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1 Introduction

Bern, Carrasco, and Johansson made a surprising discovery of a duality between color and
kinematics [1, 2], revealing a profound link between the kinematic structure and the color
structure in gauge theories. This duality, which involves the full-color factors, holds the
potential to transfer the advancements of the planar sector (i.e. in the large Nc limit) to
the full-color sector. Furthermore, it enables the construction of gravity amplitudes directly
from Yang-Mills amplitudes, provided that the latter are organized in a way that respects
the duality. This is commonly referred to as the double copy property, a concept that
generalizes the KLT relation [3].

While the color-kinematics (CK) duality at the tree level has been established using both
string theory and gauge theory methods [4–8], the duality at the loop level remains conjectural
and has only been substantiated through specific examples. Explicit CK-dual solutions at loop
level have been found in a wide class of theories for both amplitudes and form factors [9–35].
See [36, 37] for an extensive review of the color-kinematics duality and double copy.

Despite significant efforts, it remains a great challenge to understand to which extent the
CK-duality holds. State-of-the-art constructions that manifest CK duality at high-loop levels
include the four-loop four-point amplitude [11] and the five-loop Sudakov form factor [23] in
N = 4 SYM. In non-supersymmetric gauge theories, constructing CK-dual loop integrands
has proven particularly difficult, where the best understood high-loop solutions are the
two-loop four-gluon and five-gluon amplitudes with all helicities equal [18, 22].

In solving the difficulty of constructing global CK-dual solutions, a common approach
is to enlarge the ansatz beyond the simple local form. Notably, to achieve the CK-duality
in the all-plus-helicity five-gluon two-loop amplitude in pure YM, numerators containing
twelve powers of loop momenta are required, which significantly exceeds the complexity of
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standard Feynman diagrams [22]. In the case that enlarging the ansatz is too complicated to
work with, one may opt to relax the requirement of global CK duality to only necessitate its
validity at the level of cut integrand, as demonstrated in the two-loop four-gluon amplitude in
d dimensional kinematics in pure YM [38]. However, these approaches result in a substantial
increase in the number of parameters.

In this paper, we propose a novel strategy to apply CK duality by revisiting the two-
loop four-gluon amplitude in pure YM theory. Our primary objective is to identify and
understand the specific obstructions to constructing a global CK-dual solution. With this
understanding, we explore whether it is possible to implement a minor amendment — through
minimal deformation — to efficiently construct the loop integrand while still utilizing CK-
duality relations. As demonstrated by the four-gluon amplitude example, the answer is
affirmatively positive.

Concretely, we begin with the most basic ansatz in a fully d-dimensional Lorentz-invariant
local form. Such an ansatz, manifesting graph symmetries and natural power-counting
constraints, cannot satisfy both global CK duality and unitarity cuts, an issue previously
noted in [38]. The primary obstruction is that CK duality conflicts with the ladder-type
two-double cut, although it is compatible with other cuts. Rather than abandoning the
complete set of dual Jacobi relations, we navigate around this obstruction by introducing a
minimal deformation that corrects the two-double cut without affecting other cuts.

Importantly, we also propose that the deformation satisfies a subset of off-shell dual
Jacobi relations. These relations are confined to topologies that contribute to the ladder-type
two-double cut. With these relations, one can choose one single numerator — the planar
double-box topology — as the master numerator for the deformation. The ansatz of the
deformation can thus be given in a very compact form. Surprisingly, we find in the final
physical solutions, the deformation can be given in a remarkably simple form, see eq. (5.2).
This suggests that the global off-shell CK duality is only slightly violated. We also discuss
the structure of the solution space for the deformation in detail.

This paper is organized as follows. In section 2, we briefly review CK duality and the
construction procedure, including the unitarity method. In section 3, we examine the global
CK duality for the two-loop four-gluon amplitudes in pure YM and discuss the difficulties
in finding physical solutions. Section 4 presents the main result of this paper, where we
introduce the deformation and explore the solution space. A summary and discussion of
our findings are given in section 5.

The explicit solutions are also included in the supplementary material attached to
this paper.

2 Review

In this section, we review the basic concept of CK duality and the general strategy for
constructing CK-dual integrands at the loop level.

2.1 CK duality

The CK duality conjectures that there exists a cubic graph representation of amplitudes
in which the kinematic numerators satisfy the same equations of Jacobi relations for the
color factors.
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Figure 1. Trivalent graphs for the four-point tree amplitude.

The basic and key example is the four-gluon tree amplitude which can be represented as

Atree
4 = g2

(
csns

s
+ ctnt

t
+ cunu

u

)
, (2.1)

which is expanded in terms of three trivalent topologies in figure 1. The color factor is
defined as

cs = f̃a1a2sf̃ sa3a4 , ct = f̃a2a3tf̃ ta4a1 , cu = f̃a1a3uf̃ua2a4 , (2.2)

where f̃abc is structure constant:

f̃abc=i
√
2fabc=tr([T a, T b],T c) , (2.3)

in which T a are group generators and are normalized by tr(T aT b)=δab. In this paper, we
will consider pure Yang-Mills theory and the gauge group will be specified as SU(Nc). We
will also abbreviate f̃ as f in the rest of the paper.

Clearly, the color factors cs,t,u satisfy the Jacobi identity

cs = ct + cu , (2.4)

which is straightforward from the Jacobi relation of structure constants. However, The CK
duality requires the numerators, which contain all the physical information, also satisfy the
same relation as the color factors:

ns = nt + nu . (2.5)

This relation be referred to as “dual Jacobi relation” or “CK-dual relation”. In this four-
point tree amplitude case, it is easy to obtain ns,t,u using Feynman rules and check that
they indeed satisfy the CK relation. For high-point tree amplitudes, it is also possible to
construct numerators satisfying the CK duality. At loop level, however, the duality remains
a conjecture and we need to check it case by case.

The general form of a L-loop m-point amplitude can be written as:

A(L)
m = iLgm−2+2L

∑
σm

∑
Γi

∫ L∏
j=1

dDlj
(2π)D

1
Si

CiNi∏
a Di,a

. (2.6)

The first summation of σm runs over the m! permutations of the external legs. The summation
over Γi means to sum over all possible trivalent graphs and the Si will remove all the
overcounting that comes from the summation of external legs. Ci and Ni corresponds to
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Figure 2. Trivalent graphs and CK-relations at loop level.

the color factor and kinematic numerator of the ith trivalent graph, and 1/Di,a denotes as
the ath propagator of the ith graph.

To generalize the CK duality into loop level, we can embed the relation (2.2) and (2.4)
into a loop trivalent graph, see figure 2. Note that except for the four-point sub-digram, the
rest part of the three diagrams are the same, so their color factors take the form:

Cs = fabsf scd
∏

f, Ct = f bctf tda
∏

f, Cu = facufubd
∏

f, (2.7)

apparently, they satisfy the Jacobi identity

Cs = Ct + Cu, (2.8)

and CK duality requires their corresponding numerators to satisfy:

Ns({la, lb, ls}, {−ls, lc, ld}) = Nt({ld, la, lt}, {−lt, lb, lc}) + Nu({lc, la, lu}, {−lu, ld, lb}), (2.9)

which is the dual Jacobi relation at the loop level. For each propagator in each trivalent
graph, we can write down such a CK-dual identity.

An important goal is to construct the Ni which satisfies all the CK identities. This
has the advantage that once the CK-dual representation is found, the gauge amplitude can
be used to construct a corresponding gravitational amplitude via double copy. Moreover,
as we will see, imposing the duality constraints makes it possible to significantly simplify
the loop construction.

In practical, we can construct the CK ansatz for Ni by following standard steps [11, 15, 39]:

1. Generate all the trivalent diagrams.

2. Generate all CK relations and find “master topologies”. The “master topologies”
represent a minimal set of topologies which can deduce all other diagrams through dual
Jacobi relations. The choice of master topologies is generally not unique.

3. Construct an ansatz for the numerators of master topologies. Once we have the ansatz
for master topologies, we can obtain all other numerators by CK-dual relations.

4. Apply the symmetry constraints and require each numerator to reflect the same sym-
metry property as its topology.

Once we obtain the CK ansatz for integrand, the next task is to apply unitarity cuts to the
integrand to ensure it provides a physical result, which will be reviewed in the next subsection.
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2.2 Full-color d-dimensional unitarity-cut method

In this subsection, we review the unitarity method for loop integrand construction. Since
we are studying the pure YM theory in this paper, we stress that one needs to apply
d-dimensional full-color cuts to get the complete result.

The central idea of the unitarity method [40–42] is that by setting internal propagators
to be on-shell as

i

l2
cut−→ 2πδ+(l2) , (2.10)

the amplitude will be factorized as products of lower-order amplitudes, such as

A(l)|cuts =
∫

dPS
∑

physical states

∏
i

A(0)
ni

, (2.11)

where A(0)
ni

is full-color tree amplitude with ni external legs. The physical result must be
consistent in all possible cut channels.

Since we consider pure YM theory, it is necessary to consider d-dimensional cuts. The
tree amplitudes are calculated by Feynman diagrams and all the expressions appear as
Lorentz products which are valid in d dimension. To perform the sum of the helicities for
all possible internal cut states we use∑

physical states
εµ(l)εν(l) = ηµν − lµξν + lνξµ

l · ξ
, (2.12)

where the ξµ is a light-like reference momentum and the result after summation should
be independent of it. The amplitude thus computed is in the conventional dimensional
regularization scheme where all gluons (whether internal or external) are taken to be d

dimensional, and the result applies to all possible helicity configurations of external gluons
in the four-dimensional limit.

In practice, it will be convenient to perform color decomposition, which will allow us to
use color-stripped tree amplitude as building blocks. On the r.h.s. of (2.11), we decompose
each full-color tree amplitude into color-stripped amplitude as∏

i

A(0)
ni

=
∏

i

∑
σni

tr(σni)A(0)(σni)=
∑

σ1σ2...σni

tr(σ1)tr(σ2) . . .tr(σni)A(0)(σ1)A(0)(σ2) . . .A(0)(σni).

(2.13)
On the l.h.s., we decompose the color factor of each topology into the same product of
multi-trace bases:∑

Γj

CjNj∏
a Dj,a

∣∣∣∣∣
cut

=
∑
Γj

∑
σ1σ2...σni

tr(σ1)tr(σ2) . . . tr(σni)
Nj∏
a Dj,a

∣∣∣∣∣
cut

. (2.14)

After decomposing both sides of (2.11) into the same multi-trace bases, we can compare the
coefficient of each base and apply the unitarity constraint.

As a concrete simple example, we consider the double cut for one-loop four-point amplitude
in figure 3. The general equation of (2.11) now becomes

A(1)
4 (1, 2, 3, 4)

∣∣∣
s−cut

=
∫

dPS
∑

physical states
A(0)

4 (1, 2, l1, l2)A(0)
4 (3, 4,−l2,−l1) . (2.15)
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Figure 3. Double cut for the one-loop four-point amplitude.
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Figure 4. Diagrams contributing to the double cut in figure 3.

On the r.h.s., we decompose each A(0)
4 into color-stripped amplitude and extract the coefficient

of an explicit base tr(1, 2, l1, l2)tr(3, 4, l2, l1)∑
physical states

A
(0)
4 (1, 2, l1, l2)A(0)

4 (3, 4,−l2,−l1) . (2.16)

On the l.h.s., we first select out all the trivalent diagrams that contribute to this cut in
figure 4 and extract the contribution to tr(1, 2, l1, l2)tr(3, 4, l2, l1) for each color factor

C1 = f1al2f2l1af l13bf4l2b −→ (+1)tr(1, 2, l1, l2)tr(3, 4, l2, l1),

C2 = f12afal1l2f l13bf4l2b −→ (+1)tr(1, 2, l1, l2)tr(3, 4, l2, l1),

C3 = f1al2f2l1af l2bl1f b34 −→ (−1)tr(1, 2, l1, l2)tr(3, 4, l2, l1),

C4 = f12afal1l2f l1bl2f b34 −→ (+1)tr(1, 2, l1, l2)tr(3, 4, l2, l1) .

(2.17)

Combine l.h.s. and r.h.s. we have:

1

2 3

4

× N1 +

3

4
1

2

× N2 +

1

2

3

4

× (−1)N3 +
2

1

3

4

× N4

=
∑

physical states
A

(0)
4 (1, 2, l1, l2)A(0)

4 (3, 4,−l2,−l1) . (2.18)

After performing the helicity sum (2.12), both sides of the above equation are rational
functions involving the Lorentz product of {li, pi, εi}, as well as the dimension parameter d.
It is straightforward to consider other ordering of trace bases, including non-planar cuts.
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Figure 5. All trivalent diagrams for the two-loop four-point amplitude.

3 Difficulty of solving an ansatz with global CK duality

In this section, we explore the integrand construction for two-loop four-point pure YM
amplitude in d dimensions using global CK duality. As we will see, the global CK-dual
integrand in local ansatz form is not compatible with all the unitarity cuts. We will discuss
the difficulty and the possible solutions.

3.1 Ansatz with global CK duality

In section 2 we briefly review the general strategy for constructing the CK integrand. Here
we concretize each step for the two-loop four-point amplitude.

1) Generating trivalent diagrams. As the first step, we generate all the trivalent
diagrams for two-loop four-point amplitude. All these diagrams are collected in figure 5.
Topologies with tadpoles or massless bubbles are excluded since they contain scaleless integral
and vanish after integration.1

2) Generating CK relations. After obtaining all trivalent diagrams, we can do the Jacobi
operation on each propagator in each graph and generate all the CK relations. Solving the
CK relations we find all other numerators can be deduced by diagrams (1) and (2) in figure 5,
so we choose them to be “master topologies”. Their numerators are denoted as n1 and n2.

1More precisely, we will exclude the CK relations that involve these topologies, so they will not affect the
CK integrand at all.
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We list the CK relations that can deduce the rest numerators below:

n3 = n1[p1, p2, p3, p4,−l2 − p2, l1 − p2] + n2[p4, p3, p2, p1,−l1 − l2 − p3,−l2 + p1]
n4 = n1 − n1[p3, p4, p2, p1, l1 − l2 + p1 + p2,−l2]
n5 = −n1[p1, p2, p3, p4, l1, l1 − l2 + p1 + p2] + n1[p1, p2, p4, p3, l1, l1 + l2]
n6 = n2[p1, p2, p3, p4, l1 + p1, l2]− n2[p3, p1, p2, p4,−l1 − p1 − p2,−l2 − p1 − p2 − p3]
n7 = −n2[p1, p2, p3, p4, l1, l2]− n2[p1, p2, p3, p4, l1, l1 − l2 − p1]
n8 = n3 − n3[p1, p2, p4, p3, l1, l2]
n9 = −n4[p1, p2, p3, p4, l1, l1 − l2] + n4[p1, p2, p4, p3, l1, l1 − l2]

n10 = −n4[p1, p2, p3, p4, l1, l1 + l2 + p1 + p2]− n4[p1, p2, p3, p4,−l1 − p1 − p2,−l1 + l2]
n11 = −n4[p1, p2, p3, p4,−l2 − p1 − p2, l1 − l2]− n4[p1, p2, p3, p4,−l1 + l2 − p1 − p2, l2]
n12 = −n6[p1, p2, p3, p4, l1, l1 − l2]− n6[p1, p2, p3, p4, l1, l2 − p1 − p2 − p3]
n13 = n9 + n9[p1, p2, p3, p4,−l1 − p1 − p2, l2]
n14 = n9[p1, p2, p3, p4, l1 − l2, l1] + n9[p1, p2, p3, p4,−l2 − p1 − p2,−l1 − p1 − p2] ,

(3.1)

where ni’s are abbreviation of ni[p1, p2, p3, p4, l1, l2]. These CK-dual relations are satisfied
throughout all the topologies in figure 5, and we will refer to them as “global CK-dual
relations”.

3) Constructing numerator ansatz. Now we construct an ansatz for the two master
numerators. The ansatz is linear combination of monomials Mk:

nm =
∑

k

amkMk , m = 1, 2 , (3.2)

where the monomials Mk are built by product of following basis:

{εi · εj , εi · pj , εi · lα, pi · lα, lα · lβ , p1 · p2 , p2 · p3} (3.3)

with i, j = 1, 2, 3, 4 and α, β = 1, 2. We choose a set of bases for Mk by eliminating
non-independent ones under momentum-conservation, on-shell, and transversality conditions:

p4 = −p1 − p2 − p3, p2i = 0, εi · pi = 0. (3.4)

Besides, monomial Mk should obey the following features: (1) Each Mk have mass dimension
six. (2) Mk should depend on each polarization vector εi linearly. Since they are polynomials
of Lorentz products, they are also free with poles. One such example is (ε1 · ε2)(ε3 · ε4)(p1 ·
p2)(p1 · l1)(p1 · l2). With these features satisfied, the two master numerators introduce 20020
terms in total.2 Here we also mention that the coefficients amk will depend on the dimension
parameter d. All other numerators are obtained using the set of dual Jacobi relations (3.1).

2Note that in [38], the ansatz for master numerators are a bit smaller since they made restrictions to
the power of loop momentum. Here we do not impose such restrictions. Such a choice of ansatz was also
discuessed in [43].
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Figure 6. A spanning set of cuts for two-loop four-point amplitude.

4) Applying symmetry constraints. We demand each numerator reflects the symmetries
of its topology:

Ŝ[Cini] = Cini, (3.5)

where Ŝ denotes symmetry operator, which will act on both Ci and ni. For instance, the
double box diagram possesses two symmetries: vertical flip and horizontal flip. It is easy to
see that the color factor remains unchanged and the numerator is required to satisfy

n1 = n1[p2, p1, p4, p3,−p1 − p2 − l1,−l2] = n1[p4, p3, p2, p1, l2 − l1, l2] , (3.6)

and similar for other topologies. After applying the constraints of symmetry and global
CK-dual relations, we find that the number of parameters reduce to 1382.

Up to now, we have constructed the global CK relations satisfied integrand for two-loop
four-point amplitude and we will apply the unitarity constraints in the next subsection.

3.2 Problem with unitarity constraints

Given the ansatz, we now apply unitarity cuts.
For the two-loop four-point amplitude, a spanning set of unitarity cuts is displayed in

figure 6.3 We find that cut-(b) and cut-(c) in figure 6 are compatible with CK-dual relations,
while cut-(a) is not. The same observation was pointed out in [38, 43]. This shows that
the global CK-dual integrand with local ansatz form satisfying all symmetry constraints
can not deduce physical result.

One may try to solve this problem by following ideas.

1) One can simplify the problem by considering helicity amplitudes. In a specific helicity
amplitude, the physical result may be much simpler so it will be easier to realize CK duality.
For two-loop four-point amplitude, helicity configuration can be (++++), (+++−), (++−−)
and (+ − +−). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators
and increasing the power of loop momenta. This method has been used in [22] to realize the
CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3The spanning set of cuts contain both planar and non-planar cuts. In the following discussion, the check
of the cuts can be first taken as for the planar cuts. Due to the CK-duality relations, the solutions will
automatically satisfy non-planar cuts in the end, see e.g. [1, 44]. We will mention this check at the end of
section 4.2.
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Figure 7. An example for CK relation in unitarity cut.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they
hold only on a spanning set of cuts without losing the double-copy property. For example,
the three numerators in figure 7 should satisfy:

(na − nb − nc)
∣∣
cut = 0 . (3.7)

However, in such a strategy, one would give up using the global CK-dual identities to obtain
the whole integrand. Instead, an ansatz for each diagram in figure 5 has to be made, and
the complete ansatz is much larger than the usual strategy utilizing master topologies. For
example, the ansatz in [38] contains 120904 parameters for all 14 topologies in total. After
imposing symmetry constraints, 28204 parameters remain. While taking unitarity cuts, the
cut CK-dual identities like (3.7) are imposed. It is not hard to see that the method would be
difficult for more complicated cases. With the growth of loops and external momentums, the
scale of ansatz will increase rapidly since all the topologies need to be treated separately.4

In this paper we propose a new strategy: we start with a global CK-dual integrand and
then introduce simple “deformations” which can also be related by CK-dual relations. In
the next section, we will provide a detailed application of this strategy.

4 Physical solution with deformation

This section presents the major results of the paper. We first discuss the strategy of introducing
deformation for the CK-dual numerators. Then we provide the explicit solution. Finally,
we discuss the solution space for the deformations.

4.1 General idea of deformation

We would like to work based on ni and construct a physical solution that passes all unitarity
cuts. Let us first recall the property of ni that we have obtained in the previous section
based on CK-dual construction.

• ni have the local ansatz form and satisfy the symmetry properties.

• ni satisfy the global set of CK-dual relations (3.1).

• The integrand of ni satisfies cut-(b) and cut-(c) in figure 6.

• The solution space satisfying the above properties for ni contains 398 parameters.
4For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for
ansatz construction.
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Figure 8. Topologies that will contribute to cut-(a) in figure 6 thus need to be deformed.

Since the main problem comes from the cut-(a) in figure 6, we will concentrate on the
topologies that can affect cut-(a), which are collected in figure 8.

The main idea is to introduce certain deformation ∆i to the numerators of these topologies,
such that the deformation ∆i plus ni together will satisfy the unitarity-cut constraints. Nu-
merators whose topology does not appear in figure 8 remain unchanged, or equivalently, their
deformations are set to be zero. Concretely, we define the full set of physical numerators as

Ni =
{

ni +∆i, i = 1, 4, 5, 9, 10, 13,

ni, others. (4.1)

The deformation ∆i should vanish in cut-(b) and cut-(c) since the ni part already satisfies
these cuts.

Clearly, the set of numerators in (4.1) will break the global CK duality since we only
make non-zero deformations to a subset of topologies. On the other hand, we would like
the deformed numerators to have the important property that: they can be used for the
double-copy construction. To achieve this, one should at least require Ni to satisfy CK
relations under all unitarity cuts, as in [38]. Since all ni are constructed by satisfying (global)
CK relations, the deformations ∆i must also satisfy dual Jacobi identities under cuts.

Rather than just imposing CK relations with cuts, we propose that ∆i should satisfy
a sub-set of off-shell dual Jacobi relations. This is one key point of our proposal, and as
we see below, it will significantly simplify the calculation.

We consider dual Jacobi relations that involve only the topologies in figure 8. It turns
out that one can choose the double box diagram as the master topology for the deformation.
Given its numerator deformation ∆1, the deformation for other five topologies in figure 8
can be determined through following dual Jacobi relations:

∆4 = ∆1 −∆1[p3, p4, p2, p1, l1 − l2 + p1 + p2,−l2]
∆5 = −∆1[p1, p2, p3, p4, l1, l1 − l2 + p1 + p2] + ∆1[p1, p2, p4, p3, l1, l1 + l2] (4.2)
∆9 = −∆4[p1, p2, p3, p4, l1, l1 − l2] + ∆4[p1, p2, p4, p3, l1, l1 − l2]
∆10 = −∆4[p1, p2, p3, p4, l1, l1 + l2 + p1 + p2]−∆4[p1, p2, p3, p4,−l1 − p1 − p2,−l1 + l2]
∆13 = ∆9 +∆9[p1, p2, p3, p4,−l1 − p1 − p2, l2] .

Note that we do not impose any cut conditions for these relations.
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Figure 9. CK relation that should be excluded for deformations.

In the off-shell CK relations discussed above, we have confined our focus to the topologies
in figure 8, ensuring that these relations do not extend to topologies that do not contribute
to cut-(a). For instance, the dual Jacobi relation shown in figure 9 should not be included
because it involves topologies (the two on the right-hand side) that are absent in figure 8. In
practice, one can achieve this by avoiding applying CK operation to the propagators that are
severed by cut-(a), as this would lead to topologies outside the set requiring deformation.5

On the other hand, we require that the numerator Ni upholds the global CK duality
across a spanning set of cuts, ensuring the applicability of the double copy. Our construction
for ∆i is designed to maintain global CK duality specifically under cut-(a). Consequently,
the relations we have excluded (such as figure 9) imply that each ∆i must vanish separately
when subjected to cut-(b) and cut-(c). These additional constraints will be duly considered
in our construction, as we demonstrate in the following sections.

4.2 Explicit solution of deformation

We now discuss the construction of the deformation ∆i.
To simplify the construction, it is convenient to divide the numerators into three parts

according to the structure of polarization vectors. For example, the numerators ni can
be written as

ni = n
[1]
i + n

[2]
i + n

[3]
i . (4.3)

In n
[1]
i , each polarization vector is contracted with another polarization vector, for instance,

(ε1 · ε2)(ε3 · ε4)(p1 · p2)(p1 · l1)(p1 · l2). (4.4)

Terms in n
[2]
i have two polarization vectors contracted with each other and the other two

polarization vectors are contracted with momenta, such as

(ε1 · ε2)(ε3 · p4)(ε4 · p3)(p1 · l1)(p1 · l2). (4.5)

Finally, polarization vectors in n
[3]
i are all contracted with momentas, and an example is

(ε1 · p2)(ε2 · p3)(ε3 · p4)(ε4 · p3)(p1 · l2). (4.6)

These three parts are independent with each other: they will not change the type during
CK operations and they also satisfy unitarity cuts separately. Thus we can treat them

5Naturally, if ∆i were allowed to propagate through all the topologies via dual Jacobi relations, we would
revert to an integrand with global CK relations which makes no difference from the ni numerators.
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Figure 10. The double-box topology and its momentum labeling.

independently. Following the same standard, the deformation ∆i can also be divided into
three parts:

∆i = ∆[1]
i +∆[2]

i +∆[3]
i . (4.7)

Below discuss these three parts one by one. Since the double-box topology, shown in figure 10,
is the master topology for the deformation, we only need to make an ansatz for ∆1.

Deformation ∆[1]
1 . We consider n

[1]
i and ∆[1]

i first. Monominals in n
[1]
i can be further

devided into terms that are proportional to (ε1 ·ε2)(ε3 ·ε4), (ε1 ·ε3)(ε2 ·ε4) and (ε1 ·ε4)(ε2 ·ε3),
which should match the corresponding terms in the tree products respectively. We have
calculated them separately, and we find that there is no difficulty for terms proportional to
(ε1 · ε3)(ε2 · ε4) and (ε1 · ε4)(ε2 · ε3) in n

[1]
i to match corresponding terms in tree products.

The only inconsistency comes from terms propotional to (ε1 · ε2)(ε3 · ε4), thus we can require
all the terms in ∆[1]

i to be propotional to (ε1 · ε2)(ε3 · ε4).
As mentioned in the end of section 4.1, the deformation should vanish under cut-(b) and

cut-(c). A simple way to achieve this is to ask ∆[1]
i to be proportional to some propagators

which are cut by cut-(b) and cut-(c). For instance, we can acquire the deformation of
double box topology ∆[1]

1 to be proportional to (l2)2 since either cut-(b) or cut-(c) will put
it on shell and vanish.

Following the above discussion, we now can make an ansatz for ∆[1]
1 :

∆[1]
1 = (ε1 · ε2)(ε3 · ε4)

(∑
k

c
[1]
k M

[1]
k

)
l22 , (4.8)

where M
[1]
k are monominals formed by product of such basis:

{p1 · p2, p2 · p3, p1 · l1, p2 · l1, p3 · l1, p1 · l2, p2 · l2, p3 · l2, l1 · l2, l21, l22} (4.9)

A simple dimension analysis shows that M
[1]
k has mass dimension four. In this ansatz, we

have 66 parameters in total. We can further constrain it by imposing symmetry conditions
as in (3.6), and this will reduce parameters to 29.

With the ansatz of ∆[1]
1 , we can obtain other ∆[1]

i by relations in (4.2), which satsify the
symmetry properties automatically. In addition, other ∆[1]

i also vanish under cut-(b) and
cut-(c) independently. Finally, we match the expression with tree products of cut-(a). Indeed
we find there are solutions, and the 29 parameters in ∆[1]

1 will reduce to 28.
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Interestingly, in the solution space, we find a special simple solution of ∆[1]
1 that can

be given by a single term:

∆[1]
1 = (d − 2)2(ε1 · ε2)(ε3 · ε4)l24 l22 l25 , (4.10)

where l2, l4 and l5 are labeled in figure 10.
We point out that in matching the cut conditions, one uses the full numerators Ni given

by (4.1), and thus the solution space of ni also receives further constraints from cut-(a) at
the same time. Therefore, one has an updated solution of ni associated to the given solution
of ∆i. In addition, in the above choice of the ansatz of ∆i, some degrees of freedom overlap
with those in the solution space of ni. This issue can be resolved by using a refined ansatz of
∆i that is ‘orthogonal’ to the solution space of ni. We will discuss this in detail in section 4.3.

Deformation ∆[2]
1 . As what we did for n

[1]
i , we carefully studied the origin of inconsistency

in n
[2]
i . We find that the terms which can not match the tree product are either proportional

to ε1 · ε2 or ε3 · ε4. So we make an ansatz for ∆[2]
1 as

∆[2]
1 =

[
(ε1 · ε2)

(∑
a

c[2]a M
[2]
1,a

)
+ (ε3 · ε4)

(∑
b

c
[2]
b M

[2]
2,b

)]
l22 , (4.11)

where the corresponding basis for the monomials M
[2]
1,a and M

[2]
2,b are

{εk · pi, εk · lα, pi · pj , pi · lα, lα · lβ}, (4.12)

where k = 1, 2 for M
[2]
2,b and k = 3, 4 for M

[2]
1,a. Note that the ansatz is proportional to (l2)2 so

that it vanishes under cut-(b) and cut-(c). In this ansatz ∆[2]
1 contains 352 parameters and

symmetry conditions will reduce it to 102. Other ∆[2]
i will be determined by the relations

in (4.2), and they also satisfy the symmetry properties and vanish under cut-(b) and cut-(c).
Finally, we impose the cut-(a) constraint for the deformed integrand based on N

[2]
i and

now the solution exists. We find that the 102 parameters in ∆[2]
1 reduce to 100. Similar to

∆[1]
1 , we find a very simple special solution for ∆[2]

1 within the solution space:

∆[2]
1 = −4(d − 2)2

[
(ε1 · ε2)(ε3 · l5)(ε4 · l5)l24 + (ε3 · ε4)(ε1 · l4)(ε2 · l4)l25

]
l22. (4.13)

Deformation ∆[3]
1 . Finally, we determine the ∆[3]

1 . Inspecting the structure of ∆[1]
1 and

∆[2]
1 , one notes that ε1 and ε2 only contract with l4, while ε3 and ε4 only contract with l5.

And a naive guess for the minimal ansatz of ∆[3]
1 could be

∆[3]
1 = c

[3]
1 (ε1 · l4)(ε2 · l4)(ε3 · l5)(ε4 · l5)l22. (4.14)

Unfortunately, we find deformation ∆[3]
1 in this simple form can not pass all the unitarity

cuts, which means we need to enlarge the ansatz and provide a more general form.
We propose ∆[3]

1 as:

∆[3]
1 =

(∑
k

c
[3]
k M

[3]
k

)
l22 , (4.15)
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Figure 11. Non-planar cuts of the two-loop four-point amplitude.

where M
[3]
k is formed by the product of following basis:

{εi · pj , εi · lα} (4.16)

with i, j = 1, 2, 3, 4, α = 1, 2. As before, the ansatz is proportional to (l2)2 so that it vanishes
under cut-(b) and cut-(c). In this ansatz, there are 256 parameters and after imposing the
symmetry constraints, 76 parameters will remain.

Again, we find the deformed integrand N
[3]
i can pass all the unitarity cuts, and the 76

parameters in ∆[3]
1 will reduce to 65.

Within the solution space, we present a relatively simple specific solution for ∆[3]
1 :

∆[3]
1 = 4(d − 2)

[
4(d − 2)S[3]

1 − 10S
[3]
2 − 10S

[3]
3 − 20S

[3]
4 + 47S

[3]
5 − 32S

[3]
6

]
l22, (4.17)

where
S
[3]
1 = (ε1 · l4)(ε2 · l4)(ε3 · l5)(ε4 · l5)

S
[3]
2 = (ε1 · l5)(ε2 · l5)(ε3 · l4)(ε4 · l4)

S
[3]
3 = (ε1 · l1)(ε2 · l6)(ε3 · l7)(ε4 · l3)

S
[3]
4 = (ε1 · l5)(ε2 · l6)(ε3 · l4)(ε4 · l3) + (ε1 · l1)(ε2 · l5)(ε3 · l7)(ε4 · l4)

S
[3]
5 = (ε1 · l7)(ε2 · l3)(ε3 · l7)(ε4 · l3) + (ε1 · l1)(ε2 · l6)(ε3 · l1)(ε4 · l6)

S
[3]
6 = (ε1 · p3)(ε2 · p4)(ε3 · l3)(ε4 · l7) + (ε1 · l6)(ε2 · l1)(ε3 · p1)(ε4 · p2) ,

(4.18)

where the loop momenta li are labeled in figure 10.
Combining the solutions of the deformation together with ni, we obtain the complete

integrand with Ni which passes all unitarity cuts. Since they satisfy the CK-dual relations on
the cuts, they can be directly used to construct the gravitational amplitude via double copy.

Let us mention a few further checks of the results. First, as mentioned before, in the
above construction one can use only planar cuts. We have checked that the solutions obtained
in this way automatically satisfy the full set of non-planar cuts as shown in figure 11. Second,
we perform the projection of the integrand into a set of gauge invariant bases (see e.g. [45]),
followed by the IBP reduction into a set of independent master integrals [46, 47], and we
find all the free parameters cancel out. Finally, after integration, we have checked that the
full-color IR divergences are consistent with the known Catani formula [48]. We provide the
numerator solution and other factors of the integrand in the ancillary files.

4.3 Understanding the solution space of deformations

In the last subsection, we introduced the method of adding deformations to the global CK-dual
numerators to make it pass all the unitarity cuts. By analyzing the structure of deformations,
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we can write down a general ansatz for the deformed numerators ∆i. After passing all
unitarity cuts, we find there remain free parameters. In particular, the free parameters in
∆i have redundancy that overlaps with the free parameters in ni.

A natural question arises of whether we can find the space of ∆i that is orthogonal to
the ni solution space at the beginning. This will not only simplify the ansatz but also help
us to understand the structure of deformation. In this subsection, we discuss this problem
and show how to construct the orthogonal space for ∆i.

Deformation ∆[1]
1 . Again we start with ∆[1]

1 to illustrate the strategy. We recall the
general form of the ansatz given in (4.8). Since we require it to reflect the symmetry of the
double box diagram, also to simplify the discussion below, we will expand the ansatz as a
linear combination of a set of symmetric bases as6

∆[1]
1 = (ε1 · ε2)(ε3 · ε4)l22

29∑
i=1

c
[1]
i S

[1]
i , (4.19)

where each S
[1]
i satisfies the symmetry properties, for example, the first two S

[1]
i are

S
[1]
1 = l24 l25 ,

S
[1]
2 = (l1 · p3)(l2 · p1)− (l2 · p4)(l3 · p2)− (l2 · p2)(l6 · p4) + (l2 · p3)(l7 · p1) .

(4.20)

One can check that they satisfy the symmetry relations as in (3.6).
Our goal is to reduce (4.19) so that it is orthogonal to the solution space of n

[1]
1 . For

this, we need to analyze the solution space of n
[1]
1 carefully. We recall that, in obtaining the

solution space of n1, we have imposed the global CK-duality relations, the graph symmetries,
as well as the cut-(b) and cut-(c).

We note that all the symmetry basis S
[1]
i in (4.19) also appear in the original ansatz of

n
[1]
1 . We extract this part in the solution space of n1 as

n
∆,[1]
1 = (ε1 · ε2)(ε3 · ε4)l22

29∑
i=1

c
′[1]
i S

[1]
i , (4.21)

where the parameters c
′[1]
i in (4.21) are not all independent but satisfy certain linear relations.

An important point to note is that it is these constraints for c
′[1]
i that make the numerator

solutions ni incompatible with cut-(a). Therefore, the deformation that we introduce should
play the role of relaxing these constraints, and the ansatz that exactly relaxes these constraints
is what we call orthogonal to the solution space of n1.

To find the minimal orthogonal space, there is one further redundancy that we can
remove. Namely, the basis S

[1]
i can be equivlent under cut-(a). Concretely, we define the

contribution to cut-(a) associated to certain S
[1]
i as

Icut(a)(S
[1]
i ) =

(
l22S

[1]
i

1

2 3

4

l1

l2 + CK-induced contribution
)∣∣∣∣∣

cut-(a)

. (4.22)

6The choice of the symmetry bases is not unique.
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Here “CK-induced contribution” represents all the terms generated from other topologies
through the set of dual Jacobi relations in (4.2) by taking ∆1 = l22S

[1]
i . If Icut(a)(S

[1]
i ) is

equal to 0, we simply drop the corresponding S
[1]
i in n

∆,[1]
1 . And if ∑i Icut(a)(S

[1]
i ) = 0, we

can solve for one of S
[1]
i in terms of other symmetry basis in n

∆,[1]
1 . After eliminating these

redundancies, we find that n
∆,[1]
1 becomes:

ñ
∆,[1]
1 = l22

10∑
i=1

c̃
[1]
i S

[1]
i . (4.23)

Note that ñ
∆,[1]
1 is equivalent to n

∆,[1]
1 under cut-(a).

We also obtain the coefficients c̃
[1]
i in the solution space of n1, and the key point to

analyze their linear relations. We find there exists one and only one linear relation that
is among the two bases in (4.20):

c̃
[1]
1 = −c̃

[1]
2 , (4.24)

and other c̃
[1]
i are independent with each other. The reason that the global CK integrand n

[1]
i

can not pass cut-(a) is due to that this linear relation is incompatible with cut-(a).
Therefore, the deformation ∆[1]

1 should play a role to relax this condition. It is sufficient
to make an ansatz for ∆[1]

1 with only one term:

∆[1]
1 = (ε1 · ε2)(ε3 · ε4)(c[1]1 S

[1]
1 ) l22 . (4.25)

Note that c
[1]
1 is a free parameter, and by adding this deformation, one relaxes the con-

straint (4.24) in the full numerator N
[1]
i = n

[1]
i +∆[1]

i . Now one finds that the ansatz indeed
has a solution under cut-(a) which gives

c
[1]
1 = (d − 2)2 . (4.26)

Note that this term is exactly what we find in (4.10).
Alternatively, we can also choose the S

[1]
2 as the deformation ∆[1]

1 since it will play the
same role of relaxing the constraint (4.24). We can think that S

[1]
1 or S

[1]
2 forms the complete

orthogonal space for ∆[1]
1 . In this way, we obtain the minimal ansatz space for ∆[1]

1 .

Deformation ∆[2]
1 . As in the previous case, we extract the corresponding 102 bases of

∆[2]
1 in the solution space of n

[2]
1 :

n
∆,[2]
1 = l22

102∑
i=1

c
′[2]
i S

[2]
i , (4.27)

where we have organized it on a basis that respects the symmetry property. After removing
the redudancey from Icut(a)(S

[2]
i ), we get the numerator with 32 symmetry bases:

ñ
∆,[2]
1 = l22

32∑
i=1

c̃
[2]
i S

[2]
i . (4.28)
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The coefficients c̃
[2]
i are determined by the solution space of n1. As before, the key point to

analyze their linear relations. We find two linear relations for c̃
[2]
i :

c̃
[2]
1 = −1

2(c̃
[2]
3 + c̃

[2]
4 + c̃

[2]
5 + c̃

[2]
6 ) ,

c̃
[2]
2 = 1

2(c̃
[2]
8 − c̃

[2]
7 ) .

(4.29)

To relax these two relations, it is enough to introduce the deformation ∆[2]
1 as:

∆[2]
1 = l22(c

[2]
1 S

[2]
1 + c

[2]
2 S

[2]
2 ), (4.30)

and we give S
[2]
1 and S

[2]
2 explicitly as

S
[2]
1 = (ε1 · ε2)(ε3 · l5)(ε4 · l5)l24 + (ε3 · ε4)(ε1 · l4)(ε2 · l4)l25 ,

S
[2]
2 = (ε1 · ε2)((ε3 · l6)(ε4 · p1) + (ε3 · p2)(ε4 · l1))l25

− (ε3 · ε4)((ε1 · l3)(ε2 · p3) + (ε1 · p4)(ε2 · l7))l24 .

(4.31)

By matching the cut-(a) we can solve for c
[2]
1 , c

[2]
2 :

c
[2]
1 = −4(d − 2)2 , c

[2]
2 = 0 . (4.32)

This solution is equivalent to the form in (4.13).
One is free to make a different ansatz by choosing different linear combinations of two

S
[2]
i from the relation (4.29), for instance, ∆[2]

1 = l22(c
[2]
3 S

[2]
3 + c

[2]
8 S

[2]
8 ) will be a perfect ansatz

for the deformation as well. The explicit expressions of the symmetry basis S
[2]
i , i = 3, . . . , 8,

are provided in the supplementary material attached to this paper.

Deformation ∆[3]
1 . Finally, for ∆[3]

1 we also extract the terms proportional to l22 and
repeat the above operation. After removing the redundancy under cut-(a), 39 symmetry
bases remain and one has

ñ
∆,[3]
1 = l22

39∑
i=1

c̃
[3]
i S

[3]
i . (4.33)

Again, c̃
[3]
i are determined by the solution space of n1, and one finds that there are 11 linear

relations for c̃
[3]
i . To relax these 11 relations, one can pick one basis from each relation

and form a linear ansatz of ∆[3]
1 as

∆[3]
1 = l22

11∑
i=1

c
[3]
i S

[3]
i , (4.34)

and after matching cut-(a), all the coefficients c
[3]
i can be uniquely fixed. Using the same

symmetry basis including those in (4.18), we reproduce the previously obtained solution (4.17).
We provide the details of the 11 linear relations of c̃

[3]
i and the involved symmetry basis

S
[3]
i in the supplementary material attached to this paper. Using them, one can construct

different ansatz for ∆[3]
1 .
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5 Summary

In this paper, we revisit the color-kinematics (CK) duality of the two-loop four-gluon
amplitudes in pure non-supersymmetric Yang-Mills theory. We observe that the local-form
ansatz fails to simultaneously satisfy global CK duality and unitarity cuts. However, we
identify a simple deformation that rectifies this issue. This approach allows us to leverage
the off-shell CK-dual relations to the fullest extent while keeping the ansatz compact during
the construction process.

The final numerators can be given as

Ni =
{

ni +∆i, i ∈ {cut(a)-related topologies}
ni, other topologies. (5.1)

Here ni satisfy the complete set of dual Jacobi relations for all topologies in (3.1), and ∆i

represent the deformation that fulfills a subset of dual Jacobi relations (4.2) within the
cut(a)-related topologies. All these Jacobi relations are off-shell, meaning they are not
subject to any cut constraints. To derive the ni part of the numerators, only two master
numerators n1 and n2 are required. For ∆i, only one master numerator ∆1 (for the subset
relations) is needed. A particular solution of the deformation for ∆1 can be given in the
following remarkably simple form:

∆


p1

p2 p3

p4

k5 k6

k1

k2 k3

k4

k7


/

k2
7 = (5.2)

+ (d − 2)2
{
(ε1 · ε2)(ε3 · ε4)k2

5 k2
6 + 16(ε1 · k5)(ε2 · k5)(ε3 · k6)(ε4 · k6)

− 4
[
(ε1 · ε2)(ε3 · k6)(ε4 · k6)k2

5 + (ε3 · ε4)(ε1 · k5)(ε2 · k5)k2
6

]}
+ (d − 2)4

{
− 10

[
(ε1 · k6)(ε2 · k6)(ε3 · k5)(ε4 · k5) + (ε1 · k2)(ε2 · k1)(ε3 · k4)(ε4 · k3)

]
+ 20

[
(ε1 · k6)(ε2 · k1)(ε3 · k5)(ε4 · k3) + (ε1 · k2)(ε2 · k6)(ε3 · k4)(ε4 · k5)

]
+ 32

[
(ε1 · k5)(ε2 · k5)(ε3 · p1)(ε4 · p2) + (ε1 · p3)(ε2 · p4)(ε3 · k6)(ε4 · k6)

]
+ 47

[
(ε1 · k4)(ε2 · k3)(ε3 · k4)(ε4 · k3) + (ε1 · k2)(ε2 · k1)(ε3 · k2)(ε4 · k1)

]}
,

which is a sum of the terms in (4.10), (4.13) and (4.17) (note that we have relabeled the loop
momenta to make the symmetry property more manifest). The simplicity of the deformation
suggests that the violation of global off-shell CK duality is, in fact, quite limited. To fully
appreciate the simplicity of the above result, the reader should compare this formula with
the much more complex expression of the n1 component of the numerator, which is provided
in the supplementary material attached to this paper.

We also discuss in detail how to construct the minimal ansatz of ∆i in the “orthogonal
space” relative to the solution space of ni. This can further narrow the parameter space
of the deformation significantly. The solution we obtain, while partially breaking the off-
shell dual Jacobi relations, does satisfy the global CK-dual relations on all cuts, therefore,
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they can be directly used to construct the corresponding gravitational amplitude through
double copy as in [38].

Our strategy provides a new efficient method to construct loop integrands via CK duality
by maximizing using the off-shell CK-duality. Notably, the deformation itself also satisfies a
subset of dual Jacobi relations. Consequently, our approach requires far fewer parameters
compared to previous constructions. For comparison, in [38] where CK duality is imposed
only on the cut integrand, the ansatz has to be made for the numerators of all trivalent
topologies, and there are 6322 parameters remaining in the final solution. On the other hand,
our construction focuses solely on the numerators of master topologies, and the complexity is
similar to the usual effective construction based on global CK duality.

It would be interesting to apply our strategy to other high loop amplitudes or form
factors that have been challenging to construct using CK duality. A pertinent question is
whether the simplicity of the deformation is a general characteristic. Furthermore, could
there be an underlying mathematical or physical principle governing the deformation as
indicated by (5.2)? A better understanding of these questions may emerge with more data
available. We leave these intriguing problems for future investigation.
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