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1 Introduction

Identifying the interior structures and their underlying dynamics is an important step toward
understanding the nature of black holes. In particular, the appearance of the inner Cauchy
horizon of a black hole results in breaking down classical predictability and appears to violate
strong cosmic censorship. Despite decades of extensive efforts, even in general relativity, a
complete understanding of the interior of black holes remains elusive. Rich classical dynamics
have been uncovered over the past few decades, in particular, the emergence of Belinskii-
Khalatnikov-Lifshitz (BKL) chaos [1, 2]. Based on the BKL hypothesis, the dynamics in
the vicinity of a spacelike singularity can be asymptotically described as billiard motion in a
region of Lobachevskii space, which is known as “Cosmological Billiards” [3]. However, our
theoretical understanding of black hole interior from Cosmological Billiards is also incomplete,
and it is even more so when considering matter content with general interactions.

Stimulated by the holographic duality, there has been growing interest towards exploring
the internal structure of a black hole in recent years. The authors of [4, 5] considered a free
scalar in the neutral AdS black hole, which corresponds to turning on a relevant scalar operator
of the dual thermal CFT state. They found that there is in general no Cauchy horizon and,
at late interior times, the spacetime dives into a stable Kasner geometry. The case with a free
charged scalar field was considered in [6], known as the holographic superconductor. Some
intricate behaviors were found before ending at a spacelike Kasner singularity, including the
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collapse of the Einstein-Rosen (ER) bridge, the Josephson oscillations of the scalar field and
possible alternation between neighbouring Kasner epochs. More rigorous “no Cauchy horizon
theorem” of a black hole with (charged) scalar hair was proven in [7, 8] by constructing a
radially conserved “charge” and the null energy condition (see [9, 10] for generalization).
Interestingly, without referring to the form of matter fields, the number of horizons of static
black holes can be strongly constrained by energy conditions [11].

The interior dynamics of scalarized black holes has subsequently been studied in the
literature, including the variation of interactions [12–16], additional matter content [17–19],
and analysis of RG flows [20–22]. The generalization to anisotropic case can be found in
the cases with vector hair [23, 24], helical structure [25], as well as holographic topological
semimetals [26]. Nevertheless, what is the duality of the interior dynamics in field theory
remains a fascinating and challenging problem if the holographic principle is considered
as the basic principle in physics.

Because the nonlinear effect plays an important role inside the black holes, the internal
dynamics obviously depends on the details of the model one considers. So far, interesting
internal behaviors have been observed numerically in some specific models. In particular,
at late interior times, a common feature is the emergence of Kasner scaling towards the
singularity. Depending on the interactions, a further phenomenon appearing in these works
is bounces between different Kasner epochs. In this paper we aim at classifying the interior
of charged black holes with non-trivial scalar hair, with the key aspects of the dynamics
captured analytically. Moreover, previous studies mainly focus on the hairy black holes in
four spacetime dimensions. We would like to consider general dimensions since there could
be some interesting dynamics that appear in higher dimensions.1

More precisely, we will consider the generalized Einstein-Maxwell-scalar theory that
allows scalar coupling with less restrictions and provides a general scalar theory with local
U(1) symmetry. For scalar couplings with a polynomial form, we can find that there will
eventually be a Kasner singularity. Before ending the singularity, the interior can have
the “Kasner inversion” behavior in some cases and the alternation law between the two
Kanser epochs is given analytically. When the exponential coupling term is introduced,
it will lead to the transformation behavior called “Kasner transition” which can also be
described analytically. Three classes of alternation of Kasner epochs will be provided and
will be numerically verified. In addition, we will explore more complicated cases with general
couplings and scalar potentials, for which some novel internal dynamics beyond all known
analytical description will be shown.

The paper is organized as follows. In section 2, we introduce the gravitational model and
establish the equations of motion. In section 3, we discuss the alternation of Kasner epochs at
late interior times in general spacetime dimensions, for which, under certain approximations,
we are able to obtain self-consistent asymptotic solutions. Numerical verification is provided
by considering some benchmark examples. More cases with general couplings and potentials
are discussed in section 4. We conclude with some discussions in section 5.

1For example, the Reissner-Nordström de Sitter black holes are linear unstable to gravitational perturbations
only in six spacetime dimensions and above [27] and can become unstable in five dimensions and above with
Gauss-Bonnet correction [28].
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2 Setup

We start with a (d+1)-dimensional theory that admits general scalar couplings and local
U(1) symmetry:

S = 1
2κ2

N

∫
dd+1x

√
−g [R+ L] ,

L = −1
2(∂µψ)2 −F(ψ)(∂µθ − qAµ)2 − V (ψ) − Z(ψ)

4 FµνF
µν

(2.1)

where ψ and θ are both real scalars, and Aµ is the U(1) gauge field with its strength
Fµν = 2∂[µAν]. The three couplings F , V and Z depend on ψ and can take quite general
form. We only require F and Z to be positive to ensure positivity of the kinetic term for
θ and Aµ. Depending on the scalar potential V (as well as Z and F), the spacetime can
be asymptotically flat, anti-de Sitter (AdS), dS or other geometries. In AdS case, such
generalized Stückelberg theory has been used to realize the superconducting phase transition
in holography (see e.g. [29, 30]).

We wish to study the hairy black hole solutions that take the form

ds2 = 1
z2

[
−f(z)e−χ(z)dt2 + dz2

f(z) + dΣ2
d−1,k

]
, ψ = ψ(z), A = At(z)dt , (2.2)

with z the radial coordinate. Here dΣ2
d−1,k denotes the metric of unit sphere (k = 1), planar

(k = 0) or unit hyperbolic plane (k = −1) in (d− 1)-dimensions. Moreover, we have chosen
θ = 0 without loss of generality. Then, the equations of motion are given as follows.

ψ′′ = −
(1
z

+ h′

h

)
ψ′ − q2A2

t

z2dh2
dF
dψ + e−χ/2

zd+2h

dV
dψ + eχ/2

2zd−2h

dZ
dψ , (2.3)

(
eχ/2ZA′

t

zd−3

)′

= 2q2At
z2d−1h

F , (2.4)

(d− 1)χ′ = zψ′2 + 2q2A2
t

z2d−1h2F , (2.5)

h′ = e−χ/2

d− 1

(
−k(d− 1)(d− 2)

zd−1 + V

zd+1 + eχ

2zd−3ZA
′2
t

)
, (2.6)

where the prime denotes the derivative with respect to z and we have introduced h =
z−de−χ/2f for later convenience.

In our coordinate system, the boundary is at z = 0 and the singularity would be at
z → ∞. Denoting the event horizon as zH at which f(z) vanishes, the temperature and
entropy density can be obtained as

T = −e−χ(zH)/2f ′ (zH)
4π , s = 2π

κ2
Nz

d−1
H

. (2.7)

All the functions of (2.2) are continuous near the horizon. In particular, one has At(zH) = 0
once q ̸= 0 of (2.1). The boundary condition away from the event horizon depends on the
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asymptotics of spacetime. A large number of hairy black hole solutions to the above equations
have been constructed numerically in the case of asymptotic AdS and flatness. In contrast, a
no scalar hair theorem for charged black holes in dS spacetime has been recently proved [31].

While the solutions outside the event horizon depend on the details of the couplings,
it has been shown that the hairy black holes (2.2) to the theory (2.1) do not have an inner
Cauchy horizon [16] proved by using a radially conserved charge [7] and the null energy
condition [8]. The internal dynamics would end at a spacelike singularity. In the following, we
shall classify the interior dynamics of those hairy black holes. The collapse of the ER bridge
and the scalar oscillations are closely related to the instability of the would-be inner Cauchy
horizon triggered by the scalar hair. Both appear near the would-be inner Cauchy horizon
and are sensitive to the temperature. They become less dramatic and finally disappear as the
temperature is kept away from the critical temperature Tc at which the scalar hair develops.
On the other hand, the presence of Kasner epoch in deep interior is a more robust feature
and the possible alternation of different Kasner epochs deserves a better understanding.
Recently, we have obtained analytically the transformation rule for the alternation of Kasner
epochs in a top-down holographic superconductor [16], which provides some useful tools
for further research. Therefore, in this work we focus on the alternation law of different
Kasner epochs at late time evolution of the interior. Moreover, we will uncover the internal
dynamics beyond the Kasner scaling.

3 Kasner structure and alternation

Due to the strong nonlinear nature of the equations of motion (2.3)–(2.6), it is impossible
to solve the system analytically. Nevertheless, under certain approximations, we are able
to obtain self-consistent asymptotic solutions. This procedure will be further established
by checking the full numerical solutions. To simplify our analysis, we shall set Z = 1 in
the present study. Our strategy is to take a Kasner regime as background and to consider
possible deviation that may lead to the alternation to another Kasner epoch.

3.1 Kasner epoch

Le’s start with the simple case in which the contributions to (2.3)–(2.6) from F and V are
negligible. For example, both are polynomial functions. Then, for d ≥ 3, the approximate
differential equations at large z in deep interior could be

ψ′′ = −1
z
ψ′ ,

(
eχ/2A′

t

zd−3

)′

= 0 , (d− 1)χ′ = zψ′2 ,

h′ = 1
2(d− 1)

(
eχ/2A′

t

zd−3

)2

zd−3e−χ/2 ,

(3.1)

where we have dropped all the terms associated with F and V .
With these approximations, one can explicitly solve (3.1) and obtain

ψ = α ln z + Cψ , χ = α2

d− 1 ln z + Cχ ,

A′
t = CAtz

d−3e−χ/2 , h′ = Chz
d−3e−χ/2 ,

(3.2)
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where α, Cψ, CAt , Cχ and Ch are integral constants. In particular, Ch > 0 from the last
equation of (3.1). Meanwhile, we have also assumed that h′ is integrable, i.e. the order of h′/h
is smaller than 1/z so that it could be neglected in (2.3). When the integrability assumption
about h′ is broken, a new dynamic process called Kasner inversion will develop, which we
will discuss below. Before that, let’s understand the asymptotic solutions (3.2) first.

From the solution (3.2), the background in the deep interior is given by

ds2 = 1
z2

[
− dz2

Cfzdeχ/2 + Cfz
de−χ/2dt2 + dΣ2

d−1,k

]
, ψ ≃ α ln z , (3.3)

in which all the metric components are power laws and the scalar field is logarithmic. After
converting to the proper time τ ∼ z

−( d
2 + α2

4(d−1) ), one obtains

ds2 = −dτ2 + ctτ
2ptdt2 + csτ

2psdΣ2
d−1,k, ψ ≃ −

√
2pψ ln τ , (3.4)

where

pt = α2 − 2(d− 1)(d− 2)
α2 + d(d− 1) , ps = 4(d− 1)

α2 + d(d− 1) , pψ = 2
√

2(d− 1)α
α2 + d(d− 1) , (3.5)

with ct and cs constants. One immediately finds that

pt + (d− 1)ps = 1, p2
t + (d− 1)p2

s + p2
ψ = 1 , (3.6)

and thus the geometry is equipped with the Kasner structure. Notice that α = zψ′ is a
constant and determines other exponents in a Kasner universe (3.4). We shall call α the
Kasner exponent. The Schwarzschild singularity is obtained by taking α = 0.

A natural question is whether our approximate solution (3.2) makes sense or not. There-
fore, we should check if the terms we discarded are small in a given Kasner universe. In the
equations of motion (2.3)–(2.6), with approximate solution (3.2), one obtains the following
constraints:

O
(
q2A2

t

z2dh2
dF
dψ

)
< O

( 1
z2d−1

)
, O

(
e−χ/2

zd+2h

dV
dψ

)
< O

( 1
zd+1

)
,

O
(
q2At
z2d−1h

F
)
< O

( 1
z2d−2

)
, O

(
2q2A2

t

z2d−1h2F
)
< O

( 1
z2d−2

)
,

O
(

e−χ/2

zd−1

)
< O

( 1
zd−1

)
, O

(
V e−χ/2

zd+1

)
< O

( 1
zd

)
,

(3.7)

which allows V and F to be arbitrary algebraic functions, including polynomial functions,
as long as d ≥ 3.2 Therefore, under (3.7), the neglected terms will not change the dynamic
behaviors from the approximate equations (3.1) and the approximate solution (3.2) is self-
consistent. So far, h′ is still assumed to be integrable.

Once above assumption is invalid, the solution (3.2) will become unstable towards the
deep interior. A particularly simple case is triggered by the h′/h term, resulting in the
dynamics away from the unstable Kasner epoch. Interestingly, this alternation caused by
the non-integrability of h′ will make itself come back to be integrable, and will enter the
stable Kasner epoch finally. This process is called Kasner inversion.

2It is easy to check that, in the right hand of (2.6), the curvature term due to the topology of the horizon
is negligible compared to other terms when d ≥ 3.
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3.2 Kasner inversion

The no-inner horizon theorem requires h < 0 inside the event horizon. From (3.2), one
finds that

h′(z) ∼ z
d−3− α2

2(d−1) . (3.8)

Therefore, to have a stable Kasner epoch all the way down to the singularity, the integral
of h′(z) should be finite, i.e. h′(z) is integrable. Otherwise, new dynamics will come into
play, triggering the transformation to another epoch.

The breakdown of the integrability of h′ yields

d− 3 − α2

2(d− 1) > −1 ⇒ |α| <
√

2(d− 1)(d− 2) . (3.9)

Under condition (3.9), the background (3.2) will become unstable towards the singularity.
In this case, one cannot drop the second term in parentheses in the scalar equation (2.3),
and the dynamics is controlled by the following equations:

1
z

(zψ′)′ = −h
′

h
ψ′, h′ = 1

2(d− 1)

(
eχ/2A′

t

zd−3

)2

zd−3e−χ/2 . (3.10)

Notice that h′ is determined by the kinetic term of the gauge field.
Motivated by our previous work [16], the above equations can be solved using the constant

variant method. Let’s assume that ψ takes the form

ψ(z) =
∫ z α̃(s)

s
ds . (3.11)

Substituting (3.11) into the differential equations (3.10), one can obtain the following equation
for α̃(z):3

2z(d− 1)α̃α̃′′ − 4z(d− 1)α̃′2 + α̃′α̃(α̃2 − 2(d− 1)(d− 3)) = 0 . (3.12)

Solving (3.12), one can obtain analytically that

2(d− 2) ln
[
z

zI

]
+ 2c1

√
d− 1√

(d− 1)c2
1 − 2d+ 4

arctanh

 c1(d− 1) − α̃[z]
√
d− 1

√
(d− 1)c2

1 − 2d+ 4


+ 2 ln

∣∣∣∣ α̃[z]
c1(d− 1)

∣∣∣∣+ 2 ln
∣∣∣∣∣ c2

1(d− 1)2 − 2(d− 1)(d− 2)
α̃[z]2 − 2(d− 1)c1α̃[z] + 2(d− 1)(d− 2)

∣∣∣∣∣ = 0 ,

(3.13)

where c1 and zI are constants with zI satisfying α̃[zI ] = c1(d−1). The value of α for the Kasner
epoch before (after) the transformation is obtained by taking the limit z/zI ≪ 1 (z/zI ≫ 1).

3More precisely, to obtain (3.12) we have used the condition that the combination
(

eχ/2A′
t

zd−3

)
of (3.10)

remains approximately a constant value over the range of the Kasner alternation. This condition is seen to
hold at large ψ for the kind of couplings we are considering.
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As an implicit function, it is not easy from (3.13) to obtain the relation of the Kasner
exponents for the Kasner inversion. A convenient method is as follows. One first observes
that both the arctanh term and the last term of (3.13) go to infinity at the same time, since∣∣∣∣∣∣ c1(d−1)−α̃[z]

√
d−1

√
(d−1)c2

1−2d+4

∣∣∣∣∣∣→ 1⇔ α̃[z]2−2(d−1)c1α̃[z]+2(d−1)(d−2)→ 0 . (3.14)

As a consequence, when ln[z/zI ] goes to infinity, to make the equation (3.13) valid, both the
arctanh term and the last term of (3.13) should go to infinity as offset.4

As z goes from z/zI ≪ 1 to z/zI ≫ 1, ln[z/zI ] changes from −∞ to +∞, which means
that the arctanh term and the last term of (3.13) change from +∞ to −∞. Therefore, the
two exponents α for the Kasner epochs before and after the Kasner inversion are the roots
of the following quadratic equation for α̃:

α̃2 − 2c1(d− 1)α̃+ 2(d− 1)(d− 2) = 0 . (3.15)

According to Vieta’s Formula for quadratic equation, one immediately obtains the trans-
formation law between two adjacent Kasner epochs.

ααI = 2(d− 1)(d− 2) , (3.16)

where α is the Kasner exponent before the Kasner inversion, and αI is the one after
the inversion.

Suppose that in a certain Kasner epoch |α| <
√

2(d− 1)(d− 2) for which h′ is not
integrable, see (3.9). One immediately finds from (3.16) that |αI | = 2(d − 1)(d − 2)/|α| >√

2(d− 1)(d− 2). Therefore, h′ becomes integrable after the Kasner inversion process and
gives a stable Kasner epoch. Thus, the Kasner inversion provides a stable mechanism
for Kasner dynamics. In addition, one can find that the transformation law of Kasner
inversion (3.16) depends only on the spacetime dimension, which is different from the Kasner
transition we discuss in the next subsection.

In addition, to understand this transformation qualitatively, one can consider the domi-
nant term in the Kasner inversion process, for which the equation of motion with respect
to ψ reads

ψ′′ = −
(1
z

+ h′

h

)
ψ′ . (3.17)

Note that inside the event horizon h < 0 and h′ > 0 from the last equation of (3.10). Then,
substituting (3.11) into the above equation, one has

α̃′α̃ = −h
′

h
α̃2 > 0 . (3.18)

In other words, once α̃ is positive in a Kasner epoch, the kinetic term of the gauge field
will cause α̃′ > 0, leading to an increase in α̃ as z is increased. On the other hand, as we

4Note that α̃ should not divergent to avoid any singularity at which the spacetime terminates. Thus, the
third term of (3.13) is finite.
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have shown in this subsection, the increase in α̃ will further cause h′ to be away from the
non-integrability condition (3.9). The same discussion applies to the case with negative α̃.
Therefore, although the kinetic energy of the gauge field causes the instability of a Kasner
epoch when its exponent α is within (3.9), it would not completely destroy the Kasner
structure, but causes the unstable Kasner epoch to transform into a Kasner epoch with a
larger value of α given by (3.16). In the new Kasner epoch, h′ is integrable, thus is stable if
no other dynamics come into play. Interestingly, we will see similar stable mechanisms in the
Kasner transition and even the Kasner transformation caused by the scalar potential.

3.3 Kasner transiton

Many dimensional reductions of superstring/supergravity theory lead to exponential couplings
for the various Kaluza-Klein scalar fields. We therefore consider the coupling function F that
takes an exponential form F(ψ) ∼ eκψ asymptotically. We will show that the self-consistency
of the solution (3.2) might be destroyed, and a new Kasner transformation process will appear.

We begin with the Kasner solution (3.2) and assume that h′ is integrable. Therefore,
when the order of the coupling term satisfies

O
(

A2
t

z2dh2
dF
dψ

)
= O

(
zκα

z2d

)
≥ O

(
ψ′

z

)
, (3.19)

or equivalently

κα > (2d− 2) , (3.20)

one can not drop the second term ∼ dF
dψ in the right hand of (2.3). Then, the equation (2.3)

is approximated by5

1
z

(zψ′)′ ≃ eκψ

z2d . (3.21)

Note that we have used the fact that At and h are at the same order, as can be seen from (3.2).
We will furthermore verify that the expressions we obtain under the above assumption agree
with numerical results.

Given that (3.1) is still a good approximation, the equation (3.21) can be solved in
terms of the constant variant method as in (3.11). We then find the following differential
equation for α̃.

zα̃′′ + (2d− 1)α̃′ − κα̃α̃′ = 0 . (3.22)

Solving the equation (3.22) yields

α̃(z) = 2d− 2 − c1 tanh [c1 ln(z/zT )]
κ

, (3.23)

where c1 and zT are integration constants. The latter denotes the position in the transition
region with α̃(zT ) = (2d− 2)/κ. The value of α in the Kasner epoch before the transition

5In contrast, when κα < (2d− 2), the right hand side of (3.21) is approximatively zero. Therefore, we do
not expect to have an alternation to a new Kasner epoch.

– 8 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
9

Figure 1. Classification for the possible alternation of Kasner epochs for a theory with an ex-
ponential coupling F(ψ) ∼ eκψ. Give a Kasner eopch with the exponent α = zψ′ and denote
αcI =

√
2(d− 1)(d− 2) and αcT = 2(d − 1)/|κ|. A Kasner transition triggers when α falls into the

blue region (|α| > αcT ), and a Kanser inversion appears when α is in the red region (|α| < αcI). The
Kasner alternation can be divided into three classes depending on the spatial dimension d and the
coupling constant κ. Left panel: αcI < αcT . There exist a stable region with αcI < |α| < αcT . Middle
panel: αcI = αcT =

√
2(d− 1)(d− 2). There will be an infinite sequence of Kasner alternations towards

the singularity, except for the fine-tuning with α =
√

2(d− 1)(d− 2). Right panel: αcI > αcT . In the
overlap of red and blue regions (αcT < |α| < αcI), either Kasner transition or inversion description
breaks down.

is obtained by taking z/zT ≪ 1, i.e. α = (2d − 2 + c1)/κ. The one after the transition is
determined by taking z/zT ≫ 1, i.e. αT = (2d−2− c1)/κ. We then obtain the transformation
law for the Kasner transition between two adjacent Kasner epochs that is

α+ αT = 2
κ

(2d− 2) . (3.24)

Supposing κα > (2d − 2) in a Kasner epoch, the law (3.24) shows that the Kasner
transition process will decrease the amplitude of α until the condition (3.20) is destroyed.
Moreover, the transformation law (3.24) of Kasner transition not only depends on the
spacetime dimension, but also depends on the value of coupling constant κ of F(ψ).

3.4 Classification of Kasner alternation

From the above discussion, it can be seen that the Kasner transition causes the parameter
|α| to decrease, while the Kasner inversion makes |α| to increase. When these two processes
are triggered alternately, it could lead to an infinite chaotic oscillation of Kasner epochs.
Therefore, for a theory with an exponential coupling F(ψ) ∼ eκψ, we have three different
types of Kasner alternations that are summarized in figure 1. The red part in each panel of
figure 1 denotes the case for Kasner inversion, while the blue one for the Kasner transition.

Case I:
√

2(d− 1)(d− 2) < 2(d − 1)/|κ| (left panel of figure 1).
The Kasner transition occurs when |α| > 2(d− 1)/|κ| and the Kasner inversion occurs

when |α| <
√

2(d− 1)(d− 2). Once
√

2(d− 1)(d− 2) < |α| < 2(d− 1)/|κ|, both the Kasner
transformations will not be triggered, thus the system settles down to a stable Kasner epoch.
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Case II:
√

2(d− 1)(d− 2) = 2(d − 1)/|κ| (middle panel of figure 1).
In this critical case, |α| =

√
2(d− 1)(d− 2) = 2(d − 1)/|κ| is the only fixed point.

Therefore, for the initial value of α ̸=
√

2(d− 1)(d− 2) = 2(d − 1)/|κ|, there will be an
infinite Kasner alternations towards the singularity.

The benchmark model is the top-down theory in four dimensions we recently considered
in [16]. Its Lagrangian reads

L(4) =−1
2(∂µψ)2− sinh2ψ

2

(
∂µθ−

1
L
Aµ

)2
+ 1
L2 cosh2 ψ

2 (7−coshψ)− 1
4FµνF

µν , (3.25)

which is obtained as a consistent truncation of M-theory with F ∧ F = 0. One has F =
sinh2 ψ

2 ∼ e2ψ and therefore κ = 2, d = 3. One can check that our transformation laws (3.16)
and (3.24) reduce precisely to the case in [16]. Indeed, a never-ending chaotic alternation
of Kasner epochs towards the singularity was observed for the theory (3.25) (see [16] for
more details).

Case III:
√

2(d− 1)(d− 2) > 2(d − 1)/|κ| (right panel of figure 1).
When |α| >

√
2(d− 1)(d− 2), the Kasner transition develops, and when |α| < 2(d−1)/κ,

the Kasner inversion appears.
Nevertheless, for 2(d − 1)/|κ| < |α| <

√
2(d− 1)(d− 2) (the overlapping region in the

right panel of figure 1), both the contributions from h′/h and F to (2.3) play important roles.
The complex competition between the Kasner inversion and the transition could occur. So
far, we have not been able to give an analytical description of this overlapping regime.

3.5 Numerical verification

In this section, we will verify our analytical predictions by considering some benchmark
models. We will show that the asymptotic solution agrees well with the numerics.

We begin with the following model in five spacetime dimensions (d = 4) inspired by
supergravity theory.

L(5) = −1
2(∂µψ)2 − sinh2(κψ/2)

2

(
∂µθ −

√
3
L
Aµ

)2

+ 3
L2 cosh2 ψ

2 (5 − coshψ) − 1
4FµνF

µν ,

(3.26)

with κ a free constant. When κ = 2, the theory can be lifted to a class of solutions of type
IIB supergravity, based on D3-branes at the tip of a Calabi-Yau cone [32].6 The coupling
F = sinh2(κψ/2)/2 ∼ eκψ for sufficient large value of ψ. Without loss of generality, we will
set L = 1 and will consider planar black holes.

The resulting hairy black hole (2.2) is asymptotically AdS and the expansion of matter
fields near the AdS boundary z = 0 is given by

ψ = ψsz + · · · + ψvz
3 + · · · , At = µ+ · · · − ρ

2z
2 + · · · , (3.27)

6Comparing to the form of [32], the rescaling Aµ →
√

3
2L
Aµ was made to have a standard normalization for

the kinetic term of U(1) sector. We also redefined η = ψ.
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where ψs is considered as the source of the scalar operator and ψv as the expectation value
from the viewpoint of the dual field theory. The two constants µ and ρ correspond to the
chemical potential and charge density, respectively. In the absence of source, the development
of scalar hair breaks the U(1) symmetry spontaneously, mimicking the superconducting
phase [29, 30]. We shall focus on the planar black holes with ψs = 0 and consider the grand
canonical ensemble with µ = 1 unless explicitly stated otherwise. In the absence of scalar hair,
the solution can be solved analytically, which is nothing but the AdS Reissner-Nordström
black hole. As we will show, there is a critical temperature Tc below which the scalar
hair develops spontaneously. The scalar hair necessarily removes the inner horizon of AdS
Reissner-Nordström black hole.

Kasner inversion. Notice that d = 4. The dynamics of α̃ for the Kasner inversion
process now reads

6zα̃α̃′′ − 12zα̃′2 + α̃′α̃(α̃2 − 6) = 0 , (3.28)

and the law describing the Kasner inversion is

ααI = 12 . (3.29)

Kasner transiton. The differential equation satisfied by the Kasner transition process
of α̃ becomes

zα̃′′ + 7α̃′ ± |κ|α̃α̃′ = 0 , (3.30)

and the law for the Kasner transition is

α+ αT = ± 12
|κ|

, (3.31)

with the plus and minus signs corresponding to α > 0 and α < 0, respectively.
Based on the above results, we obtain the α-κ phase diagram presented in figure 2. For

each case, a numerical example will be given.

3.5.1 κ = 2

We first consider the case with κ = 2, which is a top-down model that can be embedded into
type IIB supergravity [32]. This model (κ = 2 >

√
3) belongs to Case III, i.e. the outer

parts of figure 2. As the temperature is lowed, the scalar hair will develop spontaneously
below the critical temperature Tc = 0.026µ, triggering a second order phase transition from
the Reissner-Nordström black hole to the charged hairy black hole, known as the holographic
superconductor phase transition [32].

In order to check whether the analytical description (3.30) and (3.28) can capture all
the important effects describing the Kasner inversion and transition, we compare the profile
of α̃ = zψ′ from the analytical one (3.30) and (3.28) with the numerical solution of the
full equations of motion (2.3)–(2.6) in figure 3. One can see that α̃ is almost a constant in
each Kasner epoch, while it suffers from a sudden change at certain transformation points.
We present the value of α in each Kasner epoch by fitting the numerical solutions (solid
orange curve). There are two Kanser transformations presented in figure 3, where the left
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Figure 2. The κ-α phase diagram for the benchmark model (3.26). The two vertical dashed lines
at κ = ±

√
3 divide the phase diagram into three parts. The middle part with −

√
3 < κ <

√
3

corresponds to Case I, and the outer parts |κ| >
√

3 correspond to Case III. In addition, Case II is
precisely given by the two vertical lines.
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Figure 3. A direct comparison of the analytical description (3.30) (blue dashed curve) and the
numerical one (solid orange curve) for Kasner inversion (left panel) and Kasner transition (right panel).
Note from (3.11) that α̃(z) = zψ′(z). Each platform corresponds to a Kasner epoch with the number
denoting the value of α. We consider the hairy black hole at T = 0.967Tc. The approximation (3.30) is
in excellent agreement to the profile from the full equations of motion (2.3)–(2.6). We have considered
the model (3.26) with κ = 2, i.e. a top-down theory from supergravity [32].

panle is for a Kasner inversion and the right one for a Kasner transition. It is clear that
our analytic approach is able to capture the key features of the Kasner transition. It gives
an excellent description of transformation found numerically. Moreover, we have checked
various numerical examples with a sequence of alternation of Kasner epochs, and find a
good agreement with our transformation rule.

Since our top-down model pertains to Case III, the parameter space of Kasner inversion
and the one of Kasner transition have an overlap. Outside the overlapping region 3 < |α| <
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Figure 4. The configuration of zψ′ inside the hairy black hole at T = 0.995Tc for the model (3.26)
with κ = 2. The dashed red and blue curves mark |zψ′| = 3 and |zψ′| = 2

√
3, respectively. The value

of α for each Kanser epoch is given explicitly. When zψ′ = −3.1966 ∈ (−2
√

3,−3), it goes through a
competitive process that can’t be described by our inversion or transition law. The inset zooms in on
this transformation. After this process, the system arrivals at a Kanser epoch with α = −3.8095. The
present model can be embedded into supergravity [32].

2
√

3, the alternation between adjacent Kasner epochs is described by the transformation
laws (3.29) and (3.31). Such standard transformation is clearly visible from figure 3. In
contrast, when α falls into the overlapping region, the intricate interaction between the
Kasner inversion and transition develops and the transformation behavior cannot be simply
captured by (3.29) and (3.31).

As shown in figure 4 for T = 0.995Tc, after the ER collapse and scalar oscillation,
one has a Kanser epoch with α = 1.3078. Then after a Kasner inversion and a transition,
the resulting epoch has α = −3.1966 which is within the overlapping region (−2

√
3,−3).

The profile of ψ becomes no more logarithmic and the value of α = zψ′ decreases towards
the interior in the present case. By a complicated transformation process, it arrivals at
a Kanser epoch with α = −3.8095 that deviates significantly from the value predicted by
Kasner inversion or transition. Since α falls out the overlapping zone, more standard Kasner
alternations will be triggered.

3.5.2 κ =
√

3

Then, we choose F = sinh2(
√

3ψ/2)/2 of model (3.26), which yields κ =
√

3 and thus belongs
to Case II (the vertical dashed line of figure 2). As we have mentioned, this is similar to the
four dimensional top-down model studied in [16]. Unless α = ±2

√
3, there will be generically

a never-ending chaotic alternation of Kasner epochs towards the singularity.
In figure 5, we show zψ′ as a function of z inside the hairy black hole for T = 0.92Tc

with Tc = 0.015µ. Two Kasner inversions and two Kasner transitions are manifest. It is easy
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Figure 5. The interior configuration of zψ′ at T = 0.92Tc for the model (3.26) with κ =
√

3. Both
the boundaries of the Kasner inversion and transition are at |α| = 2

√
3, so it will be an infinite Kasner

alternation process. The value of α for each Kasner epoch is given by solving the full equations of
motion. The validity of the transformation rule (3.32) for the alternation of Kasner epochs is manifest.

to check that the value of α for each Kasner epoch agrees with our transformation rule

ααI = 12, |α| < 2
√

3 ,
α+ αT = ±4

√
3, |α| > 2

√
3 .

(3.32)

For example, the first Kasner epoch is around z/zH = 100 with α1 = 2.1488. Thus, a
Kasner inversion is triggered and results in a Kasner eopch with α2 = 5.5925. One finds
α1α2 = 12.0172 as predicted by our analytic approach. Since α2 > 2

√
3, there should be

the third Kasner epoch via the Kasner transition. We find that α3 = 1.3355 and thus
α2 + α3 = 6.928, in good agreement with Kasner transition law (3.32). The new Kasner
regime is again unstable and the process would repeat itself for ever.

3.5.3 κ = 3/2

We can also realize the situation for Case I by, for example, setting κ = 3/2, i.e. F(ψ) =
sinh2(3ψ/4)/2. It exists a stable region 2

√
3 < |α| < 4 as visible from figure 2. Once a

Kasner epoch falls into this region, it will stay at this Kasner epoch towards the singularity
without suffering from further Kasner alternation.

A typical example is given in figure 6 for the hairy black hole at T = 0.84Tc where the
critical temperature Tc = 0.007µ. After a Kasner transition around z/zH = 105, the system
jumps to the Kasner epoch with α = 3.6147 within the stable region. Due to the limitation
of computing power, we are not able to solve the full equation of motion (2.3)–(2.6) for
sufficiently large z. Nevertheless, the sufficiently long stable phenomenon that appears in
figure 6 can be considered as a strong support.
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Figure 6. The interior profile for zψ′ for the model (3.26) with κ = 3/2 and T = 0.84Tc. There is a
stable region with 2

√
3 < |α| < 4. One finds a stable Kasner epoch with α = 3.6147 for z/zH > 105.

The inset zooms in on the transition.

4 Interior dynamics for general coupling and potential

We have obtained two typical transformations at later interior times, i.e. the Kasner inversion
caused by the kinetic energy term of the gauge field and the Kasner transition dominated
by the exponential coupling F ∼ eκψ. In both cases, the scalar potential V (ψ) is negligible,
and the transformation law can be given analytically. It is challenging to understand other
cases due to the highly nonlinear nature of the system. However, from a large number of
numerical examples, we find that there exist Kasner structures and Kasner transformations
for general coupling F and potential V under certain condition. In this section we aim
at providing general features.

4.1 Case with general coupling F

We begin with the simplest case for which the contribution of V is neglected. We also note
that h′ is integrable, thus the order of h′/h is smaller than 1/z and can be neglected in (2.3).
At this time, the approximate equation of motion about ψ is given by

ψ′′ = −1
z
ψ′ − q2A2

t

z2dh2
dF
dψ . (4.1)

We can obtain from the above equation that

α̃′ = − q2A2
t

z2d−1h2
dF
dψ ⇒ α̃′dF

dψ = − q2A2
t

z2d−1h2

(dF
dψ

)2
< 0 , (4.2)

where we have used (3.11). Hence, for the case with positive dF
dψ , the value of α̃ will decrease

towards the deep interior, while the negative dF
dψ will result in the increase of α̃.
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For the exponential coupling F ∼ eκψ discussed in subsection 3.3, when κ is within (3.20),
the coupling F dominates the system and leads to a transformation to a stable Kasner regime
with a smaller value of |α| via the Kasner transition. For the coupling function with super-
exponential and more general forms, it is difficult to analytically obtain the transformation
process. Nevertheless, due to the similar mechanism discussed at the end of subsection 3.2,
some generic features can be given. Suppose there is a transformation from a Kasner epoch
to another one. For dF

dψ > 0, the new Kasner epoch will have a smaller value of the Kasner
exponent α, while it will have a larger Kasner component for dF

dψ < 0. Such transformation
process could result in a sequence of Kasner epochs until the contribution from F term
becomes negligible and the system settles down to a stable epoch.7

We now give an example for the interior dynamics of α̃. In order to highlight the role of
F , we consider the five dimensional model with the super-exponential coupling.

F = sinh(sinh2(ψ)), V = −12 − 3
2ψ

2, q =
√

3 . (4.3)

One has F ∼ exp(e2|ψ|) asymptotically for large ψ. Ignoring the scalar potential, the equation
of motion about ψ is approximated by

α′ ≃ −h
′

h
α− 3A2

t

z7h2
dF
dψ , (4.4)

where we have also included the contribution from h′/h, since the non-integrability of h′ will
also cause the instability of a Kasner epoch when its exponent |α| < 2

√
3 (see subsection 3.2).

The interior evolution of α̃ = zψ′ is presented in figure 7, which exhibits a sequence of
Kasner epochs as well as some non-Kasner regions. The two Kasner epochs at the left-most
position in figure 7 has α1 = 4.2047 and α2 = −3.6128 (as visible from the left panel of
figure 8). Both are outside the non-integrability condition (3.9) and thus h′/h would not play
a dominant role. It is manifest from the left panel of figure 8 that the Kasner alternation is
triggered by the F term, thus does not obey the Kasner inversion law (3.16). As expected,
the transformation results in a Kasner epoch with a smaller α2. As a negative α2 will result
in a negative dF

dψ as the interior time evolves, a new Kasner epoch with a larger exponent α
is anticipated. One can see from figure 7 that the third Kasner exponent α3 = 3.2546 > α2.

Since α3 = 3.2546 < 2
√

3, the h′/h term itself can trigger the instability of third Kasner
epoch at late interior times. We have a sequence of Kasner alternations until z/zH = 105

with the amplitude of α decreasing. As visible from the right panel of figure 8, the h′/h
term becomes important to the dynamics. In the absence of F term, one expects to have a
Kasner inversion. Since both terms can not be ignored, we find some alternations between
non-Kasner epochs when 106 < z/zH < 108. For much larger z/zH , the system shows more
Kasner epochs. We anticipate an infinite sequence of epochs, as the scalar field rolls back
and forth in its coupling F .

4.2 Case with general potential V

So far we have required that the contribution from the scalar potential V (ψ) should be
ignored. This allows V to be arbitrary algebraic functions, including polynomial functions.

7Here we assume that each epoch at late times has a Kasner form. It is possible that there develops no
Kasner epoch for some choice of F .
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Figure 7. Evolution of zψ′ as a function of z behind the event horizon zH . We consider the planar
hairy solution at T = 0.997Tc for the model (4.3) with a super-exponential coupling F . Each platform
corresponds to a Kasner epoch with a constant Kasner exponent α. The value of α is labelled in some
Kanser epochs. There develops a sequence of Kasner epochs as well as non-Kasner epochs.
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Figure 8. Zoom in on the evolution of zψ′ in figure 7. The interior behavior is dominated by the two
terms in the right hand of (4.4), for which the first term Hterm = −h′

h α is denoted by the red dashed
curve and the second term Fterm = − 3A2

t

z7h2
dF
dψ is denoted by the blue dashed curve. The left panel

shows two Kasner transformations dominated by Fterm. When 106 < z/zH < 108, in the right panel
non-Kasner epochs are manifest where both terms come into play.

However, for V that diverges faster than the exponential growth, the scalar potential usually
comes into play and our transformation laws (3.16) and (3.24) will be invalid. For example,
an even super-exponential potential has been shown to trigger an infinite number of bounces
for Kasner epochs [7, 15]. In particular, by assuming the rate of growth is approximately
constant over the bounce (|V ′′′V ′/V ′′2| ≪ 1), an analytic expression for the bounces between
each Kasner epoch have been discussed in [15]. It was shown that at late interior times the
Kasner exponent α tends to zero and the interior metric slowly approaches the Schwarzschild
singularity. Nevertheless, the analysis of [15] does not apply to general cases.

– 17 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
9

When the scalar potential dominates, the approximate equation of motion about ψ
is given by

ψ′′ = −1
z
ψ′ + e−χ/2

zd+2h

dV
dψ , (4.5)

from which we get

α̃′ = e−χ/2

zd+1h

dV
dψ ⇒ α̃′dV

dψ = e−χ/2

zd+1h

(dV
dψ

)2
< 0 , (4.6)

since h < 0 inside the hairy black hole. One immediately finds a similar feature as the
previous case, see (4.2). The value of α̃ known as Kasner velocity in [15] will decrease towards
the deep interior for dV

dψ > 0, while it will increase for dV
dψ < 0.

For an even super-exponential potential V ∼ eψ
2n with n a positive integer, its derivative

to ψ is an odd function. We begin with a Kasner epoch with a positive Kasner exponent α0
and a positive ψ (i.e. dV

dψ > 0). The Kasner transformation triggered by the scalar potential,
if it happens, will lead to a new Kasner epoch with a smaller Kasner exponent α1 < α0. If
α1 < 0, ψ ∼ α1 ln(z) will typically become negative towards interior and thus dV

dψ < 0. Then
the scalar potential could trigger another Kasner transformation, giving the third Kasner
epoch with a larger Kasner exponent α2 > α1. Once α2 > 0, there would be the third Kasner
transition to the epoch with a negative Kasner exponent, and so on. Thus, we could have
an infinite sequence of Kasner epochs. This is what has been observed in the literature,
see e.g. figure 1 of [15]. Similar features can be found for more exotic potentials, see the
left panel of figure 9 for V ∼ exp(eψ8).

On the other hand, for an super-exponential potential V ∼ eψ
2n+1 with odd power, one

has dV
dψ ∼ ψ2neψ

2n+1 . For a Kasner epoch with α0 > 0 and ψ > 0, one has dV
dψ > 0. The

Kasner transformation triggered by the scalar potential, if it happens, will result in a new
Kasner epoch with a smaller Kasner exponent α1 < α0. Then ψ will decrease and could even
become negative at large z. In contrast to the even super-exponential case, the decrease of ψ
makes the contribution from scalar potential less important. In particular, once ψ becomes
sufficiently negative, dV

dψ ∼ ψ2neψ
2n+1 is suppressed super-exponentially. Thus, the system

could settle down to a stable Kasner epoch, instead of experiencing an infinite sequence of
Kasner epochs. An example with V ∼ eψ

7 is shown in the right panel of figure 9. For each
temperature, one can see a sufficiently long Kasner epoch with a negative Kasner exponent.
Similar discussion applies to the case with the opposite sign, i.e. V ∼ e−ψ

2n+1 , for which the
system would settle down to a Kanser epoch with a positive Kasner exponent α. However, if
one turns on both kinds of odd super-exponential potentials, there will exhibits an infinite
sequence of Kasner epochs, as the scalar field rolls back and forth in such potential.

For the sake of simplicity, we have turned off the U(1) gauge potential At in our numerical
examples in figure 9. Actually, the above discussion applies to the charged black holes without
inner horizon, no matter F(ψ) is zero or not. In the absence of F , one can not remove the
inner horizon completely. But a neutral scalar generically leads to a black hole with no
inner horizon [5].8 In the presence of At, in order to have a finally stable Kasner epoch, the

8For such kind of hairy black holes, inner horizons do exist at some specific temperatures [5].
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Figure 9. Kasner structure and transformation triggered by super-exponential potentials for the
Einstein-scalar theory. The left panel is dominated by an even super-exponential potential V ∼ exp(eψ8)
and the right one is dominated by V ∼ eψ7 . To highlight the role of scalar potential, we turn off the
U(1) gauge field. The scalar potentials are chosen to have the asymptotic behavior as ψ → 0 near the
AdS boundary V = −12 − 3

2ψ
2 + · · · , for which the boundary expansion is given by (3.27). To obtain

the hairy black holes in such charged neutral case, we fix the boundary source for the scalar ψs = 1.
We consider the planar horizon case in five dimensional spacetime.

value of its Kasner exponent α should be outside (3.9). Otherwise, a Kasner inversion in
subsection 3.2 will occur and the system will jump into a Kasner epoch with α outside (3.9).
If no other terms come into play, it will be the finally stable Kasner epoch.

One key difference compared with the coupling term is that F is bound from below to
ensure positivity of the kinetic term, while there is in principle no bound for V (ψ). Thus the
scalar potential could result in much richer interior behaviors. For example, we consider a
negative even super-exponential potential V ∼ −eψ2n with its derivative dV

dψ ∼ −ψ2n−1eψ
2n .

Therefore, choosing a point zi at which ψ(zi) > 0 and ψ′(zi) > 0, one has dV
dψ < 0. Then α̃ will

increase as z increases according to (4.6). Therefore, the scalar will increase monotonically
and the super-exponential potential would increase very quickly. If no other terms that can
offset this catastrophic increase, the amplitude of V will increase until reaching the singularity
at which the spacetime terminates. We choose a strong potential that yields a rapidly increase
of V and α̃ in the interior, see figure 10. One can see from the left panel, there is no any
Kasner epoch and the value of α̃ suffers a catastrophic increase above z/zH ≃ 4.2. The
value of V versus z is shown in the right panel. So far, we are not able to show whether
the scalar field could escape to infinity at a finite z.

4.3 Case with both F and V

According to our discussion in the previous two subsections, once both F and V are in-
cluded and become important, the synergy and competition will result in very complicated
interior dynamics.

For illustration, we consider a model equipped with a super-exponential potential in
five spacetime dimensions.

V (ψ) = −13 − 3
2ψ

2 + eψ4
, F = sinh2(ψ), q =

√
3 . (4.7)
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Figure 10. Evolution of α̃ = zψ′ (left panel) and the scalar potential V = −11 − 3
2ψ

2 − eψ
8 (right

panel) as a function z. Both suffer a catastrophic increase above z/zH = 4.2 and there is no any
Kasner epoch. The planar hairy black holes are numerically constructed with the gauge potential
At = 0 and the scalar source ψs = 1.
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Figure 11. Interior dynamics of the planar hairy black holes at T = 0.81Tc (left) and T = 0.87Tc
(right) for the model (4.7). There develop complicated behaviors, including the presence of non-Kasner
epochs and the random change of the amplitude of the Kasner exponent.

It follows the same asymptotic behavior as (3.27) at the AdS boundary. We focus on the
planar hairy black holes for which the scalar hair develop spontaneously below the critical
temperature Tc = 0.1221µ.

The evolution of α̃ is presented in figure 11 from which more involved behaviors are
manifest. One can see some sequences of Kasner epochs separated by abrupt bounces in which
the Kasner exponent α changes sign. The amplitude of Kasner exponent α can increase or
decrease. There also develop alternations between non-Kasner epochs, similar to what we have
seen in figure 7. An analytic understanding of those interior dynamics is not yet available.

5 Conclusion and discussion

We have studied the interior of hairy black holes in Einstein-Maxwell-scalar theory, which
covers a large class of models considered in a recent body of research. It allows a Kanser
universe characterized by the Kasner exponent α = zψ′ if the contributions from most
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of interactions to the interior dynamics can be dropped off, see subsection 3.1. Kasner
spacetimes continue to play a central role once more terms enter into the dynamics, but
they may not persist for ever. We have been able to characterize the late interior time
behaviors rather explicitly.

We have uncovered two kinds of alternation of Kasner epoch. One is called Kasner
inversion triggered by the non-integrability of h′ = (z−de−χ/2f)′ discussed in subsection 3.2.
More precisely, when |α| >

√
2(d− 1)(d− 2), the Kasner inversion yields a stable Kasner

epoch if no additional term comes into play, and the two Kasner exponents before and
after the Kasner inversion satisfy (3.16). In addition, when the coupling function F takes
an exponential form F ∼ eκψ asymptotically at large ψ, the Kasner transition process
will be triggered when κα > (2d − 2), see subsection 3.3. The transformation law of the
Kasner transition between two adjacent Kasner epochs is given by (3.24). Depending on the
spacetime dimension and the coupling constant κ, we have predicted three different cases
of Kasner alternation at later interior times (see figure 1). Our analytical expressions have
been corroborated by numerical solutions to the full equations of motion (2.3)–(2.6). Several
models have been checked in section 3.5, including a top-down model from supergravity.

In the case of the BKL limit, the billiard model can well describe the motion of space-
time and fields near the singularity for scalarized black holes [33]. In the asymptotic region,
by analyzing the effective potential wall in Hamiltonian, the description of the Kasner
transformation can be established by an algebraic method, which is very helpful for the
understanding of hidden symmetries [34]. Similar to the analysis of effective potential
wall in the Hamiltonian describing Kasner transformation, we have obtained the dynamics
by analyzing the non-integrable terms in the equations of motion. Our method not only
provides the transformation laws analytically, but also gives the key differential equations
that characterize the transformation process. These differential equations are analytically
solvable and completely consistent with the results obtained by numerically solving the
complete equations of motion, see figure 3 for a direct comparison of the analytical description
and the numerical solutions.

Based on the observation from (4.2) and (4.6), we are able to provide some common
features about the interior dynamics under certain conditions. In particular, we recovered
the “bounce” interior for hairy black holes of AdS gravity coupled to a neutral scalar with a
strong even scalar potential [15]. Moreover, we have shown the significant difference between
the even and odd super-exponential scalar potentials, see figure 9. We also provided one
example with a negative even super-exponential potential for which no Kanser structure can
develop (see figure 10). After the U(1) gauge field is introduced, we have found some novel
internal dynamics, including the presence of non-Kasner epochs and the random change of
the amplitude of the Kasner exponent at late interior times, see figure 11.

Our current analysis covers many top-down models from superstring/supergravity, thus
allowing one to further explore the process of black holes moving towards the singularity in a
controllable way and to understand the holographic significance of internal dynamics from
the perspective of dual field theory. While we have revealed some common features about
the interior of dynamics, we believe that further investigation of the parameter space could
yield other regions of interest. In particular, the charged black hole with a super-exponential
scalar potential would show very rich internal behaviors that are far from being understood.
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We have paid attention to the static black holes with scalar hair. It will be interesting to
generalize our discussion to stationary cases and even dynamic black holes, see a recent study
on the internal structure of hairy rotating black holes in three dimensions [35]. Our analysis
method could be used to understand the interior dynamics of black holes with other matter
content, for example, anisotropic black holes with vector hair [23, 24]. We have been limited to
the case with Z = 1, i.e. no direct coupling of ψ to FµνFµν . In fact, our preliminary analysis
suggests that some choice of Z(ψ) could strongly affect the interior dynamics, which lies
beyond the scope of current work. It is desirable to understand these features in the future.
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