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1 Introduction

The AdS/CFT correspondence has received a great deal of attention since its discovery [1].
One of the most typical examples is the duality between the type IIB superstring theory in
AdS5 × S5 and the N = 4 SU(N) 4D super Yang-Mills theory, especially in the classical and
large N limits. In testing this correspondence, integrability played a significant role. (See
ref. [2] and references therein for a comprehensive review.)

The string theory in AdS5 × S5 is known to be integrable, at least semiclassically [3, 4].
To be precise, this is the integrability of the theory with closed strings. Let us restrict our
attention to a classical closed string in AdS3 ⊂ AdS5 × S5 for simplicity. It is known that the
string dynamics in AdS3 can be described by the principal chiral model (PCM) whose target
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space is an SL(2, R) group manifold. (See [5] for a review.) When there are no boundaries in
the PCM, that is the case for a closed string, an infinite number of conserved Yangian charges
can be constructed, and this proves the integrability of the closed string in the AdS3 [6].

If an open string is considered, it is necessary to take into account the boundaries in the
PCM. If the PCM has boundaries, there are non-zero fluxes of Yangian charges from the
boundaries, and the integrability would be broken in general. However, it has been shown
that, under certain boundary conditions, an infinite number of conserved charges can still
be constructed and maintain integrability [7–11]. An open string is not in the original type
IIB superstring theory in AdS5 × S5, but it can be additionally introduced. For example, a
probe string hanging from the AdS boundary is considered to be dual to the Wilson loop
operator giving rise to quark-antiquark potential in N = 4 super Yang-Mills theory [12, 13].
Integrability is not obvious for such open strings. It would be interesting to see under what
conditions the integrability is maintained or not for an open string in AdS. Recently in
ref. [14], sufficient conditions for the integrability of a classical open string in AdS3 were
explicitly classified. In this paper, we aim to understand how the motion of an open string in
AdS3 differs under such integrable and non-integrable boundary conditions.

Specifically, there are choices of Neumann and Dirichlet boundary conditions at the
boundaries of the string worldsheet. The line element of AdS3 can be given by

ds2 = −ℓ2
(

1 + r2

1 − r2

)2

dt2 + 4ℓ2

(1 − r2)2

(
dr2 + r2dθ2

)
, (1.1)

where ℓ is the AdS3 radius and the AdS boundary is located at r = 1. The embedding
of an open string in AdS3 is specified by three coordinate variables (t, r, θ) described as
functions of worldsheet coordinates. On each coordinate variable, we can impose Neumann
or Dirichlet boundary conditions on the boundaries of the worldsheet. For each boundary,
there are 23 = 8 possibilities for the choices of the boundary conditions. We will express
these as (N, N, N), (N, N, D), (N, D, N), and so on. This notation denotes the Neumann
(N) or Dirichlet (D) condition for (t, r, θ) in this order. For example, (N, N, D) corresponds
to imposing the Neumann, Neumann, and Dirichlet boundary conditions on t, r, and θ

coordinates, respectively.
In this paper, we focus on the cases of (N, N, N) and (N, D, N). Schematic pictures of

such open strings in AdS3 are given in figure 1. The case of (N, N, N) corresponds to an open
string in AdS with free endpoints, where the string endpoints are floating in the AdS bulk.
For (N, D, N), we can imagine that there is a “D-brane” (colored by light blue in figures 1)
on a constant radius surface. The endpoints of the string are bounded on the D-brane but
can freely move in its tangential direction.

In particular, we consider the time evolution of an open string when a small perturbation
is added to a reference steady rotating string given by the same configuration as the Gubser-
Klebanov-Polyakov (GKP) string. The GKP string is a solidly rotating folded closed string
in AdS, but it can be also regarded as a solidly rotating open string in AdS3. Let us call
it a GKP open string. The steady GKP open string does not distinguish (N, N, N) and
(N, D, N) boundary conditions. However, when it is perturbed, the time evolution of the
oscillating string will be different for these cases because of the boundary conditions imposed
on the endpoints.
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(N, N, N). (N, D, N).

Figure 1. Schematic picture of an open string with two different boundary conditions. The black
circle is the AdS boundary and inside is the AdS bulk. The open string is shown by the black curved
line with the endpoints denoted by the black dots. In the right figure, the light blue circle is the place
where the string endpoints are bounded.

Here, we numerically study the time evolution of the perturbed GKP open string with
the (N, N, N) and (N, D, N) boundary conditions and investigate their difference as claimed
in [14]. For (N, N, N), open strings are integrable [9, 10]. Therefore, we expect the motion
to be quasiperiodic in analogy with finite-dimensional dynamical systems. For (N, D, N), an
infinite number of conserved charges cannot be constructed in the same way as (N, N, N).
Then, we will see turbulence in the dynamics of an open string with (N, D, N). Such a result
will strongly suggest non-integrability of the system.

The non-integrable motion of a string was also studied in asymptotically AdS spacetime.1

For a closed string, one can find chaotic motion [17–24] and turbulence [21]. For an open
string, chaotic behavior and turbulence also have been observed [25, 26]. The geometries in
these works are not the pure AdS spacetime where the motion of a closed string is integrable.
However, in refs. [14, 27, 28], even in the pure AdS spacetime, turbulence was found in the
motion of the open string whose endpoints are fixed on the AdS boundary. For the emergence
of the turbulence, the relevance of boundary conditions on the string was argued [14]. Our
result will give another example of the turbulence of the open string in AdS driven by the
non-integrable boundary conditions.

This paper is organized as follows. In section 2, we derive the equation of motion of the
Nambu-Goto string, and define the energy and angular momentum for the string motion. In
section 3, we explain the setting for the string dynamics. The GKP string is introduced as a
reference background solution, and a small perturbation is applied on top of it. Numerical
results are shown in section 4, where subsections 4.1 and 4.2 are devoted to the results of
the string motion and turbulence, respectively. We conclude in section 5. Details of the
numerical scheme and the estimation of numerical errors are displayed in appendices A and B.
In appendix C, we explicitly show that the conserved charges for (N, N, N) are not conserved
for (N, D, N). In appendix D, we discuss the results of our analysis of the sensitivity to
initial conditions for (N, D, N). In appendix E, we check the conservations of energy and
angular momentum for (N, D, N) numerically.

1An analytic approach of non-integrability can be found in refs. [15, 16].
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2 Nambu-Goto strings in AdS3 spacetime

2.1 Equations of motion

For convenience in numerical calculations, we introduce “Cartesian” coordinates χ = (χ1, χ2)
(see also ref. [28]) as

χ1 = r cos θ, χ2 = r sin θ. (2.1)

They are defined in |χ| < 1. Then, the AdS3 metric (1.1) is expressed as

ds2 = −ℓ2
(

1 + |χ|2

1 − |χ|2

)2

dt2 + 4ℓ2

(1 − |χ|2)2 dχ · dχ. (2.2)

A motivation of introducing these coordinates is that the polar coordinates (r, θ) are singular
at r = 0, but the metric is explicitly regular at χ = 0 in the Cartesian coordinates. In
the rest of the paper, we set ℓ = 1.

We consider the string motion described by the Nambu-Goto action,

SNG = − 1
2πα′

∫
d2σ

√
−h, h ≡ det(hab), (2.3)

with hab being the induced metric given by

hab = gαβxα
,axβ

,b, (2.4)

where the Greek and Roman indices label the coordinates on the target spacetime and the
string worldsheet, respectively. Let (u, v) denote the worldsheet coordinates. Then, the
components of the induced metric (2.4) in terms of the spacetime coordinates (t, χ1, χ2)
are expressed as

huu = −
(

1 + |χ|2

1 − |χ|2

)2

t2
,u + 4

(1 − |χ|2)2 |χ,u|2,

hvv = −
(

1 + |χ|2

1 − |χ|2

)2

t2
,v + 4

(1 − |χ|2)2 |χ,v|2,

huv = −
(

1 + |χ|2

1 − |χ|2

)2

t,vt,u + 4
(1 − |χ|2)2 χ,u · χ,v.

(2.5)

Since the worldsheet is a two-dimensional surface, the induced metric can be rewritten
in the conformally flat form with an appropriate set of the worldsheet coordinates. Here,
we impose

huu = hvv = 0. (2.6)

Under these conditions, the coordinates (u, v) are called double null coordinates. Using
the double null coordinates, we find

√
−h =

√
h2

uv − huuhvv = −huv in the Nambu-Goto
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action (2.3). (Note that huv < 0 since we choose both ∂u and ∂v as future-directed vectors.)
Then, the Nambu-Goto action (2.3) becomes

S = 1
2πα′

∫
dudv

−
(

1 + |χ|2

1 − |χ|2

)2

t,vt,u + 4
(1 − |χ|2)2 χ,u · χ,v

 . (2.7)

The equations of motion can be derived from the above action as

t,uv = −4
(1 − |χ|2)(1 + |χ|2)

(
(χu · χ)t,v + (χv · χ)t,u

)
,

χ,uv = − 1
(1 − |χ|2)

(
2(χ · χ,u)χ,v

− 2(χ,u · χv)χ + 2(χ · χ,v)χ,u + (1 + |χ|2)t,ut,vχ
)
.

(2.8)

To solve the equations of motion, it is crucial to make sure that the double null con-
straints (2.6) are imposed. First, as usual constraint systems, if the constraints (2.6) are
satisfied on the initial surface and boundaries, they are guaranteed to be satisfied during
time evolution. Hence, we can use the constraints (2.6) to check the accuracy of numerical
calculations. (See appendix B.) Second, since ∂u and ∂v should be future-directed vectors,
i.e. t,u > 0 and t,v > 0, we can solve the constraint equations (2.6) as

t,u = 2
(1 + |χ|2) |χ,u|, t,v = 2

(1 + |χ|2) |χ,v|. (2.9)

In order to realize stable numerical integration [27, 28], by using (2.9), we eliminate t,u and
t,v from evolution equations (2.8) as

t,uv = −8
(1 − |χ|2)(1 + |χ|2)2

(
(χu · χ)|χ,v| + (χv · χ)|χ,u|

)
,

χ,uv = − 2
1 − |χ|4

(
2|χ,u||χ,v|χ+

(1 + |χ|2)((χ · χ,u)χ,v + (χ · χ,v)χ,u − (χ,u · χv)χ)
)
.

(2.10)

We still have the residual gauge degrees of freedom associated with the coordinate
transformations from u and v to arbitrary functions of u and v, respectively. By using these
degrees of freedom, we can fix the range of the worldsheet coordinate as −π/2 ≤ u − v ≤ π/2.
We introduce another coordinate system (τ, σ) as

τ = u + v, σ = u − v. (2.11)

The boundaries of the string worldsheet are located at σ = u − v = −π/2, π/2.
For an open string, we need to impose boundary conditions on the worldsheet boundaries.

In this paper, we consider two types of boundary conditions: (N, N, N) and (N, D, N). The
(N, N, N) boundary conditions are given by

∂σt

(
τ, σ = ±π

2

)
= 0, ∂σr

(
τ, σ = ±π

2

)
= 0, ∂σθ

(
τ, σ = ±π

2

)
= 0. (2.12)
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The (N, D, N) boundary conditions can be written as

∂σt

(
τ, σ = ±π

2

)
= 0, r

(
τ, σ = ±π

2

)
= r0 = const., ∂σθ

(
τ, σ = ±π

2

)
= 0, (2.13)

where r0 corresponds to the coordinate that the string endpoints are fixed in the AdS target
space. For technical details of the numerical evolution in the bulk and at the boundaries
under these conditions, see appendices A.1 and A.2.

2.2 Energy and angular momentum

We can evaluate the energy E and angular momentum J as conserved quantities in the time
evolution of the string. In the (τ, σ) coordinates (2.11), the Nambu-Goto action under the
double null constraints (2.7) becomes

S = 1
4πα′

∫
dτdσ

(
−
(

1 + r2

1 − r2

)2

(t,τ t,τ − t,σt,σ)

+ 4
(1 − r2)2 ((r,τ r,τ − r,σr,σ) + r2(θ,τ θ,τ − θ,σθ,σ))

)
,

(2.14)

where we used the polar coordinates (r, θ) instead of (χ1, χ2) so that the symmetry of the
system is manifest. Since the above action is invariant under the time translation t → t+const.
and rotation θ → θ + const., we can define conserved energy and angular momentum. The
conjugate momenta of t and θ, denoted by pt and pθ, can be given by

pt =
(

1 + r2

1 − r2

)2

t,τ , pθ =
(

r

1 − r2

)2
θ,τ , (2.15)

where we have omitted the constant factor associated with the string tension for notational
simplicity. Then, we define the energy E and angular momentum J as

E =
( 2

π

)2 ∫ π/2

−π/2
dσpt, J =

( 2
π

)2 ∫ π/2

−π/2
dσpθ. (2.16)

The factor (2/π)2 in (2.16) is introduced for simplicity when we will define the Fourier
coefficients in subsection 4.2. As a consequence of the transitional symmetry of t and θ, the
time derivative of E and J are given by boundary terms as

dE

dτ
=
( 2

π

)2
(1 + r2

1 − r2

)2

t,σ

π/2

−π/2

,
dJ

dτ
=
( 2

π

)2
[(

r

1 − r2

)2
θ,σ

]π/2

−π/2
. (2.17)

Since we consider only the Neumann boundary conditions for t and θ coordinates, i.e. t,σ|σ=± π
2

=
θ,σ|σ=± π

2
= 0, E and J are conserved. In terms of the coordinates (t, χ), the conjugate

momenta are written as

pt =
(

1 + |χ|2

1 − |χ|2

)2

t,τ ,

pθ = χ ×
χ,τ

(1 − |χ|2)2 = χ × pχ,

(2.18)

where pχ is the conjugate momenta of χ.

– 6 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
9

Figure 2. GKP string. The black circle is the AdS boundary.

3 Setup of the numerical simulation

First, we introduce the Gubser-Klebanov-Polyakov (GKP) string, which is an exact solution
on AdS3 spacetime [29]. We use this as a reference solution and we will add perturbations
on the GKP string. In our coordinate system, the solution can be explicitly parametrized
by the worldsheet coordinates as

tGKP(τ, σ) = κτ,

χGKP
1 (τ, σ) + iχGKP

2 (τ, σ) =
√

1 − k2 − dn(ω(k)σ + K(k)|k2)
k cn(ω(k)σ + K(k)|k2) eiω(k)τ ,

(3.1)

where ω(k) = 2K(k)/π and κ = k ω(k) is a constant parameter. Here, cn(x|k2) and dn(x|k2)
are the Jacobi elliptic functions with K being a complete elliptic integral of the first kind
with the parameter k:

K(k) =
∫ 1

0
dt

1√
(1 − t2)(1 − k2t2)

. (3.2)

The GKP string solution is expressed in the one-parameter family of k. This describes a
rotating rod around the origin (see figure 2). The GKP string was originally introduced as a
folded closed string, where in fact is given by taking the coordinate range as −π ≤ σ < π

in (3.1) with a periodic boundary condition. In this paper, taking −π/2 ≤ σ ≤ π/2, we
regard it as the rigidly rotating open string. The GKP solution satisfies both boundary
conditions (N, D, N) and (N, N, N) defined in eqs. (2.13) and (2.12). That is, the steady GKP
solution (3.1) does not distinguish the two boundary conditions. These make a difference
when perturbation is added.

For the numerical simulation, we consider the following initial condition at τ = 0:

t(0, σ) = 0, χ(0, σ) = χGKP(0, σ), ∂τ χ2(0, σ) = ∂τ χGKP
2 (0, σ) + ϵ exp

(
− tan2 σ

)
,

(3.3)
where ϵ is a small constant number. The value of r0 for the reference GKP solution is given
by r0 = χGKP

1 (0, π
2 ). The other initial conditions ∂τ t(0, σ) and ∂τ χGKP

1 (0, σ), necessary for

– 7 –
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Figure 3. Snapshots of the string motion. Colored lines describe the perturbed string at different
times. The black circle is the AdS boundary. The light blue circle is the “D-brane” where the string
endpoints are bounded. Panel (a) shows the string motion for (N, N, N), and the other panels are for
(N, D, N).

solving the second-order differential equations, are determined by the constraints (2.6). See
appendix A.3 for details. After this section, we take k as k = 0.5.

4 Results

4.1 String motion

We first discuss the overall picture of the string motion. In this subsection, we take ϵ as
ϵ = 0.1. Figure 3(a) shows snapshots of the string motion for (N, N, N). The string is kept
stretched and not bent much, that is, the configuration is kept close to the straight line and
not so much different from the reference GKP string. Figures 3(b)–3(d) show snapshots of the
string motion for (N, D, N). Initially, in 0.0 ≤ t ≤ 4.0 (figure 3(b)), the string configuration
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looks similar to the reference GKP string. However, in 11.0 ≤ t ≤ 13.4 (figure 3(c)), we can
start to see significant differences. Around this time, the perturbed string starts to repeat
the motion of shrinking and stretching, unlike the case of (N, N, N). The string configuration
is different from the reference GKP string significantly. As we can see in 105.0 ≤ t ≤ 109.0
(figure 3(d)), eventually, the perturbed string is crumpled into a small region and revolves
along the D-brane. An intuitive interpretation of this behavior for (N, D, N) is given by the
shrinking of the string by its tension. For a GKP string, the tension and centrifugal force
are balanced. For a perturbed (N, N, N) string, this does not seem to be unbalanced because
the endpoints are free. However, for (N, D, N), the string gradually slips off the antipodal
points of the circle on which the endpoints are bounded, and when the string is away from
the center, the tension wins and the string starts to shrink suddenly as we see in figure 3(c).
A more specific explanation of this change in motion for (N, D, N) is that the initial spin
angular momentum of the string is transferred into the orbital angular momentum. (We
will also see this behavior in the angular momentum spectrum in figure 5(b).) As a result,
for (N, D, N), we can find an irregular motion. The qualitative difference of the crumpled
string motion for (N, D, N) from (N, N, N) might reflect the non-integrability due to the
boundary conditions (see also appendix C). In the following subsection, we will analyze
the turbulence of the open string.2

4.2 Turbulence

4.2.1 Energy spectrum

Turbulence can be characterized by the energy transfer between different modes in the
energy spectrum caused by the non-linearity of the system. For usual fluid mechanics,
there is a cut-off scale below which the energy cascade is suppressed. In the dynamics on
asymptotically AdS spacetime, we often see turbulence [21, 30, 31]. These systems do not
have dissipation unlike usual fluid mechanics. Therefore arbitrary higher modes can be
excited due to the energy cascade.

In order to check these behaviors, first, we need to appropriately define the energy
spectrum. We want to define the energy spectrum by Fourier transformation.

However, in the current setting, since the boundary condition is not periodic, we suffer
from the fictitious power-law spectrum associated with the sharp cutoff of the embedding
function at the boundary. To avoid this fictitious power-law behavior, we introduce a new
worldsheet coordinate σ′ given by

σ = π

2 tanh
(
tan σ′). (4.1)

Then the expression of E (2.16) can be rewritten as3

E = 2
π

∫ π/2

−π/2
dσ′ pt(σ(σ′))

cosh2(tan(σ′)) cos2(σ′)
≡ 2

π

∫ π/2

−π/2
dσ′p′

t(σ′), (4.2)

2One might also expect that the one-dimensional angular motion of a string endpoint would exhibit a
chaotic character. However, although we could observe an apparently random motion in the dynamics of the
endpoint, we did not find any clear chaotic character in the endpoint motion, namely, we did not obtain strong
evidences to conclude the presence of the sensitivity to initial conditions (see appendix D).

3In appendix E, we check numerically that the energy E and angular momentum J are conserved in
time evolution.
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Figure 4. Energy spectra for (N, N, N) (panel (a)) and (N, D, N) (panel (b)) at each given time. In
panel (b), the purple line is a fitting curve for the red points in the range 1 ≤ n + 1 ≤ 40.

where
p′

t(σ′) = pt(σ(σ′))
cosh2(tan(σ′)) cos2(σ′)

. (4.3)

Although pt can have finite values at endpoints of the string σ = ±π/2, p′
t approaches zero

exponentially at endpoints σ′ → ±π/2.
Considering the Fourier transformation4 of

√
p′

t as√
p′

t = C0√
2

+ 1
2

∞∑
n=1

(Cne2inσ′ + C−ne−2inσ′)

= C0√
2

+ 1
2

∞∑
n=1

(Cne2inσ′ + C∗
ne−2inσ′),

(4.4)

we obtain

E =
∞∑

n=0
En (4.5)

with
En = |Cn|2. (4.6)

Although the energy spectrum depends on the choice of coordinates, we shall use fixed
special coordinates (τ, σ′) and study the qualitative behavior of the time dependence of
the energy spectrum.

Figure 4 shows the energy spectra for several values of τ . For (N, N, N) (figure 4(a),
where en ≡ En/E), the energy spectra do not change in time so much. That is, there is no
turbulence on the worldsheet. This explains why the motion of the string for (N, N, N) is
quite stable in time evolution. For (N, D, N), to reduce ambiguities from the time fluctuation
of the energy spectrum, we evaluate the time average of the spectrum. We take the time
range as τ0 − ∆τ ≤ τ ≤ τ0 + ∆τ and calculate the time-averaged energy spectrum as

ēn = 1
2∆τ

∫ τ0+∆τ

τ0−∆τ
dτ

(
En

E

)
. (4.7)

In this paper, we take ∆τ = 4π.
4Because

√
p′

t is a smooth function of σ′, the Fourier coefficients decay faster than any power functions of
n in n → ∞.
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Figure 5. Angular momentum spectra for (N, N, N)(panel (a)) and (N, D, N) (panel (b)) at each given
time. In panel (b), the purple line is a fitting curve for the red points in the range 1 ≤ n + 1 ≤ 100.

Figure 4(b) shows a direct energy cascade occurs and higher modes are excited at any
time. That is, we can see that the amplitude of some smaller modes decreases with time while
the amplitudes of higher modes increase. We also can find the power-law behavior in the
middle region of 1 ≤ n + 1 ≤ 40 as shown in the red points in figure 4(b). Fitting this energy
spectra as log(ēn) = −α log(n + 1) + β between 1 ≤ n + 1 ≤ 40, we obtain α = 1.8 ± 0.1.
This fitting curve is plotted in figure 4(b) as a purple solid line.

4.2.2 Angular momentum

By using the coordinate σ′, we can rewrite the angular momentum J (2.16) as follows:

J = 2
π

∫ π/2

−π/2
dσ′ χ(σ(σ′)) × pχ(σ(σ′))

cosh2(tan(σ′)) cos2(σ′)
, (4.8)

where (2.18) was used to rewrite pθ. Considering the Fourier transformation

χ

cosh(tan σ′) cos(σ′) = χ0√
2

+ 1
2

∞∑
n=1

(χne2nσ′ + χ∗
ne−2nσ′), (4.9)

pχ

cosh(tan σ′) cos(σ′) =
pχ0√

2
+ 1

2

∞∑
n=1

(pχn
e2nσ′ + p∗

χn
e−2nσ′), (4.10)

we obtain

J =
∞∑

n=0
Jn (4.11)

with
J0 = χ0 × pχ0 , Jn = 1

2
(
χn × p∗

χn
+ χ∗

n × pχn

)
= Re

(
χn × p∗

χn

)
. (4.12)

Figure 5 shows the angular momentum spectra for several values of τ . For (N, N, N)
(figure 5(a), where jn ≡ |Jn/J |), the angular momentum spectra remain similar to the
spectrum in early times. For (N, D, N), as in the case of the energy spectrum, we take
the time average as

j̄n = 1
2∆τ

∫ τ0+∆τ

τ0−∆τ
dτ

∣∣∣∣Jn

J

∣∣∣∣ . (4.13)
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In figure 5(b) (∆τ = 4π), we can see the excitation of higher modes and the power-law
behavior for τ0 = 285.0 in the range 1 ≤ n + 1 ≤ 100. Fitting this angular momentum
spectrum as log j̄n = −α log(n + 1) + β between 1 ≤ n + 1 ≤ 100, we obtain α = 2.1 ± 0.1.
We note that j̄1 decreases in time while j̄0 increases (figure 5(b)). This reflects the dynamics
that the angular momentum transfers from spin to orbital angular momenta as we described.

5 Conclusion

We considered open string dynamics on AdS3 spacetime with the following two boundary
conditions. (N, N, N): the two endpoints are free, namely, Neumann boundary conditions for
all coordinate values. (N, D, N): the Dirichlet boundary condition is imposed for the radial
coordinate r and Neumann boundary conditions for the others (t, θ). Under these boundary
conditions, we numerically solved the equations of motion of a perturbed GKP string solution
as initial conditions. For the open string with (N, N, N), which is an integrable boundary
condition, the string configuration is a stretched fluctuating string that rotates in AdS similar
to the reference GKP string solution at any given time as expected. In contrast, for (N, D, N),
we found irregular string motions, where the string crumples in late times. We also found a
turbulent cascade in the energy and angular momentum spectra. This result would imply
that the open string on AdS3 is non-integrable with the boundary condition (N, D, N) while
integrable with the boundary condition (N, N, N). It appears that for (N, D, N), the string
is approaching equilibrium state whose typical configuration is given by a crumpled string
configuration with the power-law spectrum. The power law spectrum in such a typical state
have been reported in refs. [21, 31] for systems in (asymptotically) AdS spacetimes.

It would be worthwhile to note that, although a turbulent cascade has been observed, no
clear chaotic character was seen in the dynamics of an endpoint of the string (see appendix D).
More investigations would be needed in order to clarify the character of the endpoint dynamics.

It would be also interesting to consider other boundary conditions for the open string
in the AdS3. For example, (N, D, D) will be another non-integrable boundary condition [14].
Studying turbulent and chaotic behavior in the dynamics of the open string with (N, D, D)
would be an interesting future direction.

Since we assume that a “D-brane” is placed at a finite radius as in figures 1, the
holographic interpretation of the turbulent behavior of the open string is unclear. What if we
put the D-brane to the AdS boundary? Will turbulence still survive in this limit? The open
string in the AdS corresponds to the quark-antiquark pair when string endpoints are put
at the AdS boundary. For our (N, D, N) setup, for example, the endpoints will be smoothly
moving on the boundary, dual to moving quarks in the dual field theory. Looking at the
effect of the turbulence in the dual CFT would also be an interesting future work.
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A Numerical scheme

A.1 Method of numerical calculations

In this appendix, we explain how to integrate equations of motion (2.10) numerically. We
use the numerical method described in [27]. First, we discretize the double null coordinates
(u, v) with the grid spacing h (see figure 6). For notational simplicity, we use the unified
notation ϕ for the fields t and χ and express ϕ at N , E, W , S, and C by ϕN , ϕE , ϕW ,
ϕS and ϕC , respectively. Around the point C, we can approximate ϕ,u, ϕ,v, ϕ,uv, ϕ with a
second order accuracy O(h2) as

ϕ,u|C = ϕN − ϕE + ϕW − ϕS

2h
, ϕ,v|C = ϕN − ϕW + ϕE − ϕS

2h
, (A.1)

and

ϕ,uv|C = ϕN − ϕE − ϕW + ϕS

h2 , ϕ|C = ϕW + ϕE

2 . (A.2)

Substituting these expressions into (2.10), we obtain nonlinear simultaneous equations. Finally,
we solve the equations for ϕN with known values ϕE , ϕW , ϕS as inputs. In this paper, we use
the Newton-Raphson method for solving the nonlinear simultaneous equations.

A.2 Boundary time evolution

In this appendix, we explain the numerical scheme for the boundary time evolution. Figure 6
shows the worldsheet and the grids for numerical calculations. For the time evolution, we
need to evaluate the value of (t, χ) at N ′ from the known values at S′ and W ′. We express ϕ

at N ′, E′, W ′, S′, and C ′ by ϕN ′ , ϕE′ , ϕW ′ , ϕS′ and ϕC′ , respectively.
The general approach is as follows. First, we obtain the value of ϕ with imposed Neumann

boundary condition at the ghost point E′ by using the boundary condition at C ′. To do
this, we approximate the value of ϕ,σ as

ϕ,σ|C′ = ϕW ′ − ϕE′√
2h

+ O(h2). (A.3)

By substituting this eq. (A.3) into the boundary condition, we obtain ϕ at E′. Second, we
obtain χ at the point where χ is not determined by boundary condition, using EOM (2.10)
with boundary conditions: for χ with Neumann boundary conditions, we obtain χ at N ′

using the EOM, while for χ with Dirichlet boundary conditions, we obtain χ at E′ using
the EOM. Finally, we derive t at N ′ by using constraints. We will see the more specific
procedures for the boundary conditions (N, N, N) and (N, D, N) in the following subsections.
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Figure 6. A schematic figure for the numerical scheme.

A.2.1 (N, N, N)

The boundary conditions at C ′ are given by

t,σ|C′ = 0, χ,σ|C′ = 0. (A.4)

Then we can obtain tE′ and χE′ as follows:

tE′ = tW ′ , χE′ = χW ′ . (A.5)

We obtain χN ′ by the equation of motion with (A.5). Then we obtain tN ′ by using the
constraint

tN ′ = tS′ + 2
(1 + |χW ′ |2) |χN ′ − χS′ |. (A.6)

A.2.2 (N, D, N)

For simplicity, we work with the polar coordinate system given by eq. (1.1). We can derive
r′

E , r′
S , θ′

E and θ′
S by the coordinate transformation (2.1). In the case of (N, D, N), r at the

boundary is fixed to the constant value r0, and the boundary conditions at C are

t,σ|C′ = 0, rC′ = r0, θ,σ|C′ = 0. (A.7)

From this, we obtain

tE′ = tW ′ , θE′ = θW ′ , rN ′ = rS′ . (A.8)

From θ,uv|C′ = 0, θN ′ is obtained by

θN ′ = 2θW ′ − θS′ . (A.9)
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In order to find the value of rE′ , we use EOM (2.10) for r. Then we obtain tN ′ by using
the constraint:

tN ′ = tS′ +

√
(rW ′ − rE′)2 + r2

0(θN ′ − θS′)2

(1 + r2
0)

. (A.10)

By the coordinate transformation to the Cartesian coordinates χ, we can obtain χN ′ .

A.3 Construction of initial data

In this appendix, we explain how to prepare initial data based on [21]. See figure 6. Con-
figuration of (t, χ) on τ = 0 (•) is determined by eq. (3.3).

Then on the next surface τ = ∆τ (◦) we give a configuration of χ2 by eq. (3.3). For t and
χ1 on τ = ∆τ , we determine them by using constraints. Let us consider how to determine
tN and χN . First, we define the point L(R) as the middle point between N and E(N and
W ). Then we approximate ϕ and the derivative of ϕ as follows:

ϕ,u|R = ϕN − ϕE

h
+ O(h2), ϕ,u|L = ϕN − ϕW

h
+ O(h2), (A.11)

and
ϕR = ϕN + ϕE

2 + O(h2), ϕL = ϕN + ϕW

2 + O(h2). (A.12)

Since huu = 0, tE = 0 and tN > 0, from eq. (2.5) on R, we obtain

tN = 2
√

(χ1N − χ1E)2 + (χ2N − χ2E)2

1 + (χ1N +χ1E)2

4 + (χ2N +χ2E)2

4

. (A.13)

Similarly to the point R, since hvv = 0, tW = 0 and tN > 0 on the point L, we obtain

tN = 2
√

(χ1N − χ1W )2 + (χ2N − χ2W )2

1 + (χ1N +χ1W )2

4 + (χ2N +χ2W )2

4

. (A.14)

Eliminating tN from eqs. (A.14) and (A.13), we get the following equation:√
(χ1N − χ1E)2 + (χ2N − χ2E)2

4 + (χ1N + χ1E)2 + (χ2N + χ2E)2 =
√

(χ1N − χ1W )2 + (χ2N − χ2W )2

4 + (χ1N + χ1W )2 + (χ2N + χ2W )2 . (A.15)

Since the value of χ2N is already known from eq. (3.3), eq. (A.15) can be regarded as an
equation for χ1N . Then we can solve eq. (A.15) for χ1N by using the Newton method. The
value of tN can be given by substituting χ1N into eq. (A.13) or eq. (A.14).

B Error analysis

In this appendix, we evaluate numerical errors due to discretization as a constraint violation.
Defining Cu and Cv as

Cu( σ) = (1 + |χ|2)2t2
,u − 4|χu|2, Cv(τ, σ) = (1 + |χ2|2)t2

,v − 4|χv|2, (B.1)

we can write the constraints (2.6) as Cu = Cv = 0.
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Figure 7. Constraint violation for (N, D, N) as functions of τ for N = 212, 213 and 214, where N is
the number of grids.

Then we define Cmax as

Cmax(τ) = max
− π

2 ≤σ≤ π
2

|Cu| + |Cv|
2((1 + |χ|2)t2

,u + 4|χu|2 + (1 + |χ|2)t2
,v + 4|χv|2) . (B.2)

In figure 7, Cmax for (N, D, N) is plotted for several grid numbers N . We can find
Cmax ∝ 1/N2 which is consistent with our second order discretization scheme.

C Conserved charges

In this appendix, we explicitly show that the conserved charges defined for (N, N, N) are
not conserved for (N, D, N).

For (N, N, N), there are two conserved quantities Ma,b which are obtained by taking the
trace of the monodromy matrices [14]. These are equipped with the spectral parameter λ,
and by Taylor expanding them with respect to λ, an infinite number of conserved quantities
are obtained as the coefficients in the expansion. At O(1/λ2) in the expansion around
λ → ∞, we have

M (2)
a = 2

∫ π/2

−π/2
dσ

∫ π/2

−π/2
dσ′JτA(τ,σ)JA

τ (τ,σ′), M
(2)
b = 2

∫ π/2

−π/2
dσ

∫ π/2

−π/2
dσ′IτA(τ,σ)IA

τ (τ,σ′),

(C.1)
where JtA, ItA are conserved currents associated with SL(2, R) × SL(2, R) symmetries and A

runs over 1 to 3. We raise the index A by matrix γAB = 1
2diag(−1, 1, 1) and lower by the

inverse of γAB: γAB = 2diag(−1, 1, 1). The components of JτA, IτA are explicitly given by

Jτ0 = −(1 + r2)2t,τ + 4r2θ,τ

2(1 − r2) ,

Jτ1 + iJτ2 = e−i(t+θ)(r(1 + r2)(t,τ − θ,τ ) − i(1 − r2)r,τ )
(1 − r2)2 ,

(C.2)

and
Iτ0 = (1 + r2)2t,τ + 4r2θ,τ

2(1 − r2) ,

Iτ1 + iIτ2 = ei(t−θ)(−ir(1 + r2)(t,τ + θ,τ ) + (1 − r2)r,τ )
(1 − r2)2 .

(C.3)
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(a) M
(2)
a . (b) M

(2)
b .

Figure 8. The time dependence of M
(2)
a (panel(a)), M

(2)
b (panel(b)) for (N, N, N) (red) and

(N, D, N) (blue).

Figure 8 shows the time dependence of M
(2)
a , M

(2)
b for (N, N, N) and (N, D, N). As we can

see, while both M
(2)
a and M

(2)
b do not change in time for (N, N, N), they change for (N, D, N).

Thus the conserved charges constructed for (N, N, N) are not conserved for (N, D, N).

D Analysis of the sensitivity to initial conditions for (N, D, N)

In this appendix, we give the analysis of sensitivity to initial conditions for (N, D, N). Let
us check the sensitivity of the string configuration to the parameter ϵ. In the following, we
focus on the (non-)integrability on the string worldsheet due to the boundary conditions, and
hence we will perform the analysis with the time coordinate τ . To quantitatively evaluate the
sensitivity to the initial conditions, we introduce the Lyapunov exponent λ for the angular
location of the string endpoints as follows. In numerical calculations, practically, the domain
of θ(τ, σ) is defined in −∞ < θ < ∞, where the angular coordinate of the GKP string at
the initial time τ = 0 is θ = 0, π (see figure 3(a)). Such θ takes into account how many
times the string rotates along the time evolution. For example, θ(τ, π

2 ) = 2πn with n being
integers implies that the endpoint has rounded n times anti-clockwise (|n| times clockwise if
n < 0). Then, we introduce the Lyapunov exponent λ by [32]

λ = lim
τ→∞

lim
δϵ→0

1
τ

log
|δθ−π/2(τ, δϵ)|
|δθ−π/2(0, δϵ)| , (D.1)

where we introduced the difference of angular coordinates of string endpoints as

δθ−π/2(τ, δϵ) =
∣∣∣∣∣θ
(

τ, −π

2

) ∣∣∣∣
ϵ=0.1+δϵ

− θ

(
τ, −π

2

) ∣∣∣∣
ϵ=0.1

∣∣∣∣∣. (D.2)

Figure 9 shows the time evolution of δθ−π/2(τ, δϵ) for δϵ = 10−3, 10−5, 10−7, 10−9 for
(N, D, N). To find sensitivity to the conditions, we should consider the late time behavior
where the asymptotic behavior would dominate in (D.1). In this appendix, we consider the
time range 150 ≤ τ ≤ 300. In this time range, however, we could not distinguish power
and exponential growth clearly (figures 9 and 10). If we estimate the Lyapunov exponent
by fitting δθ−π/2(τ, δϵ) = A exp(λτ) to the data for δϵ = 10−9, the Lyapunov exponent λ
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Figure 9. The values of δθ−π/2 as functions of τ for δϵ = 10−3, 10−5, 10−7,10−9 for (N, D, N). The
time range for the fit is 150 ≤ τ ≤ 300.

Figure 10. The values of δθ−π/2 as functions of τ for δϵ = 10−3, 10−5, 10−7,10−9 for (N, D, N). The
data is the same as figure 9 but shown in a log-log plot. The time range for the fit is 150 ≤ τ ≤ 300.

is given by λ ≃ 0.02. Instead, if we fit by a power law function δθ−π/2(τ, δϵ) = Bτα, we
get α ≃4.8 (figure 10). The power law fitting appears to explain the behavior of δθ better
even in earlier times than the exponential one.

E Numerical checks for the conservations of E and J

In this appendix, we check that the energy E (4.2) and angular momentum J (4.8) are
conserved for (N, D, N). To evaluate the numerical violation of the conservation, we define
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Figure 11. The time dependence of ERE(panel(a)), JRE(panel(b)) for (N, D, N).

the relative errors ERE, JRE as follows:

ERE =
∣∣∣∣E(τ) − E(0)

E(0)

∣∣∣∣ , JRE =
∣∣∣∣J(τ) − J(0)

J(0)

∣∣∣∣ . (E.1)

In figure 11, we can see the violations are no more than numerical errors (see figure 7). This
confirms that E and J are conserved within numerical errors.5
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