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1 Introduction

The dynamics of fields propagating within Anti-de Sitter (AdS) space is known to encode the
set of correlation functions of certain conformal field theories (CFTs) [1–3]. The presence of
a boundary in AdS implies that different boundary conditions for fields give rise to diverse
behaviors and properties in the corresponding dual CFT. For massive scalar fields, there
exists a range of masses for which two different scaling dimensions are admissible for the dual
primary operators, associated with either imposing the so-called regular or alternate boundary
conditions [4]. Additionally, within the same mass range, it is also possible to impose certain
mixed boundary conditions that are related to field theory operators interpolating between
primaries of different scaling dimensions. These mixed boundary conditions are interpreted
in terms of flows of the renormalization group [5–8].

For massless scalar fields in AdS2, a different type of boundary conditions that mix
longitudinal and transverse derivatives was considered in [9]. Since the mixing parameter
is dimensionless in that case, one might expect these boundary conditions to be associated
with a marginal deformation rather than with a flow of the renormalization group. However,
determining whether these boundary conditions correspond to a conformal theory on the line
or not, is not straightforward, as this will depend on the actual details of the AdS2/CFT1
realization.

Massless scalar fields in AdS2 typically arise when studying the fluctuations on an open
string world-sheet dual to line operators in various d-dimensional CFTs. An interesting
case is that of the Wilson loops in the ABJ(M) model, a prototypical example of the
AdS/CFT correspondence where the N = 6 super Chern-Simons theory with gauge group
U(N)k×U(N)−k is conjectured to be equivalent to type IIA string theory in AdS4×CP3 [10].

This model admits a simple and interesting generalization [11], in which the gauge group
in the Chern-Simons theory is taken to be U(N + ℓ)k × U(N)−k. In this case, the dual
string theory description includes an additional flat Kalb-Ramond field, having a non-trivial
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holonomy on the non-contractible CP1 ⊂ CP3. Being the Kalb-Ramond field flat, its coupling
to the open string only leads to a boundary term. As we will see in this article, the boundary
term from the coupling with the Kalb-Ramond field is responsible for the materialization
of the aforementioned kind of mixed boundary conditions when we study the open string
dual to the 1/6 BPS bosonic Wilson line [12–14].

The analysis of Witten diagrams for the fluctuations on an AdS2 world-sheet enables
the holographic computation of the correlation functions of some operators O(t) on a line.
These line correlators are related to the expectation values of local operator insertions along
a Wilson line [15, 16],

⟨⟨O(t1) · · · O(tn)⟩⟩ = ⟨trP
[
O(t1) · · · O(tn) W1/6

]
⟩ . (1.1)

This effective theory on a line can preserve conformal symmetry at the quantum level or
not, which should be reflected in the functional dependence of the correlation functions
of excitations.

The main objective of our work is to test perturbatively, in inverse powers of the ’t Hooft
coupling, the conformal covariance of the theory on the line dual to the open string with
mixed boundary conditions. In order to do that, we will analyze the functional dependence
of holographic 4-point functions. For example, conformal symmetry on the line would require
that the 4-point correlator of a primary field of weight ∆ has to be of the form

⟨⟨O(t1)O(t2)O(t3)O(t4)⟩⟩ = G(u)
(t2 − t1)2∆(t4 − t3)2∆ , for u = (t1 − t2)(t3 − t4)

(t1 − t3)(t2 − t4) .

(1.2)

We will consider this for the concrete setup that corresponds to insertions in the 1/6 BPS
bosonic Wilson line in the ABJ(M) model.

The paper is organized as follows. In section 2 we introduce the open string setup dual to
Wilson loops in the ABJ(M) model and the possible boundary conditions on the world-sheet
excitations. We show that the coupling with a flat Kalb-Ramond field leads to boundary
conditions combining longitudinal and transverse derivatives and determine the propagators
corresponding to them. Section 3 is dedicated to the holographic computation of 2-point
and 4-point correlation functions using Witten diagrams and the propagators associated
with mixed boundary conditions. Finally, in section 4 we conclude with a discussion of our
results. In the appendix A we provide details about the self-energy diagrams contributing
to the 1-loop correction of the propagators.

2 Open strings in AdS4 × CP3

We shall consider open strings embedded in AdS4 × CP3, whose metric can be written as

ds2 = L2
(
ds2

AdS4 + 4ds2
CP3

)
, (2.1)

where L is the AdS4 radius. The type IIA fields supporting this geometry are

eϕ = 2L

k
, F (4) = 3

2kL2vol(AdS4) , F (2) = k

4dA , (2.2)

– 2 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
1

where k is an integer identified with the Chern-Simons level in the dual field theory, which
has gauge group U(N)k ×U(N)−k [10]. Defining the ’t Hooft coupling as λ = 2π2N/k, its
relation to the AdS4 radius is L2 =

√
λα′.1 The 2-form dA is proportional to the Kähler

form of the CP3. In angular coordinates one has

ds2
CP3 = 1

4

[
dχ2 + cos2 χ

2
(
dθ2

1 + sin2 θ1dφ2
1

)
+ sin2 χ

2
(
dθ2

2 + sin2 θ2dφ2
2

)
+ sin2 χ

2 cos2 χ

2 (dξ + cos θ1dφ1 − cos θ2dφ2)2
]

, (2.3)

with ranges 0 ≤ χ, θ1, θ2 ≤ π, 0 ≤ φ1, φ2 ≤ 2π and 0 ≤ ξ ≤ 4π and

A = cos χdξ + 2 cos2 χ

2 cos θ1dφ1 + 2 sin2 χ

2 cos θ2dφ2 . (2.4)

In this background we will consider an open string ending along a straight line at the
boundary of AdS4, whose classical world-sheet is AdS2. This gives the holographic dual
description of a supersymmetric straight Wilson line in the N = 6 super Chern-Simons
theory. It is convenient to write the (Euclidean) AdS4 metric with an explicit (Euclidean)
AdS2 foliation [16]

ds2
AdS4 =

(
1 + 1

4x2
)2

(
1− 1

4x2
)2

(
dt2 + dz2

z2

)
+ dxidxi(

1− 1
4x2

)2 . (2.5)

The metric of the CP3 can be parameterized alternatively in terms of 3 complex coordinates

ds2
CP3 = dw̄adwa

1 + |w|2 −
dw̄awadwbw̄b

(1 + |w|2)2 . (2.6)

In the static gauge t = τ and z = σ, the Nambu-Goto action becomes

SNG =
√

λ

2π

∫
d2σ

√√√√√√det


(
1 + 1

4x2
)2

(
1− 1

4x2
)2 gµν + ∂µxi∂νxi(

1− 1
4x2

)2 + 4∂µw̄a∂νwa

1 + |w|2 − 4∂µw̄awa∂νwbw̄b

(1 + |w|2)2


(2.7)

where gµν is the metric of (Euclidean) AdS2

ds2
AdS2 = dt2 + dz2

z2 . (2.8)

Expanding (2.7) in powers of xi and wa, one gets the action for 2 real scalars of mass
m2 = 2/L2 and 3 complex massless scalars respectively [18]. The dual gauge theory admits a
variety of supersymmetric Wilson loops. There is a 1/6 BPS Wilson loop that involves only
bosonic fields [12–14], a 1/2 BPS one [19] and even a family that interpolates between them [20–
23] (see [24] for a review). These Wilson loops differ not only in the amount of supersymmetry

1This is not the most usual convention in ABJM, but it leads to an effective string tension T = L2

2πα′ =
√

λ
2π

,
which will facilitate the comparison with the N = 4 SYM results of [17] in the limit of Neumann boundary
conditions.
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preserved but also in their bosonic R-symmetries. For example, the symmetries of the 1/2
BPS and the 1/6 BPS bosonic Wilson loops are SU(3) and SU(2)× SU(2) respectively. In
the open string theory description, this translates into different boundary conditions on the
CP3 coordinates. To describe the 1/2 BPS Wilson line, Dirichlet boundary conditions must
be imposed on all CP3 coordinates. However, to describe the 1/6 BPS bosonic Wilson line,
the string has to be uniformly smeared over a CP1 ⊂ CP3 [12], which can be achieved by
imposing Neumann boundary conditions on 2 of the CP3 coordinates and Dirichlet on the rest.
With this in mind, we will focus on the coordinates along a particular CP1 ⊂ CP3, which,
for the sake of definiteness, is taken to be the one given by χ = 0, i.e. the one parametrized
by θ1 and φ1. We can also use embedding {Y A}, with A = 1, 2, 3, to describe the CP1 as a
surface in R3 imposing δABY A Y B = 1. Ignoring all the other transverse fluctuations, we
obtain the following action for the CP1 embedding coordinates

SCP1 =
√

λ

2π

∫
d2σ

√
det (gµν + ∂µY A∂νY A) . (2.9)

The CP1 fluctuations can be taken around a fix position nA. In terms of the orthogonal
part to it, one has

Y A = nA
√

1− ζ2 + ζA , (2.10)

with nA · ζA = 0 [17]. Thus, for small ζA =
√

2π
λ1/4 yA

Y A = nA +
√

2π

λ1/4 yA − π√
λ

y2nA +O( 1
λ) , (2.11)

and replacing in (2.9), we obtain

SCP1 =
∫

d2σ
√

g

[
1
2∂µyA∂µyA + π√

λ
yAyB∂µyA∂µyB + π

4
√

λ
(∂µyA∂µyA)2

− π

2
√

λ
∂µyA∂µyB∂νyA∂νyB +O( 1

λ)
]

. (2.12)

This quartic action gives the vertices that play an important role in the holographic
computation of 4-point correlation functions of excitations along the dual line.

2.1 Dirichlet, Neumann and mixed boundary conditions

Before to proceed, let us make a few comments about the boundary conditions used to specify
the AdS2 propagators and their relation to the variational problem. The on-shell variation
of the action (2.12) is, up to quadratic order, a boundary term

δS
(2)
CP1 = −

∫ ∞

−∞
dt ∂zyAδyA

∣∣
z=0 , (2.13)

whose vanishing would require to set Dirichlet boundary conditions, i.e. δyA
∣∣
z=0 = 0. The

imposition of Neumann boundary conditions would be required when another boundary
term is added to the quadratic action

S̃
(2)
CP1 = S

(2)
CP1 +

∫ ∞

−∞
dt ∂zyAyA

∣∣
z=0 , (2.14)
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so that its on-shell variation becomes

δS̃
(2)
CP1 =

∫ ∞

−∞
dt δ(∂zyA)yA

∣∣
z=0 , (2.15)

whose vanishing would be achieved by demanding δ(∂zyA)
∣∣
z=0 = 0.

In the ABJ generalization, the gauge group is U(N + ℓ)k ×U(N)−k. This difference in
the ranks of the gauge group factors is accounted, in the dual string theory, by incorporating
a flat Kalb-Ramond field with a non-trivial holonomy on a CP1 [11] .2

1
2π

∫
CP1

B(2) = ℓ

k
, B(2) = B2 dA . (2.16)

Unitarity requires that |ℓ| ≤ k [11].
Since the Kalb-Ramond field is flat, its coupling to the open string adds just a boundary

term. While the equations of motion remain unaffected, the boundary conditions on the
CP3 coordinates can change. To analyze this effect let us consider the expansion of the
Kalb-Ramond term

1
2

√
λ

2π
Bµνϵαβ∂αXµ∂βXν = −

√
λ

2π
BϵABCY A∂τ Y B∂σY C

= −BϵABC
(

nA∂zyB∂ty
C − π√

λ
nAy2∂zyB∂ty

C (2.17)

− 2π√
λ

nCyD∂ty
DyA∂zyB − 2π√

λ
nByAyD∂zyD∂ty

C +O( 1
λ)
)

.

Thus, up to quadratic order

S
(2)
CP1 =

∫
d2σ

(√
g 1

2∂µyA∂µyA − BϵABCnA∂zyB∂ty
C
)

, (2.18)

whose on-shell variation becomes

δS
(2)
CP1 = −

∫ ∞

−∞
dt
(
∂zyA + BϵABCnB∂ty

C
)

δyA
∣∣
z=0 . (2.19)

Thus, the boundary term from the coupling to the Kalb-Ramond field does not change
the boundary conditions in this case, as still δyA

∣∣
z=0 = 0 is required. However, when

the same term is added to the quadratic action which originally had Neumann boundary
conditions, we get

δS̃
(2)
CP1 =

∫ ∞

−∞
dt δ

(
∂zyA − BϵABCnB∂ty

C
)

yA
∣∣
z=0 . (2.20)

Therefore, in this other case the boundary conditions do get modified to

δ
(
∂zyA − BϵABCnB∂ty

C
) ∣∣

z=0 = 0 . (2.21)

As seen in (2.17), the coupling with the Kalb-Ramond field also gives rise to terms
of quartic order in the orthogonal fluctuations, which will be central in the holographic

2This CP1 is not the one specified before by χ = 0 but the non-contractible 2-cycle of the CP3.

– 5 –



J
H
E
P
0
2
(
2
0
2
4
)
1
4
1

computation of the 4-point functions. Using the orthogonality condition nAyA = 0, it is
not difficult to show that these quartic terms are

KR(4) = BϵABC
(

1
2nAy2∂zyB∂ty

C + nCyD∂ty
DyA∂zyB + nByAyD∂zyD∂ty

C
)

= −BϵABC 1
2nAy2∂zyB∂C

t . (2.22)

Finally, and after a few successive integrations by parts, we obtain

KR(4) = −B8
(
∂z

(
ϵABCnAy2yB∂ty

C
)
− ∂t

(
ϵABCnAy2yB∂zyC

) )
. (2.23)

2.2 AdS2 propagators for mixed boundary conditions

We would like to address the problem of quadratic fluctuations with specific mixed boundary
conditions (2.21),

□yA = 0 ,
(
∂zyA − B ϵABCnB∂ty

C
)∣∣∣

z=0
= JA(t) , (2.24)

by using a suitable propagator. The free propagator for massless scalar fields in AdS2 is
given in terms of a Green’s function

⟨yA(σ)yB(σ′)⟩0,n = −GAB(σ, σ′) , (2.25)

which is a solution of

□GAB = (δAB − nAnB)δ(t− t′)δ(z − z′) . (2.26)

The additional sub-index n in (2.25) serves to emphasize that the propagator depends on the
values nA chosen to compute the fluctuations. These boundary conditions are proposed to
describe the string dual to the 1/6 BPS bosonic Wilson line, which is uniformly smeared over
a CP1. Thus, we would have to average over the possible values of nA eventually.

To determine the Green’s function suitable for the boundary conditions (2.21), we can
use the Green’s third identity

yA(z′, t′) =
∫ ∞

−∞
dt
(
GAB(z, t, z′, t′)∂zyB(z, t)− ∂zGAB(z, t, z′, t′)yB(z, t)

)∣∣∣
z=0

(2.27)

and rewrite it by adding the integral of a t-derivative. We get

yA(z′, t′) =
∫ ∞

−∞
dt
{

GAB(z, t, z′, t′)
(
∂zyB(z, t)− B ϵBCDnC∂ty

D
)

−
(
∂zGAD(z, t, z′, t′) + B ∂tGAB(z, t, z′, t′)ϵBCDnC

)
yD
}∣∣∣

z=0
(2.28)

Thus, imposing the following boundary condition for the Green’s function(
∂zGAD(z, t, z′, t′) + B ∂tGAB(z, t, z′, t′)ϵBCDnC

)∣∣∣
z=0

= 0 , (2.29)

we can easily write a solution to the problem (2.24) as

yA(z′, t′) =
∫ ∞

−∞
dt
[
KAB(t, z′, t′)

(
∂zyB(z, t)− B ϵBCDnC∂ty

D
)]∣∣∣

z=0
(2.30)
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where we have introduced the bulk-to-boundary propagator, obtained in this case as

KAB(t, z′, t′) = lim
z→0

GAB(z, t, z′, t′) . (2.31)

At certain point, we will also consider the boundary-to-boundary propagator,

DAB(t, t′) = lim
z→0

lim
z′→0

GAB(z, t, z′, t′) . (2.32)

To proceed, we need a Green’s function that satisfies (2.26) and (2.29). It is convenient
to split GAB into symmetric and antisymmetric parts as

GAB(σ, σ′) = (δAB − nAnB)Gs(σ, σ′) + ϵABCnCGa(σ, σ′) . (2.33)

The antisymmetric term in the propagator of the string coordinates arises from coupling
the open string with the Kalb-Ramond field [25–27].

It is not difficult to see that the Green’s function suitable for our problem is given by

Gs(σ, σ′) = 1
1− B2 GN (σ, σ′)− B2

1− B2 GD(σ, σ′) , (2.34)

Ga(σ, σ′) = B
1− B2 G0(σ, σ′) , (2.35)

where

GN (σ, σ′) = 1
4π

(
log

(
(t− t′)2 + (z − z′)2

)
+ log

(
(t− t′)2 + (z + z′)2

))
, (2.36)

GD(σ, σ′) = 1
4π

(
log

(
(t− t′)2 + (z − z′)2

)
− log

(
(t− t′)2 + (z + z′)2

))
, (2.37)

G0(σ, σ′) = − 1
π

tan−1
(

t− t′

z + z′

)
. (2.38)

As expected, in the limit B → 0, we recover the Green’s function corresponding to
Neumann boundary conditions. For the bulk-to-boundary propagator we have

KAB(z, t; t′) = 1
1− B2 (δAB − nAnB)KN (z, t; t′) + B

1− B2 ϵABCnCK0(z, t; t′) , (2.39)

with

KN (z, t; t′) = 1
2π

log
(
(t− t′)2 + z2

)
, (2.40)

K0(z, t; t′) = − 1
π

tan−1
(

t− t′

z

)
. (2.41)

Notice that

∂tKN = −∂zK0 , (2.42)

and the following boundary conditions are satisfied

lim
z→0

∂zKN (z, t; t′) = δ(t− t′) , lim
z→0

∂tK0(z, t; t′) = δ(t− t′) . (2.43)
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3 Correlators on the line from Witten diagrams on AdS2

The embedding coordinates Y A can be put in correspondence with scalar operators inserted
along the Wilson line. These scalar operators should be arranged in a triplet of the SU(2) ⊂
SU(4). Such triplet can be constructed using bilinears of scalars fields of the ABJ(M) theory
and they are non-protected: while their scaling dimension is 1 at zero coupling, it diminishes to
zero in the leading strong coupling limit. In the following, we will study correlations functions
of the operators dual to embedding coordinates Y A. We will begin with 2-point functions to
read from them 1/

√
λ corrections to the vanishing scaling dimension. Then, we will study

4-point functions to evaluate the conformal symmetry of the theory defined by this line defect.

3.1 2-point functions

The 1-dimensional conformal symmetry should fix the form of the 2-point correlator of
embedding coordinates to be

⟨Y A (t1) Y B (t2)⟩ = CY δAB

(t2 − t1)2∆ = CY δAB
[
1−∆ L12 + 1

2∆2L2
12 + · · ·

]
, (3.1)

where
Lij := log

(
(ti − tj)2

)
. (3.2)

The scaling dimension ∆ and normalization CY can be expanded at strong coupling as

∆ = d1√
λ

+ d2
λ + · · · , CY = c0 + c1√

λ
+ c2

λ + · · · . (3.3)

Thus,

⟨Y A (t1) Y B (t2)⟩ = δABc0 + δAB

√
λ

(c1 − d1L12)

+ δAB

λ

(
c2 − (c0d2 + c1d1)L12 + 1

2c0d2
1L2

12

)
+O( 1

λ3/2 ) . (3.4)

The successive orders ci and di can be derived from the strong coupling expansion of this
2-point function. Using the expansion of the embedding coordinates into fluctuations around
a fixed nA (2.11), the leading order of the correlation function between two embedding
coordinates becomes

⟨Y A (t1) Y B (t2)⟩ =
〈
nAnB

〉
+ 2π√

λ

〈
yA(t1)yB(t2)

〉
0

+O( 1
λ) . (3.5)

Omitting the sub-index n in the brackets means that we are also averaging over nA. Some
useful averages are the following,

⟨nA⟩ = 0 , ⟨nAnB⟩ = 1
3δAB , (3.6)

⟨nAnBnC⟩ = 0 , ⟨nAnBnCnD⟩ = 1
15
(
δABδCD + δACδBD + δADδCB

)
. (3.7)
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Figure 1. Contribution order 1√
λ

to ⟨Y A(t1)Y B(t2)⟩.

(a) (b) (c)

Figure 2. Contributions order 1
λ to ⟨Y A(t1)Y B(t2)⟩.

Using that the propagator (2.25) in the boundary-to-boundary limit becomes

DAB(t1, t2) = 1
2π

1
1− B2 (δAB −nAnB) log

(
(t1 − t2)2

)
+ 1

2
B

1− B2 ϵABCnCsign(t2− t1), (3.8)

we get

⟨Y A (t1) Y B (t2)⟩ = 1
3δAB

[
1− 2√

λ

1
1− B2 log

(
(t1 − t2)2

)
+O( 1

λ)
]

. (3.9)

From this we can read that d1 = 2
1−B2 , c0 = 1

3 and c1 = 0. In other words,

∆ = 2√
λ(1− B2)

+O( 1
λ) , CY = 1

3 +O( 1
λ) . (3.10)

To proceed beyond, we need to evaluate the 2-point function of embedding coordinates
keeping track of terms order 1

λ . For this we have to go further in the expansion into fluctuations
around nA (2.11) and also to include 1-loop corrections to the propagators,

⟨Y A (t1) Y B (t2)⟩ =1
3δAB

[
1− 2√

λ

1
1− B2 log

(
(t1 − t2)2

)]
(3.11)

+ π2

λ
⟨nAnByC(t1)yC(t1)yD(t2)yD(t2)⟩0+ 2π

λ

〈
yA(t1)yB(t2)

〉
1

+O( 1
λ3/2 ).

The Witten diagrams representing the terms of the second line of (3.11) are depicted in
figure 2. The first term is represented by the diagram 2(a) and its computation is rather
straightforward. Before averaging over nA

2(a)n = 2× π2

λ
nAnB⟨yC(t1)yD(t2)⟩0,n⟨yC(t1)yD(t2)⟩0,n

= 1
λ

nAnB 1
(1− B2)2

(
L2

12 + π2B2
)

. (3.12)

Diagrams 2(b) and 2(c) come from the 1-loop corrections to the propagator

2(b)n + 2(c)n = 2π

λ
⟨yA(t1)yB(t2)⟩1,n . (3.13)
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It is possible to argue (see appendix A) that these 1-loop corrections will be of the form

⟨yA(t1)yB(t2)⟩1,n =
(
δAB − nAnB

) (
f0 + f1L12 + f2L2

12

)
+ ϵABCnCsign(t1 − t2) (g0 + g1L12) , (3.14)

for some constant coefficients f0, f1, f2, g0, g1. Then, after averaging over nA, these 3 diagrams
give rise to

2(a) + 2(b) + 2(c) = 1
λ

δABq12 . (3.15)

The comparison with (3.4) indicates that

q12 = c2 −
1
3d2L12 + d2

1
6 L2

12 . (3.16)

In order to know the precise values of d2 and c2 one would need to compute the 1-loop
corrections mentioned before. However, as we will see in the next section, these precise values
would not be necessary for testing the conformal covariance of the 4-point function. For the
coefficient in front of L2

12 to be the one indicated in (3.16),

f2 = 1
4π(1− B2)2 , (3.17)

is needed.

3.2 4-point functions

As stated in the Introduction, the primary goal of our article is to ascertain whether the dual
theory on the line, defined by fluctuations in AdS2 with mixed boundary conditions (2.24),
exhibits conformal behaviour. Expressing the 4-point function of embedding coordinates as

⟨Y A (t1) Y B (t2) Y C (t3) Y D (t4)⟩ = C2
Y GABCD

(t2 − t1)2∆(t4 − t3)2∆ , (3.18)

conformal symmetry would require that

GABCD = GABCD(λ, u) , (3.19)

where u is the unique independent cross-ratio

u = (t1 − t2)(t3 − t4)
(t1 − t3)(t2 − t4) . (3.20)

Following [17] we can split GABCD into singlet, symmetric traceless and antisymmetric tensors

GABCD = GSδABδCD + GT(δACδBD + δADδBC − 2
3δABδCD)

+ GA(δACδBD − δADδBC) , (3.21)
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Figure 3. Diagrams contributing to Q(1).

and concentrate on the singlet, as the other tensors can be related to GS using crossing
transformations. For SO(3), which is the case of interest to us, one has [17]

GT(u) = − 3
10GS(u) + 9

20
(
u2∆GS( 1

1−u) + ( u
1−u)2∆GS( u

1−u)
)

, (3.22)

GA(u) = 3
4
(
u2∆GS( 1

1−u)− ( u
1−u)2∆GS( u

1−u)
)

. (3.23)

To compute the singlet, we just need to consider

⟨Y A (t1) Y A (t2) Y B (t3) Y B (t4)⟩ = 9C2
Y GS(λ, u)

(t2 − t1)2∆(t4 − t3)2∆

= 1 + Q(1)
√

λ
+ Q(2)

(
√

λ)2
+ Q(3)

(
√

λ)3
+O( 1

λ2 ) . (3.24)

We can expand

GS = 1 + G
(1)
S√
λ

+ G
(2)
S

(
√

λ)2
+ G

(3)
S

(
√

λ)3
+O( 1

λ2 ) , (3.25)

and, if each successive order is a function of the cross-ratio u, this can be regarded as an
indication of the conformal symmetry of the theory on the line. To obtain the successive G

(i)
S

one needs to compute the successive Q(i), and for this one has to use once again the expansion

Y A = nA +
√

2π

λ1/4 yA − π√
λ

y2nA +O( 1
λ) . (3.26)

Order 1/
√

λ. Replacing (3.3) and (3.25) in (3.24), and keeping the order 1/
√

λ, we obtain

G
(1)
S = Q(1) + d1 (L12 + L34) . (3.27)

The diagrams contributing to Q(1) come from ⟨yA(t1)yA(t2)nBnB⟩0 and ⟨nAnAyB(t3)yB(t4)⟩0,
depicted in figure 3

3(a) = − 1√
λ

2L12
1− B2 , 3(b) = − 1√

λ

2L34
1− B2 , (3.28)

Other diagrams with just one propagator are vanishing. For example

⟨nAyA(t2)yB(t3)nB⟩ = 0 . (3.29)

because nAyA = 0. As a consequence,

Q(1) = −d1 (L12 + L34) ⇒ G
(1)
S = 0 . (3.30)
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Figure 4. Some diagrams contributing to Q
(2)
2 .

(a) (b) (c) (d)

Figure 5. Some diagrams contributing to Q
(2)
2 .

Order 1/λ. Proceeding with the order 1/λ, we obtain

G
(2)
S = Q(2) − 6c2 + d2 (L12 + L34)− d2

1
2 (L12 + L34)2

= Q(2) − 3q12 − 3q34 − d2
1L12L34 , (3.31)

where we have used the notation qij introduced in (3.16).
Let us then analyze all the diagrams contributing to Q(2). We can organize them

according to the number of insertion points containing just a vector nA, represented with a
white dot in the diagrams. With nA inserted in 2 out of the 4 points we have diagrams with
either a double propagator or 1 propagator with 1-loop corrections. The diagrams in figure 4
are entirely analogous to those computing the order 1/λ in the 2-point function. Thus

4(a) + 4(b) + 4(c) + 4(d) + 4(e) + 4(f) = 3
λ

(q12 + q34) . (3.32)

For diagrams of this sort, when contracting other pairs than 12 and 34, only the ones
with the double propagator - represented in figure 5 - are non-vanishing. Putting all the
diagrams in figure 4 and figure 5 together we obtain

Q
(2)
2 = 3 (q13 + q34) + 1

(1− B2)2

(
L2

14 + L2
13 + L2

23 + L2
24 + 4π2B2

)
. (3.33)

Non-vanishing diagrams with just one insertion of the type nA are shown in figure 6.
Their total contribution is

Q
(2)
1 = − 2

(1− B2)2 (L14L13 + L23L24 + L14L23 + L13L24)

− 2π2B2

(1− B2)2 (S14S13 + S23S24 + S14S23 + S13S24) , (3.34)

where
Sij := sign(ti − tj) . (3.35)

The last contribution to this order comes from diagrams with yA in the 4 insertion
points, as represented in figure 7. They give

Q
(2)
0 = 1

(1− B2)2

(
4L12L34 + 2L14L23 + 2π2B2S14S23 + 2L13L24 + 2π2B2S13S24

)
. (3.36)
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Figure 6. Diagrams contributing to Q
(2)
1 .

(a) (b) (c)

Figure 7. Diagrams contributing to Q
(2)
0 .

Now, we can combine all the contributions to Q(2). Note that the terms proportional
to q12, q34 and L12L34 in the r.h.s. of (3.31) cancel with some of the contributions to Q(2).
As a result, we obtain the following expression for G

(2)
S

G
(2)
S = 1

(1− B2)2 (L14 + L23 − L13 − L24)2 + π2B2

(1− B2)2 (S14 + S23 − S13 − S24)2 , (3.37)

which can be re-expressed as a function of the cross-ratio

G
(2)
S (u) = 4

(1− B2)2

[
log2 (1− u) + π2B2Θ(u− 1)

]
, (3.38)

where Θ is the Heaviside step function. The fact that the first non-trivial contribution to GS
is indeed just a function of the cross-ratio serves as evidence for the conformal covariance of
the 4-point function. Another interesting observation about this result is that it verifies

G
(2)
S (u) = G

(2)
S ( u

u−1) , (3.39)

a crossing symmetry relation from the exchange t3 ←→ t4.
It is worth noting that, at this order, all contributions arise from reducible diagrams

originated from quadratic terms in the action of fluctuations. A more robust confirmation
of conformal covariance would be obtained exploring the next order, which incorporates
contributions from connected Witten diagrams involving quartic terms.

Order 1/(
√

λ)3. Expanding eq. (3.24) to order 1
λ3/2 , we obtain

G
(3)
S = Q(3)− 6c3 +

(
d3 + 6d1c2 + d1G

(2)
S

)
(L12 + L34)− d1d2 (L12 + L34)2 + d3

1
6 (L12 + L34)3 .

(3.40)
At this order we will have to include irreducible diagrams from the quartic terms of

the action contributing to Q(3), like the one depicted in figure 8. There are 4 different
types of quartic vertices

V1 = π√
λ

yAyB∂µyA∂µyB , V2 = π

4
√

λ
(∂µyA∂µyA)2 , (3.41)

V3 = − π

2
√

λ
∂µyA∂µyB∂νyA∂νyB , V4 = − π√

λ

1
√

g
BϵABCnAy2∂zyB∂ty

C . (3.42)
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Figure 8. Irreducible diagrams contributing to Q(3).

All these diagrams involve a spacetime integration of products of bulk-to-boundary
propagators. The diagram with V1 will be more intricate, as two propagators, appearing
without derivatives, introduce logarithmic or arc tangent factors. To avoid this complication,
we can compute ∂t1∂t2∂t3∂t4

〈
Y A(t1)Y A(t2)Y B(t3)Y B(t4)

〉
. Therefore, instead of (3.40), we

will consider

∂t1∂t2∂t3∂t4G
(3)
S = ∂t1∂t2∂t3∂t4Q(3) + d1∂t1∂t2∂t3∂t4

(
G

(2)
S (L12 + L34)

)
− 2d1d2∂t1∂t2∂t3∂t4 (L12L34) + d3

1
2 ∂t1∂t2∂t3∂t4

(
L2

12L34 + L12L2
34

)
. (3.43)

It is straightforward to check that, acting with the four derivatives on a function of
the cross-ratio, we obtain3

∂t1∂t2∂t3∂t4F (u) = F̃ (u)
(t1 − t2)2(t3 − t4)2 . (3.44)

Therefore, we have to check whether the r.h.s. of (3.43) is of this form.
Let us begin by computing the irreducible contact diagrams. For the vertex V1 we

have to compute

∂t1∂t2∂t3∂t4Q
(3)
irred,1 = − 4π3

∫
d2σ
√

g⟨∂t1yA∂t2yA∂t3yB∂t4yByCyD∂µyC∂µyD⟩0 . (3.45)

This can be explicitly computed and the result is

t2
12t2

34∂t1∂t2∂t3∂t4Q
(3)
irred,1 = −8u2 [u(u− 2) + 2] log(u)

(1− B2)2(1− u)2 + 8u2 log(1− u)
(1− B2)2 − 8u2

(1− B2)2(1− u)

− 32t2
12t2

34
(1− B2)3

( 1
t12t2

23t24
− 1

t12t2
13t14

)
− 16(3− B2)

(1− B2)4 t2
12t2

34

( 1
t12t23t2

24
− 1

t12t13t2
14

)
− 16 (1 + B2)

(1− B2)4 t2
12t2

34

( 1
t13t2

23t34
+ 1

t2
13t23t34

− 1
t2
12t23t24

− 1
t2
12t13t14

− 2
t13t23t2

34

)
.

(3.46)

One comment is in order about this result. As we have assumed that all ti are different to
perform the integrals, we have lost track of contact-like terms in the form of Dirac deltas
or derivatives of them. We know this type of terms appear in the reducible diagrams, from
derivatives acting on the sign functions present in the boundary-to-boundary propagators.

3Where

F̃ (u) = u2 [u2(u − 1)2F (4)(u) + 4u(u − 1)(2u − 1)F (3)(u) + (2 + 14u(u − 1))F ′′(u) + 2u2(2u − 1)F ′(u)
]

.
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Figure 9. Diagrams contributing to ∂t1∂t2∂t3∂t4Q
(3)
red,0.

In relation with our motivation for the study of this 4-point function, we should notice the
appearance of terms that are not functions of the cross-ratio. Similar anomalous contributions
appear in the vertex originated from the coupling with the Kalb-Ramond field

∂t1∂t2∂t3∂t4Q
(3)
irred,4 = 4π3BnCϵCDE

∫
d2σ⟨∂t1yA∂t2yA∂t3yB∂t4yByF yF ∂zyD∂ty

E⟩0 . (3.47)

The remaining irreducible contributions are not anomalous, i.e. t2
12t2

34∂t1∂t2∂t3∂t4Q
(3)
irred,2 and

t2
12t2

34∂t1∂t2∂t3∂t4Q
(3)
irred,3 are just functions of the cross-ratio.

Collecting all the irreducible diagrams we have

t2
12t2

34∂t1∂t2∂t3∂t4Q
(3)
irred = 8(4− 8u + 7u2 − 3u3 + 2u4)

(1− B2)2(1− u)2 + 16(2− u + u4) log(1− u)
(1− B2)2u

− 16u4(3− 3u + u2) log(u)
(1− B2)2(1− u)3

− 16t2
12t2

34
(1− B2)3

( 3
t12t23t2

24
− 3

t12t13t2
14

+ 2
t12t2

23t24
− 2

t12t2
13t14

− 2
t13t23t2

34

+ 1
t13t2

23t34
+ 1

t2
13t23t34

− 1
t2
12t13t14

− 1
t2
12t23t24

)
. (3.48)

It is worth noting that the coefficient in front of the anomalous terms becomes (1−B2)−3

after collecting all irreducible diagrams. This is in principle a good sign, as other contributions
that can potentially cancel these anomalous terms could only come from reducible diagrams
with just three propagators.

We now turn to reducible diagrams contributing to Q(3). We can distinguish two kinds
of reducible contributions: diagrams with just 3 free propagators and diagrams with 2
propagators, one of them being 1-loop corrected. These diagrams are represented in figure 9
and figure 10 respectively.4

Summing diagrams with 3 propagators we find

∂t1∂t2∂t3∂t4 Q
(3)
red,0 = 16

(1− B2)3

[
− 1

t12t23t2
14

+ 1
t12t2

23t14
− 1

t2
12t23t14

+ 1
t12t13t2

24
− 1

t12t2
13t24

− 1
t2
12t13t24

+ 4
t2
12t2

34
− 1

t23t14t2
34
− 1

t13t24t2
34
− 1

t23t2
14t34

+ 1
t2
23t14t34

− 1
t13t2

24t34

+ 1
t2
13t24t34

− 1
2

( 1
t2
23t2

14
+ 1

t2
13t2

24
+ 2

t2
12t2

34

)
(L12 + L34)

]
. (3.49)

4There are more diagrams of these types. In figure 9 and figure 10 we show only those non-vanishing after
taking the derivatives with respect to the position of the insertion points.
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Figure 10. Diagrams contributing to ∂t1∂t2∂t3∂t4Q
(3)
red,1.

For the diagrams in figure 10, with one of propagators corrected at the 1-loop level, we
can use the 2-point function (3.14) used in section 3.1. We obtain

∂t1∂t2∂t3∂t4 Q
(3)
red,1 = − 32π

(1− B2)

[
(f1 − 4f2)

( 1
t2
23t2

14
+ 1

t2
13t2

24
+ 2

t2
12t2

34

)
+f2

(L23 + L14
t2
23t2

14
+ L13 + L24

t2
13t2

24
+ 2L12 + 2L34

t2
12t2

34

)]
. (3.50)

We will use, as we have argued in section 3.1, that f2 = 1
4π(1−B2)2 , but the coefficient f1

will remain indeterminate.
Having computed all the diagrammatic contributions enclosed in ∂t1∂t2∂t3∂t4Q(3), it

remains to consider the last three terms in (3.43), which give

d1∂t1∂t2∂t3∂t4

(
G

(2)
S (L12+L34)

)
= 32

(1−B2)3

[
− 1

t12t13t2
14

+ 1
t12t23t2

14
− 1

t12t2
13t14

− 1
t2
12t13t14

− 1
t12t2

23t14
+ 1

t2
12t23t14

− 1
t12t13t2

24
+ 1

t12t23t2
24

+ 1
t12t2

13t24

+ 1
t2
12t13t24

+ 1
t12t2

23t24
− 1

t2
12t23t24

− 1
t13t23t2

34
+ 1

t23t14t2
34

+ 1
t13t24t2

34
− 1

t14t24t2
34

+ 1
t13t2

23t34
+ 1

t2
13t23t34

+ 1
t23t2

14t34

− 1
t2
23t14t34

+ 1
t13t2

24t34
− 1

t14t2
24t34

− 1
t2
13t24t34

− 1
t2
14t24t34

1
2

( 1
t2
13t2

24
+ 1

t2
14t2

23

)
(L12+L34)

]
, (3.51)

2d1d2∂t1∂t2∂t3∂t4 (L12L34) = 16d2
(1−B2)

1
t2
12t2

34
, (3.52)

d3
1

2 ∂t1∂t2∂t3∂t4

(
L2

12L34+L12L2
34

)
=− 128

(1−B2)3
1

t2
12t2

34
+ 32

(1−B2)3
(L12+L34)

t2
12t2

34
. (3.53)

We are in a position to collect all the contributions to ∂t1∂t2∂t3∂t4G
(3)
S and analyze its

dependence on t1, t2, t3 and t3. The final result can be simply expressed as follows:

t2
12t2

34∂t1∂t2∂t3∂t4G
(3)
S =P (u) + P

(
u

u−1

)
, (3.54)

where

P (u) =− 8u2

(1− B2)3

[
4 + log(u2)

]
+ 8

(1− B2)2

[
2 + u + 2u2 +

(
2
u − 1 + u3

(1−u)3

)
log(u2)

]
+ 8

(1− B2)
[
−d2 + 32πf1

(
1 + u2

)]
. (3.55)
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As anticipated and in accordance with the conformal symmetry of the line, we observe that
the anomalous terms cancel and this is a function of the cross-ratio. Furthermore, crossing
symmetry resulting from the exchange between t3 and t4 is evident in (3.54) as well.

It is noteworthy to mention the appearance of indeterminate coefficients, such as those
in (3.50) and (3.52). In fact, in the case of f2, the use of the specific value given in section 3.1
is crucial for arranging Lij terms into a function of u. Conversely, the terms with f1 and d2
lead to functions of the cross-ratio for any value of these coefficients.

4 Discussion

The type IIA background for the dual description of the ABJ(M) model - AdS4 × CP3

- includes a flat Kalb-Ramond field that couples to the string through a boundary term.
Therefore, this can affect the boundary conditions of an open string dual to a Wilson loop in
the gauge theory. For the case of a straight Wilson line, the dual open string has an AdS2
world-sheet ending along a line at the boundary of AdS4. In accordance with the symmetries
of 1/6 BPS bosonic Wilson line, the dual open string satisfies certain boundary condition
that delocalizes it around a CP1 ⊂ CP3 [12]. One of the main observations of our work is that
the fluctuations on the open string dual to the 1/6 BPS bosonic Wilson line in the ABJ(M)
model satisfy some boundary conditions mixing longitudinal and transverse derivatives, where
the mixing parameter comes from the Kalb-Ramond field. Thus, the Neumann boundary
condition - the vanishing of the derivative transverse to the boundary - proposed to describe
the smearing of the dual string over a CP1 ⊂ CP3 [28] would be appropriate for the ABJM
model, when the two gauge group factors of the Chern-Simons theory has equal ranks. In
the ABJ(M) generalization, when the two gauge group factors are different, the open string
dual to 1/6 BPS bosonic Wilson loops becomes delocalized around a CP1 ⊂ CP3 using
mixed boundary conditions instead. This constitutes another concrete realization of the
supersymmetric mixed boundary conditions (invariant under 4 supercharges) proposed in [9].

Using scalar fields with these mixed boundary conditions in the AdS2 world-sheet, we
have holographically computed correlation functions of excitations along the 1/6 BPS bosonic
Wilson line in the ABJ(M) model. As evidenced by the fact that the quantity (3.54) is a
function of the cross-ratio, a 1/6 BPS bosonic Wilson line with local operator insertions in
the ABJ(M) model constitutes a CFT1. This result is significant because, being the theory on
the line a CFT1, it would be possible to use analytic bootstrap techniques to investigate its
correlation functions, extending the analysis conducted in [18]. An important difference in the
present case is that, despite the supersymmetry of the Wilson loop, some of the fluctuations are
not part of protected multiplets and receive corrections to their scaling dimensions. Bootstrap
techniques have been shown to be powerful when used in combination with integrability
to study Wilson loops in N = 4 super Yang-Mills [29–33]. In the present realization of
the AdS/CFT correspondence, integrability has been observed for 1/2 BPS Wilson loops
in the ABJM setup [34]. It would be therefore interesting to explore the integrability for
1/6 BPS Wilson loops in the ABJ(M) model, bearing in mind that the coupling with the
Kalb-Ramond field breaks the parity symmetry in the dual line. Some results of integrability
in ABJ theories for closed spin chains can be found for example in [35] and references therein.
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The mixing boundary conditions we discussed in this article resemble a type of boundary
conditions discussed in [36]. More concretely, the boundary conditions here are similar to the
t-derivative of the boundary conditions there. However, in that case, as presented in [36],
the 4-point function does not have the form expected for a conformal field theory. In the
current case, a key difference is the fact that the boundary conditions describe a smeared
string configuration. This has prompted us to consider orthogonal fluctuations to embedding
coordinates. As a result, additional reducible diagram contributions have to be included,
which are ultimately the ones cancelling the anomalous terms originated from quartic vertices
irreducible diagrams. It is important to emphasize that, while the boundary conditions
considered in [9] and [36] were regarded as candidates for the dual string to the interpolating
family of Wilson loops [20–23], in this current article the boundary conditions we discuss
account for the 1/6 BPS bosonic Wilson loops in the ABJ(M) generalization of the model.

Another interesting problem for the future would be the inclusion of Green-Schwarz
fermions in the world-sheet, to determine their boundary conditions and to compute fermionic
1-loop Witten diagrams. This would enable a thorough derivation of the 1-loop correction to
the propagator in a detailed fashion. This would be important to validate the form we have
proposed in (3.14) and ascertain the value for the coefficient f2 in (3.17), which was crucial
for the conformal covariance of both, the 2-point and the 4-point function. Furthermore, one
would be able to explicitly determine the coefficients f1 and d2 that appear in the 4-point
function and give the anomalous dimension to the next perturbative order.
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A Self-energy corrections to the propagator

Previously, we have used that the 1-loop correction to the 2-point function takes the form,

⟨yA(t1)yB(t2)⟩1,n =
(
δAB − nAnB

) (
f0 + f1L12 + f2L2

12

)
+ ϵABCnCS12 (g0 + g1L12) . (A.1)

It is possible to study loop diagram contributions to determine whether (A.1) is a
reasonable assumption or not. There are two types of diagrams contributing to the 1-loop
correction of the propagator, as shown in figure 11. We will briefly analyze the functions
obtained from diagrams of the self-energy type represented by figure 11 (b), but diagrams 11
(a), corresponding to fermionic loops (and harder to compute), will not be considered in this
appendix. Therefore, this analysis will be focused on verifying the type of functions appearing
in (A.1) rather than determining the values of the coefficients f0, f1, f2, g0 and g1.

Let us then concentrate on self-energy diagrams like the one in 11(b),

11(b)n = −
∫

d2σ
√

g
〈
yA(t1)V̂ (τ, σ)yB(t2)

〉
=
(
δAB − nAnB

)
Π(t12) + ϵABCnCΞ(t12) , (A.2)
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(a) (b)

Figure 11. Contributions to ⟨yA(t1)yB(t2)⟩1,n.

where V̂ (τ, σ) represents all the quartic terms in the expansion of the Nambu-Goto-Kalb-
Ramond action (3.41)–(3.42). The different contributions from each type of vertex depend
on which fields are contracted into a tadpole. This will lead to propagators evaluated at
coincident points, which have to be regularized to remove UV divergences from them. To
this end we can deform Gs with a covariant UV cutoff

Gs(σ, σ′) = 1
4π

log
(
(t− t′)2 + (z − z′)2 + ε2zz′

)
+ 1

4π

1 + B2

1− B2 log
(
(t− t′)2 + (z + z′)2

)
,

(A.3)

and from this

lim
σ′→σ

Gs(σ, σ′) = 1
2π

log(2ε) + 1
π

1
1− B2 log z , (A.4)

lim
σ′→σ

∂zGs(σ, σ′) = 1
2πz

1
1− B2 . (A.5)

The dependence with the cutoff ε should cancel once the fermionic loop contribution is
included [17]. The double-derivative of Gs in the coincidence limit is a bit more subtle, as
it typically depends on the regularization scheme [37]. A natural choice is to use a scheme
that preserves the symmetries of the background [38]. In the case of Neumann boundary
conditions propagator, this choice leads to [17]

lim
σ′→σ

∂µ∂µ′GN (σ, σ′) = 1
4π

lim
σ′→σ

∂µ∂µ′ [log
(
(t− t′)2 + (z − z′)2

)
+ log

(
(t− t′)2 + (z + z′)2

)]
=− 1

2π
. (A.6)

The second term in this limit is regular and limσ′→σ ∂µ∂µ′ log
(
(t− t′)2 + (z + z′)2) = −1.

This means that the choice made in (A.6) implies that limσ′→σ ∂µ∂µ′ log
(
(t− t′)2 + (z − z′)2)

= −1. This, in turn, leads to

lim
σ′→σ

∂µ∂µ′Gs(σ, σ′) =− 1
2π

1
1− B2 . (A.7)

Let us present, with some detail, the following contribution from V1,

− 2π√
λ

∫
d2σ

z2 ⟨(y
CyD∂µyC∂µyD)yA(t1)yB(t2)⟩ = 2√

λ

1
1− B2

∫
d2σ

z2 log z∂µKCA∂µKCB

= 2√
λ

1
(1− B2)3

[(
δAB − nAnB

)
I1 + BϵABCnCI2

]
(A.8)
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where we have omitted the log ε term. The integrals I1 and I2, up to constants and IR
divergences, are5

I1 =
∫

d2σ

z2 log z
(
∂µKN (t1)∂µKN (t2) + B2∂µK0(t1)∂µK0(t2)

)
= (1 + B2)

8π

(
log 16L12 − L2

12

)
(A.9)

I2 =
∫

d2σ

z2 log z (∂µKN (t1)∂µK0(t2)− ∂µK0(t1)∂µKN (t2)) = 1
2S12 (L12 − log 4) . (A.10)

From this single contribution, we already observe the appearance of terms of the form
presented in (A.1). Since we will not consider the fermionic loop contributions here, keeping
track of all the self-energy contributions with plenty of details would not be particularly
illuminating. Nonetheless, considering the conformal covariance verification we perform in
this article depends on the actual value of the coefficient f2, it might be worthwhile to collect
all the contributions of the form L2

12.
In addition to the one from (A.8)–(A.9), other contributions from this vertex to Π arise

with the coincidence-limit factors (A.5), (A.7) and (A.11)

lim
σ′→σ

∂tGa(σ, σ′) =− 1
2πz

B
1− B2 . (A.11)

Collecting all of them

Π1 = 1√
λ

(
2I1

(1− B2)3 + 6I3
(1− B2)3 −

I4
(1− B2)3 −

2B2I5
(1− B2)3

)
, (A.12)

where now

I3 =
∫

d2σ

z

(
KN (t1)∂zKN (t2) + B2K0(t1)∂zK0(t2)

)
= (1 + B2)

8π
L2

12 , (A.13)

I4 =
∫

d2σ

z2

(
KN (t1)KN (t2) + B2K0(t1)K0(t2)

)
= (1 + B2)

4π

(
L2

12 + 4L12
)

, (A.14)

I5 =
∫

d2σ

z
(KN (t1)∂tK0(t2)−K0(t1)∂tKN (t2)) = 1

4π
L2

12 . (A.15)

These contributions come from different Wick contractions of the vertex V1. The I3 and

I5 terms comes from ⟨(yCyD∂µyC∂µyD)yA(t1)yB(t2)⟩ and ⟨(yCyD∂µyC∂µyD)yA(t1)yB(t2)⟩,

while the I4 term comes from ⟨yA(t1)yB(t2)(yCyD∂µyC∂µyD)⟩.
Finally, we find

Π1 = 1√
λ

1
8π

(1 + B2)
(1− B2)3 (−2 + 6− 2) L2

12 −
1

2π

B2

(1− B2)3 L2
12 + · · ·

= 1
4π

1
(1− B2)2 L2

12 + · · · , (A.16)

where the ellipsis represents the omission of L12 and constant terms.
We shall not discuss in detail the contributions to Π from vertices V2 and V3 with 4

derivatives, nor from vertices ∂xi∂xi∂yC∂yC , as it is straightforward to check that they
5In the following, KN/0(ti) stands for KN/0(z, t; ti).
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contribute to the L12 but not to the L2
12 dependence. Other contributions to Π could

arise from V4, originated from the coupling with the Kalb-Ramond field. For these other
contributions, in addition to (A.4) and (A.5), we will also need the following propagators
in the coincidence limit

lim
σ′→σ

∂t∂z′Ga(σ, σ′) = 1
4πz2

B
1− B2 , (A.17)

lim
σ′→σ

∂tGa(σ, σ′) = − 1
2πz

B
1− B2 , (A.18)

The different Wick contractions of V4 give rise to

Π4 = 1√
λ

(
B2I4

(1− B2)3 + 2B2I5
(1− B2)3 −

2B2I3
(1− B2)3 + 4B2I6

(1− B2)3

)
, (A.19)

where

I6 =
∫

d2σ log z (∂zKN (t1)∂tK0(t2)− ∂zK0(t1)∂tKN (t2)) = 1
8π

(
log 16L12 − L2

12

)
. (A.20)

In (A.19), the terms proportional to I4, I5, I3 and I6 come from

nCϵCDE⟨yA(t1)yB(t2)(yF yF ∂zyD∂ty
E)⟩, nCϵCDE⟨(yF yF ∂zyD∂ty

E)yA(t1)yB(t2)⟩,

nCϵCDE⟨yA(t1)yB(t2)(yF yF ∂zyD∂ty
E)⟩ and nCϵCDE⟨(yF yF ∂zyD∂ty

E)yA(t1)yB(t2)⟩ respec-
tively. Evaluating (A.19) we get

Π4 = B
2
√

λ

1
4π

1
(1− B2)3

(
(1 + B2) + 2− (1 + B2)− 2

)
L2

12 + · · · = 0 + · · · , (A.21)

Thus, the total contribution to the term proportional to (δAB − nAnB)L2
12 is

Π = 1
4π(1− B2)2 L2

12 + · · · . (A.22)

Therefore, the expected value of the coefficient f2 (3.17) seems to originate from self-energy
diagrams exclusively. The same was observed in the case of Neumann boundary conditions [17].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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