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1 Introduction

Soft graviton theorems and their relation with asymptotic symmetries play an important role in
developing an understanding of the infrared structure of quantum gravity. Influential work [1–
4] has indeed shown that conservation of supertranslation charge is equivalent to Weinberg’s
leading soft graviton theorem [5], while conservation of superrotation charge encodes the
tree-level subleading soft graviton theorem [6] (the case of massive particle scattering was
treated in [7]). The soft graviton theorems are therefore the most direct physical consequence
of the extended BMS symmetries [8–12] in the context of scattering amplitudes.

Soft graviton theorems receive loop corrections beyond the leading order O(ω−1) in the
soft energy ω expansion, and it is of primary interest to assess whether these also consistently
follow from BMS conservation laws, i.e., whether BMS symmetries hold in the quantum the-
ory. However the literature on loop corrections to soft graviton theorems contains seemingly
different results. On the one hand a general analysis of Bern, Davies and Nohle showed that
loop corrections appear at order O(ω0) in the soft expansion [13], while more recently Sen
et al. [14–17] have obtained corrections at order O(ln ω) (see also [18, 19] for a derivation
of log terms in the eikonal approach) and related them to gravitational tail effects in classical
gravity [20, 21]. In previous works [22, 23], a detailed derivation of the O(ω0) corrections
as a consequence of the conservation of superrotation charge was provided (see also [24, 25]).
Establishing this correspondence required significant control over the radiative gravitational
phase space, and therefore informs us about foundational aspects of the theory. The goal
of the present work will be to unify these earlier results with the O(ln ω) corrections found
by Sahoo and Sen [16] (see also the recent generalisation [26]).

Soft graviton theorems associated with superrotations also play a central role in flat holog-
raphy. Indeed in that context the subleading soft graviton theorem maps onto the conformal
Ward identity of a two-dimensional celestial CFT [27], or that of a three-dimensional Carrollian
CFT [28, 29]. The stress tensor of the corresponding boundary theory is identified with the in-
tegral density of the soft superrotation flux, whose determination is thus of central importance.

The paper is organised as follows. In section 2 we review the O(ln ω) corrections found by
Sahoo and Sen [16] and observe that they coincide with the O(ω0) corrections worked out in [13]
for the case where all scattered particles are massless, provided one substitutes ln ω by the
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cutoff used to regulate infrared divergences. This strongly suggests that the methods developed
in previous works [22, 23] and which accounted for the O(ω0) corrections to the subleading
soft graviton theorem can also account for the generic O(ln ω) corrections. To demonstrate
this, our main task will be to extend our previous analysis to the case where scattered
particles can be massive. To this end we review in section 3 the exponentiation of infrared
divergence in scattering amplitudes without soft graviton emission [5], and their description
in terms of correlation functions of the supertranslation Goldstone mode [30–32]. We point
out that a slight modification of the Goldstone two-point function needs to be considered
in order to account for the so-called ‘Coulomb’ phases corresponding to classical long-range
interaction between asymptotic states. In section 4 we describe the radiative phase space of
asymptotically flat gravity and its organisation with respect to extended BMS symmetries. In
particular, we provide a symplectic form such that these symmetries are realised canonically
and identify the canonical generators with BMS fluxes [33]. This generalises the construction
provided in [22] and building upon [2, 33–35] to the case where gravitational tails are allowed
in the phase space. This results in a new term in the soft superrotation flux compared to
previous works [22, 33], which however vanishes in a superrotation frame of reference where
the Liouville field is zero or in case gravitational tails need not be considered explicitly.
Finally in section 5 we derive all the logarithmic corrections found by Sahoo and Sen [16]
from superrotation charge conservation. While some of these corrections directly arise from
the soft superrotation flux as in [22], for massive particle scattering some corrections also
arise from the generator of superrotation at timelike infinities i± when considering matter
fields interacting with the gravitational field, i.e. dressed fields rather than free fields.1

2 Logarithmic corrections to soft graviton theorems

Soft graviton theorems relate a scattering amplitude Mn(p1, . . . , pn) of n hard particles of
momenta pi to the amplitude Mn+1(q, p1, . . . , pn) that contains an additional external soft
graviton of momentum q = ωq̂. Assuming a power series expansion in the soft momentum,
the tree-level soft graviton theorem at leading and subleading order in ω takes the form [5, 6]

Mn+1
ω→0=

[
ω−1 Ŝ(0)

n + S(1)
n

]
Mn + O(ω) , (2.1)

where the leading and subleading soft factors are respectively given by

Ŝ(0)
n = κ

2

n∑
i=1

pµ
i pν

i εµν(q̂)
pi · q̂

, S(1)
n = − iκ

2

n∑
i=1

pµ
i εµν(q̂) qλ

pi · q

(
Jλν

i + Sλν
i

)
≡ S(1)J

n + S(1)S
n , (2.2)

where κ =
√

32πG, εµν(q̂) is the polarisation tensor of the soft graviton, Jµν
i = −i(pµ

i ∂ν
pi
−

pν
i ∂µ

pi
) and Sµν

i are the orbital and spin angular momentum of the i-th particle, respectively.
Sahoo and Sen have shown that one-loop corrections generate logarithmic corrections

which actually dominate over the O(ω0) term in the expansion [16],

Mn+1
ω→0=

[
ω−1 Ŝ(0)

n − κ2

4 ln ω S(ln)
n

]
Mn + O(ω0) . (2.3)

1Loop corrections in QED were similarly discussed in [36, 37].
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Note that these loop corrections necessarily introduce an infrared length scale so as to make the
argument of the logarithm dimensionless. These logarithmic corrections are explicitly given by

S(ln)
n = iκ

8π

∑
i

εµνpµ
i pν

i

pi ·q
∑

j

δη,ηj q ·pj

+ iκ

16π

∑
i

εµνpν
i qρ

pi ·q
∑

j

δηi,ηj (pi ·pj)(pµ
i pρ

j−pµ
j pρ

i )
2(pi ·pj)2−3p2

i p2
j[

(pi ·pj)2−p2
i p2

j

]3/2

− κ

8π2

∑
i

εµνpν
i pν

i

pi ·q
∑

j

q ·pj ln|q̂ ·p̂j | (2.4)

− κ

32π2

∑
i

pµ
i εµνqλ

pi ·q

(
pλ

i

∂

∂piν
−pν

i

∂

∂piλ

)∑
j

2(pi ·pj)2−p2
i p2

j

[(pi ·pj)2−p2
i p2

j ]1/2 ln

pi ·pj +
√

(pi ·pj)2−p2
i p2

j

pi ·pj−
√

(pi ·pj)2−p2
i p2

j

 .

Note that the formulae of Sahoo and Sen are presented with κ = 2 in our conventions.
In [16] the first two lines and last two lines are referred to as the ‘classical’ and ‘quantum’
contributions, respectively, even though they all arise from one-loop diagrams. The reason for
this distinction is that the ‘classical’ terms can be obtained from purely classical considerations.
In particular they naturally map to late-time gravitational tails [15, 17]. The first term in (2.4)
represents the effect of gravitational drag on the soft graviton due to the other hard particles
in the final state. The second term represents the effect of late time gravitational radiation
due to the late time acceleration of the particles via long range gravitational interaction.

The ‘quantum terms’ were obtained by explicit evaluation of one-loop diagrams in a
theory of minimally coupled scalars in [16], and the generalisation to spinning fields was
recently given in [26]. In particular, the first term comes from a region of loop integration
where the loop momentum is small compared to ω but large compared to the infrared cut-off
R−1, which corresponds to the best energy resolution of a detector situated a distance R

from the scattering center. The second term comes from regions where the loop momentum
is large compared to ω but small compared to all other energy scales involved in the process
(energies of hard particles).

Note that the expression presented in [16] did not include the terms i = j in the second
and fourth line of (2.4), the reason being that diagrams involving a virtual soft graviton
emitted and absorbed from the same external leg were discarded. However Weinberg has
argued that the infrared contributions arising from such diagrams should be kept, and are
in fact crucial to ensure cancellations of infrared divergences in inclusive cross sections [38].
Here we have therefore allowed the terms with i = j in the formula (2.4). We will see that
these terms will naturally arise from the derivation of the logarithmic corrections based on
superrotation Ward identities that we will present in this work.

There is a significantly more compact way to write (2.4), which will turn out very useful
in carrying our analysis. For this we introduce the relative velocity of the particles i and j,

βij ≡
√

1− (p̂i · p̂j)−2 , (2.5)
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where p̂i is the normalised momentum satisfying p̂2
i = −1, and the quantities2

σn = 1
2(8π)2

∑
ij

ηiηj mimj

1 + β2
ij

βij

√
1− β2

ij

(
iπδηi,ηj −

1
2 ln 1 + βij

1− βij

)
, (2.6)

σ̂′
n+1(q̂) = 1

2(4π)2

n∑
i=1

(pi · q̂) ln(p̂i · q̂) . (2.7)

In writing (2.6) we have assumed that all hard particles are massive. If the i-th particle is
massless, then the corresponding terms in the sum are replaced by

1
(8π)2 ηiηj |pi · pj |

(
iπδηi,ηj − ln |p̂i · p̂j |

)
= 1

(8π)2 (pi · pj) ln(p̂i · p̂j) , (2.8)

which is valid whether the j-th particle is massless or massive. In fact σ̂′
n+1(q̂) derives from

σn+1 in case where the (n + 1)-th particle is a (soft) graviton with normalised momentum q̂,

σn+1 = σn + σ̂′
n+1(q̂) . (2.9)

In terms of these quantities the logarithmic soft factor (2.4) can be simply written3

S(ln)
n (q̂) = −8

(
σ̂′

n+1(q̂) Ŝ(0)
n (q̂)− S(1)J

n (q̂) σn

)
, (2.10)

where S
(1)J
n (q̂) is the orbital part of the subleading soft operator defined in (2.2), and where

we have kept the dependence on the soft graviton momentum direction q̂ explicit. The
fact that the logarithmic corrections do not depend on the spin of the particles has been
confirmed in [26] .

At this point it is very informative to make a comparison between the expression (2.10)
and the earlier result of Bern, Davies and Nohle [13] regarding infrared divergent one-loop
corrections to the soft graviton theorem in purely massless scatterings, namely

Mn+1
ω→0=

[
ω−1 Ŝ(0)

n + S(1)
n + κ2 ϵ−1

(
σ̂′

n+1 Ŝ(0)
n −

(
S(1)J

n σn

))]
Mn +O(ω) , (2.11)

where ϵ = (4− d)/2 is an infrared regulator in dimensional regularisation. While this method
differs from the one used by Sahoo and Sen,4 a direct comparison between the infrared
divergent terms in (2.11) and the logarithmic terms derived by Sahoo and Sen and given
in (2.10) allows to identify the terms that multiply ϵ−1 with the ones in front of ln ω. We can
understand this correspondence in the following way: if instead of dimensional regularisation
we used energy cutoffs as Weinberg originally discussed [5], we would replace ϵ−1 by

ϵ−1 ←→ ln Λ
λ

, (2.12)

where λ is the infrared regulator while Λ is a dividing energy scale below which virtual
gravitons are considered soft and some approximations can be applied. The terms ln(ωR) can
be thus identified with (2.12) with the energy ω of the emitted soft graviton as the dividing
energy scale Λ and the inverse of the distance of the detector R as the IR cut-off energy scale.

2ηi = +1 (−1) for an outgoing (incoming) particle.
3This formula can be found in (6.29) of [16], where Kreg

gr = −8 ln ω σn and Ŝ
(1)
gr = S

(1)J
n .

4The IR divergences in [16] are dealt with by means of the Grammer-Yennie formalism which provides a
prescription to extract an IR-finite S-matrix.
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3 Soft factorisation and supertranslation Goldstone

An important feature of gravitational scattering is that infrared divergences factorise from the
rest of the amplitude [5]. For a scattering of n hard particles, this factorisation takes the form

Mn =MsoftMfinite , (3.1)

where Msoft accounts for the infrared divergences coming from soft virtual gravitons prop-
agating between external legs,

Msoft = exp

1
ϵ

κ2

2(8π)2

∑
ij

ηiηj mimj

1 + β2
ij

βij

√
1− β2

ij

(
iπδηi,ηj −

1
2 ln 1 + βij

1− βij

) , (3.2)

with βij the relative velocity of particle i and j given in (2.5). Notice also the relationship
Msoft = exp[κ2ϵ−1σn]. The soft factor (3.2) actually vanishes as the infrared regulator is
removed (ϵ→ 0+) but fortunately drops out of the experimentally observable inclusive cross-
sections. Note that the imaginary part of the exponent in (3.2) only involves pairs of particles
that are both incoming or outgoing, and corresponds to the effect of the gravitational potential
attraction between these particles. Such pure phases are often referred to as ‘Coulomb phases’
by abuse of language and in analogy with quantum electrodynamics.

In the language of celestial holography, the scattering amplitude Mn is interpreted as
the correlation function of n ‘celestial’ operators,5

Mn = ⟨out|S|in⟩ = ⟨O1 . . . On⟩ , (3.3)

where each operator Oi represents an external particle with momentum pi. The factori-
sation (3.2) of the amplitudes motivates the factorisation of the celestial operators them-
selves [30],

O1(p1) =W1(p1) Õ1(p1) , (3.4)

such that Msoft and Mfinite be respectively obtained as

Msoft = ⟨W1 . . . Wn⟩ , Mfinite = ⟨Õ1 . . . Õn⟩ . (3.5)

The Õ(p)’s are dressed operators and Mfinite is the scattering amplitude of dressed particles.
In practice a specific parametrisation of massless momenta q in terms of energy and

coordinates on the celestial sphere is used,

qµ = ω η (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) ≡ ω q̂µ , (3.6)

while for a massive momentum p a parametrisation in terms of coordinates (ρ, z, z̄) on a
three-dimensional hyperboloid is used,

pµ = m

2ρ
η (1 + ρ2(1 + zz̄), ρ2(z + z̄),−iρ2(z − z̄),−1 + ρ2(1− zz̄)) ≡ m p̂µ . (3.7)

5Usually the term ‘celestial’ is reserved to operators recast in boost basis, while here we deal with momentum
basis operators.
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We will reserve the letter q for massless momenta only, while the letter p will always refer to
the momentum of one of the hard external particles that can be either massive or massless.

The operators Õi are to be understood as (conformally) dressed operators and the vertex
operators Wi as the corresponding operator dressings [30, 31, 39, 40]. For a massless particle
with momentum p = ω p̂ parametrised as in (3.6), the vertex operator is given in terms of
the supertranslation Goldstone mode C(0) by [30]

W(p) = eiωC(0)(p̂) , (3.8)

while for a massive particle with momentum p = m p̂ parametrised as in (3.7), it is given by

W(p) = exp
[

im

2

∫
d2q̂ G(p̂; q̂) C(0)(q̂)

]
, (3.9)

where it is understood that q̂ = q̂(w, w̄) shares the time-orientation of p̂, namely η(q̂) = η(p̂),
and where d2q̂ = dw dw̄ and G(p̂; q̂) is the ‘bulk-boundary propagator’ [41]

G(p̂; q̂) = 1
π

(
ρ

1 + ρ2|z − w|2
)3

. (3.10)

Using the vertex operators (3.8)–(3.9) together with the Goldstone two-point function,

⟨C(0)(q̂i)C(0)(q̂j)⟩ = −1
ϵ

κ2

2(4π)2 (q̂i · q̂j) ln(q̂i · q̂j)

= 1
ϵ

κ2

(4π)2 ηiηj |zij |2
(
ln |zij |2 − iπδηi,ηj

)
,

(3.11)

it was shown that the soft factor (3.2) is indeed recovered [30]. Note that the imaginary
part of the above expression had not been explicitly considered in previous work [22, 30, 32],
although it is necessary here in order to account for the ‘Coulomb phases’ in (3.2). This new
contribution will actually play a crucial role in recovering the classical logarithmic corrections
to the soft theorems. Also note that the Goldstone two-point function is still a Green’s
function for the operator ∂2∂̄2 in agreement with the effective action derived in [32], whereas
the new imaginary term corresponds to a different choice of boundary condition.

With this at hand, the insertion of C(0) in the S-matrix can be computed along the
same line as in [22], by considering the soft factor of a scattering with an additional massless
particle of momentum q = ω q̂(z, z̄) and taking suitable derivative with respect to ω,

⟨C(0)(q̂)W1 . . . Wn⟩ = −i∂ω⟨W(q)W1 . . . Wn⟩
∣∣
ω=0 = −i∂ωMsoft(q, p1, . . . , pn)

∣∣
ω=0

= −i
κ2

ϵ
σ̂′

n+1(q̂) ⟨W1 . . . Wn⟩ .
(3.12)

Since the operators Õi and Wi do not interact, this property is also valid at the level of
the full S-matrix itself,

⟨out|C(0)(q̂)S|in⟩ = −i
κ2

ϵ
σ̂′

n+1(q̂) ⟨out|S|in⟩ . (3.13)

Note that the computation in this section was done in dimensional regularization with an
eikonal approximation which produced a 1

ϵ regulator. We will stick to this scheme in the rest
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of the paper, however, the computation could have been repeated with a cut-off regularization,
producing a ln ω regulator instead. Then the rest of the results would follow in the same
way, with the identification of equation (2.12). The expression given in (3.13) complements
the leading soft graviton theorem, which describes the insertion of the leading soft news
N (0)

zz (see below (4.5)) into S-matrix elements [2],

⟨out| N (0)
zz (q̂)S|in⟩ = − κ

16π
Ŝ(0)+

n (q̂) ⟨out|S|in⟩ . (3.14)

4 Radiative phase space at null infinity

In this section we give a detailed description of the radiative phase space at null infinity I +,
following notations and conventions of [22]. We extend that previous analysis by allowing for
gravitational tails as they directly relate to the logarithmic corrections to the soft graviton
theorems which we aim to describe in this work.

We cover I + with coordinates (u, z, z̄), where u is a retarded time and (z, z̄) are complex
stereographic coordinates on the celestial sphere. We choose the representative of the
degenerate boundary metric to be ds2|I + = 0 du2 + 2 dz dz̄ and we denote ∂ ≡ ∂z, ∂̄ ≡ ∂z̄.
The radiative data is encoded in the asymptotic shear Czz(u, z, z̄) (C∗

zz = Cz̄z̄) and the Bondi
news tensor Nzz = ∂uCzz. We will assume the following falloffs in u as u → ±∞, which
are compatible with the action of BMS symmetries on the phase space [42, 43], and are
sufficiently weak to encompass gravitational tails [20, 21, 44],

Czz = (u + C±)Nvac
zz − 2∂2C± + 1

u
CL,±

zz + o(u−1) , Nzz = Nvac
zz −

CL,±
zz

u2 + o(u−2) . (4.1)

Here, C±(z, z̄) correspond to the values of the supertranslation field at the corners I +
± of

null infinity and encoding the displacement memory effect [45]. The presence of the new
term CL,±

zz (z, z̄) in the expansion (4.1) is necessary in order to account for gravitational
tails [14–17]. The vacuum news tensor Nvac

zz (z) [42, 46], identified with the tracefree part
of the Geroch tensor [47–49], is given in terms of a Liouville field φ(z),

Nvac
zz = 1

2(∂φ)2 − ∂2φ . (4.2)

The latter encodes the refraction/velocity kick memory effects [42]. To make the covariance
of the expressions under the superrotations manifest, it is useful to introduce the derivative
operators [33, 48, 50, 51]

Dϕh,h̄ = [∂ − h∂φ]ϕh,h̄ , D̄ϕh,h̄ = [∂̄ − h̄∂̄φ̄]ϕh,h̄ , (4.3)

which, when acting on conformal fields ϕh,h̄, produce conformal fields of weights (h + 1, h̄)
and (h, h̄ + 1), respectively.

The radiative data can be split into hard and soft variables [22, 35, 48]. To do so we
define C

(0)
zz , C̃zz and Ñzz through

Czz = uNvac
zz + C(0)

zz + C̃zz , Nzz = Nvac
zz + Ñzz ,

C(0)
zz = −2D2C(0) , C(0) = 1

2(C+ + C−) .
(4.4)
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Moreover, the leading soft news N (0)
zz and subleading soft news N (1)

zz are defined by

N (0)
zz ≡

∫ +∞

−∞
du Ñzz = −4D2N (0) , N (1)

zz ≡
∫ +∞

−∞
du uÑzz . (4.5)

Notice that the subleading soft news N (1)
zz is formally divergent due to the tail terms

parametrised by CL
zz in (4.1). This potential issue is removed once we turn to scattering

amplitudes since the quantum Hilbert space simply discards such tails at the cost of generating
infrared divergences at one loop; see also the discussion after (5.7). This can be viewed as a
reshuffling of the infrared divergences associated with the physics of logarithmic corrections
studied in this paper. Obviously, it would be desirable to come up with a quantisation
of gravity that does account for gravitational tails in physical scattered states, and which
does not require the introduction of infrared cutoffs at any step. We will not attempt to
achieve this here, although the phase space description provided in this section might offer
the basis to carry out such a program.

Now we wish to provide a symplectic form on this radiative phase space such that extended
BMS symmetries are canonical transformations, and identify the corresponding canonical gen-
erators. The hard variables are {C̃zz , Ñzz} while the soft variables are {C(0) , φ ,N (0)

zz ,N (1)
zz }.

The appropriate symplectic form Ω on the radiative phase space at I + is the sum of a
hard and a soft contribution [22, 35],

Ω = Ωhard + Ωsoft ,

Ωhard = 1
32πG

∫
I +

du d2z
[
δÑzz ∧ δC̃z̄z̄ + c.c.

]
+ matter sector ,

Ωsoft = 1
32πG

∫
S

d2z
[
δN (0)

zz ∧ δC
(0)
z̄z̄ + δΠzz ∧ δNvac

z̄z̄ + c.c.
]

,

(4.6)

with the constraint

Πzz = 2N (1)
zz + C(0)N (0)

zz + (φ + φ̄)∆CL
zz . (4.7)

Notice the shift6 of Πzz compared to [22, 35] which involves ∆CL
zz ≡ CL,+

zz −CL,−
zz . Under BMS

transformations parametrised by supertranslations T (z, z̄) and superrotations (Y(z), Ȳ(z̄)),
we have

δ(T ,Y,Ȳ)∆CL
zz = (Y∂ + Ȳ ∂̄ + ∂Y − ∂̄Ȳ)∆CL

zz ,

δ(T ,Y,Ȳ)N
(1)
zz = (Y∂ + Ȳ ∂̄ + ∂Y − ∂̄Ȳ)N (1)

zz −
1
2(∂Y + ∂̄Ȳ)∆CL

zz − T N (0)
zz .

(4.8)

Using (4.8), one can now show that the combination (4.7) transforms nicely under BMS
transformations,

δ(T ,Y,Ȳ)Πzz = (Y∂ + Ȳ ∂̄ + ∂Y − ∂̄Ȳ)Πzz − T N (0)
zz . (4.9)

The transformation of the other canonical variables remain exactly the same as in [22] and
will not be repeated here.

6Πhere
zz = Πthere

zz + (φ + φ̄)∆CL
zz.
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We then obtain the canonical generators of BMS symmetries, also known as BMS fluxes,
by contracting the symplectic structure (4.6) with the corresponding Hamiltonian vector fields,

iδ(T ,Y,Ȳ)
Ωsoft = δF soft

(T ,Y,Ȳ) , iδ(T ,Y,Ȳ)
Ωhard = δF hard

(T ,Y,Ȳ) . (4.10)

The supertranslation fluxes are given by

F hard
T = − 1

16πG

∫
dud2z T

[
ÑzzÑz̄z̄ + 16πG T (2)

uu

]
,

F soft
T = 1

8πG

∫
d2z T

[
D2N (0)

z̄z̄

]
,

(4.11)

where T
(2)
µν denotes the order O(r−2) in the expansion of the µν-component of the matter

stress tensor, while the superrotation fluxes are given by

F hard
Y = 1

16πG

∫
dud2zY

[3
2 C̃zz∂Ñz̄z̄ + 1

2Ñz̄z̄∂C̃zz + u

2 ∂(ÑzzÑz̄z̄)+16πG

(
u

2 ∂zT (2)
uu −T (2)

uz

)]
,

F soft
Y = 1

16πG

∫
d2zY

[
−D3

(
N (1)

z̄z̄ + 1
2(φ+φ̄)∆CL

z̄z̄

)
+ 3

2C(0)
zz DN (0)

z̄z̄ + 1
2N

(0)
z̄z̄ DC(0)

zz

]
, (4.12)

together with the complex conjugate expressions associated with Ȳ . These fluxes are identical
to those presented in [22] when setting ∆CL

z̄z̄ = 0. Note that F soft
Y contains logarithmic

infrared divergences through N (1)
z̄z̄ , in agreement with earlier observations [22, 52].

For completeness we express these fluxes as a difference of charges between the corners
I +

± of future null infinity. Following the notations and conventions of [22], and introducing
the mass and angular momentum aspects in terms of Newman-Penrose scalars,7

M = −1
2(Ψ0

2 + Ψ̄0
2) , N = −Ψ0

1 + u ∂̄Ψ0
2 , (4.13)

the total BMS fluxes can be written

F (I +) ≡ F hard + F soft = Q(I +
+ )−Q(I +

− ) , (4.14)

with

Q(I +
± ) = 1

32πG

∫
d2z

[
8TM+ Y

[
4N̄ − ∂(Nvac

zz CL
z̄z̄) + D3((φ + φ̄)CL

z̄z̄)
]

+ c.c.
] ∣∣∣

I +
±

.

(4.15)
The last two terms featuring CL

z̄z̄ give new contributions compared to the expression of
BMS charges given in [22].

5 Superrotation Ward identity

We finally come to the derivation of the logarithmic corrections to soft graviton theorems
from the Ward identity of superrotations. First we briefly remind the general procedure

7Notice that the falloffs (4.1) imply a logarithmic divergence in the angular momentum aspect (N ∼ ln u) [52],
although the mass aspect remains finite (M ∼ u0). This is the same divergence as that appearing in the
flux (4.12) through N (1)

z̄z̄ .
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allowing the derivation of soft graviton theorems from BMS conservation laws [1, 2, 4, 7].
The key ingredient is the conservation of the BMS charges across spatial infinity i0,

Q(I +
− ) = Q(I −

+ ) ≡ Q(i0) . (5.1)

It should be pointed out that genuine conservation laws at spatial infinity have only been
established for the global BMS group containing supertranslations but no superrotations [53].
Alternatively (5.1) can be established provided gravitational fields satisfy suitable antipodal
matching relations between I +

− and I −
+ in the asymptotic solution space of interest. This in

particular requires to connect gravitational solutions in asymptotic gauges adapted to I ±

and i0, respectively, which has become an active subject of investigations [52, 54–60]. For
superrotations the relevant antipodal matching is that of the angular momentum aspect,
which has been established in an asymptotic solution space without gravitational tails near
spatial infinity, i.e., in a phase space where the physical news tensor falls-off as Ñzz = o(|u|−2)
in the limit u→ −∞ [60]. The logarithmic corrections to the soft theorems discussed here
are however tightly connected to existence of such tails [15, 17], and to establish the validity
of the antipodal matching in this context therefore constitutes an important open problem.
In what follows we will simply assume the validity of (5.1) and work out its implications. We
also work in a reference superrotation frame where φ = φ̄ = 0 and therefore the derivative
operator (4.3) is the standard derivative D = ∂z ≡ ∂.

Writing the BMS fluxes at past and future null infinity as a net difference of charges,

F (I +) = Q(I +
+ )−Q(I +

− ) ,

F (I −) = Q(I −
+ )−Q(I −

− ) ,
(5.2)

the conservation law (5.1) takes the form

Q(i0) = Q(I +
+ )− F (I +) = Q(I −

− ) + F (I −) . (5.3)

Invariance of the S-matrix under BMS symmetries can be stated as[
Q(i0),S

]
= 0 , (5.4)

or using (5.3),

⟨out|
(
F (I +)−Q(I +

+ )
)
S + S

(
Q(I −

− ) + F (I −)
)
|in⟩ = 0 . (5.5)

One is left to evaluate the effect of inserting these charges and fluxes in the S-matrix
elements. We will focus on superrotations in this work, although the discussion also applied
to supertranslations thus far. The hard part of the superrotation flux F hard

Y (I +) generates
the symmetry transformations of the massless outgoing states, while the charge QY(I +

+ ) at
the top corner of I generates those of the massive outgoing states. A similar statement
applies to incoming states. Together these terms account for the tree-level subleading soft
factor S

(1)
n in (2.2). Indeed, insertion of the linear piece in the soft flux (4.12), namely

F soft,0
Y = − 2

κ2

∫
d2z Y ∂3N (1)

z̄z̄ , (5.6)

– 10 –



J
H
E
P
0
2
(
2
0
2
4
)
1
2
0

adds an external soft graviton to the original amplitude since the subleading soft news can
be expressed in terms of graviton operators as [4]

N (1)
z̄z̄ = iκ

16π
lim
ω→0

(1 + ω∂ω) [a−(ωq̂)− a†
+(ωq̂)] . (5.7)

In this way one recovers the subleading soft graviton theorem at tree-level [4, 7]. It should be
emphasised that (5.7) is only valid in the space of rapidly decreasing functions as u→ ±∞ [61],
which is the basis for the perturbative approach to quantum gravity within which the
logarithmic corrections (2.4) have been established. In particular, this functional space does
not account for asymptotic wavepackets featuring gravitational tails, a limitation striking
back in the form of infrared divergences. In a previous publication [22] (see also [23]), it
was shown that the infrared divergent one-loop corrections to the soft graviton theorem
that were derived in [13] are accounted for by insertion of the remaining terms in the soft
flux (4.12), which can be rewritten as

F soft,new
Y = 2

κ2

∫
d2z Y

[
−∂3(C(0)N (0)

z̄z̄ ) + 3∂̄2N (0)
zz ∂C(0) + C(0)∂∂̄2N (0)

zz

]
. (5.8)

The focus of that previous analysis was on recovering the result of Bern et al. which concerns
the IR-divergent one-loop contributions to the soft graviton theorem in case all particles are
massless. Here we extend that analysis so that we recover the loop corrections found by Sahoo
and Sen that also apply to the scattering of massive particles. As we discussed in section 2
these results take the exact same form when expressed in terms of the quantities σn , σ̂′

n+1 and
Ŝ

(0)
n , S

(1)
n , modulo the identification between the ϵ−1 and ln ω terms. Hence it is just a matter

of extending the derivation presented in [22] in a way that it also applies to massive particles.
The two terms in (2.10) will arise in two distinct ways. The first term σ̂′

n+1 Ŝ
(0)
n will

be obtained by insertion of the soft flux contribution F soft,new
Y into the S-matrix, while

the second term S
(1)J
n σn will arise from a contribution to the charges at timelike infinity,

Qi+
Y ≡ QY(I +

+ ) and Qi−
Y ≡ QY(I −

− ) which is associated with the gravitational dressing of the
massive scalar fields. It is interesting to note that the imaginary part of these terms can be
given a very clear classical interpretation: Im (σ̂′

n+1 Ŝ
(0)
n ) results from the gravitational drag

exerted by the hard particles on the soft graviton, while Im (S(1)J
n σn) results from the long

range ‘Coulombic’/Newtonian interaction between the hard particles. Quantum mechanically,
σ̂′

n+1 Ŝ
(0)
n and S

(1)J
n σn arise from Feynman diagrams where the soft graviton attaches to a

virtual soft graviton or to an external hard particle, respectively [16].
We start by inserting the soft flux contribution F soft,new

Y as given in (5.8) into the
S-matrix, upon using the formulae (3.13) and (3.14) for the insertions of C(0) and N (0)

zz ,
respectively. This yields

⟨out|F soft,new
Y (I +)S + SF soft,new

Y (I −)|in⟩

= − iκ

8πϵ

∫
d2z Y

[
∂3(σ̂′

n+1 Ŝ(0)−
n )− σ̂′

n+1 ∂∂̄2Ŝ(0)+
n − 3∂σ̂′

n+1 ∂̄2Ŝ(0)+
n

]
⟨out|S|in⟩

= − iκ

16πϵ

∫
d2z Y ∂3(σ̂′

n+1 Ŝ(0)−
n ) ⟨out|S|in⟩ ,

(5.9)

where in the second equality we used (5.18) in [22]. This accounts for the first term in (2.10).
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We now move to the derivation of the remaining term, S
(1)J
n σn, from the hard part of

the superrotation generators. This includes the fluxes acting on the massless particles at null
infinity and the charges acting on massive particles at timelike infinity. As massive fields
propagate towards future timelike infinity i+ rather than null infinity, it is convenient to
use hyperbolic coordinates (τ, xa) within the future light cone,

ds2 = −dτ2 + τ2 hab dxa dxb = −dτ2 + τ2
(

dρ2

ρ2 + ρ2 dz dz̄

)
. (5.10)

The three-dimensional hyperboloid H covered by the coordinates xa = (ρ, z, z̄) describes the
directions of approach to i+. Obviously a similar construction applies in the neighborhood
of past timelike infinity i−. In this coordinate system superrotations are parametrised by a
vector field Ya

H ∂a satisfying DaYa
H = 0 and determined directly by the standard superrotation

parameters YA = (Y, Ȳ) through the integral relation [7, 41]

Ya
H(p̂) =

∫
d2q̂ Ga

A(p̂; q̂)YA(q̂) , p̂ = p̂(ρ, z, z̄) , q̂ = q̂(w, w̄) , (5.11)

where the ‘bulk-boundary propagator’ Ga
A admits the representation

Ga
w(p̂; q̂)∂a = i

4π
∂3

w

(
p̂µ ε−µν(q̂) q̂λ

p̂ · q̂

)
Jλν(p̂) . (5.12)

Asymptotically superrotations are diffeomorphisms generated by the vector field Ya
H∂a such

that the charge generating the corresponding asymptotic transformation of the massive
matter fields is simply given by [7]

Qi+
Y = lim

τ→∞
τ3

8

∫
H

d3p̂Ya
H(p̂) Tτa(τ, p̂) , (5.13)

where Tµν is the matter stress tensor and d3p̂ denotes the volume element of the unit
hyperboloid, ∫

d3p̂ Ep̂ δ3(p̂) = 1 , Ep̂ ≡
√
|p⃗/m|2 + 1 . (5.14)

Ideally one should prove that this quantity is indeed equal to QY(I +
+ ) as defined in (4.15).

Progress in this direction has been reported in [52], however here we will simply assume
its validity as customarily done. For simplicity we will analyse the case of massive scalar
fields which is appropriate to the scattering of massive spinless particles. Asymptotically free
massive scalar fields can be written in terms of the creation/annihilation operators [7],

ϕ(free)(τ, xa) =
√

m

2(2πτ)3/2

(
b(p) e−iτm + b(p)† eiτm

)
+ O(τ−5/2) , (5.15)

with the position-momentum relation p = m p̂(xa) given as in (3.7), following from a stationary
phase approximation of the momentum mode decomposition of the field in the large-τ limit.
In turn the stress tensor components of interest take the form

T (free)
τa = im2

4(2πτ)3

[
b†∂ab− ∂ab†b + 1

2∂a

(
b†2e2imτ − b2e−2imτ

)]
+ O(τ−4) , (5.16)
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such that using DaYa
H = 0 the charge (5.13) becomes

Q
i+(free)
Y = im2

32(2π)3

∫
H

d3p̂Ya
H(p̂)

(
b†∂ab− ∂ab†b

)
. (5.17)

However the charge formula (5.13) really features matter fields in gravitational interaction
rather than free fields. This will be taken care of by dressing the free field operators.
In particular the ‘classical’ part of the dressing will properly account for the long-range
gravitational interaction between scattered particles. Dressing the field ϕ hence amounts
to performing the replacement

b(p̂)† 7→ b̃(p̂)† = exp
[
− im

2

∫
d2q̂ G(p̂; q̂) C(0)(q̂)

]
b(p̂)† , (5.18)

as can be directly inferred from (3.4)–(3.9). Indeed in the language of celestial holography the
creation operator b(p)† is represented by a local operator O(p). The dressed superrotation
charge thus acquires an extra contribution,

Qi+
Y = Q

i+(free)
Y −∆Qi+

Y , (5.19)

where

∆Qi+
Y = m3

32(2π)3

∫
d2q̂

∫
d3p̂Ya

H(p̂) ∂aG(p̂; q̂) C(0)(q̂) b(p̂)†b(p̂) . (5.20)

The contribution of the free charge Q
i+(free)
Y to the Ward identity (5.5) yields the leading

soft factor Ŝ
(0)
n [7]. We are left to evaluate the result of inserting ∆Qi+

Y and ∆Qi−
Y into S-matrix

elements. We will set Ȳ = 0 for ease of notation. First we recall the identities [22, 30]

σn = − ϵ

8κ2

n∑
ij=1

mimj

∫
d2q̂ d2q̂′ G(p̂i; q̂)G(p̂j ; q̂′)⟨C(0)(q̂)C(0)(q̂′)⟩ , (5.21)

σ̂′
n+1(q̂′) = − ϵ

2κ2

n∑
i=1

mi

∫
d2q̂ G(p̂i; q̂) ⟨C(0)(q̂′)C(0)(q̂)⟩

= 1
(8π)2

n∑
i=1

mi

∫
d2q̂ G(p̂i; q̂) (q̂ · q̂′) ln(q̂ · q̂′) , (5.22)

such that

∂3S(1)J−
n (q̂) σn = 1

2

n∑
i

mi

∫
d2q̂′ G(p̂i; q̂′) ∂3S(1)J−

n (q̂) σ̂′
n+1(q̂′) . (5.23)
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We then have

⟨out|∆Qi+
Y S − S∆Qi−

Y |in⟩

= 1
16
∑

i

mi

∫
d2q̂ Ya

H(p̂i)∂aG(p̂i; q̂) ⟨out|C(0)(q̂)S|in⟩

= −iκ2

16ϵ

∑
i

mi

∫
d2q̂ Ya

H(p̂i)∂aG(p̂i; q̂) σ̂′
n+1(q̂) ⟨out|S|in⟩

= i

32
∑
ij

mimj

∫
d2q̂′ G(p̂j ; q̂′)

∫
d2q̂ Ya

H(p̂i)∂aG(p̂i; q̂) ⟨C(0)(q̂)C(0)(q̂′)⟩ ⟨out|S|in⟩

= −iκ

32πϵ

∑
j

mj

∫
d2q̂′ G(p̂j ; q̂′)

∫
d2q̂ Y(q̂) ∂3S(1)J−

n (q̂) σ̂′
n+1(q̂′) ⟨out|S|in⟩

= −iκ

16πϵ

∫
d2q̂ Y(q̂) ∂3S(1)J−

n (q̂) σn ⟨out|S|in⟩ . (5.24)

In the first equality we acted on the massive external states with the particle number
operator [7]

b(p̂)† b(p̂) |p′⟩ = m−2(2π)3 (2Ep̂) δ3(p̂− p̂′) |p′⟩ . (5.25)

The second equality is obtained from (3.13), while the third equality relies on (5.22). The
fourth equality holds thanks to (5.12) together with (5.22). The last equality follows directly
from (5.23).

We observe that the last expression of (5.24) indeed accounts for the second term S
(1)J
n σn

in (2.10). Together with (5.9) we have therefore recovered all logarithmic corrections to the
soft graviton theorems when external states are massive. The treatment of massless particles
goes along similar lines. In particular it requires dressing the massless fields (including
the graviton field if some of the scattered particles are hard gravitons) in the hard part
of the flux F hard

Y given in (4.12), which should then produce the corresponding massless
contributions in S

(1)J
n σn. The massless contributions to σ̂′

n+1 Ŝ
(0)
n are still captured by (5.9)

without modifications. Note that the result for massless particles is also directly obtained
by taking the corresponding massless limits.
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