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1 Introduction

Similarly as symmetries of Minkowski spacetime are specified by Poincaré algebra (i.e., this
spacetime is the homogeneous space of Poincaré group), the “space-time” of classical non-
relativistic mechanics can be defined as the homogeneous space of the group generated by
Galilei algebra. Furthermore, both algebras belong to the much richer realm of kinematical
algebras — a particular type of Lie algebras — which became the object of physical interest
due to the seminal work of Bacry and Lévy-Leblond [1]. The classification of such algebras in
3+1 spacetime dimensions has subsequently been completed in [2], but only recently in the
cases of >3+1 [3] and 2+1 dimensions [4], using the method of deformations (which should
not be confused with quantum deformations discussed below). Kinematics turns out to be
even more diverse at the level of the homogeneous spaces of kinematical groups [5]. Nowadays,
this subject matter is experiencing increased attention, as demonstrated by many papers,
including last year’s reviews [6, 7] and references therein. In the same vein, research has been
directed to the non-Lorentzian versions of BMS (Bondi-van der Burg-Metzner-Sachs) [8, 9]
and other algebras describing asymptotic symmetries of spacetime, which are also interrelated
by appropriate deformations, see e.g. [10, 11].
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A particular interest is attracted by Carroll algebra and its generalizations, corresponding
to the ultra-relativistic limit (the speed of light taken to zero) of Poincaré, (anti-)de Sitter,
and other algebras. Particles [12] or strings [13] on a Carrollian manifold (the homogeneous
space of Carroll group) have trivial dynamics unless they are interacting or coupled to a gauge
field, cf. [14, 15]. As one should expect, the Carrollian algebraic and geometric structures
are to a certain extent “dual” [16, 17] to their Galilean counterparts, which are obtained
in the non-relativistic limit (the speed of light taken to infinity; strictly speaking, it is the
limit leading to Galilean relativity). This extends [18] to the Carroll and Galilei limits of the
theory of gravity but the relation is not actually reciprocal, e.g. there exist two inequivalent
Carrollian contractions of general relativity, the so-called: electric [19] and magnetic [20]. An
expansion around the Carroll limit [21] is related to the strong-coupling expansion of general
relativity [22], as well as the BKL conjecture for spacetime singularities [23]. An interesting
parallel in this context is that the Carroll limit makes light cones collapse into temporal lines
(hence its alternative name: the ultra-local limit), while the evolution towards a singularity
is associated with asymptotic silence, i.e. the shrinking of particle horizons to zero [24] (see
also [25, 26]). On the other hand [5, 16], Carroll/(anti-)de Sitter-Carroll algebra generates
symmetries of a null hypersurface in the Lorentzian spacetime one dimension higher, i.e.
such surfaces are Carrollian manifolds. This concerns in particular (Dodgson) gravitational
waves [27], which can be foliated by the latter, while Carroll group (with broken rotations)
describes [28] their isometries. Another example is the event horizon of a black hole, at least
if one considers it within the so-called membrane paradigm [29]. Moreover, BMS group is
isomorphic to a conformal extension of Carroll group of one dimension less [30, 31].

The assortment of symmetries available for study in physical theories can also be enlarged
by their (quantum) deformations, described in the formalism of Hopf algebras, which provides
a generalization of the notion of an associative algebra. (Quantum) homogeneous spaces of
such quantum-deformed algebras of symmetries turn out to have noncommutative geometry.
The most extensively studied example is κ-Poincaré (Hopf) algebra [32, 33] (which can be
defined in any number of dimensions [34]), associated with κ-Minkowski (noncommutative)
spacetime [35]. Their counterparts for the case of non-zero cosmological constant are given by
κ-(anti-)de Sitter algebra and spacetime [36, 37] (first introduced in 2+1 dimensions [38, 39]).
One of the most recent advances is the construction of deformations of BMS algebras [40–42].

In the case of kinematical symmetries, the Hopf algebra is a deformation of (the universal
enveloping algebra of) a Lie algebra, while its infinitesimal version is a Lie bialgebra, generating
a Poisson-Lie group. A particular kind of the latter is the coboundary Lie bialgebra,
characterized by a distinguished element of the tensor product of its two copies known as
a classical r-matrix (see section 2). If a given Lie algebra is semisimple or inhomogeneous
(pseudo-)orthogonal, all possible bialgebras are coboundary and hence it suffices to classify
the corresponding r-matrices in order to find all quantum (i.e. Hopf-algebraic) deformations.
So far, such a classification has only been completed in 2+1-dimensions — for Poincaré
and (inhomogeneous) Euclidean algebras [43], as well as (Lorentzian) (anti-)de Sitter and
Euclidean (anti-)de Sitter algebras [44–47]. The latter has been achieved by treating so(4),
so(3, 1) and so(2, 2) (as well as o(2;H)) as real forms of the algebra so(4;C). In our previous
work [48], we investigated how r-matrices of all these kinematical algebras can be related
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by the quantum İnönü-Wigner contractions, i.e. by the appropriately taken limits of the
cosmological constant approaching zero. Meanwhile, the classification for Poincaré algebra in
3+1 dimensions [49] is largely complete but there are still some missing cases, while even
less is known for (anti-)de Sitter algebra [36, 50].

What is the motivation for considering such structures? Some form of deformed relativistic
symmetries and noncommutativity of the spacetime geometry is widely argued to emerge
in description of the quantum regime of gravity [51, 52], especially within quantum gravity
phenomenology (see a last year’s review [53]), where it is an alternative to a more far-reaching
idea of symmetry breaking. Other area of applications has been found in string theory
and the AdS/CFT correspondence — the Yang-Baxter deformations of strings or, more
generally, sigma models, see e.g. [54–56] or a review [57]. Last but not least, (infinitesimally)
deformed algebras are present already at the classical level in the theory of (2+1)-dimensional
gravity. The latter can be recast [58, 59] as Chern-Simons theory on spacetime that is locally
Minkowski or (anti-)de Sitter, depending on the cosmological constant, with the corresponding
group of local isometries as the gauge group. In this framework, it has been shown that
the Poisson structure of phase space (the space of flat Cartan connections modulo gauge
transformations) is determined by a classical r-matrix compatible with a given Chern-Simons
action [60], which also turns the local isometry group into a Poisson-Lie group and provides
a direct link with the Hopf-algebraic quantum deformations of symmetries [61–63]. The
relevant r-matrices for each gauge group have already been classified [48, 64] (see also [65–68])
but it remains unclear whether they lead to physically distinct theories.

As we discussed at the beginning, the non-Lorentzian kinematical algebras (i.e., other
ones than Poincaré or (anti-)de Sitter) are not a mere curiosity but play various roles in the
theory of gravity. In the case of 2+1 dimensions, the Chern-Simons has also been recently
generalized to spacetimes modelled by the homogeneous space of an arbitrary kinematical
group, which then becomes the gauge group [69] (see also [70–72] for a different way in
which deformed Carrollian dynamics can apparently arise in (2+1)d gravity). Theories with
different gauge groups are related by the proper limits, e.g. the speed of light going to zero or
to infinity. Therefore, the natural question to ask is what are the (quantum) deformations
of non-Lorentzian kinematical algebras, as well as what happens with deformations of the
Lorentzian algebras in the non-Lorentzian limits. Some examples of such deformations
were studied in e.g. [73–76], while a more systematic approach was given in [38, 77, 78]. In
particular, [76] (as well as [79]) contains a derivation of the (quantum) Carrollian and Galilean
contraction limits of Lie bialgebras and Hopf algebras for the above-mentioned (timelike)
κ-deformations of Poincaré and (anti-)de Sitter algebras in 3+1 dimensions.

The plan of this paper is as follows. Section 2 recalls the concept of classical r-matrices and
then their complete classification for Poincaré and (anti-)de Sitter algebras in 2+1 dimensions,
characterizing all possible Hopf-algebraic deformations of these Lorentzian algebras. Section 3
discusses the definitions and relevant properties of the Carrollian and Galilean versions
of (undeformed) Poincaré and (anti-)de Sitter algebras (the paper also contains appendix
concerning the relation between Carroll algebra and Poincaré algebra one dimension higher),
followed by a derivation of the Carroll and Galilei limits of deformations of Poincaré algebra via
the procedure of quantum contractions. In subsection 4.1, we completely classify deformations
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of (anti-)de Sitter-Carroll algebra, with the help of isomorphisms between anti-de Sitter-Carroll
and Poincaré algebra, and between de Sitter-Carroll and Euclidean algebra. Subsequently,
in the rest of section 4, we show that all such deformations (up to a few terms missing in
some classes of r-matrices) can be recovered as quantum contraction limits of deformed
(anti-)de Sitter algebras. Section 5 is similarly devoted to these deformations of (anti-)de
Sitter-Galilei algebra that can be derived via quantum contractions from the (anti-)de Sitter
case (we conjecture that they provide the major part of the unknown complete classification).
Section 6 ends it with a summary of our results and a discussion of their possible applications,
as well as some comments on the especially interesting cases of deformations. In particular,
we observe that deformations of the Carrollian and Galilean algebras are in a sense milder
than deformations of Lorentzian algebras, in the manner that reflects the crucial features of
Carrollian and Galilean kinematics (the ultralocality and absolute time, respectively).

2 Classical r-matrices (in 2+1 dimensions)

Let us start with a very brief reminder of the necessary mathematical preliminaries. We refer
the Reader to the direct predecessors of this paper [47, 48] for more details, or to e.g. [80, 81]
for an in-depth discussion of the subject.

A Lie algebra g with a Lie bracket [·, ·] : g⊗g 7→ g becomes a Lie bialgebra when equipped
with a compatible structure of a (Lie) cobracket δ(·) : g 7→ g⊗ g. A particularly interesting
type of Lie bialgebras are the coboundary ones, for which the cobracket is determined by
an element r ∈ g ∧ g called a classical (antisymmetric) r-matrix:

∀g ∈ g : δ(g) = adgr = [g, r(1)] ⊗ r(2) + r(1) ⊗ [g, r(2)] . (2.1)

(In Sweedler notation, r =
∑

i r
(1)
i ⊗ r

(2)
i ≡ r(1) ⊗ r(2).) It follows that a given r-matrix

is defined up to the terms that do not change the corresponding cobracket, i.e. up to the
elements of g ∧ g that commute with every g ∈ g. We may call such g-invariant tensors the
antisymmetric split-Casimirs, since the name of split Casimirs is used in the more general case
of the g-invariant elements of g⊗ g. Furthermore, if two r-matrices can be transformed into
each other by (mutually inverse) automorphisms of g, they naturally determine isomorphic
Lie bialgebras and can be identified as belonging to the same equivalence class. In order to
stress this, we will sometimes use the name “r-matrix class” instead of just “r-matrix”.

The equivalent definition of a classical r-matrix for a Lie algebra g is that it solves the
(classical) Yang-Baxter equation

[[r, r]] = t Ω , t ∈ C . (2.2)

[[·, ·]] denotes the Schouten bracket, defined as

[[a ∧ b, c ∧ d]] := a ∧ ([b, c] ∧ d + c ∧ [b, d]) − b ∧ ([a, c] ∧ d + c ∧ [a, d]) , (2.3)

while Ω is a g-invariant element of g⊗ g⊗ g. If the Yang-Baxter equation is homogeneous, i.e.
t = 0, its solutions are called the triangular r-matrices and correspond to twist quantizations
of the bialgebra g; if the Yang-Baxter equation is inhomogeneous (also known as the modified
YB equation), i.e. t ̸= 0, its solutions are called the quasitriangular r-matrices and correspond
to quasitriangular Hopf algebras describing quantizations of g.
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2.1 The classification for Poincaré algebra

The 2+1-dimensional Poincaré algebra iso(2, 1) = so(2, 1) ▷< R2,1 in the orthogonal basis,
which makes explicit its semidirect product structure, has the brackets:

[Jµ,Jν ] = ϵ σ
µν Jσ , [Jµ,Pν ] = ϵ σ

µν Pσ , [Pµ,Pν ] = 0 (2.4)

(µ = 0, 1, 2, we set ϵ012 = 1 and rise indices with Minkowski metric (1,−1,−1)). The
classification of classical r-matrices for this algebra, completed by Stachura in [43], can be
written down as the following list of disjoint multi-parameter families (up to automorphisms
of the algebra; as presented in [43], the dependence on most of the parameters can be
simplified or even eliminated by acting with dilations, but the parameters are relevant from
the physical point of view):

r1(χ, γ) = χ (J0 + J1) ∧ J2 + γ (J0 ∧ P0 − J1 ∧ P1 − J2 ∧ P2) ,

r2(γ, η; θ01, θ12, θ20) = γ (J0 ∧ P2 − J2 ∧ P0) + η J1 ∧ P1 + r8(θ01, θ12, θ20) ,

r3(γ, η; θ01, θ12, θ20) = γ (J1 ∧ P2 − J2 ∧ P1) + η J0 ∧ P0 + r8(θ01, θ12, θ20) ,

r4(χ, ς; θ01, θ12, θ20) = χ (J1 ∧ (P0 + P2) − (J0 + J2) ∧ P1) + ς (J0 + J2) ∧ (P0 + P2)
+ r8(θ01, θ12, θ20) ,

r5(χ; θ01, θ12, θ20) = χJ1 ∧ (P0 + P2) + r8(θ01, θ12, θ20) ,

r6(γ, ς; θ01, θ12, θ20) = γ (J0 ∧ P2 − J2 ∧ P0 + J1 ∧ P1) + ς (J0 + J2) ∧ (P0 + P2)
+ r8(θ01, θ12, θ20) ,

r7(γ) = γ (J0 ∧ P0 − J1 ∧ P1 − J2 ∧ P2) ,

r8(θ01, θ12, θ20) = θ01P0 ∧ P1 + θ12P1 ∧ P2 + θ20P2 ∧ P0 . (2.5)

The deformation parameters are assumed to be restricted by a few conditions: γ ̸= 0 ∨ η ̸= 0
and χ ̸= 0 ∨ ς ̸= 0, as well as γ ̸= η (in r2), χ ̸= 0 (in r1 and r5) and γ ̸= 0 (in r6 and r7).
Otherwise, different (classes of) r-matrices would overlap for certain values of the parameters,
e.g. r2(γ, η = γ) = r6(γ, ς = 0).

Actually, iso(2, 1) automorphisms allow us [43] to get rid of some terms depending only
on Pµ generators (i.e. the terms that are themselves r-matrices of class r8), and bring the
classification (2.5) to an even simpler form:

r1(χ, γ) = χ (J0 + J1) ∧ J2 + γ (J0 ∧ P0 − J1 ∧ P1 − J2 ∧ P2) ,

r2(γ, η; θ20) = γ (J0 ∧ P2 − J2 ∧ P0) + η J1 ∧ P1 + θ20P2 ∧ P0 ,

r3(γ, η; θ12) = γ (J1 ∧ P2 − J2 ∧ P1) + η J0 ∧ P0 + θ12P1 ∧ P2 ,

r4(χ, ς; θ) = χ (J1 ∧ (P0 + P2) − (J0 + J2) ∧ P1) + ς (J0 + J2) ∧ (P0 + P2)
+ θ (P0 − P2) ∧ P1 ,

r5(χ; θ01, θ12) = χJ1 ∧ (P0 + P2) + θ01P0 ∧ P1 + θ12P1 ∧ P2 ,

r6(γ, ς; θ, θ20) = γ (J0 ∧ P2 − J2 ∧ P0 + J1 ∧ P1) + ς (J0 + J2) ∧ (P0 + P2)
+ θ (P0 − P2) ∧ P1 + θ20P2 ∧ P0 ,

r7(γ) = γ (J0 ∧ P0 − J1 ∧ P1 − J2 ∧ P2) ,

r8(θ01, θ12, θ20) = θ01P0 ∧ P1 + θ12P1 ∧ P2 + θ20P2 ∧ P0 . (2.6)
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Since iso(2, 1) is an inhomogeneous pseudo-orthogonal algebra in ≥3 dimensions, a classical
r-matrix corresponds to each of its Hopf-algebraic deformations. In particular, if the θ, θµν

parameters vanish, r3, r2 and r4 determine the (twisted) time-, space- and lightlike κ-
deformations, respectively, while r6 is a special combination of the twisted spacelike κ-
deformation and the same twist as for the lightlike κ-deformation. Moreover, r7 is associated
with a particular Drinfeld double of 2+1-dimensional Lorentz algebra; certain special cases of
r6 (in which we included a subclass of r2 with γ = η, cf. (2.5)) and r1 are associated with
seven other possible Drinfeld double structures [68].

Every r-matrix is also a solution of the Yang-Baxter equation (2.2), whose r.h.s. is a
(possibly non-zero) invariant of the algebra under consideration. The iso(2, 1) algebra has
two linearly independent invariants, ϵµνσJµ ∧ Pν ∧ Pσ and P0 ∧ P1 ∧ P2 (let us note that
there is no analogue of the second one for Poincaré algebra in ̸= 2 + 1 dimensions). Indeed,
calculating the Schouten brackets we verify that the ones given in (2.5) (or (2.6)) satisfy
the following inhomogeneous equations:

[[r1, r1]] = [[r7, r7]] = −γ2ϵµνσJµ ∧ Pν ∧ Pσ ,

[[r2, r2]] = [[r6, r6]] = −γ2ϵµνσJµ ∧ Pν ∧ Pσ + 4γ θ20 P0 ∧ P1 ∧ P2 ,

[[r3, r3]] = γ2ϵµνσJµ ∧ Pν ∧ Pσ + 4γ θ12 P0 ∧ P1 ∧ P2 ,

1
2 [[r4, r4]] = [[r5, r5]] = 2χ (θ01 + θ12)P0 ∧ P1 ∧ P2 , (2.7)

as well as the homogeneous equation in the case of r8. Moreover, r4 and r5 satisfy the
homogeneous Yang-Baxter equation if all of their relevant θµν parameters are zero or θ01 =
−θ12, while for r2 and r3 it happens when both γ and the relevant θµν parameters are zero, and
for r1 — when γ = 0 (γ in r6 and r7 is restricted to be non-zero, as we mentioned below (2.5)).

2.2 The classification for (anti-)de Sitter algebra

The algebra (2.4) can be straightforwardly generalized to (2+1-dimensional) de Sitter and
anti-de Sitter algebras, so(3, 1) and so(2, 2), corresponding respectively to the cosmological
constant Λ > 0 and Λ < 0, whose brackets are written in a unified fashion as:

[Jµ,Jν ] = ϵ σ
µν Jσ , [Jµ,Pν ] = ϵ σ

µν Pσ , [Pµ,Pν ] = −Λ ϵ σ
µν Jσ . (2.8)

The complete classification of classical r-matrices for both algebras (up to their automorphisms)
has been provided in [47], building upon the older work of [44]. We will present it in the form
from our previous paper [48], where it has been expressed in the basis (2.8), but changing
the metric signature to the one used in this paper and redefining some of the parameters.
The parameters in [48] were actually inherited from the classification of r-matrices for the
o(4;C) algebra, which was the starting point of the derivation, but they were not adjusted to
performing the most general quantum contractions, which is why we were then describing
the latter in a bit cumbersome manner.
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There are the following classes in the de Sitter case (we redefine the parameters γ± :=
(γ ± γ̄)/2 and, for brevity, denote P̃µ ≡ Λ−1/2Pµ):

rI(χ) = χ
(
J2 + P̃1

)
∧ P̃0 ,

rII(χ, ς) = χ

2
((
J2 + P̃1

)
∧ P̃0 + J0 ∧

(
J1 − P̃2

))
− ς

2
(
J2 + P̃1

)
∧
(
J1 − P̃2

)
,

rIII(γ+, γ−, η) = γ+
(
J1 ∧ P̃2 − J2 ∧ P̃1

)
+ γ−

(
J1 ∧ J2 − P̃1 ∧ P̃2

)
+ η

2 J0 ∧ P̃0 ,

rIV (γ, ς) = γ
(
J1 ∧ J2 − P̃1 ∧ P̃2 − J0 ∧ P̃0

)
− ς

2
(
J2 + P̃1

)
∧
(
J1 − P̃2

)
. (2.9)

In particular, rIII describes a generalization of the time- or spacelike κ-deformation if γ− ̸= 0
or γ+ ̸= 0, respectively, and the (generalized) lightlike κ-deformation is given by rII with
χ ̸= 0; certain special cases of rIII and rIV are associated with four possible Drinfeld double
structures on de Sitter algebra [67] (cf. [48]). rI and rII satisfy the homogeneous Yang-Baxter
equation, while for the remaining ones we have

[[rIII , rIII ]] = −2
(
γ2

+ − γ2
−
)(

J0 ∧ J1 ∧ J2 −
1
2Λ−1ϵµνσJµ ∧ Pν ∧ Pσ

)
− 4γ+γ−Λ−1/2

(1
2ϵµνσJµ ∧ Jν ∧ Pσ − Λ−1P0 ∧ P1 ∧ P2

)
,

[[rIV , rIV ]] = 2γ2
(
J0 ∧ J1 ∧ J2 −

1
2Λ−1ϵµνσJµ ∧ Pν ∧ Pσ

)
, (2.10)

with 1
2ϵµνσJµ ∧Pν ∧Pσ − ΛJ0 ∧J1 ∧J2 and P0 ∧P1 ∧P2 − Λ 1

2ϵµνσJµ ∧Jν ∧Pσ being the
two linearly independent invariants of the so(3, 1) algebra, which reduce to the invariants
of iso(2, 1) in the limit Λ → 0.

In the anti-de Sitter case, the situation is more complicated. Namely, the o(2, 2) algebra
has three decompositions into the direct sums of algebras: sl(2;R)⊕ s̄l(2;R), su(1, 1)⊕ s̄u(1, 1)
and su(1, 1) ⊕ s̄l(2;R), and each of them is associated with different r-matrices (see [47]
or [48] for more details). In order to distinguish r-matrices coming from the latter two
decompositions in the current paper, we will denote the ones of su(1, 1) ⊕ s̄u(1, 1) with a
prime, and the ones of su(1, 1)⊕ s̄l(2;R) with a double prime. Then, the classification can be
written as (redefining the parameters χ± := (χ ± χ̄)/2, γ± := (γ ± γ̄)/2 and ϱ± := (ρ ± χ̄)/2,
and denoting P̃µ ≡ |Λ|−1/2Pµ):

rI(χ) = −χ
(
J0 − P̃2

)
∧ P̃1 ,

rII(χ+, χ−, ς) = −χ+
2

((
J0 − P̃2

)
∧ P̃1 + J1 ∧

(
J2 − P̃0

))
− χ−

2
((
J2 − P̃0

)
∧ P̃1 + J1 ∧

(
J0 − P̃2

))
− ς

2
(
J0 − P̃2

)
∧
(
J2 − P̃0

)
,

rIII(γ+, γ−, η) = −γ+
(
J0 ∧ P̃2 − J2 ∧ P̃0

)
+ γ−

(
J0 ∧ J2 + P̃0 ∧ P̃2

)
− η

2 J1 ∧ P̃1 ,

rIV (γ, ς) = γ
(
J0 ∧ J2 + J1 ∧ P̃1 + P̃0 ∧ P̃2

)
− ς

2
(
J0 − P̃2

)
∧
(
J2 − P̃0

)
, (2.11)

rV (γ, ϱ+, ϱ−) = γ

2
(
J0 − P̃0

)
∧
(
J2 − P̃2

)
+ 1

2
(
ϱ+J1 − ϱ−P̃1

)
∧
(
J0 − J2 + P̃0 − P̃2

)
coming from sl(2;R) ⊕ s̄l(2;R);

rIII′(γ+, γ−, η) = −γ+
(
J1 ∧ P̃2 − J2 ∧ P̃1

)
+ γ−

(
J1 ∧ J2 + P̃1 ∧ P̃2

)
+ η

2 J0 ∧ P̃0 (2.12)
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coming from su(1, 1) ⊕ s̄u(1, 1); and

rIII′′(γ, γ̄, η) = γ

2
(
J1 − P̃1

)
∧
(
J2 − P̃2

)
− γ̄

2
(
J0 + P̃0

)
∧
(
J2 + P̃2

)
− η

4
(
J0 − P̃0

)
∧
(
J1 + P̃1

)
,

rV ′′(γ, χ̄, ρ) = γ

2
(
J1 − P̃1

)
∧
(
J2 − P̃2

)
+ 1

4
(
χ̄
(
J1 + P̃1

)
+ ρ

(
J0 − P̃0

))
∧
(
J0 − J2 + P̃0 − P̃2

)
(2.13)

coming from su(1, 1) ⊕ s̄l(2;R). rI and rII satisfy the homogeneous Yang-Baxter equation,
while for the remaining classes we have

[[rIII , rIII ]] = −2
(
γ2

+ + γ2
−
)(

J0 ∧ J1 ∧ J2 −
1
2Λ−1ϵµνσJµ ∧ Pν ∧ Pσ

)
− 4γ+γ−|Λ|−1/2

(1
2ϵµνσJµ ∧ Jν ∧ Pσ − Λ−1P0 ∧ P1 ∧ P2

)
,

[[rIV , rIV ]] = −2γ2
(
J0 ∧ J1 ∧ J2 −

1
2Λ−1ϵµνσJµ ∧ Pν ∧ Pσ

)
,

[[rV , rV ]] = −γ2
(
J0 ∧ J1 ∧ J2 −

1
2Λ−1ϵµνσJµ ∧ Pν ∧ Pσ

− 1
2 |Λ|

−1/2ϵµνσJµ ∧ Jν ∧ Pσ + |Λ|−3/2P0 ∧ P1 ∧ P2

)
(2.14)

and

[[rIII′ , rIII′ ]] = 2
(
γ2

+ + γ2
−
)(

J0 ∧ J1 ∧ J2 −
1
2Λ−1ϵµνσJµ ∧ Pν ∧ Pσ

)
+ 4γ+γ−|Λ|−1/2

(1
2ϵµνσJµ ∧ Jν ∧ Pσ − Λ−1P0 ∧ P1 ∧ P2

)
,

[[rIII′′ , rIII′′ ]] =
(
γ2 − γ̄2)(J0 ∧ J1 ∧ J2 −

1
2Λ−1ϵµνσJµ ∧ Pν ∧ Pσ

)
+

(
γ2 + γ̄2)(1

2 |Λ|
−1/2ϵµνσJµ ∧ Jν ∧ Pσ + |Λ|−3/2P0 ∧ P1 ∧ P2

)
,

[[rV ′′ , rV ′′ ]] = γ2
(
J0 ∧ J1 ∧ J2 −

1
2ΛϵµνσJµ ∧ Pν ∧ Pσ

− 1
2 |Λ|

−1/2ϵµνσJµ ∧ Jν ∧ Pσ − |Λ|−3/2P0 ∧ P1 ∧ P2

)
, (2.15)

where the two invariants of the so(2, 2) algebra have the same form as the ones of so(3, 1)
in (2.10). In contrast to the de Sitter case, rIII contains two copies of the spacelike κ-
deformation, parametrized by γ+ and γ− (which differ by an automorphism), and the
corresponding terms of rIII′ are two copies of the timelike κ-deformation; the lightlike κ-
deformation, parametrized by χ−, is contained in rII . Certain special cases of rIII and rIV are
associated with three possible Drinfeld double structures on anti-de Sitter algebra [67] (cf. [48]).

It was shown by us in [48] that all of the r-matrix classes of Poincaré algebra (2.6) can
be recovered by the procedure of quantum contractions in the limit Λ → 0 of r-matrices
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de Sitter:

{

Poincaré:

anti-dS:

{

rI rII rIII rIV

raIrbI raII raIII raIV

r1 r2 r3r4r5 r6 r7 r8

rI rII rIII rIVrV rIII′ rIII′′ rV ′′

raI rbI raII raIV

Λ → 0

Λ → 0

Figure 1. Quantum (Λ → 0) contractions relating all r-matrix classes for (anti-)de Sitter and
Poincaré algebras; a two-headed arrow means that a given contraction recovers the full class; double
arrows denote automorphisms of a given algebra; arrows leading to r8 are lightened to make the
diagram more legible.

associated with de Sitter or anti-de Sitter algebras (given in (2.9) and (2.11)–(2.13)). However,
some of the terms proportional to the θµν parameters, as well the γ term in r1, turn out
to be missing, i.e. not all contractions are surjective. We present these relations between
the classes corresponding to Λ > 0, Λ < 0 and Λ = 0 in figure 1, depicted on a diagram
that was not included in our previous paper.1

3 Carrollian and Galilean (quantum) contractions

3.1 Contractions of Poincaré and (a)dS algebras

As a more convenient basis to introduce the Carrollian/Galilean kinematical algebras, let
us choose

J0 := −J0 , K1/2 := −J1/2 , P0 := P0 , P1/2 := ∓P2/1 . (3.1)

The brackets of Poincaré algebra (2.4) then become

[J0, Ka] = ϵ b
a Kb , [K1, K2] = −J0 , [J0, Pa] = ϵ b

a Pb , [J0, P0] = 0 ,

[Ka, Pb] = δabP0 , [Ka, P0] = Pa , [P1, P2] = 0 , [P0, Pa] = 0 (3.2)

(a = 1, 2 and indices are raised with Euclidean metric). If we denote J := J0, Ta := Pa

and define the rescaled generators

Qa := c Ka , T0 := c P0 , (3.3)

it allows us to perform a contraction of Poincaré (Lie) algebra by taking the limit c → 0
of (3.2) to obtain the brackets of 2+1-dimensional Carroll algebra:

[J, Qa] = ϵ b
a Qb , [Q1, Q2] = 0 , [J, Ta] = ϵ b

a Tb , [J, T0] = 0 ,

[Qa, Tb] = δabT0 , [Qa, T0] = 0 , [T1, T2] = 0 , [T0, Ta] = 0 . (3.4)
1We also overlooked in [48] that the contractions from the adS ra

II to r4 and from rV to r5 are not surjective,
as can be shown using appropriate automorphisms of iso(2, 1).
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(Technically, the generators Qa and T0 in this limit should be denoted using other symbols,
since they are no longer the rescaled generators of Poincaré algebra but generators of Carroll
algebra. However, such a simplification of notation should not lead to confusion.) One of the
interesting properties of this algebra, which follows from what we discussed in Introduction, is
that it can be embedded as a subalgebra of Poincaré algebra in 3+1 dimensions, see appendix A.
On the other hand, Carroll algebra possesses automorphisms without counterparts in the
Poincaré case of the same dimension, which mix generators of boosts and spatial translations:

Qa → α Qa + β Ta , Ta → α Ta − β Qa , (3.5)

where α2 + β2 = 1. Both facts turn out to be relevant from the perspective of quantum
deformations.

On the other hand, introducing the rescaled generators

Qa := c−1Ka , Ta := c−1Pa (3.6)

and denoting J := J0, T0 := P0, we may perform another contraction of Poincaré algebra —
take the limit c → ∞ of (3.2) to obtain the brackets of 2+1-dimensional Galilei algebra:

[J, Qa] = ϵ b
a Qb , [Q1, Q2] = 0 , [J, Ta] = ϵ b

a Tb , [J, T0] = 0 ,

[Qa, Tb] = 0 , [Qa, T0] = Ta , [T1, T2] = 0 , [T0, Ta] = 0 . (3.7)

(The notation is kept the same as for Carroll algebra but it will be clear from the context which
algebra we consider at a given moment.) Calculating the cobrackets determined by all possible
products of generators, we find that the algebra has the following antisymmetric split-Casimir

Cs1 := Q1 ∧ T1 + Q2 ∧ T2 . (3.8)

As we mentioned while defining the cobracket (2.1) for a coboundary Lie bialgebra, such a
tensor gives a trivial contribution to a classical r-matrix and hence we will always drop it
in the Galilean contractions. This is in line with the observation made in [76] in the case
of 3+1 spacetime dimensions, where a r-matrix for Galilei algebra (as well as for (anti-)de
Sitter-Galilei algebra — see below) that consists only of the terms analogous to (3.8) was
shown to lead to the vanishing cobrackets.

The change of basis (3.1) applied to the brackets of (anti-)de Sitter algebra (2.8) gives

[J0, Ka] = ϵ b
a Kb , [K1, K2] = −J0 , [J0, Pa] = ϵ b

a Pb , [J0, P0] = 0 ,

[Ka, Pb] = δabP0 , [Ka, P0] = Pa , [P1, P2] = Λ J0 , [P0, Pa] = −Λ Ka . (3.9)

If we redefine the generators as in (3.3) and take the Carroll limit (c → 0), it leads to
(anti-)de Sitter-Carroll algebra, also known as the “para-Euclidean” in the case of Λ > 0,
and “para-Poincaré” in the case of Λ < 0:

[J, Qa] = ϵ b
a Qb , [Q1, Q2] = 0 , [J, Ta] = ϵ b

a Tb , [J, T0] = 0 ,

[Qa, Tb] = δabT0 , [Qa, T0] = 0 , [T1, T2] = Λ J , [Ta, T0] = Λ Qa . (3.10)

In the limit Λ → 0, the brackets (3.10) reduce to Carroll algebra (3.4).
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Analogously, rescaling the generators of (3.9) as in (3.6) and taking the Galilei limit
(c → ∞), we obtain (anti-)de Sitter-Galilei algebra, also known as the “expanding Newton-
Hooke” in the case of Λ > 0 and “oscillating Newton-Hooke” in the case of Λ < 0:

[J, Qa] = ϵ b
a Qb , [Q1, Q2] = 0 , [J, Ta] = ϵ b

a Tb , [J, T0] = 0 ,

[Qa, Tb] = 0 , [Qa, T0] = Ta , [T1, T2] = 0 , [Ta, T0] = Λ Qa . (3.11)

Galilei algebra (3.7) is recovered in the limit Λ → 0. Each of the above Galilean algebras
with Λ ̸= 0 has an antisymmetric split-Casimir of the same form (3.8) as for Galilei algebra,
as well as another one

Cs2 := Q1 ∧ Q2 − Λ−1T1 ∧ T2 . (3.12)

What will be also relevant to our investigations is that both algebras possess automorphisms
mixing generators of boosts and spatial translations:

Q1/2 7→ α Q1/2 ± βΛ−1/2T2/1 , T1/2 7→ α T1/2 ± βΛ1/2Q2/1 , (3.13)

where α2 + β2 = 1, for Λ > 0 and Qa 7→ |Λ|−1/2Ta, Ta 7→ −|Λ|1/2Qa for Λ < 0.

3.2 Quantum contractions of r-matrices for Poincaré algebra

We will first calculate the Carrollian and Galilean quantum contractions of the r-matrices (2.5).
The word “quantum” in this context does not mean that the procedure is in some sense quan-
tum but it refers to the (quantum) deformation parameters (which control the quantization
of a Lie bialgebra, leading to a Hopf algebra). Namely, performing (quantum) contractions of
r-matrices involves also the appropriate rescalings of their parameters, so that the contraction
limits are well-defined (cf. [48] for quantum contractions in the limit of Λ → 0). In the
Carrollian case, a given parameter q usually needs to be rescaled either to q̃ := q/c or to
q̂ := q/c2. As the result, we obtain the following quantum contraction limits:

rC2(γ̂, η̃; {θµν}) = γ̂ Q2 ∧ T0 − η̃ Q1 ∧ T2 + rC8({θµν}) , γ̂ ̸= 0 ∨ η̃ ̸= 0 ,

rC3(γ̃, η̃; {θµν}) = γ̃ (Q1 ∧ T1 + Q2 ∧ T2) − η̃ J ∧ T0 + rC8({θµν}) , γ̃ ̸= 0 ∨ η̃ ̸= 0 ,

rC6(γ̂, γ̃; {θµν}) = γ̂ Q2 ∧ T0 − γ̃ (J ∧ T0 + Q1 ∧ T2 − Q2 ∧ T1) + rC8({θµν})
∼= −γ̃ (J ∧ T0 + Q1 ∧ T2 − Q2 ∧ T1) + rC8({θµν}) = rC6(γ̃; {θµν}) ,

rC8(θ̃01, θ12, θ̃20) = θ̃01T0 ∧ T2 + θ12T1 ∧ T2 + θ̃20T0 ∧ T1 . (3.14)

The most general contraction of r6 required the appropriate splitting and rescaling of the
parameter ς, ς = (ς − γ) + γ ≡ c2γ̂ + c γ̃ (if ς = 0, the contraction limit becomes rC2(γ̂, η̃ = 0)
instead). This is consistent with the fact that (as mentioned below (2.5)) γ ̸= 0, hence γ̃ ̸= 0,
while the value of γ̂ is left unconstrained. However, the automorphism J 7→ J + γ̂/(2γ̃) Q2,
T1 7→ T1 − γ̂/(2γ̃) T0 allows us to subsequently simplify the form of r6 and get rid of γ̂,
which turns out to be redundant.

The list (3.14) does not include the classes of r-matrices that ceased to be independent,
i.e. became subsumed into other ones. Firstly, we note rC5(χ̂) = rC4(χ̂, ς̂ = 0). Secondly,
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acting with an appropriate automorphism (describing a rotation of the spatial axes) and
since one of the parameters is again redundant, it can be shown that

rC4(χ̂, ς̂) = − (χ̂ Q1 + ς̂ Q2) ∧ T0 ∼= rC2(sgnχ̂
√

χ̂2 + ς̂2, η̃ = 0) . (3.15)

Thirdly, a Carroll algebra automorphism (3.5) with α = 0, β = 1 imposes the relations

rC7(γ̃) = −γ̃ (J ∧ T0 − Q1 ∧ T2 + Q2 ∧ T1) ∼= rC6(γ̃; {θµν = 0}) ,

rC1(χ̂, γ̃ ̸= 0) = χ̂ Q1 ∧ Q2 − γ̃ (J ∧ T0 − Q1 ∧ T2 + Q2 ∧ T1) ,

∼= rC6(γ̃; θ01 = 0, χ̂, θ20 = 0) ,

rC1(χ̂, γ̃ = 0) ∼= rC8(θ̃01 = 0, χ̂, θ̃20 = 0) ,

rC8(θ̃01, θ12, θ̃20) ∼= θ12Q1 ∧ Q2 + (θ̃20Q1 + θ̃01Q2) ∧ T0 . (3.16)

In order to remove the overlapping that now appears between rC2 and rC8, let us assume (in
addition to the conditions given below (2.5)) that θ12 ̸= 0 in rC8.

We also calculate (either explicitly or just by performing the Carrollian quantum con-
tractions of the r.h.s.-s of (2.7)) that the r-matrices rC2 and rC8 satisfy the homogeneous
Yang-Baxter equation, while for the remaining ones the equations remain inhomogeneous:

[[rC3, rC3]] = 2γ̃2 Qa ∧ Ta ∧ T0 + 4γ̃ θ12 T0 ∧ T1 ∧ T2

[[rC6, rC6]] = −2γ̃2 Qa ∧ Ta ∧ T0 . (3.17)

As expected, Qa ∧ Ta ∧ T0 and T0 ∧ T1 ∧ T2 are invariants of Carroll algebra but its peculiar
feature is that automorphisms (3.5) allow to transform the second invariant into a linear
combination including two additional invariants,

T0 ∧ T1 ∧ T2 ∼= α2T0 ∧ T1 ∧ T2 + β2T0 ∧ Q1 ∧ Q2 + αβ T0 ∧ (Q1 ∧ T2 − Q2 ∧ T1) . (3.18)

Another thing to note is a reduction of r2, describing the (twisted) κ-deformation in a spatial
direction, to a triangular r-matrix rC2, while r3, describing the analogous deformation in
the time direction, does not simplify in the same way.

In the Galilean case, relevant rescalings of a given deformation parameter q are q̃ := c q

and q̂ := c2q. After the c → ∞ contractions of (2.5) are performed, our results are simplified
by dropping the (irrelevant) terms proportional to the antisymmetric split-Casimir (3.8),
i.e. it makes some r-matrices depend on fewer parameters than their Poincaré progenitors.
Therefore, we obtain the following quantum contraction limits:

rG1(χ̂, γ̂) = χ̂ Q1 ∧ Q2 + γ̂ (Q1 ∧ T2 − Q2 ∧ T1) , χ̂ ̸= 0 ,

rG2(γ̃, η̂; {θµν}) = γ̃ (J ∧ T1 + Q2 ∧ T0) − η̂ Q1 ∧ T2 + rG8({θµν}) , γ̃ ̸= 0 ,

rG3(η; {θµν}) = −η J ∧ T0 + rG8({θµν}) ,

rG5(χ̂; {θµν}) = χ̂ Q1 ∧ T1 + rG8({θµν}) ,

rG6(γ̂, ς̂; {θµν}) = −γ̂ Q1 ∧ T2 + ς̂ Q2 ∧ T1 + rG8({θµν}) , γ̂ ̸= 0 ∨ ς̂ ̸= 0 ,

rG8(θ̃01, θ̂12, θ̃20) = θ̃01T0 ∧ T2 + θ̂12T1 ∧ T2 + θ̃20T0 ∧ T1 . (3.19)
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c → 0

c → ∞

Figure 2. Quantum (c → 0 and c → ∞) contractions relating all r-matrix classes for Poincaré algebra,
and those obtained for Carroll and Galilei algebras; a dashed line means that a given contraction
leads to a subclass of a larger class.

The list is given without the r-matrix classes that become subsumed into other ones, to
wit rG4(ς̂) = rG6(γ̂ = 0, ς̂) and rG7(γ̂) = −rG6(γ̂, γ̂; {θµν = 0}). Moreover, we modified
restrictions on the parameters of rG2 and rG6 with respect to the ones given below (2.5), so
that the classes contain all possible cases but remain disjoint.

Interestingly, we find (either by an explicit calculation or by performing the Galilean
quantum contractions of the r.h.s.-s of (2.7)) that the above r-matrices satisfy the homogeneous
Yang-Baxter equation in all cases, apart from

[[rG2, rG2]] = −2γ̃2(−J ∧ T1 ∧ T2 + Qa ∧ Ta ∧ T0) + 4γ̃ θ̃20 T0 ∧ T1 ∧ T2 . (3.20)

−J ∧ T1 ∧ T2 + Qa ∧ Ta ∧ T0 and T0 ∧ T1 ∧ T2 are the two invariants of Galilei algebra.
Conversely to the Carrollian case, it is the r-matrix r3, describing the (twisted) κ-deformation
in the time direction, that now reduces to a triangular r-matrix rG3. We will comment
on this fact in conclusions in section 6. The results of this subsection are illustrated by a
diagram in figure 2. For clarity of the figure, we do not show that r1(γ = 0) contracts to
rC8, while r6(ς = 0) and r8(θ12 = 0) contract to rC2, as well as r2(γ = 0) contracts to rG6,
while r3(η = 0) and r4(ς = 0) contract to rG8.

4 (a)dS-Carroll algebras and their quantum deformations

4.1 The complete classification of adSC and dSC r-matrices

Every kinematical algebra considered in this paper generates the group of symmetries of
a different homogeneous space, i.e. a different spacetime. However, the algebras alone
(irrespective of their physical interpretation) may in some cases be equivalent. Indeed, adS-
Carroll algebra is isomorphic to Poincaré algebra (this is true in any number of dimensions and
explains the name “para-Poincaré”), since the brackets (3.2) can be transformed into (3.10)
with Λ < 0 via a map

Ka 7→ |Λ|−1/2Ta , Pa 7→ −|Λ|1/2Qa , J0 7→ J , P0 7→ T0 (4.1)

(or instead with Ka 7→ −|Λ|−1/2Ta, Pa 7→ |Λ|1/2Qa). It straightforwardly follows that
the complete classification of r-matrices for adS-Carroll algebra is obtained by expressing
the classification for Poincaré algebra (2.6) in the basis (3.1) and acting on it with (4.1).
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Moreover, as in the Poincaré case, the classification actually contains all possible Hopf-
algebraic deformations of the algebra. To our knowledge, these simple facts have not been
noticed before.

After applying the above isomorphism, we rescale all θ parameters by |Λ| and the
remaining ones, except χ in r1, by |Λ|1/2. In such a way, we obtain (for brevity, let us
denote T̃µ ≡ |Λ|−1/2Tµ):

r1′(χ, γ) = χ (J + T̃1) ∧ T̃2 − γ(J ∧ T̃0 + Q1 ∧ T̃2 − Q2 ∧ T̃1) ,

r2′(γ, η, θ20) = −γ(J ∧ Q1 + T̃0 ∧ T̃2) − η Q2 ∧ T̃1 − θ20Q1 ∧ T̃0 ,

r3′(γ, η, θ12) = γ(Q1 ∧ T̃1 + Q2 ∧ T̃2) − η J ∧ T̃0 + θ12Q1 ∧ Q2 ,

r4′(χ, ς, θ) = χ
(
(Q1 + T̃0) ∧ T̃1 + Q2 ∧ (J + T̃2)

)
− ς (J + T̃2) ∧ (Q1 + T̃0)

− θ Q2 ∧ (Q1 − T̃0) ,

r5′(χ, θ01, θ12) = χ (Q1 + T̃0) ∧ T̃1 + θ12Q1 ∧ Q2 + θ01Q2 ∧ T̃0 ,

r6′(γ, ς, θ, θ20) = −γ(J ∧ Q1 + T̃0 ∧ T̃2 + Q2 ∧ T̃1) − ς (J + T̃2) ∧ (Q1 + T̃0)
− θ Q2 ∧ (Q1 − T̃0) − θ20Q1 ∧ T̃0 ,

r7′(γ) = −γ(J ∧ T̃0 + Q1 ∧ T̃2 − Q2 ∧ T̃1) ,

r8′(θ01, θ12, θ20) = θ12Q1 ∧ Q2 + θ01Q2 ∧ T̃0 + θ20Q1 ∧ T̃0 . (4.2)

The restrictions on the values of parameters are also inherited from (2.6), i.e. γ ̸= 0 ∨ η ̸= 0
and χ ̸= 0 ∨ ς ̸= 0, as well as γ ̸= η (in r2′), χ ̸= 0 (in r1′ and r5′) and γ ̸= 0 (in r6′ and r7′).
Similarly, we find that the corresponding Yang-Baxter equations become

[[r1′ , r1′ ]] = [[r7′ , r7′ ]] = 2γ2(J ∧Q1∧Q2 +Λ−1Qa∧Ta∧T0
)
,

[[r2′ , r2′ ]] = [[r6′ , r6′ ]] = 2γ2(J ∧Q1∧Q2 +Λ−1Qa∧Ta∧T0
)
+4γ θ20|Λ|−1/2Q1∧Q2∧T0 ,

[[r3′ , r3′ ]] =−2γ2(J ∧Q1∧Q2 +Λ−1Qa∧Ta∧T0
)
−4γ θ12|Λ|−1/2Q1∧Q2∧T0 ,

[[r4′ , r4′ ]] = 8χθ |Λ|−1/2Q1∧Q2∧T0 ,

[[r5′ , r5′ ]] = 2χ(θ01 +θ12)|Λ|−1/2Q1∧Q2∧T0 (4.3)

and the homogeneous one for r8′ .
A complementary observation (explaining the name “para-Euclidean”) is that dS-Carroll

algebra is isomorphic to Euclidean algebra, sometimes called the inhomogeneous Euclidean
algebra. The 3-dimensional version of the latter is iso(3) = so(3) ▷< R3 and if its brackets
are written down in the manner analogous to (3.2),

[J3, Ka] = ϵ b
a Kb , [K1, K2] = J3 , [J3, Pa] = ϵ b

a Pb , [J3, P3] = 0 ,

[Ka, Pb] = −δabP3 , [Ka, P3] = Pa , [P1, P2] = 0 , [P3, Pa] = 0 , (4.4)

we easily notice a map

Ka 7→ Λ−1/2Ta , Pa 7→ Λ1/2Qa , J3 7→ J , P3 7→ T0 (4.5)

that transforms them into (3.10) with Λ > 0.
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Meanwhile, the complete classification of classical r-matrices for iso(3), which actually
correspond to all possible Hopf-algebraic deformations of this inhomogeneous orthogonal
algebra, has also been given in [43] and can be put in the form [48]:

r1(γ, η; θ12) = −γ
(
K1 ∧ P1 + K2 ∧ P2

)
+ η J3 ∧ P3 + θ12P1 ∧ P2 ,

r2(γ) = γ
(
K1 ∧ P2 − K2 ∧ P1 + J3 ∧ P3

)
,

r3(θ01, θ12, θ20) = θ01P3 ∧ P2 + θ12P1 ∧ P2 + θ20P3 ∧ P1 , (4.6)

with the deformation parameters of r1 restricted by a condition γ ̸= 0 ∨ η ̸= 0. If we now
apply the map (4.5) to (4.6), as well as rescale all θ parameters by Λ and the remaining ones
by Λ1/2, it leads to the complete classification of r-matrices for dS-Carroll algebra:

r1′(γ, η; θ12) = γ
(
Q1 ∧ T̃1 + Q2 ∧ T̃2

)
+ η J ∧ T̃0 + θ12Q1 ∧ Q2 ,

r2′(γ) = γ
(
J ∧ T̃0 + Q1 ∧ T̃2 − Q2 ∧ T̃1

)
,

r3′(θ01, θ12, θ20) = θ12Q1 ∧ Q2 − θ01Q2 ∧ T̃0 − θ20Q1 ∧ T̃0 (4.7)

(where, again, γ ̸= 0 ∨ η ̸= 0 in r1′). We find that r3′ solves the homogeneous Yang-Baxter
equation, while in other cases the equations have the form

[[r1′ , r1′ ]] = 2γ2(J ∧ Q1 ∧ Q2 + Λ−1Qa ∧ Ta ∧ T0
)
− 4γ θ12|Λ|−1/2Q1 ∧ Q2 ∧ T0 ,

[[r2′ , r2′ ]] = −2γ2(J ∧ Q1 ∧ Q2 + Λ−1Qa ∧ Ta ∧ T0
)

. (4.8)

The next two subsections will show to what extent the classifications (4.2) and (4.7) can be
recovered as Carrollian quantum contraction limits of r-matrices of (anti-)de Sitter algebra,
which have been recalled in subsection 2.2.

4.2 Carrollian quantum contractions in the de Sitter case

Let us start here with the de Sitter r-matrices (2.9) and perform the procedure of quantum
c → 0 contractions in the same manner it was done for deformations of Poincaré algebra
in (3.14). As the result, we obtain the following independent r-matrix classes:

rCII(χ̂, ς̂) = ς̂

2 Q1 ∧ Q2 −
χ̂

2 Λ−1/2Q2 ∧ T0 ,

rCIII(γ̂−, γ̃+, η̃) = γ̂−Q1 ∧ Q2 + γ̃+Λ−1/2(Q1 ∧ T1 + Q2 ∧ T2
)
− η̃

2 Λ−1/2J ∧ T0 ,

rCIV (γ̂, γ̃) = γ̂ Q1 ∧ Q2 + γ̃ Λ−1/2(J ∧ T0 + Q1 ∧ T2 − Q2 ∧ T1
)

∼= γ̃ Λ−1/2(J ∧ T0 + Q1 ∧ T2 − Q2 ∧ T1
)

= rCIV (γ̃) . (4.9)

The class rCI is not listed, since it becomes a subclass of rCII , i.e. rCI(χ̂) = rCII(2χ̂, ς̂ = 0).
Similarly to the Poincaré r-matrix r6, the most general contraction of rIV was derived due to
the appropriate splitting and rescaling of ς, ς = (ς +2γ)−2γ ≡ 2c2γ̂−2c γ̃, and the result was
subsequently simplified by an automorphism of de Sitter-Carroll algebra, Ta 7→ Ta−γ̂/(2γ̃) Qa,
revealing that the parameter γ̂ is actually redundant.

Our previous study [48] of quantum Λ → 0 contractions shows that one should also
take into account that each of the de Sitter r-matrices (2.9) can be transformed via certain
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automorphisms of de Sitter algebra so(3, 1) so that it changes the form of their dependence
on different types of the generators (i.e., rotation, boosts and time/spatial translations). In
principle, this could lead to the Carrollian (quantum) contraction limits not equivalent to any
of (4.9). The relevant automorphisms are the ones acting like rotations of the third spatial
axis in the embedding 3+1-dimensional space and we choose their representative:

J0/2 7→ Λ−1/2P1/0 , J1 7→ −J2 , P0/2 7→ −Λ1/2J1/0 , P1 7→ −P2 , (4.10)

which transforms (2.9) into

ra
II(χ, ς) = χ

2
(
J1 ∧

(
P̃0 − P̃2

)
−

(
J0 − J2

)
∧ P̃1

)
+ ς

2
(
J0 − J2

)
∧
(
P̃0 − P̃2

)
,

ra
III(γ−, γ+, η) = γ−

(
J0 ∧ P̃2 − J2 ∧ P̃0

)
− γ+

(
J0 ∧ J2 − P̃0 ∧ P̃2

)
+ η

2 J1 ∧ P̃1 ,

ra
IV (γ, ς) = γ

(
J0 ∧ P̃2 − J2 ∧ P̃0 − J1 ∧ P̃1

)
+ ς

2
(
J0 − J2

)
∧
(
P̃0 − P̃2

)
. (4.11)

The above r-matrices have the Carrollian contraction limits

rCIIa(χ̂, ς̂) = −1
2 Λ−1/2(χ̂ Q1 − ς̂ Q2

)
∧ T0 ,

rCIIIa(γ̂−, γ̃+, η̃) = γ̂−Λ−1/2Q2 ∧ T0 − γ̃+
(
J ∧ Q2 + Λ−1T0 ∧ T1

)
− η̃

2 Λ−1/2Q1 ∧ T2 ,

rCIV a(γ̂, γ̃) = γ̂ Λ−1/2Q2 ∧ T0 + γ̃ Λ−1/2(J ∧ T0 + Q1 ∧ T2 − Q2 ∧ T1
)

. (4.12)

However, as one can check, the so(3, 1) automorphism (4.10) is inherited by de Sitter-Carroll
algebra, and acting with it (expressed in the basis (3.10)) on rCII , rCIII and rCIV , we find
out that the latter are equivalent to rCIIa, rCIIIa and rCIV a, respectively. The derivation of
the expressions (4.12) is still illuminating, since they provide the standard form of r-matrices
describing light- and spacelike κ-deformations, see section 6, as well as will allow us to recover
additional cases of r-matrices via quantum Λ → 0 contractions, see figure 3. Meanwhile,
applying the same kind of automorphisms to rI , we are led to the contraction limits that
explicitly belong to the class rCII .

Finally, comparing the results of this subsection (4.9) with the complete classification
for dS-Carroll algebra (4.7), we can immediately identify:

rCIII(γ̂−, γ̃+, η̃) ∼= r1′(γ = γ̃+, η = −η̃/2; θ12 = γ̂−) ,

rCIV (γ̃) ∼= r2′(γ = γ̃) ,

rCII(χ̂, ς̂) ∼= r3′(θ01 = χ̂/2, θ12 = ς̂/2, θ20 = 0) . (4.13)

In conclusion, quantum contractions allowed us to recover all r-matrices in full generality
(θ20 in r3′ can always be brought to zero by an automorphism). If the same contractions are
applied to the Yang-Baxter equations (2.10), it naturally leads to the equations (4.8) satisfied
by r1′ , r2′ and r3′ , respectively, up to the above renaming of parameters.
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4.3 Carrollian quantum contractions in the anti-de Sitter case

Performing such contractions of the anti-de Sitter r-matrices (2.11)–(2.13) analogously to
how it was done in (3.14) and in the previous subsection, we obtain:

rCI(χ) = χ
(
J − |Λ|−1/2T1

)
∧ |Λ|−1/2T2 ,

rCII(χ̂+, χ̃−, ς̃) = − χ̂+
2 Q1 ∧

(
Q2 + |Λ|−1/2T0

)
+ χ̃−

2
((

Q2 + |Λ|−1/2T0
)
∧ |Λ|−1/2T2 − Q1 ∧

(
J − |Λ|−1/2T1

))
− ς̃

2
(
J − |Λ|−1/2T1

)
∧
(
Q2 + |Λ|−1/2T0

)
∼=

χ̃−
2

((
Q2 + |Λ|−1/2T0

)
∧ |Λ|−1/2T2 − Q1 ∧

(
J − |Λ|−1/2T1

))
− ς̃

2
(
J − |Λ|−1/2T1

)
∧
(
Q2 + |Λ|−1/2T0

)
= rCII(χ̃−, ς̃) ,

rCV (γ̂, ϱ̂+, ϱ̃−) = − γ̂

2 |Λ|−1/2Q2 ∧ T0 −
1
2
(
ϱ̂+Q1 − ϱ̃−|Λ|−1/2T2

)
∧
(
Q2 + |Λ|−1/2T0

)
∼= −1

2
(
ϱ̂+Q1 − ϱ̃−|Λ|−1/2T2

)
∧
(
Q2 + |Λ|−1/2T0

)
= rCV (ϱ̂+, ϱ̃−) (4.14)

and

rCIV (γ̃, ς̃) = γ̃
(
J ∧ Q2 + Λ−1T0 ∧ T1 − |Λ|−1/2Q1 ∧ T2

)
− ς̃

2
(
J − |Λ|−1/2T1

)
∧
(
Q2 + |Λ|−1/2T0

)
,

rCIII(γ̂+, γ̃−, η̃) = −γ̂+|Λ|−1/2Q2 ∧ T0 + γ̃−
(
J ∧ Q2 + Λ−1T0 ∧ T1

)
+ η̃

2 |Λ|−1/2Q1 ∧ T2 ,

rCIII′(γ̃+, γ̂−, η̃) = γ̂−Q1 ∧ Q2 − γ̃+|Λ|−1/2(Q1 ∧ T1 + Q2 ∧ T2
)
− η̃

2 |Λ|−1/2J ∧ T0 . (4.15)

The form of classes rCII and rCV was simplified here by anti-de Sitter-Carroll automorphisms
J 7→ J − χ̂+/χ̃− Q2, T1 7→ T1 + χ̂+/χ̃− T0 and Ta 7→ Ta + γ̂/ϱ̃−Qa, respectively, which also
revealed that the parameters χ̂+ and γ̂ are actually redundant. The contraction limits of
rIII′′ and rV ′′ are omitted, since both of them will turn out to be equal to rCIIa derived
below (up to a redefinition of parameters).

Namely, as in the de Sitter case before, we should check whether acting with so(2, 2)
algebra automorphisms on the anti-de Sitter r-matrices (2.11)–(2.13) allows us to find any
additional Carrollian (quantum) contraction limit. In this context, it needs to be mentioned
that the 4D homogeneous space of the Lie group generated by the so(2, 2) algebra admits
the flat metric (−1, 1,−1, 1), while the 3D anti-de Sitter spacetime can be embedded in this
space as a hypersurface orthogonal to a timelike or a spacelike axis. The automorphisms
relevant for the considered extension of quantum contractions describe a change of that axis
(cf. [48]) and a particular example of them is:

J1/2 7→ ±|Λ|−1/2P1/2 , J0 7→ −J0 , P1/2 7→ ±|Λ|1/2J1/2 , P0 7→ −P0 , (4.16)
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Examining all r-matrix classes, we find that it is sufficient to apply (4.16) to rII and rIV ,
which then transform into

ra
II(χ+, χ−, ς) = χ+

2
((
J0 − J2

)
∧ J1 − P̃1 ∧

(
P̃0 − P̃2

))
+ χ−

2
((
J0 − J2

)
∧ P̃1 − J1 ∧

(
P̃0 − P̃2

))
− ς

2
(
J0 − J2

)
∧
(
P̃0 − P̃2

)
,

ra
IV (γ, ς) = γ

(
J2 ∧ P̃0 − J0 ∧ P̃2 + J1 ∧ P̃1

)
− ς

2
(
J0 − J2

)
∧
(
P̃0 − P̃2

)
. (4.17)

The Carrollian contraction limits of ra
II and ra

IV have the form

rCIIa(χ̂+, χ̂−, ς̂) = χ̂+
2 Q1 ∧ Q2 + 1

2 |Λ|−1/2(χ̂−Q1 − ς̂ Q2
)
∧ T0 ,

rCIV a(γ̃, γ̂) = −γ̃ |Λ|−1/2(J ∧ T0 + Q1 ∧ T2 − Q2 ∧ T1
)
− γ̂ |Λ|−1/2Q2 ∧ T0

∼= −γ̃ |Λ|−1/2(J ∧ T0 + Q1 ∧ T2 − Q2 ∧ T1
)

= rCIV a(γ̃) . (4.18)

In contrast to the automorphism (4.10) of de Sitter(-Carroll) algebra, the automorphism (4.16)
does not correspond to an automorphism of anti-de Sitter-Carroll algebra and hence (4.18) pro-
vides genuinely new cases. As we already mentioned, rCIIa is actually the same r-matrix class
as the previously omitted rCIII′′ and rCV ′′ . Explicitly, rCIII′′(γ̂, ˆ̄γ, η̂) = rCIIa(γ̂, ˆ̄γ/2, η̂/2)
and rCV ′′(γ̂, ˆ̄χ, ρ̂) = rCIIa(γ̂ − ˆ̄χ/2,− ˆ̄χ/2, ρ̂/2). The difference between rCIV and rCIV a

is evident; the latter was obtained via the splitting and rescaling of ς analogous to rCIV

of de Sitter-Carroll algebra (4.9), as well as subsequently simplified by the automorphism
J 7→ J − γ̂/(2γ̃) Q2, T1 7→ T1 + γ̂/(2γ̃) T0 (the parameter γ̂ turns out to be redundant). For
completeness, let us also note that if rI is transformed by appropriate so(2, 2) automorphisms
of the same kind as (4.16), its contraction limit will belong to the class rCIIa or rCV .

The inhomogeneous Yang-Baxter equations satisfied by the r-matrices (4.15), (4.18)
have the form

[[rCIV , rCIV ]] = [[rCIV a, rCIV a]] = 2γ̃2(J ∧ Q1 ∧ Q2 + Λ−1Qa ∧ Ta ∧ T0
)

, (4.19)

[[rCIII , rCIII ]] = 2γ̃2
−
(
J ∧ Q1 ∧ Q2 + Λ−1Qa ∧ Ta ∧ T0

)
− 4γ̃−γ̂+|Λ|−1/2Q1 ∧ Q2 ∧ T0 ,

[[rCIII′ , rCIII′ ]] = −2γ̃2
+
(
J ∧ Q1 ∧ Q2 + Λ−1Qa ∧ Ta ∧ T0

)
+ 4γ̃+γ̂−|Λ|−1/2Q1 ∧ Q2 ∧ T0 ,

while the equation is homogeneous in the remaining cases of (4.14), (4.18). The r.h.s.-s
of these equations consist of the same kind of terms as in (4.3), in agreement with the
expectation that the obtained quantum contraction limits are equivalent to the corresponding
(sub)classes of r-matrices from our complete classification (4.2). Indeed, a direct comparison
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dS:

dSC:

Carroll:

adSC:

adS:

rIrIIrIII rIV

r3′∼=rCIIar1′ ∼= rCIIIa r2′

rC2rC3 rC6rC8

r1′r4′ r8′r2′ r6′ r7′r5′r3′

rIrIIrIII rIVrVrIII′ rIII′′ rV ′′

c → 0

Λ → 0

Λ → 0

c → 0

Figure 3. Quantum (c → 0 and Λ → 0) contractions relating all r-matrix classes for de Sitter and
anti-de Sitter algebras, all of those for dS-Carroll and adS-Carroll algebras, and those obtained for
Carroll algebra; a two-headed arrow means that a given c → 0 contraction recovers the full class (i.e.,
it is surjective).

shows that we can identify:

rCI(χ) ∼= r1′(−χ, γ = 0) ,

rCII(χ̃−, ς̃) ∼= r4′(χ = χ̃−/2, ς = ς̃/2, θ = 0) ,

rCIIa(χ̂+, χ̂−, ς̂) ∼= r8′(θ01 = ς̂/2, θ12 = χ̂+/2, θ20 = −χ̂−/2) ,

rCIII(γ̂+, γ̃−, η̃) ∼= r2′(γ = γ̃−, η = η̃/2, θ20 = −γ̂+) ,

rCIII′(γ̃+, γ̂−, η̃) ∼= r3′(γ = −γ̃+, η = η̃/2, θ12 = γ̂−) ,

rCIV (γ̃, ς̃) ∼= r6′(γ = −γ̃, ς = ς̃/2, θ = 0, θ20 = 0) ,

rCIV a(γ̃) ∼= r7′(γ = γ̃) ,

rCV (ϱ̂+, ϱ̃−) ∼= r5′(χ = −ϱ̃−/2, θ01 = ϱ̂+/2, θ12 = −ϱ̂+/2) . (4.20)

In most of the cases, the identification is found after one acts with an automorphism
describing an appropriate change of spatial axes. The conclusion is that (quantum) Carrollian
contractions lead us to every class of the classification (4.2). However, in contrast to the
contractions relating deformations of de Sitter and de Sitter-Carroll algebras, they fail to
recover some terms in four classes: r1′ , r4′ and r6′ , as well as r5′ , for which θ12 = −θ01. This
is reflected in differences between the corresponding Yang-Baxter equations (4.3) and (4.19).
On the other hand, such a situation is similar to what we found in [48], comparing the
complete classification for Poincaré algebra with the Λ → 0 quantum contraction limits of
the complete classification for (anti-)de Sitter algebra (depicted in figure 1), where there
was an even bigger number of the unrecovered terms.

Our discussion of classical r-matrices (characterizing possible bialgebras and hence
quantum deformations) for the Carrollian kinematical algebras should be closed by considering
the link connecting all of these algebras, which is the limit Λ → 0. Namely, one may ask
how the list of Carroll (Λ = 0) r-matrices (3.14) obtained from the classification of Poincaré
r-matrices via (quantum) c → 0 contractions compares to the results of (quantum) Λ → 0
contractions applied to the classification of (anti-)de Sitter-Carroll r-matrices (4.2)/(4.7).
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Since the procedure follows the same patterns as for other contractions discussed in the
current paper or in [48], let us restrict to presenting the results on a diagram. We only
need to mention that the contraction of r6′ is performed with a splitting and rescaling of ς:
ς = (ς − γ) + γ ≡ |Λ| γ̂ + |Λ|1/2γ̃. The diagram in figure 3 depicts all c → 0 contractions
relating the (anti-)de Sitter and (anti-)de Sitter-Carroll r-matrices, as well as the most general
Λ → 0 contractions leading from the latter to the Carroll r-matrices. For clarity of the
figure, we do not show that r1′(γ = 0) for (anti-)de Sitter-Carroll algebra contracts to rC8,
while r6′(ς = 0) and r8′(θ12 = 0) contract to rC2. We also do not indicate that the Λ → 0
contractions miss some terms proportional to the parameters θµν .

5 (A)dS-Galilei r-matrices from quantum contractions

Last but not least, we will turn to deriving quantum contractions in the c → ∞ limit of
r-matrices for (anti-)de Sitter algebra, which will provide us with r-matrices for (anti-)de
Sitter-Galilei algebra (3.11). Based on the cases of de Sitter-Carroll and anti-de Sitter-Carroll
algebras, it may be tentatively expected that such contractions allow us to recover the
(unknown) complete classification for each of the considered algebras, possibly up to a few
missing terms in some classes.

5.1 The de Sitter case

Performing Galilean quantum contractions of the de Sitter r-matrices (2.9) in the same
manner it was done for Poincaré algebra in (3.19), as well as dropping the (irrelevant) terms
proportional to the antisymmetric split-Casimirs (3.8) and (3.12) (hence some r-matrices
depend on fewer parameters than their de Sitter progenitors), we are left with the following
independent classes:

rGI(χ̃) = −χ̃
(
Q2 − Λ−1/2T2

)
∧ Λ−1/2T0 ,

rGII(χ̃, ς̂) = χ̃

2
(
J ∧

(
Q1 − Λ−1/2T1

)
−

(
Q2 − Λ−1/2T2

)
∧ Λ−1/2T0

)
+ ς̂

2
(
Q1 − Λ−1/2T1

)
∧
(
Q2 − Λ−1/2T2

)
,

rGIII(η) = −η

2 Λ−1/2J ∧ T0 . (5.1)

The class rIV (γ, ς) reduced to rGIV (ς̂) = rGII(χ̃ = 0, ς̂).
Similarly to the case of Carrollian quantum contractions, we also need to consider if any

additional contraction limits can be obtained after the r-matrices (2.9) are first transformed by
so(3, 1) automorphisms like the one given in (4.10). Since (as one can check) the latter is not
inherited by de Sitter-Galilei algebra, this kind of automorphisms could lead to new Galilean
contraction limits. Indeed, the transformed r-matrices (4.11), as well as two additional ones,

ra
I (χ) = χJ1 ∧

(
P̃0 − P̃2

)
,

rb
I(χ) = χ

(
J0 − J1

)
∧ J2 (5.2)

(the index b denotes that we act with the inverse of (4.10), which corresponds to the choice of
another spatial axis in the embedding 3+1-dimensional space), lead to dS-Galilei r-matrices
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inequivalent to any of the previous results (5.1):

rGIa(χ̂) = −χ̂ Λ−1/2Q1 ∧ T1 ,

rGIb(χ̂) = −χ̂ Q1 ∧ Q2 ∼= −χ̂ Λ−1T1 ∧ T2 ,

rGIV a(γ̂, ς̂) = γ̂ Λ−1/2Q1 ∧ T2 + ς̂

2 Λ−1/2Q2 ∧ T1 ,

rGIIIa(γ̃−, γ̃+, η̂) = γ̃−Λ−1/2(J ∧ T1 + Q2 ∧ T0
)
− γ̃+

(
J ∧ Q2 + Λ−1T0 ∧ T1

)
− η̂

2 Λ−1/2Q1 ∧ T2 . (5.3)

We also wrote here an alternative form of rGIb, given by the dS-Galilei algebra automor-
phism (3.13) with β = 1. Moreover, acting with the automorphism (4.10) (or its inverse),
one can obtain a contraction limit of rII that belongs to the class rGIV a. (These subtleties
will be relevant for the diagram in figure 4).

All of the r-matrices (5.1), (5.3) satisfy the homogeneous Yang-Baxter equation, with
the notable exception of

[[rGIIIa, rGIIIa]] = −2
(
γ̃2

− − γ̃2
+
)(

J ∧ Q1 ∧ Q2 − Λ−1(J ∧ T1 ∧ T2 − Qa ∧ Ta ∧ T0
))

+ 4γ̃−γ̃+Λ−1/2(J ∧ Qa ∧ Ta − Q1 ∧ Q2 ∧ T0 + Λ−1T0 ∧ T1 ∧ T2
)

. (5.4)

We have already seen the same situation for Galilei algebra in (3.20). In fact, rGIIIa is the
contraction limit of ra

III
∼= rIII , which for γ− ̸= 0 or γ+ ̸= 0 describes the (twisted, generalized)

de Sitter version of κ-deformation in a spatial direction. We will return to that in section 6.

5.2 The anti-de Sitter case

Galilean quantum contractions of the anti-de Sitter r-matrices (2.11)–(2.13) are performed
analogously to the de Sitter ones (and again, some contraction limits will depend on fewer pa-
rameters than their anti-de Sitter progenitors due to dropping of the terms proportional to the
antisymmetric split-Casimirs (3.8) and (3.12)). Consequently, we obtain independent classes:

rGI(χ̂) = −χ̂ |Λ|−1T1 ∧ T2 ,

rGIV (γ̂, ς̂) = −γ̂ |Λ|−1/2Q1 ∧ T2 −
ς̂

2 |Λ|−1/2Q2 ∧ T1 ,

rGIII′(η) = −η

2 |Λ|−1/2J ∧ T0 (5.5)

and

rGIII(γ̃−, γ̃+, η̂) = γ̃−
(
J ∧ Q2 + Λ−1T0 ∧ T1

)
− γ̃+|Λ|−1/2(J ∧ T1 + Q2 ∧ T0

)
+ η̂

2 |Λ|−1/2Q1 ∧ T2 ,

rGV (γ̃, ϱ̂+, ϱ̂−) = γ̃

2
(
J ∧ Q2 + Λ−1T0 ∧ T1 − |Λ|−1/2(J ∧ T1 + Q2 ∧ T0

))
− 1

2
(
ϱ̂+Q1 + ϱ̂−|Λ|−1/2T2

)
∧
(
Q2 + |Λ|−1/2T1

)
,

rGIII′′(˜̄γ, η̃) = −
˜̄γ
2
(
J ∧ Q2 + Λ−1T0 ∧ T1 + |Λ|−1/2(J ∧ T1 + Q2 ∧ T0

))
− η̃

2
(
J ∧ Q1 + Λ−1T0 ∧ T2 − |Λ|−1/2(J ∧ T2 + Q1 ∧ T0

))
. (5.6)
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The remaining r-matrices rII(χ+, χ−, ς) and rV ′′(γ, χ̄, ρ) reduced to rGII(ς̂) = rGIV (γ̂ = 0, ς̂)
and rGV ′′(ρ̃) ∼= rGIII′′(˜̄γ = 0, ρ̃/2) (with the help of an automorphism rotating the spatial
axes in the latter case).

In contrast to the Carrollian case, so(2, 2) algebra automorphisms that could allow us
to obtain additional contraction limits (i.e., automorphisms describing a change of axis
in the embedding 4D space, an example of which is (4.16)) turn out to be inherited by
anti-de Sitter-Galilei algebra and hence do not lead to any r-matrix not already contained
in (5.5)–(5.6). We can only note that if the contraction of rI is performed after transforming
it by (4.16) or another map of this kind, e.g.:

J0/2 7→ ∓|Λ|−1/2P0/1 , J1 7→ J2 , P0/2 7→ ±|Λ|1/2J0/1 , P1 7→ −P2 , (5.7)

the result is an alternative form of rGI , to wit

rGI(χ̂) ∼= −χ̂ Q1 ∧ Q2 ∼= χ̂ |Λ|−1/2Q1 ∧ T1 (5.8)

(which will be relevant for the diagram in figure 4).
The r-matrices (5.5) satisfy the homogeneous Yang-Baxter equation, while for (5.6) we find

[[rGIII , rGIII ]] = 2
(
γ̃2

− + γ̃2
+
)(

J ∧ Q1 ∧ Q2 − Λ−1(J ∧ T1 ∧ T2 − Qa ∧ Ta ∧ T0
))

+ 4γ̃−γ̃+|Λ|−1/2(J ∧ Qa ∧ Ta − Q1 ∧ Q2 ∧ T0 + Λ−1T0 ∧ T1 ∧ T2
)

,

[[rGV , rGV ]] = γ̃2
(
J ∧ Q1 ∧ Q2 − Λ−1(J ∧ T1 ∧ T2 − Qa ∧ Ta ∧ T0

)
+ |Λ|−1/2(J ∧ Qa ∧ Ta − Q1 ∧ Q2 ∧ T0

)
− |Λ|−3/2T0 ∧ T1 ∧ T2

)
,

[[rGIII′′ , rGIII′′ ]] = ˜̄γ2
(
J ∧ Q1 ∧ Q2 − Λ−1(J ∧ T1 ∧ T2 − Qa ∧ Ta ∧ T0

)
− |Λ|−1/2(J ∧ Qa ∧ Ta − Q1 ∧ Q2 ∧ T0

)
+ |Λ|−3/2T0 ∧ T1 ∧ T2

)
. (5.9)

Similarly as in the previous subsection, we observe that the r-matrix describing the (twisted,
generalized) κ-deformation in the time direction, i.e. rGIII′ , now satisfies the homogeneous
equation, while the one describing the (twisted, generalized) κ-deformation in a spatial
direction, i.e. rGIII , still satisfies an inhomogeneous equation. There are also two other
r-matrices being the solutions of inhomogeneous equations, rGV and rGIII′′ , obtained from
r-matrices that have no counterparts for de Sitter algebra. However, the inhomogeneity
comes from the terms of rGV and rGIII′′ that have the same form as the terms responsible
for the inhomogeneity of the equation solved by rGIII .

Let us close the discussion of classical r-matrices (characterizing coboundary bialgebras)
for the Galilean kinematical algebras in the same manner as in the Carrollian case, by
considering the limit Λ → 0. Namely, we compare the list of (Λ = 0) Galilei r-matrices (3.19)
derived from the classification of Poincaré r-matrices via (quantum) c → ∞ contractions to
the results of (quantum) Λ → 0 contractions of (anti-)de Sitter-Galilei r-matrices obtained
in (5.1), (5.3) and (5.5)–(5.6). The diagram in figure 4 depicts all c → ∞ contractions
leading from the (anti-)de Sitter to (anti-)de Sitter-Galilei r-matrices, as well as the most
general Λ → 0 contractions relating the latter with the Galilei r-matrices. As we previously
explained, additional c → ∞ contraction limits of rI , rII , rIII and rIV for de Sitter algebra
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dS:

dSG:

Galilei:

adSG:

adS:

rIrIIrIII rIV

rGI rGIarGIbrGIIrGIIIrGIIIa rGIV a

rG1rG2 rG3 rG5rG6 rG8

rGIrGIII rGIV rGVrGIII′ rGIII′′

rIrIIrIII rIV rVrIII′ rIII′′ rV ′′

c → ∞

Λ → 0

Λ → 0

c → ∞

Figure 4. Quantum (c → ∞ and Λ → 0) contractions relating all r-matrix classes for de Sitter and
anti-de Sitter algebras, those obtained for dS-Galilei and adS-Galilei algebras, and those obtained for
Galilei algebra; a dashed line means that a given c → ∞ contraction leads to a subclass of a larger class.

are obtained with the help of so(3, 1) automorphisms. Similarly, two equivalent forms of rGIb

for dS-Galilei algebra (cf. (5.3)) and three equivalent forms of rGI for adS-Galilei algebra
(cf. (5.5) and (5.8)) lead to inequivalent Λ → 0 contraction limits. We do not indicate in
the figure that the Λ → 0 contractions miss some terms proportional to the parameters θµν

and that they can not recover rG1 with γ̂ ̸= 0.

6 Conclusions

We studied classical r-matrices that characterize (coboundary) Hopf-algebraic deformations of
the Carrollian and Galilean versions of the 2+1-dimensional Lorentzian kinematical algebras,
i.e. Poincaré and (anti-)de Sitter algebras. In particular, the complete classification of
such deformations for de Sitter-Carroll/anti-de Sitter-Carroll algebra, containing three/eight
classes, is easily obtained by applying its isomorphism with Euclidean/Poincaré algebra
to the corresponding complete classification from the literature. All deformations of the
Carrollian algebras with Λ ̸= 0 (up to a few terms missing in four r-matrix classes for
anti-de Sitter-Carroll algebra, as demonstrated in (4.20)) can also be recovered via quantum
c → 0 contractions of the completely classified deformations of de Sitter and anti-de Sitter
algebras. By analogy, it can be conjectured that seven/six classes of deformations of de Sitter-
Galilei/anti-de Sitter-Galilei algebra derived by quantum c → ∞ contractions of deformations
of de Sitter/anti-de Sitter algebra recover (almost) all cases from the unknown complete
classification. Meanwhile, both quantum c → 0 contractions of Poincaré deformations and
quantum Λ → 0 contractions of (anti-)de Sitter-Carroll deformations lead to four r-matrix
classes for Carroll algebra, up to some missing terms in some classes in the latter case. Both
quantum c → ∞ contractions of Poincaré deformations and quantum Λ → 0 contractions of
(anti-)de Sitter-Galilei deformations allow to similarly obtain six r-matrix classes for Galilei
algebra, up to some missing terms in some classes in the latter case. However, it is possible
that there are exist some additional coboundary deformations of Carroll or Galilei algebra,
which can not be obtained by quantum contractions.
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algebra timelike κ-deformation spacelike κ-deformation classical double
dSC rCIII(γ̃+)∼= r1′(γ) rCIIIa(γ̂−)∼= r1′(θ12) (T) rCIV (γ̃)∼= r2′(γ)
dS rIII(γ+) ra

III(γ−)∼= rIII(γ−) rIV (2γ = ς)
dSG 0 (T) rGIIIa(γ̃−) rGIV a(2γ̂ =−ς̂) (T)

Carroll rC3(γ̃) rC2(γ̂) (T) rC6(γ̃)
Poincaré r3(γ) r2(γ) r7(γ)
Galilei 0 (T) rG2(γ̃) rG6(γ̂ = ς̂) (T)
adSC rCIII′(γ̃+)∼= r3′(γ) rCIII(γ̂+)∼= r2′(θ20) (T) rCIV a(γ̃)∼= r7′(γ)
adS rIII′(γ+)∼= rIII′(γ−) rIII(γ+)∼= rIII(γ−) rIV (2γ =−ς)

adSG 0 (T) rGIII(γ̃+)∼= rGIII(γ̃−) rGIV (2γ̂ =−ς̂) (T)

Table 1. r-matrices that characterize special cases of symmetry deformations, depending on a
kinematical algebra (the omitted deformation parameters are equal to 0); (T) denotes that a given
r-matrix is triangular, while otherwise it is quasitriangular.

The most physically interesting deformations of Poincaré algebra, which also have their
counterparts for both de Sitter and anti-de Sitter algebras, are time-, light- and spacelike
κ-deformations, as well as the one coming from the “standard” Drinfeld double structure (case
0 in [68]), the Lie bialgebra of which is often called the classical double, see e.g. [61]. Moreover,
the corresponding r-matrices, apart from the lightlike case, stand out as the ones that survive
as distinct classes under (almost) all quantum contractions relating deformations of the
considered kinematical algebras, i.e. contractions in the limits Λ → 0, c → 0 and c → ∞, as it
may be traced with the help of figures 1–4. Table 1 collects r-matrix (sub)classes corresponding
to these special cases of deformations for each of the considered kinematical algebras (as it
was mentioned in subsection 2.2, both rIII′ and rIII — and hence also rGIII , contain two
copies of a given κ-deformation, which can be transformed into each other using the respective
automorphism of adS(G) algebra, (5.7) or (4.16)). Strictly speaking, the scope of this paper
was restricted to antisymmetric r-matrices, while r-matrices characterizing the classical double
contain also the symmetric term, but the latter survives the Carrollian contractions and loses
the products of J and T0 in the Galilean contractions, just like the antisymmetric ones.

Based on that, we may observe that κ-deformation in the time direction is characterized
by a quasitriangular r-matrix for all kinematical algebras apart from the Galilean ones, for
which the r-matrix is proportional to an antisymmetric split-Casimir, i.e. equivalent to 0 (and
hence is trivially triangular). On the other hand, a study [76] of its 3+1-dimensional version
showed that the Galilean contraction of the corresponding Lie bialgebra can also be performed
without any rescaling of the deformation parameter, leading to a Lie bialgebra with non-trivial
cobrackets but which is not coboundary (i.e., does not have a r-matrix). Non-coboundary
bialgebras exist for the Galilean kinematical algebras due to them being neither semisimple, nor
inhomogeneous (pseudo-)orthogonal. They also deserve to be studied, but are less appealing
from the theoretical perspective because there is no general prescription for their quantization.
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Meanwhile, κ-deformation in a spatial direction is characterized by a quasitriangular
r-matrix for all kinematical algebras apart from the Carrollian ones, for which the r-matrix
reduces to a (triangular) term proportional to Q2 ∧ T0. This apparent complementarity of
the time- and spacelike κ-deformations has already been pointed out by us in subsection 3.2.
The physical explanation could be that since the Carroll limit leads to a decoupling between
points of space (the ultralocality mentioned in the Introduction), it makes the spacelike
deformation somehow milder, while time becoming absolute in the Galilei limit neutralizes
the (coboundary) timelike deformation. Even more significantly, light cones collapse in the
Carroll limit and flatten out in the Galilei limit, which helps to understand why lightlike
κ-deformation (described by r4(χ) / ra

II(χ) / ra
II(χ−) in the Poincaré / de Sitter / anti-de

Sitter case) does not survive as a distinct deformation in either of these limits but, actually,
converges with the spacelike deformation in the Carroll limit and the timelike deformation
in the Galilei limit. However, as it was shown [76] in 3+1 dimensions, the noncommutative
geometry of spacetime associated with a deformation of the Carrollian or Galilean kinematical
symmetries may still involve some mixing between time and spatial coordinates.

Thirdly, a quasitriangular r-matrix associated with the classical double is preserved for
all kinematical algebras apart from the Galilean ones, for which it reduces to a (triangular)
r-matrix proportional to Q1 ∧ T2 − Q2 ∧ T1. Although this deformation does not distinguish
any direction in spacetime, it turns out to be affected less by the Carrollian contractions.
Taking into account that the Galilei limit had also a stronger neutralizing effect on the
timelike κ-deformation than the Carroll limit on the spacelike κ-deformation, as well as
comparing some other cases, allows us to conclude that deformations of the Galilean algebras
are milder than deformations of the Carrollian algebras, which are in turn a bit milder than
deformations of the Lorentzian algebras.

Let us end the paper by briefly outlining possible applications of the obtained results. As
we mentioned in Introduction, it has been shown that the Chern-Simons formulation of the
theory of classical (2+1)d gravity generalizes to the gauge groups generated by non-Lorentzian
kinematical algebras. At least for the algebras that we considered, the Poisson structure can
still be described in terms of compatible r-matrices. A subtlety in the Galilean cases, as it
has been shown already in [82, 83], is that the construction of Chern-Simons theory requires
a so-called double extension of the kinematical algebra (interestingly, theories with this and
further extensions are equivalent to certain Hořava-Lifshitz gravities [84]). Consequently, our
r-matrices would need to be supplemented by terms depending on the additional generators
of the latter. The same obstacle does not concern Carroll [69] and (due to the isomorphisms
that we discussed before) a(dS)-Carroll algebras. The next step could be to analyze the
Fock-Rosly compatibility of the corresponding r-matrices analogously to what has been done
by us in [48], followed by an analysis of kinematics determined by them.

Meanwhile, not restricting ourselves to 2+1 dimensions, it is still uncertain if and how one
can introduce Yang-Baxter deformations of a string (which is another area where r-matrices
for the Lorentzian algebras are applied, see Introduction) in the non-Lorentzian settings.
Some groundwork has been laid in the Galilean case [85, 86], while the Carrollian one is even
less explored. The situation is complicated by the fact that strings are no longer described
here by the well-understood sigma models. The other side of the coin is that one of proposals
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for the dual in the flat-space holography is a field theory with (conformal) Carroll symmetry.
This is the so-called Carrollian holography, which contrasts with the celestial one [87]. In
general, it remains to be seen whether quantum deformations could also help to illuminate
the conformal side of the correspondence.

An application in the technical sense would be to extend our study of quantum-deformed
Carrollian/Galilean algebras to 3+1 (or more) dimensions, which seems straightforward,
although with a limitation coming from the present lack of knowledge of the complete
classification of r-matrices for higher-dimensional Lorentzian algebras. This avenue has
already been opened — we referred a few times here to the results obtained by Ballesteros et
al. for the non-Lorentzian versions of (timelike) κ-Poincaré and κ-(anti-)de Sitter algebras
in 3+1 dimensions. As one could expect, the overall effect of the Carrollian or Galilean
contractions on quantum deformations does not depend on the number of dimensions, although
the available deformations are a bit different. Another direction of generalization of our
results, which we are currently pursuing, is to derive the non-Lorentzian versions of quantum
deformations of BMS and Λ-BMS algebras that have been constructed by Borowiec et al.
(see Introduction). It is worth to mention that while all r-matrices playing a role in (2+1)d
gravity belong to the quasitriangular ones, deformations of the asymptotic symmetry algebras
are only obtained from the triangular ones.
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A Embedding of (2+1)d Carroll in (3+1)d Poincaré algebra

As we mentioned in Introduction, Carroll algebra can also be defined as the algebra of
symmetries of a null hypersurface in Minkowski spacetime one dimension higher. Therefore,
it should be directly related to symmetries of the latter. This relation is indeed described
in e.g. [17] but here we would like to show it in the 2+1-dimensional case in terms of the
explicit formulae.

In 3+1 dimensions, Poincaré algebra iso(3, 1) = so(3, 1) ▷< R3,1 expressed in the basis
analogous to (3.2) has the brackets

[Ji, Jj ] = ϵ k
ij Jk , [Ji, Kj ] = ϵ k

ij Kk , [Ki, Kj ] = −ϵ k
ij Jk ,

[Ji, Pj ] = ϵ k
ij Pk , [Ji, P0] = 0 , [Pi, Pj ] = 0 ,

[Ki, Pj ] = δijP0 , [Ki, P0] = Pi , [P0, Pi] = 0 (A.1)

for the generators of rotations (i.e. elliptic Lorentz transformations) Ji, boosts (i.e. hyperbolic
Lorentz transformations) Ki and space-time translations Pi, P0; i = 1, 2, 3 and indices are
raised with Euclidean metric. Let us also define three pairs of generators of null rotations
(i.e. parabolic Lorentz transformations),

L
(1)
2/3 = ±J2/3 − K3/2 , L

(2)
3/1 = ±J3/1 − K1/3 , L

(3)
1/2 = ±J1/2 − K2/1 , (A.2)
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where the upper index indicates the null direction preserved by the corresponding trans-
formations, ui = (t − xi)/

√
2, while the lower index — the preserved spatial direction. An

equivalent choice would be to consider the following three pairs of generators:

L
(1′)
2/3 = ±J2/3 + K3/2 , L

(2′)
3/1 = ±J3/1 + K1/3 , L

(3′)
1/2 = ±J1/2 + K2/1 , (A.3)

which preserve the respective null directions vi = (t + xi)/
√

2.
The 2+1-dimensional Carroll algebra (3.4) can be embedded as a subalgebra of (A.1)

if we choose one pair of the null-rotation generators (A.2) and identify

J := −Ji , Q1/2 := −L
(i)
j/k , T0 := P0 − Pi , T1/2 := Pk/j , (A.4)

or choose one pair of the null-rotation generators (A.3) and identify

J := −Ji , Q1/2 := L
(i′)
j/k , T0 := P0 + Pi , T1/2 := Pk/j , (A.5)

where i, j, k are given by an even permutation of {1, 2, 3}. For example, an embedding may
be given by −J1, −L

(1)
2 , −L

(1)
3 , P0 − P1, P3 and P2, respectively.

Is there any significance of this in our context? Since the classification of r-matrices
for the 3+1-dimensional Poincaré algebra is mostly known [49], we could try to extract
coboundary deformations of the 2+1-dimensional Carroll algebra from the former (possibly
obtaining additional results with respect to quantum contractions in (3.14)). It would involve
choosing one of the embeddings (A.4)–(A.5) and finding such representatives of the iso(3, 1)
r-matrix classes that depend only on the generators in the image of the embedding. Let
us note that not all automorphisms of the considered Carroll algebra extend to the full
iso(3, 1), hence some r-matrices obtained in this way may turn out to belong to the same
equivalence class. Moreover, the r.h.s.-s of Yang-Baxter equations (3.17) do not map onto
the invariants of iso(3, 1), which makes it more tricky to recover quasitriangular r-matrices.
Such a study might be the subject of future work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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