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1 Introduction

There are two fundamental formulations of quantum mechanics (and, by extension, of quantum
field theory). There is the canonical formulation based on states as vectors of a Hilbert
space and physical observables as self-adjoint operators acting on this space. This formalism
determines amplitudes from which one then computes probabilities for physical observations.
Arguably this is still the definite formulation of quantum mechanics. Importantly, however,
there is also the Feynman path integral formulation in which the probability amplitude
between states |qi; ti⟩ and ⟨qf ; tf | is represented as

⟨qf ; tf |qi; ti⟩ =
∫

Dq exp
(
i

ℏ
S[q(t)]

)
. (1.1)

Here S is the classical action for the dynamical variable q(t), and the integral is to be taken
over the space of all trajectories (with fixed initial value qi and final value qf ). The path
integral formulation is advantageous in many respects: first, starting from the classical theory
encoded in the action S, the path integral directly provides the objects of physical interest,
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the probability amplitudes, without having to deal with Hilbert spaces, states, operators, etc.
Second, any symmetries realized as invariances of the action S, such as spacetime Lorentz
invariance, are manifestly realized in the quantum theory (in the absence of anomalies).
In fact, much of modern quantum field theory would be unthinkable without Feynman’s
path integral formulation. The trouble is that it has turned out to be very difficult, if not
impossible, to give a mathematically rigorous definition of the integral over the space of
all kinematically allowed trajectories. One may discretize the physical problem at hand, in
which case the path integral reduces, after Wick rotation, to well-defined finite-dimensional
Gaussian integrals. This has been applied with great success in lattice gauge theory, but a
general and non-perturbative definition of Feynman’s path integral remains out of reach.

In this paper we introduce an alternative algebraic formulation of quantum mechanics
based on the (co-)homology of the Batalin-Vilkovisky (BV) algebra [1, 2]. In this we pick
up on a point that to the best of our knowledge was first made by Gwilliam [3] and by
Gwilliam and Johnson-Freyd [4] for finite-dimensional toy models. (See also [5–9] for related
developments.) We generalize their formulation to be applicable to genuine physical theories.
Like the path integral formulation, this approach has the advantage of providing a direct
way to pass from the classical theory to the physical quantities of the quantum theory,
without having to invoke Hilbert spaces and the like. However, unlike Feynman’s path
integral, whose rigorous definition would require an infinite-dimensional generalization of
calculus, the formulation presented here is algebraic, employing in particular methods from
algebraic topology. It should be emphasized from the outset that we do not claim to provide
a full-fledged alternative formulation of quantum mechanics. Rather, at the present moment,
this formulation is restricted to the computation of normalized quantum expectation values
with respect to a certain class of states.

In order to begin explaining this homological approach let us consider a one-dimensional
dynamical system with dynamical variable q(t). The space of all kinematically allowed
trajectories is then the infinite-dimensional vector space C∞(R) of smooth functions of one
real variable. This space being infinite-dimensional does not cause any trouble in classical
physics, where the equations of motion effectively make the problem finite-dimensional: a
solution is uniquely determined after picking initial or boundary conditions, say by fixing the
two values q(ti) and q̇(ti) at some initial time ti. As such, in classical physics the real space
of interest is just R2, which can be viewed as the phase space of this system. In contrast, in
quantum mechanics it is not sufficient to go ‘on-shell’: the path integral should be taken over
all functions q(t) in C∞(R), with the ones solving the classical equations of motion being
only the dominant contribution in the limit of small ℏ.

At this stage concepts from topology turn out to be helpful, notably the notion of
homotopy. One considers two shapes or spaces to be homotopy equivalent if one can be
smoothly transformed into the other, as for instance a closed curve which, without tearing it,
can be contracted to a point. Thus, a one-dimensional curve may be homotopy equivalent to
a zero-dimensional point. Similarly, we will show that passing from the infinite-dimensional
space C∞(R) of kinematically allowed trajectories to the finite-dimensional phase space R2

can be viewed as what is called a homotopy retract. While under homotopy one of course
looses some information, the important fact is that the (co-)homology is homotopy invariant,
this being one of the core techniques in algebraic topology. Since, as will be argued here, the
cohomology encodes the objects of physical interest in quantum mechanics this technique
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allows us to circumvent the hard problem of making sense of the path integral over the
infinite-dimensional space of all trajectories and to give a more direct homological definition
of quantum expectation values.

In order to discuss our main technical results in some detail, we begin with the algebraic
structures encoding the data of physical theories. A perturbative classical field theory is most
directly encoded in a Lie-infinity or L∞ algebra. This is a differential graded generalization
of a Lie algebra, i.e., a graded vector space V equipped with a differential ∂ obeying ∂2 = 0
and a potentially infinite number of higher brackets or maps obeying generalized Jacobi
identities [11], see [12–16] for reviews. The subspace V 0 of degree zero is the ‘space of fields’
and the subspace V 1 of degree one is the space in which the equations of motion live or, in BV
language, the space of anti-fields (in the example above both spaces are C∞(R)). Spaces of
higher and lower degrees then encode gauge symmetries, gauge for gauge symmetries, Noether
identities, etc. [16]. (See also [17–20] for the L∞ formulation of effective field theory in terms
of homotopy transfer.) Given that ∂2 = 0 we can consider the cohomology of V : the space of
∂-closed vectors modulo ∂-exact vectors. The cohomology encodes the on-shell data, i.e. the
(perturbative) solutions of the classical equations of motion modulo gauge transformations.

We can now explain the notion of a homotopy retract [21] (see also [22] for a pedagogical
introduction to the closely related notion of homotopy transfer). One defines a projector from
the infinite-dimensional space of fields to the finite-dimensional phase space, for instance
by projecting a field ϕ to its initial and final values:

p : V 0 → R2 , p(ϕ) = (ϕ(ti), ϕ(tf )) . (1.2)

There is also an inclusion map i : R2 → V 0 that reconstructs the solution from the initial
and final values of ϕ. We have a homotopy retract if there is a homotopy map h : V 1 → V 0

from anti-fields (or equations of motion) to fields so that

p ◦ i = id ,
i ◦ p = id− h ◦ ∂ .

(1.3)

The first relation holds by definition of p and i, and we will show that the second relation
holds upon defining h in terms of the Green’s function. These relations tell us that while
p has a ‘right-inverse’ it does not have a ‘left-inverse’; rather, i is only a left-inverse ‘up to
homotopy’. This is as it should be since p is a genuine projector onto the much smaller space
R2. This space in fact equals the cohomology of V , which is homotopy invariant.

In order to use this homotopy retract for quantum mechanics we then pass over to the
closely related BV algebra which is defined on the ‘dual’ space of smooth functions on V (or
rather functionals since V is typically infinite-dimensional), which we denote by F(V ).1 The
algebra structure is given by the graded commutative and associative product of functions
together with a map ∆, called the BV Laplacian, which obeys ∆2 = 0. Importantly, ∆ is not
a derivation of the product but rather is a differential of ‘second order’. This implies that the
failure of ∆ to act as a derivation on the product defines a new structure: the anti-bracket
{·, ·} on functions, which is a graded Lie bracket. In the conventional BV formalism one

1There is also a notion of quantum or loop L∞-algebra that is dual to the BV algebra [11, 23], but in this
paper we work with the BV algebra.
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defines, given an action S, the homological vector field Q = {S, · }, which acts as a derivation
on functions and obeys Q2 = 0. From this one defines the BV differential

δ := −iℏ∆+Q , (1.4)

which satisfies δ2 = 0, provided the action satisfies the Maurer-Cartan or master equation
−iℏ∆S + 1

2{S, S} = 0. One also introduces an odd symplectic form from which the anti-
bracket is derived like the Poisson bracket in standard symplectic geometry. The homological
vector field Q is then the Hamiltonian vector field for the ‘function’ S, and the symplectic
form is Q-invariant. The BV algebra employed in this paper deviates from the standard
construction in the following subtle way: the BV differential is defined by (1.4), but Q is
not the Hamiltonian vector field for S but rather equals {S, · } only up to boundary terms.
The symplectic form would then not be invariant under Q, but in our construction this is
immaterial since the symplectic form makes no appearance. Such generalizations of the BV
formalism were introduced by Cattaneo, Mnev and Reshetikhin in [24, 25].

The homotopy retract from V to R2 gives rise to a homotopy retract from the BV algebra
on F(V ) to the space of functions F(R2). The BV algebra is thus transferred to the ordinary
algebra of functions on R2 concentrated in degree zero, with no non-trivial differential left,
but this still encodes the complete cohomology of δ. Our core technical claim is now that the
functions on R2 in the cohomology space compute quantum expectation values as follows:
given a functional F of fields whose quantum expectation value we want to compute (for
instance, for a 2-point function one considers F = ϕ(t)ϕ(s) for fixed times t, s) one determines
the functional F ′ that is equal to F in cohomology (so that F ′ − F = δG for a suitable G)
and that is just the pullback of a function f on R2, i.e., F ′ = f ◦ p, where p is the projector
in (1.2). This function f computes the following normalized quantum expectation value:

f(x, y) = ⟨y; tf |T (F )|x; ti⟩
⟨y; tf |x; ti⟩

, (1.5)

where T denotes the time ordering operator, and |x; t⟩ is the state satisfying ϕ̂(t)|x; t⟩ = x|x; t⟩,
and similarly for y. More generally, we introduce a homological procedure to compute such
normalized expectation values with respect to states that are any linear combination of
position and momentum eigenstates.

In perturbation theory, one can give an effective procedure to determine the function
f using the so-called perturbation lemma of homological algebra. In this case one can
prove the above claim by showing that the computations are equivalent to the familiar
techniques based on Wick’s theorem in quantum perturbation theory, as will be illustrated
with an explicit example in section 4. Our formulation is also related to other approaches
in the literature on the homotopy algebra formulation of perturbation theory, see [26–30].
While some technical details are similar, and in particular ref. [27] has been very useful
for us, the general homological formulation presented in this paper turns out to be quite
different, as we will discuss in more detail in the summary section. We will also give a
formal path integral argument supporting the above claim. Most intriguingly, the homological
formulation of quantum mechanics is not restricted to perturbation theory, yet potentially
is mathematically well-defined.
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The rest of this paper is organized as follows. In section 2 we introduce the needed
background material on BV algebras, and present the main statement of the homological
formulation of quantum mechanics. We also set the stage for our subsequent applications
by giving the homotopy retract for the harmonic oscillator. In section 3 we compare the
homological formulation with standard quantum mechanics in perturbation theory and
using Feynman’s path integral. We then illustrate and apply the homological approach
in section 4 by computing expectation values for the harmonic oscillator with respect to
position eigenstates and coherent states, and we verify that the results agree with those of
conventional quantum mechanics. In section 5 we show that this approach is applicable to
quantum field theory by re-deriving the Unruh effect, which to the best of our knowledge
provides a new derivation of this effect. We close in section 6 with a summary and outlook.
In order to keep the paper self-contained we include an appendix summarizing the key
concepts from homological algebra.

2 General approach

The goal of this section is to give the homological formulation of quantum mechanics outlined
above. In the first subsection we define the BV algebra and review the finite-dimensional
case following Gwilliam and Johnson-Freyd [3, 4]. We then turn in the second subsection
to genuine quantum-mechanical systems and state the main claim about the homological
computation of quantum expectations values. In the final subsection we introduce a homotopy
retract for the harmonic oscillator, as preparation for the applications in later sections.

2.1 BV for finite-dimensional toy model

BV algebra. We begin by reviewing the BV algebra and the homological formulation for
a finite-dimensional toy model, following section 3 in [3]. Thinking of an ‘action’ function
S(x) of a finite number of variables xi, i = 1, . . . , N , the BV formalism is defined on the
larger space of functions F (x, x∗) of xi and new anti-commuting variables x∗i . We typically
consider functions of the form

F (x, x∗) =
N∑

k=0
f i1...ik(x)x∗i1 . . . x

∗
ik
, (2.1)

where the coefficients are smooth functions of x (for instance polynomials) and antisymmetric
in i1 . . . ik. This expansion gives a grading to the vector space of functions according to the
number of x∗: functions depending only on x are of degree zero, functions linear in x∗ are of
degree −1, etc. A useful mnemonic is to assign a ghost degree of zero to x and a ghost degree
of −1 to x∗. In the following we will display algebraic relations for homogenous functions
of fixed degrees, denoting the degree of F by |F |, etc., and we also write (−1)F ≡ (−1)|F |.
More general relations then follow by linearity. The multiplication of functions equips this
space with a graded algebra structure with F · G = (−1)F GG · F .

Since the variables x∗i anti-commute one has to be careful with the notion of derivative:
there are left- and right-derivatives which are defined operationally by the first-order variations

F (x, x∗ + δx∗)− F (x, x∗) = ∂rF

∂x∗i
δx∗i = δx∗i

∂lF

∂x∗i
, (2.2)
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so that in general ∂rF
∂x∗

i
and ∂lF

∂x∗
i

differ by a sign: ∂rF
∂x∗

i
= (−1)F +1 ∂lF

∂x∗
i
. We follow the convention

that, unless explicitly indicated otherwise, all derivatives are left derivatives. Also note that
second-order derivatives w.r.t. x∗ are antisymmetric, ∂2

∂x∗
i ∂x∗

j
= − ∂2

∂x∗
j ∂x∗

i
. These derivatives

also obey graded Leibniz rules w.r.t. the multiplication of functions:

∂

∂x∗i
(F ·G) = ∂F

∂x∗i
·G+ (−1)FF · ∂G

∂x∗i
. (2.3)

In the next step one equips this space with a graded Lie bracket and a differential. The
Lie bracket is called the anti-bracket and defined like the Poisson bracket:

{F,G} := ∂rF

∂x∗i

∂G

∂xi
− ∂F

∂xi

∂lG

∂x∗i
. (2.4)

This bracket has intrinsic degree of +1, i.e. |{F,G}| = |F |+|G|+1, and is graded antisymmetric
with the degrees shifted by one, i.e.,

{F,G} = −(−1)(F +1)(G+1){G,F} . (2.5)

The anti-bracket obeys the graded Jacobi identity

{{F,G},H}+(−1)(F +1)(G+H){{G,H},F}+(−1)(H+1)(F +G){{H,F},G}=0 , (2.6)

and the following compatibility condition with the product of functions:

{F,GH} = {F,G}H + (−1)(F +1)GG{F,H} . (2.7)

There is a differential of intrinsic degree +1, called the BV Laplacian, defined as

∆ = − ∂2

∂x∗i ∂x
i
. (2.8)

The BV Laplacian squares to zero,

∆2 = 0 , (2.9)

which is a consequence of ordinary derivatives commuting while derivatives w.r.t. x∗ anti-
commute. Furthermore, the Laplacian acts as a derivation on the anti-bracket:

∆{F,G} = {∆F,G}+ (−1)F +1{F,∆G} . (2.10)

In order to prove this it is convenient to first note that ∆, being a second-order differential
operator, does not act as a derivation w.r.t. the usual multiplication of functions, but rather
the anti-bracket encodes the failure of ∆ to act as a derivation:

(−1)F {F,G} = ∆(FG)−∆FG− (−1)FF∆G . (2.11)

This follows quickly from the definitions (2.4) and (2.8). Acting on this relation with ∆,
using ∆2 = 0 and this relation again, then establishes the Leibniz relation (2.10). This state
of affairs can be summarized by saying that the anti-bracket {·, ·} together with the BV
Laplacian ∆ form a differential graded Lie algebra (or an L∞-algebra without higher brackets).
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More precisely, here the grading of the differential graded Lie algebra is given by the above
grading shifted by one, explaining the presence of factors like F + 1 in many formulas.

Let us pause here to define the notion of a BV algebra. To motivate this definition we
need to establish another relation. Acting with the Laplacian (2.8) on the product of three
functions yields by a straightforward computation using (2.3)

∆(FGH)=∆(F )GH+(−1)FF∆(G)H+(−1)F +GFG∆(H)
+(−1)F {F,G}H+(−1)F +GF{G,H}+(−1)(F +1)G+FG{F,H} .

(2.12)

Upon using (2.11) this can be rewritten in a form that employs only the (graded) multiplication
of functions and the BV Laplacian:

∆(FGH) = −∆(F )GH − (−1)FF∆(G)H − (−1)F +GFG∆(H)
+ ∆(FG)H + (−1)FF∆(GH) + (−1)(F +1)GG∆(FH) .

(2.13)

We can now define a BV algebra:

Definition. A BV algebra is a vector space equipped with a graded commutative and associative
product and a degree-(+1) map ∆ that satisfies ∆2 = 0 and is of second order in the sense
of (2.13).

Note that the above definition only refers to the product structure and the differential
∆, which is the only unconventional ingredient since it does not obey the Leibniz rule with
respect to the product but rather the ‘second-order Leibniz rule’ (2.13). The differential
graded Lie algebra structure for the anti-bracket is then a derived notion, with the anti-
bracket being defined by (2.11). All relations of the differential graded Lie algebra then
follow from the axioms of a BV algebra as does the compatibility relation (2.7), which can
be derived from (2.11) and (2.13).

Master equation and cohomology. Returning to the application of BV algebras in
physical theories we note that for any differential graded Lie algebra one can write the Maurer-
Cartan equation for a vector (function) of degree one (which in the above grading is degree
zero). An example of such a function is the action S, and the Maurer-Cartan equation reads

1
2{S, S} − iℏ∆S = 0 , (2.14)

where the differential ∆ was rescaled by iℏ so that this takes the form of the BV master
equation. Given a solution S of the Maurer-Cartan equation one can define a new differential δ,

δ := {S, · } − iℏ∆ , (2.15)

which squares to zero, δ2 = 0, if and only if the master equation (2.14) holds. This follows by
a quick computation using ∆2 = 0, the Jacobi identity (2.6) and the Leibniz rule (2.10).2 In

2Using (2.7) one may verify that Q ≡ {S, ·} acts as a derivation with respect to the product, so that
with (2.11) the anti-bracket can also be defined in terms of the full BV differential as

−iℏ(−1)F {F, G} = δ(F G)− δF G − (−1)F F δG . (2.16)
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the present context, an S that does not depend on x∗ solves the master equation trivially:
both terms in (2.14) vanish separately. Note, finally, that the master equation (2.14) is
also equivalent to

∆
(
e

i
ℏS
)
= 0 , (2.17)

where the exponential of the degree-zero object S is defined in terms of its Taylor series.
This relation can be verified with (2.11).

Since δ2 = 0 there is a notion of homology spaces ker δ
im δ : spaces of δ-closed vectors modulo

δ-exact vectors. Our goal is now to compute this homology for a simple toy model with
one real variable x and action

S(x) = 1
2ax

2 . (2.18)

We will see that the homology computes the ‘path integral’ including e i
ℏS , which here reduce

to regular integrals.
We begin by writing out the differential δ defined in (2.15), using that here only two

variables x and x∗ with (x∗)2 = 0 enter:

δ = −∂S
∂x

∂

∂x∗
+ iℏ

∂2

∂x∂x∗

= −ax ∂

∂x∗
+ iℏ

∂2

∂x∂x∗
.

(2.19)

First, we have to determine ker δ, the space of functions that are δ-closed. A general function
can be written as the superfield

F (x, x∗) = f(x) + x∗g(x) , (2.20)

where as above we assume that f and g are polynomials. This yields

δF (x, x∗) = −axg(x) + iℏg′(x) . (2.21)

Setting this to zero gives a differential equation that does not have a non-trivial solution
in polynomials (otherwise one has the solution eia x2

2ℏ ). Therefore, the kernel of δ is given
by functions (2.20) with g = 0:

ker δ = {F (x, x∗) ≡ f(x)} . (2.22)

Next we have to mod out by im δ, the space of δ-exact functions. In order to see the
significance of this step let us consider functions of the form (2.20) with f = 0 and g = xn,
which yields with (2.21)

δ(x∗xn) = −axn+1 + iℏnxn−1 . (2.23)

When passing over to homology we identify any two functions that differ by a δ-exact function.
Hence the above relation implies that its right-hand side is zero in homology or, equivalently,
that we have the equivalence

xn+1 ∼ iℏ
a
nxn−1 . (2.24)
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For instance, x2 is equivalent (can be reduced to) a constant, x2 ∼ iℏ
a . Similarly, x3 can be

reduced to x, since x3 ∼ iℏ
a 2x, but noting that x is δ-exact, x = − 1

aδ(x∗), this is actually
equivalent to zero. Using this iteratively we have

xn ∼

 0 for n odd(
iℏ
a

)n
2 (n− 1)(n− 3) · · · · · 1 for n even

(2.25)

The reader may recognize the right-hand side as the ‘quantum expectation value’ ⟨xn⟩ of a
zero-dimensional QFT with a single variable (see, e.g., p. 14 in Zee’s text book [32]). More
precisely, let us define the expectation value for a polynomial f in terms of the convergent
Gaussian integral as

⟨f⟩ := 1
N

∫ ∞

−∞
dx f(x) e−

ax2
2ℏ

∣∣∣
a→−ia

, (2.26)

with normalization N :=
∫∞
−∞ dxe−

ax2
2ℏ , where the substitution a → −ia is done after

performing the integral. Then the right-hand side of (2.25) equals ⟨xn⟩. More generally, any
polynomial f is equivalent in homology to a complex number, and identifying its homology
class [f ] with this number we have

[f ] = ⟨f⟩ . (2.27)

Thus, the homology of the differential δ computes expectation values.

2.2 BV for quantum mechanics

We now turn to generic dynamical systems and state our main claim about the homological
formulation of the corresponding quantum theories. For definiteness let us consider a one-
dimensional mechanical model with action

S[ϕ] =
∫ tf

ti

dt L(ϕ(t), ϕ̇(t), t) . (2.28)

The fields here are smooth functions ϕ on the interval [ti, tf ], i.e. ϕ ∈ C∞([ti, tf ]). Formally,
such theories include genuine (quantum) field theories, where the dependence of ϕ on spatial
coordinates is suppressed, but for definiteness let us think of ordinary quantum mechanics.

We start from the BV formalism as in the previous section. This means that the space
of dynamical variables is enlarged to include, in addition to ϕ, anti-fields ϕ∗, which we also
assume to be smooth, ϕ∗ ∈ C∞([ti, tf ]). Fields and anti-fields are combined into a total space

V = V 0 ⊕ V 1 , V 0 ≡ C∞([ti, tf ]) , V 1 ≡ ΠC∞([ti, tf ]) , (2.29)

which we also sometimes denote by V •, to indicate that we refer to the total space of a
chain complex. Moreover, here we used, for any vector space X, the common notation
ΠX to indicate that the elements of ΠX have reversed parity compared to X. This means,
for instance, that taking the elements ϕ ∈ C∞([ti, tf ]) to be of even degree, the elements
ϕ∗ ∈ ΠC∞([ti, tf ]) have odd degree, although in the end they are both just smooth functions.
The definition of the BV algebra given in the previous subsection goes through in the present
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context, just with functions replaced by functionals and derivatives replaced by functional
derivatives. Concretely, we consider functionals that are superpositions of the monomials

F [ϕ,ϕ∗] =
∫

dt1 · · ·dtkds1 · · ·dslf(t1, . . . , tk,s1, . . . ,sl)ϕ(t1) · · ·ϕ(tk)ϕ∗(s1) · · ·ϕ∗(sl) ,
(2.30)

where the coefficient functions f(t1, . . . , tk, s1, . . . , sl) are completely symmetric in the ti
and completely antisymmetric in the si. The degree of such a functional is minus the
number of anti-fields appearing in there, i.e., |F | = −l. (The relative minus sign compared
to the degree of +1 for ϕ∗ encoded in (2.29) is not a typo but rather due to functionals
being dual to (anti-)fields, hence having the opposite degree.) We denote this space of
functionals by F(V ), which inherits a grading by the number of ϕ∗, so that we can write
F(V ) = · · · ⊕ F(V )−2 ⊕ F(V )−1 ⊕ F(V )0. The BV algebra structure is defined on this
space as in the previous subsection. For instance, the differential δ = Q− iℏ∆, which still
satisfies δ2 = 0, consists of two parts. There is the classical piece (surviving the limit ℏ → 0)
given by the homological vector field

Q = −
∫ tf

ti

dt EL(ϕ(t)) δ

δϕ∗(t) , (2.31)

where EL(ϕ(t)) = 0 are the Euler Lagrange equations. It also satisfies Q2 = 0. The second
piece is the BV Laplacian

∆ = −
∫ tf

ti

dt δ

δϕ(t)δϕ∗(t) . (2.32)

Note that Q and δ both decrease the number of ϕ∗ by one and hence have an intrinsic degree
of +1. (Sometimes we denote by Qp the restriction of Q to F(V )p.)

We have to comment on the following deviation from the standard BV formalism: in
general δS

δϕ(t) is not equal to EL(ϕ(t)), and so in general Q ̸= {S,−}. The reason is that these
two are only equal up to boundary terms. (Later it will be crucial to allow for variations
along solutions, and these variations do not vanish on the boundary.) Indeed, we take the
space of fields to be the space of smooth functions defined on the interval [ti, tf ] rather
than the entire real line. This makes the action well-defined without having to assume
any behavior of the fields at infinity. However, in contrast to standard treatments of the
BV formalism, the symplectic form ω inducing the bracket {−,−} is no longer invariant
under the vector field Q due to boundary terms. An extension of BV formalism, called
BV-BFV formalism, accommodates such features and was developed by Cattaneo, Mnev
and Reshetikhin in [24, 25], but in this work we never use the symplectic form, so these
issues are of no concern to us.

Given that δ2 = 0 we can define the cohomology of F(V ) with respect to δ, and we
will show that this cohomology computes quantum expectation values. Before turning to
this it is instructive to inspect the cohomology Hp(Q) = ker Qp

im Qp−1
of F(V ) with respect to Q,

recalling Q2 = 0. Specifically, we will first establish the following

Claim. The cohomology of Q is isomorphic to the space of “on-shell functionals”.
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Here on-shell functionals refer to functionals on solutions to the equation of motion
EL(ϕ(t)) = 0. More precisely, this holds under the assumption that there are no non-trivial
gauge symmetries. In the following we will establish this statement. To this end let us
introduce some notation: we denote the subspace of solutions by E ⊆ V 0,

E =
{
ϕ ∈ V 0

∣∣∣EL(ϕ(t)) = 0
}
. (2.33)

Since E is a subspace of V 0, any functional F on V 0 can be restricted to a functional on
E . This defines a projection

r : F(V 0) −→ F(E) , F 7−→ F |E . (2.34)

Let us assume that any functional on E is obtained in this way. In other words, any functional
on E extends to a functional on V 0. Then the restriction map r is surjective. In general,
however, r is not a bijection since it may have a non-trivial kernel, but upon modding out
the kernel we have an isomorphism: F(V 0)/ker(r) ∼= F(E).

We now compute the cohomologies in order to establish the above claim. We begin at
degree zero and note that functionals of degree zero are annihilated by Q, hence kerQ0 =
F(V 0). We next show that in degree zero the image of Q consists of functionals of ϕ
proportional to the equation of motion. To see this consider a functional of degree −1,
i.e., G−1 =

∫ tf

ti
ds ϕ∗(s)g−1[ϕ, s], where g−1[ϕ, s] =

∫
dt1 · · · dtkf−1(t1, . . . , tk, s)ϕ(t1) · · ·ϕ(tk).

We then have

Q(G−1) = −
∫ tf

ti

dt EL(ϕ(t))g−1[ϕ, t] , (2.35)

and so this functional vanishes on E . Therefore, Q(G−1) is in the kernel of r, i.e. imQ−1 ⊆ ker r.
Assuming that any functional in the kernel of r is of the form (2.35) (cf. appendix B in [10] for
a discussion on this assumption), for a suitable function g−1, one has in fact imQ−1 = ker r.
We then find for the cohomology

H0(Q) = kerQ0
imQ−1

= F(V 0)
ker r

∼= F(E) . (2.36)

So the cohomology in degree zero is in fact equal to the space of functionals on solutions.
This establishes the claim for functionals of degree zero.

Let us now turn to the cohomology in degree minus one. The kernel of Q−1 consists
of functionals G−1 of the form given above (2.35) for which Q(G−1) = 0. There is a
straightforward physical interpretation of this condition: inspecting the explicit form (2.35)
one infers that Q(G−1) = 0 iff δϕ(t) ≡ g−1[ϕ, t] is a (gauge) invariance of the action. We
next investigate which functionals at degree −1 are in the image of Q−2. Consider a generic
functional at degree −2,

G−2 =
∫
ds1ds2ϕ

∗(s1)ϕ∗(s2)g−2[ϕ, s1, s2] . (2.37)

Computing Q(G−2) one obtains functionals of the form G−1 given above (2.35) where

g−1[ϕ, t] =
∫ tf

ti

dsEL(ϕ(s))g−2[ϕ, s, t] , g−2[ϕ, s, t] = −g−2[ϕ, t, s] . (2.38)
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Under the interpretation of gauge symmetries these are precisely the trivial gauge symmetries,
which always exist. Their action vanishes once we restrict to solutions. We therefore learned
that the trivial symmetries are in the image of Q−2 and hence that ker Q−1

im Q−2
parametrizes non-

trivial gauge symmetries. When there are no non-trivial gauge symmetries, the cohomology
in degree −1 therefore vanishes. A similar argument applies in the case of the cohomologies
in arbitrary negative degree. This completes our discussion of the claim that the cohomology
encodes “on-shell functionals”, i.e., functionals on solutions of the equations of motion.

For the following applications it will be important to have an explicit model for the space
of solutions. Suppose that ϕ0 is a solution to the equation of motion. Any such solution is
uniquely determined by its boundary values xi = ϕ(ti) and xf = ϕ(tf ). We therefore have
E ∼= R2 and so F(E) ∼= F(R2). Any functional on the space of solutions can be viewed as
an ordinary function f(xi, xf ) in two variables.

The space R2 of boundary values naturally embeds into V •. Given (xi, xf ) ∈ R2, let
ϕxi,xf

be the unique solution with these boundary conditions, i.e., we demand that

(ϕxi,xf
(ti), ϕxi,xf

(tf )) = (xi, xf ) . (2.39)

This defines the embedding or inclusion map

i : R2 −→ V • , (xi, xf ) 7−→ (ϕ, ϕ∗) = (ϕxi,xf
, 0) . (2.40)

There is also an associated projection

p : V • −→ R2 , (ϕ, ϕ∗) 7−→ (ϕ(ti), ϕ(tf )) , (2.41)

satisfying p ◦ i = idR2 according to (2.39).
Given the above maps we can define their pullbacks that act (in the opposite direction)

on the dual spaces of functionals and functions. The pullback of the inclusion is the map

i∗ : F(V •) −→ F(R2) , i∗(F ) := F ◦ i . (2.42)

Thus, this map associates to a functional F the function on R2 defined by i∗(F )(xi, xf ) =
F [ϕxi,xf

, 0]. Similarly, the pullback of the projection is the map

p∗ : F(R2) −→ F(V •) , p∗(f) = f ◦ p . (2.43)

Therefore, any function f defines a functional via F [ϕ, ϕ∗] = f(p([ϕ, ϕ∗])) = f(ϕ(ti), ϕ(tf )).
We say that a functional F restricts to R2, or that F is an “on-shell functional”, if it is the
pullback of a function on R2. In order to identify ker Q

im Q with R2, we can look for representatives
F of equivalence classes [F ] ∈ ker Q

im Q that are of that form. Explicitly, given a functional F [ϕ]
at degree zero, we can look for a G[ϕ, ϕ∗] of degree −1, such that F ′ = F + Q(G) is the
pullback of a function f on R2 and can hence be written as F ′ = f ◦ p.

As an aside we note that the pullback maps i∗ and p∗ define what are called chain maps
in the homological language. When we think of F(R2) as a complex in degree zero with
trivial cohomological vector field Q̃ = 0, the maps i∗ and p∗ obey

i∗ ◦Q = Q̃ ◦ i∗ = 0 , Q ◦ p∗ = p∗ ◦ Q̃ = 0 , (2.44)
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which means that

(QF ) ◦ i = 0, Q(f ◦ p) = 0 . (2.45)

The first relation follows since the image of i are the solutions on which Q vanishes, while
the second relation follows since f ◦ p is a functional of degree 0.

We now turn to our main statement relating to quantum mechanics. Thinking of −iℏ∆
as a small perturbation, we expect that the cohomology of δ = Q− iℏ∆ is the same as that
of Q. We can then search for functionals in the δ cohomology class of F that restrict to R2,
i.e. we look for a functional G, such that F ′ = F + δ(G) and F ′ = p∗(f) = f ◦ p for some
function f on R2. This function f is unique since p∗ is invertible in cohomology. We claim
that this function computes a certain normalized expectation value of F . More precisely,

f(x, y) = ⟨y; tf |T (F )|x; ti⟩
⟨y; tf |x; ti⟩

. (2.46)

On the right-hand side, we use the language of canonical quantization, where T denotes the
time ordering operation. Furthermore, the state |x; t⟩ is the state that satisfies the eigenvalue
equation ϕ̂(t)|x; t⟩ = x|x; t⟩, and similarly for y, where ϕ̂(t) is the canonically quantized
position operator at time t associated to the classical field ϕ(t).

Let us point out that while the above statement was made in the context of a particular
projector mapping the infinite-dimensional vector space V to R2, this relation between
cohomology and quantum expectation values holds more generally. For instance, we may
consider the more general projectors

p : V −→ R2 ,

ϕ 7−→ (aiϕ(ti) + biϕ̇(ti), afϕ(tf ) + bf ϕ̇(tf )) .
(2.47)

In this case, the boundary states change. The incoming state |x, ti⟩ is now an eigenstate of the
operator aiϕ̂(ti) + biπ̂(ti) with eigenvalue x, where π̂(ti) is the momentum operator at t = ti.
Similarly, the outgoing state ⟨y, tf | is an eigenstate of af ϕ̂(tf ) + bf π̂(tf ) with eigenvalue y.

2.3 Homotopy retract for harmonic oscillator

In the previous subsection we have argued that for a generic dynamical system the infinite-
dimensional function space of dynamical variables is equivalent in cohomology to the finite-
dimensional phase space (or the space of initial conditions). Here we discuss further the
topological interpretation of this fact by displaying, for the case of the harmonic oscillator,
a so-called homotopy retract that maps between the corresponding chain complexes. This
will be instrumental for the applications to be discussed below.

The equation of motion for the harmonic oscillator is

EL(ϕ(t)) = −(ϕ̈+ ω2ϕ) = 0 , (2.48)

and defines the BV differential Q according to (2.31). Since the cohomology of Q describes
the space of functionals on the solution space of ϕ̈ + ω2ϕ = 0, which is isomorphic to the
space of initial conditions (ϕ(ti), ϕ̇(ti)) ∈ R2, we expect that the cohomology of Q should be
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isomorphic to functions on R2. Instead of working on the spaces of functionals, on which Q

acts as a vector field, we can work directly on the field space encoded in the complex

0 V 0 V 1 0 ,∂ (2.49)

where we recall that V 0 and V 1 are two copies of C∞([ti, tf ]). The non-trivial differential is
∂(ϕ) = ϕ̈+ ω2ϕ.3 The cohomology of this complex in degree zero is ker ∂, so it consists of
the space of solutions. Since any solution is determined by its initial condition (ϕ(ti), ϕ̇(ti)),
we can identify the cohomology with the phase space R2. In degree one, the cohomology is
zero, because any element is ∂-exact: for any function f(t) there is a ϕ(t) so that

∂(ϕ) = ϕ̈+ ω2ϕ = f . (2.50)

From the theory of ordinary differential equations we know that a solution, which we denote
by ϕf , exists under very mild assumptions on f . Smoothness of f ensures that ϕf is also
smooth. We can give an explicit solution to (2.50) by means of a Green’s function:

ϕf (t) =
∫ tf

ti

dsK(t, s) f(s) . (2.51)

Explicitly, the corresponding kernel function reads

K(t, s) := θ(t− s)sinω(t− s)
ω

, (2.52)

with θ the step function, and it satisfies

(∂2
t + ω2)K(t, s) = δ(t− s) . (2.53)

Of course, ϕf (t) is unique only up to homogeneous solutions, i.e. solutions to (2.48). We
picked a solution such that ϕf (ti) = ϕ̇f (ti) = 0.

Our above analysis shows that the cohomology space ker ∂
Im ∂ is isomorphic to the phase

space R2, which we can think of as a chain complex in degree zero with trivial differential.
We have the following maps called quasi-isomorphisms:

0 V 0 V 1 0

0 R2 0 0

∂

p 0

0

(2.54)

where
p(ϕ) = (ϕ(ti), ϕ̇(ti)) . (2.55)

There is also a quasi-isomorphism i : R2 → V 0 in the other direction, defined by

i(q, p) = q cosω(t− ti) +
p

ω
sinω(t− ti) . (2.56)

This obeys p ◦ i = 1.
3The space of linear functionals is the dual space to V •, and for a linear F we have (QF )[ϕ, ϕ∗] = F [0, ∂(ϕ)],

so that ∂ is the map dual to Q (noting that ∂(ϕ∗) = 0).
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In the following we will construct a so-called homotopy retract of the original chain
complex V • to its cohomology R2. To this end we interpret the Green’s function (2.51) as
a map h : V 1 → V 0, i.e., for any function f ∈ V 1 we define

h(f)(t) =
∫ tf

ti

dsK(t, s) f(s) . (2.57)

We can extend h to the full complex V • by defining h(ϕ) = 0 for any field ϕ ∈ V 0. The
map h is called a homotopy retract from the original complex V • to its cohomology R2. In
general, we say that a complex (Y, ∂Y ) is a homotopy retract of (X, ∂X) if there are chain
maps i : (Y, ∂Y ) → (X, ∂X) and p : (X, ∂X) → (Y, ∂Y ), such that p ◦ i = 1 and

1− i ◦ p = {∂, h} = ∂ ◦ h+ h ◦ ∂ . (2.58)

A direct computation with p and i defined in (2.55) and (2.56) shows that

∂h(f) = f , h∂(ϕ) = ϕ− ip(ϕ) . (2.59)

More specifically, the first relation is a direct consequence of the property (2.53), while the
second relation requires two integrations by part in order to use that the Green’s function
obeys the analogue of (2.53) with respect to its second argument. In this computation one
picks up boundary terms that precisely constitute −ip(ϕ). We thus obtain the homotopy
relation (2.58) if we define p and i to be zero on V 1. This shows that the maps from V •

to R2 define a homotopy retract.
We should emphasize that the above choice of Green’s function and homotopy is just

one of many. The kernel K of the above retarded Green’s function is, in particular, not
symmetric under t↔ s. We can also choose Dirichlet boundary conditions at ti and tf , for
which the kernel KDD(t, s) is symmetric and given by

KDD(t, s) = θ(t− s)sinω(t− s)
ω

− sinω(t− ti)
sinω(tf − ti)

sinω(tf − s)
ω

. (2.60)

This yields the homotopy map

h(f) =
∫ t

ti

ds f(s)sinω(t− s)
ω

− sinω(t− ti)
sinω(tf − ti)

∫ tf

ti

ds f(s)sinω(tf − s)
ω

. (2.61)

Although in the form (2.60) the symmetry is not manifest, a non-trivial computation shows
KDD(t, s) = KDD(s, t).4 The corresponding chain maps are

p(ϕ) = (ϕ(ti), ϕ(tf )) , (2.62)

and
i(xi, xf ) = xi

sinω(tf − t)
sinω(tf − ti)

+ xf
sinω(t− ti)
sinω(tf − ti)

. (2.63)

4To this end one uses that the step function obeys θ(t − s) = 1− θ(s − t) in order to create the first term
with s and t interchanged. The remaining terms can then be rewritten by use of the identity

sin(x − y) = sin x cos y − cosx sin y ,

after which all terms can be recombined to yield KDD(s, t).
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As a next step we lift the homotopy retract from the underlying spaces V • and R2

to the BV complex, i.e., to the space of functionals on V • and the space of functions on
R2. We recall that the differential on this complex is given by the BV differential, which
reads for the harmonic oscillator

Q =
∫ tf

ti

dt(ϕ̈(t) + ω2ϕ(t)) δ

δϕ∗(t) . (2.64)

In order to realize the homotopy retract on the BV complex we have to use that, as explained
above, the maps i and p can be applied to functionals via pullback to give I := p∗ and P := i∗.
Specifically, for a functional F [ϕ, ϕ∗] in F(V •) we obtain the function on R2:

P (F )(q, p) := i∗(F )(q, p) = F [i(q, p), 0] , (2.65)

while for a function f ∈ F(R2) we obtain the functional on V •

I(f)[ϕ, ϕ∗] := p∗(f)[ϕ, ϕ∗] = f(p(ϕ)) = f(ϕ(ti), ϕ∗(ti)) . (2.66)

We next have to show how to use the homotopy h on V • to define a homotopy on F(V ).
We first consider the linear functionals ϕ(t) and ϕ∗(t). To clarify this notation let us

point out that the symbol ‘ϕ(t)’ can be interpreted in two natural ways. The standard
interpretation is that of a function ϕ that takes different values depending on the variable t:
here we think of ϕ as fixed and of t as a variable. The second interpretation of ‘ϕ(t)’ takes t
to be fixed but ϕ to be variable. This then defines a functional : a map that assigns a number
to each function ϕ, namely the number ϕ(t) obtained by evaluating the function ϕ at the
fixed t. Similar remarks apply to the interpretation of ‘ϕ∗(t)’ as a function or as a functional.
A subtlety of this notation is that the degree of ϕ∗(t) depends on its interpretation: as a
function it has degree +1, but as a functional it has degree −1, cf. the discussion after (2.30)
above. It will always be clear from the context which interpretation applies.

Returning to the problem of defining a homotopy map H on functionals we first define
H on the linear functionals ϕ(t) and ϕ∗(t) by

H(ϕ(t)) :=
∫ t

ti

ds sinω(t− s)
ω

ϕ∗(s) ≡
∫ tf

ti

dsK(t, s)ϕ∗(s) ,

H(ϕ∗(t)) := 0 .
(2.67)

Note that H(ϕ(t)) does not actually depend on ϕ(t). The functional H(ϕ(t)) maps a given
anti-field ϕ∗ to the number that is given by the integral on the right-hand side. This functional
is linear in ϕ∗ and so has degree −1, as it should be since H has intrinsic degree −1. It
is now straightforward to show that

QH(ϕ(t)) = ϕ(t)− p∗i∗ϕ(t) ,
HQ(ϕ∗(t)) = ϕ∗(t) .

(2.68)

To obtain a homotopy on all functionals, we observe that any polynomial functional is a
superposition of products of the functionals ϕ(t) and ϕ∗(t). So it is enough to know how
the homotopy distributes over any product of functionals. We set

H(FG)= 1
2
{
H(F )G+(−)F p∗i∗(F )H(G)+(−)F GH(G)F+(−)Gp∗i∗(G)H(F )

}
. (2.69)
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Note that we did a graded symmetrization over F and G on the right-hand side, which
is necessary since H(FG) should be graded symmetric in F and G. The definition of H
ensures that the homotopy relation

QH +HQ = 1− p∗i∗ ≡ 1− IP (2.70)

is satisfied on products FG, as long as it holds on F and G individually. The action of H on
any functional F can then by successively reduced to its action on ϕ(t) and ϕ∗(t), where we
define it via (2.67). This shows that p∗i∗ is homotopic to the identity. So F(V •) is homotopic
to F(R2). We therefore proved that the space of functionals on V • is quasi-isomorphic to
the space of functions on phase space R2.

3 Comparison with standard formulations

In this section we verify from various angles the main statement (2.46) that relates the
cohomology of the BV differential to quantum expectation values. First, we explain the
perturbation lemma and show that it relates to Wick contractions in the familiar formulation
of quantum mechanics. Second, we give a heuristic argument based on the path integral
formulation.

3.1 Perturbation lemma

The homological perturbation lemma provides a recipe to compute the cohomology of the
BV differential and in particular the representative F ′ appearing in the main statement
around (2.46). The perturbation lemma states the following. Suppose that we have homotopic
complexes (X, dX) and (Y, dY ). This means that there are quasi-isomorphisms p : (X, dX) →
(Y, dY ) and i : (Y, dY ) → (X, dX), together with a homotopy h : (X, dX) → (X, dX), such that

dX ◦ h+ h ◦ dX = 1− i ◦ p . (3.1)

Now assume that we perturb the differential of X by some η, such that we still have a chain
complex, i.e. d′

X := dX + η obeys (d′
X)2 = 0. Then there is a differential d′

Y on Y , so that
(Y, d′

Y ) is still homotopic to (X, d′
X). This means that there are new quasi-isomorphisms

p′ : (X, d′
X) → (Y, d′

Y ) and i′ : (Y, d′
Y ) → (X, d′

X) with homotopy h′ : (X, d′
X) → (X, d′

X)
satisfying the homotopy relation

d′
X ◦ h′ + h′ ◦ d′

X = 1− i′ ◦ p′ . (3.2)

The perturbation lemma provides explicit formulas for the perturbed data:

p′ = p ◦
∑
n≥0

(−ηh)n , i′ =
∑
n≥0

(−hη)n ◦ i ,

h′ = h ◦
∑
n≥0

(−ηh)n , d′
Y = dY + p ◦

∑
n≥1

(−ηh)n ◦ η ◦ i .
(3.3)

Here the perturbed differential d′
Y is such that the perturbed projection and inclusion are

chain maps, which means that

d′
Y p

′ = p′d′
X , d′

X i
′ = i′d′

Y . (3.4)
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If the complexes have additional structure, we want the perturbations to preserve
these. For instance, the space of functionals forms an algebra under multiplication, and
the cohomological vector field Q = {S,−} acts as a derivation. In order to preserve these
properties we first have to assume that the original homotopy data preserves these. So i

and p have to be algebra morphisms, i.e. i(FG) = i(F )i(G) and p(FG) = p(F )p(G). In
addition, we have to assume that h is a strong deformation retract, which means that h
is subject to the side conditions

p ◦ i = 1 , h2 = 0 , p ◦ h = 0 , h ◦ i = 0 . (3.5)

If these conditions are met, the perturbed chain maps p′ and i′ will again be algebra
morphisms, and d′

Y will be a derivation.
We may first apply the homological perturbation lemma to a classical mechanical system.

Given an action S, we split it as S0 +SI , where S0 is a free theory (quadratic in fields) and SI

is the interaction term. We now think of (F(V ), Q0 = {S0,−}) as our initial complex, which
is based on the free action (a sum of harmonic oscillators). We saw that a Green’s function
defines a homotopy on the complex (V •, ∂) to phase space, satisfying {∂, h} = 1− i ◦ p, which
in turn defines a homotopy H from F(V ) to F(R2), cf. (2.69), satisfying

QH +HQ = 1− IP , I = p∗ , P = i∗ . (3.6)

Such a homotopy in terms of a Green’s function defines a strong deformation retract, i.e. the
analogue of (3.5) holds for H. We then take the interaction term QI = {SI ,−} as the
perturbation. Since the functions on solution space are concentrated on degree zero, there
will be no induced differential, but the space (F(R2), 0) is still a trivial complex. Since
Q0 +QI encodes the full interacting equations of motion P ′ projects functionals to solutions
of the full equations of motion. So this is the role of the projector P ′: it perturbatively
constructs solutions of the interacting theory using the Green’s function and a given solution
of the free theory.

We now turn to our core application for the quantum case. The perturbation lemma allows
us to show that in perturbation theory any functional F of degree zero has a representative
F ′ in the cohomology of δ = {S,−} − iℏ∆ that can be written as F ′ = f ◦ p = I(f) for
some function f on phase space. We use a Green’s function to define a homotopy and
view η = {SI ,−} − iℏ∆ as a perturbation. With the perturbation formulas (3.3) we obtain
the new chain maps

P ′ = P
∑
n≥0

(−ηH)n , I ′ = I , (3.7)

where the second equation is true by degree reasons.5 We then define

F ′ := I ′P ′(F ) , f := P ′(F ) . (3.8)

The claim is that these are the desired functional and function. Indeed, F ′ is in the same
cohomology class as F , since

F − F ′ = (1− I ′P ′)(F ) = δ(H ′(F )) , (3.9)
5Note that I being unperturbed implies that, in the dual picture, p is unperturbed, which means that p

does not depend on the interactions.
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where we used the homotopy relation together with H(δ(F )) = 0 for degree reasons. So
the objects required by the statement around (2.46) are given by F ′ = I(f) = f ◦ p and
G = −H ′(F ).

3.2 Wick contractions and perturbations

The perturbation lemma discussed above gives a complete perturbative solution to the
problem of determining the functional F ′ that in cohomology is equivalent to F , together
with the function f . However, the required action of the homotopy map H given in (2.69)
is inconvenient for computations due to the explicit symmetrization. The action of the
homotopy can be brought to a more manageable form by splitting the field space into off-shell
and on-shell fields. This has the additional advantage of relating the perturbation lemma to
standard computations in quantum field theory using Wick contractions. More precisely, for
the special case that the homotopy is given by the Feynman propagator, the perturbation
lemma amounts to Wick’s theorem, but the perturbation lemma is more general, as we
will see in the next section.

We begin by decomposing the field space by using the projection p and inclusion i:

V = ip(V )⊕ (1− ip)(V ) =: Vp ⊕ Vu , (3.10)

where Vp is the ‘physical’ subspace and Vu is the ‘unphysical’ subspace. Any field can now
be written as ϕ = ϕp + ϕu, where ϕp is a solution to the equations of motion. Note that
ϕu depends on the choice of homotopy and satisfies the same boundary conditions as the
Green’s function used to construct the homotopy. In the dual picture of functionals on V

we have the induced decomposition

F(V ) =: Fp ⊕Fu , (3.11)

where Fp = F(Vp) is the space of functionals depending on ϕp only. More precisely, these are
the functionals of the form (2.30) where all ϕ are ϕp and there are no ϕ∗. Correspondingly,
Fu is the space of functionals that contain at least one ϕu or at least one ϕ∗.

Next we consider the above decomposition at the level of the (functional) derivatives
defining the BV algebra. Recall that the space of physical or on-shell fields is isomorphic
to a finite-dimensional space (in the present case Vp

∼= R2), so that we can use ordinary
coordinates (x, y) of R2 to label a solution ϕp;x,y. This allows us to introduce partial
derivatives along solutions:

(∂xF )[ϕ, ϕ∗] :=
d
dε

∣∣∣∣
ε=0

F [ϕ+ ϕp;x+ε,y, ϕ∗] , (∂yF )[ϕ] :=
d
dε

∣∣∣∣
ε=0

F [ϕ+ ϕp;x,y+ε, ϕ∗] .
(3.12)

We also introduce a functional derivative in the direction of Vu via∫
dt gu(t)

δF [ϕ, ϕ∗]
δϕu(t)

:= d
dε

∣∣∣∣
ε=0

F [ϕ+ εgu, ϕ
∗] , (3.13)

where gu ∈ Vu. The formula for δF [ϕ,ϕ∗]
δϕu(t) is the same as for the functional derivative δF [ϕ,ϕ∗]

δϕ(t) ,
the only difference being that the space of functions entering the integral is restricted. For
ϕ∗ we do not introduce a new notation, since the ϕ∗ are unaffected by the decomposition.
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We next give a chain rule relating δ
δϕ(t) to ∂x, ∂y,

δ
δϕu(t) . Indeed, we can represent a

functional F [ϕ] as a functional F [ϕu, x, y] (momentarily suppressing the dependence on ϕ∗)
by inverting the relation ϕ = ϕu + ϕp,

F [ϕ] = F [ϕu[ϕ], x[ϕ], y[ϕ]] . (3.14)

A straightforward computation along the lines of familiar (finite-dimensional or functional)
calculus establishes the chain rule

δ

δϕ(t) =
∫

ds δϕu(s)
δϕ(t)

δ

δϕu(s)
+ δx

δϕ(t)
∂

∂x
+ δy

δϕ(t)
∂

∂y
. (3.15)

To illustrate this formula, let us look at the projection and inclusion that correspond to the
homotopy with Dirichlet boundary conditions, for which

ϕ(t) = ϕu(t) + x
sinω(tf − t)
sinω(tf − ti)

+ y
sinω(t− ti)
sinω(tf − ti)

, (3.16)

with inverse relation

ϕu(t)=ϕ(t)−ϕ(ti)
sinω(tf −t)
sinω(tf −ti)

−ϕ(tf )
sinω(t−ti)
sinω(tf −ti)

, x=ϕ(ti), y=ϕ(tf ) . (3.17)

Hence, (3.15) gives

δ

δϕ(t) = δ

δϕu(t)
− δ(t− ti)

∫
ds sinω(tf − s)

sinω(tf − ti)
δ

δϕu(s)
− δ(t− tf )

∫
ds sinω(s− ti)

sinω(tf − ti)
δ

δϕu(s)

+ δ(t− ti)
∂

∂x
+ δ(t− tf )

∂

∂y
.

(3.18)

We can now return to our goal of finding a more convenient form of the homotopy
lift. As a first step we define

Vh :=
∫

dt ds ϕ∗(t)K(t, s) δ

δϕu(s)
, (3.19)

where K is a Green’s function for the harmonic oscillator. This is a vector field (on the infinite-
dimensional BV manifold) and hence has a simple action as a derivation. We will see that, up
to a rescaling, this implements the homotopy action on functionals in Fu. In fact, on the linear
functionals ϕ = ϕu + ϕp and ϕ∗(t), Vh agrees with the homotopy H defined in (2.67), since

Vh(ϕu(t) + ϕp(t)) = Vh(ϕu(t)) =
∫

dsK(t, s)ϕ∗(s) , Vh(ϕ∗(t)) = 0 . (3.20)

In order to discuss the general case of non-linear functionals we recall the homological vector
field Q0 corresponding to the free theory,

Q0 =
∫

dt
(
ϕ̈u(t) + ω2ϕu(t)

) δ

δϕ∗(t) , (3.21)
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where we used ϕ = ϕu + ϕp and that ϕp satisfies the equations of motion and thus drops
out. The vector fields Vh and Q0 are both odd and hence their Lie bracket is given by the
anticommutator, which defines a new vector field:

{Q0, Vh} =
∫

dt
{
ϕu(t)

δ

δϕu(t)
+ ϕ∗(t) δ

δϕ∗(t)
}
=: N . (3.22)

The expression on the right-hand side is found by a computation using (3.19) and (3.21).
Specifically, this result follows quickly when ignoring boundary terms, but closer inspection
shows that also the boundary terms vanish.6 The resulting vector field has been called N ,
because it counts the total number of fields ϕu and anti-fields ϕ∗:

N(ϕu(t1) · · ·ϕu(tk)ϕ∗(tk+1) · · ·ϕ∗(tn)) = nϕu(t1) · · ·ϕu(tk)ϕ∗(tk+1) · · ·ϕ∗(tn) . (3.24)

We claim that on the space Fu of functionals that are at least linear in ϕu or ϕ∗, on
which N is a positive operator, the homotopy map is implemented by

Hu := N−1Vh , (3.25)

where we have identified N with its eigenvalue (which is always positive on Fu, so N−1 is
well-defined). Indeed, the homotopy relation is then satisfied:

{Q0, Hu} = N−1{Q0, Vh} = N−1N = 1 , (3.26)

recalling that the subspace Fu is projected to 0 (or, equivalently, the homotopy Hu is a
strong deformation retract of Fu to 0). Finally, we can extend Hu to a homotopy H on
the total space F(V ) = Fu ⊕ Fp by declaring H to be zero on Fp ⊆ F(V ). We then have
{Q0, H} = 1 − IP , which defines a strong deformation retract from F(V ) to Fp.

Having defined, using the above decomposition, the lift of the homotopy map H we can
now revisit the application of the perturbation lemma and relate it to Wick contractions.
In the first step we consider the free harmonic oscillator with differential Q0 = {S0,−} and
view −iℏ∆ as the perturbation. Under this perturbation there will neither be a induced
differential on R2, nor a perturbation to the inclusion I, while the perturbed projection is

P1 = P
∑
n≥0

(iℏ∆H)n , (3.27)

6This can be easily checked for specific boundary conditions such as Dirichlet, but one can also give a
general argument valid for arbitrary boundary conditions as follows. We write the Lie bracket as

{Q0, Vh} = N + B , (3.23)

where B encodes possible boundary terms. Since N and {Q0, Vh} are vector fields, so is B. We will show
that B = 0. Since in (3.20) we saw that on the linear functionals ϕ = ϕu + ϕp and ϕ∗(t), Vh agrees with the
homotopy H, we have {Q0, Vh} = 1− IP on these functionals. Since IP (ϕu(t)) = IP (ϕ∗(t)) = 0, we find

{Q0, Vh}(ϕu(t)) = ϕu(t) , {Q0, Vh}(ϕ∗(t)) = ϕ∗(t) .

Comparing this with (3.23) acting on ϕu and ϕ∗, for which N acts as the identity, we learn B(ϕu(t)) = 0
and B(ϕ∗(t)) = 0, i.e., B is zero on these linear functionals. General functionals on Fu are superpositions of
functionals of the form f(x, y)F [ϕu, ϕ∗], where (x, y) are coordinates on Vp and F [ϕu, ϕ∗] is at least linear in
ϕu and ϕ∗. The vector fields Vh and Q0 act directly on F [ϕu, ϕ∗], ignoring the function f(x, y) in front, and so
does {Q0, Vh}. Since B(ϕu(t)) = B(ϕ∗(t)) = 0 and B acts as a vector field via the Leibniz rule we have B = 0.
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where we denote the perturbed projector by P1 since below we will consider a second
perturbation to be denoted P2. Since P1 is of degree zero it is zero on functionals with at
least one anti-field. On functionals of fields only, ∆H acts as

∆H = −
∫

dt dsK(t, s) δ2

δϕ(t)δϕu(s)
1
N
. (3.28)

Recall that the action of δ
δϕ(t) reduces to δ

δϕu(t) when it is integrated against a function
satisfying the boundary conditions of Vu. The kernel K(t, s) is such a function and so defining

C :=
∫

dt dsK(t, s) δ2

δϕu(t)δϕu(s)
, (3.29)

we have with (3.28) the relation

∆H = −C 1
N
. (3.30)

We now consider a functional F for fixed t1, . . . , tm of the form

F [ϕu, x, y] = ϕu(t1) · · ·ϕu(tm)f(x, y) , (3.31)

where f(x, y) is any polynomial in x and y. Any other functional is a superposition of these
functionals, so the effect of P1 on all functionals can be deduced from its effect on F by
linearity. Since P (ϕu(t)) = 0, the only non-zero contribution to P1 in (3.27) comes from the
term where ∑n≥0(iℏ∆H)n eliminates all fields ϕu. This can only happen when m is even,
i.e., m = 2k, for which only the term with n = k contributes. We then find with (3.30)

P1(F ) = f(x, y)(−iℏC)12 · · · (−iℏC) 1
2k − 2(−iℏC)

1
2k ϕu(t1) · · ·ϕu(t2k)

= f(x, y) 1
k!

(
− iℏ2 C

)k

ϕu(t1) · · ·ϕu(t2k) .
(3.32)

This implies that on arbitrary functionals we have

P1 = P exp
(
− iℏ2 C

)
. (3.33)

Note that to apply this formula, we do not need the split Vp ⊕ Vu, since

C =
∫

dt dsK(t, s) δ2

δϕu(t)δϕu(s)
=
∫

dt dsK(t, s) δ2

δϕ(t)δϕ(s) , (3.34)

because K(t, s) is symmetric. (If K(t, s) were not symmetric, it would not satisfy the
boundary conditions of Vu in the variable s.)

The above results allow us to establish the core relation with the familiar techniques of
perturbative quantum field theory: the operator C (which is called 2∂P in lemma 3.4.1 in [5])
generates Wick contractions, and P1 implements Wick’s theorem upon interpreting P as a
normal ordering operation. Of course, P depends on the choice of homotopy H , and therefore
on the choice of propagator. We will see that, when choosing the Feynman propagator, P can
indeed be interpreted as the usual prescription to move “annihilation operators to the right”.
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Interacting theory. So far we have applied the perturbation lemma to the free theory
with differential Q0, viewing −iℏ∆ as the perturbation, and related this to familiar Wick
contractions. Next we include the non-linear interactions of the classical theory, thereby
combining the perturbations QI = {SI ,−} and −iℏ∆. Thus, we apply the perturbation
lemma by taking QI to be a perturbation of Q0−iℏ∆, for which one obtains the perturbed map

P2 = P1 ◦
∑
n≥0

(−QIH)n . (3.35)

The core result following from the perturbation lemma is then that the function f computing
the quantum expectation value for the functional F is given by

f = P2(F ) . (3.36)

We will now show that this prescription coincides with conventional quantum perturbation
theory, i.e., that the operator P2 computes expectation values of the full interacting theory.
This is established if we can show that P2 is in fact equal to P̃2 defined by

P̃2(F ) =
P1
(
F exp

(
i
ℏSI

))
Z

, (3.37)

with normalization

Z = P1 exp
(

i
ℏSI

)
, (3.38)

because this is the familiar method: performing Wick contractions of the operator F weighted
by exp( i

ℏSI) with the interacting action SI .
The proof that (3.37) indeed represents P2 follows [27], which we repeat in our setting.

We first show that (3.37) is consistent with the relation P2 ◦ I = 1 that P2 obeys, i.e., that

P̃2 ◦ I = 1 . (3.39)

First, using HI = 0, we have ∑n≥0(iℏ∆H)nI(f) = I(f) and therefore with (3.27)

P1
(
I(f)ei

SI
ℏ
)
= P

(∑
n≥0

(iℏ∆H)n
(
I(f)ei

SI
ℏ
))

= P
(
I(f)

∑
n≥0

(iℏ∆H)nei
SI
ℏ
)

= PI(f)P
(∑

n≥0
(iℏ∆H)nei

SI
ℏ
)
= PI(f)Z = fZ .

(3.40)

Here we used that PI = 1 and the fact that P is an algebra morphism, i.e. P (FG) =
P (F )P (G). We next use that the perturbed data with projection P2 still obey the homo-
topy relation:

1− I ◦ P2 = H2 ◦ δ + δ ◦H2 , (3.41)

where δ = Q0 +QI − iℏ∆ and H2 = H
∑

n≥0(iℏ∆−QI)n. We apply P̃2 to both sides and
use that P̃2I = 1, cf. (3.39). Then,

P̃2 − P2 = P̃2H2δ + P̃2δH2 . (3.42)
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Since P̃2 is non-zero only in degree zero, we find that P̃2H2δ = 0, so (3.42) reduces to

P̃2 − P2 = P̃2δH2 . (3.43)

We now show that ZP̃2δ = 0, which then proves that P̃2 = P2. To this end we decompose
the BV differential as δ = δ0 + QI . We assume that SI does not contain derivatives. We
can then write QI = {SI , ·} due to the absence of boundary terms. We compute, for a
generic functional F , by use of (2.16)

δ0
(
e

i
ℏSIF

)
= δ0

(
e

i
ℏSI
)
F + e

i
ℏSI δ0F − iℏ

{
e

i
ℏSI , F

}
= e

i
ℏSI δ0F + e

i
ℏSI
{
SI , F

}
= e

i
ℏSI δF .

(3.44)

Here we used δ0
(
e

i
ℏSI
)
= 0, which follows because both S0 and SI contain no anti-fields, and

{eX , F} = eX{X,F} for any degree-zero object X, which follows from (2.7). We then have

ZP̃2(δF ) = P1
(
δFe

i
ℏSI
)
= P1δ0

(
e

i
ℏSIF

)
= 0 , (3.45)

where we used that P1δ0 = 0, i.e. that P1 is a chain map with respect to Q0 − iℏ∆, as implied
by the perturbation lemma. This concludes the proof of P2 = P̃2.

We end this part by summarizing what we have found. First of all, we showed that in
perturbation theory, any functional F has a representative of the form F ′ = f ◦ p. We showed
that the perturbative computation of the Q0 − iℏ∆ cohomology does Wick contractions, just
like we would expect in a free theory. Also, we showed that for an interacting theory we
can think of the homological perturbation lemma computing expectation values with respect
to the free theory, but with functionals F weighted by the interacting part e i

ℏSI . This is
the usual way in which Feynman diagrams are computed.

3.3 Path integral

In the previous subsection we saw that Wick’s theorem arises as a consequence of the
perturbation lemma, proving that the latter entails in particular the usual treatment of
quantum theories at the perturbative level. Nevertheless, we want to shed more light on the
homological approach by comparing it to the path integral derivation.

In the path integral formulation, we formally compute expectation values of functionals
by writing

⟨y; tf |T (F [ϕ])|x; ti⟩ =
∫ ϕ(tf )=y

ϕ(ti)=x
DϕF [ϕ] e

i
ℏS[ϕ] . (3.46)

The left-hand side represents how this object is computed in the operator language. Here,
|x; t⟩ is an eigenstate of the field operator ϕ̂(t) with eigenvalue x, i.e. ϕ̂(t)|x; t⟩ = x|x; t⟩.
Operators and states can be evolved in time using the unitary time evolution operator, i.e.

e−
i
ℏHs|x; t⟩ = |x; t+ s⟩ , e

i
ℏHsϕ̂(t)e−

i
ℏHs = ϕ̂(t+ s) . (3.47)

When working in the operator formalism, we have to include time ordering indicated by
the letter T. However, we will often not write time ordering explicitly unless we want to
stress its presence.
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The integral on the right-hand side of (3.46) is thought of as being performed over all
paths with ϕ(ti) = x and ϕ(tf ) = y. We take the perturbative route and write S = S0 + SI ,
where S0 =

∫ 1
2 ϕ̇

2 − 1
2ω

2ϕ2. When boundary conditions are fixed, the operator ∂2 + ω2 in S0
is invertible, and the integral can be given a meaning in perturbation theory.

One way to proceed is to pick reference boundary conditions, e.g. ϕ(ti) = ϕ(tf ) = 0.
We then write ϕ = ϕu + ϕp, such that ϕp is the unique classical solution with the generic
boundary conditions ϕp(ti) = x, ϕp(tf ) = y, while ϕu satisfies ϕu(ti) = ϕu(tf ) = 0. Explicitly,
ϕp is given by ϕp = i(x(ti), y(tf )) and can be viewed as a constant in the context of the path
integral. We then substitute ϕ = ϕu + ϕp and assume that the integral measure is invariant
under constant shifts so that Dϕ = Dϕu. One computes

⟨y; tf |F [ϕ]|x; ti⟩=
∫ ϕu(tf )=0

ϕu(ti)=0
DϕuF [ϕu+ϕp]e

i
ℏSI [ϕu+ϕp]e

i
ℏ

∫ tf
ti

1
2 (ϕ̇2

u−ωϕ2
u)
ei∂S(ϕp) , (3.48)

where
∂S = 1

2ϕp(tf )ϕ̇p(tf )−
1
2ϕp(ti)ϕ̇p(ti) . (3.49)

Importantly, the boundary action ∂S does not depend on ϕu, which is due to our choice
of reference boundary conditions ϕu(ti) = ϕu(tf ) = 0. Thus, the phase ei∂S(ϕp) can be
scaled out of the path integral:

⟨y; tf |F [ϕ]|x; ti⟩= ei∂S(ϕp)
∫ ϕu(tf )=0

ϕu(ti)=0
DϕuF [ϕu+ϕp]e

i
ℏSI [ϕu+ϕp]e

i
ℏ

∫ tf
ti

1
2 (ϕ̇2

u−ωϕ2
u)
. (3.50)

Picking F = 1 we have

⟨y; tf |x; ti⟩ = ei∂S(ϕp)
∫ ϕu(tf )=0

ϕu(ti)=0
Dϕu e

i
ℏSI [ϕu+ϕp]e

i
ℏ

∫ tf
ti

1
2 (ϕ̇2

u−ωϕ2
u)
. (3.51)

Our next goal is to define a map P1 : F(V 0) → F(R2) in terms of the path integral
that equals the map in (3.33) that implemented Wick’s theorem. We claim that this map
can be written, for any functional F̃ , as

P1(F̃ ) =
∫ ϕu(tf )=0

ϕu(ti)=0
Dϕu F̃ [ϕu + ϕp] e

i
ℏ

∫ tf
ti

1
2 (ϕ̇2

u−ωϕ2
u)
. (3.52)

Indeed, once we accept that the path integral is computed by doing Wick contractions using
the propagator with the boundary conditions specified on the right hand side of (3.52) it
is clear that this is equal to the map (3.33). Note that P1 is a function on phase space R2

parametrized by the boundary conditions put on ϕp.
We can finally give a path integral expression for the normalized quantum expectation

value of F that agrees with our above result from the perturbation lemma. In terms of the
map (3.52) we find with (3.50) and (3.51) that

⟨y; tf |F [ϕ]|x; ti⟩
⟨y; tf |x; ti⟩

= P1(Fe
i
ℏSI )

P1(e
i
ℏSI )

≡ P2(F ) , (3.53)

using that the phase ei∂S(ϕp) cancels. This is indeed the same as the map (3.37) defined
by means of the perturbation lemma. This confirms that the conventional interpretation of
the (otherwise ill-defined) path integral in perturbation theory agrees with the homological
formulation.
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4 Harmonic oscillator and perturbations

In this section we illustrate the homological formulation of quantum mechanics by applying
it to the one-dimensional harmonic oscillator. Specifically, we compute two-point functions
both with respect to positions eigenstates and with respect to coherent states. Using the
familiar formulation of quantum mechanics, based on Hilbert spaces and operators, we then
verify that the homological approach yields the correct results. We hope to illustrate in
this that for certain computations, as in the case of position eigenstates, the homological
approach is more transparent.

4.1 Homological computation for position eigenstates

For a free theory like the harmonic oscillator all expectation values can be computed in terms
of the two-point function via Wick’s theorem, which we also obtained from the perturbation
lemma. For this reason, we apply the homological formulation to the two-point function of
the harmonic oscillator. The BV differential for the quantum harmonic oscillator reads

δ =
∫ tf

ti

dt
[(
ϕ̈(t) + ω2ϕ(t)

) δ

δϕ∗(t) + iℏ
δ2

δϕ∗(t)δϕ(t)

]
. (4.1)

According to the general formulation of section 2.2, for a given a functional F the time-
ordered correlation function can be computed via a function f on R2 that in cohomology
is equivalent to F :

f(x, y) = ⟨y|T (F )|x⟩
⟨y|x⟩

. (4.2)

More precisely, one determines a representative F ′ of F in the δ cohomology that can be
written as F ′ = f ◦ p, where p : V • → R2 is given by p(ϕ, ϕ∗) = (ϕ(ti), ϕ(tf )). This means
that F ′ should only depend on ϕ(ti) and ϕ(tf ).

Since we want to compute the two-point function, we consider the functional that, for
fixed t, s ∈ R, is defined by

F [ϕ, ϕ∗] = ϕ(t)ϕ(s) . (4.3)

In order for F ′ = f ◦ p to be in the same cohomology as F there should be a G such that
F − F ′ = δG, where G has degree minus one. The perturbation lemma in the form (3.36)
immediately gives us the function f as follows:

f = P1(F ) , P1 = i∗ exp
(
− iℏ2 C

)
, (4.4)

where C is defined in terms of the Green’s function (2.60) with Dirichlet boundary conditions:

C =
∫

dt dsKDD(t, s) δ2

δϕ(t)δϕ(s) . (4.5)

Note that here P2 = P1 since we are considering the free theory. We thus have

f = i∗
(
1− iℏ

2 C
)
ϕ(t)ϕ(s) , (4.6)
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using that the higher-order terms in ℏ vanish when acting on the functional (4.3) with two ϕ.
For the second term on the right-hand side we need to use (4.5) to compute

C
(
ϕ(t)ϕ(s)

)
= 2KDD(t, s) , (4.7)

for which one uses that KDD is symmetric. To evaluate then f(x, y) the first term in (4.6)
maps x, y via the inclusion map (2.63) to a solution ϕp with boundary conditions ϕp(ti) = x

and ϕp(tf ) = y and then evaluates the functional on this solution. Thus, we have

f(x, y) =
∏

r=t,s

{
sinω(r − ti)
sinω(tf − ti)

y + sinω(tf − r)
sinω(tf − ti)

x

}
− iℏKDD(t, s) . (4.8)

Via the dictionary (4.2) this gives the desired two-point function.

4.2 Homological computation for coherent states

In the previous subsection we used the propagator with Dirichlet boundary conditions to find
a certain representative in cohomology of the functional F = ϕ(t)ϕ(s). We want to see what
happens when we instead use different propagators. The standard propagator in quantum
field theory is the Feynman propagator, which we will investigate here.

In (1 + 0)-dimensions the Feynman propagator is given by

hF (f)(t) = i

∫ t

ti

dsf(s)e
−iω(t−s)

2ω + i

∫ tf

t
dsf(s)e

iω(t−s)

2ω =: h+(f)(t) + h−(f)(t) . (4.9)

Note that hF (f) is complex, even when f is real. It is therefore not sufficient to work with
the field space V , but rather we should work with the complexified field space V ⊗ C. We
now want to derive the associated inclusion i and projection pF from the homotopy relation
{∂, hF } = 1− iF ◦ pF . Since (4.9) is a Green’s function it satisfies (∂2

t + ω2)hF (f)(t) = f(t).
On the other hand, on equations of motion ϕ̈ + ω2ϕ we find

h+(ϕ̈+ ω2ϕ)(t) = i
ϕ̇(t)
2ω − i

ϕ̇(ti)
2ω e−iω(t−ti) + ϕ(t)

2 − ϕ(ti)
2 e−iω(t−ti) , (4.10)

h−(ϕ̈+ ω2ϕ)(t) = −i ϕ̇(t)2ω + i
ϕ̇(tf )
2ω eiω(t−tf ) + ϕ(t)

2 − ϕ(tf )
2 eiω(t−tf ) , (4.11)

and so for the sum

hF (ϕ̈+ω2ϕ)(t)=ϕ(t)− 1
2

(
ϕ(ti)−

ϕ̇(ti)
iω

)
e−iω(t−ti)− 1

2

(
ϕ(tf )+

ϕ̇(tf )
iω

)
eiω(t−tf ). (4.12)

We next define new (complex) functionals a(t) and a†(t) by

ϕ(t) =
√

ℏ
2ω (a

†(t) + a(t)) , ϕ̇(t) = i

√
ℏω
2 (a†(t)− a(t)) . (4.13)

These expressions are motivated by the mode expansion of the harmonic oscillator, but we
should emphasize that here these are just regular functions, not quantum operators. In
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particular, the function a† is just the complex conjugate of the function a, with the notation
just reminding us of the usual raising and lowering operators. In terms of these we have

hF (ϕ̈+ ω2ϕ)(t) = ϕ(t)−
√

ℏ
2ω
(
a(ti)e−iω(t−ti) + a†(tf )eiω(t−tf )

)
. (4.14)

This suggests that we define a projector pF : V ⊗ C → C2 by

ϕ 7→ (a(ti), a†(tf )) , ϕ∗ 7→ 0 , (4.15)

and the inclusion iF : C2 → V 0 ⊗ C by

(x, y) 7→
√

ℏ
2ω
(
xe−iω(t−ti) + yeiω(t−tf )

)
, (4.16)

with zero image in V 1. With these definitions we have pF ◦ iF = 1.
For a given a field ϕ the projector pF gives the complex values a(ti) and a†(tf ). Let

us compare this with the projector associated to the propagator with Dirichlet boundary
conditions, which gives (ϕ(ti), ϕ(tf )). When relating to canonical quantization, we found that
the correlator computed with the latter prescription used the states |x⟩ and ⟨y| satisfying
ϕ(ti)|x⟩ = x|x⟩ and ⟨y|ϕ(tf ) = ⟨y|y. Correspondingly, when finding a representative F ′ of the
cohomology of some functional F with F ′ = f ◦ pF , we expect that f computes correlators
with the in-state |z⟩ being an eigenstate of a(ti) and the out-state ⟨w| being an eigenstate
of a†(tf ). This will be confirmed in the following.

The eigenstates |z⟩ of the annihilation operator a are called coherent states. We use
the convention a|z⟩ = z|z⟩ and ⟨z|a† = ⟨z|z. With this convention, ⟨z̄| is the conjugate of
|z⟩, where z̄ denotes the complex conjugate of z. We can check whether it is reasonable
that pF gives rise to correlators with coherent states by looking again at the two-point
function. By either applying the perturbation lemma or going through the same steps as in
the previous section, we find that the representative F ′ of the cohomology of F = ϕ(t)ϕ(s)
satisfying F ′ = f ◦ pF is given by

F ′ = −iℏKF (t, s) +
ℏ
2ω
(
a(ti)e−iω(t−ti) + a†(tf )eiω(t−tf ))(a(ti)e−iω(s−ti) + a†(tf )eiω(s−tf )) .

(4.17)
We therefore claim that

f(w, z) = ⟨w|T (ϕ(t)ϕ(s))|z⟩
⟨w|z⟩

, (4.18)

where

f(w, z) = −iℏKF (t, s) +
ℏ
2ω
(
ze−iω(t−ti) + weiω(t−tf ))(ze−iω(s−ti) + weiω(s−tf )) . (4.19)

It is straightforward to verify equation (4.18) in the familiar operator language of quantum
mechanics, as we do now. We first recall that Wick’s theorem implies

T (ϕ(t)ϕ(s)) = −iℏKF (t, s) +N(ϕ(t)ϕ(s)) , (4.20)
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where N is the normal ordering operation. We have the operator relation

ϕ̂(t) =
√

ℏ
2ω
(
a(ti)e−iω(t−ti) + a†(tf )eiω(t−tf )) , (4.21)

where a and a† are now interpreted as the creation and annihilation operators of the harmonic
oscillator, satisfying the familiar commutation relations. Usually the above expression appears
in textbooks for ti = tf = 0 and normal ordering is defined with respect to a := a(0) and
a† := a†(0). But this is the same as normal ordering a(ti) and a†(tf ), since they only differ
from a and a† by phases. We can now compute

⟨w|N(ϕ(t)ϕ(s))|z⟩ (4.22)

by evaluating a(ti) at z and a†(tf ) at w. This follows because N moves all annihilation
operators to the right, where we can then use a(ti)|z⟩ = z|z⟩. Similarly, when creation
operators are on the right, we can use ⟨w|a†(tf ) = ⟨w|w. Therefore,

⟨w|N(ϕ(t)ϕ(s))|z⟩= ℏ
2ω
(
ze−iω(t−ti)+weiω(t−tf ))(ze−iω(s−ti)+weiω(s−tf ))⟨z|w⟩ . (4.23)

Combining this with (4.20) then proves (4.18).
In case of the Feynman propagator, this result explains why the perturbation lemma

gives Wick’s theorem via the projector P ′ and P can be interpreted as normal ordering.
Recall that P = i∗ just evaluates functionals on-shell, with boundary conditions specified
by the inclusion map i. But this is just what we did in (4.23). We evaluated ϕ(t)ϕ(s) on
the solution with a(t) = z at t = ti and a†(t) = w at t = tf . Of course, there is nothing
special about the two-point functions considered here, and so the perturbation lemma says
that P ′ is really Wick’s theorem squeezed between coherent states.

4.3 Comparison with operator language

In the previous two sections we applied the homological recipe to compute correlators with
respect to position eigenstates and with respect to coherent states. The respective projectors
were given by

p(ϕ, ϕ∗) = (ϕ(ti), ϕ(tf )) , pF (ϕ, ϕ∗) = (a(ti), a†(tf )) . (4.24)

Using Wick’s theorem, for pF it was straightforward to see that our approach agrees with
the operator language. For p, however, it is harder to verify that f defined via F ′ = f ◦ p
actually computes the correlator with respect to position eigenstates, although our formal
path integral manipulations above suggest that this must be so. The general claim following
from the homological approach is

f(x, y) = ⟨y; tf |T (ϕ(t)ϕ(s))|x; ti⟩
⟨y; tf |x; ti⟩

, (4.25)

where f is the function whose pullback p∗(f) equals F = ϕ(t)ϕ(s) in cohomology. Our goal in
this subsection is to check this statement using the standard formalism of quantum mechanics.

– 29 –



J
H
E
P
0
2
(
2
0
2
4
)
1
3
7

Since the operator computation is quite involved, for simplicity we set x = y = 0. Since
the perturbation lemma immediately gives the full result (4.8) we see that the homological
approach is advantageous in this case. When x = y = 0, (4.8) equals the Green’s function
KDD(t, s). So we want to establish the identity

−iℏKDD(t, s) = ⟨y = 0; tf |T (ϕ(t)ϕ(s))|x = 0; ti⟩
⟨y = 0; tf |x = 0; ti⟩

=: g(t, s) (4.26)

in the operator language.
We first review some more facts about coherent states. As already stated, a coherent

state |z⟩ is an eigenstate of the annihilation operator, i.e.

â|z⟩ = z|z⟩ for all z ∈ C . (4.27)

We use the convention that the hermitian conjugate of |z⟩ is ⟨z̄|, so that ⟨z̄|â† = ⟨z̄|z̄. Given
a general state |ψ⟩, its overlap with a coherent state ⟨z| gives a holomorphic function in z,

ψ(z) := ⟨z|ψ⟩ . (4.28)

The inner product of two such states is

⟨ψ1|ψ2⟩ =
1
π

∫
d2z ψ̄1(z̄)ψ2(z)e−|z|2 . (4.29)

The Hilbert space equipped with this inner product is called the Segal-Bargmann space.
The identity can be written as

1 = 1
π

∫
d2ze−|z|2 |z⟩⟨z̄| . (4.30)

The creation operator acts by multiplication since

⟨z|â†|ψ⟩ = zψ(z) ⇒ (â†ψ)(z) = zψ(z) . (4.31)

We can then deduce from the inner product (4.29) that â acts by differentiation, i.e.

⟨z|â|ψ⟩ = ∂

∂z
ψ(z) ⇒ (âψ)(z) = ∂

∂z
ψ(z) . (4.32)

As a consistency check we note that [â, â†] = 1 in this representation. Since the vacuum state
|0⟩ is annihilated by â, the vacuum is represented by ψ0(z) = ⟨z|0⟩ that is in fact constant
(and equal to one if we normalize it). Likewise, the nth excited state is

⟨z|n⟩ = 1√
n!
zn , (4.33)

while a coherent state reads

⟨z|w⟩ = ezw . (4.34)

We now come back to the original goal of this section, i.e. establishing the identity (4.26)
in the operator language. To do so, we use Wick’s theorem

T (ϕ(t)ϕ(s)) = −iℏKF (t, s) +N(ϕ(t)ϕ(s)) , (4.35)
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where KF is the Feynman propagator and N denotes normal ordering. Using this in (4.26),
we find

g(t, s) = −iℏKF (t, s) +
⟨y = 0; tf |N(ϕ(t)ϕ(s))|x = 0; ti⟩

⟨y = 0; tf |x = 0; ti⟩
. (4.36)

In order to compute the overlap involving the normal ordering, we express it in terms of
coherent states using (4.30). We then need to express |x = 0⟩ in terms of coherent states.
For an arbitrary state |ψ⟩ we have

⟨x|ψ⟩ = 1
π

∫
d2z e−z̄z ⟨x|z⟩ ⟨z̄|ψ⟩ . (4.37)

This formula can be reduced to an integral over the reals. For example, one can show that [34]

⟨x|ψ⟩ = ψ(x) = Ce−x2/2
∫

dy e−y2/2 ⟨x+ iy|ψ⟩ , (4.38)

where C is some constant and ⟨x + iy| is a coherent state, and so

⟨x| = Ce−x2/2
∫

dye−y2/2⟨x+ iy| . (4.39)

In particular,

⟨x = 0| = C

∫
dy e−y2/2⟨iy| . (4.40)

We now use this in (4.36) to compute g(t, s). We first compute the denominator

Z := ⟨y = 0; tf |x = 0; ti⟩ = ⟨y = 0|ei H
ℏ (tf−ti)|x = 0⟩ , (4.41)

where we used the time evolution operator with respect to the Hamiltonian H = ℏω(a†a+ 1
2)

of the harmonic oscillator. Thus, using (4.40), we will need the time evolution of a coherent
state. Defining T = tf − ti, we need to compute ei H

ℏ T |z⟩, which can be done by inserting
a complete set of eigenstates |n⟩ of the Hamiltonian and using the overlap (4.33). With
this, we find ei H

ℏ T |z⟩ = ei ω
2 T |e−iωT z⟩. Defining λ := e−iωT we thus have ei H

ℏ T |z⟩ = λ−
1
2 |λz⟩.

Using this together with (4.40) we have:

Z = C2λ−
1
2

∫
dy1dy2e

−(y2
2+y2

1)/2 ⟨iy2| − iλy1⟩

= C2λ−
1
2

∫
dy1dy2e

−(y2
2+y2

1)/2+λy1y2

= C1√
λ− λ3

,

(4.42)

where we performed the Gaussian integral, and C1 := 2πC2 is another constant that will
cancel in the end. Next we turn to the numerator of (4.36). Expanding ϕ(t) in terms of
ladder operators,

ϕ(t) =
√

ℏ
2ω (a

†eiωt + ae−iωt) , (4.43)
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and using this in (4.36), we need to compute expectation values of operators quadratic in
a and a†. For example, we find that

⟨y = 0; tf |a†a|x = 0; ti⟩ = C2λ−
1
2

∫
dy1dy2 λy1y2 e

−(y2
2+y2

1)/2+λy1y2

= C1λ
3
2

(1− λ2) 3
2
= Z

λ2

1− λ2 .
(4.44)

Similarly, we have

⟨y = 0; tf |aa|x = 0; ti⟩ = −Z ei2ωti

1− λ2 , (4.45)

⟨y = 0; tf |a†a†|x = 0; ti⟩ = −Z e
−i2ωtf

1− λ2 . (4.46)

Since the operators are normal ordered we do not need to compute ⟨y = 0; tf |aa†|x = 0; ti⟩.
We can now use the above to compute the normal ordered correlator in (4.36), for which
we find after some algebra

g(t, s) = − iℏKF (t, s)− ℏ
e−i2ωtf

1− λ2 (2ω)
−1eiω(t+s) − ℏ

ei2ωti

1− λ2 (2ω)
−1e−iω(t+s)

+ ℏ
λ2

1− λ2 (2ω)
−1(eiω(t−s) + e−iω(t−s)) .

(4.47)

In order to relate this to KDD we rewrite the Feynman propagator,

−iKF (t, s) = (2ω)−1θ(t− s)e−iω(t−s) + (2ω)−1θ(s− t)eiω(t−s)

= −iKR(t, s) + (2ω)−1eiω(t−s) ,
(4.48)

where KR(t, s) = θ(t − s) sin ω(t−s)
2ω is the retarded propagator. This yields

g(t, s) = − iℏKR(t, s)− ℏ
e−i2ωtf

1− λ2 (2ω)
−1eiω(t+s) − ℏ

ei2ωti

1− λ2 (2ω)
−1e−iω(t+s)

+ ℏ
1

1− λ2 (2ω)
−1eiω(t−s) + ℏ

λ2

1− λ2 (2ω)
−1e−iω(t−s)

= − iℏKR(t, s) + iℏ
cosω(t+ s− ti − tf )− cosω(t− s+ tf − ti)

sinω(tf − ti)
,

(4.49)

where we reintroduced ti and tf through λ = e−iω(tf−ti). We can now make use of the identity

cosω((t− ti)+(tf − s))− cosω((t− ti)− (tf − s)) = −2 sinω(t− ti) sinω(tf − s) , (4.50)

to arrive at

⟨y = 0; tf |T (ϕ(t)ϕ(s))|x = 0; ti⟩
⟨y = 0; tf |x = 0; ti⟩

= −iℏKR(t, s) + iℏ
sinω(tf − s)

ω

sinω(t− ti)
sinω(tf − ti)

= −iℏKDD(t, s) ,
(4.51)

which is what we wanted to show.
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4.4 General boundary conditions

In previous subsections we exemplified our approach using two different projectors, which
where given by pDD(ϕ) = (ϕ(ti), ϕ(tf )) and pF (ϕ) = (a(ti), a†(tf )). Our computations showed
that these determine different types of correlation functions.

We now want to generalize to arbitrary linear boundary conditions. More precisely, we
look at boundary conditions of the form

x = aϕ(ti) + b
ϕ̇(ti)
ω

, y = cϕ(tf ) + d
ϕ̇(tf )
ω

, (4.52)

where the numbers (a, b, c, d, x, y) can in general be complex. The numbers (x, y) parametrize
solutions to the equations of motion. In this way, we obtain a projector

p : C∞([ti, tf ])⊗ C −→ C2 ,

ϕ 7−→ (aϕ(ti) + b
ϕ̇(ti)
ω

, cϕ(tf ) + d
ϕ̇(tf )
ω

) .
(4.53)

As usual, we extend p to V • ⊗ C by setting p|V 1 = 0. We recover pDD when (a, b) = (c, d) =
(1, 0), while pF is given by (a, b) = (c̄, d̄) = (

√
ω
2ℏ , i

√
ω
2ℏ).

A solution with boundary conditions (4.52) is given by

ϕx,y(t) =
ya sinω(t− ti)− yb cosω(t− ti) + xc sinω(tf − t) + xd cosω(tf − t)

(ad− bc) cosω(tf − ti) + (ac+ bd) sinω(tf − ti)
. (4.54)

This solution defines an inclusion
i : C2 −→ V 0 ⊗ C ,
(x, y) 7−→ ϕx,y .

(4.55)

which we extend to V • via the inclusion V 0 ↪→ V •. To find the homotopy h from the identity
to i ◦ p, we note that the homotopies hDD and hF satisfy the boundary conditions (4.52)
with x = y = 0. So our ansatz for the homotopy h(f) is the unique solution to ϕ̈+ ω2ϕ = f

satisfying p ◦ h = 0. It is given by

h(f)(t) =
∫ t

ti

f(s)Ki(t, s) +
∫ tf

t
Kf (t, s) , (4.56)

where

Ki(t, s) = Kf (s, t) =
(a sinω(s− ti)− b cosω(s− ti))(c sinω(t− tf )− d cosω(t− tf ))

(ad− bc)ω cosω(tf − ti) + (ac+ bd)ω sinω(tf − ti)
.

(4.57)
In kernel notation, we have

K(t, s) = θ(t− s)Ki(t, s) + θ(s− t)Kf (s, t) . (4.58)

Note that K(t, s) is manifestly symmetric in its arguments. A lengthy computation now
shows that

h(ϕ̈+ ω2ϕ)(t) = ϕ(t)−
(
aϕ(ti) + b

ϕ̇(ti)
ω

)
c sinω(tf − t) + d cosω(tf − t)

(ad− bc) cosω(tf − ti) + (ac+ bd) sinω(tf − ti)

−
(
cϕ(tf ) + d

ϕ̇(tf )
ω

)
a sinω(t− ti)− b cosω(t− ti)

(ad− bc) cosω(tf − ti) + (ac+ bd) sinω(tf − ti)
,

(4.59)

as well as ḧ(f)+ω2h(f) = f . Therefore, the homotopy relation {∂, h} = 1− i ◦ p is satisfied.
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One application using these more general projectors and homotopies would be the
computation of correlators with in- and out states living in different representations of the
Hilbert space. For example, one could choose (a, b) = (1, 0) and (c, d) = (0, 1). In this
case, the homotopy satisfies Dirichlet boundary conditions at t = ti and Neumann boundary
conditions at t = tf . The associated representative of the cohomology then uses position
eigenstates |x; ti⟩ as in-states and momentum eigenstates ⟨p; tf | as out-states.

4.5 Interacting example: correlation functions for ϕ4 theory

In this subsection we illustrate the homological formulation and the perturbation lemma
for a simple example of an interacting theory: the harmonic oscillator, perturbed by a
potential of the form

V (ϕ) =
∫ tf

ti

dt
(
µ

3!ϕ
3(t) + λ

4!ϕ
4(t)

)
. (4.60)

Our goal is to compute the k-point functions to linear order in the coupling constants with
respect to the ground state of the free harmonic oscillator for the cases k = 1, 2, 4.

One-point function. We begin by computing the one-point function. We thus consider
the functional F [ϕ] = ϕ(t) for some fixed time t and use the perturbation lemma, with the
BV operator split as δ = δ0 + δ′, where δ0 is the classical and free BV operator

δ0 =
∫ tf

ti

dt (ϕ̈(t) + ω2ϕ(t)) δ

δϕ∗(t) , (4.61)

and the perturbation is given by

δ′ = −iℏ∆+
∫ tf

ti

dt
(
µ

2ϕ
2(t) + λ

3!ϕ
3(t)

)
δ

δϕ∗(t) =: δq + δI , (4.62)

where δq = −iℏ∆ denotes the pure quantum part and δI the classical interactions. We recall
from (3.8) that the function f computing the quantum expectation values is given by

f = P ′(F ) , (4.63)

where
P ′ = P

∑
n≥0

(−δ′H)n , (4.64)

and H is the homotopy with respect to the classical and free BV operator (4.61). Recall also
that the homotopy is derived from the Green’s function of the operator ∂ = ∂2

t + ω2 on the
original complex and satisfies the relation h∂ = 1− ip, where the projector p : C∞([ii, tf ])⊗
C → C is given in (4.53). Explicitly,

p(ϕ) =
(
aϕ(ti) + b

ϕ̇(ti)
ω

, cϕ(tf ) + d
ϕ(tf )
ω

)
, (4.65)

where a, b, c, d are complex numbers. On the other hand, the inclusion i : C2 → C∞([ii, tf ])⊗C
maps a pair of boundary values (a, b) to the solution ϕa,b := i(a, b) with boundary conditions
p(ϕa,b) = (a, b).
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Writing P ′ = ∑
n≥0 Pn and fn = Pn(F ), to lowest order we have

f0 = P (F ) = i∗(F ) = F ◦ i , (4.66)

so that evaluated on (a, b) we find for F = ϕ(t) and the inclusion i defined above:

f0(a, b) = (F ◦ i)(a, b) = ϕa,b(t) . (4.67)

To compute the higher contributions, we recall from (2.69) that

H(ϕ(t)) :=
∫ tf

ti

duK(u, t)ϕ∗(u) . (4.68)

Acting with δ′ defined in (4.62), we obtain

−δ′H(F ) = −
∫ tf

ti

duK(u, t)
(
µ

2ϕ
2(u) + λ

3!ϕ
3(u)

)
. (4.69)

We next split

P ′ = P − P
∑
n≥0

(−δ′H)nδ′H , (4.70)

and act on (4.69) with P
∑

n≥0(−δ′H)n, where to linear order in the coupling constants
δ′ can be replaced by δq. In this case, we know that (4.70) acts via Wick contractions
as (3.33). We then find that

f1(a, b) = −
∫ tf

ti

duK(u, t)
(
µ

2ϕ
2
a,b(u) +

λ

3!ϕ
3
a,b(u)

)
,

f2(a, b) =
∫ tf

ti

duK(u, t)
(
iℏµ
2 K(u, u) + iℏλ

2 K(u, u)ϕa,b(u)
)
.

(4.71)

All fk≥3(a, b) are zero to linear order in the coupling constants.
We learned that the one-point function for general boundary conditions and to linear

order in coupling constants is given by

f(a, b) = f0(a, b) + f1(a, b) + f2(a, b) . (4.72)

To compute the expectation value with respect to the ground state, we should choose K = KF

to be the Feynman propagator, in which case a and b are the eigenvalues with respect to
the annihilation operator, i.e. they correspond to coherent states. Therefore, if we want
the in- and out-state to be both the ground state we set a = b = 0. In this case ϕa,b = 0,
and the one-point function reduces to

f(0, 0) = ⟨0|ϕ(t)|0⟩
⟨0|0⟩ = iℏµ

2

∫ tf

ti

duKF (t, u)KF (u, u) . (4.73)

Note that KF (u, u) = i
2ω , which in contrast to genuine quantum field theories is finite. The

above expression gives the tadpole contribution coming from the cubic vertex.
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Two-point function. In order to compute the two-point function we consider the functional
F [ϕ] = ϕ(s)ϕ(t) for fixed times s, t. As for the one-point function, we use the perturbation
lemma to compute

f(a, b) = P ′(F ) , (4.74)

as a function of the in- and out-states.
We write P ′ = ∑

n≥0 Pn and fn = Pn(F ), and to lowest order we have

f0(a, b) = (F ◦ i)(a, b) = ϕa,b(s)ϕa,b(t) . (4.75)

We recall from (2.69) that

H(ϕ(s)ϕ(t)) := 1
2

∫ tf

ti

du (K(u, s)ϕ∗(u)(1 + p∗i∗)ϕ(t) +K(u, t)ϕ∗(u)(1 + p∗i∗)ϕ(s)) . (4.76)

From this we obtain

−δ′H(F ) = −iℏK(t, s)−
∫ tf

ti

du 1
2(1 + p∗i∗)ϕ(s)K(t, u)

(
µ

2ϕ
2(u) + λ

3!ϕ
3(u)

)
− (t↔ s) .

(4.77)

We then use the split (4.70) and act on (4.77) with P
∑

n≥0(−δ′H)n, which, since (4.77) is
already linear in couplings, acts via Wick contractions. We find

f1(a,b)=−iℏK(t,s)−
∫ tf

ti

duϕa,b(s)K(t,u)
(
µ

2ϕ
2
a,b(u)+

λ

3!ϕ
3
a,b(u)

)
−(t↔ s) , (4.78)

f2(a,b)=
∫ tf

ti

duϕa,b(s)K(t,u)
(
iℏµ
2 K(u,u)+ iℏλ

2 ϕa,b(u)K(u,u)
)
−(t↔ s)

+
∫ tf

ti

duK(s,u)K(t,u)
(
iℏµϕa,b(u)+

iℏλ
2 ϕ2

a,b(u)
)
, (4.79)

f3(a,b)=
∫ tf

ti

duℏ
2λ

2 K(s,u)K(t,u)K(u,u) . (4.80)

All fk≥4(a, b) vanish to linear order in the coupling constants. The two-point function for
general boundary conditions and to linear order in coupling constants is therefore given by

f(a, b) = f0(a, b) + f1(a, b) + f2(a, b) + f3(a, b) . (4.81)

To compute the two-point function with respect to the ground state we take the Feynman
propagator K = KF and evaluate f(a, b) at a = b = 0. Since in this case ϕa,b = 0, the
two-point function reduces to

f(0, 0) = ⟨0|Tϕ(s)ϕ(t)|0⟩
⟨0|0⟩

= −iℏKF (t, s) +
ℏ2λ

2

∫ tf

ti

duKF (s, u)KF (t, u)KF (u, u) =: k(s, t) .
(4.82)

– 36 –



J
H
E
P
0
2
(
2
0
2
4
)
1
3
7

Four-point function. For the four-point function we need to consider the functional

F1[ϕ] = ϕ(t1)ϕ(t2)ϕ(t3)ϕ(t4) . (4.83)

In principle, we could directly use the perturbation lemma as before. However, it turns out
to be easier to first replace F with an equivalent functional F2 = δG+F1 and then apply the
perturbation lemma. This illustrates another strength of the homological approach, since
it justifies these types of manipulations.

We choose

G =
∫ tf

ti

du K(t1, u)ϕ∗(u)ϕ(t2)ϕ(t3)ϕ(t4) , (4.84)

for which one finds
δG1 = iℏ(K(t1, t2)ϕ(t3)ϕ(t4) +K(t1, t3)ϕ(t2)ϕ(t4) +K(t1, t4)ϕ(t2)ϕ(t3))

+
∫ tf

ti

du K(t1, u)
(
µ

2ϕ
2(u) + λ

3!ϕ
3(u)

)
ϕ(t2)ϕ(t3)ϕ(t4)

+ ϕ(t1)ϕ(t2)ϕ(t3)ϕ(t4)− (p∗i∗ϕ)(t1)ϕ(t2)ϕ(t3)ϕ(t4) .

(4.85)

From this we deduce that the homology of F1 is equal to the homology of

F2 = −iℏ(K(t1, t2)ϕ(t3)ϕ(t4) +K(t1, t3)ϕ(t2)ϕ(t4) +K(t1, t4)ϕ(t2)ϕ(t3))

−
∫ tf

ti

du K(t1, u)
(
µ

2ϕ
2(u) + λ

3!ϕ
3(u)

)
ϕ(t2)ϕ(t3)ϕ(t4)

+ (p∗i∗ϕ)(t1)ϕ(t2)ϕ(t3)ϕ(t4) ,

(4.86)

so we are free to compute the homology of F2. The first line contains two-point functions, so
we can use what we already found in this case. Further, the second line is linear in coupling
constants so we can compute the expectation value with respect to the free differential, since
we only want to keep terms linear in the couplings. We recall that P ′ in (4.64) produces
Wick’s theorem, so we can immediately compute the expectation value of that part. For
the third line, we will do one more manipulation.

Let us write R2 = (p∗i∗ϕ)(t1)ϕ(t2)ϕ(t3)ϕ(t4) for the term in the third line of (4.86). Our
goal is now again to replace this by the equivalent R3 = R2 + δG2, where we choose

G2 =
∫ tf

ti

duK(t2, u)(p∗i∗ϕ)(t1)ϕ∗(u)ϕ(t3)ϕ(t4) . (4.87)

This yields

δG2 = iℏ(p∗i∗ϕ)(t1)(K(t2, t3)ϕ(t4) +K(t2, t4)ϕ(t3))

+
∫ tf

ti

duK(t2, u)(p∗i∗ϕ)(t1)
(
µ

2ϕ
2(u) + λ

3!ϕ
3(u)

)
ϕ(t3)ϕ(t4)

+ (p∗i∗ϕ)(t1)ϕ(t2)ϕ(t3)ϕ(t4)− (p∗i∗ϕ)(t1)(p∗i∗ϕ)(t2)ϕ(t3)ϕ(t4) ,

(4.88)

from which we obtain
R3 = −iℏ(p∗i∗ϕ)(t1)(K(t2, t3)ϕ(t4) +K(t2, t4)ϕ(t3))

−
∫ tf

ti

duK(t2, u)(p∗i∗ϕ)(t1)
(
µ

2ϕ
2(u) + λ

3!ϕ
3(u)

)
ϕ(t3)ϕ(t4)

+ (p∗i∗ϕ)(t1)(p∗i∗ϕ)(t2)ϕ(t3)ϕ(t4) .

(4.89)
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The second line in (4.89) is again linear in coupling constants, hence we can compute its
expectation value with respect to the free theory. The first and third line contain functionals
of the general form (p∗i∗A)B. For such functionals we will show that

P ′((p∗i∗A)B) = (i∗A)P ′(B) , (4.90)

where P ′ is the projector (4.64) computing the expectation value. This follows from the
fact that

H((p∗i∗A)B) = 1
2(Hp

∗i∗A)(B + p∗i∗B) + 1
2(p

∗i∗A+ (p∗i∗)2A)H(B) = (p∗i∗A)H(B) ,
(4.91)

where we used that Hp∗ = 0 and i∗p∗ = (pi)∗ = 1, together with

δ′((p∗i∗A)H(B)) = (p∗i∗A)δ′H(B) . (4.92)

In the last identity, there is in principle a contribution coming from iℏ∆ acting on a field
in (p∗i∗A), but these terms vanish due to the boundary conditions of the propagator used
in H. The upshot is that in the first and last line in (4.89), we need to know P ′(ϕ(ti)) and
P ′(ϕ(ti)ϕ(tj)), which are the one- and two-point functions we already computed.

From here on, the rest of the computation can be performed in a straightforward manner.
Since the expression is rather lengthy, we will only give parts of it. For example, the free
part is given by

P ′(ϕ(t1)ϕ(t2)ϕ(t3)ϕ(t4)) = ϕa,b(t1)ϕa,b(t2)ϕa,b(t3)ϕa,b(t4)
− iℏK(t1, t2)ϕa,b(t3)ϕa,b(t4) + (t2 ↔ t3) + (t2 ↔ t4)
− iℏϕa,b(t1)ϕa,b(t2)K(t3, t4) + (t2 ↔ t3) + (t2 ↔ t4)
− ℏ2K(t1, t2)K(t3, t4) + (t2 ↔ t3) + (t2 ↔ t4) +O(λ, µ) .

(4.93)

The first line is the classical contribution, which is given by the fields at their on-shell value.
Comparing to Wick’s theorem in the operator language, this is the part where no fields
are contracted. In the second and third lines there is a total of three contributions each,
corresponding to the s, t and u channels. Again, when comparing to Wick’s theorem, this
part corresponds to one contraction. Finally, the last line corresponds to the fully contracted
contribution containing two propagators. It also has a total of three terms corresponding
to the different channels.

When we use the Feynman propagator K = KF and go to the vacuum by setting
a = b = 0, only the fully contracted contribution remains. This is also the part one finds using
textbook methods. For the interacting contributions, we only give the terms that remain
after setting a = b = 0. In this case, the only terms surviving are

− i
ℏ3λ

2 KF (t3, t4)
∫ tf

ti

duKF (u, u)KF (t1, u)KF (t2, u) + (t2 ↔ t3) + (t2 ↔ t4)

− i
ℏ3λ

2 KF (t1, t2)
∫ tf

ti

duKF (u, u)KF (t3, u)KF (t4, u) + (t2 ↔ t3) + (t2 ↔ t4)

− iℏ3λ

∫ tf

ti

duKF (t1, u)KF (t2, u)KF (t3, u)KF (t4, u) .

(4.94)
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The first two lines correspond to two disconnected two-point functions, where one of the
two-point functions has a one-loop contribution from the ϕ4-vertex. There is a term for
each channel. The last line is the connected 4-point function, where all four of the ϕ(ti) are
connected to the vertex. Combining this with the free contribution, we therefore find that
the four-point function in the vacuum and to linear order in the couplings is given by

P ′(ϕ(t1)ϕ(t2)ϕ(t3)ϕ(t4)) =
⟨0|Tϕ(t1)ϕ(t2)ϕ(t3)ϕ(t4)|0⟩

⟨0|0⟩
= k(t1, t2)k(t3, t4) + k(t1, t3)k(t2, t4) + k(t1, t4)k(t2, t3)

− iℏ3λ

∫ tf

ti

duKF (t1, u)KF (t2, u)KF (t3, u)KF (t4, u) ,

(4.95)

where the second line is written in terms of the two-point functions k(s, t) given in (4.82).
We obtain the expected result.

5 Unruh effect

In this section we present the first application of the homological formulation in the realm
of genuine field theories. Specifically, we apply our homological method in the context of
quantum field theory on curved spacetime by providing an alternative derivation of the Unruh
effect: the quantum effect according to which the number of particles detected depends on the
observer [35]. In the vacuum state an inertial observer in Minkowski space sees no particles,
while in the same state a uniformly accelerated observer sees a thermal bath of particles.

5.1 Generalities and homotopy retract

Let us begin with a brief review of general features of uniformly accelerated observers in
two-dimensional Minkowski spacetime with metric

ds2 = dt2 − dx2 . (5.1)

The trajectory of an observer is then parametrized by xµ(τ) =
(
t(τ), x(τ)

)
, where τ is proper

time, so that the 2-velocity uµ(τ) = dx(τ)/dτ satisfies the normalization condition

ηµνu
µuν = 1 . (5.2)

The Lorentz-invariant condition for the acceleration being constant is expressed in terms
of aµ(τ) = u̇µ(τ) as

ηµνa
µ(τ)aν(τ) = −a2 , (5.3)

where a is a constant. The trajectory of a uniformly accelerated observer satisfying these
two conditions can be written as

t(τ) = 1
a
sinh aτ , x(τ) = 1

a
cosh aτ . (5.4)

Next, let us relate the inertial frame to a frame that is comoving with the observer.
This means that denoting these coordinates by (t̃, x̃) the observer’s worldline is a vertical

– 39 –



J
H
E
P
0
2
(
2
0
2
4
)
1
3
7

line x̃ = 0, so that the observer is indeed at rest in this frame. The Rindler coordinates
having this property are defined by

t = a−1eax̃ sinh at̃ , (5.5)
x = a−1eax̃ cosh at̃ , (5.6)

and the inverse relation

t̃ = 1
2a ln x+ t

x− t
, (5.7)

x̃ = 1
2a ln

[
a2(x2 − t2)

]
. (5.8)

From these relations one finds the metric in Rindler coordinates,

ds2 = (dt)2 − (dx)2 = e2ax̃[(dt̃)2 − (dx̃)2] , (5.9)

which is thus conformally equivalent to the Minkowski metric.
We now consider the action of a massless scalar field ϕ in a 1 + 1 dimensional spacetime,

S[ϕ] = 1
2

∫
d2x

√
−g gµν∂µϕ∂νϕ , (5.10)

where gµν is the metric and g is its determinant. In the inertial frame,

S[ϕ] = 1
2

∫
dtdx

[
(∂tϕ)2 − (∂xϕ)2] . (5.11)

The action in the accelerated frame takes the same form:

S[ϕ] = 1
2

∫
dt̃dx̃

[
(∂t̃ϕ)2 − (∂x̃ϕ)2] , (5.12)

as a consequence of the conformal invariance of the action (5.10) in two dimensions and the
Rindler metric (5.9) being conformally equivalent to the Minkowski metric. The equations
of motion are

ϕ̈− ∂2
xϕ = 0 , (5.13)

∂2
t̃ ϕ− ∂2

x̃ϕ = 0 , (5.14)

where the dot denotes the partial derivative with respect to time t. Note that as a scalar
we have for the coordinate-transformed field ϕ̃(t̃, x̃) = ϕ(t, x), so that in the second equation
we could replace ϕ by ϕ̃.

As a preparation for the homotopy retract we have to introduce the Fourier transform
with respect to the spatial coordinate, both in inertial and Rindler coordinates:

ϕk(t) :=
∫ +∞

−∞

dx√
2π
e−ikxϕ(t, x) , ϕ̃l(t̃) :=

∫ +∞

−∞

dx̃√
2π
e−ilx̃ϕ̃(t̃, x̃) . (5.15)

Note that even though in the second integral we could replace ϕ̃(t̃, x̃) by ϕ(t, x), the Fourier
mode ϕk as a function of k of course differs from ϕ̃l as a function of l. The inverse relations are

ϕ(t, x) =
∫ +∞

−∞

dk√
2π
eikxϕk(t) , ϕ̃(t̃, x̃) =

∫ +∞

−∞

dl√
2π

eilx̃ϕ̃l(t̃) . (5.16)
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Since the scalar functions on the left-hand sides are equal (more precisely, we have ϕ(t, x) =
ϕ̃(t̃(t, x), x̃(t, x))), we have two different expansions of the same ϕ into Fourier modes:

ϕ(t, x) =
∫ +∞

−∞

dk√
2π
eikxϕk(t) =

∫ +∞

−∞

dl√
2π

eilx̃(t,x)ϕ̃l

(
t̃(t, x)

)
. (5.17)

We will also use the following change of basis for the Fourier modes and their time derivatives:

ϕk =
√

ℏ
2ωk

(
a†−k + ak

)
, ϕ̃l =

√
ℏ
2Ωl

(
b†−l + bl

)
, (5.18)

ϕ̇k = i

√
ℏωk

2
(
a†−k − ak

)
, ∂t̃ϕ̃l = i

√
ℏΩl

2
(
b†−l − bl

)
, (5.19)

where ωk ≡ |k|, Ωl ≡ |l|. The inverse relations read:

ak =
√
ωk

2ℏ

(
ϕk + i

ωk
ϕ̇k

)
, a†−k =

√
ωk

2ℏ

(
ϕk − i

ωk
ϕ̇k

)
, (5.20)

bl =
√

Ωl

2ℏ

(
ϕ̃l +

i

Ωl
∂t̃ϕ̃l

)
, b†−l =

√
Ωl

2ℏ

(
ϕ̃l −

i

Ωl
∂t̃ϕ̃l

)
. (5.21)

As for the harmonic oscillator these relations are motivated by the familiar definition of
creation and annihilation operators, but we emphasize that also here these are just functions.

We now discuss the homotopy retract, beginning with the chain complex defining
the theory:

0 V 0 V 1 0 .∂ (5.22)

Here the space of fields and the space of anti-fields are given by

V 0 = C∞([ti, tf ]× R) , V 1 = ΠC∞([ti, tf ]× R) . (5.23)

The notation indicates that the (anti-)fields depend on t, restricted to the interval [ti, tf ],
and the space coordinate x living on the full real line R. The differential is

∂(ϕ) = (∂2
t − ∂2

x)ϕ . (5.24)

The important new feature in field theory is that the projector p : V • → C∞(R)× C∞(R)
no longer maps to a finite-dimensional space like R2 but to infinite-dimensional functions
spaces, however, with functions of one less coordinate. Specifically, the projector evaluates
the functions a and a† defined in (5.20) at ti and tf , respectively:

ϕ 7→
(
ak(ti), a†l (tf )

)
, ϕ∗ 7→ 0 . (5.25)

Next, we need to define the inclusion map i : C∞(R)×C∞(R) → V 0 that takes two functions
in momentum space, say c(k) and d(k), and produces a field in V 0 (i.e. in the present
example a scalar field in two-dimensional Minkowski space). The proper inclusion map
satisfying p ◦ i = 1 is given by

(
c, d
)
7→ ϕ(c,d)(t, x) :=

∫ +∞

−∞

dk√
2π

eikx

√
ℏ

2ωk

(
d(−k)eiωk(t−tf ) + c(k)e−iωk(t−ti)) . (5.26)
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The homotopy map h : V 1 → V 0 is defined, for any f ∈ V 1, in terms of the Green’s function
of the operator ∂2

t − ∂2
x:

h(f)(t, x) =
∫ tf

ti

ds
∫ +∞

−∞
dy K(t− s, x− y)f(s, y) , (5.27)

where the kernel is explicitly given by

K(t− s, x− y) =
∫ +∞

−∞

dl
4πωl

i
(
Θ(t− s)e−iωl(t−s)+il(x−y) +Θ(s− t)eiωl(t−s)−il(x−y)) . (5.28)

Indeed, one can verify that with the above definitions for projector, inclusion and homotopy
the homotopy relation ∂h+ h∂ = 1− ip is satisfied. To this end one needs to assume that
ϕ(t, x) and ∂xϕ(t, x) vanish at x = −∞ and x = +∞.

For completeness we also display the important operations of the dual space of functionals
on which the BV algebra is defined. The BV complex F(V •) is equipped with the differential,

Q =
∫ tf

ti

dt
∫ ∞

−∞
dx

(
ϕ̈(t, x) + ∂2

xϕ(t, x)
) δ

δϕ∗(t, x) . (5.29)

In addition, the BV-differential is defined as

δ ≡ Q− iℏ∆ , ∆ ≡ −
∫ tf

ti

dt
∫ ∞

−∞
dx δ

δϕ∗(t, x)
δ

δϕ(t, x) . (5.30)

For a functional F [ϕ, ϕ∗] in F(V •), we obtain the pull-back functional in F [C∞(R)×C∞(R)]
defined by

i∗(F )(c, d) = (F ◦ i)(c, d) . (5.31)

Similarly, the pullback of a functional f in F [C∞(R)×C∞(R)] with respect to the projection
is the functional in F(V •) given by

p∗(f)(ϕ, ϕ∗) = (f ◦ p)(ϕ, ϕ∗) . (5.32)

5.2 Number expectation value

To derive the Unruh effect, one assumes that the number of particles measured by an
accelerated observer is given by the expectation value of the number operator with respect
to Rindler space, i.e., with respect to creation and annihilation operators defined with the
Fourier modes in Rindler space. More precisely, one computes

Nk := ⟨Nk⟩ ≡ ⟨0|b̂†k b̂k|0⟩ , (5.33)

where b̂k and b̂†k are the Rindler space annihilation and creation operators defined in analogy
to (5.21), and |0⟩ is the Minkowski vacuum state. This state is defined so that it is annihilated
by the inertial frame operator âk:

âk|0⟩ = 0 . (5.34)

For definiteness we take the Heisenberg picture operators b and b† to be at time t̃ = 0 (which
is equivalent to t = 0 for all x). The usual textbook computation involves relating the
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creation and annihilation operators of the accelerated and inertial frames through Bogolyubov
transformations. We provide an alternative approach which does not require finding the
Bogolyubov transformations. Instead, our strategy is to define the functional F [ϕ] of the
massless scalar field ϕ to be given by b†kbk, with b†k and bk being defined in terms of the
classical field ϕ via (5.21). Following our approach for the harmonic oscillator in section 4,
we then find f(c, d) such that F ′ = f ◦ p is in the same cohomology class as F [ϕ]. Then
f(c, d) computes the expectation value

f(c, d) = lim
t̃→0

⟨d|T
(
b̂†k(t̃)b̂k(0)

)
|c⟩

⟨d|c⟩
, (5.35)

where |c⟩ and |d⟩ are coherent states with respect to ak, i.e.,

ak|c⟩ = c(k)|c⟩ , (5.36)

and analogously for |d⟩. Here we take the limit t̃→ 0 after performing the computation, as
opposed to setting t̃ = 0 from the beginning, since some care is needed in order to deal with
the step functions entering the Green’s function. Note that the result does not depend on
whether one takes the limit from above or from below, which follows from the symmetry of
the Green’s function. Finally, in order to find the expectation value of the Rindler number
operator with respect to the Minkowski vacuum, we set c = d = 0, i.e.,

Nk = f(0, 0) . (5.37)

The choice c = d = 0 is the analog of the equation (5.34) specifying the Minkowski vacuum.
We begin by expressing the functional b†k(t̃)bk(0) in terms of ϕ(t, x). By taking the

Fourier transform of (5.21), one obtains bk and b†k in terms of ϕ and ∂t̃ϕ:

bk(t̃) =
∫

dx̃ e−ikx̃

√
Ωk

4πℏ

(
ϕ+ i

Ωk
∂t̃ϕ

)
, (5.38)

b†k(t̃) =
∫

dx̃ eikx̃

√
Ωk

4πℏ

(
ϕ− i

Ωk
∂t̃ϕ

)
. (5.39)

For the second equation we use the chain rule to obtain

∂t̃ϕ = ∂t

∂t̃
ϕ̇+ ∂x

∂t̃
∂xϕ = eax̃ cosh(at̃)ϕ̇+ eax̃ sinh(at̃)∂xϕ . (5.40)

Note that this is only valid when x > |t| since the Rindler coordinates only cover this part
of the Minkowski spacetime. With (5.38)–(5.40), we can explicitly write out the functional
F [ϕ] = b†k(t̃)bk(0):

F [ϕ] =
∫

dx̃
∫

dỹ eik(x̃−ỹ) Ωk

4πℏ

(
ϕ(t, x)ϕ(0, y) + i

Ωk
eaỹϕ(t, x)ϕ̇(0, y)

+ 1
Ω2

k

ea(x̃+ỹ)( cosh(at̃)ϕ̇(0, y)ϕ̇(t, x) + sinh(at̃)ϕ̇(0, y)∂xϕ(t, x)
)

− i

Ωk
eax̃( cosh(at̃)ϕ(0, y)ϕ̇(t, x) + sinh(at̃)ϕ(0, y)∂xϕ(t, x)

))
,

(5.41)

where of course t and x on the right-hand side must be viewed as functions of (t̃, x̃).
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We apply the perturbation lemma to find f(c, d), by using P1 in (3.33),

P1 = i∗ exp
(
− iℏ2 C

)
, (5.42)

where the functional derivatives in the C operator are now with respect to ϕ(t, x):

C =
∫

dt dx ds dy K(t− s, x− y) δ2

δϕ(t, x)δϕ(s, y) , (5.43)

and K(t − s, x − y) is given in (5.28). Applying P1 on F [ϕ],

P1(F )(c, d) = i∗F (c, d)

− iℏ
∫

dx̃
∫

dỹ eik(x̃−ỹ) Ωk

4πℏ

(
K(t, x− y)− i

Ωk
eaỹ∂tK(t, x− y)

− 1
Ω2

k

ea(x̃+ỹ)[ cosh(at̃) ∂t∂tK(t, x− y) + sinh(at̃)∂t∂xK(t, x− y)
]

− i

Ωk
eax̃[ cosh(at̃)∂tK(t, x− y) + sinh(at̃)∂xK(t, x− y)

])
.

(5.44)

There are no further terms in the expansion of exp
(
− iℏ

2 C
)

because F [ϕ] only contains two
ϕs. Let us start by treating the first term on the right-hand side of (5.44). Since we set
c = d = 0, the inclusion to the space of fields (5.26) is i(0, 0) = 0. Therefore, with (5.31),
the first term on the right-hand side of (5.44) vanishes:

i∗F (0, 0) = 0 . (5.45)

Next, we take the limit t = t̃ = 0. After inserting the derivatives of K(t, s), using (5.28),
and writing these in terms of Rindler coordinates, we obtain

f(0,0)=P1(F )(0,0)

=
∫

dx̃
∫

dỹ
∫

dl Ωk

16π2ωl
eik(x̃−ỹ)eila−1(eax̃−eaỹ)

(
1+ 1

Ω2
k

ea(x̃+ỹ)ω2
l −

ωl

Ωk
eax̃− ωl

Ωk
eaỹ
)
.

(5.46)

We now perform the change of variables:

u = eax̃ ,
1
au
du = dx̃ , (5.47)

v = eaỹ ,
1
av
du = dỹ . (5.48)

Then f(0, 0) takes the form

f(0,0)=
∫ ∞

0
du
∫ ∞

0
dv
∫ ∞

−∞
dl eika−1(lnu−lnv) Ωk

16π2a2ωl
eila−1(u−v)

( 1
uv

+ ω2
l

Ω2
k

− ωl

Ωk

1
v
− ωl

Ωk

1
u

)
.

(5.49)
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Performing the integrals over u and v, recalling ωk ≡ |k|, Ωl ≡ |l|,7 yields

f(0, 0) =
∫ ∞

0
dl Ωk

4π2a2ωl
Γ
(
− ik

a

)
Γ
(
ik

a

)
(−1)ik/a . (5.50)

As a consistency check, one may verify that the integrand in (5.50) coincides with the
expression in equation (8.43) of [36]. By using the following identity for Gamma functions

|Γ(ik/a)|2 = πa

k sinh(πk/a) = 2πa
|k|

eπ|k|/a

(e2π|k|/a − 1)
, (5.51)

we obtain

f(0, 0) = (e2π|k|/a − 1)−1
∫ ∞

0
dl 1

2πaωl
, (5.52)

as long as we choose (−1)ik/a = e−π|k|/a. The expectation value of the number of particles
observed by an accelerated observer is a Bose-Einstein distribution with the Unruh temperature

T = ℏa
2πkB

, (5.53)

where kB is the Boltzmann constant. The divergent integral in (5.52) is also present in the
conventional derivation of the Unruh effect (see, e.g., chapter 8 in [36]) and is interpreted
as the infinite volume of the entire space.

6 Summary and outlook

The main result of this paper is a (partial) reformulation of quantum mechanics that parallels
the path integral in that there is no reference to Hilbert spaces, states, operators, etc. However,
in contrast to the path integral formulation, the homological approach presented here is
algebraic, based on the cohomology of the BV algebra. In this one employs a homotopy retract
from the infinite-dimensional space of all possible trajectories to the finite-dimensional phase
space, thereby circumventing the problem to make sense of the path integral over the full
infinite-dimensional space. We have shown with a number of examples that the homological
formulation allows one to compute concrete quantum expectation values that agree with
those determined by standard quantum mechanics. However, so far this reformulation is not
complete: it only provides a prescription to compute certain normalized quantum expectation
values with respect to certain states. It then remains as the most important outstanding
problem to explore whether this homological formulation could be completed to a full-fledged
reformulation of quantum mechanics (and quantum field theory).

It is instructive to compare the techniques presented here with other approaches in
the literature, see [27–30]. The idea in these references is to pass via homotopy transfer
from the L∞-algebra of a given theory to a ‘minimal model’ or ‘on-shell’ L∞-algebra on

7For this computation we used the integral identities:∫ ∞

0
dx eiA ln(x)eiBxx−1 = (−iB)−iAΓ(iA) ,

∫ ∞

0
dx eiA ln(x)eiBx = (iA)(−iB)−1−iAΓ(iA) .
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the cohomology (i.e. with all differentials being trivial). These L∞ brackets compute (at
least tree-level) scattering amplitudes, but one has to overcome some technical challenges.
First, in order for the action and inner product to be well-defined the space of functions
is restricted to Schwartz functions, but then there is no cohomology, no on-shell fields and
hence no minimal model (for Schwartz functions □ϕ = 0 implies ϕ = 0). One attempts to
circumvent this problem by adding on-shell states by hand in degree zero and degree one, so
that there is a minimal model. However, a priori the L∞ brackets are then not well-defined
since the product of two on-shell fields is neither on-shell nor a Schwartz function. In order
to remedy this ref. [28] introduces certain regularizing factors in the products of fields.

In the homological formulation of this paper these issues do not arise. An important
reason is that we do not consider smooth functions on R but rather on the finite integral
[ti, tf ]. Then it is not necessary to restrict to Schwartz functions and so there is non-trivial
cohomology.8 However, since in our formulation the cohomology is concentrated in degree zero
there is no non-trivial L∞-algebra on this space; rather, the quantum expectation values are
computed by the functions of the homotopy retract of the BV algebra, as described in the main
text. Technically, the price to pay for working with general smooth functions on [ti, tf ] is that
the symplectic form encoded in the anti-bracket is no longer invariant under the vector field Q.
However, in our formulation the symplectic form does not enter, and so this does not cause
any problems. (See also [24, 25] where such a more general BV formalism was developed.)

We close this paper with a brief list of interesting open problems:

• Most intriguingly, the homological formulation is arguably mathematically well-defined
for non-perturbative problems. It would then be important to apply and illustrate this
method for genuinely non-perturbative problems.

• In this paper we have dealt with theories without gauge symmetries, so it would be
interesting to consider gauge field theories such as Yang-Mills theory. Since the BV
formalism was originally introduced in order to deal with subtle issues of gauge theories
it should be straightforward to set up the corresponding BV algebra. However, it would
still be instructive to work out the homotopy retract and the details of the homological
formulation.

• One of the potentially most fruitful applications of the homological formulation may arise
for quantum field theory on curved spacetime, where traditional flat space techniques
to quantization have often been awkward. Our investigation was in fact motivated by
the desire to find a systematic recipe to obtain in cosmological perturbation theory the
quantum correlation functions directly from the L∞-algebra or the dual BV algebra.
In [33] we gave an interpretation of the passing over to gauge invariant so-called Bardeen
variables of cosmological perturbation theory in terms of homotopy transfer but it
remains to give a similar procedure for the computation of cosmological correlation
functions.

Conflict of interest statement. We hereby certify that the research reported in this
manuscript and the manuscript itself do not provide a conflict of interest for any of the authors.

8These remarks apply in the realm of quantum mechanics where dynamical variables depend only on time.
In genuine quantum field theories, the functional dependence on the spatial coordinates is probably best
chosen to be of Schwartz type, but there is still cohomology due to the time dependence being more general.
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A Homological algebra

In this work we will frequently use the language of homological algebras. In this appendix
we introduce all definitions and facts we will use.

The central object one studies in homological algebra are (co-)chain complexes. A special
case are differential graded vector spaces. These are collections of vector spaces V n, n ∈ Z,
together with linear maps ∂n : V n → V n+1 such that ∂n+1 ◦ ∂n = 0 for all n. This data
usually is depicted as a diagram

· · · V n V n+1 V n+2 · · ·∂n−1 ∂n ∂n+1 ∂n+2
. (A.1)

If there is an n such that V k = 0 for all k > n, we draw it as

· · · V n−1 V n 0∂n−2 ∂n−1
, (A.2)

i.e. the sequence ends at 0 and it is understood that in principle it can be continued by zeros
indefinitely to the right. Similarly, if there is an n such that V k = 0 for all k < n, we write

0 V n V n+1 · · ·∂n ∂n+1
. (A.3)

This sequence of vector spaces can also be viewed as the total space V • = ⊕
n∈Z V

n, and
one then defines ∂ : V • → V • via ∂ = ∑

n∈Z ∂n. It satisfies ∂2 = 0. To recover the vector
subspaces Vn, we define a “charge” C : V • → V • via C(x) = nx when x ∈ V n. The original
collection of maps ∂n : V n → V n+1 is then equivalent to a single linear map ∂ : V • → V •

with operator C : V • → V • splitting V • into eigenspaces V n of integer eigenvalues n, and
such that [C, ∂] = 1. In other words, ∂ increases the charge by one unit. The charge of an
element x ∈ V • is universally called the degree of x.

The fact that ∂n+1 ◦ ∂n = 0 implies that im ∂n−1 ⊆ ker ∂n. This property allows us
to define the cohomology

Hn(V •) = ker ∂n

im ∂n−1
(A.4)

in degree n, which are vector spaces by themselves. Equivalently, we can think of H•(V •)
as a differential graded vector space with

· · · Hn(V •) Hn+1(V •) Hn+2(V •) · · ·0 0 0 0 , (A.5)

i.e. ∂n = 0 for all n.
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Homomorphisms f : (V •, ∂) → (W •, ∂̃) of chain complexes are collections of linear maps
fn : V n → Wn, such that fn+1 ◦ ∂n = ∂̃n ◦ fn. This means that the diagram

· · · V n V n+1 V n+2 . . .

Wn Wn+1 Wn+2 · · ·

∂n−1 ∂n

fn

∂n+1

fn+1

∂n+2

fn+2

∂̃n−1 ∂̃n ∂̃n+1 ∂̃n+2

(A.6)

commutes. In this case f is called a chain map. The importance of this definition lies in the
fact that f induces a map Hn(f) : Hn(V •) → Hn(V •) on cohomology. Notice that we have
fn(ker ∂n) ⊆ ker ∂̃n, so we can define f̃n : ker ∂n → Hn(W •) via f̃n(x) = fn(x) mod im ∂n−1.
On the other hand, we also have fn(im ∂n−1) ⊆ im ∂̃n−1, hence f̃n(im ∂n−1) = 0. Therefore,
f̃n descends to a linear map Hn(f) : Hn(V •) → Hn(W •).

In homological algebra we are mainly interested in the cohomology H•(V •) rather than
V • itself. For this reason, we consider differential graded algebras V • and W • equivalent, if
they have isomorphic cohomologies, i.e. Hn(V •) ∼= Hn(W •) for all n. We say that V • and
W • are quasi-isomorphic. Along the same line, we say that two chain maps f, g : V • →W •

are quasi-isomorphic, if they agree on homology.
One way to show that linear maps are quasi-isomorphic is to show that they are homotopic.

We say that chain maps f, g : (V •, ∂) → (W •, ∂̃) are homotopic, if there are maps hn : V n →
Wn−1, such that

fn − gn = hn+1 ◦ ∂n + ∂̃n−1 ◦ hn . (A.7)

It is straightforward to see that with this condition, f and g agree on cohomology. A related
concept are homotopic spaces. We say that V • and W • are homotopic, if there are maps
p : (V •, ∂) → (W •, ∂̃) and i : (W •, ∂̃) → (V •, ∂), such that i ◦ p are homotopic to the
identity idV • on V •. This then implies that p and i are inverse on homology, hence V •

and W • are quasi-isomorphic.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] I.A. Batalin and G.A. Vilkovisky, Gauge Algebra and Quantization, Phys. Lett. B 102 (1981) 27
[INSPIRE].

[2] I.A. Batalin and G.A. Vilkovisky, Quantization of Gauge Theories with Linearly Dependent
Generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. 30 (1984) 508] [INSPIRE].

[3] Owen Gwilliam, Factorization algebras and free field theories, Ph.D. Thesis, Northwestern
University, Illinois 60208-3112, U.S.A. (2012)
https://people.math.umass.edu/~gwilliam/thesis.pdf .

[4] O. Gwilliam and T. Johnson-Freyd, How to derive Feynman diagrams for finite-dimensional
integrals directly from the BV formalism, arXiv:1202.1554 [INSPIRE].

– 48 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(81)90205-7
https://inspirehep.net/literature/170872
https://doi.org/10.1103/PhysRevD.28.2567
https://inspirehep.net/literature/200436
https://people.math.umass.edu/~gwilliam/thesis.pdf
https://arxiv.org/abs/1202.1554
https://inspirehep.net/literature/1088783


J
H
E
P
0
2
(
2
0
2
4
)
1
3
7

[5] K. Costello, Renormalization and Effective Field Theory, American Mathematical Society (2011)
[DOI:10.1090/surv/170].

[6] K. Costello and O. Gwilliam, Factorization Algebras in Quantum Field Theory. Volume 1,
Cambridge University Press (2016) [DOI:10.1017/9781316678626].

[7] O. Gwilliam and K. Rejzner, Relating Nets and Factorization Algebras of Observables: Free Field
Theories, Commun. Math. Phys. 373 (2020) 107 [arXiv:1711.06674] [INSPIRE].

[8] R. Brunetti, K. Fredenhagen and K. Rejzner, Quantum gravity from the point of view of locally
covariant quantum field theory, Commun. Math. Phys. 345 (2016) 741 [arXiv:1306.1058]
[INSPIRE].

[9] Y. Okawa, Correlation functions of scalar field theories from homotopy algebras,
arXiv:2203.05366 [INSPIRE].

[10] J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys.
Rept. 259 (1995) 1 [hep-th/9412228] [INSPIRE].

[11] B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl.
Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].

[12] T. Lada and M. Markl Strongly homotopy Lie algebras, hep-th/9406095.

[13] T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32
(1993) 1087 [hep-th/9209099] [INSPIRE].

[14] M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The geometry of the master
equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405
[hep-th/9502010] [INSPIRE].

[15] K. Munster and I. Sachs, Quantum Open-Closed Homotopy Algebra and String Field Theory,
Commun. Math. Phys. 321 (2013) 769 [arXiv:1109.4101] [INSPIRE].

[16] O. Hohm and B. Zwiebach, L∞ Algebras and Field Theory, Fortsch. Phys. 65 (2017) 1700014
[arXiv:1701.08824] [INSPIRE].

[17] H. Erbin, C. Maccaferri, M. Schnabl and J. Vošmera, Classical algebraic structures in string
theory effective actions, JHEP 11 (2020) 123 [arXiv:2006.16270] [INSPIRE].

[18] D. Koyama, Y. Okawa and N. Suzuki, Gauge-invariant operators of open bosonic string field
theory in the low-energy limit, arXiv:2006.16710 [INSPIRE].

[19] A.S. Arvanitakis, O. Hohm, C. Hull and V. Lekeu, Homotopy Transfer and Effective Field
Theory I: Tree-level, Fortsch. Phys. 70 (2022) 2200003 [arXiv:2007.07942] [INSPIRE].

[20] A.S. Arvanitakis, O. Hohm, C. Hull and V. Lekeu, Homotopy Transfer and Effective Field
Theory II: Strings and Double Field Theory, Fortsch. Phys. 70 (2022) 2200004
[arXiv:2106.08343] [INSPIRE].

[21] M. Crainic, On the perturbation lemma, and deformations, math/0403266 [INSPIRE].

[22] B. Vallette, Algebra+Homotopy=Operad, arXiv:1202.3245.

[23] M. Markl, Loop homotopy algebras in closed string field theory, Commun. Math. Phys. 221
(2001) 367 [hep-th/9711045] [INSPIRE].

[24] A.S. Cattaneo, P. Mnev and N. Reshetikhin, Classical BV theories on manifolds with boundary,
Commun. Math. Phys. 332 (2014) 535 [arXiv:1201.0290] [INSPIRE].

[25] A.S. Cattaneo, P. Mnev and N. Reshetikhin, Perturbative quantum gauge theories on manifolds
with boundary, Commun. Math. Phys. 357 (2018) 631 [arXiv:1507.01221] [INSPIRE].

– 49 –

https://doi.org/10.1090/surv/170
https://doi.org/10.1017/9781316678626
https://doi.org/10.1007/s00220-019-03652-9
https://arxiv.org/abs/1711.06674
https://inspirehep.net/literature/1645958
https://doi.org/10.1007/s00220-016-2676-x
https://arxiv.org/abs/1306.1058
https://inspirehep.net/literature/1237092
https://arxiv.org/abs/2203.05366
https://inspirehep.net/literature/2049651
https://doi.org/10.1016/0370-1573(94)00112-G
https://doi.org/10.1016/0370-1573(94)00112-G
https://arxiv.org/abs/hep-th/9412228
https://inspirehep.net/literature/381842
https://doi.org/10.1016/0550-3213(93)90388-6
https://doi.org/10.1016/0550-3213(93)90388-6
https://arxiv.org/abs/hep-th/9206084
https://inspirehep.net/literature/335613
https://arxiv.org/abs/hep-th/9406095
https://doi.org/10.1007/BF00671791
https://doi.org/10.1007/BF00671791
https://arxiv.org/abs/hep-th/9209099
https://inspirehep.net/literature/339329
https://doi.org/10.1142/S0217751X97001031
https://arxiv.org/abs/hep-th/9502010
https://inspirehep.net/literature/392517
https://doi.org/10.1007/s00220-012-1654-1
https://arxiv.org/abs/1109.4101
https://inspirehep.net/literature/927807
https://doi.org/10.1002/prop.201700014
https://arxiv.org/abs/1701.08824
https://inspirehep.net/literature/1511450
https://doi.org/10.1007/JHEP11(2020)123
https://arxiv.org/abs/2006.16270
https://inspirehep.net/literature/1804323
https://arxiv.org/abs/2006.16710
https://inspirehep.net/literature/1804342
https://doi.org/10.1002/prop.202200003
https://arxiv.org/abs/2007.07942
https://inspirehep.net/literature/1807225
https://doi.org/10.1002/prop.202200004
https://arxiv.org/abs/2106.08343
https://inspirehep.net/literature/1868900
https://arxiv.org/abs/math/0403266
https://inspirehep.net/literature/2727631
https://arxiv.org/abs/1202.3245
https://doi.org/10.1007/PL00005575
https://doi.org/10.1007/PL00005575
https://arxiv.org/abs/hep-th/9711045
https://inspirehep.net/literature/450808
https://doi.org/10.1007/s00220-014-2145-3
https://arxiv.org/abs/1201.0290
https://inspirehep.net/literature/1083405
https://doi.org/10.1007/s00220-017-3031-6
https://arxiv.org/abs/1507.01221
https://inspirehep.net/literature/1381557


J
H
E
P
0
2
(
2
0
2
4
)
1
3
7

[26] H. Kajiura, Noncommutative homotopy algebras associated with open strings, Rev. Math. Phys.
19 (2007) 1 [math/0306332] [INSPIRE].

[27] M. Doubek, B. Jurčo and J. Pulmann, Quantum L∞ Algebras and the Homological Perturbation
Lemma, Commun. Math. Phys. 367 (2019) 215 [arXiv:1712.02696] [INSPIRE].

[28] T. Macrelli, C. Sämann and M. Wolf, Scattering amplitude recursion relations in
Batalin-Vilkovisky-quantizable theories, Phys. Rev. D 100 (2019) 045017 [arXiv:1903.05713]
[INSPIRE].

[29] B. Jurčo, T. Macrelli, C. Sämann and M. Wolf, Loop Amplitudes and Quantum Homotopy
Algebras, JHEP 07 (2020) 003 [arXiv:1912.06695] [INSPIRE].

[30] A.S. Arvanitakis, The L∞-algebra of the S-matrix, JHEP 07 (2019) 115 [arXiv:1903.05643]
[INSPIRE].

[31] T. Johnson-Freyd, Homological perturbation theory for nonperturbative integrals, Lett. Math.
Phys. 105 (2015) 1605 [arXiv:1206.5319] [INSPIRE].

[32] A. Zee, Quantum Field Theory in a Nutshell, second edition, Princeton University Press, (2010)
[ISBN: 9780691140346].

[33] C. Chiaffrino, O. Hohm and A.F. Pinto, Gauge Invariant Perturbation Theory via Homotopy
Transfer, JHEP 05 (2021) 236 [arXiv:2012.12249] [INSPIRE].

[34] B.C. Hall, The range of the heat operator, math/0409308.

[35] W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

[36] V. Mukhanov and S. Winitzki, Introduction to quantum effects in gravity, Cambridge University
Press (2007) [INSPIRE].

– 50 –

https://doi.org/10.1142/S0129055X07002912
https://doi.org/10.1142/S0129055X07002912
https://arxiv.org/abs/math/0306332
https://inspirehep.net/literature/621775
https://doi.org/10.1007/s00220-019-03375-x
https://arxiv.org/abs/1712.02696
https://inspirehep.net/literature/1641827
https://doi.org/10.1103/PhysRevD.100.045017
https://arxiv.org/abs/1903.05713
https://inspirehep.net/literature/1724955
https://doi.org/10.1007/JHEP07(2020)003
https://arxiv.org/abs/1912.06695
https://inspirehep.net/literature/1770943
https://doi.org/10.1007/JHEP07(2019)115
https://arxiv.org/abs/1903.05643
https://inspirehep.net/literature/1724951
https://doi.org/10.1007/s11005-015-0791-9
https://doi.org/10.1007/s11005-015-0791-9
https://arxiv.org/abs/1206.5319
https://inspirehep.net/literature/1120194
https://doi.org/10.1007/JHEP05(2021)236
https://arxiv.org/abs/2012.12249
https://inspirehep.net/literature/1837871
https://arxiv.org/abs/math/0409308
https://doi.org/10.1103/PhysRevD.14.870
https://inspirehep.net/literature/117815
https://inspirehep.net/literature/775909

	Introduction
	General approach
	BV for finite-dimensional toy model
	BV for quantum mechanics
	Homotopy retract for harmonic oscillator

	Comparison with standard formulations
	Perturbation lemma
	Wick contractions and perturbations
	Path integral

	Harmonic oscillator and perturbations
	Homological computation for position eigenstates
	Homological computation for coherent states
	Comparison with operator language
	General boundary conditions
	Interacting example: correlation functions for phi**(4) theory

	Unruh effect
	Generalities and homotopy retract
	Number expectation value

	Summary and outlook
	Homological algebra

