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Abstract: Multiple lines of evidence suggest that the Hilbert space of an isolated de Sitter
universe is one dimensional but can appear larger when probed by a gravitating observer. To
test this idea, we compute the von Neumann entropy of a field theory in a two-dimensional
de Sitter universe which is entangled in a thermal-like state with the same field theory
on a disjoint, asymptotically anti-de Sitter (AdS) black hole. Previously, it was shown
that the replica trick for computing the entropy of such entangled gravitating systems
requires the inclusion of a non-perturbative effect in quantum gravity — novel wormholes
connecting the two spaces. Here we show that: (a) the expected wormholes connecting
de Sitter and AdS universes exist, avoiding a no-go theorem via the presence of sources on
the AdS boundary; (b) the entanglement entropy vanishes if the nominal entropy of the
de Sitter cosmological horizon (SdS = AdS

horizon/4GN) is less than the entropy of the AdS
black hole horizon (SBH = AAdS

horizon/4GN), i.e., SdS < SBH; (c) the entanglement entropy
is finite when SdS > SBH. Thus, the de Sitter Hilbert space is effectively nontrivial only
when SdS > SBH. The AdS black hole we introduce can be regarded as an “observer” for
de Sitter space. In this sense, our result is a non-perturbative generalization of the recent
perturbative argument that the algebra of observables on the de Sitter static patch becomes
nontrivial in the presence of an observer.
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1 Introduction

Gibbons and Hawking argued that the cosmological horizon of de Sitter space acts as if it
carries a thermodynamic entropy SdS proportional to the horizon area [1]. If this entropy has
a conventional interpretation in terms of the dimension of the microscopic Hilbert space, it
should be possible to entangle the corresponding microstates with a reference universe, creating
a state which appears, to observers in either universe, to have a large von Neumann entropy.

Recent work [2–13] has tested this idea using methods pioneered in refs. [14–16] for
studying the entropy of Hawking radiation. These results suggest that when the reference
universe does not gravitate, the entropy of entanglement is zero, implying that the de Sitter
Hilbert space is one dimensional, so that there is no way to form an entangled state with
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an external reference system.1 If this is true, there is a tension with naive statistical
interpretations of the Gibbons-Hawking argument for the entropy of cosmological horizons [1].
Related arguments suggest that the Hilbert space of any closed universe is trivial [17, 18].
Another idea, called static patch holography, states that the de Sitter static patch can be
described in terms of a nontrivial Hilbert space of degrees of freedom living on the cosmological
horizon (see refs. [19–22] and refs. [23–26]). Earlier approaches to de Sitter holography, some
of which use structures at past and future infinity, include refs. [27–38].

To elucidate these issues concerning the de Sitter Hilbert space, in this paper we apply
the methods of ref. [39] to study entanglement of a de Sitter universe with a gravitating
reference system. We choose the reference to be a black hole in anti-de Sitter (AdS) space
and consider entangled states of the form

|Ψ⟩ =
∞∑

i=1

√
pi |ψi⟩A|ψi⟩B,

∞∑
i=1

pi = 1, (1.1)

where A and B are de Sitter space and an AdS black hole, respectively. We assume that both
universes contain the same quantum field theory (QFT), whose states are being entangled.
We then compute the von Neumann entropy by a replica trick involving gravitational path
integrals (see [40–48] for related approaches).

Recent work has proposed that when applying the replica method to the entropy of
a gravitating spacetime entangled with a non-gravitating reference, we must include the
contributions of novel wormholes that connect the replica copies of the gravitating system
in order to obtain results consistent with unitarity [40, 41]. This suggests that when the
reference system is also gravitating, we should include additional wormholes connecting the
original system to the reference, if such wormholes exist. Indeed, ref. [39] showed that this
procedure is necessary when both the original universe and the reference with which it is
entangled are AdS black holes. In this case, the entanglement is quantified by a generalized
entropy in a new spacetime constructed by appropriately gluing two AdS black holes.

In this paper, we study what happens when we replace one of the two AdS black holes
with de Sitter space. In this case, the boundary conditions of the relevant gravitational path
integrals are imposed in Lorentzian spacetime at the asymptotic boundary at spatial infinity
on the AdS side and at future/past infinity on the de Sitter part of the geometry. While we
mostly work in a two-dimensional theory of gravity for the sake of calculability, our basic
argument does not seem to rely crucially on the low dimensional nature of the model, so
we expect that our findings will persist in higher dimensions.

We begin by showing that there is a Euclidean wormhole connecting de Sitter and AdS
spacetimes in our setting. This wormhole can be viewed as a Euclidean AdS black hole
which contains a de Sitter false vacuum bubble, separated from the true vacuum region
by a domain wall. Our construction evades an argument of Fu and Marolf [49] forbidding
such solutions, by including the effects of sources on the AdS boundary. These sources are

1Reference [4] also proposed scenarios leading to a finite de Sitter entropy. As we will discuss later, these
settings involve the presence of a black hole and/or end-of-the-world brane truncating the locally de Sitter
geometry, and could be regarded as introducing “gravitational observers” of the de Sitter static patch similarly
to the present paper. For another way of seeing a finite de Sitter entropy in a gravitational setting, see ref. [6].
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required in our setting to prepare the excitations |ψi⟩ in the entangled state (1.1) of the bulk
QFT. The backreaction of the matter stress tensor coming from these entangled field theory
degrees of freedom allows us to explicitly construct a wormhole solution with the desired
properties in two-dimensional Jackiw-Teitelboim (JT) gravity. Thus, the entanglement of the
matter degrees of freedom between the two systems is essential to our construction. When
the entanglement is large, the effect of our boundary sources can be described as injecting
localized domain walls (particles in two dimensions) at the boundary of Euclidean AdS.
These walls propagate a short distance into the bulk and then decay into the domain wall
surrounding a de Sitter bubble. In this limit, our approach resembles the construction of
de Sitter bubbles within AdS by Mirbabayi [50]. (Also see the recent works [51–53] which
construct AdS big bang-big crunch cosmologies as bubbles behind an AdS black hole horizon.)
When continued to Lorentzian signature, the resulting wormhole describes an AdS black hole
with an inflating region in its interior. Such spacetimes were introduced to study inflation in
AdS/CFT [54] and to try to find a way of creating a universe in a lab [55, 56]; see also [57–60]
for earlier work. The authors of refs. [61–65] have also studied how to realize two-dimensional
de Sitter space inside AdS2 space in dilaton gravity. In these theories, neither AdS nor de
Sitter space is a solution of the equation of motion by itself. Rather these theories include
a dilaton with a potential that allows a Centaur geometry connecting AdS and dS. In the
present paper we focus on theories which do admit pure, disjoint AdS and de Sitter solutions.

As we will see, in our setting the entanglement between the two systems is quantified by
a generalized entropy computed on the dominant saddle of the replica path integral. We find
two phases when the QFT state is strongly entangled. First, if the area of the cosmological
horizon is smaller than that of the AdS black hole, so that the Bekenstein-Hawking entropies
of de Sitter (SdS) and the black hole (SBH) satisfy SdS < SBH, the saddlepoints consistent with
the boundary conditions do not have wormholes between the de Sitter and AdS components.
In this case, the entanglement entropy is computed by the same “island formula” that appears
when the reference spacetime is non-gravitating [4], and the entropy vanishes, suggesting
a one-dimensional de Sitter Hilbert space. In the opposite case, when SdS > SBH, and the
bulk QFT is strongly entangled, the dominant saddlepoint includes a wormhole between the
de Sitter and AdS universes. The entanglement entropy is then given by the AdS black hole
entropy, suggesting that the de Sitter Hilbert space is nontrivial.

The AdS black hole that we introduced can be regarded as an observer for de Sitter
space: it probes the de Sitter degrees of freedom using entanglement with its own degrees
of freedom. While these degrees of freedom may, in principle, be a part of the quantum
de Sitter system itself, we introduce them as an external system. Our result concerning
the entanglement entropy described above is consistent with the recent claim that in the
presence of a gravitating observer the algebra of observables on a de Sitter static patch
becomes nontrivial [66]. In our setup, the gravitational interaction between de Sitter space
and the observer is embodied by the wormhole connecting them. Our result implies that
for an observer who consists of more than SdS qubits, the entanglement wedge covers an
entire de Sitter time slice, and accordingly the entanglement entropy vanishes. On the other
hand, for an observer consisting of less than SdS qubits, the static patch Hilbert space can be
probed using the observer’s Hilbert space, leading to a non-vanishing entanglement entropy.
This is consistent with ref. [66] where the gravitating observer is a point particle, and hence
has access to fewer than SdS qubits.
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Five sections follow. In section 2, we set up our model which involves de Sitter space,
a black hole in AdS, and an entangled QFT state defined on these two spacetimes. We
then discuss the replica calculation of the entanglement entropy using gravitational path
integrals. A novel feature of the calculation is the appearance of wormholes connecting
the two universes. In section 3, we explain how to construct these wormhole solutions in
the simplest case, namely Einstein gravity coupled with a codimension-one domain wall.
Additionally we include the backreaction of the QFT stress tensor of the entangled state (1.1).
We explicitly construct the Euclidean wormhole solution in two-dimensional JT gravity and
show that in order to connect de Sitter and AdS, the backreaction of the entangled state is
necessary. In section 4, we discuss the behavior of the entanglement entropy by assembling
the results obtained in previous sections. In section 5, we interpret our results, and discuss
the relation with algebraic perspective on de Sitter entropy offered in ref. [66].

2 Replica calculation of the entanglement entropy

We are interested in entanglement between states on de Sitter space and those on a black
hole in AdS space. In particular, we would like to understand the role of possible wormholes
connecting these two spacetimes in light of refs. [67, 68] when the entanglement between
the degrees of freedom in the two spacetimes is large.

2.1 Entanglement between two AdS black holes

Before discussing the entanglement between de Sitter and AdS spaces, we review the case
where both spacetimes have AdS asymptotics and contain black holes. This situation was
studied in ref. [39], where the following thermofield-double-like entangled QFT state on
two AdS spaces was considered:

|Ψ⟩ =
∞∑

i=1

√
pi |ψi⟩A|ψi⟩B, pi = e−βEi∑

j e
−βEj

. (2.1)

Here, A and B are both gravitating, asymptotically AdS spacetimes, and {|ψi⟩A,B}∞i=0 are
energy eigenstates in QFTA,B, which we take to be the same conformal field theory (CFT).
For calculational convenience, we will focus on the situation where both A and B are two
dimensional.

The entanglement entropy S(ρA) between two “universes” A and B can be computed
using the replica trick

S(ρA) = lim
n→1

1
1 − n

ln trρn
A, ρA =

∑
i,j

√
pipj ⟨ψi|ψj⟩B |ψj⟩A⟨ψi|. (2.2)

The trace quantity appearing here is given by

trρn
A = 1

Zn
1

∑
{ik,jk}

n∏
k=1

√
pikpjk ⟨ψik |ψjk+1⟩Ak⟨ψik |ψjk⟩Bk ≡ Zn

Zn
1
, (2.3)

where |ψin+1⟩An ≡ |ψi1⟩An , and

Z1 =
∑
i,j

√
pipj ⟨ψi|ψj⟩A⟨ψi|ψj⟩B. (2.4)
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The overlaps ⟨ψi|ψj⟩A,B can be computed by a gravitational path integral on Euclidean AdS
space (a disk in two dimensions) with two local operator insertions on the boundary

⟨ψi|ψj⟩A = ⟨ψi(∞)ψj(0)⟩disk. (2.5)

Note that the overlap between two QFT energy eigenstates |ψi⟩A and |ψj⟩A (i ̸= j) does
not necessarily vanish in the presence of gravity, reflecting the fact that these eigenstates
are overcomplete. Since the right-hand side of eq. (2.3) contains a product of 2n overlaps,
the gravitational path integral involves 2n copies of the universes, i.e., 2n copies of the disk.
The path integral can thus include contributions from saddles in which the copies of the
universes are connected by wormholes.

The rule for computing the gravitational path integral (2.3) in the semiclassical approxi-
mation is to include all saddles consistent with the conditions imposed on the boundaries
of each universe, {∂Ak, ∂Bk}.2 Ref. [39] examined the possible saddles for the gravitational
path integral. For example, there are saddles in which all the boundaries are disconnected
in the bulk, giving the thermal entropy Sth. Another saddle connects all copies of A via
a wormhole, while all copies of B remain disconnected. The authors of ref. [39] argued
that in the high temperature limit β → 0, the dominant saddle connects all the copies of
A and B through a single wormhole. This is because in this saddle, the indices {ik, jk} on
the right-hand side of eq. (2.3) labeling QFT excited states contract to form a single loop,
giving a large combinatorial factor. In other saddles, these indices do not form a single
loop, giving at least one Kronecker delta on the right-hand side of eq. (2.3), significantly
reducing the value of the sum in the high temperature limit. As a consequence, they cannot
dominate the gravitational path integral.

To illustrate this argument, let us consider the simplest example, i.e. the calculation of
Z1 defined in eq. (2.4). The gravitational path integral contains two saddles: the disconnected
saddle consisting of two disjoint disks and the connected saddle in which two disks are
connected by a wormhole. Thus, we write Z1 = Z1,disconn + Z1,conn, where the first term is

Z1,disconn = e−Sgrav[A]−Sgrav[B], (2.6)

since on this saddle the overlaps are proportional to δij . On the other hand, the contribution
from the connected saddle A#B reads

Z1,conn = e−Sgrav[A#B]∑
i,j

√
pipj ⟨ψi(∞A)ψj(0A)ψi(∞B)ψj(0B)⟩A#B, (2.7)

where the QFT four point function on the right-hand side is evaluated on A#B. When
both A and B are asymptotically AdS, the connected saddle A#B depends on two moduli
parameters: the renormalized length ℓ and twist angle τ between the two disk boundaries

2This corresponds to taking an ensemble average of the quantity in question over microstates that cannot
be discriminated at the semiclassical level. This makes, for example, the contribution to Z1 in eq. (2.4) from
terms with i ̸= j non-vanishing, despite the fact that the same calculation for each factor provides a vanishing
result [40]. While semiclassical calculation using the gravitational path integral involves an ensemble averaging,
applying it in the context of the replica trick correctly reproduces the entanglement entropy of a microstate;
see ref. [22] for discussion of this point.
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∂A and ∂B. Reference [39] argued that in the limit β → 0, the moduli parameters of
the wormhole dominating the gravitational path integral satisfy ℓ → 0 and τ → 0. This
corresponds to the OPE channel ψi(∞A) → ψi(∞B) and ψj(0A) → ψj(0B), which makes
the above four point function factorize

Z1,conn = e−Sgrav[A#B]ZCFT[A/B]2, ZCFT[A/B] =
∑

i

√
pi ⟨ψi(∞A)ψi(∞B)⟩A/B, (2.8)

where ⟨ψi(∞A)ψi(∞B)⟩ = ⟨ψi|ψi⟩A/B is a two-point correlator evaluated on a space A/B,
called a swap wormhole in ref. [39], obtained by merging half of A and half of B. Since
ZCFT[A/B]2 grows indefinitely for β → 0, Z1,conn dominates over Z1,disconn in this limit.

By including the saddle in which all the copies of A and B are connected by a single
wormhole, we find that the entanglement entropy S(ρA) of universe B is given by

S(ρA) = Min{Sth,Sswap(ρA)}, Sswap(ρA) = MinExt
I

[Area(A/B,∂I)
4GN

+Seff(I)
]
. (2.9)

This expression is closely related to the island formula for the entropy of evaporating black
holes [14–16], but there is one significant difference. In the above formula, the minimization
and extremization in Sswap(ρA) must be done in the swap wormhole A/B in which the
geometry of the universe A and B are glued. Examples of such glued spacetimes are
constructed in refs. [39, 47].

2.2 Entangling de Sitter and AdS spaces

The main goal of this paper is to use methods similar to those described above to compute
entanglement entropy for a state similar to that in eq. (2.1) when one of the disjoint universes,
A, is de Sitter space and the other universe, B, is an AdS black hole. We begin by discussing
the relevant entangled state.

To define a state of the form in eq. (2.1), suppose that the low energy effective field
theories in the two universes are the same CFT. The states |ψi⟩A in de Sitter space are then
prepared by performing the Euclidean path integral on half of a (d+ 1)-dimensional sphere
Sd+1 with the CFT operator Oi corresponding to |ψi⟩A inserted at a pole, e.g., on the pole of
the southern “hemisphere.” Here, d is the number of spatial dimensions. Similarly, the states
|ψi⟩B are prepared by a Euclidean path integral on half of a ball Bd+1 with Oi inserted at
the pole. In this paper, we mostly focus on two-dimensional spacetimes, in which case the
relevant geometries are a half sphere S2/Z2 and a half disk B2/Z2.

In general, we can consider an entangled state of the form

|Ψ⟩ =
∞∑

i=1

√
pi |ψi⟩A|ψi⟩B,

∞∑
i=1

pi = 1. (2.10)

For definiteness, however, we take

pi = e−β∆i∑
j e

−β∆j
, (2.11)
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where ∆i is the conformal dimension of the operator Oi. We are mostly interested in the
“high temperature” limit β → 0 of this state,3 but the conclusions we draw for this limit also
apply to more general entangled states of the form in eq. (2.10) if |Ψ⟩ receives contributions
from a sufficiently large number of |ψi⟩’s. We stress that ∆i’s in eq. (2.11) are the conformal
dimensions of operators in the bulk quantum field theory, which we take to be CFT for
convenience. In the AdS side, they coincide with the dimensions of the corresponding
boundary operators, but in the de Sitter side, we do not have such an interpretation.4

Note that while we insert operators on a background spacetime, the excited states
effectively include microstates of the geometry, not just perturbative excitations in the
semiclassical theory, when gravity is turned on. This is because the microstates can also
be viewed as excitations of blueshifted, i.e., locally high energy, excitations of low energy
quantum fields; see, e.g., ref. [22]. A related phenomenon is that in the low energy QFT
description of the entanglement of a subregion of a gravitating spacetime, there is a scheme
dependence in the attribution of the contribution from the region near the entangling surface
to the geometrical area term or power-divergent contribution from low energy fields [69, 70].
See also [71, 72] for related discussions for two-dimensional black holes. When we include
the effects of quantum gravity, the states |ψi⟩’s become overcomplete. The information
about the correct number of states, however, can still be extracted by using the island
formula [14–16] or equivalently including the contribution from replica wormholes in path
integrals [40, 41, 72–74], which we study here (see also footnote 2).

Our goal is to compute the entanglement entropy of the state in eq. (2.10). We can
follow the same steps used in section 2.1 to compute the entanglement entropy between
two AdS black holes using the replica trick. The relevant expressions eq. (2.2)–(2.4) con-
tain terms that are products of overlaps of excited states such as ⟨ψi|ψj⟩A⟨ψi|ψj⟩B and∏n

k=1
√
pikpjk ⟨ψik |ψjk+1⟩Ak⟨ψik |ψjk⟩Bk , where the subscript A indicates the de Sitter factor

and the subscript B indicates the AdS factor. We will use the saddlepoint approximation
to the Euclidean gravity path integral to compute these products of overlaps. As described
above, each product will then be given by a sum of contributions of saddlepoints of different
topologies, some of which may be wormholes connecting de Sitter factors, AdS factors, or
de Sitter and AdS factors. Below we describe this zoo of possibilities and explain which
ones are expected to dominate the saddlepoint sum.

2.3 Gravitational path integrals for state overlaps

We want to calculate products of overlaps like ⟨ψi|ψj⟩A⟨ψk|ψl⟩B , and more generally products
that include multiple factors of each type of universe like ⟨ψi|ψj⟩A⟨ψk|ψl⟩A⟨ψm|ψn⟩B⟨ψo|ψp⟩B .
As we discussed above, the states on A (de Sitter space) are prepared by the Euclidean
path integral over a hemisphere with an operator applied at the pole, while the states on B

(AdS space) are prepared by the Euclidean path integral over a half-disk with an operator
placed again at the pole. But there is a critical difference between these constructions:

3This temperature characterizes the strength of the entanglement and is not related to the temperature of
de Sitter space or the AdS black hole.

4Furthermore, since we are considering two-dimensional conformal field theory, where the de Sitter nature
of the metric appears only as a Weyl factor, the CFT operators we consider behave as if they are living in a
flat space.
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in the AdS case, the operator is placed at the spacetime boundary, but in the de Sitter
case, Euclidean de Sitter is a compact manifold without boundary. This difference raises a
question for how we should calculate the path integrals for the overlaps above. If both A

and B were asymptotically AdS, then both would have spacetime boundaries, and there is a
well-tested rule motivated by the AdS/CFT correspondence for the saddlepoint approximation
to the Euclidean gravity path integral: include all saddlepoints consistent with the boundary
conditions imposed at the boundary loci. However, there is no asymptotic boundary in
de Sitter space, and we do not have the guide of a holographic dual; hence, the rule for
selecting saddles is not a priori clear.

For Lorentzian de Sitter space, boundary conditions are naturally imposed at future and
past infinities, as suggested by the fact that these are the only weakly gravitating regions.
We thus interpret our state preparation algorithm as selecting a state in these asymptotic
regions. Since the gravitational path integrals computing the overlaps of interest, eq. (2.3),
involve both Euclidean de Sitter and AdS spacetimes, our working hypothesis is that we
should select saddles whose continuations to Lorentzian signature contains future and past
infinities for de Sitter space, in addition to the conformal boundaries for AdS space. In
the Euclidean regime, this rule requires that the saddles contain the cosmological horizon
(the fixed point of the U(1) isometry of dS2) so that after the continuation to Lorentzian
signature the geometry will contain a future/past infinity.

With this hypothesis, the calculation of the entanglement entropy of the state in eq. (2.10)
with eq. (2.11) proceeds as in section 2.1: we sum over all saddlepoint topologies for the given
boundary conditions, which here includes the requirement that the de Sitter past and future
infinities are contained in the Lorentzian continuation. Note that while this requirement is
inspired by the use of the asymptotic future/past infinities, we do not commit to a particular
holographic theory for de Sitter space, such as the dS/CFT correspondence [27, 28]. In
particular, we are agnostic about where the effective holographic description of the de Sitter
space — if there is any — lives, e.g. at the future infinity or on the stretched horizon.

One saddlepoint topology that is always present consists of disconnected geometries
computing each of the overlaps in eq. (2.3) (figure 1a). This contribution treats the overlaps
as independent and does not allow for topology-changing contributions, i.e., wormholes, in
the product of overlaps. This class of saddlepoints obviously exists since each factor exists.
A second class of saddlepoints includes wormholes connecting the replicas of the A universes
(de Sitter space in our case). The maximally symmetric member of this class is labeled
Type IIA in figure 1b. Similarly, there are wormholes between the B universes and we will
call the maximally symmetric one Type IIB. These Type II saddlepoints have been already
shown to exist in the JT gravity setting in refs. [4, 39, 75]. Next, we can have simultaneous
wormholes between the A universe replicas and between the B universe replicas — we call
these Type III saddlepoints in figure 1c. If Type II saddlepoints exist, then so do Type III
because the wormholes between A universes and between B universes are solved for separately.

Finally, there may be wormholes that connect all replica copies of the A and B universes
together (Type IV wormholes in figure 1d). As described in section 2.1, such wormholes
exist when both A and B are asymptotically AdS [39] and dominate the path integral at
high temperatures. The main task of the present paper, which we will take up in the next
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(a) (b)

(c) (d)

Figure 1. Possible gravitational saddles of the n = 3 Rényi entropy (2.3) connecting copies of the
universes A (de Sitter) and B (an AdS black hole). (a) Totally disconnected saddle where all copies of
A and B are disconnected. (b) Type IIA configuration where all copies of the universe A are connected
by a replica wormhole, but the copies of the universe B are disconnected. In the same way, we have
Type IIB configurations where all copies of universe B are connected by a replica wormhole. (c) In the
Type III configuration, each copy of A is linked by a replica wormhole, and each copy of B is linked
by a separate replica wormhole, but the two wormholes are not interconnected. (d) In a Type IV
configuration, all copies are connected through a single wormhole.
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section, is to demonstrate the existence of such wormholes when the two universes have
cosmological constants of opposite sign. As we will see, if such wormholes exist, they will
dominate the gravitational path integrals that compute Z1 and Zn in eq. (2.3) in the high
entanglement temperature (β → 0) limit. This is for the same reason that they dominate
the high entanglement limit when both A and B are asymptotically AdS [39]: as described
in section 2.1, increasing the entanglement in eq. (2.1) or (2.10) by taking β → 0 increases
the number of matter excitations |ψi⟩ with significant support, and on a fully connected
wormhole geometry these states are able to contract to form a single loop giving a large
combinatorial factor in the overlap. This factor is controlled parametrically by β, and so
when the other parameters (e.g. cosmological constants) are fixed, there is always a β that
is small enough so that this contribution dominates, if the saddlepoint exists. However, we
will also show in section 3 that if the size of the cosmological horizon is smaller than that
of the AdS black hole horizon, i.e. SdS < SBH, then the Type IV — or a de Sitter/AdS
(dS/AdS)—wormhole cannot exist.

2.4 Entanglement entropy vanishes without a dS/AdS wormhole

In the absence of a dS/AdS wormhole, or if it is sub-dominant because the entanglement
temperature is low, we can assemble results from previous work to argue that the entanglement
entropy vanishes. To do this, we will first discuss the path integral for the normalization Zn

1
in the denominator of (2.3), and then the path integral for the Zn factor in the numerator.

First, Z1 in eq. (2.4) is a sum of terms each of which is a product of one de Sitter overlap
and one AdS overlap. In the absence of dS/AdS wormholes, each term is computed by a
disconnected diagram of the form in figure 1a, with one de Sitter path integral and one
AdS path integral, which evaluate the vacuum 2-point functions of the operators at the
poles creating states on the sphere and disk respectively. These two point functions will be
proportional to the identity, ⟨ψi|ψj⟩ ∝ δij . If we choose the normalization of the operators
so that the proportionality constant is 1, we see that the sum in eq. (2.4) equals 1. More
generally, even if we do not fix the normalization of operators in this way, Z1 normalizes the
Rényi entropy and will not grow with the entanglement temperature.

For Zn, let us consider the saddle in which all copies of de Sitter space are connected
by a replica wormhole, while all copies of the AdS black hole are disconnected. In this case,
the AdS universes have no wormholes connecting them, so for the purpose of calculating the
Rényi entropy in eq. (2.3) the AdS universes in this saddlepoint behave in the same way as
a non-gravitating system.5 Thus, the computation and resulting value of the entanglement
entropy will agree with the results in ref. [4] for de Sitter space entangled with a non-
gravitating reference space. As discussed there, the result will be S(ρA) = 0 [4] unless
we include additional ingredients like end-of-the-world branes that effectively introduce
boundaries into the spaces, which we do not want to do here. Since zero is the smallest
possible value for the entanglement, the dominance of this saddle is guaranteed, implying
that the entanglement entropy vanishes.

5Strictly speaking, the Rényi entropy is the logarithm of (2.3) divided by 1 − n, but we loosely call the
expression in eq. (2.3) the Rényi entropy.
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This conclusion changes if a dS/AdS wormhole exists. This is because in this case, as
discussed in the previous section, Z1 will be dominated by the connected saddle at high
entanglement temperature, because of the contribution of the matter excitations. These
contributions grow as the entanglement temperature increases, thereby increasing the number
of states |ψi⟩ with significant support in (2.10). Similarly, when the dS/AdS wormhole
exists, the fully connected saddle in figure 1d gives the dominant contribution to Zn at high
entanglement temperature, because of the matter contribution. Taking the n→ 1 limit, we
will see that the leading, fully connected, contributions to Zn and Z1 lead to a finite entropy
in the high entanglement temperature limit, which is given by the generalized entropy formula
on a geometry that looks like a de Sitter bubble behind the horizon of an AdS black hole.

3 dS/AdS wormholes

Our goal in this section is to construct a wormhole between Euclidean de Sitter and AdS
spaces, and also to describe the analytic continuation of this wormhole to Lorentzian signature.
Our solution will have the form of a bubble of de Sitter space behind the horizon of an AdS
black hole. There is a long history of constructions of this general kind in different settings. To
our knowledge, the first of these was an exploration of the possibility of creating a universe in
the lab. Although Penrose’s singularity theorem forces a singularity in a classical experiment
of this kind, there may be room to realize such spacetimes via quantum tunneling [55].

A constraint on de Sitter bubbles in AdS. In the context of the AdS/CFT corre-
spondence, Freivogel et al. [54] constructed an inflating bubble separated by a domain wall
from an asymptotically AdS geometry in a setup in which a false vacuum region with a
positive cosmological constant is embedded in a true vacuum with a negative cosmological
constant. The analysis in ref. [54] emphasized an important constraint: the required gluing
can only be performed consistently with the Israel junction conditions when the area of the
cosmological horizon AdS is larger than the area of the horizon of the AdS black hole ABH,
or, in terms of the associated Bekenstein-Hawking entropies

SdS > SBH, (3.1)

if we impose reflection symmetry with respect to a Cauchy slice. This constraint arises because
the glued spacetime is effectively a “bag of gold” geometry — the cosmological horizon is
a “locally maximal” surface, whereas the event horizon of the AdS black hole is “locally
minimal.” Therefore, if we demand continuity of the metric on the separating domain wall,
we will need AdS > ABH. We will find the same constraint on the existence of our wormholes.

In fact, in our context there is a natural microscopic argument explaining why we must
have SdS > SBH when we entangle the de Sitter and AdS Hilbert spaces. Recall the idea
of static patch holography in de Sitter space. This hypothesis asserts that the degrees of
freedom describing the static patches of de Sitter space live on their stretched horizons with
the Hilbert space HdS. From this point of view, the region of global de Sitter space that
contains future infinity emerges from entanglement between the left and right static patch
degrees of freedom; see, e.g., ref. [22]. The area of the cosmological horizon naturally evaluates
the dimension of HdS. In our setup there are two Hilbert spaces HdS and HBH which are
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entangled. When dimHdS < dimHBH, all the basis states of HdS are entangled with the
microstates of the AdS black hole.6 Therefore, there is no room for the matter states in
the static patch of de Sitter space to be entangled with the appropriate HdS. This means
that if we realize this bipartite entangled state in terms of semiclassical geometry, then it
should not contain the future or past infinity, because of the absence of the entanglement
necessary to make the horizon smooth.

A no-go argument for Euclidean de Sitter bubbles. We are interested in constructing
a Euclidean wormhole between de Sitter and AdS spaces. By cutting this geometry on the
time-reflection slice, we could interpret such a wormhole as a saddlepoint of a Euclidean
path integral preparing a de Sitter bubble inside an AdS universe. Fu and Marolf [49] have
advanced a no-go argument showing that this is not possible in a pure gravity theory even
if we allow codimension-one domain walls [49]. The argument is roughly as follows. The
shape of the Euclidean domain wall separating the true and false vacua is determined by
a radial trajectory in the Euclidean spacetime

Ṙ2 + VE(R) = 0, (3.2)

where Ṙ ≡ dR/dτE is the derivative of the domain wall profile with respect to Euclidean
time τE , and VE(R) is an effective potential determined from Israel junction conditions. The
domain wall position turns out to oscillate in some window rmin ≤ r ≤ rmax. If we take the
normal vector of the domain wall to point towards the asymptotic boundary at rmax, then the
associated component (one of the transverse directions) of the extrinsic curvature Ko(rmax)
must be positive because the transverse area increases in this direction; the geometry resulting
from gluing across the domain wall can contain the AdS boundary only in this case. However,
it turns out that if the interior is de Sitter then Ko(rmax) < 0, making the outward normal
actually point towards smaller r in the exterior. As a result, the AdS part of the glued
geometry cannot contain the asymptotic boundary.7

In the present paper, in addition to the domain wall, we have the entangled state of
matter (2.10), the stress tensor of which will backreact on the geometry. To create this
excited state we must insert operators on the Euclidean AdS boundary. We will see that these
operators, and the backreaction of the matter they create, allow us to evade the no-go argument
of Fu and Marolf. When the entanglement is large, we will see that our boundary sources
can be regarded as injecting energy that decays into a domain wall surrounding a de Sitter
bubble. This resembles a construction by Mirbabayi [50] which we review in the appendix.

6This HdS is what is necessarily to construct the region outside the de Sitter horizon. In a “single-sided” —
or cosmological — de Sitter space, this is the degrees of freedom on the stretched horizon, while in a “two-sided”

— or intrinsically global — de Sitter space, this is the degrees of freedom in the other static patch [22].
7While the argument of ref. [49] was originally made in spacetimes with dimension d ≥ 3, the analogous

statement applies in d = 2 because the component of the extrinsic curvature Ko(r) which causes the problem
has a direct counterpart in JT gravity, namely the derivative of the dilaton along the normal direction of
the brane.
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3.1 Action and equations of motion

We start from Einstein gravity coupled to a classical scalar field with a potential on a
Euclidean manifold M

I = − 1
16πGN

∫
M
dxd√g

(
R+ (∂φ)2 − V (φ)

)
+ logZQFT. (3.3)

In the action, we have also added the effective action logZQFT of a bulk QFT in which we
defined the entangled state (2.1). Suppose the potential has two local minima at φ = φA and
φB: one positive V (φA) > 0 and the other negative V (φB) < 0. In this setup, a wormhole
connecting de Sitter and AdS spacetimes is a domain wall connecting the two vacua at φ = φA

and φB . We will assume that the domain wall is thin, or equivalently, that the energy difference
between the de Sitter and AdS minima of V (φ) is small compared to the barrier height.

The domain wall solution is thus constructed by first introducing a domain wall on
both spacetimes A and B and then gluing the two along the wall. The tension of the wall
is related to the difference between the two energy values κ = V (φA) − V (φB). In the
presence of the codimension-one domain wall D, the spacetime manifold splits into two pieces
M = M+∪M−, while the potential energy on either side of the wall is fixed. In the following,
we will use the convention that on M+ the value of the potential is V (φA) > 0, while it is
V (φB) < 0 on M−. The total action (3.3) reduces to

I = IAdS + IdS + Idomain wall + logZQFT, (3.4)

where the first term is the action of Einstein gravity with a negative cosmological constant

IAdS =− 1
16πGN

∫
M−

ddx
√
g

(
R+ 2d(d−1)

L2
AdS

)
+Iboundary,

2d(d−1)
L2

AdS
≡V (φB). (3.5)

Here, Iboundary is defined on the conformal boundary of M− as well as on the domain wall D

Iboundary = − 1
8πGN

∫
∂M−

dd−1x
√
hK, (3.6)

where K is the extrinsic curvature of the boundary of M−. Similarly, we have the action
IdS of the de Sitter region M+ with V (φA) = 2d(d− 1)/L2

dS. There is also a term coming
from the domain wall, proportional to its volume

Idomain wall = κ

∫
D
dd−1x

√
h. (3.7)

The construction of the wormhole solution to the resulting equation of motion is quite
involved because we have to take into account the backreaction of both domain wall and
QFT degrees of freedom. Below we will be mostly interested in the two-dimensional case,
where the dS (AdS) sides is described by dS (AdS) JT gravity, so next we will summarize
the basic properties of these theories.
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3.2 Stress tensors

We want to compute the expectation value of the stress energy tensor ⟨Tµν⟩ on the dS/AdS
wormhole geometry. In general, the stress tensor depends on the background geometry and
vice versa, so to determine it we must solve the gravitational equation of motions. However,
in JT gravity there is a simplification because the background metric on either side of the
domain wall is locally dS or AdS, and the equation of motion only couples the stress tensor to
the dilaton. So we can take the metrics on the two sides to describe the vacuum dS and AdS
solutions, work out the matter stress tensors on these backgrounds, backreact these stress
tensors to find the dilaton profile, and then glue the solutions across the domain wall. Below
we will take the first step in this procedure: finding the stress tensor.

We are primarily interested in the large entanglement temperature limit. In this limit,
we argued that the correlation between degrees of freedom of the dS side, which we can think
of as located at future infinity, and degrees of freedom of the AdS side, which live on the
conformal boundary, becomes large. This suggests that when the entanglement is large, the
domain wall separating two sides in the Euclidean geometry approaches the AdS boundary.
We will assume this, and then show the self-consistency of the solution.

3.2.1 Stress tensor on the connected saddle
Let us first evaluate the stress energy tensor ⟨Ψ|Tµν(x)|Ψ⟩ on the candidate wormhole
geometry. If universes A and B are connected by a wormhole, the stress tensor value is
evaluated by the five point function

⟨Ψ|Tµν(x)|Ψ⟩ = 1
Z1,conn

∑
i,j

√
pipj ⟨ψi(∞A)ψj(0A)Tµν(x)ψi(∞B)ψj(0B)⟩, (3.8)

where Z1,conn is defined in eq. (2.7), and is related to the four point functions of ϕi’s. As
we have argued, we expect that when β → 0, the domain wall approaches the conformal
boundary of AdS, and we have an OPE limit ψi(0B) → ψi(0A) and ψj(∞A) → ψj(∞B) as in
figure 2. Consider the stress tensor in the AdS region. Then Tµν(x) is on a (Euclidean) time
slice between ψj(0A) and ψj(0B). Here the slice is taken with respect to the time derived by
mapping the disk to a Euclidean strip plus points at infinities, which we refer to as global
time. Below we will also use Euclidean Rindler time. Both these times are shown in figure 3.

In the limit of high entanglement temperature, we thus have

⟨Ψ|Tµν(x)|Ψ⟩ =
∑

i
√
pi⟨ψi(0A)Tµν(x)ψi(0B)⟩∑
i
√
pi⟨ψi(0A)ψi(0B)⟩ , (3.9)

since ∑i
√
pi⟨ψi(∞A)ψi(∞B)⟩ factors out from both numerator and denominator of the

right-hand side of eq. (3.8). Moreover, since pi = e−βEi/Z is a Boltzmann factor, by picking
up the saddlepoint in the energy spectrum, the holomorphic part of stress-energy tensor
is evaluated as follows

⟨Ψ|Tzz(x)|Ψ⟩=
∑

i
√
pi⟨ψi(0A)Tzz(x)ψi(0B)⟩∑
i
√
pi⟨ψi(0A)ψi(0B)⟩ ∼

EJ
√
pJ⟨ψJ(∞A)ψJ(0B)⟩

√
pJ⟨ψJ(∞A)ψJ(0B)⟩ =EJ(β), (3.10)

where J denotes this saddlepoint in the sum with respect to the spectrum. Here, EJ(β)
denotes the energy with respect to the global time of the Euclidean strip, which coincides with
the conformal dimension of the corresponding operator via the state operator correspondence.
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Figure 2. The stress tensor expectation value ⟨Ψ|Tµν(x)|Ψ⟩ (3.8) on the dS/AdS wormhole. Left:
when it is inserted in the de Sitter region (the red dot), its expectation value vanishes because of the
OPE ψi(∞A) → ψi(∞B) as well as ψj(0A) → ψj(0B). Right: when it is inserted in the AdS region,
the expectation value is constant as shown in eq. (3.10).

Figure 3. Two kinds of Euclidean time on the disk. Left: Euclidean Rindler time, defined in eq. (3.40).
We will use this when we construct the dS/AdS wormhole by gluing (two copies of) disk and Euclidean
de Sitter in section 3.4. Right: the global time on the disk induced from the time on a Euclidean strip.
Black dots represent operators on the dS/AdS wormhole as in eq. (3.9).

We have used the fact that

Tzz(x)ψJ(0B)|0⟩ = EJ ψJ(0B)|0⟩, (3.11)

which is true because the operator is located at the south pole of the disk (which is t = −∞
of the strip); see figure 2. In more detail, insertion of a local operator at the south pole
of the disk is equivalent to having a globally excited state on the strip |EJ⟩strip via the
state operator correspondence:

Tzz(x)ψJ(0B)|0⟩disk = Tzz(x) |EJ⟩strip = EJ |EJ⟩strip. (3.12)

This shows in particular that the stress tensor is independent of the position x on the time
slice. The rest of position dependence in (3.10) cancels between the numerator and the
denominator. Here the (z, z̄) coordinates are the usual holomorphic and anti-holomorphic
coordinates on the AdS region of the disk, whose precise definition is given in section 3.3.2.
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In contrast, when the stress tensor is located in the de Sitter region we have the
factorization

⟨ψi(∞A)ψj(0A)Tµν(x)ψi(∞B)ψj(0B)⟩= ⟨ψi(∞A)ψi(∞B)⟩⟨Tµν(x)⟩⟨ψj(0A)ψj(0B)⟩.
(3.13)

Therefore, when the stress tensor is in the de Sitter region, these OPEs tell us that the
expectation value coincides with its vacuum value ⟨Ψ|Tµν(x)|Ψ⟩ = ⟨0|Tµν(x)|0⟩. In a curved
spacetime with the metric ds2 = e2ωdzdz̄, it is given by

⟨0|Tzz(x)|0⟩ = c

12π
(
∂2ω − (∂ω)2

)
+ τzz, ⟨0|Tz̄z̄(x)|0⟩ = c

12π
(
∂̄2ω − (∂̄ω)2

)
+ τz̄z̄,

(3.14)
and

⟨0|Tzz̄(x)|0⟩ = − c

12π∂∂̄ ω, (3.15)

where τzz = τz̄z̄ = −c/48π are the stress tensors for the flat metric ds2 = dzdz̄. By explicitly
plugging in the Weyl factor of the de Sitter metric (3.18), we can show that the terms in
⟨0|Tzz(x)|0⟩ and ⟨0|Tz̄z̄(x)|0⟩ coming from the Weyl factor ω cancel with the Casimir energies
in τzz and τz̄z̄ (also see section 3.2 of ref. [4]).

One might be puzzled by the fact that we start with an operator inserted at the south pole
of the sphere, so it would appear that the de Sitter region is excited by the operator and that
there should thus be a non-vanishing stress tensor. But when the de Sitter region is connected
to AdS black hole, the effect of this local insertion is absorbed by the identical operator
located at the south pole of the AdS disk. This occurs in the large entanglement limit, which
is controlled by the OPEs of ψi. In this OPE limit, the two operators fuse together to behave
as if the identity operator has been inserted in the tip of the de Sitter region.

3.2.2 Stress tensor on the disconnected saddle

In the disconnected saddle, the stress energy tensor on each side is just given by the thermal
expectation value in the high entanglement temperature limit. This is because in this limit
the local energy density is dominated by high frequency modes that are insensitive to the
spatial curvatures, which are larger scales. Thus, we have

⟨Tzz⟩A = ⟨Tzz⟩B = c

24π

(2π
β

)2
. (3.16)

The same result hold for ⟨Tz̄z̄⟩A = ⟨Tz̄z̄⟩B.

3.3 Solving for the dilaton

3.3.1 The dilaton on the dS side

First, we summarize the properties of de Sitter JT gravity studied in refs. [76, 77] and specify
the solution of our interest. The Euclidean action is

− lnZ = ϕ0
16πGN

∫ √
g R+ 1

16πGN

∫ √
gΦ

(
R− 2

L2

)
− lnZCFT, (3.17)
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where ZCFT denotes the partition function of the CFT which only depends on the metric gµν .
Varying the action with respect to the dilaton, we find that the metric satisfies R = 2/L2.
Below we will use global coordinates

ds2 = L2
(
dτ2 + dφ2

cosh2τ

)
, −∞ < τ <∞, 0 < φ < 2π. (3.18)

If we write the metric as ds2 = e2ωdzdz̄, with z = iτ + φ and z̄ = −iτ + φ, varying the
action with respect to the metric gives equations of motion

e2ω∂
[
e−2ω∂Φ

]
= 8πGN⟨0|Tzz|0⟩, e2ω∂̄

[
e−2ω∂̄Φ

]
= 8πGN⟨0|Tz̄z̄|0⟩, (3.19)

and
e2ωΦ + 2∂∂̄Φ = 16πGN⟨0|Tzz̄|0⟩. (3.20)

We have argued in the last section that in the de Sitter region the stress tensor is
given by (3.14) and (3.15):

⟨0|Tzz|0⟩ = ⟨0|Tz̄z̄|0⟩ = 0, ⟨0|Tzz̄|0⟩ = c

48π2 cosh2τ
. (3.21)

Inserting this stress tensor in the equation for the dilaton, we find that

ΦdS(τ, θ) = B
cosφ
cosh τ + cGN

3 , (3.22)

where the constant piece is the contribution of the anomalous term ⟨0|Tzz̄|0⟩.
We will find later that it is useful to work in static patch coordinates when deriving

the trajectory of the domain wall separating the dS and AdS parts of the geometry. This
is because, in static coordinates both the dS geometry and the AdS black hole have a U(1)
symmetry which we use to define a common angular direction. To this end, we start from
the embedding space representation of dS2

X2
0 +X2

1 +X2
2 = 1, ds2 = L2(dX2

0 + dX2
1 + dX2

2 ). (3.23)

Then global coordinates are defined by

X0 = tanh τ, X1 = sinφ
cosh τ , X2 = cosφ

cosh τ . (3.24)

On the other hand, static patch coordinates are given by

X0 = sin θ sin t, X1 = sin θ cos t, X2 = cos θ, (3.25)

and the resulting metric is ds2 = dθ2 + sin2θ dt2, with a dilaton Φ = B cos θ.
This dilaton profile describes the geometry of a Schwarzschild black hole in the Nariai

limit [76]. The value of the dilaton profile together with a constant piece ϕ0 + Φ is the area of
the manifold transverse to the 2d direction. Therefore, an extremal surface in the geometry
satisfies ∂Φ = ∂̄Φ = 0. For the profile (3.22), we have two such surfaces at (τ, φ) = (0, 0) and
(τ, φ) = (0, π). The first one corresponds to the cosmological horizon, since the dilaton is
maximal at the point, and the second one is the black hole horizon. The Penrose diagram
of the geometry is depicted in the left panel of figure 4.
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Figure 4. The Penrose diagrams for the de Sitter black hole and the AdS black hole with backreaction,
which are used to construct a dS/AdS wormhole of interest. Left: de Sitter black hole with the dilaton
profile (3.22). The bifurcation surface of the black hole is depicted by the blue dot, and the de Sitter
bifurcation surface by the orange dot. Orange curves are future and past infinity of de Sitter. Right:
the two-sided black hole in AdS with the backreaction (3.33). The green lines are the conformal
boundaries. The blue shaded region is in the black hole interior and is called the causal shadow
because it is not causally connected with the asymptotic boundary.

3.3.2 The dilaton on the AdS side

The action of AdS JT gravity coupled with bulk CFT degrees of freedom [78, 79] is

lnZ = ϕ0
16πGN

[∫
B

√
g R+ 2

∫
∂B
K

]
+ 1

16πGN

[∫
Φ
(
R+ 2

L̃2

)
+ Φb

∫
∂B
K

]
. (3.26)

We will work in global coordinates

ds2 = L̃2
(
dτ2 + dµ2

cos2µ

)
, −π2 < µ <

π

2 . (3.27)

Again, by writing the metric as ds2 = e2ωdzdz̄, with z = iτ + µ and z̄ = −iτ + µ, the
equations of motion for the dilaton are given by (3.19) and by

−e2ω Φ + 2∂∂̄Φ = 16πGN⟨Tzz̄⟩, (3.28)

where the first term has the opposite sign from that in eq. (3.20). If the stress tensor vanished
as it would in the vacuum, the dilaton profile would be given by

ΦAdS(τ, µ) = A
cosh τ
cosµ , (3.29)

as can be checked by inserting it in the dilaton equation of motion. The coefficient A will be
fixed by the boundary condition. This dilaton profile, when continued to Lorentzian regime
describes an eternal black hole with a square Penrose diagram. On the dS/AdS wormhole,
however, the stress energy tensor on the AdS side is given by eq. (3.10). We thus have to
set ⟨Tzz⟩ = ⟨Tz̄z̄⟩ = EJ(β), and we get a solution of the following form:

Φ(τ, µ) = Φ0(τ, µ) − 16πGNEJ(β)(µ tanµ+ 1). (3.30)

Here, Φ0(τ, µ) satisfies the equations of motion with the vanishing stress energy tensor. This
portion is fixed by imposing a boundary condition at the asymptotic boundary µ→ ±π/2.
In particular, we demand that (3.30) approaches the vacuum dilaton profile (3.29) [80] at
the boundary (in some SL(2, R) frame; see below).
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To match the boundary condition, it is convenient to write

ϕ̄

π

(
b− 1

b

)
= 16πGNEJ(β), (3.31)

and set

Φ0(τ, µ) = ϕ̄

2

(
b+ 1

b

) cosh τ
cosµ . (3.32)

As we will see, this form of the dilaton profile satisfies the boundary condition near asymptotic
infinity µ→ ±π/2; i.e., the backreacted dilaton profile becomes (3.29) near infinity in some
SL(2, R) frame. To show this, we plug (3.31) and (3.32) into the backreacted solution (3.30),
and obtain

Φβ(τ, µ) = ϕ̄

2

(
b+ 1

b

) cosh τ
cosµ − ϕ̄

π

(
b− 1

b

)
(µ tanµ+ 1) (3.33)

→ ϕ̄

2

[(
b+ 1

b

) cosh τ
cosµ −

(
b− 1

b

)
tanµ

]
(µ→ π

2 ). (3.34)

The divergence as µ → π/2 occurs because we are approaching the AdS boundary in this
limit, and the dilaton measures the asymptotic growth of the transverse sphere in the higher
dimensional theory whose compactification gives rise to JT gravity. We now show that we can
bring this expression to the same form as the vacuum dilaton solution (3.29) by performing
an SL(2, R) transformation of the geometry, which is an isometry of the space.

To specify the necessary transformation, we realize AdS2 as a hyperbola

−X2
0 −X2

1 +X2
2 = 1, ds2 = L̃2

(
dX2

0 + dX2
1 − dX2

2

)
. (3.35)

Global coordinates (τ, µ) are defined by the embedding

X0 = tanµ, X1 = sinh τ
cosµ , X2 = cosh τ

cosµ . (3.36)

The SL(2, R) isometry of our interest is(
X0
X2

)
→
(
X ′

0
X ′

2

)
=
(
b+ −b−
−b− b+

)(
X0
X2

)
, b± = 1

2

(
b± 1

b

)
. (3.37)

Then, the following coordinate transformation

tanµ′ = b+ tanµ− b−
cosh τ
cosµ ,

cosh τ ′
cosµ′ = b+

cosh τ
cosµ − b− tanµ (3.38)

brings (3.34) to the vacuum form

ΦAdS(τ ′, µ′) = A
cosh τ ′
cosµ′ , (3.39)

with A = ϕ̄.
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We will later see that it is also useful to define coordinates (ρ, t)

X0 = sinh ρ cos t, X1 = sinh ρ sin t, X2 = cosh ρ. (3.40)

The metric is then given by ds2 = dρ2 + sinh2ρ dt2, and the dilaton profile is ΦAdS = A cosh ρ.
The dilaton profile in eq. (3.33) describes an AdS black hole with long wormhole in

its interior region. For instance, there are two extremal surfaces at (τ, µ) = (0, µR) and
(τ, µ) = (0, µL), and one can check µR → π/2 and µL → −π/2 in the β → 0 limit. The
Penrose diagram of this black hole is depicted in the right panel of figure 4.

3.4 Gluing dS to AdS

Having specified the dilaton profile of interest, we would like to construct the wormhole
solution connecting the dilaton in the de Sitter side ΦdS(θ) in (3.22) and the backreacted
solution in the AdS side Φβ(τ, µ) in (3.33), by solving the Israel junction conditions

ΦdS
∣∣
brane = Φβ(τ, µ)

∣∣
brane, ξµ∂µΦdS − ξµ∂µΦβ(τ, µ) = κ. (3.41)

These equations are used to specify the location of the domain wall τ = τβ(t), µ = µβ(t)
written in the coordinates in the AdS side. For this purpose, it is useful to use t coordinate
for the Euclidean timelike direction, commonly defined both on the de Sitter side (3.25)
and on the AdS side (3.40). In particular, on the de Sitter side, this is the direction of the
U(1) isometry. The first equation of eq. (3.41) relates the brane profile in the coordinates of
the AdS side to the one in the de Sitter side θ(t). The brane profile on the de Sitter side
does not depend on the entanglement temperature because the stress tensor is vanishing
on this side in the connected geometry.

Finding the solution explicitly is difficult. However, in the high temperature limit β → 0,
the location of the domain wall approaches the asymptotic boundary of AdS, µβ(t) → ±π/2,
which simplifies the task. For instance, in the asymptotic region the backreacted dilaton
Φβ(τ, µ) reduces to (3.34), and using the coordinate transformation between the (µ, τ) and
(ρ, t) coordinates, obtained by equating eqs. (3.36) and (3.40), we get

Φβ(ρ,t) = ϕ̄

2

(
b+ 1

b

) coshτ
cosµ − ϕ̄

π

(
b− 1

b

)
(µtanµ+1) (3.42)

→


Φ+(ρ,t)≡ ϕ̄

2

(
b+ 1

b

)
coshρ+ ϕ̄

2

(
b− 1

b

)
sinhρcos t

(
−π

2 ≤ t≤ 0
)

Φ−(ρ,t)≡ ϕ̄
2

(
b+ 1

b

)
coshρ− ϕ̄

2

(
b− 1

b

)
sinhρcos t

(
−π≤ t≤−π

2
) for ρ→∞.

(3.43)

By defining a new coordinate δ as

δ =

t+ π
2

(
−π

2 < t ≤ 0
)

−t− π
2

(
−π ≤ t ≤ −π

2
)
,

(3.44)

we see that the expressions for two dilaton profiles Φ+(ρ, δ) and Φ−(ρ, δ) become identical.
This implies that near the conformal boundary, Φβ(ρ, t) can be thought of as obtained by
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first preparing two identical dilaton profiles with a single bifurcation surface, and gluing them
along t = 0. This is exactly how to treat the backreaction of the particle which starts from
the boundary and then propagates into the bulk of the Euclidean black hole. The backreacted
black hole constructed in this way is called a partially entangled state (PETS) [71]. We
review its construction in the appendix. A notable feature of the PETS geometry is that
since the dilaton profile is constructed by gluing two identical profiles Φ+(ρ, δ) and Φ−(ρ, δ)
each of which has a horizon, the resulting dilaton profile, which we denote by ΦPETS(ρ, t),
has two black hole horizons.

The argument here implies that near the asymptotic boundary ρ → ∞, the profile
Φβ(ρ, t) obtained by solving the backreaction of the globally excited state (3.30) coincides
with the dilaton profile of the PETS

Φβ(ρ, t) = ΦPETS(ρ, t) at ρ→ ∞. (3.45)

This is natural because we start from the excited state in the global AdS2 and in the disk
frame the excited state is specified by the insertion of a local operator whose backreaction
is treated by the junction condition (A.1).

Gluing between the PETS geometry specified by ΦPETS and the de Sitter geometry given
by ΦdS was studied in a paper by Mirbabayi [50], whose construction is reviewed in the
appendix. Since the de Sitter bubble is realized in the PETS geometry, the Euclidean bulk
spacetime can be regarded as describing a particle starting from the asymptotic boundary,
propagating for a while in the Euclidean black hole, and then decaying into the domain
wall separating the interior de Sitter region and the exterior AdS region (the right panel
of figure 12). This construction avoids the no go argument by Fu and Marolf [49], since
the domain wall profile has a kink due to the intersection with the particle trajectory in
the AdS side used to construct the PETS. The backreaction of the particle here creates
a large interior region within the AdS black hole to accommodate the de Sitter horizon
behind the black hole horizon.

Each of the dilaton profiles Φ±(ρ, δ) in eq. (3.43) used in constructing Φβ(ρ, t) (or
ΦPETS(ρ, t)) is related to the original profile ΦAdS = A cosh ρ for the Euclidean black hole by
the SL(2, R) transformation (3.37). The rest of the procedure is then parallel to that of ref. [50].
In particular, the location of the domain wall in the original global coordinates (τβ(t), µβ(t)),
i.e., the solution of eq. (3.41), is obtained by applying the SL(2, R) transformation to the
Mirbabayi’s solution ρ = ρ(t) presented in (A.2). More explicitly, from the relation between
these two coordinates, we have

tanµβ(t) = b+ coshρ(t)+b− sinhρ(t)cosh t, cosτβ(t)
cosµβ(t) = b− sinhρ(t)cosh t+b+ coshρ(t).

(3.46)
From the first equation, one can check that the location of the brane µ = µβ(t) solving (3.41)
indeed satisfies our ansatz, namely µβ(t) → π/2 in the high-temperature limit, because in
this limit the EJ (β) and b± both become large. This self-consistently justifies our assumption
that in the high entanglement temperature limit the domain wall approaches the boundary.
Furthermore, in this way of treating the problem, the condition SdS > SAdS for the existence
of the wormhole solution is obvious. Continuity of the dilaton profile (the first equation
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Figure 5. The Lorentzian spacetime on which we compute the generalized entropy (in eq. (4.11)).
This spacetime is obtained by continuing the Euclidean wormhole geometry to Lorentzian signature
along the reflection symmetric slice. This is an asymptotically AdS black hole (whose conformal
boundaries are depicted in green) with an inflating de Sitter region in its interior (with future and past
infinities depicted in orange curves). The blue curves represent domain walls separating two geometries.

of (3.41)) reduces to Φβ = A cosh ρ = B cos θ = ΦdS, implying B > A. Since the black hole
bifurcation surface is located at ρ = 0, the black hole entropy is given by SBH = ϕ0 + A,
where ϕ0 is the constant part of the dilaton profile in eq. (3.26). Similarly, the bifurcation
surface of de Sitter is at θ = 0, giving SdS = ϕ0 + B. Combining these, we conclude that
SdS > SBH must hold.

Another notable feature of the solution described here is that the de Sitter side only
contains the cosmological horizon, and not a black hole horizon. This can be seen by recasting
the second equation of the junction conditions into the form of a one-dimensional potential
problem for the domain wall trajectory θ̇2 + V (θ) = 0. This equation tells us the range
θmin < θ < θmax in which the domain wall can move. We can check from this that the black
hole horizon is indeed excluded from the de Sitter bubble region.

Note that in constructing the dS/AdS wormhole solution, we only needed an excited
state on the AdS side, and not necessarily the entangled state between two sides (2.10). For
example, one can obtain a similar wormhole starting from a factorized state of the form
|ψ⟩A|ψ⟩B as long as both of factors are highly excited. However, a wormhole connecting dS
and AdS will only dominate the gravitational path integral for (2.3) when there is a large
entanglement between the two systems. This indeed occurs if the bulk QFT state is of the
thermofield double type (2.10) with small β, as we will discuss in the next section.

3.5 Continuation of the dS/AdS wormhole to Lorentzian signature

The Euclidean dS/AdS wormhole constructed in this way has a time reflection symmetric
slice. Therefore, it can be analytically continued to Lorentzian regime. The Penrose diagram
of the resulting spacetime is depicted in figure 5. This geometry describes an AdS black
hole with a de Sitter bubble in its interior. It can be explicitly checked that the de Sitter
region contains the cosmological horizon and fully contains the past and future infinity. In
section 2.3, we required that all the saddles of the gravitational path integral should contain
the future/past infinity of de Sitter space when continued to Lorentzian signature. Therefore,
the dS/AdS wormhole constructed here indeed satisfies the boundary condition we demanded
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for the gravitational path integral. In this construction, the de Sitter region does not contain
the bifurcation surface of a black hole.

Note that, as pointed out in ref. [54], the null energy condition prohibits future infinity
of de Sitter space from being causally connected with the asymptotic boundaries of the AdS
black hole, as we see in the Penrose diagram of figure 5. This is because a future-directed
null congruence near future infinity is expanding, while such a null congruence has to shrink
in the interior region of the AdS black hole; the Raychaudhuri equation combined with the
null energy condition prohibits a smooth interpolation of these congruences.

In the next section, we will argue that the entanglement entropy in the high temperature
limit can be computed as a type of generalized entropy on the Lorentzian geometry obtained
in this way.

4 Calculation of the generalized entropy

4.1 Contribution from the fully connected saddle

We first note that in the high entanglement temperature limit β → 0, the gravitational path
integral is dominated by the contribution of the fully connected saddle even when one of the
universes is closed. This is because the argument for dominance, made in ref. [39], only relies
on the configuration of operators in the expression (2.3) and does not depend on the global
geometry of the universes. Specifically, in the computation of the overlaps, the indices of
operators form a single loop only in the fully connected saddle, making this saddle dominate
in the β → 0 limit. This occurs through the effects of matter contributions to the path
integral, no matter what the gravitational contributions are. This argument presented in
ref. [39] goes through here despite the difference in the cosmological constant of one universe.

We thus evaluate below the contribution from the fully connected saddle to trρn
A when A

and B are de Sitter and AdS black hole spacetimes, respectively. The relevant expression is

Zn,conn = e−Sgrav[Mn] ∑
{ik,jk}

(
n∏

k=1

√
pikpjk

)〈
n∏

k=1
ψik(∞Ak)ψjk+1(0Ak)ψik(∞Bk)ψjk(0Bk)

〉
Mn

,

(4.1)
where Mn represents the fully connected wormhole spacetime.

One way to construct the fully connected wormhole Mn out of 2n universes {Ak, Bk}n
k=1

is as follows. First, we connect Ak and Bk in the k-th replica by a wormhole as in figure 6.
To do so, as we showed in section 3, we poke a hole that has a circular boundary of size b
on A (a sphere) as well as on B (a disk), and then we glue A and B along these circular
boundaries, where we place a domain wall. We saw in section 3 that, after including the matter
backreaction, the equations of motion can be solved to find a metric, dilaton, and domain wall
trajectory consistent with the boundary conditions and the Israel junction conditions. The
resulting geometry (A#B)k again has the topology of a disk, which we refer to as the dS/AdS
wormhole. Obviously, the size b of the hole cannot exceed the size R of the sphere. Note
that, as we showed in section 3, the domain wall separating the two regions with different
cosmological constants approaches the AdS boundary in the high entanglement temperature
limit. We then connect n copies of these dS/AdS wormholes, (A#B)k (k = 1, · · · , n), by a

– 23 –



J
H
E
P
0
2
(
2
0
2
4
)
1
3
5

Figure 6. Left: the path integral preparations of overlaps ⟨ψi|ψj⟩A and ⟨ψi|ψj⟩B computed in
Euclidean de Sitter (blue) and AdS black hole (green) spacetimes. They appear in quantity (2.3) of
our interest. The excited states are specified by inserting corresponding operators. Right: Euclidean
de Sitter and AdS black hole spacetimes are connected by a wormhole. Such a wormhole appears, for
example, in the gravitational path integral (2.4) for the normalization of the reduced density matrix.
We have already constructed this dS/AdS wormhole solution in JT gravity in section 3.4.

replica wormhole. This can be done by introducing a cut on each (A#B)k and sewing these
copies along the cut, as shown in figure 7. To emphasize that the fully connected wormhole
depends on the cut C, we denote this spacetime by Mn ≡ Σn[C], and we assume n > 1 below.
For now we will proceed by assuming that the sewed geometry can be constructed, and we
will later discuss how to select C so that the equations of motion are satisfied.

The contribution of the fully connected wormhole itself, eq. (4.1), does not in general have
an interpretation in terms of a generalized entropy. However, such an interpretation becomes
available in the high entanglement temperature limit β → 0, where the dS/AdS wormhole
becomes shorter as described above. In this limit, one can take the OPE ψik(∞Ak) →
ψik(∞Bk) in the correlator to get

Zn,conn = e−Sgrav[Mn]ZCFT[A#B]n
∑
{jk}

(
n∏

k=1

√
pjk

)〈
n∏

k=1
ψjk+1(0Ak)ψjk(0Bk)

〉
Σn[C]

. (4.2)

Here,
ZCFT[A#B] =

∑
i

√
pi ⟨ψi(∞A)ψi(∞B)⟩A#B. (4.3)

To emphasize that the operators in eq. (4.2) are located on the new disk A#B, made by
gluing the sphere A with the disk B, from now on we write ψjk+1(0Ak) = ψjk+1(xA#Bk)
and ψjk(0Bk) = ψjk(0A#Bk), where xA#Bk denotes the location of the operator ψjk+1 in the
k-th copy of the new disk A#B, and 0A#Bk is its south pole. Using this new notation,
the correlator in eq. (4.2) reads〈

n∏
k=1

ψjk+1(0Ak)ψjk(0Bk)
〉

Σn[C]

=
〈

n∏
k=1

ψjk+1(xA#Bk)ψjk(0A#Bk)
〉

Σn[C]

. (4.4)

The series of operations described here is depicted in figure 8. Here, we have assumed that
the cut goes between two operators. The reason why will be explained in the next subsection.
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Figure 7. The fully connected saddle for the gravitational path integral, eq. (4.1), where all copies
of Euclidean de Sitter space as well as those of a Euclidean black hole are connected by a single
wormhole. One way to think about it is that we first connect the k-th copy of Euclidean de Sitter
space and AdS black hole by a dS/AdS wormhole, and then we connect these wormholes by a replica
wormhole (indicated by the red arrows).

We can now use the identity (see for example appendix A of [75])

〈
n∏

k=1
ψjk+1(xA#Bk)ψjk(0A#Bk)

〉
Σn[C]

=
〈

n∏
k=1

ψjk(xA#Bk)ψjk(0A#Bk)
〉

Σn[C̄]

, (4.5)

where C̄ denotes the complement of the cut C in a Cauchy slice of the disk A#B in radial
quantization. The above identity holds because, in the covering space where all the sheets
are glued together along the indicated cut, the left- and right-hand sides of (4.5) are actually
the same correlator. This does not depend on the details of the geometry of each sheet, and
hence holds for the dS/AdS wormhole as well. By using this identity, we see that the sum
over {jk} in eq. (4.2) can be written in terms of the thermal CFT Rényi entropy

∑
{jk}

(
n∏

k=1

√
pjk

)〈
n∏

k=1
ψjk(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

= ZCFT[A#B]n
tr
(
ρβ

2 ,C̄

)n
tr
(
ρvac,C̄

)n . (4.6)
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Figure 8. Left: each of the replica copies in the fully connected wormhole depicted in figure 7 with four
operator insertions, connected by cut C (the red line). The contribution from this wormhole appears
in the quantity of our interest, trρn

A in eq. (2.3), and is given by eq. (4.1). The blue circle is the greater
circle of the original Euclidean de Sitter space with two operator insertions ψik

(∞A) and ψjk+1(0A).
Right: the operator configuration in the same geometry after taking the OPE ψik

(∞Ak
) → ψik

(∞Bk
)

and factoring the corresponding component, which is suppressed. By summing over the leftover
indices, this leads to eq. (4.8).

Here, we have defined

ρβ
2 ,C̄

= 1
ZCFT[A#B] tr

C

[∑
i

√
pi ψi(0A#B)|0⟩⟨0|ψi(xA#B)

]
, ρvac,C̄ = tr

C
|0⟩⟨0|, (4.7)

where |0⟩ is the vacuum on a time slice of the disk. The quantity ρβ
2 ,C̄

looks like a density
matrix; however, it is not Hermitian because the locations of the two operators in eq. (4.7) are
not reflection symmetric in time. The von Neumann entropy of such an object is sometimes
called pseudo entropy, and was studied recently in ref. [81].8 A discussion of the associated
island formula version appears in ref. [82].

Note that pseudo entropy appears because one of the two universes here is de Sitter space.
For instance, if A and B were both asymptotically AdS, the matter part of the entropy would
be the usual entanglement entropy of bulk QFT. This is because, in this case, the connected
geometry is an annulus, and in the large entanglement limit the annulus pinches into two
disks [39]. In the new disks, the local operators are located at the boundaries. This implies
that the correlation functions still have interpretations in terms of CFT Rényi entropies.
In the current case, where one of the universes is Euclidean de Sitter space, the complete
connected geometry is a disk instead of an annulus. As a result, the local operator originally
located at the south pole of the de Sitter sphere lies at a bulk point of the disk. This prevents
us from interpreting the correlation function as a standard Rényi entropy.

8In more details, let us consider the following density matrix like object involving two states |ψ⟩ and |ϕ⟩

ρA,ψ|ϕ = tr|ψ⟩⟨ϕ|
⟨ψ|ϕ⟩ .

Of course, this is not a density matrix; among other things, it is not Hermitian. The pseudo entropy of ρA,ψ|ϕ

is defined by SPE = −trρA,ψ|ϕ log ρA,ψ|ϕ. ρ β
2 ,C̄

in eq. (4.7) has precisely this form.
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By inserting eq. (4.6) into eq. (4.2), we obtain

Zn,conn = e−Sgrav[Mn]ZCFT[A#B]2n
tr
(
ρβ

2 ,C̄

)n
tr
(
ρvac,C̄

)n . (4.8)

Note that the corresponding expression for Z1 does not have the last factor

Z1,conn = e−Sgrav[A#B]ZCFT[A#B]2, (4.9)

since there is no cut in the spacetime A#B in this case. We thus obtain the following
expression for (the exponential of) the Rényi entropy in the high temperature limit β → 0:

trρn
A −−−→

β→0

Zn,conn
Zn

1,conn
= e−Sgrav[Mn]+nSgrav[A#B]

tr
(
ρβ

2 ,C̄

)n
tr
(
ρvac,C̄

)n . (4.10)

As argued in ref. [83], the gravitational part of eq. (4.10), e−Sgrav[Mn]+nSgrav[A#B], picks
up, in the n → 1 limit, the area of the fixed point of Zn replica symmetry in Mn, which
coincides with the boundary of C. This contribution is given by e−(n−1)A[∂C̄]/4GN . Finally,
the location of the fixed point ∂C̄ is determined by extremizing the total gravitational path
integral. By taking the n → 1 limit of the Rényi entropy, we thus find a formula for the
entanglement entropy of the form in eq. (2.9):

S(ρA) = Min Ext
C̄

[
A[∂C̄]
4GN

+SPE[C̄]−Svac[C̄]
]
, SPE[C̄] =−tr

(
ρβ

2 ,C̄
lnρβ

2 ,C̄

)
, (4.11)

where the extremization is performed on the spacetime A#B. The “Min” in the formula indi-
cates that if there are multiple extremal surfaces, we choose the one giving the minimal value.

To evaluate the actual value of the entropy, we need to know detailed properties of A#B.
While the bulk QFT entropy part of the above formula appears somewhat unusual, we will
see that in the high temperature limit β → 0, the entropy is dominated by the area term, and
the bulk pseudo entropy part does not play an important role. This can be explicitly shown
by going back to the expression of tr

(
ρβ

2 ,C̄

)n (whose n→ 1 limit yields the pseudo entropy)
written in terms of the correlator, eq. (4.6). It is straightforward there to see that the
correlator gets further factorized into two point functions when C̄ is small, and in this limit it
is canceled by the normalization factor of ρβ

2 ,C̄
in (4.7). Indeed, C̄ must become small in the

large entanglement temperature limit because the entropy of entanglement cannot be greater
than the entropy of the black hole or of de Sitter; if C̄ remained of finite size in the high
temperature limit, then the bulk entropy part would become larger than the horizon areas,
and hence the resulting entanglement entropy as well. In the small C̄ limit, the bulk entropy
part as well as its variation with respect to the endpoints of the cut is almost vanishing, so
that the endpoints have to be located at the classical extremal surfaces, i.e. the horizons.
The net result is that in eq. (4.10), ρβ

2 ,C̄
is replaced with the vacuum reduced density matrix

ρvac,C̄ , so that the contribution of the pseudo entropy vanishes in this limit.
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Figure 9. Three possible cuts C for the fully connected wormhole Mn which contributes to the
gravitational path integral for the Rényi entropy as in eq. (4.8). Left: type A cut located above
two operators. Since two operators in the disk are not always the same, this type of cuts only gives
a subdominant contribution to the gravitational path integral (4.2). Center: type B cut whose
endpoints are located near the bifurcation surfaces of the AdS black hole. Right: type B cut which
ends near the cosmological horizon. One of the purposes of this subsection is to argue that the
endpoints of the cut of this type are not precisely on the cosmological horizon. (If they were, it would
result in a vanishing entropy S(ρA) = 0.)

4.2 Classification of possible cuts

As discussed above, in the Lorentzian continuation of the dS/AdS wormhole, the endpoints of
the cut on which the replicas are connected lie near one of the horizons when the entanglement
temperature is large. While the relevant horizon could a priori be either the cosmological
horizon or the AdS black hole horizon, in this subsection we argue that when SdS > SBH (which
must be the case when the wormhole exists), the cut will not end near the cosmological horizon.

The fully connected saddle was constructed by gluing n copies of the dS/AdS wormholes
along a cut C. We begin by discussing in which region of the disk the cut should be located
in order to maximize the value of the gravitational action. It is convenient to separate the
discussion into three cases, depending on the location of the cut. First, we separate two
classes: (1) type A: the cut is located above two operators, as in the left panel of figure 9,
and (2) type B: the cut is located in between two operators as in the middle and right panels
of figure 9. We would like to compute and compare the saddlepoint action of the Rényi
entropy in eq. (4.2) for these two cases. In both cases, there are two further possibilities that
we discussed above, namely that the endpoints of the cut are located near the cosmological
horizon or the AdS black hole horizon.

Below we will be interested in evaluating the correlators in (4.2) in the limit where C
covers most of a time slice of the Euclidean strip, so that the size of its complement in the
same slice will be small |C̄| → 0. For the type A case, since the cut C is located above the two
operators ψjk+1(0Ak) and ψjk(0Bk) (the left panel of figure 9) we can deform C upwards to
its complement C̄ without crossing the operators. This implies that the correlation function
in (4.2) is invariant under the deformation from C to C̄:

〈
n∏

k=1
ψjk+1(xA#Bk)ψjk(0A#Bk)

〉
Σn[C]

=
〈

n∏
k=1

ψjk+1(xA#Bk)ψjk(0A#Bk)
〉

Σn[C̄]

. (4.12)
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Notice that in the above equality the indices of the operator in the left- and right-hand sides
are identical; the only difference is the replacement C → C̄. The identity holds because
we are fixing the endpoints of the cut. When its size is large, |C̄| → 0, the right-hand side
factorizes into a product of two point functions
〈

n∏
k=1

ψjk+1(xA#Bk)ψjk(0A#Bk)
〉

Σn[C̄]

→
n∏

k=1

〈
ψjk+1(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄] for |C̄| → 0.

(4.13)
Since the indices of two operators in the expectation value on the right side are not generally
identical, we pick up a Kronecker delta δjk+1jk . This Kronecker delta reduces the value of
the saddlepoint action in the high temperature limit because the correlator contributes to
the saddlepoint action as in eq. (4.6), so that the resulting sum with respect to the indices
is significantly reduced in the β → 0 limit.

On the other hand, for a type B cut, which is located in between the two operators (the
middle and right panels of figure 9), during the deformation C → C̄ the cut has to cross at
least one of these two operators. In this case, the relevant identity is

〈
n∏

k=1
ψjk+1(xA#Bk)ψjk(0A#Bk)

〉
Σn[C]

=
〈

n∏
k=1

ψjk(xA#Bk)ψjk(0A#Bk)
〉

Σn[C̄]

, (4.14)

where, in the correlation function on the right side, the indices of the operators on the
same sheet are identical. This implies that in the large cut limit, |C̄| → 0, the correlator
on the right-hand side again factorizes

〈
n∏

k=1
ψjk(xA#Bk)ψjk(0A#Bk)

〉
Σn[C̄]

→
n∏

k=1
⟨ψjk(xA#Bk)ψjk(0A#Bk)⟩Σn[C̄] , (4.15)

but in this case each two point function contains two identical operators. Thus, the sum
in eq. (4.6) with respect to the indices is not suppressed.

By comparing these two behaviors, we conclude that type B cuts give the dominant
contribution in the gravitational path integral in the high temperature limit. There are two
possibilities for type B cuts. Since a cut almost entirely covers the time slice when β → 0,
as explained at the end of the previous subsection, the endpoints of the cut will be located
near either the cosmological or black hole horizon. Therefore, the resulting entropy S(ρA) is
almost twice the horizon area. Since the connected geometry only exists when the entropy of
the cosmological horizon SdS is larger than that of the black hole horizon SBH, we expect
that the cut will stretch between two black hole horizons as it gives a smaller area term
in eq. (4.11). For this to be the case, however, we must make sure that the cut does not
occupy the entire time slice of the disk; this could happen if the endpoints of the cut were
located precisely on the cosmological horizon, in which case we would find S(ρA) = 0. We
will argue below that this does not happen.

To show this, we explicitly compute the location of the quantum extremal surface by
assuming it is located near the cosmological horizon (the left panel of figure 10). For this
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Figure 10. Sequence of two dimensional surfaces used to compute the CFT sum (4.16). Left: z
disk on which the correlation functions in (4.16) are originally defined. The cosmological horizon is
depicted by the orange dot at the center, and the endpoints of the cut C̄ are located near the horizon.
Center: w disk on which one of the operators are located at the center of this disk. The w and z disks
are related by the map (4.17). Right: the w disk is mapped to the T > 0 part of the cylinder by an
exponential map. The operator at the center of the w disk is now at T = ∞ and represented by an
excited state |ψJk

⟩ by the state operator correspondence. The T < 0 part of the cylinder is provided
by the copy of the w disk, which naturally emerges when we compute the correlation function on the
disk by the doubling trick as in eq. (4.21). This results in the same excited state |ψJk

⟩ appearing at
T = −∞ as well. In the cylinder frame, eq. (4.21) has an interpretation as a Rényi entropy, as in
eq. (4.25).

purpose, the central task is to evaluate the sum of the CFT correlators

1
Zn1,CFT

∑
{jk}

n∏
k=1

√
pjk

〈 n∏
k=1

ψjk
(xA#Bk

)ψjk
(0A#Bk

)
〉

Σn[C̄]

, Z1,CFT =
∑

j

√
pj⟨ψj(xA#B)ψj(0A#B)⟩

(4.16)
on the n sheeted cover Σn[C] of the disk (dS/AdS wormhole).

In the disk describing the original dS/AdS wormhole, in which Zn,conn in (4.2) was
defined, this quantity does not itself have an interpretation as a Rényi entropy as one of
the operators ψjk(xA#Bk) is not located at a pole of the disk. Our goal here is to map this
disk to another one on which the sum of the CFT correlators (4.16) has an interpretation as
a Rényi entropy of an excited state |ψJ⟩. We can do this in several steps. Let z, z̄ be the
coordinates on the original disk, and map it to a second disk (which we call w disk) by

w(z) =
(
z − α

1 + ᾱz

)
, α = xA#Bk . (4.17)

The conformal boundary of the new disk is at |w| = 1. The purpose of applying this map
is to relocate ψjk(xA#Bk) to the center of the new disk w = w̄ = 0. Also, since ψj(0A#B)
is located at the conformal boundary of the original z disk, it is mapped to a point on the
boundary |w| = 1. See the central panel of figure 10 for an illustration.

If we pick up two terms in the sum of the CFT correlators defined in (4.16), then these
two correlators will transform differently under the conformal map because the operators

– 30 –



J
H
E
P
0
2
(
2
0
2
4
)
1
3
5

ψj ’s involved have different conformal dimensions (see the definition of the entangled state
in (2.1)). However, in the large temperature limit, the sum is dominated by correlators
consisting of operators with the particular conformal dimension ∆ = EJ(β) fixed by the
temperature. This results in the sum ∑

j over all states being replaced with a sum ∑
J over

the states at the fixed energy. In this saddlepoint approximation, the sum in (4.16) transforms
uniformly, i.e. just by the multiplication of a Jacobian factor of the form |∂w/∂z|∆, since all
the operators have the same conformal dimension. Now, in the left expression in eq. (4.16),
the total Jacobian factor from the correlators in the numerator is canceled by the analogous
factor from the denominator. Therefore, this expression is evaluated on the w disk as

1
Zn

1,CFT

∑
{Jk}

(
n∏

k=1

√
pJk

)〈
n∏

k=1
ψJk(w(xA#Bk))ψJk(w(0A#Bk))

〉
Σn[C̄]

, (4.18)

where
Z1,CFT =

∑
J

√
pJ ⟨ψJ(w(xA#B))ψJ(w(0A#B))⟩ . (4.19)

The only differences between the above expression and (4.16) are the replacements xA#Bk →
w(xA#Bk) and 0A#Bk → w(0A#Bk) and the restriction on the range of the sum.

We now evaluate each correlator in (4.18) and (4.19) defined on the disk A#B via the
standard doubling trick. To do so, we prepare a mirror copy Ã#B of the disk with the
same operator insertions and then glue A#B and Ã#B along the conformal boundary. The
resulting manifold is a sphere S2, and the correlator on the disk is equal to the correlator
on the sphere obtained by doubling the operator insertions

I =
〈

n∏
k=1

ψJk(w(xA#Bk))ψJk(w(0A#Bk))
〉

Σn[C̄]

(4.20)

=
〈

n∏
k=1

ψJk(w(xA#Bk))ψJk(w(0A#Bk))ψJk(w̃(xA#Bk))ψJk(w̃(0A#Bk))
〉

Σn,S2 [C̄∪ ˜̄C]

, (4.21)

where w̃(xA#Bk) and w̃(0A#Bk) are mirror images of w(xA#Bk) and w(0A#Bk) in the copy
Ã#B. Since we have chosen the map (4.17) so that w(xA#Bk) is at the center of the disk,
on the sphere ψJk(w(xA#Bk)) is at its north pole uk = ∞k and its mirror ψJk(w̃(xA#Bk)
is at the south pole uk = 0k, where (u, ū) are the coordinates of the sphere. Furthermore,
the remaining two operators in (4.21) are at the identical point on the equator; so we can
use the OPE to fuse them, giving the identity as the leading term which dominates as the
operators actually coincide. Also, since there is a copy of the cut C̄ in the mirror, on the
sphere we have a disjoint union of cuts. Therefore, we denote the resulting branched sphere
by Σn,S2 [C̄ ∪ ˜̄C], and we indicated this explicitly in (4.21). In summary, by a sequence of
the above operations, the CFT correlator (4.16) becomes

In = 1
Zn

1,CFT

∑
{Jk}

(
n∏

k=1

√
pik

)〈
n∏

k=1
ψJk

(∞k)ψJk
(0k)

〉
Σn,S2 [C̄∪ ˜̄C]

, Z1,CFT =
∑

i

√
pi⟨ψj(∞)ψj(0)⟩.

(4.22)
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The expression In in eq. (4.22) is nothing but the thermal Rényi entropy of the region C̄ ∪ ˜̄C
on the cylinder, divided by the vacuum Rényi entropy [75]

In =
tr(ρ

β/2,C̄∪ ˜̄C)n

tr(ρvac,C̄∪ ˜̄C)n
. (4.23)

Concretely, the sphere and cylinder are related in the following way. Let (Θ, T ) be the
coordinates on the cylinder, where T is the coordinate of the Euclidean timelike direction,
−∞ < T <∞, and Θ is the coordinate for the spatial direction, 0 < Θ < 2π. Then, the w
disk and the T > 0 part of the cylinder are related by the map w = eT +iΘ, and there is a
similar map between the copy of the w disk (which was used to form the sphere S2) to the
T < 0 part of the disk. The relation is illustrated in the right panel of figure 10.

In the high temperature limit, the size of the cut |C̄| gets small, so the Rényi entropy
factorizes as

tr(ρ
β/2,C̄∪ ˜̄C)n = tr(ρβ/2,C̄)ntr(ρ

β/2, ˜̄C)n = tr(ρβ/2,C̄)2n, (4.24)

where we have used tr(ρβ/2,C̄)n = tr(ρ
β/2, ˜̄C)n because ˜̄C is a copy of C̄. There is a similar

factorization for tr(ρvac,C̄∪ ˜̄C)n. So we have

In =
(

tr(ρβ/2,C̄)n

tr(ρvac,C̄)n

)2

. (4.25)

In general, the Rényi entropy of a thermal state is a theory dependent quantity, but for a
2d CFT with a holographic dual, it has the simple form

tr(ρβ/2,C̄)n = 1(
sinh 2π|C̄|

β

)∆n
, tr(ρvac,C̄)n = 1(

sin π|C̄|
L

)∆n
, (4.26)

where L is the size of the spatial circle of the cylinder, and

∆n = c

12

(
n− 1

n

)
. (4.27)

So far, we have been computing the CFT part of (4.2) by making use of the doubling
trick, and the remaining task is to evaluate the gravitational part. In the n → 1 limit,
it picks up the value of the dilaton profile at the endpoints of the cut e−(n−1)Φ[∂C], as in
ref. [41]. Since we are now assuming that the endpoints are located near the cosmological
horizon on the dS/AdS wormhole, the relevant dilaton profile is that of the de Sitter side
ΦdS = B cos θ. Since the static patch coordinates (t, θ) defined in (3.25) and the holomorphic
and anti-holomorphic coordinates (z, z̄) are related at least locally near the cosmological
bifurcation surface at θ = 0 by the map z = eit sin θ and z̄ = e−it sin θ, the dilaton profile
in the latter coordinates is ΦdS(z, z̄) = B

√
1 − zz̄. We further map the z disk to the w disk

by (4.17), and then to the cylinder by the exponential map w = eT +iΘ. This allows us to
map the dilaton profile to the cylinder.

By combining the result for the CFT part In (4.23) and the one for the gravity part
e−(n−1)Φ[∂C], we get the full contribution of the type B cut whose endpoints are located
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near the cosmological horizon (right panel of figure 9). By taking the n → 1 limit, we
get the generalized entropy

Sgen[C̄] = ΦdS[∂C̄] + 2(Sβ [C̄] − Svac[C̄]) . (4.28)

The factor of 2 in front of the bulk entropy part comes from the square in eq. (4.25). For
a CFT with a holographic dual we would also have

Sβ [C̄] = c

3 log
[
β

π
sinh 2π|C̄|

β

]
, Svac[C̄] = c

3 log
[
L

π
sin π|C̄|

L

]
. (4.29)

In fact, in the high temperature limit where β → 0, the entanglement entropy of the thermal
density matrix of any CFT becomes universal. This is because the limit β/L → 0, where
L is the size of the spatial slice, is equivalent for a CFT to the limit Ł → ∞. So, at high
entanglement temperature, the thermal density matrix of any 2d CFT acts as if it is defined
on an infinitely long line. Thermal entanglement entropy of a 2d CFT on a line is computed
by applying a conformal map to the vacuum entanglement entropy [84], and is given by
eq. (4.29). The remaining task is to extremize eq. (4.28) over the cut C to make the fully
connected replica wormhole Mn on shell.

By denoting the location of the cosmological horizon on the cylinder by (T,Θ) = (T0,Θ0),
we make the ansatz for C̄ : −x < Θ − Θ0 < x, T = T0. By expanding the dilaton near
the cosmological horizon, we obtain

Sgen(x) = ϕ̄

(
1 − |α|2x2

(1 − |α|2)

)
+ πx

β
. (4.30)

This means that the equation ∂xSgen(x) = 0 has a solution x ̸= 0, and therefore C̄ is
non-vanishing. We thus conclude that if the endpoints of a type B cut are located near the
de Sitter horizon, then its contribution to the entanglement entropy is non-vanishing and
given by S(ρA) = 2SdS. However, if the endpoints are located near the bifurcation surface
of the AdS black hole, we get S(ρA) = 2SBH. Recalling that extremization will select the
smaller of these, and that the connected solution exists only when SdS > SBH, we find that
the entropy coincides with the twice entropy of the black hole on the AdS side.

Summary. In ref. [4], the entanglement entropy of a thermofield double type state (2.1)
defined on gravitating de Sitter space (universe A), described by the dilaton profile (3.22),
and a non-gravitating reference system (universe B) was studied using the replica trick. In
that case, the cut (or the “island” after analytically continuing to Lorentzian signature) covers
the entire time slice of de Sitter space. One way to interpret this is that the entanglement
entropy vanishes and that the Hilbert space on the de Sitter space is one dimensional.9 It is
interesting to understand the relationship between this previous finding and the current ones.

For this purpose, it is useful to recall from ref. [4] the possible types of islands in de Sitter
spacetime described by the dilaton profile (3.22). The dilaton profile has classical extremal

9In Re. [4], a scenario was also proposed in which the inclusion of end-of-the-world branes on the de Sitter
geometry led to a cut that did not occupy the entire Cauchy slice, and hence implied a finite entropy. In
section 5, we will comment on the relation between this scenario and the present paper.
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surfaces at φ = 0 and φ = π. Since the dilaton is maximized at φ = 0, this corresponds to
the de Sitter cosmological horizon, and similarly φ = π corresponds to the de Sitter black
hole horizon because the dilaton is minimized there. So there are two types of possible island
region C, namely one that ends near the cosmological horizon (called type I in ref. [4]; see
figure 4 there), and the other is the region whose endpoints are near the black hole horizon
(called type III islands in ref. [4]).

The type I island does not cover the entire Cauchy slice because the area of the cos-
mological horizon is locally maximum. To see this concretely, let us choose the ansatz for
the complement of the island C̄ by −x < φ < x, and since we are interested in the high
temperature limit we assume x≪ 1. Then the generalized entropy for island is schematically
given by Sgen(x) ∼ B(1−x2) +x/β when x≪ 1, where the first term comes from the dilaton
profile (3.22) and the second term is the bulk entropy part. Therefore, the solution of the
∂xSgen(x) = 0 condition is nontrivial, i.e., x ̸= 0. This means that the endpoints of the island
are not precisely at the cosmological horizon. In this argument, the crucial thing was that the
dilaton is locally maximal so the sign of the coefficient of x2 is negative. On the other hand,
the endpoints of the type III island are precisely on the black hole horizon, because it is a
minimal surface. Again this can be seen by making the ansatz for C̄ by −x < φ−π < x; then
the generalized entropy for the region is schematically of the form Sgen(x) ∼ B(−1+x2)+x/β,
so the equation ∂xSgen(x) = 0 only has a solution at x = 0. Therefore, the type III island
always covers the entire Cauchy slice and dominates the entropy.

Now let us come back to our current case where we entangle de Sitter space with an AdS
black hole. As we have argued, when SdS > SBH and in the high temperature limit β → 0,
the generalized entropy on the dS/AdS wormhole computes the entanglement entropy of
the thermofield double state. In this case, there is no type III island because the de Sitter
bubble region of the dS/AdS wormhole does not contain the de Sitter black hole horizon.
Therefore, the only possibilities are that the island ends near the cosmological horizon which
is an analogue of the type I island in ref. [4], or the island ends near the AdS black hole
horizon, and hence does not cover the entire Cauchy slice. This leads to a finite entropy.

4.3 Summary: entanglement entropy and extremal surfaces

We can now combine all our results to arrive at a formula for the entanglement entropy
between the two universes (2.2) in various limits. The result depends on the three parameters
{SdS, SBH, β}. Since we compute the entanglement entropy by taking n → 1 limit of the
Rényi entropy which involves two types of gravitational path integrals, namely Zn defined
in (2.3) and Z1 coming from the normalization of the reduced density matrix (2.4), it is useful
to discuss the dominant saddles for these path integrals separately. We will arrive at a phase
diagram for the entropy by dialing the values of the entanglement temperature T = 1/β and
the de Sitter horizon entropy while fixing the value of the entropy of the AdS black hole SBH.

Saddles for Z1. There are two possible saddles, namely the connected saddle and the
disconnected saddle as in figure 6. They are both consistent with the boundary condition for
the gravitational path integral, since when they are continued to Lorentzian signature they
both possess the future and past infinities of de Sitter space and the conformal boundary
of AdS space. The contribution of each saddle is computed in almost the same manner as
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in eqs. (2.6) and (2.7), by replacing one of the AdS universes in that example by Euclidean
de Sitter. In particular, the connected saddle, if it exists, becomes dominant in the high
entanglement temperature limit β → 0. The only difference from the AdS/AdS scenario is
that in the current dS/AdS case, the connected saddle exists only when the de Sitter entropy
is larger than the entropy of the AdS black hole as shown in section 3.4. In summary, when
SdS < SBH, the disconnected saddle is always the dominant one, but when SdS > SBH the
connected saddle becomes the dominant one above a critical temperature.

Saddles for Zn. We have listed all the saddles for Zn in section 2.3 (also see figure 1).
Among them, the relevant saddles are (a) the fully connected one whose contribution is given
by (4.1), (b) the replica wormhole that only connects the de Sitter replicas, drawn in top
right of figure 1, and (c) the fully disconnected saddle in top left of the same figure.

Case 1: SdS < SBH. Again when SdS < SBH, there is no wormhole connecting the two
universes in a manner consistent with the boundary conditions, since, as explained above,
any wormhole connecting de Sitter and AdS has to satisfy the condition SdS > SBH because
the cosmological horizon is a locally maximal surface. Therefore, in all the saddles of the
Rényi entropy (2.3), de Sitter space and the AdS black hole must be disconnected when
SdS < SBH. However, it is still possible to connect copies of de Sitter by a replica wormhole.
As explained in section 2.4, the result is that the dominant saddle for the Rényi entropy
includes this replica wormhole connecting copies of de Sitter, leaving copies of the AdS
black hole disconnected. The entropy is computed by the same island formula for states on
de Sitter entangled with a non-gravitating reference system found in ref. [4]. Therefore, as
discussed earlier, the entanglement entropy vanishes regardless of the temperature,10 and
the de Sitter Hilbert space HdS looks one dimensional. In this case, the entanglement wedge
of the AdS black hole, or more accurately the dual CFT Hilbert space, covers the entire
Cauchy slice. Thus the de Sitter region is reconstructable from the Hilbert space of the
asymptotically AdS universe. This makes sense as the black hole’s Hilbert space has room
to accommodate all the states in de Sitter.

Case 2: SdS > SBH. When SdS > SBH, there is a dS/AdS wormhole. As a result,
the fully connected wormhole where all copies of universes A and B are connected by a
single wormhole exists as well (bottom right of figure 1). In the low temperature regime,
β ≫ 1, the disconnected saddle dominates for Z1. Meanwhile for Zn the replica wormhole
just connecting the de Sitter factors dominates. Thus, just as in the SdS < SBH case, the
entanglement entropy is vanishing.

However, in the high temperature regime where the connected saddle dominates Z1, the
fully connected wormhole dominates Zn because of the matter contribution as explained in
section 2.4. In section 4, we showed that when the fully connected wormhole dominates Zn,
and the dS/AdS wormhole dominates Z1, the entanglement entropy is given by a formula
which almost look like a generalized entropy (4.11), except that the bulk entropy part is
replaced by a pseudo entropy on the dS/AdS wormhole. When the connected wormhole

10The contribution of the fully disconnected saddle gives the QFT result for the entanglement entropy which
coincides with the thermal entropy. Therefore, compared with the contribution from the de Sitter only replica
wormhole saddle, it is always subdominant.
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Figure 11. Phase diagram for the entanglement entropy S(ρA) (which is equal to S(ρB) as the
entire state is pure). In drawing this diagram, we fix the entropy of the AdS black hole and change
the entanglement temperature and the de Sitter entropy. The entanglement entropy is non-vanishing
only when SdS > SBH and temperature is large, where the fully connected saddle dominates the
gravitational path integral for the Rényi entropy.

geometry is continued to Lorentzian signature, its Penrose diagram looks like figure 5. As we
discussed, there are then two possibilities for the location of the quantum extremal surface,
one near the de Sitter horizon and the other near the AdS black hole horizon. However, as
we argued in section 4.2, the quantum extremal surface has to be always located near the
AdS black hole horizon, as this gives the dominant answer. Therefore, the entanglement
entropy is equal to twice the entropy of the AdS black hole.

Thus, when SdS > SBH our analysis predicts that the von Neumann entropy goes from
zero to twice the black hole entropy as we go from low to high entanglement temperature.

Phases of the von Neumann entropy. The behavior of the von Neumann entropy in
the parameter space {SdS, SBH, β} is depicted in figure 11. We have not studied the various
transitions in detail, and hence have not established whether they are sharp or whether
there is a smooth crossover. Indeed, we expect that when we go beyond the saddlepoint
approximation, the transitions will be smoothed out, at least with respect to the temperature.

5 Interpretation of our results

The authors of ref. [66] studied the von Neumann algebra for the static patch of de Sitter
space in the presence of gravity in a weak coupling limit, where matter does not backreact on
the geometry. In a gravitating systems all symmetries must be gauged, in particular when
the time slice is compact and without boundary. The von Neumann algebra of excitations in
the static patch is therefore obtained from the algebra of the matter QFT as the subalgebra
that commutes with all symmetry generators of the static patch. Naively, the commutant
with the static patch symmetries is trivial because the elements of the algebra that commute
with the charges are c-numbers [66]. To get a nontrivial algebra, we thus need to introduce
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an observer of the static patch with its own Hilbert space and associated algebra. We can
then impose the constraint that the combined algebra of de Sitter space and the observer
commutes with the generators of the de Sitter isometries. The algebra obtained in this way
supports the reduced density matrix on the static patch and is of type II1 [66]. A type II1
algebra has a maximally entropic state which naturally corresponds to empty de Sitter space
with the Hartle-Hawking QFT state on it. Furthermore, the fact that the density matrix
which maximizes the entropy is proportional to the identity operator naturally realizes the
expectation that a reduced density matrix on the static patch has a flat spectrum [32].

These ideas align naturally with our analyses. Although the authors of ref. [66] study the
weak gravity limit (GN ≪ 1) while we account for gravitational backreaction, our conclusions
are similar — de Sitter space acts as if it has a finite entropy only when viewed by a gravitating
observer. In our case the observer is an AdS black hole, and the observation in question
occurs through quantum entanglement. In our case, if the entanglement is too weak, de Sitter
space acts as if it has vanishing entropy, and it seems that there is a threshold beyond which
the effects associated to strong entanglement are sufficient to constitute a “gravitational
observer,” at least in the saddlepoint approximation. Note that the wormhole saddlepoint
is present even at weak entanglement — it just does not dominate the path integral. So
we should really expect a steep crossover of some kind, or a sharp phase transition, with
the entanglement entropy ramping from near zero to a plateau set by the entropy of the
observer as the entanglement strength is increased (see figure 11).

One interesting feature of our result is that de Sitter space acts as if it has a finite entropy
only when the observer, an AdS black hole, has a lower Bekenstein-Hawking entropy than
the nominal entropy of the cosmological horizon. Note that the Bekenstein-Hawking formula
SBH = ABH/4GN can be regarded as bounding the logarithm of the Hilbert space dimension
at a given energy in the presence of gravity. If there is no gravity in the AdS space, i.e.
GN → 0 in SBH, there is no such bound, and our results would suggest that de Sitter space
entangled with a non-gravitating observer should have vanishing entropy. This is consistent
with earlier work in which de Sitter space seems to have vanishing entropy when “observed”
by entanglement with a non-gravitating observer [2–4, 16].

In fact, the authors of ref. [4] also proposed ways in which an apparently non-gravitating
observer could nevertheless lead to a finite de Sitter entropy. One approach suggested
there was to imagine decompactifying de Sitter space and adding end-of-the-world branes to
terminate the geometry at, say, the poles of global de Sitter space. From the perspective of
ref. [66] and the current paper, these branes which are coupled to the background geometry,
act as gravitational observers. Indeed, they play a role similar to the domain walls separating
the de Sitter and AdS regions of the wormholes described here.

In this paper, we studied the properties of such wormholes in the simplest setting: two-
dimensional dS and AdS JT gravity with scalar matter producing a domain wall separating
the regions with different cosmological constants. The low dimensionality and simple action
made it possible to work out the backreaction of the stress tensor of an entangled state on the
background geometry. There are pathways to generalize our analysis to higher dimensions and
more realistic theories of gravity. For example, excited states on the AdS black hole would
still be prepared by a Euclidean path integral with operators inserted on the boundary. In this
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paper, the domain wall separating the dS and AdS parts of the geometry was nucleated by
energy density created by such injected particles that propagate behind the black hole horizon,
recalling the construction of ref. [50] (reviewed in the appendix). In higher dimensions we
could similarly create shells of matter that propagate behind the horizon [72, 74] and decay
to form domain walls with a different interior cosmological constant. From this perspective,
and following the reasoning of refs. [72, 74], the de Sitter bubbles we have described can be
thought of exotic microstates of the exterior AdS black hole.

We have shown that the wormhole geometry exists only when the area of the de Sitter
horizon is larger than the area of the horizon of the observing AdS black hole. In this
regime, the reduced density matrix of the AdS black hole side obtained by tracing out the
degrees of freedom in the de Sitter side is almost maximally mixed at high entanglement
temperature since the von Neumann entropy coincides with black hole horizon entropy. If we
regard the AdS black hole as a gravitating observer of de Sitter space, this means that the
observer cannot get easily information about the de Sitter microstates through its quantum
entanglement, and hence will view it as an ensemble whose size is quantified by the entropy.11

One might speculate that when the SdS < SBH, the observer has enough “resolving power”
to actually sense the de Sitter microstate, thereby leading to a vanishing entropy.

Finally, in this paper we modeled a gravitating observer by an AdS black hole. However,
if our general paradigm is valid, we should be able to use any gravitating observer. For
example we could model the observer as a black hole in flat space (see [86] for related work),
or perhaps even another de Sitter space, although in the latter case we will have to confront
the absence of any asymptotic regions on a Cauchy slice. Another possibility is to use states
in the gravity sector as an observer, following recent developments of quantizing 2d dilaton
gravity theories [76, 87]. Such an approach would have several advantages, for example we
can in some cases include all nonperturbative corrections [88]. All these setups may even be
formulated using a recently proposed microscopic theory of de Sitter space in terms of the
SYK model [24, 89]. It would be interesting to analyze these cases in detail.
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Figure 12. The construction of the de Sitter bubble in the presence of matter backreaction, which
consists of two steps. Left: the first step is to construct the Euclidean AdS black hole in the presence
of the matter backreaction, which is modeled by a particle propagating in the bulk. It is constructed
by preparing two copies of a disk, introducing a particle trajectory in each of them (black lines), and
gluing the two along the trajectory. The green dot in each disk represents the fixed point of Euclidean
time translation, which after continuation to Lorentzian becomes the horizon of the black hole. Right:
the second step is to introduce a domain wall (the blue curve) separating the de Sitter region and
AdS in each disk. The domain wall starts and ends on the particle trajectory, satisfying the junction
condition (A.2).

A Creating de Sitter bubbles in AdS

In this appendix, we briefly review a Euclidean path integral preparation of an AdS black
hole containing a de Sitter bubble in its interior in the presence of a source on the AdS
boundary, as discussed by Mirbabayi [50]. In this work, it was pointed out that an excitation
within a Euclidean AdS black hole can decay into a domain wall whose interior has a de Sitter
geometry. Here we will explain the detailed properties of this configuration, and its relation
to our analysis.

The construction begins with the gravitational description of an excitation in Euclidean
AdS black hole emanating from a point in the asymptotic boundary, traveling in the bulk,
and ending at another point on the boundary. The backreaction of such a particle is treated
by Israel junction conditions. In detail, the recipe is as follows:

• Step 1: prepare two identical Euclidean disks, each of which is continued to a Lorentzian
eternal AdS black hole containing only one bifurcation surface (say the left AdS and
the right AdS).

• Step 2: then introduce a brane in each of these two disks in the same way, and glue them
along the brane in a Z2 symmetric manner (see the left panel of figure 12). Choosing
the form of the Euclidean AdS metric to be ds2 = dρ2 + sinh2ρ dφ2, the dilaton profile
on each disk is ΦAdS = A cosh ρ. The black hole horizon is located at ρ = 0. The brane
profile satisfies the equation

ξµ∂µΦAdS = κ0, (A.1)

where κ0 denotes the tension of the L-R brane, and ξ is its normal vector (the normal
vector of the left ξL and right ξR differ by a sign ξ ≡ ξR = −ξL).

In this construction, we need two copies of the AdS black hole because we would like
to realize a de Sitter bubble behind the black hole horizon, so the Euclidean black hole has
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to have two bifurcation surfaces. (Such black holes are sometimes described as partially
entangled states [71].) These black holes, when continued to the Lorentzian regime, have
a long wormhole-like interior which can host an inflating region, as we will see below. In
the main text, we saw that in our case this first step is automatically implemented by the
backreaction of the CFT stress energy tensor (3.10).

The Euclidean black hole with two bifurcation surfaces prepared in this way is glued
with a de Sitter dilaton profile ΦdS for the Euclidean de Sitter space. It satisfies another
junction condition

ξµ∂µΦdS − ξµ∂µΦAdS = κ, (A.2)

where κ denotes the tension of the domain wall connecting the de Sitter region and the
AdS region. This is distinct from the tension associated with the excitation used to glue
two copies of a Euclidean AdS black hole, and κ in eq. (A.2) is in general different from
the mass of the excitation κ0 in eq. (A.1).

Denoting the metric of the Euclidean de Sitter (sphere) by ds2 = dθ2 + sin2θ dφ2, the
dilaton profile of the de Sitter side is ΦdS = B0 + B cos θ.12 It has two horizons, the
cosmological horizon at θ = 0 and the black hole horizon at θ = π. Let θ = θ(φ) be the
brane trajectory in the de Sitter side. Then, the junction condition (A.2) is again recast
into the equation of motion of particle in one dimension

θ̇2 + V (θ) = 0 (A.3)

with

V (θ) =
(

(B cos θ +B0)2 − κ2 −B2 sin2θ

2κB sin θ

)2

− 1, A≪ B,B0. (A.4)

This is the two-dimensional analog of the Euclidean potential problem for higher dimensions,
eq. (3.2). Again, the trajectory oscillates in the bounded region θmin ≤ θ ≤ θmax.

It remains to specify the location of the branching ρ = ρ1. Let ξR be the outward point
normal of the right part of the domain wall at the branching point and ξL be the similar
normal vector for the left part, as in figure 13. Denoting by ρ̇+ the velocity of the domain
wall in ρ direction at the branching point, its normal vector is

ξR =
(√

1 − ρ̇2
+,

ρ̇+
sinh ρ1

)
. (A.5)

The normal vector for the excitation trajectory is

ξe =
(

sinh ρm

sinh ρ1
,

√
1 −

(sinh ρm

sinh ρ1

))
, sinh ρm = κ0

2A, (A.6)

where ρ = ρm is the closest approach to the horizon, located at ρ = 0. If we denote the angle
between these two normal vectors by π−α, then the angle between two normal vectors ξR, ξL

in the de Sitter side is 2α. This is because there is no conical singularity in the geometry at
the branching point, a conclusion coming from the equations of motion for the dilaton profile.

12In this appendix, we include the constant part to the dilaton profiles.
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Figure 13. The branching point ρ = ρ1 of the excitation in AdS2 (black line) with the domain wall
(two blue lines). We denote the angle between the blue and the black line by α.

This yields the following equation:

sinh ρm

sinh ρ1

√
1 − ρ̇2

+ +
(

1 − B sin θ1
B cos θ1 +B0

)√
1 −

(sinh ρm

sinh ρ1

)2
= 0, (A.7)

which is solved to obtain θ = θ1 (or equivalently ρ = ρ1 in the coordinate in the AdS side).
When ρ1 ≫ ρm, one can easily see that θ1 ∼ θmin.
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any medium, provided the original author(s) and source are credited.
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