2
M∑
α=1

xA,α ≡ 0 (mod 2) (3.27)

If the above conditions are satisfied, then B+B̄ obeys Dirichlet boundary conditions.
Since B+ B̄ is harmonic, single-valued and with the same poles of A+ Ā, it must be
possible to express it directly in terms of the basic harmonic function h0 as well,

B + B̄ =
M∑
α=1

rB,αh0(w − xA,α, w̄ − xA,α) +
M ′∑
β=1

r′B,βh0(w′ + yA,β, w̄
′ + yA,β) (3.28)

for some residues rB,α and r′B,β , α = 1 . . .M , β = 1 . . .M ′. Note that these residues
do not have necessarily the same sign.

• The harmonic function K has the same poles as A+ Ā and the residues are given by
the condition R1. The expression is fixed to be:

K =
M∑
α=1

r2
B,α

rA,α
h0(w − xA,α, w̄ − xA,α) +

M ′∑
β=1

r
′2
B,β

rA,β
h0(w′ + yA,β, w̄

′ + yA,β) (3.29)

In this expression, K is manifestly positive everywhere on Σ. Note that the dual
harmonic function K̃ does not need to be single-valued. So far, our solution is
dependent on a total number of parameters

no. of parameters : 2(N +N ′) + 2(M +M ′) = 6(N +N ′) (3.30)

In this counting the modular parameter of the annulus τ = it, the constant c and a
constant in the definition of K̃ are included.

3.4 Regularity conditions

At this stage, the harmonic functions satisfy the regularity conditions R1, R2, R3 and
R4. The last remaining condition is R5, namely that

K(A+ Ā)− (B + B̄)2 > 0 (3.31)

everywhere in Σ. We shall now show that the inequality follows from the form of the solution.
We begin by proving the ≥ inequality. To do so, we introduce the follow-

ing abbreviations,

hα ≡ h0(w − xA,α, w̄ − xA,α) α = 1, . . . ,M

h′β ≡ h0(w′ + yA,β, w̄
′ + yA,β) β = 1, . . . ,M ′ (3.32)
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For w,w′ in the interior of Σ, both quantities are strictly positive. The precise values taken
by these functions will be immaterial in the proof below. To evaluate K(A+Ā)−(B+B̄)2,
we use the expressions for (A+ Ā), (B + B̄) and K from (3.15), (3.28) and (3.29) respec-
tively. Since the residues rA,α and r′A,β are strictly positive, we can define the follow-
ing combinations,

vα = (rA,αhα)
1
2 uα =

rB,αhα
vα

v′β =
(
r′A,βh

′
β

) 1
2 u′β =

r′B,βh
′
β

v′β
(3.33)

In terms of these variables we have

K(A+ Ā)− (B+ B̄)2 =

∑
α

u2
α +

∑
β

u′2β

∑
α

v2
α +

∑
β

v′2β

−
∑

α

uαva +
∑
β

u′βv
′
β

2

The right hand side is automatically positive or zero in view of Schwartz’s inequality, so
that we have,

K(A+ Ā)− (B + B̄)2 ≥ 0 (3.34)

Equality is obtained if and only if the M+M ′ dimensional vectors (uα, u′β) and (vα, v′β) are
proportional to one another, so that uα = λvα and u′β = λv′β for some real number λ. This
proportionality relation implies that rBαhα = λrAαhα and r′B,βh

′
β = λr′A,βh

′
β, as we can see

from (3.33). We will rule out this possibility by showing that at least one of the residues
rB,α, r′B,β has negative sign. First, we note that ∂wH cannot vanish on the boundary of
Σ. This follows from the fact that H can be expanded close to any non-singular point x
on ∂Σ1,2 as,

H = i∂wH(x)(w − x) +
i

2
∂2
wH(x)(w − x)2 + . . .+ c.c. (3.35)

If ∂wH has a zero of order p for w = x, the above expansion can be rewritten as follows,

H = const Im(w − x)p+1 + . . . = const rp+1 sin(p+ 1)φ+ . . . (3.36)

where we have introduced polar coordinates close to w = x. Because of the sine function,
if p > 0 then H has some zeros in the bulk of Σ. However, this is not possible because H
is strictly positive in the interior of Σ by construction. Hence, the zeros of ∂wH cannot
be on ∂Σ1,2 and must be located in the interior of Σ. The condition R4 forces B to have
the same zeros as ∂wH. Therefore, B must vanish somewhere in the interior of Σ and
some of its residues must be negative. This allows us to exclude that rBαhα = λrAαhα
and r′B,βh

′
β = λr′A,βh

′
β for all α and β. Hence, our solutions satisfy R5 without any

additional condition.

3.5 Charges of the solutions

Our solutions display N + N ′ non-trivial three-spheres. In general, a three-sphere will
correspond to a curve on Σ starting and ending on the boundary. We can construct a basis

– 13 –



J
H
E
P
0
3
(
2
0
1
0
)
0
6
0

of three-spheres by choosing N + N ′ − 1 curves having support in the neighborhood of
singularities of H, so that each curve starts on the boundary on one side of the pole and
ends on the opposite side of the same boundary.

We choose a set of curves Ci, i = {1, 2, . . . N+N ′+1} as follows (see figure 2 (a)). The
curves Cα, {α = 1, 2, . . . , N} are surrounding the pole xH,α on ∂Σ1, the curves CN+β, {β =
1, . . . , N ′} are surrounding the poles yH,β on ∂Σ2. The last curve CN+N ′+1 is chosen to
start on the lower boundary and end on the upper boundary.
The flux of the three-form field on each of the spheres gives the total enclosed NS5 charge,

qNS5(C) =
1

Vol(S3)

∫
C×S2

e−ΦRe(G)

=
1
π

∫
C
f2

2 e
−ΦρRe(g(2))zdw +

1
π

∫
C
f2

2 e
−ΦρRe(g(2))z̄dw̄

=
1
π

∫
C

(
∂wb

(2)dw + ∂w̄b
(2)dw̄

)
(3.37)

Similarly, the D5 Maxwell charge is given by6

qMD5(C) =
1

Vol(S3)

∫
C×S2

eΦIm(G)

=
1
π

∫
C

((
∂wc

(2) − χ∂wb(2)
)
dw +

(
∂w̄c

(2) − χ∂w̄b(2)
)
dw̄
)

(3.38)

The D5 Page charge has a similar expression,

qPD5(C) =
1

Vol(S3)

∫
C×S2

(
eΦIm(G)− χe−ΦRe(G)

)
=

1
π

∫
C

(
∂wc

(2)dw + ∂w̄c
(2)dw̄

)
(3.39)

The expressions for b(2) and c(2) were defined in (2.12), (2.13), while V3 is the volume of the
unit three-sphere. The value of the five-brane charges (3.37) and (3.39) does not change
upon deformation of the contours Ci as long as one does not cross any of the singularities
xH,α and yH,β. Deforming the contours for the charges associated with the singularities
one can show the following relations for the conservation of charges,

N+N ′∑
i=1

qPD5(Ci) = 0,
N+N ′∑
i=1

qNS5(Ci) = 0 (3.40)

Which shows that one of the charges associated with the singularities of H is lin-
early dependent.

The explicit expression for the charges associated with the asymptotic regions can be
obtained by evaluating the integrals (3.37) for contours which are contracted towards the
singularity. For concreteness we consider the singularities on the lower boundary. The

6See [46] for a discussion on the different notions of charges in presence of Chern-Simons terms.
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Figure 2. (a) Choice of curves Ci which are associated with N+N ′ linearly independent five-brane
charges. (b) Non-contractible cycle A1 associated with three-brane charge.

relevant function can be expanded in as w → xH,α,

H ∼
2yrH,α
|w − xH,α|

(3.41)

A ∼ ia(0)
α + ia(1)

α (w − xH,α) (3.42)

B ∼ ib(0)
α + ib(1)

α (w − xH,α) (3.43)

K ∼ ik(0)
α + ik(1)

α (w − xH,α) + c.c. (3.44)

The contribution to the integrals come from the functions h̃1 and h2 in (2.12), (2.13). We
get the following expressions,

h̃1 ∼ −
y rH,α

b
(0)
α |w − xH,α|2

+
1
2
rH,αb

(1)
α

(b(0)
α )2

log
w − xH,α
w̄ − xH,α

(3.45)

h2 ∼ −
y rH,αa

(0)
α

b
(0)
α |w − xH,α|2

+
rH,α

2

(a(0)
α b

(1)
α

(b(0)
α )2

− a
(1)
α

b
(0)
α

)
log

w − xH,α
w̄ − xH,α

(3.46)

Since the endpoints of the curves are taken on the boundaries, the terms proportional
to y give a zero contribution and we are left with the following expressions,

qNS5(Cα)=
rH,αb

(1)
α

(b(0)
α )2

, qMD5(Cα)=
rH,α

b
(0)
α

(
(b(1)
α )2

k
(0)
α

−a(1)
α

)
, qPD5(Cα)=rH,α

(
a

(0)
α b

(1)
α

(b(0)
α )2

− a
(1)
α

b
(0)
α

)
(3.47)

with analogous equations for the poles on the upper boundary. The expressions for the
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Figure 3. Dilaton and metric factor f3 for the example of section 3.6.

charges associated with CN+N ′+1 are given by the integrals

qNS5(CN+N ′+1) =
1
2i

∫
CN+N′+1

(
1
B
∂wHdw −

1
B̄
∂w̄Hdw̄

)
=

1
2i

∫
CN+N′+1

(
Ndw − N̄dw̄

)
qPD5(CN+N ′+1) =

1
2

∫
CN+N′+1

(
A

B
∂wHdw +

Ā

B̄
∂w̄Hdw̄

)
=

1
2

∫
CN+N′+1

(
ANdw + ĀN̄dw̄

)
These expressions provide a physical interpretation for the (1, 0)-form N introduced
in (3.20). Note that these charges are not associated with any asymptotic region.

The three-brane charge of the solution is given by the integral of the self-dual five form
over K3 × C where C is a curve in Σ.

qD3(C) =
1

Vol(S5)

∫
K3×C

F5 =
3

4π3

∫
C
f4

3ρ
(
h̃zdw+h̃z̄dw̄

)
=

3
4π3

∫
C

(
∂wCKdw+∂w̄CKdw̄

)
(3.48)

CK is defined in (2.14). Since the annulus has a non-contractible cycle A1 (see figure 2
(b)), the three-brane charge integrated over K3 ×A1 can be nonzero due to the fact that
K̃ has nontrivial monodromy around A1.

qD3(A1) =
3c2

π2t

 M∑
α=1

r2
B,α

rA,α
−

M ′∑
β=1

r
′2
B,β

rA,β

 (3.49)

(3.13) and (3.29) were used to derive the above equation.

3.6 Examples

In this section we present the solutions with the smallest number of parameters. The
conditions which constrain the minimal solutions are the following. First, equation (3.18),
together with the positivity of the residues rA,α and r′B,β , implies that M and M ′ both
have to be nonzero. Second, the conditions (3.23) imposed by the fact that B has to be
single-valued, imply that both M and M ′ must be even integers. We can see that the
case N = 1, N ′ = 0, i.e. there is only one asymptotic region, is impossible as follows:
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Figure 4. Metric factors f1 and f2 for the example of section 3.6.

Figure 5. Field lines of f4
3 ρh̃a = ∂aCK for the example of section 3.6.

M + M ′ = 2(N + N ′) implies that M + M ′ = 2. The first condition from above implies
that M = 1,M ′ = 1. However this contradicts the second condition. Hence, in the simplest
case, one has at least two asymptotic regions, i.e. N +N ′ = 2. It follows from (3.30) that
M + M ′ = 4 and from the second condition above we see that we have M = 2,M ′ = 2.
There are two distinct cases since the boundaries of the annulus can be exchanged: in
the planar case (N = 2, N ′ = 0), the two asymptotic regions are on the same boundary
and in the non-planar case (N = 1, N ′ = 1), the two asymptotic regions are on different
boundaries. We present plots of some of the metric functions for the planar case and an
annulus with τ = i. The poles of H are located on the lower boundary at x = 0 and
x = 1/2 and have unit residues. The poles of A on the lower boundary are at x = 1/4, 3/4
and have residues 1 and 2 respectively. The poles of A on the upper boundary are at
y = 1/4, y = 3/4 and have residues 2 and 1. The field lines of the combination f4

3ρh̃z are
plotted in figure 5.
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4 Degeneration and the probe limit

Riemann surfaces with more than one boundary (or with handles) have moduli which
correspond to deformations of the surface. It is interesting to consider the behavior of our
solutions at the boundary of this moduli space, i.e. when the annulus degenerates. The
degeneration we will consider in this section is given by the shrinking of one of the holes of
the annulus to zero size. When the inner boundary shrinks to zero size, it is replaced by
a puncture in the interior of the disk. Note that each point on the disk can be associated
with a particular AdS2 × S2 slice of the geometry. In the parameterization of the annulus
defined in (3.1) this limit corresponds to taking τ → i∞. It follows from the formula for
the D3-brane charge that in this limit qD3 → 0 in accord with the expectation that in the
probe limit the D3 brane charge becomes negligible in comparison to the charges which
support the AdS3 × S3 geometry. In the degeneration limit, the fundamental domain will
be the upper half-plane with identification w ' w+1. A useful expression in the expansion
is given by

ϑ′1(πw|τ)
ϑ1(πw|τ)

= π cotπw + 4π
∞∑
n=1

q2n

1− q2n
sin(2πnw) (4.1)

In this limit we have

lim
t→∞

h0(w − x, w̄ − x) = πi
(

cotπ(w − x)− cotπ(w̄ − x)
)

lim
t→∞

h0(w′ + y, w̄′ + y) = 0 (4.2)

The function h0(w− x, w̄− x) still obeys Dirichlet boundary conditions for real w and has
a pole for w = x. The functions A and H assume the following forms in the degenera-
tion limit,

HD = lim
t→∞

H = πi

N∑
α=1

rH,α cotπ(w − xH,α) + c.c. (4.3)

AD = lim
t→∞

A = πi

M∑
α=1

rA,α cotπ(w − xA,α) (4.4)

Using (3.28), the meromorphic function B can be written as,

BD = lim
t→∞

B = − iπ
N

N∑
α=1

rH,α

sin2 π(w − xH,α)
(4.5)

N = eiπ(M−2N)

∏M
α=1 sinπ(w − xA,α)∏N
α=1 sin2 π(w − xH,α)

(4.6)

It is interesting to note that the contributions to B from terms with h0(w′ + y, w̄′ + y)
will not in general vanish because the residues r′B,β depend on the modular parameter τ
through the definition (3.28) and may become infinite in the degeneration limit.

At this point, we intend to analyze our solution near the point to which the upper
boundary ∂Σ2 has degenerated. Hence, we need to study our basic harmonic functions
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when Imw → ∞. Note that this limit is taken only after the degeneration limit τ → i∞.
It is easy to see that the harmonic functions H and A+ Ā become constants. Moreover, it
is possible to show that N = ±1 using (3.26), (3.27) and the expansion (4.1). Since B is
defined in terms of ∂wH, we get that

lim
Imw→∞

BD = 0 (4.7)

Hence, the upper boundary has completely disappeared leaving only a zero of B. We can
map the infinite cylinder to the half plane using the map

z = tan(πw) (4.8)

Which maps w = 0 to z = 0 and w = 1
2 to z = ∞. The basic harmonic function is

expressed in the new coordinates as

lim
t→∞

h0(w − x, w̄ − x) = iπ
1 + zx̂

z − x̂
+ c.c. = 2π

Imz(1 + x̂2)
|z − x̂|2

(4.9)

Where x̂ = tanx. In this coordinates, the meromorphic function B is given by

BD = − iπ
N
(
z2 + 1

) N∑
α=1

rH,α
1 + x̂H,α

(z − x̂H,α)2
(4.10)

N = (1− iz)2N−M

∏M
α=1

z − x̂A,α√
x̂2
A,α + 1∏N

α=1
(z − x̂H,α)2

x̂2
H,α + 1

(4.11)

We can see that BD has a simple zero in the interior of Σ for z = i. We also note that
all the other relevant harmonic functions are strictly positive in the bulk by construction
and will have a finite non-zero value at this point. If we expand in polar coordinates
on the plane so that r = |z − i|, equation (2.10) gives the following expression for the
two-dimensional metric,

ρ2dzdz̄ ∼ const
r2

(
dr2 + r2dφ2

)
= const

(
dr2

r2
+ dφ2

)
(4.12)

Hence, there is an infinite geodesic distance from the boundary to the point at z = i. The
behavior of ρ is the same encountered in [34] close to points which are zeros of B but not
zeros of ∂zH. These points correspond to AdS2×S2×S1×R regions where the AdS2 and
S2 spaces have the same radius.

5 General multi-boundary solutions

The example of the annulus already displayed the new salient properties of solutions asso-
ciated with Riemann surfaces Σ with multiple boundary components, namely the presence
of homology three spheres and the non-vanishing D3-brane charges due to the fact that
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K̃ is not single-valued around the non-contractible cycle of the annulus. Furthermore the
degeneration of the Riemann surface has an interesting physical interpretation. Note that
many of the objects and techniques we employ in this section are also used in multi-loop
string perturbation theory (see [39] for a review). It is an interesting question whether this
is a coincidence or points towards a deeper connection of the two subjects.

5.1 Doubling the Riemann surface

In this section we shall generalize the construction to Riemann surfaces with an arbitrary
number of boundaries but without handles. It is well-known from complex analysis [40] and
open string perturbation theory that a Riemann surface Σ with boundaries can be related
to a compact Riemann surface Σ̄ without boundary which is referred to as the double of
Σ. Specifically, the double Σ̄ must possess an anti-conformal involution, denoted I, which
is such that Σ = Σ̄/I. For example, in the case of the annulus, the double is a rectangular
torus, and the involution I is just complex conjugation.

We generalize the construction as follows [39, 40]. Let Σ be a surface with NB disjoint
boundaries, and no handles, or equivalently let Σ have the topology of a sphere with NB

disjoint discs removed. The double Σ̄ is a compact Riemann surface of genus g = NB − 1
without boundary. The anti-conformal involution I sets Σ = Σ̄/I. We choose a canonical
homology basis for H1(Σ) of cycles Ai and Bi with i = 1, · · · , g on Σ̄ which are adapted to
the involution I. Specifically, we identify NB − 1 boundary components with the A-cycles
of Σ̄, so that the involution acts on the cycles Ai, Bi through,

I(Ai) = Ai I(Bi) = −Bi (5.1)

Next, we choose a basis of holomorphic differentials ωi on Σ̄ satisfying,

I∗(ωi(z)) = ω̄i(I(z)) (5.2)

where I∗ denotes the pull-back of I to differential forms. Finally, as usual, we choose
the differentials ωi to have canonical normalization on the Ai-cycles, and define the period
matrix τij in the standard manner,∮

Aj

ωi = δij

∮
Bj

ωi = τij (5.3)

Conditions (5.1) and (5.2) imply that the period matrix τij is purely imaginary. Note that
if the surface Σ also had handles, the action of the involution I on the cycles as well as on
the period matrix, would be more complicated. We will postpone this case for later work.

All necessary functions can be constructed from the theta functions on the double
Σ̄. Higher genus theta functions are defined on a complex torus Cg/Λ with period lattice
Λ = (I, τ), where I is the g × g identity matrix and τ is a g × g symmetric matrix such
that Imτ is positive. For any u ∈ Cg/Λ, the genus g theta function is defined by,

Θ(u, τ) =
∑
N∈Zg

exp 2πi
(

1
2
N tτN +N tu

)
(5.4)
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Figure 6. (a) A Riemann surface Σ with three boundary components, (b) and its double Σ̄. The
boundaries are fixed points under the involution I

Similarly, given ε, ε′ ∈ (Z/2)g, the theta functions with half-integer characteristic α =
[ε, ε′]t, are defined by,

Θα(u, τ) =
∑
N∈Zg

exp 2πi
(

1
2

(N + ε)tτ(N + ε) + (N + ε)t(u+ ε′)
)

(5.5)

In order to define theta functions on a genus g Riemann surface Σ, one needs to introduce
the Abel-Jacobi map ϕ,

ϕ : Σ→ J(Σ) = Cg/Λ (5.6)

which embeds the Riemann surface Σ into the Jacobian J(Σ) ≡ Cg/Λ. To define the
Abel-Jacobi map, one fixes an arbitrary point z0 ∈ Σ,

ϕ : z →
(∫ z

z0

ω1, . . . ,

∫ z

z0

ωg

)
mod Λ (5.7)

Thus, ϕ(z) is a g-dimensional complex vector of Abelian integrals. It is standard to use
the notation ϕ(z − w) ≡ ϕ(z)− ϕ(w), which defines a quantity that is independent of the
choice of z0. We are now ready to define the theta functions on Σ,

ϑ(z, τ) ≡ Θ(ϕ(z), τ)

ϑα(z, τ) ≡ Θα(ϕ(z), τ) (5.8)

For each odd half-integer characteristic α, there exists a unique holomorphic (1/2, 0) form
hα(z), which is given by,

hα(z)2 =
g∑
j=1

∂jΘα(0, τ)ωj(z) (5.9)

The prime form E(x, y) is then defined as

E(z, w) =
ϑα(z − w, τ)
hα(z)hα(w)

(5.10)
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The prime form is independent of the choice of odd characteristic α; it is antisymmetric
E(z, w) = −E(w, z); and vanishes only on the diagonal w = z . In a local coordinate
system near the zero at w = z, the prime form behaves as

lim
w→z

E(z, w)
√
dz dw

z − w
= 1 +O

(
(z − w)2

)
(5.11)

i.e. w = z is a simple zero. For fixed z, E(z, w) defines a multi-valued holomorphic
differential form of weight −1/2. The prime form is single-valued around Aj-cycles, and
has the following monodromy around Bj cycles,

E(z +Bj , w) = −E(z, w) exp {−iπτjj − 2πiϕj(z − w)} (5.12)

A further differential form σ(z) will be needed to construct solutions. It is defined by,

σ(z) = exp

−
g∑
j=1

∫
Aj

ωj(y) logE(y, z)

 (5.13)

The differential σ(z) has weight (g/2, 0), and has neither poles nor zeros on Σ̄. It is single-
valued around Aj-cycles, and has the following monodromy around Bj cycles:7

σ(z +Bj) = ±σ(z) exp 2πi
(
g − 1

2
τjj −∆j + (g − 1)ϕj(z)

)
(5.14)

where

∆j =
1
2
− 1

2
τjj +

g∑
k 6=j

∫
Ak

ωkϕj (5.15)

is the vector of Riemann constants. Note that ∆k depends upon the reference point z0.

5.2 Construction of the basic harmonic function

The key tool in the construction of solution for the case of the annulus was the existence of a
basic positive harmonic function h0, whose associated meromorphic part is holomorphic in
the interior of Σ, and has a single simple pole on the boundary of Σ. All meromorphic and
harmonic functions needed for the annulus were then constructed as linear combinations
of this basic function.

This method may be generalized to the case of multiple boundary components, whose
double is a surface Σ̄ of higher genus. Additional care will be needed for higher genus
in taking proper account of the weight of differential forms (while for the annulus, all
meromorphic differentials could be canonically identified with meromorphic functions). To
construct a harmonic function on a genus g surface, we need a meromorphic function, i.e.
a form of weight 0, which has simple poles only. Such objects arise in Riemann surface
theory as Abelian integrals of the second kind, obtained as indefinite line integrals of

7The overall sign in the monodromy is immaterial for our purpose, as only σ(z)2 appears in the expres-

sions used in the following section.
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Abelian differentials of the second kind, with double poles only. The Abelian differential
of the second kind with a double pole at the point p (but holomorphic elsewhere), and
vanishing Ai-cycles, is unique, and is given in terms of the prime form by,

ω(z, p) = ∂z∂p lnE(z, p)
∫
Ai

dz ω(z, p) = 0 (5.16)

It is single-valued on Σ̄. The corresponding Abelian integral is given by,∫ z

q
dy ω(y, p) = ∂p ln

(
E(z, p)
E(q, p)

)
(5.17)

For our purposes, however, the requirement on ω(z, p) of vanishing integral around A-cycles
is too restrictive. Relaxing this condition allows us to add to ω(z, p) any linear combination
of the holomorphic Abelian differentials ωi, with i = 1, · · · , g. The corresponding Abelian
integral is then given by,

Z(z|p, q) = ∂p ln
(
E(z, p)
E(q, p)

)
+

g∑
i=1

Ci(p, q)
∫ z

q
ωi (5.18)

for an as yet undetermined Ci(p, q). Clearly, Z(z|p, q) still has a simple pole at z = p, and
a simple zero at z = q, but now has non-trivial monodromy around both Ai- and Bi-cycles,

Z(z +Aj |p, q) = Z(z|p, q) + Cj(p, q)

Z(z +Bj |p, q) = Z(z|p, q) + 2πiωj(p) +
g∑
i=1

Ci(p, q)τij (5.19)

Some care is needed in specifying the derivatives with respect to the locations p of the
poles. Indeed, the poles of the harmonic functions A± Ā, B ± B̄,H and K need to be on
the boundary of Σ, namely at points p which are invariant under the involution I(p) = p.
Therefore, the derivatives with respect to p which enter into the definition of Z(z|p, q)
must be taken along the boundary only. In a suitable local coordinate system, (w, w̄),
the boundary ∂Σ may be described locally by Im(w) = 0. In this coordinate system, the
differentiation in p along the boundary is defined as the derivative with respect to Re(w).
All derivatives and differentials in p will be understood in this manner.

5.2.1 Satisfying vanishing Dirichlet boundary conditions

We are now ready to define the basic harmonic functions h(z|p) on Σ,

h(z|p) ≡ i
(
Z(z|p, q)− Z(I(z)|p, q)

)
(5.20)

where the points p, q are on the boundary of Σ and satisfy I(p) = p, I(q) = q. We
have suppressed the dependence on the point q in h(z|p), because we shall show shortly
that, even though Z(z|p, q) depends upon q, this dependence cancels out of h(z|p). By
construction, the harmonic function h(z|p) is real, and has a single simple pole at z = p.
It remains to determine the Ci(p, q) so that h(z|p) consistently obeys vanishing Dirichlet
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boundary conditions on all g+ 1 = NB boundary components of Σ. If z, p, q are all on the
same boundary component of Σ, it is manifest that h(z|p) = 0. We need to ensure that
h(z|p) = 0 continues to hold when z is on a boundary component different from that of p.
Points on different boundary components may be mapped into one another by moving the
points through Σ along sums of half-B-periods.

Recall that ∂Σ has NB = g+1 disconnected components Γi, and that we have identified
Γi = Ai for i = 1, · · · , g. Concretely, let z, p, q ∈ Γk, and let z′ ∈ Γk′ . Comparing the
values of h(z|p) on these different boundary components gives,

h(z′|p)− h(z|p) = i

(∫ z′

z
−
∫ I(z′)

I(z)

)(
dy ω(y, q) +

g∑
i=1

Ci(p, q)ωi

)
(5.21)

It suffices to consider nearest neighbor cycles, with k′ = k + 1, for k = 1, · · · , g, all others
being given by linear combinations of these. The difference of the integration contours
entering (5.21) then precisely coincides with the cycle Bk, and the integrals may all be
carried out to give,

h(z′|p)− h(z|p) = −2πωk(p) + i

g∑
j=1

Cj(p, q)τjk (5.22)

The harmonic function h(z|p) will consistently obey vanishing Dirichlet boundary condi-
tions on all boundary components provided h(z′|p) − h(z|p) = 0 for any pair z, z′ on the
boundary of Σ. This gives g conditions, which determine Ci(p, q) uniquely,

Ci(p, q) = −2πi
∑
j

(
τ−1

)
ij
ωj(p) (5.23)

Note that Ci(p, q) is indeed independent of q, and is a well-defined holomorphic Abelian in
p. Henceforth, we shall also suppress the q-dependence of Ci and simply refer to it as Ci(p).
Since τij is purely imaginary, the quantities Ci(p) are real. Since Ci(p) is real when p, q are
on the boundary of Σ, it follows that all q-dependence cancels out of h(z|p), as promised.

Although Z(z|p, q) has non-trivial monodromy Ck(p) around any cycle Ak, this mon-
odromy is clearly real, and cancels out for h(z|p), which is thus single-valued around every
Ak-cycle. The function h̃(z|p) is the harmonic dual to h(z|p), and is given by

h̃(z|p) = Z(z|p, q) + Z(I(z)|p, q) (5.24)

Its monodromy around an Ai-cycle is given by 2Ci(p), and generally is non-vanishing. The
harmonic function h̃(z|p) is defined only up to an additive z-independent function, which
we choose so as to cancel the q-dependence of h̃(z|p), as the notation indeed indicates. Note
that h(z|p) transforms as a one-form with respect to p. This concludes our construction of
the basic harmonic functions h(z|p), and h̃(z|p).

5.3 Construction of the supergravity solution

The supergravity solutions are expressed in terms of the harmonic functions A±Ā, B±B̄,H,
and K. In this subsection, we shall now determine these functions for a surface Σ with an
arbitrary number NB = g + 1 of boundary components, but no handles.
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5.3.1 The harmonic function H

The function H must be single-valued and positive on Σ, and obey vanishing Dirichlet
boundary conditions. We take H to have Ni poles pH,ij on boundary component i, labeled
by j = 1, · · · , Ni. The corresponding residues rH,ij must be positive, but are otherwise
left undetermined,

H =
NB∑
i=1

Ni∑
j=1

rH,ijh(w|pH,ij) (5.25)

Note that each pole pH,ij of H corresponds to an asymptotic AdS3×S3 region. Hence, the
full supergravity solution will have a total of

∑NB
i=1Ni asymptotic AdS3 × S3 regions.

5.3.2 The harmonic functions A± Ā

The harmonic function A+ Ā must be single-valued and positive in Σ, and obey vanishing
Dirichlet boundary conditions. The conjugate function −i(A − Ā) must also be single-
valued on Σ. As a result, these functions take on the following form,

(A+ Ā) =
NB∑
i=1

Mi∑
j=1

rA,ijh(w|pA,ij)

−i(A− Ā) =
NB∑
i=1

Mi∑
j=1

rA,ij h̃(w|pA,ij) (5.26)

Single-valuedness of −i(A − Ā) around each Ak-cycle imposes a relation between the
residues. Using (3.13), one obtains the monodromy of this function,

NB∑
i=1

Mi∑
j=1

rA,ijCk(pA,ij) (5.27)

Hence, −i(A− Ā) will be single-valued provided the following relation is obeyed,

NB∑
i=1

Mi∑
j=1

rA,ijωk(pA,ij) = 0 (5.28)

As stated before, the basic harmonic function h(z|p) transforms as a one-form in p. As a
result, the residues rH,ij and rA,ij are −1-forms in pH,ij and pA,ij respectively.

5.3.3 The harmonic functions B ± B̄

• The meromorphic function B must have the same poles as A (according to the regularity
condition R1), and the same zeros as ∂wH (according to R4). Moreover, both B + B̄ and
−i(B − B̄) must be single-valued. Thus, these functions can be expressed as

(B + B̄) =
NB∑
i=1

Mi∑
j=1

rB,ijh(w|pA,ij)

−i(B − B̄) =
NB∑
i=1

Mi∑
j=1

rB,ij h̃(w|pA,ij) (5.29)
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The functions B+ B̄ and −i(B− B̄) are not subject, however, to any positivity condition,
and are allowed to change sign inside Σ. We get the following expression for B:

B(w) =
∂wH(w)
N (w)

(5.30)

Here, N (w) is a single-valued meromorphic form of weight (1, 0), whose zeros and poles
are determined by the requirement that B and ∂wH have common zeros and B and A have
common poles. Thus, N must cancel the (double) poles of ∂wH, and reproduce the poles
of A. Before constructing N , we shall first derive the final harmonic function K.

5.3.4 The harmonic function K

The harmonic function K has the same poles as A + Ā and the residues are given by the
condition R1. The expression is fixed to be:

K =
NB∑
i=1

Mi∑
j=1

r2
B,ij

rA,ij
h(w|pA,ij) (5.31)

In this expression, K is manifestly positive everywhere on Σ. Note that the dual harmonic
function K̃ does not need to be single-valued.

5.3.5 Construction of N

The meromorphic form N (z) must satisfy the following properties:

1. N (z) has the same (double) poles as ∂wH, and has zeros where A has poles.

2. N (z) is real on all boundaries.

3. N (z) is a (1, 0)-form so that B transforms as a scalar.

4. N (z) is single-valued around A-cycles.

To carry out the explicit construction of N (w), it is convenient to work with meromorphic
differential one-forms for which all 2g − 2 zeros are at prescribed points on Σ. Generally,
such one-forms will have monodromy around both A- and B-cycles, but it will suffice here
to restrict to forms which are single-valued around A-cycles. These may be conveniently
constructed out of the prime form E(z, w) and the holomorphic form σ(z) of weight g/2
introduced in (5.13). Any holomorphic one-form ν(z) with zeros at points pα, with α =
1, · · · , 2g − 2, and vanishing A-periods may be expressed as follows,

ν(z) = σ(z)2
2g−2∏
α=1

E(z, pα) (5.32)

The monodromy around any cycle Ak vanishes, while around a cycle Bk it is given by,

ν(z +Bk) = ν(z) exp 2πi
{
ϕk(p1 + · · ·+ p2g−2)− 2∆k

}
(5.33)
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The condition for the vanishing of this monodromy precisely coincides with the requirement
that p1 + · · ·+ p2g−2 is the canonical divisor, as should have been expected.

We take the following Ansatz:

N (z) = exp
(
πiθtϕ(z)

) ∏NB
i=1

∏Mi
j=1E(z, pA,ij)∏NB

i=1

∏Ni
j=1E(z, pH,ij)2

σ(z)2 (5.34)

The poles of A and H, respectively given by pA,ij and pH,ij , are labeled by an index i

which refers to the boundary, and a label j which refers to the point on boundary i. The
functions A and H have respectively Mj and Nj poles on boundary j. It is immediate to
see that N has the desired poles and zeros, and only those. Furthermore, θ is a g-vector
of constants. Recall that E(z, w) and σ(z) are, and that N must be single-valued around
A-cycles. This puts a strong restriction on the components of the vector θ,

θk ≡ 0 (mod 2) (5.35)

Next, N (z) must be a form of weight (1, 0) in z; this requires the following relation between
the number of poles of ∂wH and the number of zeros of A,

2g − 2 =
NB∑
i=1

(Mi − 2Ni) (5.36)

It remains to ensure that N (z) is real on all boundary components.

5.3.6 Reality of N on all boundary components

We start by noting that E(z, w) is real when both points z, w are on the same boundary.
Next, we will evaluate E(z, w) when z, w are on different boundary components. This may
be done using the following identity:

Θ
[ ε
ε′

]
(u+ τδ, τ) = exp

[
− πi

(
δtτδ + 2δtε′ + 2δtu

)]
Θ
[ ε+ δ

ε′

]
(u, τ) (5.37)

with u ∈ Cg/Λ, and δ ∈ (Z/2)g. This identity is the analog of the half-period rela-
tion (3.21)–(3.22). The integral of a holomorphic differential along an half B-cycle may be
expressed in the following from, ∫

B+
j

ωi = Rij +
1
2
τij (5.38)

where R is a real matrix and B+
j is the upper half of the Bj cycle so that Bj = B+

j −I(B+
j ).

We can then use (5.37) and (5.38) to find the multiplicative factor acquired by E(z, pH,jk)
when z is taken on boundary component i, and pH,jk is on boundary component j. We
construct a curve Cij going from the i-th boundary to the j-th boundary as,

Cij =
∑
k

cij,kB
+
k = ctijB

+ (5.39)
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Here we have introduced a tensor cij,k, with i, j = 1 . . . NB = g + 1 and k = 1 . . . g. Cij is
constructed as a linear combination of half B-cycles and cij,k are the expansion coefficients.
More explicitly, the cij,k are given by,

cij,k =


1 i ≤ k < j

−1 j ≤ k < i

0 otherwise
(5.40)

It is easy to see that Ci+1 j = Cij −B+
i . Hence, the tensor c must obey the identity,

ci+1 j,k = cij,k − δik (5.41)

where δij is the Kronecker delta. With this notation we have that

E(x, pH,jk)=exp

[
πi

(
ctijτcij

4
+ctijε

′+ctijϕ(x− pH,jk)

)] Θ

[
ε− cij

2

ε′

](∫ x
p′
H,jk

ω−Rcij , τ
)

h

[
ε

ε′

]
(x) h

[
ε

ε′

]
(pH,jk)

(5.42)
where pH,jk and p′H,jk are the endpoints of Cij so that p′H,jk is on the same boundary of
x. The argument of the theta function is manifestly real since it can be evaluated using
a path which stays on the i-th boundary. From the definition (5.5) we see that the theta
function is real as long as the argument is real. Moreover, the one-form hα(x)2 is real when
x is on one of the boundaries. The phase of hα(x) then only depends on the characteristic
α = [ε, ε′]t and must have the effect to cancel any dependence from α in the exponential
of (5.42). Therefore, the phase of E(x, pH,jk) is given by the exponential

exp
{
πictijϕ(x− pH,jk)

}
(5.43)

A similar analysis can be repeated for σ(x)2. Its phase is given by the exponential

exp

2πi
g∑
j=1

g∑
k=1

cij,k

∫
Aj

ωj(y)ϕk(y − x)

 (5.44)

If x is on the i-th boundary, we get that the contribution to the phase of N (x) coming
from the prime forms is given by the following expression,

− 2π
NB∑
j

Nj∑
k

ctijReϕ(x− pH,jk) + π

NB∑
j

Mj∑
k

ctijReϕ(x− pA,jk) + πθtReϕ(x) (5.45)

while the contribution coming from σ(x)2 is the following,

2π
g∑
j=1

g∑
k 6=j

cij,kRe

(∫
Aj

ϕk(y)ωj(y)− ϕk(x)

)
(5.46)
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In conclusion, to have a real N (x) on all boundaries, the position-dependent part of the
phase must be identically zero,

2

NB∑
j=1

(Mj − 2Nj)ctij + θt

Reϕ(x)− 4
g∑
j=1

g∑
k 6=j

cij,kReϕk(x) = 0 (mod 2) (5.47)

Moreover, the constant part of the phase must add up to an integer multiple of π,

4
NB∑
j=1

Nj∑
k=1

ctijReϕ(pH,jk)−2
NB∑
j=1

Mj∑
k=1

ctijReϕ(pA,jk)+4
g∑
j=1

g∑
k 6=j

cij,kRe
∫
Aj

ϕkωj = 0 (mod 2)

(5.48)
Furthermore, we note that if j 6= 1 then,

c1j,k =
j−1∑
l=1

δlk (5.49)

Evaluating equation (5.47) for i = 1 and using the identity (5.49), as well as the fact that
the ϕk(x) are linearly independent, one can solve for θk,

θk =
NB∑

j=k+1

(
2Nj −Mj

)
+ 2g − 2k (5.50)

We note that (5.35) can be satisfied only if all the Mj are even. Moreover, we subtract
equation (5.47) evaluated for i and i+ 1 and use the identity (5.41) to obtain

NB∑
j

Mj = 2
NB∑
j

Nj + 2g − 2 (5.51)

which is exactly (5.36). The identity (5.49) allows us to rewrite the first condition
from (5.48) as follows,

NB∑
j=2

j−1∑
l=1

4
Nj∑
k=1

Reϕl(pH,jk)− 2
Mj∑
k=1

Reϕl(pA,jk)

+4
g∑
j=2

j−1∑
l=1

Re
∫
Aj

ϕlωj = 0 (mod 2)

(5.52)
We can also use (5.41) to reduce the remaining g conditions from (5.48) to

4
NB∑
j=1

Nj∑
k=1

Reϕ(pH,jk)− 2
NB∑
j=1

Mj∑
k=1

Reϕ(pA,jk) + 4Re∆ = 0 (mod 2) (5.53)

where ∆ is the vector of Riemann constants. These conditions reduce to (3.25), (3.26)
and (3.27) in case of the annulus.
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5.4 Regularity and properties of the solution

The solutions introduced in this sections obey to the regularity conditions R1-R4 by con-
struction. If we re-define,

hα = h(w|pA,ij), α = 1, 2, . . . ,
∑
j

Mj (5.54)

it is possible to repeat the argument of section 3.4 to reduce the regularity inequality R5
to Schwartz’s inequality. As seen before, the inequality will hold strictly provided that A
and B are not proportional, but B cannot be proportional to A because it admits zeros in
the interior of Σ while A is strictly positive in Σ by construction. Counting the number of
independent parameters of the solution of genus g is instructive. The harmonic function
H contains 2

∑
iNj parameters. The harmonic function A + Ā contains 2

∑
jMj + 1

parameters. Using (5.36) to replace
∑

jMj gives 6
∑

iNj + 4g − 3 parameters which
are associated with the harmonic functions. The condition that A − Ā is single-valued
around the g A-cycles (5.28), imposes g constraints. Furthermore, the reality conditions
on N (5.53) impose an additional g + 1 conditions. The constant c and the real additive
constant in K̃ provide two additional parameters. Lastly, there are g(g+ 1)/2 real moduli
of the Riemann surface. Putting this together we get

no. of parameters : = 6
∑
i

Nj +
g(g + 1)

2
+ 2g − 2 (5.55)

We can naturally attribute six parameters to each asymptotic region: F1, D1, NS5 and
D5 brane charges and the value of two massless scalars in the asymptotic region. The
other parameters are related to the moduli of the Riemann surface and the presence of
non-contractible cycles (supporting D3-brane charge) and homological three-spheres (sup-
porting five-brane charge). Note that the number of parameters grows quadratically with
the genus of the Riemann surface leading to the possibility of a bubbling Janus solution
with many boundaries.

6 Discussion

In this paper we expanded the class of half-BPS solutions of type IIB string theory that
are locally asymptotic to AdS3 × S3 ×M4 and were constructed in an earlier paper [34].

We constructed solutions in which the Riemann surface Σ has an arbitrary number of
boundaries, and studied the simplest case of the annulus in detail. In this case, the double
surface is a (square) torus, all harmonic functions can be constructed in terms of Jacobi
theta functions and the regularity conditions can be solved explicitly. The requirement
that the meromorphic function B obeys Dirichlet boundary conditions on both boundaries
imposes additional constraints on the parameters of the solution. The main new physical
feature of the solutions is the presence of non-vanishing three-brane charge. This fact is
related to the existence of a non-contractible cycle on the annulus. Moreover, there is an
additional three-sphere in the geometry which is not associated with any asymptotic region.
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We studied the degeneration limit where the inner boundary shrinks to zero size and
disappears leaving the disk with a puncture. The geometry near this puncture is given
by an AdS2 × S2 × S1 × R infinite throat. Note that we did not scale any of the other
parameters of the solution in the degeneration limit. The existence of other scaling limits
with different asymptotics is an interesting open question.

The solution for the annulus was generalized to Riemann surfaces with an arbitrary
number of holes. The construction involves well known functions on higher genus Riemann
surfaces, such as theta functions and prime forms. We constructed the harmonic functions
and solved the constraints imposed by reality and regularity. In the multi-boundary case,
there are many non-contractible cycles coming from the A-cycles of the double Riemann
surface, and each of them can be associated with a non-vanishing D3-brane charge.
There are many interesting features of our solutions and possible extensions that deserve
further study:

• The supergravity solutions we have found are dual to defect and interface theories
in two-dimensional conformal field theories. Even the simplest case in which Σ can
be mapped into the disk or upper half-plane has interesting solutions. A possible
direction for further research is to investigate the holographic duals for the solutions
we have found. In particular, it would be interesting to find out whether the fact that
H can have poles (corresponding to asymptotic AdS regions) on different boundaries
have an interpretation in the dual CFT.

• Note that the expression for axion (2.6) in terms of the harmonic functions

χ =
i

2

(
(A− Ā) +

B̄2 −B2

K

)
(6.1)

is very similar to the formula for CK (2.14) with K replaced by A + Ā. Hence, it
seems possible to introduce seven-brane charge by dropping the requirement that
the harmonic function i(A − Ā) is single-valued. Note that, in this case, the three-
form anti-symmetric tensor fields also have non-trivial monodromies. For example,
if one chooses the parameters of the harmonic function A on the annulus such that
χ→ χ+ 1 as w → w + 1, then one finds that F3 → F3 +H3. Where F3 and H3 are
the R-R and NS-NS three-form anti-symmetric tensor fields respectively. These are
exactly the monodromies one would expect for a single D7-brane [48, 49].

• It is interesting that the machinery of higher loop (open and closed) string pertur-
bation theory was very useful in constructing the holographic duals of interfaces and
defects in two-dimensional conformal field theories. This might be a coincidence dic-
tated by the fact that in both cases Riemann surfaces are a basic ingredient. However,
it is not inconceivable that there is a deeper connection, possibly indicating a relation
between holographic defects and open strings in the effective string description of the
D1/D5 system [47]

• In this paper we considered Riemann surfaces without handles. In principle, the
methods employed in section 5 can be used also for Riemann surfaces Σ with n
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boundaries and h handles, where the double Σ̄ will be a compact Riemann surface
of genus n − 1 + 2h. In this case the period matrix is not purely imaginary, and
there are additional constraints from the requirement that our harmonic functions
are single-valued. We leave the investigation of this case, and the very interesting
question of its physical significance, for future work.

• In section 4 we discussed the degeneration of the annulus where the inner boundary
shrinks to zero size and we found that in this limit an extra AdS2 × S2 × S1 × R
asymptotic region appears. We expect that the same interpretation will hold for
surfaces with many boundaries where a boundary closes off. It is well known from
string perturbation theory (see e.g. [39]) that higher genus Riemann surfaces have
other degeneration limits- when an open string loop becomes infinitesimally thin, for
example- which may have interesting physical interpretations as well.

We plan to return to some of these questions in the future.
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