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Abstract:We propose an alternate, calculable mechanism of dark matter genesis, �thermal

freeze-in�, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly

with the thermal bath that it never attains thermal equilibrium. As with the conventional

�thermal freeze-out� production mechanism, the relic abundance re�ects a combination

of initial thermal distributions together with particle masses and couplings that can be

measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low

temperatures near the FIMP mass and is independent of unknown UV physics, such as the

reheat temperature after in�ation. Moduli and modulinos of string theory compacti�cations

that receive mass from weak-scale supersymmetry breaking provide implementations of

the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-

suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular,

including the production of new metastable coloured or charged particles at the LHC as

well as the alteration of big bang nucleosynthesis.
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1 Introduction

Many theories of Dark Matter (DM) genesis are based upon the mechanism of �thermal

freeze out� [1�3]. In this process DM particles have a large initial thermal density which,

as the temperature of the hot plasma of the early universe drops below the mass, dilutes
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Figure 1. Log-Log plot of the evolution of the relic yields for conventional freeze-out (solid coloured)

and freeze-in via a Yukawa interaction (dashed coloured) as a function of x = m/T . The black solid

line indicates the yield assuming equilibrium is maintained, while the arrows indicate the e�ect of

increasing coupling strength for the two processes. Note that the freeze-in yield is dominated by

the epoch x ∼ 2− 5, in contrast to freeze-out which only departs from equilibrium for x ∼ 20− 30.

away until the annihilation to lighter species becomes slower than the expansion rate of

the universe and the comoving number density of DM particles becomes �xed. The larger

this annihilation cross section the more the DM particles are able to annihilate and hence

a thermal distribution with an exponential Boltzmann factor is maintained to a lower

temperature, giving a lower �nal yield. An attractive feature of the freeze-out mechanism

is that for renormalisable couplings the yield is dominated by low temperatures with freeze-

out typically occurring at a temperature a factor of 20 − 25 below the DM mass, and so

is independent of the uncertain early thermal history of the universe and possible new

interactions at high scales.

Are there other possibilities, apart from freeze-out, where a relic abundance re�ects a

combination of initial thermal distributions together with particle masses and couplings that

can be measured in the laboratory or astrophysically? In particular we seek cases, like the

most attractive form of freeze-out, where production is IR dominated by low temperatures

of order the DM mass, m, and is independent of unknown UV quantities, such as the reheat

temperature after in�ation.

In this paper we show that there is an alternate mechanism, �freeze-in�, with these

features. Suppose that at temperature T there is a set of bath particles that are in thermal

equilibrium and some other long-lived particle X, having interactions with the bath that are

so feeble that X is thermally decoupled from the plasma. We make the crucial assumption

that the earlier history of the universe makes the abundance of X negligibly small, whether

by in�ation or some other mechanism. Although feeble, the interactions with the bath do

lead to some X production and, for renormalisable interactions, the dominant production

of X occurs as T drops below the mass of X (providing X is heavier than the bath particles
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with which it interacts). The abundance of X �freezes-in� with a yield that increases with

the interaction strength of X with the bath.

Freeze-in can be viewed as the opposite process to freeze-out. As the temperature

drops below the mass of the relevant particle, the DM is either heading away from (freeze-

out) or towards (freeze-in) thermal equilibrium. Freeze-out begins with a full T 3 thermal

number density of DM particles, and reducing the interaction strength helps to maintain

this large abundance. Freeze-in has a negligible initial DM abundance, but increasing the

interaction strength increases the production from the thermal bath. These trends are

illustrated in �gure 1, which shows the evolution with temperature of the dark matter

abundance according to, respectively, conventional freeze-out, and the freeze-in mechanism

we study here.

In section 2, as well as outlining the basic freeze-in mechanism and comparing its fea-

tures with those of freeze-out, we also introduce the idea of a FIMP � a �Feebly-Interacting-

Massive-Particle� (or alternatively �Frozen-In-Massive-Particle�) � as distinct from aWIMP

whose relic abundance is set by conventional freeze-out. Two cases are considered: either

the FIMP itself is the dark matter which is frozen-in, or the dominant contribution to the

DM density arises from frozen-in FIMPs which then decay to a lighter DM particle. For en-

hanced pedagogy the detailed calculation of the DM abundance in these cases is postponed

until section 6.

We turn in section 3 to the question of motivated DM candidates that have a relic

abundance determined by the IR-dominated freeze-in mechanism, and show that the mod-

uli and modulinos of compacti�ed string theories with weak-scale supersymmetry breaking

provide implementations of the freeze-in mechanism, as does any extra-dimensional exten-

sion of the Standard Model (SM) with some moduli stabilised at the weak scale. Models

following from Dirac neutrino masses, or involving kinetic mixing with a hidden sector also

naturally accommodate FIMPs and the freeze-in mechanism. A striking di�erence with

freeze-out production of DM, is that for freeze-in the �nal relic density is, in the simplest

cases, automatically independent of the FIMP mass, allowing superheavy as well as weak-

scale mass DM candidates, and we touch on a high-scale extra-dimensional realisation of

such a scenario. Theories utilising GUT-scale-suppressed non-renormalisable interactions

involving SM or MSSM Higgs �elds which become renormalisable when the Higgs gets its

vacuum expectation value also naturally give rise to FIMPs. However, in this case, there is

also a UV contribution to the freeze-in yield which can dominate the IR contribution if the

reheat temperature is su�ciently large, and we therefore postpone the discussion of such

implementations until section 7 where the e�ect of higher-dimension-operators on freeze-in

yields is considered.

Experimental signals of freeze-in and FIMPs are brie�y summarised in section 4, with

a companion paper [4] more extensively discussing the rich phenomenology that accom-

panies freeze-in to follow. The signals depend on the nature of the Lightest Observable

Sector Particle (LOSP) that carries the conserved quantum number that stabilises DM. (In

theories with weak scale supersymmetry, the LOSP is the lightest superpartner in thermal

equilibrium at the weak scale.) There are two general possibilities: The DM particle is the

FIMP, and there are spectacular LHC signatures arising from the production of coloured

� 3 �
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or charged LOSPs, which stop in the detector and decay with a long lifetime. In addi-

tion, LOSPs decaying to FIMPs in the early Universe may lead to interesting modi�cations

of Big-Bang Nucleosynthesis (BBN). Alternatively, the DM particle is the LOSP but its

interactions are too strong to have a su�ciently large freeze-out relic density; instead its

relic abundance results from freeze-in of FIMPs, with the FIMPs later decaying to the DM.

The second scenario can give signals via alteration of big-bang nucleosynthesis element

abundances, and via increased DM pair annihilation relevant for indirect detection of DM.

Thermal relic abundances conventionally arise by decoupling of a species that was pre-

viously in thermal equilibrium, whether with or without a chemical potential. Freeze-in

provides the only possible alternative thermal production mechanism that is dominated by

IR processes. In section 5 we sketch �abundance phase diagrams� that show regions of mass

and coupling where each mechanism dominates the production of the relic abundance. The

topology of these phase diagrams, as well as the number of domains where di�erent mech-

anisms dominate, depends on the form of the DM-bath interaction, as we illustrate with

two examples arising from a quartic scalar interaction and a Yukawa interaction. Further-

more, we argue that there exists a certain �universality� to the phase diagram behaviour at

small coupling.

After presenting the detailed calculation of the relic abundance in various cases in sec-

tion 6, we discuss the physics of FIMP interactions mediated by higher-dimension-operators,

as well as some variations of the basic freeze-in mechanism in section 7. Finally we conclude

in section 8.

2 General features of freeze-in

The basic mechanism of freeze-in is simple to describe although, as we will argue later, there

can be many variations with important di�erences of detail and signals. Here we give the

general mechanism. At temperatures well above the weak scale we assume that there is a

FIMP, X, that is only very weakly coupled to the thermal bath via some renormalisable in-

teraction. The interaction vertex may involve more than one particle from the thermal bath

and the mass of the heaviest particle at the vertex is m, which we typically take to be near

the weak scale. For a Yukawa or quartic interaction, the dimensionless coupling strength is

λ, while for a trilinear scalar interaction the coupling is λm, and in all cases λ� 1.
At very high temperatures we assume a negligible initial X abundance. As the universe

evolves X particles are produced from collisions or decays of bath particles, but at a rate

that is always suppressed by λ2. During a Hubble doubling time at era T � m, the X

yield is

Y (T ) ∼ λ2 MPl

T

(
1,
m2

T 2

)
, (2.1)

where Y = n/S, n is the number density of X, and S is the entropy density of the plasma.

The m independent yield corresponds to quartic interactions, while the additional m2/T 2

suppression applies to Yukawa interactions and the super-renormalisable case. The process

is always IR dominated, favouring low temperatures. The dominant production occurs at

T ∼ m, since at lower temperatures there will be an exponential suppression resulting
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Figure 2. Schematic picture of the relic abundances due to freeze-in and freeze-out as a function

of coupling strength. The way in which the freeze-out and freeze-in yield behaviours connect to one

another is model-dependent. As we show in detail in section 5, freeze-in and freeze-out are in fact

two of the four basic mechanisms for thermal DM production, and we sketch the �abundance phase

diagrams� of DM depending upon the strength and type of the DM-thermal bath interaction and

the DM mass.

from the necessity of involving a particle of mass m > T . Hence, for all renormalisable

interactions, the abundance of X �freezes-in� with a yield

YFI ∼ λ2

(
MPl

m

)
. (2.2)

As mentioned in the Introduction, freeze-in can be viewed as the opposite process to

freeze-out. We recall that, in the absence of a chemical potential, the freeze-out yield is

given by

YFO ∼
1

σvMPlm′
. (2.3)

In the simple case that the DM mass m′ is the only mass scale entering σv, we have

σv ∼ λ′2/m′2, where λ′ is the relevant interaction strength, giving a freeze-out yield of

YFO ∼
1
λ′2

(
m′

MPl

)
. (2.4)

Freeze-in assumes a negligible initial X abundance, but increasing the interaction strength,

λ, increases the production from the thermal bath, while freeze-out begins with a full T 3

thermal number density of DM particles, and reducing the interaction strength, λ′, helps

to maintain this large abundance (see �gure 2). Indeed, the yields eqs. (2.2) and (2.4) show

inverse dependences on the coupling and mass, which is stressed by writing

YFI ∼ λ2mtm, YFO ∼
1

λ′2m′tm′
, (2.5)

where tm ∼ MPl/m
2 (t′m ∼ MPl/m

′2) is the Hubble time at the epoch of freeze-in (freeze-

out). The freeze-out abundance decreases with tm′ while the freeze-in abundance is in-

creased by occurring at late times.

Despite these opposite features, freeze-out and freeze-in share crucial common aspects:

the �nal out-of-equilibrium abundance, given the relevant particle masses and couplings,

� 5 �



J
H
E
P
0
3
(
2
0
1
0
)
0
8
0

can be computed solely from an initial state of bath particles that are in thermal equilibrium,

and the resulting abundance is dominated by IR physics.
For freeze-out the special case λ′ ∼ 1 and m′ ∼ v, the scale of weak interactions, gives

DM as �Weakly Interacting Massive Particles�, or WIMPs, with

YFO ∼
v

MPl
. (2.6)

In practice the cross section may involve more than one mass scale in the TeV domain, so

that there are orders of magnitude spread in the abundance expected from WIMP dark

matter. Nevertheless, the parametric understanding of the abundance of DM is suggestive,

and the prediction of a TeV mass particle with coupling strengths of order unity o�ers

the hope of collider veri�cation of the production mechanism. For freeze-in, if the particle

masses are again at the weak scale, the same dependence of the relic abundance on v and

MPl follows if the small coupling λ is linear in the weak scale:

λ ∼ v

MPl
→ YFI ∼

v

MPl
. (2.7)

As in the WIMP case, this parametric behaviour is signi�cantly modi�ed by numerical

factors; nevertheless, it suggests seeking theories where small couplings arise at linear order

in the weak scale.

Whether produced by freeze-out or freeze-in, stable DM is the lightest particle trans-

forming non-trivially under some unbroken symmetry. For conventional freeze-out, this

lightest particle is automatically the WIMP, whereas for freeze-in two particles are of inter-

est: the FIMP and the lightest particle in the thermal bath that carries the symmetry, the

LOSP. If the LOSP is lighter, then LOSP DM is produced by FIMP decay. If FIMPs are

lighter, then collider signals involve the production of LOSPs followed by decays to FIMPs.

In either case, the freeze-in mechanism always introduces particles of very long lifetime

ΓFIMP/LOSP ∼ λ2m ∼ v3

M2
Pl

(2.8)

where m is the mass of the decaying FIMP or LOSP, and in the last expression we took

m ∼ v and λ ∼ v/MPl. The heavier of the LOSP and FIMP will generically decay to the

lighter with a lifetime within a few orders of magnitude of a second.

We show in detail in section 6 that the freeze-in density is dominated, where possible,

by decays or inverse decays involving the bath particles and X. Freeze-in of a stable X via

the decays of LOSPs in the thermal bath (see eq. (6.10) and surrounding discussion) gives

ΩXh
2 =

1.09× 1027

gS∗
√
gρ∗

mXΓB1

m2
B1

, (2.9)

where B1 is the LOSP. For a LOSP decay rate given by ΓB1 = λ2mB1/8π and, for simplicity,

making the good approximation gS∗ ' gρ∗ , the required DM density ΩXh
2 ' 0.106 occurs

for a coupling of size

λ ' 1.5× 10−12

(
mB1

mX

)1/2(g∗(mB1)
102

)3/4

. (2.10)
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As discussed in section 6 this value is reduced to λ ∼ 1.5×10−13(102/gbath)1/2 if the FIMP

couples with comparable strength to many (gbath) bath particles of comparable mass, as

occurs, for example, in supersymmetric realizations of FIMPs as discussed in section 3.

Thus we learn the interesting fact that λ ∼ v/MGUT works well as an explanation of

frozen-in DM. The origin of the 1/MGUT suppression could not only be a true �Grand

Uni�ed Theory� scale in the traditional SU(5) or SO(10) sense, but could alternatively

be the string compacti�cation scale MKK (or orbifold GUT compacti�cation scale) or the

string scale Mstr depending on the precise model in which FIMPs are implemented. Note

that the choice of MKK ∼ (1015 − 1016)GeV and Mstr ∼ 1016 GeV is well motivated by

modern string model building [5�7], or by orbifold GUTs [8�11].

In the following section we argue that FIMP candidates with weak-scale masses and

couplings of this order naturally appear in many beyond-the-standard-model theories, such

as string theory with low-energy supersymmetry. Moreover in section 4 we show that such

FIMP theories can be tested and explored by experiments at the LHC and by astrophysical

and cosmological observations.

3 FIMP candidates

We now turn to the issue of possible FIMP candidates in well-motivated theories of beyond-

the-Standard-Model physics.

3.1 Moduli with weak scale supersymmetry

The FIMP may be a modulus, T , or modulino, T̃ , frozen-in by a variety of possible super-

symmetric interactions at the weak scale. We consider a theory with weak scale supersym-

metry where the size of the supersymmetry breaking arises from the compacti�cation of

extra spatial dimensions, and depends on T . We assume that the conventional moduli prob-

lem is solved, so that after reheating at the end of in�ation the T abundance is negligible.

The modulus T has a large vev, which is not determined until supersymmetry is broken, so

that T is R parity even and the corresponding modulino, T̃ , is R parity odd. The modulus

and modulino are expected to pick up masses of order the supersymmetry breaking scale,

which we take to be of order the weak scale v. It is therefore natural to imagine that the

scalar T can play the role of the FIMP that is produced by freeze-in and then decays to

LOSP DM, while the R-parity odd modulino T̃ can either similarly be freeze-in produced

and then decay to LOSP DM, or be FIMP DM itself, depending upon the hierarchy of

LOSP and modulino masses.

Most important, the interactions of T and T̃ are naturally of the right size to lead

to freeze-in production. These interactions are obtained by expanding the supersymmetry

breaking parameters about the modulus vev. Taking these parameters to be soft scalar

masses, m2, the conventionally de�ned A and B parameters, the gaugino masses mg̃ and

� 7 �
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the µ parameter, the leading (renormalisable) interactions of the modulus are

m2

(
1 +

T

M

)
(φ†φ+ h†h) µB

(
1 +

T

M

)
h2 Ay

(
1 +

T

M

)
φ2h

mg̃

(
1 +

T

M

)
g̃g̃ µy

(
1 +

T

M

)
φ2h∗ µ

(
1 +

T

M

)
h̃h̃,

where now T refers to the �uctuation of the modulus about its expectation value. Here φ

is a squark or slepton, h̃ a Higgsino, and h a Higgs boson, and y is a corresponding Yukawa

coupling. The mass scale M is the compacti�cation scale, which we take to be of order

the uni�ed mass scale, Mu, as in many string constructions, and numerical factors of order

unity are ignored. For the modulino the leading interactions are

µ
T̃

M
h̃h , (3.1)

as well as possible terms that arise from higher-dimension D-terms involving the moduli-

dependent susy-breaking spurion leading to interactions with sfermion-fermion pairs

msusy

M
T̃ (qq̃†, ll̃†, h̃h†). (3.2)

These interactions are all of the form shown in eq. (5.4), with

λ ∼ v

M
(3.3)

in each case. Thus we discover that the modulus and modulino corresponding to the size of

supersymmetry breaking automatically lead to FIMP-like behaviour. This is not the case

for moduli that appear in the expansion of renormalisable couplings, since then the moduli

couplings are non-renormalisable and do not lead to IR-dominated freeze-in behaviour, as

we discuss in section 7.

There are many possible reactions for the freeze-in mechanism involving T or T̃ , and

here we give a few cases for illustration. T̃ FIMP dark matter could arise from the freeze-in

mechanism by decays of a LOSP chargino

χ̃+ → H+ T̃ , (3.4)

where H+ is a charged Higgs boson. On the other hand, if the T̃ FIMP is heavier than

the LOSP, then DM may arise by freeze-in of T̃ followed by the decay of T̃ to LOSP dark

matter, for example

t̃→ t T̃ , T̃ → hχ̃0, (3.5)

where t and t̃ are the top quark and top squark, and χ0 the neutralino LOSP. Alternatively,

neutralino DM could be produced by the freeze-in of a modulus FIMP which then decays,

for example

t̃2 → t̃1T, T → χ̃0χ̃0. (3.6)

� 8 �
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3.2 Dirac neutrino masses within weak scale supersymmetry

As a second example with weak-scale supersymmetry, consider the case that neutrinos are

Dirac, with masses generated via the interaction

λLNHu, (3.7)

where L,N and Hu are chiral super�elds containing the lepton doublet, right-handed neu-

trino singlet and Higgs �elds. The coupling matrix λ now determines the neutrino masses

and consequently is constrained by experiment to have entries with maximal values that

are of order 10−13, very close to that required for a FIMP. The interaction leads to the

freeze-in of the right-handed sneutrino, ν̃R, for example via h̃l → ν̃R and, as computed by

Asaka et al [12, 13], can lead to a successful dark matter abundance when ν̃R is the LSP.1

3.3 FIMPs from kinetic mixing

Additional hidden U(1) factors under which no light SM states are charged are a common

feature of theories beyond-the-Standard-Model. For example, many string constructions

possess multiple hidden U(1) factors arising from D-branes or from antisymmetric ten-

sor �elds with multiplicity determined by the topology of the compacti�cation [20]. The

unique renormalisable coupling of such hidden U(1)'s to SM states arises via the kinetic

mixing term, εiY F
µν
i FY µν , with hypercharge, and in �eld theory such kinetic mixing can be

generated at the one-loop level when super-massive states charged under both U(1)'s are
integrated out [21], with result

εiY '
tr(gYQY giQi)

12π2
log
(
m1

m2

)
. (3.8)

For small mass splittings between the superheavy states εiY ∼ Nα/(3π)(∆m/m) where

N counts the multiplicity of heavy states, ∆m is their mass splitting, and m their mean

mass. Although these mixings can be often harmlessly rotated away for the photons (as

the string U(1)'s often possess no light charged states), they imply non-trivial couplings to

the MSSM states of the massive hidden photini superpartners via mixing with the bino,

leading to hidden photini as candidate FIMPs [22�24].

A natural possibility is that the massive states sit at the GUT, or compacti�cation scale

with splittings arising from electroweak-symmetry-breaking e�ects. In this case the �eld

theory calculation eq. (3.8) gives εiY ∼ 10−12−10−15, with the higher values applying if the

compacti�cation, or e�ective GUT scale, occurs at 1014−1015 GeV as for orbifold GUTs and

many semi-realistic string compacti�cations. For both the heterotic string [25] and type-II

string theory [26] kinetic mixing with U(1)Y arises by a process that generalises this �eld

theory calculation. For example in the type-II case stretched open string states with one end

on the SM brane stack and the other on the hidden D-brane lead to massive states charged

under both U(1)'s, and a one loop open string diagram then, in general, generates kinetic

mixing [26]. The resulting mixing is model dependent, but is exponentially suppressed

values if the compacti�cation is warped, or if the mediating �elds are massive, e.g., due to

�uxes. For either case if εiY ∼ 10−12 − 10−15 the hidden photini can be FIMPs.

1For related ideas see [14�16] and for the sterile neutrino case see e.g. [17�19].
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3.4 Very heavy FIMPs and extra dimensions

Dark matter with relic abundance Y and massm leads to a temperature for matter-radiation

equality that has the parametric form Te ∼ Y m. Hence, from eqs. (2.4) and (2.2) freeze-out

and freeze-in lead to

Te,FO ∼
m′2

λ′2MPl
, Te,FI ∼ λ2MPl. (3.9)

For freeze-out, as m′ increases λ′ must also increase to maintain the observed Te. As is

well known, unitarity prevents a WIMP being much heavier than the weak scale [27]. The

situation is completely di�erent for freeze-in; remarkably Te is independent of the FIMP

mass, which can therefore take any extremely large value, being bounded only by the reheat

temperature after in�ation. Furthermore, the very feeble coupling of the FIMP is a generic

feature of freeze-in

λ ∼
(
Te
MPl

)1/2

. (3.10)

Suppose there is some stable particle, X, much heavier than the weak scale. If it

has a coupling to SM particles, for example via a quartic scalar interaction λX†XH†H,

that allows it to reach thermal equilibrium then it overcloses the universe. To avoid this,

the coupling must be reduced; in fact, it will overclose the universe until the coupling is

reduced far enough that it satis�es eq. (3.10) and the heavy stable particle becomes FIMP

dark matter. How might such a small interaction arise? If the SM is localised on a brane

in a higher dimensional manifold while the heavy particle X lives in the bulk, then a small

coupling can arise from the X pro�le having a small value at the location of the SM brane.

Very small couplings occur easily since the pro�les are frequently exponential or Gaussian.

In the multiverse there may be an environmental requirement that the DM abundance

not be much larger than we observe. For example, axionic DM with a very large decay

constant typically overcloses the universe, but this may be avoided by environmental se-

lection of a small initial vacuum misalignment angle of the axion �eld [28�30], yielding

axion DM. Similarly, the bulk mass of the very heavy stable particle X may be selected

to give a su�ciently steep pro�le that the coupling λ obeys eq. (3.10), thus creating FIMP

dark matter.

4 Experimental signatures of freeze-in & FIMPs

No matter what the underlying theory for freeze-in, the coupling of the FIMP to the thermal

bath is very small, so a crucial question is whether the freeze-in mechanism can be tested

by measurements at accelerators or by cosmological observations. In this section we outline

several possible signals although we leave the details to a companion paper [4]. In addition

to the FIMP, the freeze-in mechanism typically requires a LOSP and, since we consider the

LOSP mass to be broadly of order the weak scale, the LOSP freeze-out process cannot be

ignored. Thus the nature of the signals depends on whether DM is dominantly produced

via freeze-in of the FIMP or freeze-out of the LOSP and whether DM is the FIMP or the

LOSP. This gives four scenarios which are summarised pictorially in �gure 3.
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Figure 3. Schematic representation of the four possible scenarios involving the freeze-in mecha-

nism. The left-hand �gures show the LOSP/FIMP spectrum with circles representing cosmologically

produced abundances. The large (small) circles represent the dominant (sub-dominant) mechanism

for producing the dark matter relic abundance, a dotted (solid) circle signi�es that the particle is

unstable (stable), and a �lled (open) circle corresponds to production by freeze-in (freeze-out). The

right-hand �gures show the LOSP and FIMP abundances as a function of time. The initial era

has a thermal abundance of LOSPs and a growing FIMP abundance from freeze-in. The LOSP

and FIMP are taken to have masses of the same order, so that FIMP freeze-in ends around the

same time as LOSP freeze-out. Considerably later, the heavier of the LOSP and FIMP decays to

the lighter.

Scenarios 1 and 2 (3 and 4) have FIMP (LOSP) dark matter, while cases 1 and 3 (2 and

4) have dark matter produced dominantly by freeze-in (freeze-out). Two schematic �gures

are shown for each of the four scenarios; the �rst gives the FIMP and LOSP spectrum,

illustrating both freeze-in and freeze-out contributions to the dark matter. The �gures

on the right-hand side show the time evolution of the abundances of both the LOSP and

the FIMP. Logarithmic scales are used so that the freeze-out and LOSP decay processes

appear very sharp, while freeze-in occurs gradually. The masses of the particles involved in

freeze-out and freeze-in have the same order of magnitude, so that freeze-out and the end

of freeze-in occur at comparable times. At a later time, when the heavier of the LOSP and

FIMP decays to the lighter, the abundance of the dark matter particle is boosted by the

amount of the decaying particle abundance.

The four scenarios are labelled according to the dominant DM production mechanism

and the nature of DM.

1. Freeze-in of FIMP DM. The FIMP is the DM and the dominant contribution to the

relic DM abundance is generated via the freeze-in mechanism. A small abundance of

LOSP freezes-out which then decays late to FIMP dark matter.
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2. LOSP freeze-out and decay to FIMP DM. The FIMP is again the DM but now the

dominant contribution to the relic abundance is generated via the conventional freeze-

out of the unstable LOSP which then decays to the FIMP. A sub-dominant component

of FIMP DM arises from freeze-in.

3. FIMP freeze-in and decay to LOSP DM. The LOSP is the DM and the dominant

contribution to the relic abundance comes from the freeze-in of a long lived FIMP

which later decays to the LOSP. A sub-dominant component of DM arises from LOSP

freeze-out.

4. Freeze-out of LOSP DM. The LOSP is again the DM but the dominant contribution

to the relic abundance comes from conventional freeze-out of the LOSP. A small

abundance of FIMPs freezes-in and decays to give a sub-dominant component of

LOSP DM. In the limit that this freeze-in abundance is small, the standard case of

LOSP freeze-out is recovered.

The accelerator and cosmological signals depend on the scenario. For example, pro-

duction and decay of LOSPs at the LHC is possible in scenarios 1 and 2, while late decays

during the MeV era of the early universe are possible in all scenarios.

4.1 Long-lived LOSP decays at the LHC

The hypothesis of dark matter generation via thermal freeze-out, e.g. WIMP dark matter,

may be experimentally veri�ed by a comparison of the observed dark matter density, i.e.

ΩDMh
2, and properties of the WIMP measured at accelerators. The accelerator measure-

ments may be used to infer the WIMP self-annihilation cross section σWIMP which, in the

simplest cases, may be immediately employed to predict ΩWIMPh
2.

Does a similar correlation exist for freeze-in? Freeze-in scenarios of dark matter typi-

cally contain both a stable dark matter particle and a very long-lived unstable state. In the

case of FIMP dark matter, the unstable state is the LOSP. Since the LOSP can only decay

dominantly via the same small coupling λ that induces freeze-in, then there will be a rela-

tion between the LOSP properties, in particular its mass and lifetime, and the FIMP dark

matter abundance. The crucial signature therefore arises from the accelerator production

of the LOSP, followed by the observation of LOSP decay with a long lifetime.2 This signal

is expected only for scenarios 1 and 2; in scenarios 3 and 4 it is the FIMP that is unstable,

but the FIMP production rate at the LHC will be negligible.

The connection between the LOSP lifetime and the cosmological FIMP abundance

is model dependent. For example, suppose that the LOSP is a scalar B and the FIMP

freeze-in process occurs via a quartic scalar interaction leading to BB → XX. In this case

the LOSP decay must involve other small couplings that connect X to bath particles, so

the relation between DM abundance and LOSP lifetime is lost. Here we concentrate on

the particularly simple case that freeze-in occurs via the Yukawa coupling λB1B2X, where

B1 is the LOSP and B2 a lighter bath particle. The stability of X can be guaranteed by

a Z2 parity under which X and B1 are odd. The relic abundance of FIMP dark matter

2Investigations into the possible detection of long lived states at CMS are in progress, see for example [31].
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arises from LOSP decays, B1 → B2X, and is computed in section 6.1 with the result of

eq. (6.10). Imposing the WMAP constraint on the dark matter abundance, eq. (6.10) can

be rearranged to yield a prediction for the LOSP lifetime

τB1 = 7.7× 10−3sec gB1

(
mX

100GeV

) (
300GeV
mB1

)2( 102

g∗(mB1)

)3/2

. (4.1)

This result applies for scenario 1, where the DM abundance is dominated by freeze-in. In

scenario 2 most DM arises from LOSP freeze-out, so that the fraction from freeze-in, f ,

is small, f � 1. The collider signal from late decaying LOSPs persists, but now with a

lifetime enhanced compared with eq. (4.1) by a factor 1/f .

4.2 Reconstructed LOSP properties at the LHC

As illustrated in �gure 3, regardless of the nature of DM (FIMP or LOSP) the LOSP

will undergo conventional freeze-out. Consequently the dark matter abundance has two

components, one from the freeze-in mechanism and the other from the freeze-out of the

LOSP. The freeze-in contribution dominates only if the conventional thermal freeze-out

cross section is large, σv > 3× 10−26cm3 s−1, corresponding to scenarios 1 and 3.

Experiments at colliders may eventually measure the properties of the LOSP su�ciently

well to determine that the annihilation cross section is indeed too large to give the observed

dark matter from LOSP freeze-out, implying that the dominant contribution to the dark

matter abundance is generated via an alternative mechanism such as freeze-in.

It would be particularly interesting if LHC discovered prompt cascade decays of su-

perpartners that terminated in a charged or coloured LOSP. Indeed, this would motivate

a determined e�ort to search for a long lifetime associated with a LOSP, as in the previ-

ous sub-section.

4.3 Enhanced direct and indirect detection signals of DM

Consider the scenario where the LOSP is the dark matter and the freeze-in of a FIMP

which later decays generates the correct relic abundance of LOSP dark matter (scenario

3 of �gure 3). As discussed above this means that the conventional thermal freeze-out

cross section for the LOSP DM is large: σv > 3 × 10−26cm3 s−1. Hence, the indirect

signals produced by LOSP DM annihilating via these large cross sections can be enhanced

compared to the signals predicted for DM generated directly from freeze-out.

Indirect detection experiments such as PAMELA [33, 34], FERMI [35] and HESS [36�

38] have recently reported deviations from background expectations of the proportion of

positrons in cosmic rays. A common though perhaps premature interpretation of these

experiments is the production of positrons resulting from WIMP annihilations. In order to

match the observed �uxes one needs �boost factors� in the rates. Freeze-in provides a new

avenue for building models containing boosted WIMP annihilation cross sections.

We also note that increasing the interaction strength of the dark matter particles can

lead to an increase in the scattering cross section relevant in direct detection experiments.

This could provide further evidence in favour of the freeze-in mechanism if a signal was

inferred in a region of parameter space not consistent with frozen-out dark matter.
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4.4 Cosmological decays during the MeV era & perturbed BBN abundances

As has been already discussed in some detail, freeze-in scenarios usually contain a

metastable particle. This may be either the FIMP X itself or the LOSP B1, whichever

particle is the heavier one. It is well known that the existence of metastable particles in the

early Universe may be constrained by the epoch of BBN. The light element synthesis of 2H,
3He, 4He and 7Li (as well as 6Li) may change drastically when hadronically and electro-

magnetically interacting non-thermal particles are injected into the plasma [32], due to the

decay of the metastable particles. Signi�cant deviations of the results of a standard BBN

scenario occur only for decay times τ >∼ 0.3 sec. Comparing this to eq. (4.1), and assuming a

weak mass scale FIMP such that gS∗ ≈ g
ρ
∗ ' 100 as well as gB1 ≈ 1, one arrives at a typical

decay time of ∼ 10−2 sec, implying no signatures from BBN. However, in case the FIMP

particle couples to a large number of bath particles, i.e. gB1 ≈ 100, individual LOSP decay

times may become ∼ 1 sec, potentially perturbing BBN.

Even larger deviations (i.e. increases by factor ∼ 102− 103) from the life time as given

in eq. (4.1) may result if the assumed 2-body decays in eq. (4.1) are forbidden kinematically.

As an example, consider the Yukawa interaction λXB1B2 and a mass ordering mB1 > mX ,

such that the FIMP X is the dark matter. Assuming mB1 < mB2 + mX any frozen-out

LOSPs B1 may only decay via a 3-body decay since B2 has to remain virtual. Three-body

decay widths are suppressed compared to 2-body decay widths resulting in longer decay

times. Given this, the typical decay time could move into the range τB1
>
∼ 3− 3000 sec, the

regime where BBN may be signi�cantly perturbed.

4.5 Generating a warm DM component: erasure of small scale density pertur-

bations

Decay produced particle DM is often warm/hot, i.e. is endowed with primordial free-

streaming velocities leading to the early erasure of perturbations, due to the kinetic en-

ergy imparted on the decay product during the decay itself. As at least part of the dark

matter in freeze-in scenarios is produced by the late decay of the LOSP to the FIMP, or

vice versa, and since neither LOSPs nor FIMPs may thermalize below cosmic temperatures

T <
∼ 1− 10MeV, freeze-in scenarios may come in the �avour of warm or mixed (i.e cold and

warm) DM scenarios. How warm depends strongly on the decay time, and the mass ratio

of mother and daughter particle.

5 Abundance �phase diagrams�

In this paper we argue that freeze-in can provide a possible alternative thermal production

mechanism to the much studied freeze-out mechanism. We now sketch �abundance phase

diagrams� that show regions of mass and coupling where each mechanism dominates the

production of the relic abundance. We �nd that the following simple framework allows four

distinct physical behaviours to account for the dominant production of dark matter. There

is a thermal bath that contains species that are kept thermally coupled during the era of

interest by interactions with strength of order unity. In addition there is a particle, X, that

couples to the bath particles by a renormalisable interaction with a coupling λ.
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We assume that there is an unbroken symmetry that leads to the stability of the dark

matter particle, which may be X or a bath particle. This symmetry is carried by some

of the bath particles, and possibly also by X. As the coupling between X and the bath

decreases, late decays often become relevant for the production of dark matter: decay of any

X that is produced when X is not the dark matter, or decays to X if X is the dark matter.

The interaction between X and the bath has three possible forms: a quartic or trilinear

scalar interaction, or a Yukawa interaction. Furthermore the �nal dark matter abundance

depends on whether X is a fermion or boson, and on how many X �elds appear at the

interaction. For each such scheme one can compute the dark matter abundance in terms of

the coupling and the masses of the relevant particles, and we �nd that there are just four

possible behaviours

• (I) Freeze-out of X.

• (II) X decouples with a full �T 3� number density.

• (III) Freeze-in of X.

• (IV) Freeze-out of bath particle.

Hence, the parameter space of any such theory can be split into four �phases� according

to which behaviour yields the dominant dark matter abundance. Two of these phases

correspond to the well-known case of freeze-out (I and IV). However, the introduction of

very small renormalisable couplings to a theory introduces the possibility of two new phases;

one with freeze-in (III) and the other having decoupling with a full relativistic abundance

(II).

The above list is ordered so that, as the interaction strength between X and the bath is

decreased, one passes down the list, although all four �phases� do not appear in all theories.

Below we give two illustrative examples of this �phase� behaviour, then we argue that for

very small values of λ the �phase� structure takes a universal form.

5.1 Phase diagram for a quartic interaction

Suppose that X is a scalar and the interaction with the bath is via a quartic coupling to a

bath scalar B

LQ = λB†BX†X. (5.1)

The stabilising symmetry is a Z2 withX odd and B even. X is the lightest particle with odd

charge, and hence is stable and yields the dark matter.3 B is unstable, decaying rapidly to

other bath particles. X has no Standard Model gauge interactions, and has a cosmological

relic abundance determined by the interaction eq. (5.1).

For simplicity we consider only the case mX > mB, so that the relic X abundance

depends on (mX , λ). In �gure 4a contours of Ωh2 are shown in this plane. The plane can be

divided into two �phases�: X freeze-out, phase (I) occurs for large coupling, λ2 > mX/MPl,

above and to the left of the diagonal line; while X freeze-in, phase (III), occurs for weak

3The phenomenology of this interaction has been previously considered in ref. [39].
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Figure 4. In (a) we show the contours of Ωh2 as a function of the mass mX and coupling λ for

the case of a quartic interaction. The plane can be divided into two �phases�: X freeze-out, phase

(I), occurs for large coupling and X freeze-in, phase (III), occurs for weak coupling. In (b) we take

a slice at �xed mX ∼ v and plot the variation of Ωh2 as a function of the coupling λ.

coupling with λ2 < mX/MPl. These are the only two behaviours, there are no regions

with phases (II) and (IV), and the plane is equally divided in logarithmic space between

them. The parametric equations for the abundances in these regions are given by eqs. (2.4)

and (2.2), with m = mX . The phase boundary occurs when YFO ∼ YFI ∼ 1: for freeze-out,
λ is su�ciently small that freeze-out occurs right at TFO ∼ mX and not below, while for

freeze-in λ is su�ciently large that a full thermal abundance just freezes-in by TFI ∼ mX . In

both phases, Y drops with distance from the boundary. In the freeze-out region contours

of �xed Ωh2 are straight lines: λ2 ∝ (1/Ωh2)(mX/MPl)2, while in the freeze-in region

these contours are independent of mX : λ
2 ∝ Ωh2. Throughout the entire plane the �nal

abundance is set in the radiation dominated era; although along the phase boundary the

abundance is being set during the transition from radiation to matter domination.

The observed value of Ωh2 is shown by a contour with a dotted line. Along this

contour, the transition from freeze-out to freeze-in occurs for a particle of mass v2/Mu just

freezing-in a thermal abundance and immediately freezing-out at a temperature v2/Mu,

where Mu ∼ 1016 GeV is the scale of gauge coupling uni�cation. This special case gives hot

dark matter and is excluded; it is hard to engineer as it would require X to be interacting

with electrons, photons or neutrinos at the eV era. Moving away from this special point on

the contour, the dark matter mass increases, becoming warm and then cold dark matter,

whether on the freeze-out or freeze-in side.

There are two particularly interesting parts of this contour: the �rst has λ ∼ 1 and

mX ∼ v, corresponding to the well-known WIMP case where the physics of dark matter

depends on a single scale, v. The second has λ ∼ v/Mu and is independent of mX . This
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is the freeze-in region, and within it, the case of mX ∼ v is particularly interesting since in

this case there are only two scales associated with the dark matter, the weak and uni�ed

scales. These two special cases, both having mX ∼ v, are shown by solid dots. One has

λ ∼ 1 and corresponds to the WIMP case, while the other has λ ∼ 10−12 ∼ v/Mu, and is

the FIMP case. A slice through the parameter space with mX ∼ v is shown in �gure 4b,

which plots the prediction for Ωh2 as a function of λ2. While the WIMP case is presumably

related to the physics of electroweak symmetry breaking, FIMP freeze-in with mX ∼ v

and λ ∼ v/Mu may be related to the moduli of extra dimensional theories at the uni�ed

scale, such as string theory. Providing the initial abundance of the moduli is suppressed,

for example by well-known solutions to the moduli problem, a modulus or modulino can be

frozen-in during the electroweak era to form dark matter. For both WIMP freeze-out and

moduli freeze-in, the amount of dark matter is parametrically given by

Teq ∼
v2

MPl
(5.2)

where no distinction is made here between Mu and MPl.

5.2 Phase diagram for a Yukawa interaction

Suppose that the scalar, X, interacts with the bath via a Yukawa interaction with

two fermions

LY = λψ1ψ2X, (5.3)

where m2 � mX < m1, with mX and m1 of the same order of magnitude. The stabilising

symmetry is a Z2 carried by both X and ψ1, which is the lightest bath particle odd under

the symmetry. Hence, the dark matter is X and it has an abundance with an order of

magnitude determined by (mX , λ). Contours of Ωh2 are shown in �gure 5a, and all four

phases discussed above occur, in the regions labelled (I), (II), (III) and (IV).

The initial X abundance is assumed to be negligible, and as we progress from phase

I to phase IV the freeze-in process becomes successively less e�cient. If λ2 > mX/MPl,

corresponding to regions I and II, a full thermal X abundance is produced at temperatures

abovemX . If λ
2 >

√
mX/MPl,X undergoes conventional freeze-out via the reactionXX →

ψ2ψ2, giving region I; while in region II, with mX/MPl < λ2 <
√
mX/MPl, X decouples

from the bath at T > mX , giving a yield YX ∼ 1. On the other hand, with λ2 < mX/MPl,

the freeze-in process, ψ1 → ψ2X, is less e�cient, so that YX never reaches unity in regions

III and IV. In region III, withmX/MPl > λ2 > (mX/MPl)2, freeze-in provides the dominant

contribution to dark matter, while, for λ2 < (mX/MPl)2 the dominant contribution to dark

matter arises from ψ1 freeze-out, ψ1ψ1 → lighter bath particles, followed by ψ1 → Xψ2,

giving region IV.

Figure 5b shows a slice through the two dimensional parameter space of �gure 5a with

mX �xed to 100GeV. For a large range of λ too much X dark matter is produced. But, as

with the quartic interaction, there are two very interesting values of the coupling which yield

the observed abundance of dark matter, WIMPs with λ ∼ 1 and FIMPs with λ ∼ 10−12.

For these two special cases Ωh2 passes through the observed value, as shown in by solid
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Figure 5. In (a) we show the abundance phase diagram with contours of Ωh2 as a function of the

coupling λ and the mass mX for the case of a Yukawa interaction, eq. (5.3). If λ2 >
√
mX/MPl,

X undergoes conventional freeze-out giving region I; while in region II, with mX/mPl < λ2 <√
mX/MPl, X decouples from the bath giving a yield YX ∼ 1. In region III, with mX/mPl >

λ2 > (mX/MPl)2, YX never reaches unity and freeze-in provides the dominant contribution to dark

matter. For λ2 < (mX/MPl)2 the dominant mechanism generating dark matter arises from ψ1

freezing out and then decaying to X + ψ2, giving region IV. In (b) we take a slice at mX = 1 TeV
and plot the variation of Ωh2 as a function of the coupling λ.

dots �gure 5a. FIMPs with a weak-scale mass lie close to the phase boundary between X

freeze-in and ψ1 freeze-out. This important case, motivated, for example, by the possibility

that X is a modulus, will be examined in some detail in the next two sections. Many of

the observational consequences of weak-scale FIMPs arise because there are two broadly

comparable production mechanisms, involving both freeze-in and late decays.

In �gure 5, we havemX andm1 of the same order of magnitude as we scan over di�erent

values for mX . We can develop this scenario by �xing m1 = 1 TeV while still allowing mX

to vary. The resulting phase diagram is shown in �gure 6. Once again the diagram is

split into four di�erent regions but now these regions, in particular region IV, have more

structure. The �rst feature to notice is the vertical dividing line at mX = m1 = 1 TeV
which separates the two cases where mX is the lightest and therefore the dark matter (left

hand side) and m1 is the lightest and therefore the dark matter (right hand side).

As before, region I corresponds to the conventional freeze-out of X via the reaction

XX → ψ2ψ2 and region II corresponds to where the X particle decouples from the thermal

bath with a yield YX ∼ 1. Both these regions are cut o� at mX = m1 due to the fact that

when mX > m1, X is no longer stable and decays to bath particles. Consequently, the dark

matter abundance arises from ψ1 freeze-out, ψ1ψ1 → lighter bath particles.

Moving down the diagram to smaller values of the coupling λ, region III is reached
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Figure 6. Fixing the bath particle mass m1 = 1 TeV the phase diagram shows more structure. For

mX < m1, X is the dark matter as in �gure 5. A new feature compared to �gure 5 emerges for

mX > m1, where ψ1 is the dark matter. In this case dark matter can be dominantly produced by

the freeze-in of X at temperatures T > 1TeV, and the subsequent decay of X → ψ1 +ψ2. Here the

decay has to occur after the freeze-out of ψ1, otherwise the ψ1 contribution due to X-decay will be

reprocessed. The X-decay contribution of ψ1 dark matter dominates the ψ1 freeze-out contribution

in the triangle de�ned by the boundaries of zone III and the condition mX > m1. A slice through

this �gure with mX �xed at a TeV gives the same dependence as shown in �gure 5b.

and the freeze-in mechanism dominates. For mX < m1, X is the dark matter with the

freeze-in process, ψ1 → ψ2X, generating the dominant contribution to the relic abundance.

Moving into the region where mX > m1 we now freeze-in an abundance of X particles via

the process ψ1 + ψ2 → X. The resulting abundance of X particles then decays back to

ψ1 which forms the dark matter. Within this region as we move to larger values of mX

at constant λ we decrease the abundance of X particles frozen-in but we also decrease the

lifetime of the X particles. Eventually, the lifetime becomes so short that the X particles

will decay back to the bath particles before ψ1 freezes out. This means that the relic

abundance of ψ1 particles is once again determined by the freeze-out of ψ1.

Moving to even smaller λ we move into region IV where the freeze-in mechanism be-

comes less e�cient. For mX < m1 the relic abundance of X particles is determined by

the freeze-out density of ψ1 particles which then decay to X particles after freezing out.

For mX > m1 the X particles play no role in determining the relic abundance of dark

matter. The ψ1 particle is the dark matter with it's relic abundance determined by con-

ventional freeze-out.

5.3 A universal phase diagram at small coupling

In �gure 5a the two phases at lowest coupling correspond to X freeze-in, III, and ψ1 freeze-

out, IV. We �nd that this phase structure at small coupling results in a very wide class of

theories. Consider theories where X is either a scalar, AX , or a fermion, ψX , with linear
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Figure 7. Independent of the interaction, there is universal behaviour below the upper shadowed

line, corresponding to small coupling, λ2 � mX/MPl. For such couplings the dominant production

of dark matter arises from freeze-in of X if λ > mX/MPl, and freeze-out of a bath particle if

λ < mX/MPl.

couplings to bath scalars (A) and fermions (ψ) that are renormalisable,4 so that the possible

interactions are

λAXψψ, λmXAXA
2, λAXA

3, and λψXψA. (5.4)

The stabilizing symmetry is Z2, and AX , ψX may be even or odd (although, if it is

even, it must have a signi�cant fraction of its coupling to bath states that are odd). Any

choice of parity may be made for A and ψ as long as the interactions of eq. (5.4) are

symmetric. We assume that Z2-odd bath particles in the interactions of eq. (5.4), as well as

the lightest bath particle odd under the Z2, B, have masses of the same order of magnitude

as mX , and that Z2-even bath particles in the interactions of eq. (5.4) do not have masses

parametrically larger than mX .

For this wide class of theories, the phase diagram is shown in �gure 7, for λ2 �
mX/MPl. The dominant production of dark matter, whether X or bath, arises from freeze-

in of X, if λ > mX/MPl, and freeze-out of a bath particle, if λ < mX/MPl. This generality

follows from two results. Since B, the lightest Z2-odd bath particle, has order unity cou-

plings to lighter bath particles, its freeze-out yield is always YB ∼ mB/MPl ∼ mX/MPl.

Freeze-in of X via 2 → 2, 1 → 2 or 2 → 1, involving any quartic, trilinear or Yukawa

interaction of eq. (5.4), leads to a yield YX ∼ λ2MPl/mX .

From �gure 7 we see that this class of theories contains the interesting weak-scale

FIMP case, mX ∼ v and λ ∼ v/Mu. This leads to a generically realistic abundance of dark

4For simplicity we ignore the quadratic interactions λAXψXψ, λA
2
XA

2, λAψXψX , and λmXA
2
XA. A

similar analysis holds in the more general case.
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matter, arising from two broadly comparable mechanisms � X freeze-in and B freeze-out

� as shown by the FIMP label on the phase boundary in �gure 7.

6 Freeze-in calculation

We now turn to the calculation of the frozen-in dark matter density. The freeze-in process

is dominated by decays or inverse decays of bath particles to the FIMP depending on

whether or not the FIMP is the lightest particle carrying the conserved quantum number

that stabilises the DM. Processes such as 2 → 2 and other scatterings give sub-dominant

contributions to the frozen-in abundance in almost all cases of interest as the diagrams

are suppressed by both additional SM gauge or Yukawa couplings and numerical factors of

order few × π3 arising from the additional phase space integrals.

6.1 Direct freeze-in of dark matter

Consider the case where the FIMP X is the dark matter particle itself. If X has a coupling

to two bath particles, λXB1B2, then, for mB1 > mB2 +mX , the dominant freeze-in process

is via decays of the heavier bath particle:

B1 → B2X. (6.1)

At temperatures much higher than mB1 , the yield during a Hubble doubling time at the

era of temperature T scales as

Y1→2(T ) ∝ MPlmB1ΓB1

T 3
, (6.2)

so that it is strongly IR dominated, and shuts o� only once the temperature drops be-

low MB1 .

We can be more precise by solving the Boltzmann equation for nX , the number density

of X particles in this case:

ṅX + 3HnX =
∫
dΠXdΠB1dΠB2(2π)4δ4(pX + pB2 − pB1)

×
[
|M |2B1→B2+X fB1(1± fB2)(1± fX)− |M |2B2+X→B1

fB2fX(1± fB1)
]
, (6.3)

where dΠi = d3pi/(2π)32Ei are phase space elements, and fi is phase space density of

particle i, such that

ni =
gi

2π3

∫
d3pfi (6.4)

is the total particle density of species i possessing gi internal spin degrees of freedom. It is

implicitly assumed that in eq. (6.3), as well as eqs. (6.15) and (6.16) below, the squares of the

matrix elements are summed over �nal and initial spin of the participating particles without

averaging over the initial spin degrees of freedom. We assume the initial X abundance is

negligible so that we may set fX = 0, such that we may neglect the second term in eq. (6.3).
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Using the de�nition for the partial decay width ΓB1 of B1 → B2X and neglecting Pauli-

blocking/stimulated emission e�ects, i.e. approximating (1 ± fB2) ≈ 1, we can rewrite the

Boltzmann equation as

ṅX + 3HnX ≈ 2gB1

∫
dΠB1ΓB1mB1fB1 = gB1

∫
d3pB1

(2π)3
fB1ΓB1

γB1

(6.5)

where γB1 = EB1/mB1 . The bath particles are assumed to be in thermal equilibrium

and so approximating fB1 = (eEB1
/T ± 1)−1 by e−EB1

/T and converting the integral over

momentum space into an integral over energy we have

ṅX + 3nXH ≈ gB1

∫
d3pB1

(2π)3
fB1ΓB1

γB1

= gB1

∫ ∞
mB1

mB1ΓB1

2π2
(E2

B1
−m2

B1
)1/2e−EB1

/TdEB1

=
gB1m

2
B1

ΓB1

2π2
TK1(mB1/T ). (6.6)

where K1 is the �rst modi�ed Bessel Function of the 2nd kind. Rewriting in terms of

the yield, Y ≡ n/S and using Ṫ ≈ −HT , applicable when the variation of total plasma

statistical degrees of freedom with temperature dg/dT ≈ 0 approximately vanishes, we have

YX ≈
∫ Tmax

Tmin

gB1m
2
B1

ΓB1

2π2

K1(mB1/T )
SH

dT, (6.7)

with S = 2π2gS∗ T
3/45 and H = 1.66

√
gρ∗T

2/MPl. Using x ≡ m/T we can rewrite the

integral as

YX ≈
45

(1.66)4π4

gB1MPlΓB1

m2
B1
gs∗
√
gρ∗

∫ xmax

xmin

K1(x)x3dx , (6.8)

where MPl is the (non-reduced) Planck mass. Doing the x integral with xmax = ∞ and

xmin = 0 we �nally arrive at the result

Y1→2 ≈
135 gB1

8π3(1.66)gS∗
√
gρ∗

(
MPlΓB1

m2
B1

)
, (6.9)

where gS,ρ∗ are the e�ective numbers of degrees of freedom in the bath at the freeze-in

temperature T ∼ mB1 for the entropy, S, and energy density, ρ, respectively. Thus the

abundance depends on the three quantities mX ,mB1 and ΓB1 and has the form

ΩXh
2 ≈ 1.09× 1027gB1

gS∗
√
gρ∗

mXΓB1

m2
B1

. (6.10)

This is the density of X produced by a single bath particle species. In full FIMP models it

is quite likely that a number of bath particles could have similar interactions with the FIMP

particle. For example, if X arises as an Rp-odd modulino state from the SUSY-breaking

sector of a string theory, then as discussed in section 3, X is likely to couple to most if

not all of the MSSM spectrum. In this case further contributions to the relic abundance
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are generated with the same dependence on the bath particle's partial decay width and

mass, giving

ΩXh
2|tot ≈

1.09× 1027

gS∗
√
gρ∗

mX

∑
i

gBiΓBi

m2
Bi

, (6.11)

and the overall interaction strength will need to be smaller in order to generate the correct

abundance of FIMP dark matter. If we approximate this enhancement by an e�ective

number of active degrees of freedom, gbath, each with massmB, then the required interaction

strength becomes

λ ' 1.5× 10−13

(
mB

mX

)1/2(g∗(mB)
102

)3/4(gbath

102

)−1/2

. (6.12)

6.2 Decays of frozen-in FIMPs to dark matter

The alternative possibility is that the particle that freezes-in is unstable and decays to

dark matter. Here we study the simplest possibility that the interaction responsible for

freeze-in also yields the decay. If X has a coupling to two bath particles, λXB1B2, then,

for mX > mB1 +mB2 , the dominant freeze-in process is via inverse decays of X:

B1B2 → X. (6.13)

At temperatures much higher than mX , the yield during a Hubble doubling time at the era

of temperature T scales as

Y2→1(T ) ∝ MPlmXΓX
T 3

, (6.14)

and is again strongly IR dominated, shutting o� as the temperature falls below mX .

Assuming once again that the initial abundance of X particles is zero and therefore

setting fX = 0 the Boltzmann equation for this process can be written as

ṅX + 3HnX ≈
∫
dΠXdΠB1dΠB2(2π)4δ4(pX − pB1 − pB2) |M |2B1+B2→X fB1fB2 . (6.15)

Assuming CP invariance we may set |M |2B1+B2→X = |M |2X→B1+B2
and by invoking the

principle of detailed balance we can rewrite the Boltzmann equation as

ṅX + 3nXH ≈
∫
dΠXdΠB1dΠB2(2π)4δ4(pX − pB1 − pB2) |M |2X→B1+B2

f eq
X , (6.16)

where f eq
X is the X equilibrium phase space distribution approximated again by f eq

X ≈
e−EX/T . Comparing eqs. (6.16) with (6.3) we can immediately write down the resulting

form of the X yield as

Y2→1 ≈
135

8π3(1.66)gS∗
√
gρ∗

(
MPlΓX
m2
X

)
, (6.17)

where ΓX is the partial width of X → B1B2.
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Assuming that B1 is the DM particle, and in addition that the freeze-in contribution

coming from decays of X dominates the conventional freeze-out abundance of B1, the �nal

DM density is

ΩB1h
2 ≈ 1.09× 1027

gS∗
√
gρ∗

mB1ΓX
m2
X

. (6.18)

Here, crucially, we have assumed the decay of X → B1B2 occurs at a time after the freeze-

out of B1 so that the density does not get reprocessed. Taking ΓX = λ2mX/8π, the required
dark matter density occurs for a coupling of size

λ ' 1.5× 10−12

(
mX

mB1

)1/2(g∗(mX)
102

)3/4

. (6.19)

Although eq. (6.18) is very similar in form to eq. (6.10), as was to be expected, the physics

is quite di�erent.

6.3 Freeze-in by 2→2 scattering

Finally we present the calculation of the FIMP relic abundance in the case where the FIMP,

X, is a scalar and interacts with three scalar bath particles B1, B2 and B3 via the operator

L4−scalar = λXB1B2B3. (6.20)

Considering this interaction we can calculate the resulting FIMP yield using the Boltzmann

equation

ṅX + 3nXH ≈ 3
∫
dΠB1dΠB2dΠB3dΠX(2π)4δ4(pB1+pB2−pB3−pX) |M |2B1B2→B3X

fB1fB2 ,

(6.21)

where the factor of 3 accounts for the fact that we can have B1B2 → B3X, B1B3 → B2X

and B2B3 → B1X contributing to the FIMP yield all with the same rate. We assume that

the masses of B1, B2 and B3 are negligible compared to the FIMP particle mass. We can

rewrite the Boltzmann equation as a one dimensional integral, [40],

ṅX + 3nXH ≈
3T

512π6

∫ ∞
m2

X

ds dΩPB1B2PB3X |M |
2
B1B2→B3X

K1(
√
s/T )/

√
s, (6.22)

where s is the centre of mass energy of the interaction at a temperature T and

Pij ≡
[s− (mi +mj)2]1/2[s− (mi −mj)2]1/2

2
√
s

. (6.23)

The matrix element is |M |2B1B2→B3X
= λ2 leaving

ṅX + 3nXH ≈
3Tλ2

512π5

∫ ∞
m2

X

ds (s−m2
X)K1(

√
s/T )/

√
s, (6.24)

Doing this s integral and using the de�nition for the yield, Y = n/S we have

dYX
dT
≈ −3λ2T 2mX

SH

K1(mX/T )
128π5

=
3λ2K1(mX/T )

1.66T 3gS∗
√
gρ∗

45MplmX

256π7
. (6.25)
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Changing variables from T to x ≡ mX/T and again doing the integral x integral under the

approximations that xmax =∞ and xmin = 0 we �nally arrive at the result

YX ≈
135λ2Mpl

256π7gS∗
√
gρ∗(1.66)mX

∫ ∞
0

xK1(x)dx =
135Mplλ

2

512π6gS∗
√
gρ∗(1.66)mX

. (6.26)

The relic density of X FIMPs is then given by

Ωh2
X ≈

2mXYX
3.6× 10−9 GeV

=
1.01× 1024

gS∗
√
gρ∗

λ2. (6.27)

Finally to generate the required relic abundance we need

λ ' 1× 10−11

(
g∗(mX)

102

)3/4

, (6.28)

larger than the corresponding value for the three body interactions.

7 Comments and discussion

Having outlined the elementary theory of the freeze-in mechanism and FIMP phenomenol-

ogy we now address some of the complications and issues that can arise in complete theories

or ones where the FIMP sector is not just one particle.

7.1 Higher dimension operators and FIMPs from GUTs

In addition to the example candidates presented in section 3 an important application

of the freeze-in mechanism is to non-renormalisable higher dimensional operators (HDO)s

containing at least one Higgs-like state. Consider the operator

LHDO =
α

Mn
(ϕ1ϕ2 . . . ϕn)Xψ1ψ2, (7.1)

where α is an O(1) coupling, X is our FIMP state, ψ1 and ψ2 are two fermionic bath

states and the ϕis are Higgs-like states, also assumed to be in thermal equilibrium, that

will gain vacuum expectation values (VEVs) at some energy scale below the high scale M.

These higher dimension 1/M suppressed operators involving Higgs VEVs (e.g. for n = 1
electroweak scale VEVs or for n > 1 larger-scale VEVs5) can lead to interactions similar

to the dimension-4 Yukawa interaction of eq. (5.3) with the appropriate coupling size to

generate the correct freeze-in abundance of dark matter.

For example, dimension �ve 1/MGUT-suppressed operators involving the SM Higgs

VEV can lead to interactions with SM-singlets contained in GUT representations giving

FIMPs with interaction strength, λ ∼ v/MGUT ∼ 10−13. Alternatively, dimension six

1/M2
GUT-suppressed operators involving two intermediate scale VEV's can also give rise to

suitably sized FIMP couplings.6 However if the excitations of the Higgs-like states are not

5For n = 0, the resulting operator is renormalisable and has an O(1) coupling. This interaction will not

lead to freeze-in due to the large coupling and so we assume it is absent due to symmetries.
6For existing models employing 1/MGUT operators in the context of decaying dark matter see for exam-

ple [41, 42].
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super-massive and are in thermal equilibrium there is a UV contribution to the dark matter

yield that limits the applicability of the IR freeze-in mechanism.

For the sake of clarity we specialise to the case of n = 1 with one Higgs state gain-

ing an electroweak scale VEV and mass. Expanding ϕ1 around this VEV we have the

following operators

LHDO =
αv

M
Xψ1ψ2 +

α

M
ϕ1Xψ1ψ2. (7.2)

Under the assumption thatmψ1 > mψ2 +mX the IR dominated freeze-in yield is determined

by the decay ψ1 → ψ2X with rate determined by the coupling α′ ≡ αv/M. The resulting

yield can be directly read from eq. (6.9) and has the form

Y ≈ 10.2

π3gS∗
√
gρ∗

(
MPlΓψ1

m2
ψ1

)
∼ 1.3

π4gS∗
√
gρ∗

(
MPlα

′2

mψ1

)
, (7.3)

where we have approximated the rate as Γψ1 ≈ α′
2
mψ1/8π. This contribution is IR domi-

nated by temperatures close to the mass mψ1 . However, we also get a contribution to the

yield of X coming from the non-renormalisable interaction in eq. (7.2) via a four particle

interaction such as ψ1ϕ1 → Xψ2 and the important point is that this contribution is UV

dominated, so this contribution will depend on unknown UV physics such as the reheat

temperature TR.

What constraint is there on TR for the yield to be determined primarily by IR physics?

Considering the HDO interaction only we can calculate the resulting yield using the Boltz-

mann equation

ṅX+3nXH ≈
∫
dΠϕdΠψ1dΠψ2dΠX(2π)4δ2(pψ1 +pϕ−pψ2−pX) |M |2ψ1ϕ→ψ2X

fϕfψ1 . (7.4)

Manipulating this equation we can write

ṅX + 3nXH ≈
T

2048π6

∫
ds dΩ

√
s |M |2ψ1ϕ→ψ2X

K1(
√
s/T ), (7.5)

where s is the centre of mass energy of the interaction at a temperature T and we have ap-

proximated the masses of the relevant particles to be negligible compared to the temperature

at which we are working. In this limit the matrix element is |M |2ψ1ϕ→ψ2X
= α2/M2s leaving

ṅX + 3nXH ≈
Tα2

512π5M2

∫ ∞
0

ds s3/2K1(
√
s/T ), (7.6)

Doing this �nal integral and using the de�nition for the yield, Y = n/S we have

dYUV

dT
≈ − 1

SHT

T 6α2

16π5M2
. (7.7)

Now performing the �nal T integral which is dominated at the highest temperature, TR.

YUV ≈
0.4TRα2Mpl

π7M2gS∗
√
gρ∗
. (7.8)
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Thus in order for the IR contribution to dominate over that arising from the UV we need

Y

YUV
' 3π3v2

mψ1TR
> 1, (7.9)

translating into an upper bound on the reheat temperature given by

TR
<
∼

3π3v2

mψ1

. (7.10)

With mψ1 = 150GeV, the maximum value for TR is around 20TeV giving a potentially

serious restriction on this type of model.

The examples we have considered in the main body of this paper avoid this problem

as the interactions determining the freeze-in dynamics come from renormalisable or super-

renormalisbale operators. Moreover, if the excitations of the �Higgs� �eld that converts the

HDO into a d ≤ 4 operator approach the intermediate scale, as might be expected if the

associated VEVs are at this scale, then no signi�cant restriction on TR arises. Overall, there

are many examples of non-renormalisable operators and their signi�cance in each case is

somewhat model dependent.

It needs to be emphasised that similar issues occur with freeze-out in the presence of

non-renormalisable operators involving a thermally decoupled particle that is either sta-

ble or long enough lived that it decays after the freeze-out of the would be dark matter.

Since extensions of the SM involving GUT-uni�cation, gravity, or extra dimensions often

have such particles and couplings, freeze-out theories of dark matter genesis similarly suf-

fer from restrictions on TR when viewed in this broader context. The most well studied

example involves the gravitino where the yield YG̃ ∼ 10−12(TR/1010GeV) also approxi-

mately increases linearly with TR, leading to important limits on the reheat temperature

for weak-scale gravitino mass, though there are also other examples of particles interacting

via non-renormalisable operators with analogous limits on TR, see e.g. [43, 44].

7.2 Freezing-in a FIMP sector

Throughout this paper we have focussed on the case of one FIMP species. We note here

some of the potential extensions of this idea by considering more complicated FIMP sectors.

For example, consider the case where we have one FIMP species, X, coupled to a thermal

bath via some renormalisable operator. It is through this operator that an abundance of X

is frozen in. In addition to this suppose X has further interactions with some other states,

Xi, which have even weaker or no direct interactions with the thermal bath. The strength

of the interactions between the Xis and X could be moderate or even large. Consequently,

once an abundance of Xs are frozen-in these extra interactions could bring the Xis and

X particles into partial thermal equilibrium and within this sector a secondary freeze-out

process could take place leaving a relic abundance of the lightest state in this sector. If the

lightest state is stable it can form the dark matter but if it is not it decays back into an LSP

or similar in the visible sector. This process of secondary freeze-out can substantially alter

the �nal dark matter abundance, changing the observable phenomenology associated to the
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FIMP. In particular, for FIMP dark matter the direct and simple correlation between the

lifetime of the LOSP and the dark matter relic abundance will be lost.

A further variation arises when there is more than one FIMP particle, for example

we can imagine that there are several moduli (perhaps with di�erent masses) that couple

via some operator to particles in the thermal bath. The couplings of these moduli are

feeble and so each could have an abundance frozen-in. If the moduli have di�erent coupling

strengths (or masses) the abundances of each moduli will be di�erent. Depending on the

mass spectrum these frozen-in moduli could be the dark matter or decay to the real dark

matter particle.

8 Conclusions

The nature and origin of the dark matter in the universe is unknown. While there are many

theories of DM, there are rather few cosmological production mechanisms, and even fewer

that can be subjected to precision tests. For example, the non-thermal coherent oscillation

of a scalar �eld, such as an axion, always involves an unknown initial �eld amplitude.

Thermal mechanisms that are independent of initial conditions are particularly interesting,

and the decoupling of a heavy particle species from the thermal bath has received enormous

attention. Such decoupling can occur when the particle is relativistic, as with the neutrinos,

or non-relativisitic, as with baryons. The former leads to hot dark matter, so that the latter

case of thermal freeze-out has been widely studied for DM.

At �rst sight these appear to be the only two ways of thermally producing DM without

any sensitivity to initial conditions. If a massive particle of the thermal bath is to sur-

vive the early universe with a signi�cant abundance it must decouple, and this can either

happen when the particle is relativistic or non-relativistic. We have argued that there is

one other possibility: the massive particle may have a negligible initial abundance and may

be produced by collisions or decays of particles in the thermal bath. This is only a new

possibility if the massive particle does not reach thermal equilibrium, and hence requires

that it is a FIMP, interacting very feebly with the bath. Since the FIMP abundance is

heading towards thermal equilibrium we call this production mechanism �freeze-in.�

Freeze-in requires a very small coupling λ between the FIMP and the bath

λ2 ∼ Teq

MPl

mFI

mDM
(8.1)

where Teq is the temperature of matter-radiation equality, mFI is the mass of the heaviest

particle involved in the freeze-in reaction and mDM is the mass of the DM particle. The

mechanism works for a very wide range of FIMP masses: to be produced it must be lighter

than the reheat temperature after in�ation, and for DM to be cold it must be heavier than

a keV. Indeed the range of theories involving FIMP freeze-in is so large that in this paper

we have concentrated on FIMPs with a mass of order the weak scale, such as moduli or

right-handed sneutrinos.

It is not surprising that freeze-out is so popular: it presumably occurred with baryons

(although with the added complication of a chemical potential) and it works with dimen-

sionless coupling parameters of order unity. Indeed, with couplings of order unity, if the
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only mass scale in the annihilation cross section is that of the DM particle, then this mass

is predicted to be of order the weak scale. On the other hand freeze-in of a FIMP requires

a special situation. The freeze-in reaction must involve a small dimensionless coupling

parameter, eq. (8.1); furthermore, UV sensitivity may reappear unless higher dimensional

operators are suppressed or the reheat temperature after in�ation is quite low. However,

small couplings for both renormalisable and higher dimensional operators occur very easily,

for example by approximate symmetries or small wavefunction overlaps in higher dimen-

sions. Most importantly, precisely because FIMPs necessarily have very small couplings to

the bath, eq (8.1), they o�er the prospect of exotic signals of dark matter generation.

If the FIMP is the lightest particle carrying the DM stabilising symmetry it is the DM,

so that the lightest observable sector particle (LOSP) with this symmetry is unstable and

decays to the FIMP with a rate suppressed by λ2. Alternatively it may be the LOSP that

is DM, and in this case it is the FIMP that has a very long lifetime. The signals associated

with the freeze-in mechanism all revolve around the long lifetime of decays between the

FIMP and LOSP. In particular, we explored the signals that arise when the FIMP, LOSP

and freeze-in masses are all of order the weak scale.

In many theories a small coupling may arise from a parametric form that is linear in

the weak scale v, λ ∼ v/MPl. In fact, in many models the Planck scale will be replaced

by the string or compacti�cation scale, as occurs for certain moduli, providing a better

explanation for the order of magnitude of λ. The temperature of matter-radiation equality

from DM produced by the freeze-in mechanism then has the same parametric form as in

the WIMP case: Teq ∼ v2/MPl. This not only explains why freeze-in can yield the observed

abundance, but suggests that two mechanisms for DM production � FIMP freeze-in and

LOSP freeze-out � yield broadly comparable abundances.

The cosmological signals of the FIMP arise from the late decays between the FIMP

and the LOSP and, with masses of order the weak scale, the parametric form of the lifetime

in the simplest theories is

τ ∼ MPl

Teq v
∼ 1 sec. (8.2)

A precise computation shows that if the FIMP is frozen-in via two body decays or inverse

decays that involve the LOSP, then the lifetime is closer to 10−2 seconds, as shown in

eq. (4.1). However, this should be viewed as a lower bound on the lifetime of decays

between the FIMP and LOSP. Further suppression of the decay rate occurs if the freeze-in

process involves bath particles other than the LOSP or if the decays are to three or more

particles. Thus the lifetime may well be in the region where the decays can alter the nuclear

abundances produced during BBN, possibly solving the 7Li problem, and may even be long

enough to allow a component of the DM to be warm.

If FIMP freeze-in dominates over LOSP freeze-out, then the LOSP annihilation cross

section is larger than with conventional freeze-out. This leads to an important astrophysical

signal of LOSP DM: the DM annihilation in the galactic halo is boosted relative to the

conventional case, leading to enhanced rates for indirect detection signals of photons, leptons

and anti-protons.
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Finally, FIMP dark matter yields important new collider signals. The exotic particles

of the LOSP sector can be produced at the LHC and will rapidly decay to the LOSP, which

has a long lifetime, bounded from below by about 10−2 sec. If the LOSP is charged or

coloured it has a signi�cant probability of being stopped in the detector, so that its decays

can be observed. Studying the production and decay of the LOSP at the LHC could directly

probe the freeze-in reaction that created the FIMP dark matter in the early universe.
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