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1 Introduction

An important class of conformal field theories is the class CFTs possessing WN (N ≥ 2)
symmetry, the generators of which are N −1 holomorphic fields of spin 2, . . . , N . The simplest
case, N = 2, corresponds to the conformal field theory with Virasoro symmetry, where the
generator is the spin-2 energy-momentum tensor. Examples of conformal field theories
with WN symmetry include the slN quantum Toda field theory, which is a generalization
of Liouville field theory, corresponding to N = 2 and arising in the description of two-
dimensional quantum gravity. Thus, the slN quantum Toda field theory is relevant for
higher-spin generalizations of two-dimensional quantum gravity.

The correlation functions of primary fields in conformal field theories can generally be
expressed in terms of model-independent building blocks, known as conformal blocks (CBs).
Apart from the direct application within the CFT frame, CBs play an essential role in
different contexts, in particular they have dual interpretations in AdS/CFT correspondence,
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as geodesic networks, see, e.g., [1–15], or specific Wilson line configurations, see, e.g., [16–35].
CBs also appear in the context of solvable lattice models [36] through the connection of the
braiding matrices with the Boltzmann weights of interaction-round-the-face lattice models
(see, e.g., [36, 37]).

In this work, we describe the CBs of the correlation functions of primary fields in
conformal field theories with W2 (Virasoro) and W3 symmetries in the large central charge
limit, using the so-called shadow formalism [38–41]. This method allows us to express the
CBs in integral representations involving the so-called conformal partial waves. In the case
of Virasoro CFT, this method has been well-studied in both spherical and torus topologies.
Our goal is to generalize this method to the W3 CFT, particularly on the torus, where no
exact expressions for the blocks are known.

The main object of our study is the one-point CB on the torus in the large central charge
limit. The one-point correlation function of a primary field ϕ∆1,∆̄1

with holomorphic and
antiholomorphic conformal dimensions ∆1, ∆̄1 on the torus is defined as1

⟨ϕ∆1,∆̄1
(z1, z̄1)⟩torus

= Tr∆̃∈D

(
qL0 q̄L̄0ϕ∆1,∆̄1

(z1, z̄1)
)
=
∑

∆̃∈D

C∆̃∆1∆̃|F(∆1, ∆̃, q)A|2 , (1.1)

where Tr∆̃ denotes the trace taken over a module of the symmetry algebra A associated with
the primary field ϕ∆̃, ¯̃∆ in the intermediate OPE channel, D is the domain of primary fields of
the corresponding conformal field theory, q is the elliptic parameter of the torus q = e2πiτ , and
L0 is the generator of the algebra satisfying L0|∆̃⟩ = ∆̃|∆̃⟩. Here, F(∆1, ∆̃, q)A is the one-
point holomorphic torus CB (for more details, see, e.g., [42–44]). In the case of the Virasoro
algebra and generic central charge c, an exact expression for F(∆1, ∆̃, q)A is unknown. When
one restricts the analysis to the large central charge limit, exact expressions are known for the
sl2 global one-point2 torus CBs. Global conformal blocks are defined as the contribution of
CBs coming from the slN subalgebra of the WN algebra. For other WN (N ≥ 3) conformal
field theories, no exact expressions are currently known. In [48], a perturbative expression
was presented for W3 CFT in the large central charge limit. In this work, we derive the exact
expression for the sl3 global one-point CBs, which is the main result of this paper.

We consider the light operators relevant for the global CBs, whose conformal dimensions
scale as ∆ ∼ o(1) as c → ∞. This behavior allows to restrict the set of generators of W2 and W3
to those of sl2 and sl3 algebras, respectively, and leads to a significant simplification of the CBs.

W3 primary fields ϕj(z, z̄) are labeled by a vector j belonging to the root space of sl3,

j = rw1 + sw2, (1.2)

where w1, w2 are sl3 fundamental weights. Unlike W2, in W3 CFT, the CBs are not fully
determined by the symmetry algebra due to the presence of multiplicities in the OPE of
primary fields. In the language of sl3 representation, this translates into multiplicities in
the tensor product of sl3 representations. Therefore, below, we will restrict our discussion
to a class of CBs for which the problem of multiplicities is absent [49], with a number of

1Throughout this paper, we omit the factor (qq̄)− c
24 , which can be easily restored.

2For global multi-point blocks, some expressions are known in specific channels, see [45–47].
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external fields fulfilling the following condition

W−1ϕj(0, 0) |0⟩ = 3qj

2∆j
L−1ϕj(0, 0) |0⟩ . (1.3)

Here ∆j , qj are the conformal dimension and W3 charge of ϕj , respectively.
The paper is organized as follows. In section 2, we briefly review some basic concepts of

Virasoro CFT. In section 2.1, we explain the fundamental elements of the shadow formalism
in the sl2 case. We introduce a shadow operator that allows us to express CBs in terms of
conformal partial waves. We discuss this construction for the sphere topology in section 2.2
and for the torus topology in section 2.3. In section 3, we recall the basic facts about W3
CFT, define the sl3 global one-point torus block and provide its perturbative expression.
Section 4 is devoted to generalizing the shadow formalism to the sl3 case. In section 4.1, we
introduce preliminary concepts related to the sl3 invariant functions theory. In section 4.2,
we generalize the shadow formalism to the sl3 case. In section 4.3, we apply the constructed
formalism to the computation of the sl3 global four-point sphere CB, and in section 4.4,
we apply the formalism to compute the sl3 global one-point torus CB. In section 5, we
present our conclusions. Appendices A and B are included to explain some technical details
of certain integral computations. In appendix C, we present a short review of sl3 fields,
which are introduced in section 4.2.

2 sl2 global conformal blocks via shadow formalism

The symmetry of the Virasoro CFT is generated by the energy-momentum tensor T(z)3 (a
spin-2 current) whose Laurent series expansion reads

T(z) =
∞∑

n=−∞

Ln

zn+2 . (2.1)

The modes Ln satisfy the Virasoro algebra

[Ln, Lm] = (n − m)Ln+m + c

12(n
3 − n)δn+m,0 . (2.2)

We denote by φ∆,∆̄(z, z̄) the Virasoro primary fields with conformal dimensions ∆, ∆̄. For
simplicity, in what follows, we assume that holomorphic and antiholomorphic conformal
dimensions are equal

∆ = ∆̄, (2.3)

and denote the primary fields

φ∆(z, z̄) := φ∆,∆̄(z, z̄). (2.4)

One can show that in the limit c → ∞, in order to have finite inner product of states
⟨∆, n|n,∆⟩, where |n,∆⟩ = L−nφ∆(0, 0) |0⟩, one needs to restrict the generators Ln to the
set L0, L1, L−1, which form the sl2 subalgebra

[Ln, Lm] = (n − m)Ln+m. (2.5)
3Similar discussion holds for antiholomorhic T̄ (z̄).
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The generators Ln satisfy the following commutation relations with the primary fields

[Ln, φ∆(z, z̄)] = Lnφ∆(z, z̄), Ln = zn(z∂z +∆(n + 1)). (2.6)

The differential operators L0,L1,L−1 are the generators of sl2 transformations on primary
fields

L0 = z∂z +∆, L1 = z2∂z + 2z∆, L−1 = ∂z. (2.7)

To compute CBs on sphere and torus, one uses the OPE decomposition of the product of
primary fields and the commutation relations (2.6) to compute matrix elements of the type

⟨∆1, N |φ∆2(z, z̄) |N,∆3⟩ , (2.8)

which arise in the decompositions of the CBs. Here |N,∆i⟩ stands for the descendent states
of |∆i⟩. On the sphere at large c limit, the CBs get contributions only from sl2 generators;
thus, the CBs reduce to the global CBs. While on the torus, besides the global blocks,
one also has the so-called light CBs, which contain contributions from the full Virasoro
generators. In this work, we will concentrate only on the global blocks. To compute them,
we use the shadow formalism.

2.1 Basics of sl2 shadows formalism

Basic concepts. Let us introduce the shadow operator of the primary field φ∆(z, z̄). Taking
into account (2.3), the shadow operator is defined as

φ̃∆∗(z, z̄) = 1
N∆

∫
R2

d2w
φ∆(w, w̄)

|z − w|4(1−∆) , (2.9)

where d2w = dwdw̄ represents integration over the complex plane, and ∆∗ is the holomor-
phic and antiholomorphic conformal dimension of the shadow operator (which is also a
primary field)

∆∗ = 1−∆, (2.10)

and N∆ is a normalization coefficient

N∆ = π2Γ(2∆− 1)Γ(1− 2∆)
Γ(2− 2∆)Γ(2∆) . (2.11)

Below, we will show that the shadow operator has the property

⟨φ̃∆∗(z, z̄)φ∆(w, w̄)⟩ = δ2(z − w), (2.12)

where the two-dimensional delta function δ2(z − w) is defined according to
∫
R2 f(z, z̄)δ2(z −

w)d2z = f(w, w̄). We define the “projector” operator

Π∆ =
∫
R2

d2zφ∆(z, z̄) |0⟩ ⟨0| φ̃∆∗(z, z̄). (2.13)

It satisfies the property

Π∆mΠ∆n = δmnΠ∆m . (2.14)
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For the operator

P =
∑

∆∈D
Π∆, (2.15)

where D is the domain of admissible conformal dimensions for the considered CFT, one
can show that

P |h⟩ = |h⟩ , where |h⟩ = φh(0, 0) |0⟩. (2.16)

This property follows directly from the definition (2.13), (2.15). By writing explicitly (2.15),
we have

P |h⟩ =
∑

∆∈D

∫
R2

d2zφ∆(z, z̄) |0⟩ ⟨0| φ̃∆∗(z, z̄)φh(0, 0) |0⟩ . (2.17)

Because of (2.12), we have

⟨0| φ̃∆∗(z, z̄)φh(0, 0) |0⟩ =

δh,∆δ2(z),
0, otherwise.

(2.18)

Hence
P |h⟩ =

∑
∆∈D

∫
R2

d2zφ∆(z, z̄) |0⟩ (δh,∆δ2(z)) = φh(0, 0) |0⟩ = |h⟩ . (2.19)

We notice that since φ̃∆∗(z, z̄) is a primary field, one could include an extra contribution
to the two-point correlation function

⟨0| φ̃∆∗(z, z̄)φh(0, 0) |0⟩ =


δh,∆δ2(z),
δh,1−∆

1
z2(1−∆)z̄2(1−∆) ,

0, otherwise.

(2.20)

However, this modification does not substantially change (2.19). Indeed, assuming (2.20),
we have

P |h⟩ =
∑

∆∈D

∫
R2

d2zφ∆(z, z̄) |0⟩ ⟨0| φ̃∆∗(z, z̄)φh(0, 0) |0⟩

=
∑

∆∈D

∫
R2

d2zφ∆(z, z̄) |0⟩
(

δh,∆δ2(z) + δ1−∆,h
1

z2(1−∆)z̄2(1−∆)

)

= |h⟩+
∫

d2z
φ1−h(z, z̄)

z2hz̄2h
|0⟩ = |h⟩+N1−hφ̃h(0, 0) |0⟩ = (1 +N1−h) |h⟩ ∝ |h⟩ ,

(2.21)

where in the third line we used that φ̃h can be expressed in terms of its shadow field φh∗ .
The result (2.21) is essentially the same as (2.19).

Delta function. The relation (2.12) can be established as follows. By inserting the shadow
operator (2.9) into the l.h.s. of (2.12), and writing it for z1 and z2 coordinates, we have

⟨φ̃∆∗(z2, z̄2)φ∆(z1, z̄1)⟩ =
1

N∆

∫
d2z

⟨φ∆(z, z̄)φ∆(z1, z̄1)⟩
|z − z2|4(1−∆) = δ2(z1 − z2). (2.22)
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Since ⟨φ∆(z, z̄)φ∆(z1, z̄1)⟩ = 1
|z−z1|4∆

, then (2.22) becomes

1
N∆

∫
d2z

1
|z − z2|4(1−∆)|z − z1|4∆ = δ2(z1 − z2). (2.23)

By using the parametrization h1 = 2∆, h2 = 2− h1 = 2(1−∆), eq. (2.23) can be written
more generally as

1
N∆

∫
d2z

1
(z − z1)h1(z − z2)h2

1
(z̄ − z̄1)h1(z̄ − z̄2)h2

= δ2(z1 − z2), (2.24)

where N∆ is expressed in terms of h1, h2 as

N∆ = π2Γ(1− h1)Γ(1− h2)
Γ(h1)Γ(h2)

. (2.25)

Let us prove (2.23) and show that N∆ is given by (2.11) or (2.25). For this purpose, we
write (2.23) in Cartesian coordinates, and use the above parametrization h1, h2, then (2.23)
becomes

1
N∆

∫
d2x

1
(x − x1)2h1(x − x2)2h2

= δ2(x1 − x2). (2.26)

By using the relation

Γ(∆)
x2∆ =

∫ ∞

0
dt1t∆−1

1 e−t1x2
, (2.27)

we rewrite (2.26) as follows

1
N∆

∫
d2x

1
(x − x1)2h1(x − x2)2h2

= 1
N∆Γ(h1)Γ(h2)

∫
d2x

∫ ∞

0
dt1dt2th1−1

1 th2−1
2 e−t1(x−x1)2−t2(x−x2)2 .

(2.28)

After some transformations and integration over x, one can convert this integral to

1
N∆

∫
d2x

1
(x − x1)2h1(x − x2)2h2

= π

N∆Γ(h1)Γ(h2)

∫ ∞

0

dt1dt2
t1 + t2

th1−1
1 th2−1

2 e
− t1t2(x1−x2)

2
t1+t2 .

(2.29)

For the exponent, we use the Fourier transform

e−αx2 =
∫

d2k

(
e−

k2
4α

π

α

)
e−ik·x. (2.30)

By multiplying the r.h.s. of (2.26) by eik·(x1−x2) and performing the two-dimensional integral
over the variable (x1 − x2), we obtain 1. Therefore, by multiplying both sides of (2.29)
and integrating over (x1 − x2), we must obtain the same result. Applying this reasoning,
we obtain from (2.29)

π2

N∆Γ(h1)Γ(h2)

∫ ∞

0
dt1th1−1

1 e
− k2

4t1

∫ ∞

0
dt2th2−1

2 e
− k2

4t2 = 1. (2.31)
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This implies that

π2Γ(1− h1)Γ(1− h2)
N∆Γ(h1)Γ(h2)

= 1 , (2.32)

where we used that h1 + h2 = 2. Hence

N∆ = π2Γ(1− h1)Γ(1− h2)
Γ(h1)Γ(h2)

, (2.33)

in accordance with (2.11) and (2.25).

2.2 Sphere: conformal blocks and partial waves

On the sphere, the four-point correlation function can be decomposed into four-point sphere
CBs Fs(∆4, ∆̃, z4) as follows4

Gs
∆4(z4, z̄4) = ⟨

4∏
i=1

φ∆i
(zi, z̄i)⟩ =

∑
∆̃∈D

C∆1∆2∆̃C∆̃∆3∆4
|Fs(∆4, ∆̃, z4)|2, (2.34)

where ∆n = ∆1,∆2, . . . ,∆n, zn = z1, z2, . . . , zn. In the large c limit Fs(∆4, ∆̃, z4) becomes
the sl2 global four-point sphere CB Fs(∆4, ∆̃, z4)sl2 given by

Fs(∆4, ∆̃, z4)sl2 = x∆̃−∆1−∆22F1(∆̃−∆12, ∆̃ + ∆34, 2∆̃, x), (2.35)

where x is the cross-ratio x = z12z34
z13z24

and 2F1(a, b, c, x) denotes the hypergeometric function.
In the large c limit, one can use the shadow formalism to decompose (2.34) into partial waves.
This is done by inserting the resolution of identity operator P in (2.34) as follows

Gs
∆4(z4,z̄4)=⟨φ∆1(z1,z̄1)φ∆2(z2,z̄2)Pφ∆3(z3,z̄3)φ∆4(z4,z̄4)⟩ (2.36)

=
∑

∆̃∈D

∫
R2

d2z⟨φ∆1(z1,z̄1)φ∆2(z2,z̄2)φ∆̃(z,z̄)|0⟩⟨0|φ̃∆̃∗(z,z̄)φ∆3(z3,z̄3)φ∆4(z4,z̄4)⟩.

The first factor of the integrand is just the three-point function, generally given by

⟨φ∆1(z1, z̄1)φ∆2(z2, z̄2)φ∆3(z3, z̄3)⟩ = C∆1∆2∆3 |V∆1,∆2,∆3(z1, z2, z3)|2, (2.37)

where V∆1,∆2,∆3(z1, z2, z3) is the coordinate dependence

V∆1,∆2,∆3(z1, z2, z3) =
1

z∆1+∆2−∆3
12 z∆1+∆3−∆2

13 z∆2+∆3−∆1
23

, (2.38)

where zij = zi − zj . In the next section, we will prove that the second factor in the
integrand ⟨0| φ̃∆̃∗(z, z̄)φ∆3(z3, z̄3)φ∆4(z4, z̄4)⟩ is also proportional to the three-point function
|V1−∆̃,∆3,∆4

(z, z3, z4)|2. Thus, (2.36) can be written as

Gs
∆4(z4, z̄4) =

∑
∆̃∈D

B(∆4, ∆̃)
∫
R2

d2z|V∆1,∆2,∆̃(z1, z2, z)|2|V1−∆̃,∆3,∆4
(z, z3, z4)|2, (2.39)

4Here, we omit the standard prefactor, which is fixed by the global Ward identities.
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where B(∆4, ∆̃) is proportional to C∆1∆2∆̃C∆̃∆3∆4
. The object on the r.h.s. of (2.39)

Ψ∆4
∆̃ (z4, z̄4) =

∫
R2

d2z|V∆1,∆2,∆̃(z1, z2, z)|2|V1−∆̃,∆3,∆4
(z, z3, z4)|2 (2.40)

is termed the four-point sphere conformal partial wave. Equations (2.34), (2.35), (2.39), (2.40)
show the direct relation between sl2 global four-point sphere CBs and the four-point sphere
partial waves. Indeed, if one computes the integral (2.40) (for details of the computation of
this integral, see appendix A of [50]), one finds that the four-point partial wave is given by
a linear combination of two terms |Fs(∆4, ∆̃, z4)sl2 |2, |Fs(∆4, 1 − ∆̃, z4)sl2 |2.

Similar relationships are observed between partial waves and higher-point CBs in the
comb channels. In these cases, one has (n + 2)-point correlation functions

⟨
n+2∏
i=1

φ∆i
(zi, z̄i)⟩ , (2.41)

which are decomposed in the comb channel into (n + 2)-point sphere CBs. Using a decompo-
sition analogous to the one previously discussed, the correlation functions (2.41) can also
be expressed in terms of (n + 2)-point partial waves, defined as

Ψ∆n+2
∆̃n−1

(zn+2, z̄n+2) =
∫
R2(n−1)

n−1∏
i=1

d2wi|V∆1,∆2,∆̃1
(z1, z2, w1)|2|V∆̃∗

1,∆3,∆̃2
(w1, z3, w2)|2 . . .

× . . . × |V∆̃∗
n−1,∆n+1,∆n+2

(wn−1, zn+1, zn+2)|2. (2.42)

This implies a direct relation between the CBs and the partial waves (for a more detailed
discussion, see [41]).

2.3 Torus

2.3.1 One-point torus conformal blocks via shadow formalism

The one-point torus correlation function is given by (1.1), where in the case of the Virasoro
CFT, CBs F(∆1, ∆̃, q)A (where A denotes the Virasoro algebra) receive contributions from
the full Virasoro algebra. We are interested in the contribution from the sl2 subalgebra. This
contribution is given by the sl2 global one-point torus block F(∆1, ∆̃, q)sl2 , defined as follows:

F(∆1, ∆̃, q)sl2 = 1
C̃∆̃∆1∆̃

∑
m=0

(
B−1

∆̃

)mm
⟨∆̃, m|φ∆1(z1, z̄1)qL0 |m, ∆̃⟩ , (2.43)

where
|m, ∆̃⟩ = (L−1)mφ∆̃(0, 0) |0⟩ , Bmm

∆̃ = ⟨∆̃, m|m, ∆̃⟩, (2.44)

and
(
B−1

∆̃

)mm
is the inverse of Bmm

∆̃ , C̃∆̃∆1∆̃ = ⟨∆̃|φ∆1(z1, z̄1) |∆̃⟩ = z−∆1
1 z̄−∆1

1 C∆̃∆1∆̃.5 For
simplicity of writing, we assume that the normalization factor C̃∆̃∆1∆̃ = 1. We aim to show
that, similar to the spherical case, the block (2.43) can be expressed in terms of one-point
torus partial waves defined in some integral representation. Our discussion here follows [51],

5We notice that the dependence on z1 of this matrix element disappears after transforming to cylinder
coordinates.
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though the treatment is slightly different. The basic object used to decompose the r.h.s.
of (2.43) into partial waves is the resolution of identity operator P (2.15) constructed in
the previous section. Let us insert P into (2.43)

F(∆1, ∆̃, q)sl2 =
∑
m=0

(
B−1

∆̃

)mm
⟨∆̃, m| Pφ∆1(z1, z̄1)qL0 |m, ∆̃⟩

=
∑
m=0

(
B−1

∆̃

)mm
⟨∆̃, m|

(∑
h

∫
d2zφh(z, z̄) |0⟩ ⟨0| φ̃h∗(z, z̄)

)
φ∆1(z1, z̄1)qL0 |m, ∆̃⟩ .

(2.45)

In the factor ⟨∆̃, m|φh(z, z̄) |0⟩ by utilizing the formulas

φ∆̃(z, z̄) = ezL−1+z̄L̄−1φ∆̃(0, 0)e−zL−1−z̄L̄−1 ,

φ∆̃(z, z̄) |0⟩ = ezL−1+z̄L̄−1φ∆̃(0, 0)e−zL−1−z̄L̄−1 |0⟩ =
∑

n,n̄=0

znz̄n̄

n!n̄! Ln
−1L̄n̄

−1φ∆̃(0, 0) |0⟩ ,
(2.46)

one obtains

⟨∆̃, m|φh(z, z̄) |0⟩ = δh,∆̃
zm

m!B
mm
∆̃ . (2.47)

Taking into account (2.47) and writing φ̃h∗ according to (2.9), (2.45) becomes

F(∆1, ∆̃, q)sl2 =
∑
m=0

q∆̃+m
∫

d2zd2w

N∆̃|z − w|4(1−∆̃)
zm

m! ⟨0|φ∆̃(w, w̄)φ∆1(z1, z̄1) |m, ∆̃⟩ . (2.48)

Using
φ∆̃(zq, 0) |0⟩ =

∑
m=0

zmqm

m! |m, ∆̃⟩ , (2.49)

we obtain

F(∆1, ∆̃, q)sl2 = q∆̃
∫

d2zd2w
⟨0|φ∆̃(w, w̄)φ∆1(z1, z̄1)φ∆̃(zq, 0) |0⟩

N∆̃|z − w|4(1−∆̃)
. (2.50)

To write explicitly the integrand, we use (2.37) (for the moment, we write only the coordinate
dependence). Thus, (2.50) becomes

F(∆1, ∆̃, q)sl2 = q∆̃

N∆̃

∫
d2zd2w

1
(z − w)2(1−∆̃)(z̄ − w̄)2(1−∆̃)(w − z1)∆1(w̄ − z̄1)∆1

× 1
(w − zq)2∆̃−∆1w̄2∆̃−∆1(z1 − zq)∆1 z̄∆1

1
.

(2.51)

Integrating over w, w̄ and using the formula (A.5), we obtain

F(∆1, ∆̃, q)sl2 = C2q∆̃
∫

d2zV1−∆̃,∆1,∆̃(z, z1, zq)V1−∆̃,∆1,∆̃(z̄, z̄1, 0), (2.52)

where

C2 = πK123(2− 2∆̃,∆1, 2∆̃−∆1)
N∆̃

, (2.53)
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and K123(2− 2∆̃,∆1, 2∆̃−∆1) is according to (A.6). Equation (2.52) is the main formula we
wanted to prove in this section. The r.h.s. of (2.52), up to the factor C2, is the holomorphic
contribution in the variable q to the one-point torus partial wave. We will discuss it in more
detail below. In order to verify (2.52), we notice first that the l.h.s. is given by

F(∆1, ∆̃, q)sl2 = q∆̃

(1− q)1−∆1 2F1(∆1,∆1 + 2∆̃− 1, 2∆̃, q)

= q∆̃
(
1 + q

(
1 + ∆1(∆1 − 1)

2∆̃

)
+ . . .

)
.

(2.54)

Now, the r.h.s. of (2.52)

C2q∆̃
∫

d2zV1−∆̃,∆1,∆̃(z, z1, zq)V1−∆̃,∆1,∆̃(z̄, z̄1, 0)

= C2q∆̃
∫

d2z

(z − z1)∆1−2∆̃+1(z − zq)1−∆1(z1 − zq)2∆̃+∆1−1(z̄ − z̄1)−2∆̃+∆1+1(z̄)1−∆1

× 1
(z̄1)2∆̃+∆1−1

= C2
q∆̃z−∆1

1 z̄−∆1
1

(1− q)1−∆1

∫
d2z

(1− z)∆1−2∆̃+1z1−∆1(1− zq)2∆̃+∆1−1(1− z̄)∆1−2∆̃+1z̄1−∆1
,

(2.55)

where in the last line, we did a change of variables z → z1z, z̄ → z̄1z̄. Expanding in q

the integrand we have

C2q∆̃
∫

d2zV1−∆̃,∆1,∆̃(z, z1, zq)V1−∆̃,∆1,∆̃(z̄, z̄1, 0)

= C2
q∆̃z−∆1

1 z̄−∆1
1

(1− q)1−∆1

∫
d2z

( ∞∑
n=0

qn(−1)n−2∆̃z∆1+n−1(1− z)2∆̃−∆1−1z̄∆1−1

× (1− z̄)2∆̃−∆1−1C−2∆̃−∆1+1
n

)
.

(2.56)

Applying the formula6

∫
d2z|z|2azn|1− z|2b = π

Γ(a + n + 1)Γ(b + 1)Γ(−1− a − b)
Γ(a + n + b + 2)Γ(−a)Γ(−b) , (2.57)

and integrating over z, z̄ in (2.56) we obtain

C2q∆̃
∫

d2zV1−∆̃,∆1,∆̃(z, z1, zq)V1−∆̃,∆1,∆̃(z̄, z̄1, 0)

= C2C3
q∆̃z−∆1

1 z̄−∆1
1

(1− q)1−∆1 2F1(∆1,∆1 + 2∆̃− 1, 2∆̃, q) = z−∆1
1 z̄−∆1

1 F(∆1, ∆̃, q),
(2.58)

where

C3 = πΓ(∆1)Γ(2∆̃−∆1)Γ(1− 2∆̃)
Γ(2∆̃)Γ(1−∆1)Γ(1− 2∆̃ + ∆1)

. (2.59)

6For n = 0, this formula can be written as
∫

d2z|z|2a|1 − z|2b = π γ(a+1)γ(b+1)
γ(a+b+2) , where γ(x) = Γ(x)

Γ(1−x) .

– 10 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
7

The dependence on z1, z̄1 disappears when we divide (2.43) by the proper normalization
factor7 ⟨∆̃|φ∆1(z1, z̄1) |∆̃⟩ = z−∆1

1 z̄−∆1
1 C∆̃∆1∆̃. We check finally that C2C3 = 1, which

confirms the relation (2.52).
To conclude this section, we highlight two observations that will be useful in the following

discussions.

Observation I. Aside from an overall constant factor, the expression in (2.52) could have
been derived more straightforwardly by directly substituting the result of the three-point
correlation function involving the shadow field φ̃h∗(z, z̄). Specifically, employing (2.49) and

⟨0| φ̃h∗(z, z̄)φ∆1(z1, z̄1)φ∆̃(qz, 0) |0⟩ = Vh∗,∆1,∆̃(z, z1, zq)Vh∗,∆1,∆̃(z̄, z̄1, 0), (2.60)

in (2.45), one can see that the result (2.52) is obtained. This observation is crucial since it
allows, in a simple way, generalizations of (2.52) to higher-point CBs (which will be studied
in the next section) and higher-spin algebras, as sl3 which will be studied in section 3.

Observation II. The one-point CB F(∆1, ∆̃, q)sl2 can be directly computed from the r.h.s.
of (2.52) by performing a one-dimensional integral over z within a certain integration region.
Namely, by integrating V1−∆̃,∆1,∆̃(z, z1, zq) over z from 0 to 1, the block is recovered, up
to a multiplicative constant c0

F(∆1, ∆̃, q)sl2 = c0q∆̃
∫ 1

0
dzV1−∆̃,∆1,∆̃(z, z1, zq). (2.61)

This integral is much simpler than the original two-dimensional integral. The justification
of (2.61) is that the integral (2.57) factorizes into a product of two one-dimensional integrals∫

d2z|z|2azn|1− z|2b ∝
∫ 1

0
dzza+n(z − 1)b

∫
C

dz̄z̄a(z̄ − 1)b, (2.62)

where C is the contour shown in figure 1. The contribution from the integral over z is the
relevant contribution that reproduces the block, while the integration over z̄ gives just an
overall factor. Hence, to compute the one-point CB from (2.52), one does not need to take
the two-dimensional integral but to find the proper integration contour and integrate over it.
These two observations substantially simplify the computation of the CBs from the integral
representation; below, we will use them in the computation for the sl3 one-point torus block.

2.3.2 Higher-point torus conformal blocks via shadow formalism

Let us introduce the object

G∆2(z2, z̄2, q) =
∑

∆̃1∈D

∑
m=0

⟨∆̃1, m|φ∆1(z1, z̄1)φ∆2(z2, z̄2)qL0 |m, ∆̃1⟩ , (2.63)

which is the holomorphic contribution in q to the two-point torus correlation function

⟨φ∆1(z1, z̄1)φ∆2(z2, z̄2)⟩torus. (2.64)
7Before, for simplicity of notations we were assuming that ⟨∆̃|φ∆1 (z1, z̄1) |∆̃⟩ = 1.
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z̄ C

1 + iϵ

1

Figure 1. Integration contour C.

Focusing on the sl2 subsector and using standard techniques of CFT on the torus, one can
decompose (2.63) in the s-channel (also called the necklace channel) into global two-point
torus CBs F∆2

∆̃2
(z2, q). This is achieved by inserting the identity operator (2.65) in (2.63)

between φ∆1 and φ∆2

1 =
∑

∆̃2∈D

∑
m=0

(
B−1

∆̃2

)mm
|∆̃2, m⟩ ⟨m, ∆̃2| , (2.65)

after that, one obtains the decomposition (for details and explicit form of F∆2
∆̃2

(z2, q) see,
e.g., [46, 52])

G∆2(z2, z̄2, q) =
∑

∆̃1,∆̃2∈D

C̃∆̃1∆1∆̃2
C̃∆̃2∆2∆̃1

F∆2
∆̃2

(z2, q). (2.66)

On the other hand, one can decompose (2.63) into two-point torus conformal partial waves.
This can be done in a similar way to (2.52) by inserting twice the identity operator P in
the summand of (2.63):

∑
m=0

⟨∆̃1, m|φ∆1(z1, z̄1)φ∆2(z2, z̄2)qL0 |m, ∆̃1⟩

=
∑
m=0

⟨∆̃1, m| Pφ∆1(z1, z̄1)Pφ∆2(z2, z̄2)qL0 |m, ∆̃1⟩ .
(2.67)

Substituting the explicit form of P in the r.h.s. of (2.67), we have

∑
m=0

⟨∆̃1,m|φ∆1(z1, z̄1)φ∆2(z2, z̄2)qL0 |m,∆̃1⟩

=
∑
m=0

∑
h1∈D

∑
∆̃2∈D

q∆̃1

∫
d2w1d2w2 ⟨∆̃1,m|φh1(w1, w̄1) |0⟩⟨0| φ̃h∗

1
(w1, w̄1)

×φ∆1(z1, z̄1)φ∆̃2
(w2, w̄2) |0⟩⟨0| φ̃∆̃∗

2
(w2, w̄2)φ∆2(z2, z̄2)qL0 |m,∆̃1⟩

=
∑

∆̃2∈D

C3(∆̃1,∆̃2,∆1,∆2)q∆̃1

∫
d2w1d2w2V∆̃∗

1,∆1,∆̃2
(w1,z1,w2)V∆̃∗

1,∆1,∆̃2
(w̄1, z̄1, w̄2)

×V∆̃∗
2,∆2,∆̃1

(w2,z2,w1q)V∆̃∗
2,∆2,∆̃1

(w̄2, z̄2,0),

(2.68)
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where in the fourth and fifth lines we used (2.47), (2.60), and C3(∆̃1, ∆̃2,∆1,∆2) is a
normalization constant similar to C2 of the previous section. Thus, (2.63) can be written as

G∆2(z2, z̄2, q)

=
∑

∆̃1,∆̃2∈D

C3(∆̃1, ∆̃2,∆1,∆2)q∆̃1

∫
d2w1d2w2V∆̃∗

1,∆1,∆̃2
(w1, z1, w2)V∆̃∗

1,∆1,∆̃2
(w̄1, z̄1, w̄2)

× V∆̃∗
2,∆2,∆̃1

(w2, z2, w1q)V∆̃∗
2,∆2,∆̃1

(w̄2, z̄2, 0). (2.69)

The factor which arises in (2.68)

q∆̃1

∫
d2w1d2w2V∆̃∗

1,∆1,∆̃2
(w1, z1, w2)V∆̃∗

1,∆1,∆̃2
(w̄1, z̄1, w̄2)

× V∆̃∗
2,∆2,∆̃1

(w2, z2, w1q)V∆̃∗
2,∆2,∆̃1

(w̄2, z̄2, 0)
(2.70)

is the holomorphic contribution in q of the two-point torus partial wave defined as

W ∆2
∆̃2

(z2, z̄2, q, q̄) = q∆̃1 q̄∆̃1

∫
d2w1d2w2|V∆̃∗

1,∆1,∆̃2
(w1, z1, w2)|2|V∆̃∗

2,∆2,∆̃1
(w2, z2, w1q)|2.

(2.71)
Equations (2.66), (2.69) show the one-to-one correspondence that exists between the two-
point CBs in the s-channel and the two-point torus partial waves. Therefore, we see that
holomorphic two-point CBs can be expressed in terms of the holomorphic two-point conformal
partial waves (see [51]). This statement is the generalization of (2.52).

Further generalization to the relation between higher multi-point CBs in the necklace
channel and partial waves is possible, as discussed in [51]. One can study n-point torus
correlation functions:

⟨
n∏

i=1
φ∆i

(zi, z̄i)⟩torus , (2.72)

and define the n-point torus partial waves

W ∆n

∆̃n
(zn, z̄n, q, q̄) = q∆̃1 q̄∆̃1

∫
Rn

 n∏
j=1

d2wj |V∆̃∗
j ,∆j ,∆̃j+1

(wj , zj , wj+1)|2
 , (2.73)

with the identifications ∆̃n+1 = ∆̃1, wn+1 = qw1. By inserting the resolution of identity
operator P n-times between the external fields φ∆i

(zi, z̄i) in the expression for (2.72), in a
similar way to (2.67), we deduce that (2.72) can be expressed as a sum of n-point partial
waves. This leads to the conclusion that these partial waves are related in a nontrivial way
to the n-point torus CBs in the necklace channel.

3 sl3 global conformal blocks

3.1 Preliminaries: W3 conformal field theory

The W3 CFT is an extension of the Virasoro CFT. The symmetry of the W3 CFT is generated
by the energy-momentum tensor T(z) and an additional spin-3 current W(z). The Laurent
series expansion of W(z) reads:

W(z) =
∞∑

n=−∞

Wn

zn+3 . (3.1)
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The modes Ln and Wm generate the W3 algebra, which reads

[Ln, Lm] = (n − m)Ln+m + c

12(n
3 − n)δn+m,0 ,

[Ln, Wm] = (2n − m)Wn+m ,

[Wn, Wm] = c

3 · 5!(n
2 − 1)(n2 − 4)nδn+m,0 +

16
22 + 5c

(n − m)Λn+m+

+ (n − m)
30

(
2m2 + 2n2 − mn − 8

)
Ln+m ,

(3.2)

where
Λm =

∑
p≤−2

LpLm−p +
∑

p≥−1
Lm−pLp −

3(m + 2)(m + 3)
10 Lm . (3.3)

The Virasoro algebra (2.2) is a subalgebra of W3 algebra. In the limit c → ∞ these
commutation relations reduce to the ones of the sl3 algebra, generated by

{L−1, L0, L1, W−1, W1, W0, W−2, W2} , (3.4)

that satisfy

[Ln, Lm] = (n − m)Ln+m ,

[Ln, Wm] = (2n − m)Wn+m ,

[Wn, Wm] = (n − m)
( 1
15(n + m + 2)(n + m + 3)− 1

6(n + 2)(m + 2)
)

Ln+m .

(3.5)

W3 primary fields. We denote the W3 primary fields characterized by the vector j as

ϕj(z, z̄), (3.6)

where j belongs to root space of sl3, generally written in the form (1.2). Alternatively, ϕj(z, z̄),
can be characterized by two parameters hj , qj corresponding to the conformal dimension
and W3 charge of ϕj , given by

hj = 1
2(αj , 2Q − αj) , qj = i

√
48

22 + 5c

3∏
i=1

(ei, αj − Q) . (3.7)

Here Q = (b + 1
b )(w1 + w2), ei are the weights of the fundamental representation

e1 = w1 , e2 = w2 − w1 , e3 = −w2 , (3.8)

and αj is also a vector on the root space of sl3. In the large central charge limit, αj is given by

αj = −bj, (3.9)

for which the conformal dimension and the charge assume the values

hj = −r − s, qj = i

3

√
2
5(s − r) . (3.10)

– 14 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
7

The W3 primary fields satisfy (similarly to (2.6)) the commutation relations

[Ln, ϕj(z, z̄)] = zn (z∂z + hj(n + 1))ϕj(z, z̄),

[Wn, ϕj(z, z̄)] = zn
(

qj

2 (n + 2)(n + 1) + (n + 2)zŴ−1 + z2Ŵ−2

)
ϕj(z, z̄),

(3.11)

where, in contrast to Ln, the commutation relations with Wn incorporate two additional
operators, Ŵ−1 and Ŵ−2 [53], which cannot be expressed as differential operators in terms
of the variable z.

A W3 highest-weight vector |j⟩ given by

|j⟩ = lim
z→0

ϕj(z, z̄) |0⟩ , (3.12)

satisfies the conditions

L0 |j⟩ = hj |j⟩ , W0 |j⟩ = qj |j⟩ , (3.13)
Ln |j⟩ = Wn |j⟩ = 0 , n > 0 . (3.14)

The W3 module associated with this highest-weight vector is spanned by a basis of de-
scendant states

L−I |j⟩ = L−i1 . . . L−imW−k1 . . . W−kn |j⟩ , I = {i1, . . . , im; k1, . . . , kn} , (3.15)

with
1 ≤ i1 ≤ · · · ≤ im , 1 ≤ k1 ≤ · · · ≤ kn . (3.16)

The sum ∑
ia,kb∈I

ia + kb (3.17)

is called level of the state L−I |j⟩. We will focus only on the sl3 module (which is a subspace
of (3.15)) spanned by the basis of states

|N, j⟩ = (W−2)n3 (W−1)n2 (L−1)n1 |j⟩ , where N = (n1, n2, n3) ∈ I. (3.18)

where we define I as

I = {(n1, n2, n3) : (n1, n2, n3) ∈ non-negative integers}. (3.19)

The level of the states (3.18) is given by

|N | = n1 + n2 + 2n3. (3.20)

3.2 sl3 global one-point torus conformal blocks

The holomorphic sl3 global one-point CB F(j1, j, q)sl38 is defined as

F(j1, j, q) = 1
⟨j|ϕj1(z1, z̄1) |j⟩

∑
M∈I

|M |=|N |

∑
N∈I

⟨j, M |ϕj1(z1, z̄1)qL0 |N, j⟩
(
B−1

j

)MN
, (3.21)

8For further discussions related to the W3 one-point CBs see also [42, 43, 54].
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where the states |N, j⟩ belong to the sl3 module (3.18), and
(
B−1

j

)MN
is the inverse of

the Shapavalov matrix

BMN
j = ⟨j, M |N, j⟩ . (3.22)

Unlike the sl2 one-point torus block, to date, there is no known exact expression for (3.21).
One reason for this is the lack of a general expression for the matrix elements

⟨j, M |ϕj1(z1, z̄1) |N, j⟩ . (3.23)

In fact, for a general ϕj1 (3.23) is not uniquely defined. In this work, we will concentrate on
the case when ϕj1 is a degenerate field at the first level, satisfying (1.3). This condition is
fulfilled when j1 consists of a single component. In the parameterization

j = rw1 + sw2, j1 = 3aw1, (3.24)

a perturbative expression of (3.21) up to the second level (up to q2) was computed in [48],
and looks as follows

F(j1, j, q)sl3 = 1 +
(2rs − a2(r + s)− a(r + s)

rs

)
q +

+ 1
162

(3a(3a + 6)(3a + 3)(3a − 3)
s − 1 +

+
(
3a(3a + 3)− 18r

)(
3a(3a + 3)− 36(r − 1)

)
r(r − 1) +

−
3a(3a + 3)

(
3a(3a + 3)(r − 1) + 36(r + 1)

)
(r + 1)s +

+ 6a(3a + 3)(3a − 3r)(3a + 3r + 3)
(r + 1)r(r + s + 1)

)
q2 + . . . .

(3.25)

The computation of higher-level contributions to (3.25) is a very challenging task, specially
when one computes them directly from (3.23). The expression (3.25) was verified by two
other methods, using the AGT relation and the Wilson lines interpretation of CBs in AdS3.
In this paper, we will provide an exact expression for (3.21) using the Shadow formalism.

4 sl3 conformal blocks via shadow formalism

This section aims to extend the shadow formalism theory from sections (2.1), (2.3) to the
sl3 case, enabling us to compute the sl3 global one-point torus block (3.21). For sl3 global
four-point sphere CBs, a similar approach to the shadow formalism was presented in [55].
We will reformulate this approach using the language of shadow formalism to apply it to
torus topology. We begin by reviewing the theory of sl3 invariant functions.

4.1 sl3 invariant functions

The sl3 algebra can be represented in the Chevalley basis, which includes two Cartan
elements (h1, h2), along with creation and annihilation generators (e1, e2, e3) and (f1, f2, f3),
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respectively. These elements satisfy the following relations

[f1, f2] = −f3, [e1, e2] = e3, [e1, f1] = h1,

[e2, f2] = h2, [e3, f3] = h1 + h2, [e1, f3] = −f2,

[e2, f3] = f1, [e3, f1] = −e2, [e3, f2] = e1,

(4.1)

with all other commutators being zero. The generators in (4.1) can be expressed as linear com-
binations of the generators in (3.5). The generators (2.7) correspond to the sl2 transformation
for the variable z (representing the physical coordinates of the fields). To represent the genera-
tors of sl3 in terms of differential operators, we introduce three-component isospin variables Z

Z = (w, x, y). (4.2)

For a given vector j = rw1 + sw2, the generators (4.1) can be constructed as differential
operators acting on monomials of the form xaybwc for a + c ≤ r, b ≤ s, as follows

D(j,Z)(h1) = 2x∂x + r − y∂y + w∂w,

D(j,z)(h2) = 2y∂y + s − x∂x + w∂w,

D(j,Z)(e1) = x2∂x + rx + (w − xy)∂y + xw∂w,

D(j,Z)(e2) = y2∂y + sy − w∂x,

D(j,Z)(e3) = w2∂w + s(w − xy) + rw + xw∂x + y(w − xy)∂y,

∂(j,Z)(f1) = −∂x,

D(j,Z)(f2) = −∂y − x∂w,

D(j,Z)(f3) = −∂w.

(4.3)

To construct sl3 invariant functions, we define the following notations:

ji = riw1 + siw2 = (ri, si), jw
i = (si, ri), j∗i = (2− si, 2− ri),

Zi = (wi, xi, yi),
ρij = yi (xi − xj)− (wi − wj) ,

χijk = yiwj − wiyj + yiyj (xi − xj)− yiwk + wiyk+
+ yiyk (xk − xi)− wjyk + yjwk + yjyk (xj − xk) ,

σijk = xiwj − wixj − xiwk + wixk − wjxk + xjwk,

(4.4)

where j∗i and jw
i correspond to the maximal Weyl transformation and Dynkin automorphism

of the spin ji, respectively. An sl3 invariant n-point function associated with n spins
j1, j2, . . . , jn is a function ξ(ji|Zi) such that(

n∑
i=1

D(ji,Zi)(t
a)
)

ξ(ji|Zi) = 0, for any ta ∈ {hi, ei, f i}. (4.5)

The function ξ will satisfy additional equations if some representations are labeled by only
one fundamental weight:

if for some k (j, wk) = 0, then,

d
(k)
Zk

ξ(ji|Zi) = 0,
(4.6)
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where
d

(1)
Z = ∂x + y∂w, d

(2)
Z = ∂y. (4.7)

For two spins j1 and j2, the sl3 invariant two-point function is given by

ξ(j1, j2|Z1, Z2) =

ρ−r1
21 ρ−s1

12 , for j1 = jw
2 ,

0, otherwise.
(4.8)

For general representations j1, j2, j3, the sl3 invariant three-point function is not uniquely
determined by (4.5). It can be specified up to a general function g(θ123), where θ123 = ρ12ρ23ρ31

ρ21ρ32ρ13
.

In the case of interest, where one of the representations has only one component, say
j2 = (0, s2), and the others, j1 = (r1, s1) and j3 = (r3, s3), have two components, the sl3
invariant three-point function ξ is given by

ξ(j1, j2, j3|Z1, Z2, Z3) = χ−J
123ρ−J−r1+s3

21 ρ−J−r3+s1
23 ρJ−s1

13 ρJ−s3
31 , (4.9)

where J = (w2 − w1) · (j1 + j2 + j3), in our case J = 1
3(s1 + s2 + s3 − r1 − r3). Two and

three-point sl3 invariant functions (4.8), (4.9) are the analogs of the two-point function
(z1 − z2)−2∆ and three-point function (2.38).

4.2 sl3 shadow formalism

To extend the Shadow formalism to the sl3 algebra, we introduce sl3 fields Φj(Z, Z̄, g). These
fields depend on isospin variables Z, rather than on the two-dimensional complex coordinates
(z, z̄), and are labeled by an element g ∈ SL3 and a representation j. Detailed expressions
for these fields are provided in [55] and appendix C. They behave as primary fields under
sl3 transformations of g, satisfying

Φj(Z, Z̄, (1 + ϵta)g) = (1 + ϵD(j,Z)(ta))Φj(Z, Z̄, g). (4.10)

where D(j,Z)(ta) are from (4.3). In the large c limit, the correlation functions of primary
fields ϕji(zi, z̄i) in sl3 conformal Toda theory become [49]

lim
c→∞

⟨ϕj1(z1, z̄1) . . . ϕjn(zn, z̄n)⟩ = ⟨Φj1(z⃗1, ⃗̄z1) . . .Φjn(z⃗n, ⃗̄zn)⟩, (4.11)

where we define

⟨Φj1(Z1, Z̄1) . . .Φjn(Zn, Z̄n)⟩ :=
∫

SL3
dgΦj1(Z1, Z̄1, g) . . .Φjn(Zn, Z̄n, g), (4.12)

and
z⃗ :=

(
z2

2 , z, z

)
. (4.13)

Clearly, the r.h.s. of (4.12) is invariant under (4.10), hence the “correlation function”

⟨Φj1(Z1, Z̄1) . . .Φjn(Zn, Z̄n)⟩ (4.14)

is an sl3 invariant n-point function. This implies that (4.8) is interpreted as the two-point
correlation function of sl3 fields

⟨Φj1(Z1, Z̄1)Φj2(Z2, Z̄2)⟩ = |ξ(j1, j2|Z1, Z2)|2. (4.15)
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Similarly for the sl3 three-point function (4.9). Since the integration over the group in (4.12)
does not interfere with the calculation procedure we will apply, we will omit the label g

in Φj and use the following notation

Φj(Z, Z̄) := Φj(Z, Z̄, g), (4.16)

keeping in mind that the correlation functions of Φj(Z, Z̄) are given by (4.12) by definition.
The construction of the shadow formalism for sl3 starts with the construction of the

shadow field. We define the shadow field as9

Φj∗(Z, Z̄) =
∫

d2Z ′Kj∗(Z, Z ′)Φj(Z ′, Z̄ ′), (4.17)

where d2Z ′ = dZ ′dZ̄ ′, and the kernel Kj∗(Z, Z ′) is given by the two-point function

Kj∗(Z, Z ′) = ⟨Φj∗(Z, Z̄)Φj∗w(Z ′, Z̄ ′)⟩ = |ξ(j∗, j∗w|Z, Z ′)|2. (4.18)

Analogously to (2.13), (2.15), we define the operators

Pj =
∫

d2ZΦjw(Z, Z̄) |0⟩ ⟨0|Φj∗(Z, Z̄), (4.19)

and
P =

∑
j

Pj . (4.20)

Let us verify that the operator P acts as the identity operator, namely

PΦj1(Z1, Z̄1) |0⟩ = Φj1(Z1, Z̄1) |0⟩ ,

⟨0|Φj1(Z1, Z̄1)P = ⟨0|Φj1(Z1, Z̄1).
(4.21)

This property (4.21) will play an important role, similar to (2.16) in the sl2 case. Let us
verify (4.21) using two different methods. The first check follows directly. Writing explicitly
P, we have

PΦj1(Z1, Z̄1) |0⟩ =
∑

j

∫
d2ZΦjw(Z, Z̄) |0⟩ ⟨0|Φj∗(Z, Z̄)Φj1(Z1, Z̄1) |0⟩ . (4.22)

By using

⟨0|Φj∗(Z, Z̄)Φj1(Z1, Z̄1) |0⟩ = δj∗,jw
1
|ξ(j∗, j1|Z, Z1)|2 = δj∗,jw

1
|ξ(j1, j∗|Z1, Z)|2, (4.23)

(4.22) becomes

PΦj1(Z1, Z̄1) |0⟩ =
∫

d2ZΦj∗
1
(Z, Z̄) |0⟩ |ξ(j1, jw

1 |Z1, Z)|2 = Φj1(Z1, Z̄1) |0⟩ , (4.24)

where in the last equality we applied the definition (4.17), and the fact that the field
Φj1 can be written as the shadow of Φj∗

1
. The same procedure can be applied to show

9Notice that in (4.17), we set the normalization constant of the type N∆ equal to 1. This is just a matter
of convention.
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⟨0|Φj1(Z1, Z̄1)P = ⟨0|Φj1(Z1, Z̄1). A more rigorous proof is as follows. If P acts as the
identity operator, namely, ⟨0|Φj1(Z0, Z̄0)P = ⟨0|Φj1(Z0, Z̄0), then

⟨0|Φj1(Z0, Z̄0)PΦjw
1
(Z3, Z̄3) |0⟩ = |ξ(j1, jw

1 |Z0, Z3)|2 = |ρ30|−2r1 |ρ03|−2s1 . (4.25)

Let us check (4.25). Writing explicitly P we have

⟨0|Φj1(Z0, Z̄0)PΦjw
1
(Z3, Z̄3) |0⟩

= ⟨0|Φj1(Z0, Z̄0)
∑

j

∫
d2Z1Φjw(Z1, Z̄1) |0⟩ ⟨0|Φj∗(Z1, Z̄1)Φjw

1
(Z3, Z̄3) |0⟩ .

(4.26)

By inserting Φj∗ from (4.17), and denoting the expression by Ij1 , we have

Ij1 = ⟨0|Φj1(Z0, Z̄0)PΦjw
1
(Z3, Z̄3) |0⟩

= ⟨0|Φj1(Z0, Z̄0)
∑

j

∫
d2Z1Φjw(Z1, Z̄1) |0⟩

× ⟨0|
∫

d2Z2Φj(Z2, Z̄2)|ξ(j∗, j∗w|Z1, Z2)|2Φjw
1
(Z3, Z̄3) |0⟩

=
∫

d2Z1d2Z2|ξ(j1, jw
1 |Z0, Z1)|2|ξ(j∗1 , j∗w

1 |Z1, Z2)|2|ξ(j1, jw
1 |Z2, Z3)|2.

(4.27)

One can show that the last integral is given by the r.h.s. of (4.25). Indeed, by writing this
integral in terms of the components of the isospin variables, we have

Ij1 =
∫

d2Z1d2Z2|ξ(j1, jw
1 |Z0, Z1)|2|ξ(j∗1 , j∗w

1 |Z1, Z2)|2|ξ(j1, jw
1 |Z2, Z3)|2

=
∫

d2w1d2x1d2y1d2w2d2x2d2y2|y1x10 − w10|−2r1 |y0x01 − w01|−2s1 |y2x21 − w21|−2(2−s1)

× |y1x12 − w12|−2(2−r1)|y3x32 − w32|−2r1 |y2x23 − w23|−2s1 , (4.28)

where xij = xi − xj , wij = wi − wj . Performing the integration over y1, we obtain a
delta function

Ij1 = C1

∫
d2w1d2x1d2w2d2x2d2y2|x10|−2r1 |x12|−2(2−r1)δ2

(
w10
x10

− w12
x12

)
|y0x01 − w01|−2s1

× |y2x21 − w21|−2(2−s1)|y3x32 − w32|−2r1 |y2x23 − w23|−2s1 , (4.29)

where Ci (i = 1, 2, 3) are constants present in the delta function formula. Performing the
integration over w1 and y2, we obtain

Ij1 = C2

∫
d2x1d2w2d2x2|x10|−2(r1+s1−1)|x12|−2(3−r1−s1)|x02|−2(1−s1)|x23|−2s1

× |y0x02 − w02|−2s1 |y3x32 − w32|−2r1δ2
(

w20
x20

− w23
x23

)
.

(4.30)

Performing the integration over w2, we get

Ij1 = C3

∫
d2x1d2x2|x10|−2(r1+s1−1)|x12|−2(3−r1−s1)|x03|−2(−s1−r1+1)|x23|−2(s1+r1−1)

× |y0x03 − w03|−2s1 |y3x03 − w03|−2r1 ,
(4.31)
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and then, after integrating over x1 and x2, we finally obtain

Ij1 = C|ρ30|−2r1 |ρ03|−2s1 . (4.32)

This proves (4.25) (up to the normalization constant C). Thus, the above proof shows that
P plays the role of the resolution of the identity operator. Since there is such a resolution
of identity in sl3, one can proceed as in the sl2 case.

4.3 sl3 global four-point sphere conformal blocks via shadow formalism

In W3 CFT, analogous to (2.34), one can decompose the four-point correlation function
involving external fields free of multiplicities into CBs. On the other hand, one can use
shadow formalism to obtain an integral representation of the conformal block. For this, one
needs to compute the four-point correlation function of sl3 fields

⟨Φj1(z⃗1, ⃗̄z1)Φj2(z⃗2, ⃗̄z2)Φj3(z⃗3, ⃗̄z3)Φj4(z⃗4, ⃗̄z4)⟩. (4.33)

To avoid the problem of multiplicities, one chooses

j1 = (r1, s1), j2 = (0, s2), j3 = (0, s3), j4 = (r4, s4). (4.34)

Then, one inserts the resolution of identity operator P as follows

⟨Φj1(z⃗1, ⃗̄z1)Φj2(z⃗2, ⃗̄z2)PΦj3(z⃗3, ⃗̄z3)Φj4(z⃗4, ⃗̄z4)⟩

= ⟨Φj1(z⃗1, ⃗̄z1)Φj2(z⃗2, ⃗̄z2)
∑

j

∫
d2ZΦjw(Z, Z̄) |0⟩ ⟨0|Φj∗(Z, Z̄)Φj3(z⃗3, ⃗̄z3)Φj4(z⃗4, ⃗̄z4)⟩.

(4.35)

The result of this procedure is that one decomposes (4.33) in terms of the following object∫
d2Z⟨Φj1(z⃗1, ⃗̄z1)Φj2(z⃗2, ⃗̄z2)Φjw(Z, Z̄) |0⟩ ⟨0| Φ̃j∗(Z, Z̄)Φj3(z⃗3, ⃗̄z3)Φj4(z⃗4, ⃗̄z4)⟩

=
∫

d2Z|ξ(j1, j2, jw|z⃗1, z⃗2, Z)|2|ξ(j∗, j3, j4|Z, z⃗3, z⃗4)|2.
(4.36)

To simplify the above integral and identify this object with the sl3 global four-point sphere
CB Fs(j4, j, z4)sl3 (where j4 = j1, j2, j3, j4), one needs to find the proper integration contour
Cs
sl3

over Z (this is given in appendix B.1 of [55]). After this simplification, one obtains
the CB from (4.36) as follows

Fs(j4, j, z4)sl3 = N s
∫

Cs
sl3

dZξ(j1, j2, j|z⃗1, z⃗2, Z)ξ(j∗w, j3, j4|Z, z⃗3, z⃗4), (4.37)

where N s is a normalization constant chosen properly to have the correct asymptotic behavior,
and the function ξ(j1, j2, j3|Z1, Z2, Z3) is given by (4.9). The above result (4.37) reproduces
the known result of the sl3 global four-point CB [55], which has also been obtained from
the AdS3 holographic perspective [56].
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4.4 sl3 global one-point torus conformal blocks via shadow formalism

In this section, we study the sl3 global one-point torus block using the shadow formalism
developed in section 4.2 and provide an expression for the CB. We start by presenting the
result. We have found that the sl3 global one-point torus conformal block (3.21), for j = (r, s)
and j1 = (3a, 0), is given by the following integral representation and relations

F (j1, j, q) = 1
N (r, s, a)

∫
Csl3

dZξ(j∗ω, jw
1 , j|Z, z⃗1, Z · q)

∣∣
z1→1,

F(j1, j, q)sl3 = F (−j1,−j, q),
(4.38)

where the final expression for F (j1, j, q) is given below by (4.51). N (r, s, a) is a normalization
factor chosen properly so that the expansion in q starts from 1, as in (3.25). ξ is from (4.9),
j∗w = (2 − r, 2 − s),10 dZ = dwdxdy, Csl3 is a proper integration contour defined below
in (4.49), and

Z · q = (q2w, qx, qy). (4.39)

In the remaining part of this section, we will justify (4.38) along the lines of the sphere
case and compute the r.h.s. of the first line of (4.38). To proceed, we redefine (3.21) in
terms of sl3 fields, namely

F (j1, j, q) =
∑

M∈I,
|M |=|N |

∑
N∈I

(B−1
j )MN ⟨j, M |Φjw

1
(z⃗1, ⃗̄z1)qL0 |N, j⟩ . (4.40)

The external and intermediate fields Φjw
1
(z⃗1, ⃗̄z1),Φj(Z, Z̄) are sl3 fields that depend on isospin

variables. The descendant states are given as follows

|N, j⟩ = W n3
−2W n2

−1Ln1
−1Φj(0, 0) |0⟩ , N = (n1, n2, n3), |N | = n1 + n2 + 2n3. (4.41)

The operators L0, W−2, L−1, W−1 satisfy the algebra (3.5) and are given by a linear com-
bination of differential operators (4.3).

We use the conjectured holomorphic sl3 operator product expansion

Φj(Z, 0) |0⟩ =
∑
N∈I

aN (j, Z) |N, j⟩ =
∑
N∈I

β(j, N)xn1yn2wn3 |N, j⟩ . (4.42)

From this expansion, we have

⟨j, M |Φj̃(Z, 0) |0⟩ = δj,j̃

∑
L∈I

aL(j, Z)BML
j . (4.43)

We insert P into (4.40), obtaining

F (j1, j, q) =
∑

M∈I,
|M |=|N |

∑
N∈I

(B−1
j )MN ⟨j, M |PΦjw

1
(z⃗1, ⃗̄z1)qL0 |N, j⟩ (4.44)

=
∑

M∈I,
|M |=|N |

∑
N∈I

(B−1
j )MN ⟨j, M |

∑
j̃

∫
d2ZΦj̃(Z, Z̄) |0⟩ ⟨0| Φ̃j̃∗w(Z, Z̄)Φjw

1
(z⃗1, ⃗̄z1)qL0 |N, j⟩ .

10In sl2, this change is analogous to 1 − ∆ of the conformal dimension ∆.
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Using (4.43) in the factor ⟨j, M |Φj̃(Z, Z̄) |0⟩, and qL0 |N, j⟩ = q∆(j)+|N | |N, j⟩ and after the
cancelation of the matrices B−1 and B, we obtain

F (j1, j, q) =
∫

d2Z
∑
N∈I

q∆(j)+|N |β(j, N)xn1yn2wn3 ⟨0| Φ̃j∗w(Z, Z̄)Φjw
1
(z⃗1, ⃗̄z1) |N, j⟩ . (4.45)

Since |N | = n1+n2+2n3, we can write q|N | = qn1+n2+2n3 , and applying again (4.43), we obtain

F (j1, j, q) = q∆(j)
∫

d2Z ⟨0| Φ̃j∗w(Z, Z̄)Φjw
1
(z⃗1, ⃗̄z1)Φj(Z · q, 0) |0⟩ . (4.46)

For the coordinate dependence of the three-point correlation function of sl3 fields, according
to the above discussion, we use the formula

⟨0|Φj1(Z1, Z̄1)Φj2(Z2, Z̄2)Φj3(Z3, Z̄3) |0⟩ = |ξ(j1, j2, j3|Z1, Z2, Z3)|2, (4.47)

hence
F (j1, j, q) = q∆(j)

∫
d2Zξ(j∗w, jw

1 , j|Z, z⃗1, Z · q)ξ(j∗w, jw
1 , j|Z̄, ⃗̄z1, 0). (4.48)

Equation (4.48) is the direct analog to (2.52). As explained in observation II of section 2.3,
to obtain the CB from (4.48), one needs to find the proper integration contour in order to
simplify the above integral. Furthermore, after replacing z1 in (4.48) by using (4.9), we notice
that it is possible to take out z1 as an overall factor. Since z1 does not play an important
role in our discussion, we set z1 = 1. Under this consideration, we found that this contour is

Csl3 : x ∈ (0, 1/2) , w ∈ (x − 1/2, 0) , y ∈
(

w

x
,

w

x − 1/2

)
. (4.49)

Hence, (4.48) can be simply written as the first line of (4.38), where in the normalization
coefficient N (r, s, a) of (4.38) we absorbed the factor q∆(j). Finally, we compute the first
line of (4.38). Our final result precisely reproduces (3.25), namely, we found the relation
given in the second line of (4.38). The expression we found for F (j1, j, q) from (4.38) is
given by the integral

F (j1, j, q) = 1
N (r, s, a)

∫ 1
2

0
dx

∫ 0

x− 1
2

dw

∫ w

x− 1
2

w
x

dyξ(j∗ω, jw
1 , j|Z, z⃗1, Z · q)

∣∣
z1→1

= 1
N (r, s, a)

∫ 1
2

0
dx

∫ 0

x− 1
2

dw

∫ w

x− 1
2

w
x

dy
(
q2w + y(x − qx)− w

)a+s−2

×
(
− q2wy + q2wz1 + qwy + qy2(qx − x) + qyz1 (z1 − qx)− 1

2qyz2
1 − wz1 + yz1 (x − z1)

+ yz2
1

2

)
−a

(
w + z1 (z1 − x)− z2

1
2

)
−a+r+s−2

(
q2w + z1 (z1 − qx)− z2

1
2

)
−a−r−s+2 (4.50)

×
(
−q2w + qy(qx − x) + w

)a−s
∣∣∣∣
z1→1

.
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In appendix B, we explain how we compute this integral; here we present the final result

F (j1, j,q)

= (1−q)a−2

Ñ

∞∑
i,k,l,m=0

i∑
j=0

k∑
n=0

qi+j+k+l+m(−1)i+k+nΓ(a+k)Γ(−a−k+1)Ci
jCk

n

Γ(k+1)Γ(i+r+s−1)Γ(j+n+r+s−1)Γ(−l+m+n+s)

×Ca+s−2
l Ca−s

m Γ(a+j+n)C−a−r−s+2
i Γ(−a+j−k+ l−m+r)Γ(a+k− l+m+n+s−1)

×Γ(a+ i−j+k− l+m+s−1)3F2(A,B,C;B1,B2;1), (4.51)

where

A=−a+j−k+ l−m+r, B =−a−k+ l−m−s+2, C = l−m−n−s+1,

B1 =−a− i+j−k+ l−m−s+2, B2 =−a−k+ l−m−n−s+2. (4.52)

and 3F2 is the hypergeometric function and Ci
j =

(i
j

)
, and

Ñ = Γ(1− a)(Γ(a))2Γ(r − a)(Γ(a + s − 1))2
2F1(r − a, 1− s,−a − s + 2, 1)

Γ(s)(Γ(r + s − 1))2 . (4.53)

Equation (4.51) together with (4.38) are our main results.

5 Conclusions

In this work, we have studied global conformal blocks using shadow formalism. Our study
focused on sl2 and sl3 global CBs, which arise in the large central charge limit of Virasoro
and W3 conformal field theories. In sections 2.2 and 2.3, we examined the representation of
sphere and torus sl2 global CBs through the shadow formalism. While our primary focus
was on the torus topology, we also discussed the spherical case. For sl2, our discussion built
upon ideas from previous works, we introduced an operator (2.15) that acts as a resolution
of identity. This allows us to express the CBs in terms of conformal partial waves. We
showed that the sl2 global four-point sphere and one-point torus CBs can be computed using
shadow formalism. The construction is quite universal and can be easily generalized to higher
multi-point global torus or spherical conformal blocks.

In section 4, we investigated W3 CFT and generalized the shadow formalism to this case;
this enables the computation of sl3 global CBs. The formalism was then applied to both
spherical and toroidal CBs in sections 4.3 and 4.4. We verified that this approach yields
the established expression (4.37) for the sl3 global four-point sphere CBs. In section 4.4, we
obtained an integral representation for the sl3 global one-point torus CB (4.38), resulting
in the explicit expression (4.51). This expression is in complete agreement with the known
perturbative expressions (3.25). The expression we obtained for sl3 global one-point torus
CB represents the main result of the present study.

It is interesting to investigate the possibility of constructing sl3 global higher multi-point
torus CBs involving different OPE channels. In the sl2 case, (n + 2)-point sphere CBs
correlate with n-point torus CBs. It would be interesting to find out whether a similar
connection exists in the case of sl3. Another direction for generalization is the development
of the shadow formalism for general WN two-dimensional CFTs or supersymmetric ones. As
demonstrated in the sl2 and sl3 cases, such generalization requires the analysis of invariant
functions related to the corresponding algebras.
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A Conformal integrals

We consider the conformal integrals

In = 1
π

∫
d2xfn(z)f̄n(z̄), fn(z) =

n∏
i=1

1
(z − zi)hi

, f̄n(z̄) =
n∏

i=1

1
(z̄ − z̄i)h̄i

, (A.1)

where
n∑

i=1
hi =

n∑
i=1

h̄i = 2, hi − h̄i = Z. (A.2)

For n = 2, the result is known to be

I2 = K12(−1)h1−h̄1πδ2(x1 − x2), (A.3)

where
K12 = Γ(1− h1)Γ(1− h2)

Γ(h̄1)Γ(h̄2)
. (A.4)

For n = 3, it is known that

I3 = K123zh3−1
12 zh1−1

23 zh2−1
31 z̄h̄3−1

12 z̄h̄1−1
23 z̄h̄2−1

31 , (A.5)

where
K123(h1, h2, h3) =

Γ(1− h1)Γ(1− h2)Γ(1− h3)
Γ(h̄1)Γ(h̄2)Γ(h̄3)

. (A.6)

B sl3 integral

Below, we explain some technical details of the computation of the integral (4.50). Let
us denote that integral by I0,

I0 =
∫ 1

2

0
dx

∫ 0

x− 1
2

dw

∫ w

x− 1
2

w
x

dyξ(j∗ω, jw
1 , j|Z, z⃗1,Z ·q)

∣∣∣∣
z1→1

(B.1)

=
∫ 1

2

0
dx

∫ 0

x− 1
2

dw

∫ w

x− 1
2

w
x

dy
(
q2w+y(x−qx)−w

)a+s−2(
−q2w+qy(qx−x)+w

)a−s

×
(
−q2wy+q2wz1+qwy+qy2(qx−x)+qyz1 (z1−qx)− 1

2qyz2
1 −wz1+yz1 (x−z1)

+ yz2
1

2

)
−a

(
w+z1 (z1−x)− z2

1
2

)
−a+r+s−2

(
q2w+z1 (z1−qx)− z2

1
2

)
−a−r−s+2

∣∣∣∣
z1→1

.

After some simplifications, we obtain

I0 = (−1)−s8a
∫ 1

2

0
dx

∫ 0

x− 1
2

dw

∫ w

x− 1
2

w
x

dy
(1− q)a−2(2w − 2x + 1)−a+r+s−2

(2(q(y − 1)− 1)(xy − w) + y)a

×
(
2q2w − 2qx + 1

)−a−r−s+2
(qw + w − xy)a+s−2(qw − qxy + w)a−s.

(B.2)

– 25 –



J
H
E
P
0
2
(
2
0
2
4
)
1
6
7

Expanding in q we obtain

I0 = (−1)−s8a
∫ 1

2

0
dx

∫ 0

x− 1
2

dw

∫ w

x− 1
2

w
x

dy
i∑

j=0

∑
i,k,l,m=0

(
(1− q)a−2(2w − 2x + 1)−a+r+s−2)
Γ(a)Γ(k + 1)Γ(m + 1)Γ(s − a)

×
(
2i+k(y − 1)kΓ(a + k)Ci

j(−1)i−j−mxi−jCa+s−2
l Γ(−a + m + s)C−a−r−s+2

i

× (2w − 2xy + y)−a−kwa+j+l−m−sqi+j+k+l+m(w − xy)a+k−l+m+s−2
)

. (B.3)

To integrate over y, we expand the factor (y − a)k in y. This expansion adds an extra sum
from 0 to k present in the final result (4.51). The result of the integration over y is given by
a function of w, x which contains a hypergeometric function 2F1 with the argument 1− 1

2x .
Then, we perform the integration over w. The integration over w has the form

∫ 0

x− 1
2

wα(2w − 2x + 1)−2−a+r+s dw, (B.4)

where α is some power. The result of (B.4) is given by a ratio of gammas functions. Finally,
to compute the integration over x, we expand the above-mentioned hypergeometric function
in 1− 1

2x (the sum from this expansion was already considered in (4.51) and produces the
factor 3F2). Thus, the integration over x has the form

∫ 1
2

0
xα
(
1− 1

2x

)β

dx, (B.5)

where α, β are again some powers. After integrating over y, w, x, the final result is given
in (4.51).

C sl3 fields

In this appendix, we briefly describe the sl3 fields denoted above as Φj(Z, Z̄, g). For a
more detailed description, see [55]. The fields Φj(Z, Z̄, g), for g ∈ SL3, are basis functions
on SL3 defined as

Φj(Z, Z̄, g) =
(
uZPg−1T PuT

Z̄

)−r (
vZgvT

Z̄

)−s
, (C.1)

where

uZ = (w,−x, 1), vZ = (xy − w,−y, 1), P =

0 0 1
0 −1 0
1 0 0

 . (C.2)
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The sl3 generators ta can be represented as matrices

h1 =

1 0 0
0 −1 0
0 0 0

 , h2 =

0 0 0
0 1 0
0 0 −1

 , (C.3)

e1 =

0 1 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 0 0

 , e3 =

0 0 1
0 0 0
0 0 0

 , (C.4)

f1 =

0 0 0
1 0 0
0 0 0

 , f2 =

0 0 0
0 0 0
0 1 0

 , f3 =

0 0 0
0 0 0
1 0 0

 . (C.5)

One can show that the fields (C.1) under sl3 transformation of g transform according to (4.10).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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