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1 Introduction

In the light of prospects for increasingly high-statistics data from the Large Hadron Col-
lider and proposed facilities, the need for precision in perturbative calculations of collider
cross sections is widely recognized [1–3]. A recurring theme in these discussions has been
the possibility of carrying out calculations directly in four dimensions [4–6]. For physical
observables like cross sections, this involves canceling infrared (IR) singularities at the level of
integrands, resulting in expressions amenable to numerical calculation [7–15]. The potential
for such an approach is implicit in formal proofs of the infrared safety of jet and related
weighted cross sections [16, 17], based on light-cone ordered perturbation theory, and in
proofs of factorization based on time-ordered perturbation theory (TOPT) [18–21]. In each
case, cancellations of infrared divergences locally in momentum space become manifest after
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integration over loop energies or light-cone variables. The same fundamental observation
is found in refs. [8] - [15], which carry out energy integrals using the technique of Loop
Tree Duality [4, 22]. In this paper, inspired by these results and by the general analyses
of perturbation theory in refs. [23–26], we return to time-ordered perturbation theory, to
provide a complementary perspective on these important results.

We will reconsider infrared (IR) safe cross sections for hadronic states produced in lepton
pair annihilation from this point of view. In this case, unitarity implies that cross sections
can be computed as sums over the final states that correspond to cuts of vacuum polarization
diagrams. The contribution of any fixed cut, of course, includes infrared divergences, which
cancel in the sum over cuts. The result of our analysis is a manifestly power-counting
finite expression for such a cross section, given as a sum over time-ordered, cut vacuum
polarization diagrams. All terms coming from a given diagram to this sum are evaluated as
one three-dimensional integration per loop of the original uncut diagram, without change
of variables as we sum over the cuts (states) of the diagram.

In the course of our discussion in TOPT, we will encounter apparent, unphysical contribu-
tions to the cross section, associated with the vanishing of energy denominators corresponding
to cuts that divide the diagram into more than two parts. We’ll see how these unphysical
contributions cancel in the sum over time orders. This observation opens the door to a
reformulation of TOPT, in which unphysical energy denominators are altogether absent.
Such a form, in fact, has already been derived in ref. [26], from a distinct but related point
of view. We will present an alternative derivation, based on what we will call partially
time-ordered perturbation theory (PTOPT). These results, like those in ref. [26], are quite
general, and provide a reformulation for arbitrary amplitudes, and to light-cone- as well
as time-ordered perturbation theory.

In section 2 we will review some properties of time-ordered perturbation theory, and we
will observe that within a single time-ordered diagram, many contributions to the imaginary
part are unphysical, involving the disconnected production of finite-energy particles out of the
vacuum. We will show, however, that upon summing over time orders, these contributions
cancel among themselves at the amplitude level. In section 3 we construct a locally IR finite
formula for weighted cross sections in TOPT for leptonic annihilation to hadrons. Each such
expression is closely related to the imaginary part of the vacuum polarization amplitude for
the current that couples to quantum chromodynamics in the Standard Model. We will derive
the analogs of Landau equations for this class of cross sections, along with power counting
at the “pinch surfaces” where these equations are satisfied.

In subsequent sections, we show how to reorganize TOPT to eliminate unphysical
singularities manifestly, by developing partially time-ordered perturbation theory, with
results similar to those of ref. [26]. These partial sums over time orders can be carried out
algorithmically, and in effect reduce the number of terms necessary to compute amplitudes
and cross sections. To this end, in section 4, we will recall a mathematical structure that
underlies each time order: the partially ordered set (poset), and show by examples how
partial ordering can be used to eliminate unphysical cuts.

Section 5 is dedicated to combining the full TOPT contributions associated with each
poset, implementing the constraints associated with the poset. In doing so, we will sum over
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all time orders consistent with a poset. Finally, in section 6, we will return to weighted cross
sections in leptonic annihilation, and adapt our formulas for the weighted cross section case.
We conclude with a short summary and comments on future directions.

2 Time-ordered perturbation theory and leptonic annihilation

Time-ordered perturbation theory provides a systematic method for integrating all loop
energies in an arbitrary diagram [20, 21]. For the treatment of electroweak annihilation, the
diagrams of interest are two-point correlators of electroweak currents. More generally, we can
consider any amplitude A

(
q′j , qi

)
, where qi represents a set of incoming momenta, and q′j a

set of outgoing momenta, any or all of which may be off-shell. In time-ordered perturbation
theory, the expression for such an amplitude is of the form

A
(
q′j , qi

)
=

∑
G∈GA

∫
dLG

∑
τG

NτG

NG∏
i=1

1
2ωi

VG−1∏
s=1

i

Es −
∑

j∈s ωj + iϵ
, (2.1)

where GA represents the set of graphs in Lorentz-invariant perturbation theory that contribute
to the amplitude and τG represents the time orders of the VG vertices of each graph G, with
NG lines. Each ordering, τG of the vertices specifies a set of states, labeled s = 1 . . . VG − 1,
whose total energy is the sum of the on-shell energies of all the particles in that state, defined
to flow from earlier to later times. The denominators in eq. (2.1) are “energy deficits”, for
each state s, the difference between the sum of the on-shell energies ωi =

√
p⃗2i + m2

i for lines
of mass mi in state s and the external energy, Es, that has flowed into the diagram before
state s. The external net energy of each state depends on the specific ordering τG.

In eq. (2.1),
∫

dLG represents the spatial loop momentum space of the graph G, which
is the same for every time order. Each line momentum p⃗j is a linear function of loop and
external momenta, which in this way determine the energies ωj . The factor NτG represents
the perturbative numerator, consisting of overall constants and spin-dependent momentum
factors, with the energies of every line evaluated on-shell, that is with energies ωi defined as
above. The signs of these energies are always positive for flow from the earlier to later vertex
connected by the line in question. In this way, the numerator factor depends on the time order.

As an illustration of TOPT rules, figure 1 (a), (b) presents the two time orders of the
one-loop vacuum polarization in QED, which illustrates all of these rules. The two terms
represent the ordering of times for the vertices labelled µ and µ′ in the figure, and are given by

πµν(q) =
∫

d3k⃗

(2π)3
1

2ω(k⃗) 2ω(q⃗ + k⃗)

[
iNµµ′

a

q0 − ω(k⃗)− ω(q⃗ + k⃗) + iϵ

+ iNµµ′

b

−q0 − ω(k⃗)− ω(q⃗ + k⃗) + iϵ

]
. (2.2)

As indicated, the numerator factors include vector indices associated with the external vertices.
For positive external energy q0, only the denominator of the “physical” order τ = a can
vanish, corresponding to a physical intermediate state. The order-dependent numerator
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Figure 1. Time orders for the one-loop vacuum polarization in QED. The single state for each
diagram is indicated by the dashed line. Momenta are defined to flow in the direction of the arrows
on the fermion lines.

functions Nτ , with τ = a, b are given explicitly by

Nµµ′
a = ie2Tr

[
γµ
(
ω(q⃗ + k⃗)γ0 −

(
q⃗ + k⃗

)
· γ⃗ + m

)
γµ′ (−ω(k⃗)γ0 −

(
k⃗
)
· γ⃗ + m

)]
,

Nµµ′

b = ie2Tr
[
γµ
(
−ω(q⃗ + k⃗)γ0 −

(
q⃗ + k⃗

)
· γ⃗ + m

)
γµ′ (

ω(k⃗)γ0 −
(
k⃗
)
· γ⃗ + m

)]
, (2.3)

where we have absorbed the couplings and other overall factors into the numerators. As
anticipated, the numerators are identical except for the signs of the energy terms, reflecting
flow in each case from earlier to later times.

2.1 Cross sections in TOPT

We consider annihilation cross sections for leptons to hadrons, at lowest order in electroweak
couplings. In this case, we can represent our cross sections as

σ(Q) ≡
∑
N

(2π)4δ4 (q − PN )
∣∣⟨0∣∣J (0) |N⟩|2 , (2.4)

where the J represents an electroweak current, implicitly contracted with tree-level leptonic
tensors and vector boson propagators, which we suppress, and where q2 = Q2. The latter will
play no role in these arguments, and we will consistently absorb them into the currents. As a
total cross section, σ(Q) is related by the optical theorem to a forward-scattering amplitude,
here a two-point correlation function of the currents J ,

σ(Q) = ImΠ(Q) ,

Π(Q) = i

∫
d4x e−iq·x⟨0|T [J (0)J (x)]|0⟩ . (2.5)

In this paper, we will use time-ordered perturbation theory to derive expressions for sets
of weighted cross sections that generalize eq. (2.4),

Σ[f, Q] ≡
∑
N

(2π)4δ4 (q − PN ) f(N) ⟨0| J (0) |N⟩|2 , (2.6)

with f(N) a function of the kinematic variables that describe state N , and with currents
normalized as for the total cross section, eq. (2.4). Our goal will be to derive a set of expressions
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that exhibit manifestly the cancellation of infrared divergences in such quantities [16, 17, 27].
First, however, we will discuss a bit more how the general relations (2.4) and (2.5) are
realized in TOPT.

In the notation of eq. (2.1), for the two-point correlation function of eq. (2.5), a single
momentum q flows into and out of the diagram, and we may choose to work in its rest frame,
qµ = (Q, 0⃗). In this case, our vacuum polarization diagram Π(Q) is given by

Π(Q) =
∑

G∈GΠ

∫
dLG

NG∏
i=1

1
2ωi

∑
τG

NτG πτG(Q,LG) ,

πτG(Q,LG) =
VG−1∏
s=1

i

Qλs −
∑

j∈s ωj + iϵ
, (2.7)

where the sum is now over the set of diagrams GΠ that contribute to the two-point correlation
function that mediates the leptonic annihilation process. We have suppressed vector indices
of the currents associated with the decay of the mediating vector bosons. In this expression,
the state-dependent factor λs enforces the condition that the net external energy in state s is
positive only when state s occurs after momentum q flows into the diagram, here and below
at vertex i, and before the same energy flows out, here and below at vertex o,

λs = 1 , o > s ≥ i ,

λs = −1 , i > s ≥ o

= 0 , otherwise . (2.8)

In eq. (2.7), the set of states s depends implicitly on the time order, τG. Finally, we notice that
energy denominators are negative semi-definite for massless particles and negative definite
for massive particles except when o > s ≥ i.

Each covariant diagram with VG vertices provides VG! terms, the sum over τG in eq. (2.7),
each with VG − 1 denominators. The vanishing of a subset of these denominators results
in a branch cut in the function Π(Q). Each such branch cut corresponds to an on-shell
intermediate state that is at or above threshold. These are the physical, or unitarity cuts of
the underlying diagram. In time-ordered perturbation theory, such states separate a vacuum
polarization diagram G into a connected amplitude and complex-conjugate amplitude, where
external momentum flows into the amplitude and out of the complex conjugate. Clearly,
such cuts are possible only in orderings for which the vertex i is earlier than vertex o. By
unitarity in the form of the optical theorem, the sum of these singularities gives the total
cross section for leptonic annihilation or equivalently the decay width of the relevant off-shell
electroweak boson. We shall see below, however, that even when o > i in the uncut diagram,
many cuts of πτG in eq. (2.7) are actually unphysical, corresponding to the production of
particles out of the vacuum. One of the aims of our discussion is to reorganize the sum of
time orders to show how these unphysical singularities always cancel. In sections 4 and 5,
we will show how to reorganize the time-ordered series, reducing the number of terms and
eliminating unphysical singularities without having to rely on this cancellation.

Setting aside for a moment the cancellation of unphysical cuts, let us write the imaginary
part of the amplitude Π(Q), eq. (2.7), as a sum over its intermediate states, and generalize
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the resulting sum over final states to more general weighted cross sections. To do so, we will
need first to write the TOPT expression for Π(Q) as a sum over fixed states, given by cuts
C of an arbitrary diagram. Here each C is a particular state s in eq. (2.7) that is set on
shell. Summing over C, we know from the optical theorem that we reconstruct the imaginary
part of the forward scattering graph in eq. (2.7),

ImΠ(Q) =
∑
G

∑
C

∑
τL[G/C]

∑
τR[G/C]

π
(C)
τL[G/C] ∪ τR[G/C](Q)

π
(C)
τL[G/C] ∪ τR[G/C](Q) =

∫
dLG NτG

N∏
i=1

1
2ωi

VG−1∏
s=C+1

i

Qλs −
∑

j∈s ωj − iϵ

×(2π) δ

Q −
∑
j∈C

ωj

 C−1∏
s=1

i

Qλs −
∑

j∈s ωj + iϵ
, (2.9)

where τL[G/C] represents the time orders of the graph G on the left of the cut, C, and
τR[G/C] represents the time orders of the graph G on the right of cut C. The union of these
orders, τL[G/C] ∪ τR[G/C], uniquely specifies an ordering, τG of the full diagram, with all
vertices in the conjugate after all vertices in the amplitude.1 For a given underlying diagram,
G, orderings τL[G/C] and τR[G/C] specify diagrammatic contributions to the amplitude and
complex conjugate amplitude, respectively, to produce final state C by the action of current
J . As above, the function NτG absorbs overall factors associated with vertices, and the
overall factor of i in eq. (2.5), all of which we do not exhibit. We note, however, that each
vertex is associated with a factor of i, and that when all denominators are real and nonzero,
the diagram is real. Note that to satisfy the delta function we must have λC = +1, so
that the external momentum must flow into the diagram in the amplitude (s < C) and
out from the complex conjugate (s > C). Then λs = 0 or 1, and not −1, in both the
amplitude and complex conjugate.

A complete discussion of the proof of eq. (2.9), including symmetry factors, is given in
ref. [20], but here we observe that it involves the relationship between time orders of the
full diagram and of amplitudes separated by its cuts,∑

τG

∑
C

=
∑
C

∑
τL[G/C]

∑
τR[G/C]

, (2.10)

which the summations satisfy by definition. A subtle feature of the sums is that the diagrams
L[G/C] and R[G/C] specified by these orderings need not be connected on the left and
right of the cut. As a result, eq. (2.9) includes unphysical terms that are not found on the
right-hand side of eq. (2.4), which defines the cross section in terms of connected amplitudes.
In the next sub-section, we show how such contributions occur, and that they always cancel
in the sum over time orders, as they must by the optical theorem. Notice further that
many of the final states C on both sides of this relation do not contribute to the imaginary
part, because they correspond to states for which λs equals 0 or −1 in eq. (2.8). The full

1In eq. (2.9) and below, factors associated with later times in the uncut diagram are written to the left,
following time ordering conventions. In all figures, however, we will choose our final states to the right of
initial states. Thus, τL[G/C] refers to time orders on the left of the cut diagram.
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cross section, of course, involves a leptonic tensor, and depends on the specific electroweak
currents at the vertices we have labeled i and o. As noted above, for simplicity, we have
suppressed these familiar factors, which play no direct role in our discussion, and refer to
expressions like eq. (2.9) as cross sections.

We now consider a weighted lepton annihilation cross section where the sum over final
states C is weighted by a set of functions fC(pi), which depend only on particle momenta
appearing in state C. The relevant TOPT energy factors, denominators, and energy delta
function for this weighted cross section can be organized as

Σ[f, Q] =
∑
G

∑
C

∑
τL[G/C]

∑
τR[G/C]

∫
dLG NτG

NG∏
i=1

1
2ωi

σ
(C)
τL[G/C]∪τR[G/C] [f,LG] ,

σ(C)
τG

[f,LG, Q] =
VG−1∏

s=C+1

i

Qλs −
∑

j∈s ωj − iϵ
fC(q⃗1 . . . q⃗kC

)

×(2π) δ

Q −
∑
j∈C

ωj

 C−1∏
s=1

i

Qλs −
∑

j∈s ωj + iϵ
, (2.11)

where we understand that τG = τL[G/C] ∪ τR[G/C]. Here fC({q⃗i}) is a weight function,
depending in general on the spatial momenta, {q⃗i} = {q⃗1 . . . q⃗kC

} and masses of particles in
the state C. This expression differs from the corresponding factor in the imaginary part
of the forward scattering graph only by the weight function fC , and setting fC = 1, gives
back eq. (2.9). At this point, we observe that the sum over time orders in eq. (2.11) can be
thought of as generated from connected diagrams only, so that the sum does not include
the disconnected diagrams encountered in eq. (2.9). Because, as we observed above and
will show in the next section, these contributions cancel among themselves, the sums are
nevertheless effectively identical.

In what follows, we will study infrared safe weight functions, for which

fC(q⃗1, . . . q⃗i . . . q⃗j−1, ξq⃗i, q⃗j+1, . . . q⃗kC
) = fC/j(q⃗1, . . . (1 + ξ)q⃗i, . . . q⃗j−1, q⃗j+1, . . . q⃗kC

) , (2.12)

for any real ξ > −1, where C/j denotes a state with kC − 1 particles. Such weights are
unchanged by the emission of zero-momentum particles (ξ = 0) or by the emission or
recombination of massless collinear particles. This is a familiar condition, of course, which
ensures the cancellation of soft and collinear (collectively, infrared) singularities. Requirements
on the manner in which the weight functions approach the equalities of eq. (2.12) are discussed
in refs. [17, 27].

Our goal below is to exhibit an expression for such a weighted cross section in which the
cancellations implied by eq. (2.12) can be made explicit, so that all cancellations take place
in four dimensions, without infrared regularization. First, however, we resolve the apparent
difference between the sums over time-ordered diagrams in the unitarity condition, eq. (2.9),
and in the corresponding expression for weighted cross sections, eq. (2.11).

2.2 Unphysical cuts in TOPT

Let us now turn our attention to unphysical cuts in time-ordered perturbation theory. By
unphysical cuts, we refer to states that contribute to the forward-scattering diagram but
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Figure 2. An example of a graph with unphysical cuts of two types. Here, no external momentum is
ordered earlier than state C1, while momentum Q enters prior to state C2. The state C1 is a vacuum
cut and the state C2 is a pseudo-physical cut.

which, when they go on-shell (that is, when the corresponding denominator vanishes), do
not separate the diagram into connected diagrams to the right and left. Such cuts of the
diagram do not appear in the sum over final states in the optical theorem, eq. (2.5). What we
will show is that the sum over all time-ordered diagrams that share any specific unphysical
cut vanishes. This result appears to be the analog in TOPT of the cancellation of so-called
spurious singularities in loop-tree duality [15].

To establish some notation, we say the vertices are in the set V = {i, b1, b2, b3, . . . bn, o},
and i, o are the vertices where the external momentum q flows in and out respectively. We
take (bP1 , bP2 , . . . , bPn+2) to represent an arbitrary time order labeled by the permutation P .
The way in which unphysicsl cuts appear in TOPT is illustrated by the low-order example
in figure 2. In TOPT, intermediate states may include particles created from the vacuum,
with no available external energy. If such a state precedes the vertex at which momentum
flows into the diagram, as in state C1 of the figure, the corresponding energy denominator is
negative semi-definite, vanishing only if all particles are massless, and then only on the set of
zero measure where all particles carry zero spatial momentum. All denominators in states
such as this are of the form i

−
∑

j
ωj+iϵ

. We shall refer to such states as “vacuum states”.
State C2 in figure 2 describes the amplitude for the same production of particles from the

vacuum, which, however, appears mixed with particles that share the energy flowing into the
diagram. Denominators like those of state C2 can be of the form i

Q−
∑

j
ωj+iϵ

. The resulting
mixed denominators can vanish in this configuration and can contribute to the imaginary
part of the specific time-ordered diagram. We refer to these states as “pseudo-physical”.

We now prove that the cross section evaluated on a pseudo-physical cut is identically
zero. To do so, we start with the expression for the denominators, s, of the amplitude
aL[G/C]

(
Q,LL[G/C]

)
, C ≥ s for any final state C of diagram G, eq. (2.9) summed over

its time orders,

2πδ

(
Q −

∑
j∈C

ωj

)
aL[G/C]

(
Q,LL[G/C]

)
= 2πδ

(
Q −

∑
j∈C

ωj

) ∑
τL[G/C]

C∏
s=1

i

Qλs −
∑
j∈s

ωj + iϵ
,

(2.13)
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where we exhibit as well the energy-conserving delta function of final state C. (Note that C

denotes both the final state and the integer label on the vertex that immediately precedes the
final state.) At this point, diagram aL may or may not be connected. What we will show is
that if it is not connected, the sum over its time orderings vanishes when state C is on-shell.

A useful technique in our analysis, here and below, will be a representation of the
denominators in terms of integrals over times,

2πδ

(
Q −

∑
j∈C

ωj

)
aL[G/C] =

∑
P (L[G/C])

C∏
αP =1

∫ tαP +1

−∞
dtαP e

−i

(
δαP ,iQ + η

(αP )
j (ωj−iϵ)

)
tα

. (2.14)

Here, we have written the sum over time orders as the sum over all ordered permutations,
P (L[G/C]), of the set of C time variables {tα} associated with the vertices α of diagram
L[G/C]. For each order, P , we define η

(αP )
j as the incidence matrix of the vertex αP , defined

in a given time order by

η
(αP )
j = 1 , line j enters vertex αP ,

η
(αP )
j = −1 , line j leaves vertex αP ,

η
(αP )
j = 0 , otherwise . (2.15)

All lines are emitted and then absorbed, except for lines that appear in (final) state C. As
a result, we have in eq. (2.14), for any state s ≤ C,∑

αP ≤s

η
(αP )
j = 0 , j /∈ s ,

∑
αP ≤s

η
(αP )
j = −1 , j ∈ s . (2.16)

The term δαP ,iQ in eq. (2.14) contributes the energy flowing into the diagram at vertex i,
which must always be in the diagram specified by the time order τL[G/C], for the final state
C to be on-shell. Using this result and eq. (2.16), we readily see that each αP time integral
produces the TOPT denominator in eq. (2.13) for the state immediately following it, times a
phase whose exponent is proportional to the following time, tαP +1. We define tC+1 = ∞, for
the final integral in each order, which produces the delta function that enforces the condition
that the energy flowing in, Q, equals the energy flowing out (∑j∈C ωj).

For every ordering P (L) in eq. (2.14), the energy-conservation delta function is generated
by the final time integral, which is unbounded on both sides:

∫∞
−∞ dtC . The vertex associated

with this integral depends, of course, on the specific time order. At this point, it will be
useful to rewrite (2.14) by introducing an auxiliary maximum time, tmax that is the same
for all orders. We do this by using the following identity for each order P (L),∫ ∞

−∞
dtC e

−i

(
δC,iQ + η

(C)
j (ωj−iϵ)

)
tC

C−1∏
α=1

∫ tα+1

−∞
dtα e

−i

(
δα,iQ + η

(α)
j (ωj−iϵ)

)
tα

=

−i

(
Q −

∑
j∈C

ω̃j

) ∫ ∞

−∞
dtmax

∫ tmax

−∞
dtC e

−i

(
δC,iQ + η

(C)
j (ωj−iϵ)

)
tC

×
C−1∏
α=1

∫ ti+1

−∞
dtα e

−i

(
δα,iQ + η

(α)
j (ωj−iϵ)

)
tα

. (2.17)
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On the right-hand side of this equation, the integral over tC produces a denominator that
cancels the overall factor of −i(Q −

∑
j∈C

ω̃j) in eq. (2.17), while the new, tmax, integral

reproduces the energy conservation delta function, of the same argument. We can implement
this identity for all time the orders, P in eq. (2.14).

In the case when the amplitude breaks up into two (or more) disconnected pieces, G1 and
G2, we may write it as the product of two factors, with n1 and n2 vertices each, n1 + n2 = C,
with a sum over time orders, or permutations P (1) and P (2), of the independent disconnected
vertices, whose times can be integrated independently to tmax in eq. (2.17). For definiteness,
we assume that vertex i, at which external energy flows in, attaches to the subdiagram G1,
with n1 vertices. For such a diagram, we then have in place of eq. (2.14), the equivalent form

aL[G/C]
(
Q,LL[G/C]

)
2πδ

(
Q −

∑
j∈C

ωj

)
= [−i(Q −

∑
j∈C

ωj)]
∫ ∞

−∞
dtmax

×

∑
P (1)

n1∏
α=1

∫ tα+1

−∞
dtαe

−i

(
δα

P (1) ,iQ+ η
(α

P (1))
j (ωj−iϵ)

)
tα



×

∑
P (2)

n2∏
α=1

∫ t̃α+1

−∞
dt̃αe

−i

(
η
(α

P (2))
j (ωj−iϵ)

)
t̃α

 , (2.18)

where now we have defined tn1+1 = t̃n2+1 = tmax. Note that because of this independence,
the number of terms in the sums of permutations is n1!n2!, down from C! = (n1 + n2)!.

The connected subdiagrams each possess the properties of the sums over vertices in
eq. (2.16). As a result, the final time integral tmax inherits the same energy-conservation
phase, and the integrals in (2.18) can be done explicitly, giving for each choice of P (1) and
P (2), the factor

−i

(
Q −

∑
j∈C

ωj

)
2πδ

(
Q −

∑
j∈C

ωj

)
×

 n2∏
s2=1

i

−
∑

j∈s2
ωj + iϵ


 n1∏

s1=1

i

Qλs,1 −
∑

j∈s1
ωj + iϵ

 ,

(2.19)

where s1 and s2 label states within the two disconnected factors, and where λs,1 is defined by
analogy to eq. (2.8), this time for the diagram with n1 vertices, through which the external
energy Q flows. Recall that in the case of an amplitude, λs = 1 or 0 only. Reorganized in this
fashion, the time integrals in eq. (2.18) and the denominators that appear in eq. (2.19) lack a
denominator that cancels the overall factor Q −

∑
j∈C ωj . For fixed time orders of the full

diagram, such a denominator is always present, but it cancels in the sum over time orders,
and the integrand vanishes almost everywhere in phase space because energy is conserved.

In summary, we have found that in every term, eq. (2.19) that results from the sum over
the relative time orders of the two disconnected diagrams while keeping their internal time
orders fixed, the energy conservation delta function is multiplied by its own argument. It
is easy to check that when the argument of the delta function vanishes, the cut denomina-
tors are generically finite (except in a region with vanishing measure) while the quantity(
Q −

∑
j∈C ω̃j

)
multiplies the delta function, forcing the integral over the phase space to zero.
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3 Local infrared safety

Our interest here is in IR safe weighted cross sections, inclusive cross sections in which the
IR singularities of their exclusive channels cancel among themselves. In this section, we
construct a general expression that implements this cancellation locally in momentum space.
In principle, this can eliminate the need for infrared regularization.

3.1 Reorganized cross sections

When integrated over loop momenta as it stands, the arbitrary weighted cross section
eq. (2.11) is a sum of infrared divergent terms in general, which, however, cancel in the
sum over final states C for each time ordering τG. To make this cancellation manifest, we
use the distribution identity,

2πδ(x) = i

x + iϵ
− i

x − iϵ
(3.1)

to rewrite the TOPT expression for a general weighted cross section, Σ[f, Q], eq. (2.11).
Recalling the identity for sums over states in eq. (2.10), we express Σ[f, Q] as

Σ[f, Q] =
∑
G

∑
τG

∫
dLG NτG

NG∏
i=1

1
2ωi

∑
C

σ
(C)
τL[G/C]∪τR[G/C] [f,LG] . (3.2)

In this expression, we sum over all cuts of the vacuum diagram G at fixed time-order τG and
have used the independence of NτG from the choice of C. As noted above, the full set of cuts
of any diagram will include in general unphysical cuts, that is, cuts that include disconnected
subdiagrams to the left and/or right of the cut. In the previous section we have shown,
however, that all such terms cancel once the sum over time orders is carried out. In fact, in
section 6 we will show that we can re-express the cross section in a diagrammatic form in which
all such cuts are absent. For now, however, we continue with this expression, in the knowledge
that further cancellations will occur in a result that we will show is already infrared finite.

We now apply the identity, eq. (3.1) to the integrand of (3.2), using (2.11) to get,
n∑

C=1
σ
(C)
τL[G/C]∪τR[G/C] [f,LG, Q] =

∑
C

n+1∏
s=C+1

i

Qλs −
∑

j∈s ωj − iϵ
fC(q⃗1 . . . q⃗kC

)

×
(

i

Qλs −
∑

j∈C ωj + iϵ
− i

Qλs −
∑

j∈C ωj − iϵ

)

×
C−1∏
s=1

i

Qλs −
∑

j∈s ωj + iϵ
. (3.3)

Then, simply collecting terms with a fixed denominator structure yields,
∑
C

σ
(C)
τL[G/C]∪τR[G/C] [f,LG, Q] =

(
n+1∏
s=1

i

Qλs −
∑

j∈s ωj + iϵ
fn+1

+
( n∑

C=1

n+1∏
s=C+1

i

Qλs −
∑

j∈s ωj − iϵ
(fC − fC+1) (3.4)

×
C∏

s=1

i

Qλs −
∑

j∈s ωj + iϵ

)
−

n+1∏
s=1

i

Qλs −
∑

j∈s ωj − iϵ
f1

)
.
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In this equality, we have suppressed the arguments of the functions fC , which are the momenta
of individual particle lines, and hence linear combinations of the spatial loop momenta of
diagram G. We notice that if all weight functions fC were indeed equal to unity, we would
get back the imaginary part of the forward scattering graph. The first and last terms in
this expression have the analytic structure of the vacuum polarization diagram and its
complex conjugate and hence are individually IR finite [16]. Although eq. (3.4) is a simple
reorganization of a standard expression, we will show that it provides a locally finite expression
for the set of leptonic annihilation cross sections under consideration so long as the weight
function satisfies the usual criteria for infrared safety in eq. (2.12). We are not aware of
such an expression in the previous literature.

In eq. (3.4), the sum of terms labeled C = 1 . . . n are somewhat unusual, having no
energy-conserving delta function. Rather, they are given entirely by products of denominators
with opposite iϵ prescriptions. We will refer to the product of denominators with +iϵ as the
“generalized amplitude”, and the product with −iϵ as the “generalized conjugate amplitude”.
In the following subsection, we will study how infrared singularities can arise in TOPT
generally, and in the product of generalized amplitudes and complex conjugates, and go
on to verify that the sum in eq. (3.4) is infrared safe locally in momentum space without
the need for infrared regularization.

3.2 Analysis of pinch surfaces

The individual terms in eq. (3.4) have the same infrared singularities that are found in cross
sections for fixed final states, which have explicit energy-conservation delta functions. In that
case, singularities can be identified from solutions to the Landau equations for the amplitude
and complex conjugate for each point in final-state phase space. These solutions are satisfied
on subspaces of momentum space sometimes referred to as pinch surfaces [21].

The analysis leading to pinch surfaces in amplitudes can be applied to the spatial
integrals in eq. (3.2) for each choice of order, τG, and cut, C in the form of eq. (3.4), to
derive the Landau equations. We begin by combining state denominators via a Feynman
parametrization, chosen so that the imaginary parts all add with the same sign at every
point in parameter space. This requires that we factor out a (−1) for each denominator
in the generalized conjugate amplitude, with a −iϵ,∫

dLG
NτG∏N
i=1 2ωi

(fC − fC+1)
n+1∏

s=C+1

i

Q −
∑

j∈s ωj − iϵ

C∏
s=1

i

Q −
∑

j∈s ωj + iϵ

=
∫

dLG∏N
i=1 2ωi

NτG (fC − fC+1) (−1)n−C [dαs]n+1(∑C
s=1 αs

(
Q −

∑
j∈s ωj

)
−
∑n+1

s=C+1 αs

(
Q −

∑
j∈s ωj

)
+ iϵ

)n+1 , (3.5)

where, as usual,

[dαs]n+1 = n!
∫ 1

0
dαn+1 . . . dα1 δ

(
1−

n+1∑
s=1

αs

)
. (3.6)

We would like to show that for any infrared safe weight function f , eq. (3.5) is finite without
infrared regularization. To do so, we must identify the origin and strength of IR singularities
in these TOPT expressions.
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As in covariant perturbation theory, infrared singularities in eq. (3.5) can arise whenever
the loop integrals are pinched between coalescing singularities. In this case, of course, we
have three integrals per loop remaining. Singularities arise from two sources, the product
of particle energies ωi, and from the full parameterized denominator. We note that each
energy factor, ωi depends quadratically on the spatial loop momenta of particle i, and always
produces a pinch at the point ωi = 0, for line i massless.

The identification of pinches from sets of on-shell denominators with lines of nonzero
energy in eq. (3.5) requires a time-ordered perturbation theory version of Landau equations,
which follow the same pattern as for integrals in covariant perturbation theory. In the
parameterized form, an off-shell denominator Ds ̸= 0 must have αs = 0. Derivatives with
respect to each loop momentum component of denominators with Ds = 0 must vanish,

∂

∂lµ

 C∑
s=1

αs

(∑
i∈s

ωi

)
−

n+1∑
s=C+1

αs

∑
j∈s

ωj

 = 0 . (3.7)

Because the derivative of the energy ωi of a line with respect to its momentum gives its
velocity, β⃗i = ∂ωi/∂p⃗i, the Landau equations are given as linear sums in velocities. For an
arbitrary loop momentum l, we can thus write

C∑
s=1

αs

(∑
i∈s

ηl,i β⃗i

)
−

n+1∑
s=C+1

αs

∑
j∈s

ηl,j β⃗j

 = 0 , (3.8)

with the ηl,i, = ±1, 0 incidence matrices,

ηl.i =
∂pµ

i

∂lµ
any µ . (3.9)

To be specific, we define the momenta pµ
i to be in the direction of energy flow, so that

p0i = ω(p⃗i) ≥ 0. Note that for the amplitude this is the direction toward the final state, C.
The equations (3.8) can be satisfied for any loop that appears in a subset of denominators

{ti}, i = 1 . . . k, with t1 ≤ tC and tk ≥ C + 1, because such terms include denominators with
both “iϵ” prescriptions. A loop whose on-shell states appear only with +iϵ or only with
−iϵ cannot give a solution to eq. (3.8), unless all lines that carry this loop have collinear
momenta. We can think of such a loop as internal to a jet of collinear moving particles. These
solutions can be given a physical interpretation in the sense of Coleman and Norton [21, 28],
by identifying the Feynman parameters αs as times so that their products with velocities are
translations. The Landau equation for any loop then describes a sum of translations relative
to the origin, in the direction of the velocities of lines carried by that loop.

For loops that are internal to a given jet, their contributions to eq. (3.8) cancel within each
state, because ηli = −ηli′ if the line flows forward along line i within the jet and back along
line i′. For loops that extend over states with s < C to states with s > C, eq. (3.8) requires
that the contribution of states in these two categories cancel for the two jets individually.
Thus, for the jet along which the loop flows forward, we have

C∑
s=1

αs −
n+1∑

s=C+1
αs = 0 , (3.10)
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which has the interpretation that the jet flows forward away from the origin through a
sequence of states up to state C, and then backward to the origin for the same amount of time
in the same direction. Thus, for such terms, the only momentum configurations that produce
pinch singularities are those in which on-shell states differ only by the rearrangement of
collinear momenta and the emission or absorption of lines with zero momentum. These states
are characterized by “jets” of fixed total momentum, accompanied by arbitrary numbers of
soft lines. The succession of on-shell states with different numbers of jets always results in at
least one internal loop of the amplitude or complex conjugate that flows between two jets.
For such a loop, the two jet velocities in eq. (3.8) appear times parameters with only positive
or only negative signs, which is inconsistent with a pinch. The only exception is for loops
that carry zero momentum between different jets. Such “soft” loops are unconstrained by
the Landau equations, in both TOPT and covariant perturbation theory, although as noted
above, there is a pinch whenever any line carries exactly zero momentum [29].

We now turn to the role of off-shell states. Let us refer to the full set of states {si}
for time order τG of vacuum polarization diagram G as S = {s1 . . . sn+1}. At a given pinch
surface, states in S are either on-shell, with Q −

∑
j∈si

ωj = 0, or off-shell, Q −
∑

j∈si
ωj ̸= 0.

These simple considerations limit how off-shell states can appear at a pinch surface. First of
all, states adjacent to the external vertices (i and o above) at which momenta flow into and
out of the forward-scattering diagram, can always be off-shell. These states correspond to
the “hard part” of the scattering cross section. For an arbitrary pinch surface, ζ there is thus
an “earliest” state, s

[ζ]
min ≥ s1, at which the relevant set of jets first appears, and a “latest”

state, s
[ζ]
max ≤ sn+1, in the complex conjugate amplitude, where they last appear.

We next examine when a subset of states can be off-shell at pinch surface ζ. Let us
denote such an ordered subset as Γ[ζ] = {σ

[ζ]
i } ⊂ S, σ

[ζ]
i = σ

[ζ]
min · · · ≤ σ

[ζ]
max, and assume that

all of these states are off-shell, that is, Q −
∑

j∈σ
[ζ]
i

ωj ̸= 0, and consecutive. There may be
a number of these sets; first, let us consider the case with only a single such set, Γ[ζ]. For
any such set of off-shell states, Γ[ζ], we must have two sets of on-shell states: on-shell states
{s[ζ]}Γ< with s

[ζ]
min ≤ s[ζ] < σ

[ζ]
min that are before the off-shell states, and similarly another set

of on-shell states, {s[ζ]}Γ>, all of whose elements are between σ
[ζ]
max and s

[ζ]
max.

Because states are ordered, the off-shell states of Γ[ζ] may be either entirely in the
generalized amplitude or in the generalized conjugate amplitude, or may extend between
them both. In all cases, however, one of the two sets of states, {s[ζ]}Γ<, and {s[ζ]}Γ> will
have only +iϵ or only −iϵ in its denominators. We use these considerations to show that
at the pinch surface, ζ, no sets of lines that appear in the states of Γ[ζ] can carry finite
momentum between any pair of distinct jets of pinch surface ζ.

To see why, consider the case that Γ[ζ] is in the amplitude (all +iϵ in its denominators).
We suppose the two jets in question have velocities β⃗a and β⃗b, in different directions. Let
us suppose that some set of lines carries finite momenta and connects these two jets. We
will then be able to find at least one loop consisting of lines within the two jets in all the
on-shell states of {s[ζ]}Γ<, closing the loop with the lines of finite momentum that appear
in the states of Γ[ζ] and lines that appear only in the off-shell states, s ≤ s

[ζ]
min. The Landau

equation for this loop would have no contributions from the states in Γ[ζ] or from states
with s ≤ s

[ζ]
min, because the Feynman parameters of off-shell states are all zero. They do of
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course get contributions from the on-shell states, {s[ζ]}Γ<. We can always define the loop in
question to flow through one line of jet a in the direction of the a-jet energy flow for each
on-shell state. The velocity of all such lines is the same as the jet velocity, β⃗a. The loop then
flows back, against the direction of the b-jet, for which the corresponding particle velocities
are all β⃗b. The resulting Landau equations, eq. (3.8), are then∑

s∈{s[ζ]}Γ<

αs

(
β⃗a − β⃗b

)
= 0 . (3.11)

Because β⃗a and β⃗b are in different directions, there can be no solution to eq. (3.11) for nonzero
parameters αs. As a result, ζ is not a pinch surface after all. The generalization of this result
to sets Γ[ζ] in the complex conjugate amplitude or between the amplitude and conjugate is
immediate. Several sequences of off-shell states also follow the same pattern.

The only remaining possibility for an off-shell Γ[ζ] is one for which some set of off-shell
states is associated with one or more internal loop momenta of a jet, which are not in the
direction of the jet. Such a loop will also take a set of consecutive states σ[ζ] off-shell. We
will therefore need to consider this possibility in our discussion of local finiteness.

3.3 Logarithmic singularities and cancellation

To identify which pinch surfaces result in actual infrared singularities in individual terms, we
must recall the power counting analysis of covariant perturbation theory [30, 31]. Rather
than repeating the details of this analysis, we can rely on the basic result. For a pinch
surface of a cut vacuum polarization diagram, we identify the space of “normal” variables,
which parameterize the space perpendicular to the pinch surface, and assign a dimensionless
scaling variable (conventionally denoted by λ) so that each normal variable vanishes linearly
as the scaling variable vanishes. The fundamental starting point of this analysis, when
applied to leptonic annihilation, which shows that singularities are at worst logarithmic,
can be summarized as

2LJ + 4LS + pnum − NJ − 2NS ≥ 0 , (3.12)

where LJ and NJ are the total number of loops and lines in jet subdiagrams, respectively,
while LS and NS are the soft loops and lines, and pnum is the scaling dimension of numerator
factors at the pinch surface in question. We will see an example below.

We can apply eq. (3.12) to TOPT expressions like eq. (3.5) in a straightforward fashion.
First, using the graphical Euler identity in the form

LJ + LS = NJ + NS − V + 1 , (3.13)

we see immediately that eq. (3.12) may be written equivalently as

LJ + 3LS + pnum − NS − (V − 1) ≥ 0 , (3.14)

where here V is the total number of vertices in the on-shell TOPT diagram found by
contracting all states that are off-shell at this pinch surface. This is also the number of states
that are pinched on-shell. In this expression, of course, LJ remains the total number of
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internal loops of all jets, and LS is the number of loops that carry zero momentum in all
three remaining components. For leptonic annihilation [30], the natural normal variables
are all three remaining components of the LS soft loops, l⃗soft ∼ λ, and for each jet loop
momentum l⃗jet, l2⊥, jet ∼ λ. The dependence of all denominators is then linear in λ. Because
the number of denominators is V − 1, the inequality of eq. (3.14) ensures that divergences
in TOPT are at worst logarithmic, just as in covariant perturbation theory.

Notice that it is necessary to saturate the inequality (3.14) for a specific time order and
pinch surface to contribute to an infrared divergence. This eliminates infrared divergences for
time orders where a vertex that connects on-shell jet lines and/or soft lines appears between
off-shell denominators, simply because choosing such an order sacrifices at least one on-shell
state for an off-shell state. For this reason, in identifying pinch surfaces, we may capture
their leading infrared behavior by their reduced diagrams, found by shrinking any loop
momenta internal to the jets but not in the jet direction to points. The resulting time-ordered
reduced diagrams automatically have the maximum number of on-shell denominators. The
logarithmic nature of infrared divergences applies to each term in the original expression
of the weighted cross section, eq. (2.11) as well as to its linear combinations in eq. (3.4)
and (3.5) for an arbitrary weight function, fC .

In summary, a general weighted cross section encounters at worst logarithmic singularities
in individual terms in the sum found by combining eqs. (3.2) and (3.4),

Σ[f, Q] =
∑
G

∑
τG

∫
dLG NτG

NG∏
i=1

1
2ωi

(
n+1∏
s=1

i

Qλs −
∑

j∈s ωj + iϵ
fn+1

+
n∑

C=1

n+1∏
s=C+1

i

Qλs −
∑

j∈s ωj − iϵ
(fC − fC+1)

C∏
s=1

i

Qλs −
∑

j∈s ωj + iϵ

−
n+1∏
s=1

i

Qλs −
∑

j∈s ωj − iϵ
f1

)
. (3.15)

In this form, we can use the properties of infrared safe weight functions fC , eq. (2.12) to
show that this expression is locally finite in loop momentum space if the sum over C is
carried out before integration.

We first observe that the first and third terms in parentheses are infrared finite because
their denominators can produce no pinches, just as for the total cross section. For the
remaining terms in the sum, which involve denominators with both iϵ signs, let us start by
considering a “leading” pinch surface, at which every state in eq. (3.15) is pinched on-shell.
Each pinch surface (leading or not) is at worst logarithmically divergent in the integral
over normal variables. Differences fC − fC+1 then need only vanish as any power of the
normal variables for the LG integrals to be finite. This is precisely the condition for IR safety
found in refs. [17, 27]. For any infrared safe weight function, by eq. (2.12), the value of any
fC is the same for every state that is pinched on shell. This ensures that the difference
fC − fC+1 in eq. (3.15) vanishes as a power of the normal variables. The integral in eq. (3.15)
is then finite for all leading pinch surfaces. To extend this result to pinch surfaces with
intermediate off-shell states, we simply note that for an off-shell state σ[ζ], the corresponding
denominator Dσ[ζ] is real, and the terms proportional to fσ[ζ] cancel between conjugate terms
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in (3.15). The sum of all terms in eq. (3.15) is thus finite at an arbitrary pinch surface.
This is what we set out to demonstrate.

It is worth noting that a special class of event weights are those that count jet final
states. These weights take the value unity when the state satisfies some criterion, and zero
elsewhere. For IR safe jet algorithms, the weights will be identical for all states associated
with a given pinch surface [30]. For such states, the differences fC − fC+1 are exactly zero
for the full range of momentum space where the weight function is unity for both states,
a range that includes all pinch surfaces.

3.4 All-order example: energy in a “cone”

It is useful to give an explicit example that illustrates the local finiteness of eq. (3.4) for a
specific infrared safe cross section at all orders. To this end, we begin by introducing an
abbreviated notation for energy denominators,

Ds = Es −
∑
j∈s

ωj , (3.16)

where in our case, Es = Qλs, with λ = ±1, 0. In these terms, a contribution to the integrand
for a general weighted cross section, eq. (3.4) becomes

n+1∑
C=1

σ(C)
τG

[f,LG, Q] =

n+1∏
s=1

i

Ds + iϵ
fn+1 +

n∑
C=1

n+1∏
s=C+1

i

Ds − iϵ
(fC − fC+1)

C∏
s=1

i

Ds + iϵ

−
n+1∏
s=1

i

Ds − iϵ
f1

)
. (3.17)

To illustrate how eq. (3.17) provides a locally finite sum, we consider the example of a “cone”
weight, defined as the energy flowing into a cone fixed in space,

f (Ω)
s =

∑
i∈sΩ

ωi . (3.18)

Here, i ∈s Ω means that particle i flows into angular region Ω in state s. For simplicity, we
consider angular region Ω to be fixed, so that this quantity is not a jet cross section in the
usual sense. Clearly, this weight for state s is related to the denominator Ds by

f (Ω)
s = Q −

∑
i/∈sΩ

ωi − Ds , (3.19)

where ∑
i/∈sΩ sums the on-shell energies of all the particles of state s that are outside cone

Ω. This leads to a relation between weights in consecutive final states,

f
(Ω)
C − f

(Ω)
C+1 = DC+1 − DC +

∑
i/∈C+1Ω

ωi −
∑

i/∈CΩ

ωi

≡ DC+1 − DC + δ(Ω)ωC , (3.20)

where in the first relation we use (3.19), and in the second we define the quantity δ(Ω)ωC .
As we see from its definition, δ(Ω)ωC counts the energy of particles that are radiated outside
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the cone in the transition from state C to state C + 1, or that was outside the cone in
state C, but whose energy is absorbed into the cone in the transition. We then have, from
the general relation, eq. (3.17),

n+1∑
C=1

σ(C)
τG

[f (Ω),LG, Q] =
(

n+1∏
s=1

i

Ds + iϵ

(
Q −

∑
i/∈n+1Ω

ωi − Dn+1

)

+
n∑

C=1

n+1∏
s=C+1

i

Ds − iϵ

(
DC+1 − DC + δ(Ω)ωC

) C∏
s=1

i

Ds + iϵ

−
n+1∏
s=1

i

Ds − iϵ

(
Q −

∑
i/∈1Ω

ωi − D1

))
. (3.21)

On the right, all terms Di cancel, using the distribution identity,

Di

(
i

Di − iϵ
− i

Di + iϵ

)
= Di 2πδ (Di) = 0 . (3.22)

We thus have for the cone cross section an expression that depends on energies flowing into
the cone in the first and last state, and on the energy transfer variables, δωC ,

n+1∑
C=1

σ(C)
τG

[f (Ω),LG, Q] =
n+1∏
s=1

i

Ds + iϵ

(
Q −

∑
i/∈n+1Ω

ωi

)
−

n+1∏
s=1

i

Ds − iϵ

(
Q −

∑
j/∈1Ω

ωj

)

+
n∑

C=1

n+1∏
s=C+1

i

Ds − iϵ
δ(Ω)ωC

C∏
s=1

i

Ds + iϵ
. (3.23)

For this expression, we recall that at an arbitrary pinch surface, all finite energy is carried
in jets of exactly collinear particles. For any such configuration, if state C and state C + 1
are both on-shell, δ(Ω)ωC = 0 because consecutive states have exactly the same energy flow.
That is, the quantities δ(Ω)ωC vanish for every such final state C. The contributions of
these terms are integrable.

For nonzero values of any set of δ(Ω)ωC in eq. (3.23), following the general argument of
the previous subsection, we consider a set of states Γ[ζ], that are off-shell at an arbitrary
pinch surface ζ, due to loop momenta circulating in the subdiagram of a jet or between
soft lines. As above, on-shell states appear both before and after Γ[ζ]. Since all jets must
appear with the same total cone energy in each on-shell state at the pinch surface, all nonzero
contributions to δ(Ω)ωC must cancel as we sum over off-shell states Γ[ζ]. Thus, the product of
off-shell denominators associated with states Γ[ζ] is multiplied by a sum of energy transfers
δ(Ω)ωC that cancel at the pinch surface.

It is worth noting that in the special case where Ω grows to the entire two-sphere, there
is no radiation outside the cone and all the δ(Ω)ωC are zero, and we find

n+1∑
C=1

σ(C)
τG

[f (S2)] = Q

[
n+1∏
s=1

i

Ds + iϵ
−

n+1∏
s=1

i

Ds − iϵ

]
. (3.24)

This, as expected, is the energy times the imaginary part of the uncut TOPT diagram, in
our notation, the total cross section.
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(a) (b)

Figure 3. Two loop vacuum polarization diagrams: (a) vector exchange, (b) fermion self-energy.

3.5 Low-order example

To illustrate the formalism further with an explicit example, we consider the two next-to-
lowest-order vacuum polarization diagrams in figure 3.

For simplicity, we take the trace on the external vector current indices, and we do not
consider color in our examples. From the discussion above, the contributions of these diagrams
to a general weighted cross section are given by

Σi[f, Q] = ig2
∫

d3k⃗

(2π)3
d3k⃗′

(2π)3
Ni

24ωk ωq−k ωk′ ωk−k′

(
δi1

1
2ωq−k′

+ δi2
1

2ωk

)

×
[

fiA

D+
iC D+

iB D+
iA

− fiC

D−
iC D−

iB D−
iA

+ fiB − fiA

D−
iC D−

iB D+
iA

+ fiC − fiB

D−
iC D+

iB D+
iA

]
, (3.25)

where i = 1 refers to the gluon exchange diagram and i = 2 to the fermion self energy diagram.2
In terms of the momentum assignments shown in the figure, energy denominators in

eq. (3.25) are given by

D±
1A = D±

2A = Q − 2ωk ± iϵ

D±
1B = D±

1B = Q − ωk − ωk′ − ωk−k′ ± iϵ ,

D±
1C = Q − 2ωk′ ± iϵ ,

D±
2C = Q − 2ωk ± iϵ . (3.26)

The numerators simplify significantly in TOPT, where we must evaluate line momenta
on-shell, k2 = k′2 = 0, and the Ni in eq. (3.25) become

N1 = −32
(
k′ · (k − q)

) (
k · (k′ − q)

)
,

N2 = −32 k · k′ q · k . (3.27)
2The case where the two-particle weights fA and fC and the three-particle state weight fB are defined to

give unity for a two-jet final state and zero otherwise, is of interest. An example is the original cone jet cross
section of ref. [32] at this order. Using the symmetry between the two-particle states, A and C, the expression,
eq. (3.25) is readily seen to reduce to the total cross section minus the three-jet cross section, as noted early
on in ref. [33], due to the exact cancellation of three- and two-particle momentum configurations in the two-jet
region. At this order, the resulting expression needs no infrared regularization.
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To exhibit the pinch surfaces of these diagrams, we can choose spherical coordinates,
with k⃗ in the ẑ (θk = 0) direction, and the polar angle, θ′ of k⃗′ measured relative to ẑ. It
is now natural to use the notation k = |⃗k| = ωk, and k′ = |⃗k′| = ω′

k, but to leave ωk−k′

to represent |⃗k − k⃗′|, which is given by

ωk−k′ =
√

k2 + k′2 − 2kk′ cos θ′

=
√
(k − k′)2 + 2kk′(1− cos θ′) . (3.28)

We assume that our weight functions can be expressed in terms of these variables only.
In eq. (3.25), the first and second terms in square brackets are free of collinear pinches

altogether, simply because their energy denominators enter with the same sign for the iϵs.
We denote the remaining, potentially singular, terms as Σ̂1 and Σ̂2. For Σ̂1, corresponding
to gluon exchange, figure 3 (a), we have

Σ̂1[f, Q] = i
g2

8π4

∫ ∞

0
dk dk′

∫ 1

−1
d cos θ′

k′ · (q − k) k · (q − k′)
ωk−k′

×
[

f1B(k, k′)− f1A(k)
(Q − 2k′ − iϵ) (Q − k − k′ − ωk−k′ − iϵ) (Q − 2k + iϵ)

+ f1C(k′)− f1B(k, k′)
(Q − 2k′ − iϵ) (Q − k − k′ − ωk−k′ + iϵ) (Q − 2k + iϵ)

]
, (3.29)

where we have indicated the momentum dependence of the weight functions. For non-zero
numerators, this integral has both collinear and soft pinches. There is a collinear pinch at
k = Q/2, θ′ = 0, with |⃗k| > |⃗k′|, between the second and third denominators of the first
term in square brackets. Similarly, a pinch appears at k′ = Q/2, θ′ = 0 with |⃗k′| > |⃗k|
between the first and second denominators of the second term in square brackets. These
limits correspond to the gluon parallel to the quark (when k = Q/2) or the antiquark (when
k′ = Q/2). The soft pinch, at which all three denominators vanish, appears in both terms
when k and k′ both approach Q/2 with θ′ = 0.

All of these pinches lead to logarithmically divergent power counting, corresponding to
two denominators vanishing while two variables (k or k′ and θ′) approach the endpoints
of their integration regions. In all three cases, of course, the differences of the weight
functions in the numerators vanish, so long as they depend only on overall energy flow.
A simple example would be a weight function like the thrust, for which fA = 1, while
fB ∼ 1 − 2k · (k − k′)/Q2 ∼ 1 − 2kk′(1 − cos θ′)/Q2 near θ′ = 0.

For Σ̂2, since the states A and C are identical for diagram 2, we can write

Σ̂2[f, Q] = i
g2

8π4

∫ ∞

0
dk dk′

∫ 1

−1
d cos θ′

kk′2Q(1− cos θ′)
ωk−k′

×
[

f2B(k, k′)− f2A(k)
(Q − 2k − iϵ) (Q − k − k′ − ωk−k′ − iϵ) (Q − 2k + iϵ)

+ f2A(k)− f2B(k, k′)
(Q − 2k − iϵ) (Q − k − k′ − ωk−k′ + iϵ) (Q − 2k + iϵ)

]
.

= i
g2

8π4

∫ ∞

0
dk dk′

∫ 1

−1
d cos θ′

kk′2Q(1− cos θ′)
ωk−k′

×
[

f2B(k, k′)− f2A(k)
(ωk−k′ − (k − k′))2 (2πi)δ

(
Q − k − k′ − ωk−k′

)]
. (3.30)
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In the second relation, we have used the delta function to evaluate the squared denominator,
Q − 2k. This denominator is negative semi-definite and vanishes only at the integration
endpoint, cos θ′ → 1, where k′ is collinear to k. Although it has an apparent double pole
at 2k = Q, the explicit numerator factor of 1 − cos θ′ reduces this to a single pole, and
logarithmic power counting. This relative suppression is a contribution “+1” to the term pnum
to infrared power counting in eq. (3.12), applied to the pinch surface where the self-energy
consists of two collinear lines. Here again, in eq. (3.30), the difference of weight functions
in the numerator vanishes for any infrared safe weight and renders the integral finite. This
confirms that in the original form of the integration, the two- and three-particle singularities
cancel. For this example, the suppression appears locally in loop momentum space, with the
standard form of the self energy subdiagram. At higher orders, however, the suppression
requires in general integration over the internal loop momentum of the uncut self-energies (k′

here), to realize their contributions to the suppression factor pnum in eq. (3.12). For diagrams
with more than a single self-energy on cut lines, we believe it will be natural to use alternative
integrands for self-energies and their counterterms, which eliminate higher-order poles for
the single-particle final state, as described for amplitudes in refs. [5, 6].

4 Posets in TOPT

We now return to the question of pseudo-physical cuts in TOPT. We recall that a pseudo-
physical cut of a time-ordered graph disconnects the diagram into more than two connected
parts. In section 2.2, we saw that the cross section evaluated on any pseudo-physical cut
vanishes upon summing over time orders for the fixed cut. In this section, we develop a
poset formalism in order to show how pseudo-physical cuts can be avoided entirely. We
note that posets have also been useful in discussions of eikonal exponentiation [34] and
coordinate-space amplitudes [35].

The treatment that follows has much in common with the recent discussion of “flow-
oriented” [25] and “cross-free” representations of perturbation theory [26]. Here, we work
directly from TOPT to find a number of related results, which, we believe, will provide
intuition for applications, one of which we discuss in section 6.

In this section, we will review some standard poset terminology, introduce our method,
and show how it works in representative examples involving vacuum polarization diagrams.
A general discussion will be provided in section 5.

4.1 Definitions

The method we will use to reorganize TOPT is based on the construction of partially ordered
sets (posets) on the vertices of the diagrams. To do so, we impose a binary relationship
among the vertices, which partitions the set of time orders into distinct posets. A poset is
a set together with a binary relationship. For any TOPT diagram, our binary relation can
be defined from the incidence matrix introduced in the integral for an arbitrary amplitude
in eq. (2.14) and defined in eq. (2.15). We denote the incidence matrix by η

(b)
j , where the

superscript (b) represents a vertex and the subscript j represents a line. Entry η
(b)
j is +1

if the line j enters vertex b, −1 if the line j exits vertex b and, zero otherwise. Consider a
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a

b

c

d

Figure 4. A sample diagram to illustrate the poset structure of TOPT. The poset ordering explained
in the text relates entirely to positions of vertices from left to right, with times increasing to the right.
To be specific, we have included two external lines as in a vacuum polarization, showing a diagram
with external momentum flowing in at vertex i and out at vertex o, where o > i in poset notation. As
explained in the text, however, the poset terminology applies to any amplitude, and external momenta
may in principle flow in or out at any vertex of the diagram.

TOPT diagram, given in the notation of eq. (2.14), represented so that vertices are arranged
in the order of their times. An example is given in figure 4. If there is a line joining vertices
bi, bj , and tbi

≥ tbj
, for each line k connecting both bi, bj , η

(bi)
k = 1 = −η

(bj)
k . On the other

hand, if tbj
≥ tbi

for each line k between bi, bj , η
(bj)
k = 1 = −η

(bi)
k . For example, in figure 4, if

(d, c) represents the line connecting vertices d and c, η
(c)
(d,c) = 1 = −η

(d)
(d,c).

We proceed by defining formally an ordering between the vertices ≥, V ={b1, b2, b3 . . . , bn}
of a Feynman graph G. This ordering satisfies:

• If bi and bj are connected directly by one or more lines, then either bi ≥ bj or bj ≥ bi,
i.e., bi and bj are ordered by ≥. The ordering ≥, abstracted from time ordering is
transitive, a ≥ b, b ≥ c → a ≥ c. It follows from the transitivity of the binary that if
two vertices bi and bj are related by a sequence of increasing times, they are ordered by
≥. Thus, in figure 4, we have, for example, both o ≥ c ≥ i and o ≥ b ≥ i.

• If bi and bj are not connected by a line or a sequence of vertices that are increasing, then
bi ̸≥ bj and bj ̸≥ bi, i.e., bi and bj are not ordered by ≥. It will be useful to introduce
the notation bi ∼ bj , to mean bi ̸≥ bj and bj ̸≥ bi.3 In figure 4, we have d ∼ i, b, and a,
and a ∼ o.

We will say that bi > bj if bi ≥ bj and bi ̸= bj i.e., we require that bi, bj are distinct
in addition to being related.

Having introduced the binary relation, we are ready to define the posets. A poset D

is the ordered pair D = (V,≥), where the set V is the set of vertices of a Feynman graph,
taken together with the binary relationship ≥.

It is clear that multiple time orders are compatible with a given poset, and in each time
order, we can uniquely identify an underlying poset. Therefore, posets partition the set of

3We shall assume that our TOPT diagrams do not include lowest-order tadpole subdiagrams, in which
a single line emerges and is absorbed at a single vertex. Such lines, which are removed by normal ordering,
cannot be assigned a poset (or time) order.
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all time orders. Again, in our example, figure 4, in addition to the particular time-ordering
represented in the figure, we also include both the orders in which i both precedes and follows
d in time, and likewise for a and o, in addition to all relative orders between c and b.

Our posets have the same information as the incidence matrix in the TOPT amplitudes,
eqs. (2.14), (2.16). It is clear that it is possible to read off a poset, given an incidence
matrix. Also notice that since the integrand in eq. (2.14) only depends on the incidence
matrix, this is also fixed by the poset. Therefore, posets are in one-to-one correspondence
with incidence matrices.

Let us make a few more definitions that relate to posets in order to develop this language
more fully. An idea that we will find use for in what follows is that of minimal/maximal
elements. An element bi is said to be a minimal element of a poset D if ∀bj ∈ D, bj ≥ bi

or bi ∼ bj . A sequence of decreasing vertices, starting from any vertex, always ends at a
minimal element. In figure 4, vertices d and i are the two minimal vertices.

An element bi is said to be a maximal element of a poset D if ∀bj ∈ D, bi ≥ bj or bi ∼ bj .
A sequence of increasing vertices, starting from any vertex, always ends at a maximal element.
In figure 4, vertices a and o are the two maximal vertices.

We will also find it useful to distinguish how two elements are related to each other. In
particular if a < b, then either there exists a single line between the vertices a and b or there
exists a sequence of increasing, connected vertices that starts at a and ends at b. It will be
useful to reserve the symbol ≺ for the first scenario when a and b are directly connected
through a line. It is therefore natural to define a “covering relation”. For elements x, y ∈ V ,
we say that y covers x if y > x and there is no z ∈ V such that y > z > x. We will denote
this by x ≺ y. Thus, in figure 4, d ≺ c and b ≺ a. In a given graph, if x ≺ y, then x, y are
vertices that are directly connected by one or more lines, while y ≥ x includes the possibility
that x, y are vertices that are connected by a sequence of lines.

Having defined our posets, we will now go on to show how to use them to eliminate pseudo-
physical cuts in some explicit examples of vacuum polarization diagrams. A generalization to
all processes at arbitrary loops will be given subsequently in section 5.

4.2 Examples in vacuum polarization diagrams

Let us now look at some low order examples that will show how the time integrals over minimal
and maximal vertices can be carried out explicitly within a given poset. For definiteness, our
examples will be drawn from the vacuum polarization diagrams of the lepton annihilation
processes. They illustrate features of quite general application and open the way to an
analogous development for general amplitudes and Green functions in the next section.

For vacuum polarization diagrams, we label vertices by permutations of the list, V =
(i, b1, b2, . . . , bn, o), where the external momentum flows into the diagram at vertex i, and
out at vertex o. We can then divide all posets into four classes.

• Posets with o > i for which the external energy arrives at vertex i before it leaves at
vertex o.

• Posets with i > o for which the external energy leaves at vertex o before it arrives at
vertex i
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• Posets with o ∼ i, which split into two sub-classes by the imposition of an additional
relationship in a time order: to > ti and ti > to. At the level of the poset, there is
no definite order among the vertices i(o), where the external energy enters(leaves).
However, imposing the additional relationship to > ti restricts us to time orders within
the poset where the external energy arrives at vertex i before it leaves at vertex o.

As we will see, there are unphysical cuts that one would like to eliminate in all four
classes of posets. In what follows we will focus on time orders that satisfy to > ti. These
are all time orders in posets with o > i, and in posets with o ∼ i, with time orders to > ti.
These time orders carry at least one physical cut but contain both physical and unphysical
cuts in general. There are no denominator singularities in time orders with ti > to, and the
integrand is completely real (and negative semi-definite).

Using the notation introduced in eq. (2.7), we consider here diagrammatic integrands,
including numerator factors, written as sums over time orders τG of vacuum polarization
integrands for an arbitrary diagram, G,

πG[Q,LG] =
∑
τG

NτG πτG(Q,LG) . (4.1)

We observe that although the notation NτG suggests that the numerator factor depends on
the time order, it is the same for all time orders within a poset D. The numerator factor of a
graph in covariant perturbation theory is derived from the Feynman rules and the numerator
factor in TOPT is obtained by replacing the energy of a line j by the on-shell value of the
energy ±ωj , where the sign is determined by the direction of the line alone. Therefore, the
numerator factor is the same for all time orders within a given poset. We will henceforth use
the notation ND to emphasize the dependence of the numerator factor.

Given that posets partition time orders into non-overlapping subsets, we may write
πG in eq. (4.1) as

πG(Q,LG) =
∑
τG

ND πτG(Q,LG)

=
∑
D

ND

∑
τD

πτD(Q,LG) , (4.2)

where the second equality follows from the fact that the sum of all time orders τG of graph G

is the sum over posets, D, and within each poset the sum over time orders contained in D,∑
τG

=
∑
D

∑
τD

. (4.3)

Our interest is in obtaining an expression for πD(Q,LG) that is free of pseudo-physical cuts.
We first notice that if a poset D has a single minimum i (where the external momentum
flows in), and a single maximum o (where the external momentum flows out), every time
order we induce on the poset exclusively carries physical cuts. To see this, we argue that
in an arbitrary time order, and on any cut C of that time order, we may start at vertex
v that lies to the left of C, and follow a sequence of vertices that are less than v (in the
poset ordering) to reach the unique minimum i. Therefore every vertex on the left of the
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cut C is ordered with respect to i. A similar argument shows that every vertex to the right
of such a cut is also ordered with respect to the unique maximum o. There may or may
not be more than one time order for such a poset, depending on the incidence matrix, but
every cut of such a time-ordered diagram will be physical.

If, on the other hand, there is more than one extremum in a poset, the poset is guaranteed
to include time orders that differ by exchanging the relative positions of the minima or maxima
among themselves. Our strategy in handling posets without a unique minimum or a unique
maximum element is to reduce the problem to one where there exists a unique extremum. This
will involve combining time orders that exchange extrema and other unordered pairs of vertices.

As a warm-up consider an example with a unique maximum but two minima, the three
loop graph in figure 5. Although the figure shows a particular time order of its six vertices, i,
o, and b1 . . . b4, it represents only the poset structure. We recall that in TOPT every line
carries energy forward in time (to the right in a TOPT diagram). This information provides
us with an incidence matrix, and hence a poset. In this case, the relevant binary relations are

i < b3 < b4 < o ,

b1 < b2 < b4 ,

b1 < b3 ,

b1 ∼ i ,

b2 ∼ i, b3 . (4.4)

Within this poset, there are two minima, b1 and i. Vertex b1 is covered by both b2 and b3.
There are five time orders. Two time orders have tb2 > tb3 , which we label by permutation as

tb1 < ti (1i324o) ,

ti < tb1 (i1324o) . (4.5)

The other three time orders, which have tb3 > tb2 , are given by

ti < tb1 < tb2 < tb3 (i1234o) ,

tb1 < ti < tb2 < tb3 (1i234o) ,

tb1 < tb2 < ti < tb3 (12i34o) . (4.6)

In TOPT, after time integration, each of these orderings gives one or more pseudo-physical
cuts. For example, the contribution of (i1324o) can be written as

π(i1324o) = eiQto

∫ to

−∞
dtb4e−i(ωch−ωd+iϵ)tb4

∫ tb4

−∞
dtb2e−i(ωef−ωh+iϵ)tb2

∫ tb2

−∞
dtb3e−i(ωag−ωf+iϵ)tb3

×
∫ tb3

−∞
dtb1e−i(−ωefg+iϵ)tb1

∫ tb1

−∞
dtie

−i(Q−ωab+iϵ)ti

= i

Q − ωbd + iϵ

i

Q − ωbch + iϵ

i

Q − ωbcef + iϵ

i

Q − ωabefg + iϵ

i

Q − ωab + iϵ
, (4.7)

where for compactness we use the notation

ωab...c = ωa + ωb + · · ·+ ωc . (4.8)
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We have also set the outgoing energy Q′ to equal Q, to suppress the phase that provides the
energy conserving delta function after the integral over to in this case. In this representative
TOPT term, the denominator Q−ωabefg corresponds to a pseudo-physical final state because
the amplitude with this final state consists of two disconnected parts, one that includes vertex
i and provides particles a and b in the final state, and one in which particles e, f , and g

emerge from the vacuum into the final state. We shall see, however, that such singularities
are absent in an evaluation of integrals based on the poset. In other words, pseudo-physical
denominators all cancel in the sum over the time orderings that make up the poset. This will
be the case separately for the combinations of time orders in eq. (4.5) and (4.6).

The case of the two orders in eq. (4.5) is particularly simple. Adding the two orders
together, we find that times tb1 and ti integrate independently to tb3 , and the pseudo-
physical cut disappears in TOPT, even though each of these orderings gives one or more
pseudo-physical cuts,

π(i1324o) + π(1i324o) = eiQto

∫ to

−∞
dtb4e−i(ωch−ωd+iϵ)tb4

∫ tb4

−∞
dtb2e−i(ωef−ωh+iϵ)tb2

×
∫ tb2

−∞
dtb3e−i(ωag−ωf+iϵ)tb3 (4.9)

×
∫ tb3

−∞
dtb1e−i(−ωefg+iϵ)tb1

∫ tb3

−∞
dtie

−i(Q−ωab+iϵ)ti

=
(

i

Q − ωbd + iϵ

i

Q − ωbch + iϵ

i

Q − ωbcef + iϵ

i

Q − ωab + iϵ

)
i

−ωefg
,

where the rightmost fraction, which is negative semi-definite for massless lines, is the re-

sult of the integral
tb3∫
−∞

dt1e
−i(−ωefg+iϵ)tb1 . The remainder of the integral gives the factor

in parentheses, consisting of four denominators, each of which provides a unitarity cut,
corresponding to a physical final state.

A representation of the diagram after the tb1 integral is given in figure 6(a), which
includes a modified vertex, which absorbs the fraction i

−ωefg
. This vertex, the denominator

combined with coupling constants, is real and is effectively local in time (in this case at
tb3). At this stage, all remaining vertices are ordered between i and o in the poset. We have
thus achieved what we set out to do, reduce the diagram in figure 5 to one with a unique
maximum and unique minimum. The cuts of the modified diagram in figure 6(a) do not
disconnect the graph into more than two connected subdiagrams, and are therefore unitarity
cuts, that is, physical cuts of the forward scattering graph.

We can now turn to the other possibility, tb3 > tb2 , the component of this poset given
by the orders in eq. (4.6). Rather than reproducing the four-dimensional time integral as in
the previous case, we shall simply show the integrals over minimum vertices. Examining the
ranges of integrations possible in eq. (4.6), we find that we can carry out the t1 integral from
−∞ to t2 independently of the value of ti. This gives the t2-dependent factor

t2∫
−∞

dt1 e−i(−ωefg+iϵ)t1 = i

−ωefg
e−i(−ωefg+iϵ)t2 . (4.10)
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Figure 5. A three loop example of a graph with two minima. Vertices 1 and i are both minima of
this graph, and our procedure eliminates the minimum 1, through the process of successive integration.
This graph is to be understood as a poset graph rather than a time-ordered graph.
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Figure 6. (a) The poset ordered graph in figure 5. after integrating out the minimum vertex 1, with
the choice 2 ≥ 3. Here the black dot represents the composite, modified vertex 3. (b) Integrating
the time of vertex 1, making the choice 3 ≥ 2. The composite vertex 2 is represented with a black
dot. 2 is still a minimum of the new poset. (c) The time of the composite vertex 2, which was a new
minimum in the choice 3 ≥ 2, has been integrated. The new composite vertex 3 is represented with a
black dot. Here, all vertices lie between i, o.

The composite graph obtained after integrating out vertex 1 is shown in figure 6(b). In this
case, the vertex 2 is still a minimum of the poset, and we would like to carry out the t2
integral as well. We can do this because in the combination of time orders in eq. (4.6), the
upper limit of the t2 integral is t3, independent of ti. We thus find,

t3∫
−∞

dt2 e−i(−ωefg+iϵ)t2e−i(ωef−ωh+iϵ)t2 = i

−ωgh
e−i(−ωgh+iϵ)t3 . (4.11)
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Figure 7. A two loop example of a graph with two minima and two maxima. Vertices 1 and i are
both minima of this graph, and vertices 2 and o are both maxima of this graph.

A graphical representation of the diagram that results after this step is shown in figure 6(c).
The complete result for the time orders in eq. (4.6), analogous to eq. (4.9) for the time
orders of eq. (4.5), is now easily found to be

π(i1234o) + π(1i234o) + π(12i34o) =
(

i

Q − ωbd + iϵ

i

Q − ωcbh + iϵ

i

Q − ωab + iϵ

)
i

−ωgh

i

−ωefg
.

(4.12)

Together, the two negative semi-definite denominators combine with couplings to form the
composite vertex 3 in figure 6(c). Again, the remaining denominators are either physical
(in parentheses) or negative semi-definite. The full expression for this poset (D), πD, is
given by the sum of this result with eq. (4.9).

For the next example, consider the two loop graph in figure 7. In this example, at the
level of the poset, there exists no unique minimum or unique maximum. Our process of
eliminating the additional extrema starts with eliminating the vertex we have labeled 1. The
minimum vertex, 1 is connected to mutually un-ordered vertices 2 and o. To integrate out
the minimum 1, we will order these vertices as before. The two choices in ordering are to > t2
and t2 > to, and as before, we must sum over both choices. Making the choice to > t2 and
integrating t1, we obtain a unique minimum i and a unique maximum o, giving

tu∫
−∞

dt1 e−i(−ωdec+iϵ)t1 = i

−ωdec
e−i(−ωdec+iϵ)tu , (4.13)

where the upper limit tu is t2 if to > t2 and to if t2 > to. Having made the choice to > t2, the
rest of the graph is fully ordered and we may use TOPT for the remaining denominators,

π
(1)
D =

(
i

Q − ωac + iϵ

i

Q − ωab + iϵ

)
i

−ωced
. (4.14)

The ordered graph that yields these denominators is shown in figure 8(a).
The choice of ordering t2 > to, leaves us with a single maximum vertex 2, which is not

o. We would therefore like to integrate the maximum time, t2, from to to ∞,
∞∫

to

dt2 e−i(ωbed−iϵ)t2 = i

−ωbed
e−i(ωbed−iϵ)to . (4.15)
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Figure 8. (a) The poset ordered graph in figure 7. after integrating the time of the minimum
vertex, 1, with the choice o ≥ 2. Here the black dot represents the composite, modified vertex 2.
(b) Integrating t1, making the choice 2 ≥ o. The composite vertex o is represented with a black dot.
Vertex 2 is the new maximum of the poset. However, since the maximum is not o, we continue by
integrating the time for vertex 2. (c) The composite vertex o, after t2 has been integrated. The new
composite vertex o is represented with a black dot.

This procedure is represented diagrammatically in figures 8(b), 8(c). What remains is the
integral of ti in the range −∞ to to which is easily carried out. The contribution of the
order t2 > to to the poset denominator is

π
(2)
D =

(
i

Q − ωab + iϵ

)
i

−ωbed

i

−ωced
. (4.16)

As before, the full expression for the integrand from this poset is the sum of the two choices
in orderings included in the poset, πD = π

(1)
D + π

(2)
D .

As a final example, consider the poset graph in figure 9, which has both a minimum
(vertex 1) and a maximum (vertex 2). This example captures our procedure at four loops. In
this poset, time t1 is bounded from above by t2 if t2 < t3, and by t3 if t3 < t2. In either case,

tu∫
−∞

dt1 e−i(−ωijk+iϵ)t1 = i

−ωijk
e−i(−ωijk+iϵ)tu , (4.17)

where the upper limit tu is t2 if t3 > t2 and t3 if t2 > t3. Making the first choice, t3 > t2,
confines every remaining vertex to lie between i and o. A graphical representation of this
reduced graph is in figure 10(a). It is now fully ordered and as above, we can reconstruct
the remaining integrals from the rules of TOPT, to find.

π
(1)
D =

(
i

Q − ωaf

i

Q − ωkae

i

Q − ωadjk

i

Q − ωghad

i

Q − ωgcd

i

Q − ωab

)
i

−ωijk
, (4.18)

where we have suppressed the +iϵ terms present in each physical denominator.
Making the other choice, t2 > t3, and integrating the minimum time, t1 from −∞ to

t3 leaves 2 as a maximum element. The reduced graph we obtain at this stage is shown
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Figure 9. A four loop example of a graph with two minima and two maxima. Vertices 1 and i are
both minima of this graph, and vertices 2 and o are both maxima of this graph.
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Figure 10. (a) The poset ordered graph in figure 9 after integrating the time of the minimum
vertex 1, with the choice 3 ≥ 2. Here the black dot represents the composite, modified vertex 2. (b)
Integrating vertex 1, making the choice 2 ≥ 3. The composite vertex 3 is represented with a black
dot. Vertex 2 is a new maximum of the poset. However, since the maximum is not o, we continue
integrating out vertex 2. (c) The vertex 2, which was the new maximum in the choice 2 ≥ 3, after t2
has been integrated. The new composite vertex 3 is represented with a black dot.

in figure 10(b). We can now integrate over t2,
∞∫

t3

dt2 e−i(ωigh−iϵ)t2 = i

−ωigh
e−i(ωigh−iϵ)t3 . (4.19)

The reduced graph we obtain is shown in figure 10(c). This is a fully ordered diagram, for
which every vertex lies between i and o. We can proceed using TOPT rules for the new
diagram, giving the final result

π
(2)
D =

(
i

Q − ωaf

i

Q − ωkae

i

Q − ωghad

i

Q − ωgcd

i

Q − ωab

)
i

−ωigh

i

−ωijk
, (4.20)

where again we suppress +iϵ terms in all the denominators. The full poset integrand is
once again πD = π

(1)
D + π

(2)
D .

Let us summarize the process of integrating out of extrema that we have seen so far in
these examples. We first identify a minimum vertex, v ( v ̸= i), and order the vertices that
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cover v. We then integrate out the minimum, at the cost of adding the energy carried by v into
the next vertex, say v + 1. If there were more than one minimum, we will sequentially repeat
these steps for all minima. We continue this process until each vertex that remains is greater
than i. We use an identical procedure with maxima, integrating them to generate negative
definite denominators. After the elimination of both minima and maxima, the remaining
vertices are all ordered relative to i and o and therefore carry only physical cuts of the graph.

We have seen in these examples that the resulting ordered diagrams include composite
vertices with multiple lines emanating from or flowing into them. At each stage, the graph
with composite vertices yields a new time-ordered graph, with fewer pseudo-physical cuts
but the same physical cuts as in the original graph. The new graph thus obtained has
fewer vertices and a modified incidence matrix. The composite vertex denotes a factorized
expression for long time processes that were initiated in the vacuum and do not affect the
cuts of the short distance process. The composite vertices may be interpreted intuitively
as effective vertices in the short distance function, where all the long distance behavior has
been absorbed into factorized, negative semi-definite, vacuum denominators. We next turn
to a general implementation of these methods.

5 PTOPT: TOPT without unphysical singularities

In this section, we describe a generalization to arbitrary order of the examples of the previous
section, based on graphs’ poset structures. We will term this approach, “partially time-ordered
perturbation theory” (PTOPT). We will construct an algorithm that enables us to re-express
the sum over time-ordered diagrams of any graph into a sum with fewer terms, all of whose
denominators are either negative semi-definite, or physical. In this construction, all pseudo-
physical cuts will be eliminated. We will present our discussion for an arbitrary amplitude
with any numbers of incoming and outgoing momenta. Our result, given in eq. (5.37) below,
is essentially equivalent to that given ref. [26]. In the following section, we show how PTOPT
can be applied to cross sections written as sums over cuts, as in the weighted cross sections of
section 2, to provide expressions that involve only physical singularities, and which separate
universal and process-dependent dynamics.

In this construction, it will be useful to turn our attention to integral representation
eq. (2.14) for the time-ordered denominators of functions like πτG in eq. (4.1), written as
sums over posets. Compared to eq. (2.14), however, we associated with every vertex α an
external energy Eα, defined to flow into that vertex. In a multiloop diagram, with a fixed
number of external lines, most Eα are zero. For an outgoing physical momentum flowing
out of vertex α, Eα is negative. The resulting functions are then not limited to vacuum
polarizations and may represent any scattering configuration, with arbitrary numbers of
incoming and outgoing lines. To emphasize the generality of these considerations, we denote
our functions as FG({Eα},LG) for graph G, and FD({Eα},LG) for poset D. When we return
to the analysis of vacuum polarizations, we revert to the notation of πG or πD.
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In these terms, our expression for the integral associated with an arbitrary graph G

with n vertices at fixed spatial loop momenta is

2πδ

(∑
α

Eα

)
FG ({Eα},LG) =

∑
τ

Nτ

n∏
α=1

∫ tα+1

−∞
dtαe−i(Eα+η

(τα)
j (ωj−iϵ))tα

= 2π

(∑
α

Eα

) ∑
τ

Nτ Fτ ({Eα},LG) (5.1)

= 2πδ

(∑
α

Eα

) ∑
D

∑
τD

ND FτD ({Eα},LG)

= 2πδ

(∑
α

Eα

) ∑
D

ND FD ({Eα},LG) ,

where we define, tn+1 = ∞ in the first equality. The final, tn, integral gives the delta function
that enforces the energy conservation in G. Here, η

(τα)
j is the incidence matrix of the vertex

bτα in the time order labeled by τ . The second equality defines Fτ as the coefficient of the
energy-conserving delta function from the full integral associated with time order τ . In the
third, we reorganize the sum over time orders into a sum over posets, D, as in eq. (4.2),
recalling that every time order is associated with a single poset. Finally, the fourth equality
defines FD as the complete contribution to FG from all the time orders within poset D. The
functions FD will be the subject of the following discussion.

5.1 Time integrals of extremal vertices; the covering set

We consider the time integrals allowed within a given partial order for an arbitrary graph.
Again, in this section, we will not restrict to forward scattering graphs that one encounters
in leptonic annihilation. Rather, we treat graphs with a generic flow of external momenta.
We will label this general partially-ordered diagram, or poset diagram, as D, defined on a
set of vertices V with ordering ≥. In the following, we will use D to refer both to the poset
and to the ordered diagram. Note that we will only encounter vertices that are local in time,
whose time integrals we will carry out. After our first time integral, however, the composite
vertices we encounter generally will not be local in space.

The object of interest is the function FD for a fixed poset D = (V,≥), which as we have
noted before, is fixed by an incidence matrix η

(α)
j . (For compactness of notation, we do not

label η
(α)
j by D.) We represent schematically the multidimensional region of vertex times

restricted to the orders associated with a specific poset D as

2πδ

(
n∑

α=1
Eα

)
FD ({Eα},LG) =

|V |∏
α=1

∫
XD

dtαe−i(Eα+η
(α)
j (ωj−iϵ))tα , (5.2)

where we have formally carried out the sum over time orders consistent with poset D,
corresponding to the integral of times over a region labeled by XD. We let |V | represent
the number of vertices. The region XD is defined by

XD = {(t1, t2 . . . t|V |)|bk ≥ bj =⇒ tk ≥ tj} . (5.3)

The union of all possible regions XD is the full set of time integrals in eq. (5.1).
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For a given poset D, we can identify a unique set M1
D of embedded extrema (minima and

maxima) of D. We define an embedded vertex v ∈ M1
D, as one whose removal leaves behind

a connected diagram consisting of vertices V/v. Every connected diagram has a non-empty
set of embedded vertices (see appendix A) . The time integrals of minima in XD extend
independently to negative infinity, and those of maxima to positive infinity. We can always
begin the integration process for XD by picking a subset of embedded extremal vertices that
form an anti-chain (mutually incomparable elements). We will do so for a subset of the
extremal embedded vertices, chosen to have the largest number of such vertices that form
an anti-chain. Such a subset may include both maxima and minima, because the minima
may not be ordered with respect to all maxima, and vice-versa.

Let us call this set the first extremal antichain, A1, defined to satisfy,

A1 = {x ∈ M1|x, y ∈ A1 =⇒ x ∼ y}
= {b1,1, . . . , b1,r1 ; d1,1, . . . , d1,s1} ≡ {e1,i} , (5.4)

where we denote by r1 the number of minimal elements, b1,i, in A1 and by s1 the number of
maximal elements, d1,i, and where ei,j labels these vertices collectively, with j = 1 . . . r1 + s1.
A1 represents a set of vertices whose times can be integrated simultaneously and independently
of each other.4 Clearly, each of these integrals must extend from a fixed upper (lower) limit
to infinity (negative infinity). We now turn to the determination of these limits.

Having identified the set A1, we identify a companion set, C1, of vertices that cover the
minimal vertices in A1 or are covered by the maximal vertices in A1, that is, vertices that
are connected to one or more elements of A1 by single line(s) with no intervening vertices,

C1 = {x ∈ V |∃v ∈ A1 : (v ≺ x) or (x ≺ v)}

=
r1⋃

i=1
Cb1,i

s1⋃
j=1

Cd1,j
, (5.5)

where we have defined the covering set for each element in A1 by

Cb1,i
= {x ∈ V |b1,i ≺ x},

Cd1,i
= {x ∈ V |x ≺ d1,i}. (5.6)

By construction, vertices in C1 are connected to extrema by lines that either emerge directly
from minima or flow directly into maxima, as denoted by the covering relation ≺, defined
in section 4.1. If there are several such vertices for any given extremal vertex, they form
an anti-chain, that is, they are not mutually ordered within the poset D. We note as well
that a single element of C1 can cover more than a single extremum. We will refer to the
elements of C1 as the first covering set for the first extremal antichain, A1. We will use
the covering set C1 to organize the time integrals for the extremal vertices in A1. This will
enable us to begin a recursive analysis over induced poset diagrams and to do all subsequent
time integrals in the same way as the first.

4This choice for A1 is not unique, and we need not adhere to A1 being the largest possible antichain in any
one step.
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In the time integral over XD, corresponding to the partially ordered diagram D, eq. (5.2),
we must include all choices within poset D of the earliest covering vertices for all minimum
elements of A1 and of the latest covered vertex for all maximum elements. Region XD, and
thus our integral, is given by a sum over these choices, which we will denote as γ1 ⊂ C1. It
is worth pointing out that it is possible to construct the full list of compatible choices γ1

of next-to-extremal covering vertices systematically, by summing over available choices of
covering (covered) vertices for each minimum (maximum) in turn. Because next-to-extremal
vertices may cover more than one extremum, the number of resulting sets is not a simple
product of the number of covering vertices for the extrema. For a concrete algorithm to
generate all consistent γ1, see appendix B.

Given a choice of next-to-extremal vertices, the integration range of each extremal vertex
is -∞ to the time of its earliest covering vertex for a minimum, and from the time of its
latest covered vertex to ∞ for each maximum. We shall describe these choices collectively
as sets of next-to-extremal covering vertices, and label them among the elements of C1 as
x
(e1,i)
a , where index e1,i identifies the extremal vertex connected to the vertex x

(e1,i)
a , while

index a identifies the choice of covering (covered) vertex in set Ce1,i that covers (is covered
by) the minimal (maximal) vertex e1,i.

In terms of the next-to-extremal covering elements, γ1 is given by

γ1 =
{
∪ei=1...r1+s1 x

(e1,i)
a

}
. (5.7)

Whenever two extrema, say e1,i and e1,i′ , have the same next-to-extremal covering vertex,
we have x

(e1,i)
a = x

(e1,i′ )
a′ . The number of elements in γ1 is therefore less than or equal to the

number of elements in C1. In this notation, once we choose γ1, the integrals over the times of
all extremal vertices in set A1, minima and maxima, can be done explicitly and independently.

To relate the integration region for each γ1 to the original integration region XD for poset
D in eq. (5.3), we proceed as follows. As noted above, the next-to-extremal vertices for any
e1,i form an antichain (mutually incomparable vertices) and therefore need additional ordering
at the poset level to specify the ranges of the e1,i time integrals. This additional ordering we
impose is fixed by our choice in x

(e1,i)
a . For each choice of γ1, we construct a partial order on

the antichains in C1, by defining a new binary relation, denoted ≥γ1 over the set V by

If a ≥ b, then a ≥γ1 b ,

∀y ∈ Cb1,i
: y ≥γ1 x

(b1,i)
a >γ1 b1,i ,

∀y ∈ Cd1,i
: d1,i >γ1 x

(d1,i)
a ≥γ1 y . (5.8)

Here, the subscript on ≥γ1 reflects the ordering that remains after we identify each extremal
vertex e1,i with its corresponding vertex x

(e1,i)
a ∈ Ce1,i in the covering set γ1.

The relations, eq. (5.8) that define the ordering ≥γ1 identify new posets, whose mutually-
disjoint integration regions allow us to integrate the times te1,i explicitly. Again, although we
formally have constructed ≥γ1 as a “stronger” binary relationship than the original ordering
≥ of the poset, it is the natural ordering inherited from ≥ when every extremum e1,i is
identified with the specific covering element x

(e1,i)
a , that is, contracting the vertex e1,i onto

the corresponding x
(e1,i)
a in γ1. We, therefore, think of a new, lower-order graph with all
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e1,i removed from the set of vertices. Every line that previously emanated from a minimum
b1,i, and was not absorbed at vertex x

(b1,i)
a now emanates from x

(b1,i)
a , and therefore x

(b1,i)
a is

“less than” every other vertex of C1 that was connected to b1,i, since after the contraction of
b1,i onto x

(b1,i)
a there is at least one line starting from x

(b1i)
a and ending on any such vertex.

Maxima are contracted on their nearest covered vertices in an exactly analogous fashion.
The combination of the new, contracted vertex and the induced order defines a new poset,

D
[
γ1
]
=
{

V
[
γ1
]

, ≥γ1

}
, V

[
γ1
]
= V \ ∪ie1,i , (5.9)

with ≥γ1 defined by eq. (5.8). The integration region for post D[γ1], analogous to the original
region, eq. (5.3), is given by

XD[γ1] = {(t1, t2 . . . t̂e1,1 . . . t̂e1,r1+s1
. . . t|V |)|bk ≥γ1 bj =⇒ tk ≥ tj} , (5.10)

where t̂e1,i means that te1,i is excluded from the list. Again, the notation XD[γ1] identifies the
subregion of XD where the vertices in γ1 are the full set of next-to-extremal covering vertices.

It is clear that any time order in region XD has a unique set γ1, and that distinct
choices of γ1 correspond to different time orders. Therefore, when we sum over all choices,
of γ1, we exhaust all time orders within XD. Explicitly, we may represent the full poset
integration region, XD as

XD =
⋃
γ1

XD[γ1] ×
r1⋃

tbi,1
i=1

(−∞, t
x
(b1,i)
a

)×
s1⋃

tdi,1
i=1

(t
x
(d1,i)
a

,∞) , (5.11)

where again, γ1 is specified, as in eq. (5.7), as the choice of next-to-extremal elements x
(e1,i)
a .

In summary, for a given choice of γ1, we can carry out the te1,i integrals up to (or down to)
the times t

x
(e1,i)
a

∈ γ1. We can thus rewrite the full integral for FD, eq. (5.2) using eq. (5.11) as

2πδ

(
n∑

α=1
Eα

)
FD ({Eα},LG) =

∑
γ1

|V [γ1]|∏
α=1

∫
XD[γ1]

dtαe−i(Eα+η
(α)
j (ωj−iϵ))tα

×
r1∏

i=1

∫ t[x
(b1,i)
a ]

−∞
dt1,i e

−i

(
Ei+

∑
j

η
(b1,i)
j (ωj−iϵ)

)
t1,i

×
s1∏

i=1

∫ ∞

t[x
(d1,i)
a ]

dt1,i e
−i

(
Ei+

∑
j

η
(d1,i)
j (ωj−iϵ)

)
t1,i

. (5.12)

Here we have labeled the times of the extremal vertices, over which we are integrating, with
the subscripts of the corresponding vertices e1,i themselves, and the times of the next-to-
extremal covering vertices x

(e1,i)
a in a hopefully obvious notation. We note that each of

the limits in the integrals over extremal vertices are times that appear in the remaining
integration measure of XD[γ1].

In eq. (5.12), the time integrals for minima all take the form

∫ t[x
(b1,i)
a ]

−∞
dt1,i e

−i

(
Eb1i

+
∑

j
η
(b1,i)
j (ωj−iϵ)

)
t1,i = i

∆b1,i
[γ1] e

−i

(
Eb1i

+
∑

j
η
(b1,i)
j (ωj−iϵ)

)
t[x

(b1,i)
a ]

(5.13)
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where we define

∆b1,i
[γ1] = Eb1i

−
∑

j

∣∣∣η(b1,i)
j

∣∣∣ωj + iϵ . (5.14)

We note that every nonzero η
(b1,i)
j = −1, since they all correspond to minimum vertices,

which only emit particles. Such a denominator has the standard form of an energy deficit
in the channel of vertex b1,i, where external energy Eb1,i

flows in. We will refer to the set
of lines, j for which η

(b1,i)
j = −1, all of whose on-shell energies flow out of vertex b1,i, as

the “cut” of diagram D that separates it into two diagrams, one consisting of vertex b1,i

and one with the remaining vertices, V \ b1,i. Since all b1,i are embedded vertices, all the
diagrams V \ b1,i are connected.

Similarly, for all the time integrals for maxima in eq. (5.12) we have∫ ∞

t[x
(d1,i)
a ]

dt1,i e
−i

(
Ed1i

+
∑

j
η
(d1,i)
j (ωj−iϵ)

)
t1,i = i

∆d1,i
[γ1]e

−i

(
Ed1i

+
∑

j
η
(d1,i)
j (ωj−iϵ)

)
t[x

(d1,i)
a ]

. (5.15)

In this case we define

∆d1,i
[γ1] = −

Ed1i
+
∑

j

η
(d1,i)
j ωj − iϵ


= (−Ed1i

)−
∑

j

η
(d1,i)
j ωj + iϵ , (5.16)

where in the second equality we use that η(d1,i) is either zero or 1 for maximum vertices.
When −Ed1,i

is a positive energy flowing out of vertex d1,i, we again have a standard energy
deficit form in the channel of vertex d1,i. As for minimal vertices, will refer to the set of
lines, j for which η

(d1,i)
j = 1, as the “cut” of diagram D that separates vertex d1,j from a

connected diagram with vertices V \ d1,j .
Substituting the integrals in eqs. (5.13) to (5.16) into the expression for FD, eq. (5.12),

we now have

2πδ

(
n∑

α=1
Eα

)
FD ({Eα},LG)

=
∑
γ1

r1∏
i=1

i

∆b1,i
[γ1]

s1∏
i=1

i

∆d1,i
[γ1]

|V [γ1]|∏
α=1

∫
XD[γ1]

dtαe−i(Eα+η
(α)
j (ωj−iϵ))tα

×
r1∏

i=1
e
−i

(
Eb1,i

+
∑

j
η
(b1,i)
j (ωj−iϵ)

)
t[x

(b1,i)
a ] s1∏

i=1
e
−i

(
Ed1,i

+
∑

j
η
(d1,i)
j (ωj−iϵ)

)
t[x

(d1,i)
a ]

. (5.17)

In this expression, every next-to-extremal vertex x
(e1,i)
a appears in the product over the

vertices (α) of diagram D[γ1]. The integral may thus be written in a more compact form
by combining these contributions in the phases, using the definitions

E[γ1]α = Eα +
r1∑

i=1
Eb1,i

δ
α,x

(b1,i)
a

+
s1∑

i=1
Ed1,i

δ
α,x

(d1,i)
a

η[γ1](α)a = η
(α)
j +

r1∑
i=1

η
(b1,i)
j δ

α,x
(b1,i)
a

+
s1∑

i=1
η
(d1,i)
j δ

α,x
(d1,i)
a

. (5.18)
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An important feature of the new incidence matrix η[γ1](α)j is that every line j for which
it takes a non-zero value is connected to vertex α in D[γ1], either directly or through an
embedded extremal vertex whose time has been integrated up to the time of vertex α.

We can now write the full poset integral as

2πδ

(
n∑

α=1
Eα

)
FD ({Eα},LG) =

∑
γ1

r1∏
i=1

i

∆b1,i
[γ1]

s1∏
j=1

i

∆d1,j
[γ1]

×
|V [γ1]|∏

α=1

∫
XD[γ1]

dtαe−i(E[γ1]α+η[γ1](α)
j (ωj−iϵ))tα . (5.19)

In this form, the original integral for poset D is expressed as a sum over γ1 (which is
constructed explicitly in appendix B) of products of energy deficit denominators multiplied
by an integral of the original form, eq. (5.2), this time for the poset diagram D[γ1], with a
reduced number of time integrals remaining. The energy deficit denominators correspond
to the cuts of D associated with each of the embedded extremal vertices in the set A1.
Because these vertices make up an antichain, these cuts have no lines in common. Finally,
we recall from eq. (5.9) that the original list of vertices, V is given by the union of V [γ1]
with the extremal vertices,

V [γ1]
r1∏

i=1
∪ b1,i

s1∏
j=1

∪ d1,j = V . (5.20)

We will encounter generalizations of all of these features below.
Equation (5.19) already exhibits the basic structure of our results. Let us summarize its

essential features. The new, induced, poset diagram D[γ1], defined by eqs. (5.8) and (5.9), is
a connected diagram with a set of vertices V [γ1], all of which are local in time. The number
of vertices has decreased by identifying pairs of embedded extremal and next-to-extremal
vertices, with the resulting “composite” vertices inheriting the next-to-extremal times t[x(e1,i)

j ].
The extremal vertices of D[γ1] can be labeled {b2,i, d2,i}.

For these induced, embedded minimal vertices, the new incidence matrix defined in
eq. (5.18), η[γ1](b2,i)

j takes only the values 0,−1, with only outgoing lines, although now these
lines may have been emitted originally by the first round of vertices, {e1,i}, over whose times
we have already integrated. These lines thus emerge from a subdiagram of the original poset
D that is connected. Similar considerations apply to maximal extrema in D[γ1], for which
η[γ1](d2,i)

j = 0,+1. In the new diagram, by analogy to eqs. (5.5) and (5.6) we can identify
the set of next-to-extremal vertices, C2 = {Ce2,i}, which will be labeled x

(e2,i)
a .

Examples of this process are given above in the integrations from figure 5 to figure 6(a)
and to figure 6(b), which correspond to different choices of γ1 in this case. The explicit
denominators of eq. (5.19) provide the results of the time integrals of the chosen antichain
A1 of embedded extremal vertices. By construction, they correspond to non-overlapping
cuts, each separating the original diagram into two connected parts. As such, they are all
“physical” denominators, in the sense we have identified above. The poset D[γ1] and the
integral over the region XD[γ1] in eq. (5.19) have all the properties of the original poset D and
integral over region XD of eq. (5.2) that we used in the forgoing analysis. In the following
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subsection, we use this recursive structure to derive a general expression for FD in which
all unphysical denominators are eliminated.

5.2 Integrals of induced extrema

The relation, eq. (5.19) clearly carries fewer time integrals, and the remaining time integrals
are in the same form that we encountered in eq. (5.2). It is therefore straightforward to
extend the reasoning recursively in order to carry out all the time integrals.

Let us assume that we are given the result after k− 1 iterations of the procedure outlined
above. Each step consists of integration over the induced embedded extrema of an induced
poset. We assume that the result takes the form

2πδ

(
n∑

α=1
Eα

)
FD ({Eα},LG) =

∑
γk−1

k−1∏
l=1

rl∏
i=1

i

∆bl,i
[γl]

sl∏
j=1

i

∆dl,j
[γl] (5.21)

×
|V [γk−1]|∏

α=1

∫
XD[γk−1]

dtαe−i(E[γk−1]α+η[γk−1](α)
j (ωj−iϵ))tα .

This integral has a set of properties that hold in the initial case, eq. (5.19), corresponding
to k = 2, and which will remain true recursively.

(1) Poset structure. D[γk−1] is a poset with integration region XD[γk−1], where γk−1 is
specified by a set of vertices from the original diagram D, and all vertices in VD[γk−1]
are local in time. That is, each remaining vertex α is associated with a time integral
over tα. As for any such diagram, among the vertices of D[γk−1], there is a non-empty
set Mk of embedded extremal vertices, {bk,i, dk,i}, each with a corresponding covering
set, Ck = ∪iC

k
ek,i

, of potential next-to-extremal vertices, Ck
ek,i

= {x
(ek,i)
a }.

(2) Inductive functional dependence. In eq. (5.21), the explicit denominators and phases
are defined by

∆bl,i
[γl] = Ebl,i

[γl−1]−
∑

j

∣∣∣η[γl−1](bl,i)
j

∣∣∣ωj + iϵ , (5.22)

and

∆dl,i
[γl] =

(
−Edl,i

[γl−1]
)
−
∑

j

η[γl−1](dl,i)
j ωj + iϵ , (5.23)

in terms of the inductive relations

Eα[γl] = Eα[γl−1] +
rl∑

i=1
Ebl,i

[γl−1] δ
α,x

(bl,i)
a

+
sl∑

i=1
Edk,i

[γl−1] δ
α,x

(dl,i)
a

,

η[γl](α)j = η[γl−1](α)j +
rl∑

i=1
η[γl−1](bl,i)

j δ
α,x

(bl,i)
a

+
sl∑

i=1
η[γl−1](dl,i)

j δ
α,x

(dl,i)
a

. (5.24)

The expressions, eqs. (5.22), (5.23) and (5.24) are direct generalizations of (5.13), (5.15)
and (5.18), with γ1 replaced by γl, and e1,i by el,i.
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(3) Denominators, cuts, and merged sets. The explicit denominators, ∆el,i
(e = b, d) in

eq. (5.21), with l ≤ k − 1 all correspond to cuts of the original diagram, D, each of
which separates D into exactly two connected components. One of these components
is associated with an embedded extremal vertex, el,i ∈ Al−1, of D[γl−1], and with a
connected set of vertices, λ[el,i] of the original diagram. We will refer to λ[el,i] as the
“merged set” of vertices for el,i, corresponding to one or more series of time integrals
that terminate at tel,i

. It may be a minimum or maximum. In either case, its merged
set is given by

λ[e1,i] = e1,i ,

λ[el,i] =
{

el,i

∏
el′,j

∪λ[el′,j ]
∣∣∣∣x(el′,j)

a′ = el,i , l′ ≤ l − 1
}

, (5.25)

where the range of index i depends on the set γl−1. That is, the merged set of extremal
vertex el,i is found by merging all the merged sets of extremal vertices el′,i, l′ ≤ l− 1 for
which the vertex el,i is the nearest vertex in its covering set. For a minimal extremal
vertex in D[γl−1], all lines that cross the cut ∆bl,i

[γl] emerge from the minimum bl,i

and are absorbed in D[γl−1] \ bl,i. For a maximal extremal vertex, lines that cross the
cut ∆dl,i

[γl] emerge from D[γl−1] \ dl,i and are absorbed at dl,i. In both cases, in terms
of the original poset diagram D, the lines of each cut connect λ[el,i] with D \ λ[el,i],
both of which are connected.

(4) Partial nesting. Any set of vertices picked from different λ[bk,i] form an antichain, and
similarly for maximal sets λ[dk,i]. Together, they satisfy the following properties, which
may be described as partial nesting [26],

λ[el1,i] ⊂ λ[el2,i′ ] or λ[el1,i] ∩ λ[el2,i′ ] = 0 , l1 < l2 ,

λ[el,i1 ] ∩ λ[el,i2 ] = 0 , i1 ̸= i2 ,

V [γk]
∏

i

∪λ[bk,i]
∏

l

∪λ[dk,l] = V . (5.26)

Taken together, these conditions imply that the sets of vertices λ[el,i] are either nested,
according to index l, or disjoint, and that, together with V [γk], they include all the
vertices of the original diagram D. This implies that the cuts represented by the
denominators ∆el,i

do not cross, since this would lead to a non-nested relationship
between at least two successive sets λ[el,i] and λ[el+1,j ]. Comparing to eq. (5.20) above
for the first set of integrals, we observe that indeed λ[b1,i] = b1,i and λ[d1,i] = d1,i, as in
eq. (5.25).

The specific manner in which the posets and the sets γk−1 and λ[ek,i] appear will emerge
from the following analysis, where we describe how to carry out the kth iteration, the next
set of time integrals in eq. (5.21). We will see that all of the features (1)–(4) of D[γk−1] are
inherited by the resulting expression in terms of a poset D[γk].

We begin by characterizing the extremal time integrals in eq. (5.21). In fact, we need
only repeat the steps in eqs. (5.4) to (5.9) that we applied to the original integral form for
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FD({Eα},LG) in eq. (5.2). We can do so because these steps depend only on the poset
structure of the diagram D[γk−1].

To organize the kth set of integrals, given the poset D[γk−1], we identify the set of
its embedded extrema Mk (See appendix A). Next, we pick a maximal antichain (a set of
extrema that are not related pairwise), which we label Ak. Generically, it contains both
embedded minima and embedded maxima. We denote the number of minima in Ak by rk

and the number of maxima by sk. Analogous to eq. (5.4), we can write

Ak = {x ∈ Mk|x, y ∈ Ak =⇒ x ∼ y}
= {bk,1, . . . , bk,rk

; dk,1, . . . , dk,sk
} ≡ {ek,i} , (5.27)

where, as before, in eq. (5.27) the bk,i represent the minima in Ak and the dk,i represent the
maxima in Ak. We use the symbol ek,i to represent elements of the combined set.

Next, we identify a companion set Ck, which is the set of next-to-extremal vertices.
Analogous to eqs. (5.5) and (5.6) we define

Ck =
{

x ∈ V [γk−1]
∣∣∣∣ ∃v ∈ Ak : (v ≺γk−1 x) or (x ≺γk−1 v)

}
=

rk⋃
i=1

Cbk,i

sk⋃
j=1

Cdk,j
, (5.28)

where we have defined the covering (or covered) set for each element in Ak by

Ck
bk,i

=
{

x ∈ V [γk−1]
∣∣∣∣ bk,i ≺γk−1 x

}
,

Ck
dk,i

=
{

x ∈ V [γk−1]
∣∣∣∣ x ≺γk−1 dk,i

}
. (5.29)

As before, we identify every consistent set of next-to extremal elements. We label the
next-to-extremal element of ek,i by x

(ek,i)
a . As above, the index a labels different choices

in the next-to-extremal element x, given the choice in next-to-extremal elements for all
el,m, l ≤ k − 1, m ≤ rl + sl, as well as ek,m, m ≤ i− 1 (See appendix B for more details). We
can now define the object γk representing one of the consistent choices for next-to-extremal
vertices, up to the stage k,

γk =
{

γk−1
rk+sk⋃

i=1
x
(ek,i)
a

}
. (5.30)

We now observe that a choice in γk naturally induces a poset structure on the set of vertices
V
[
γk
]
, which is defined by analogy to eq. (5.9) as

V
[
γk
]
= V

[
γk−1

]∖ rk+sk⋃
i=1

ek,i. (5.31)

The corresponding binary relationship for the set of vertices V [γk] is uniquely defined by
requiring that the chosen covering vertex of a given minimum, bk,i, say x

(bk,i)
j , is itself a
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minimum in the set Cbk,i
and the chosen covered vertex of a given maximum, dk,i, say x

(dk,i)
j

is itself a maximum in the set Cdk,i
. We may therefore conclude that the new binary relation,

constructed by analogy to eq. (5.8), and labeled ≥γk , is given by

for a, b ∈ V [γk], and a ≥γk−1 b, then a ≥γk b

∀y ∈ Cbk,i
: y ≥γk x

(bk,i)
j >γk bk,i ,

∀y ∈ Cdk,i
: dk,i >γk x

(dk,i)
j ≥γk y . (5.32)

Together with the set of vertices, V k, the binary relation ≥k defines a new poset D[γk].
With the new poset structure in place, we can carry out the time integrals corresponding

to the extrema ek,i. To do so, we rewrite eq. (5.21), separating out the integrals over extremal
elements in Ak, in analogy with eq. (5.12). As before such a decomposition will enable us
to carry out the extremal integrals, here in

2πδ

(
n∑

α=1
Eα

)
FD ({Eα},LG) =

∑
γk

k−1∏
l=1

rl∏
i=1

i

∆bl,i
[γl]

sl∏
j=1

i

∆dl,j
[γl]

×
|V [γk]|∏

α=1

∫
XD[γk]

dtαe−i(E[γk−1]α+η[γk−1](α)
j (ωj−iϵ))tα

×
rk∏

i=1

∫ t[x
(bk,i)
a ]

−∞
dtk,i e

−i

(
Ei[γk−1]+

∑
j

η[γk−1]
(bk,i)
j (ωj−iϵ)

)
tk,i

×
sk∏

i=1

∫ ∞

t[x
(dk,i)
a ]

dtk,i e
−i

(
Ei[γk−1]+

∑
j

η[γk−1]
(dk,i)
j (ωj−iϵ)

)
tk,i

.

(5.33)

We can repeat the steps from eqs. (5.13) to (5.16) to perform extremal time integrals and
define the denominators that arise at this stage of the integration procedure. The results
are of exactly the same form as for the case k = 2, and reproduce the inductive forms of
momentum dependence in denominators and phases in eqs. (5.22) to (5.24),

2πδ

(
n∑

α=1
Eα

)
FD ({Eα},LG) =

∑
γk

k∏
l=1

rl∏
i=1

i

∆bl,i
[γl]

sl∏
j=1

i

∆dl,j
[γl]

×
|V [γk]|∏

α=1

∫
XD[γk]

dtαe−i(E[γk]α+η[γk](α)
j (ωj−iϵ))tα . (5.34)

Comparing the expression in eq. (5.34) with the form of the integral after k − 1 time integrals
in eq. (5.21), and the four conditions that follow that expression, we can check that we have
completed an inductive construction of eq. (5.34) with the quantities ∆bk,i

[γk],∆dk,i
[γk] and

Eα[γk], η[γk](α)j defined recursively through eqs. (5.22), (5.23) and (5.24) respectively. We
also see that the four conditions that follow eq. (5.21) remain true after the kth integral.

(1) Poset structure. By construction D[γk] is a new poset, which again represents a diagram
with all vertices local in time, with a non-empty set of embedded extremal vertices
Mk+1.
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(2) Functional dependence. The time integrals in eq. (5.33) leading to eq. (5.34) give
precisely the results for denominators and phases specified by eqs. (5.22)–(5.24), with
l = k.

(3) Denominators, cuts, and merged sets. The new denominators ∆bk,i
and ∆dk,i

arise
from the time integrals of embedded extremal vertices in the chosen set Ak of D[γk−1].
Their explicit expressions in eq. (5.22) show that they have the standard forms of
energy deficits. We can verify that they correspond to cuts of the original diagram, D

that separate D into two connected components as follows. Consider first the minimal
vertices, bk,i of D[γk−1]. Each emits lines from the set of vertices in the merged set,
λ[bk,i], all of whose elements are unordered with respect to the vertices in any other
merged set λ[bk,j ], j ̸= i. As a result, all vertices in λ[bk,i] are connected to the
remainder of the original diagram D only through lines emitted by vertex bk,i, which
may connect to any non-minimal vertices in D[γk−1]. Then, cutting all lines emitted
by bk,i separates all vertices in λ[bk,i] from the remainder of the diagram D. But λ[bk,i]
is connected by construction, and so is V [γk−1] \ bk,i since bk,i is by construction an
embedded minimal vertex. Thus, cutting the set of lines emerging from any bk,i cuts
the diagram into two connected components. Identical considerations apply to the
embedded maximal vertices, dk,i of D[γk−1]. Lines emerging from (for minimal) or
absorbed into (for maximal) extremal vertices of the next poset D[γk], labeled ek+1,i,
are emitted or absorbed by sets of merged vertices, which we label λ[ek+1,i], of the
original diagram, D. These sets are defined. as in eq. (5.25), by

λ[ek+1,i] =
{

ek+1,i

∏
ek′,j

∪λ[ek′,j ]
∣∣∣∣x(ek′,j)

a = ek+1,i , k′ ≤ k − 1
}

, (5.35)

where index i varies over all choices of the set γk.

(4) Partial nesting. Finally, the sets λ[ek+1,i], given by eq. (5.35), associated with posets
D[γk], have the same properties as the λ[ek,i] associated with the posets D[γk−1], as
described in eq. (5.26). The nesting features of eq. (5.26) are inherited by the sets defined
by eq. (5.35) precisely because the λ[ek+1,i] are disjoint unions of smaller sets that
satisfy (5.26). A consequence is that elements from different λ[bk+1,i]s are unordered
(form an antichain), and similarly for elements in different λ[dk+1,i]. In addition, the
k + 1st layer of merged sets satisfy the same relation as the kth, eq. (5.26),

V [γk]
∏

i

∪λ[bk+1,i]
∏

l

∪λ[dk+1,l] = V , (5.36)

because the difference between the set V [γk] and the corresponding quantity V [γk−1]
in eq. (5.26) is precisely the chosen set of embedded extremal vertices of D[γk−1], Ak−1,
which are identified with the new vertices in the sets λ[ek+1,i]. Thus, any vertices that
are in V [γk−1] but not in V [γk] are absorbed into the union of the λ[ek+1,i], along with
all of the λ[ek,i].
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In summary, all of the recursive features of the integrals of extrema have been confirmed.
In making the steps from the (k − 1)st to kth sets of time integrals, we used only the partial
ordering and the existence of at least one embedded extremal vertex at each step. Starting
with any finite-order diagram, however, it is clear that eventually, the process terminates at
k = κ, when the poset D[γκ] consists of a single vertex, eκ+1. Such a vertex will connect
to no internal lines (none remain) but will connect to all external energies, Eα. Its time
integral yields the momentum conserving delta function in eq. (5.1).

The general form for an arbitrary poset D is thus the energy conserving delta function
in eq. (5.2), times the amplitude function,

FD ({Eα},LG) =
∑
γκ

κ∏
l=1

rl∏
i=1

i

Ebl,i
[γl−1]−∑n

∣∣∣η[γl−1](bk,i)
n

∣∣∣ωj + iϵ

×
sl∏

j=1

i(
−Edl,j

[γl−1]
)
−
∑

n η[γl−1](dl,j)
n ωn + iϵ

, (5.37)

where we have used the explicit forms of denominators in eqs. (5.22) and (5.23). Here all
denominators correspond to cuts that divide the graph into exactly two connected components,
and the sum over γκ represents all complete, recursive choices of next-to-extremal sets, starting
with those of the original embedded extremal vertices of D. Each denominator is of the
form of an energy deficit, either with respect to a sum of energies flowing out of or into the
diagram. In contrast to the normal TOPT form, however, singularities associated with any
diagram are all physical, in that they divide the diagram into two connected subdiagrams.

In practical cases, most external energies are zero to begin with (corresponding to
collections of internal vertices). Such denominators are negative semi-definite even for massless
theories. An intriguing feature of eq. (5.37) is that denominators for which Ei[γk] = 0 are
universal, in the sense that they are independent of the underlying process. Such denominators
describe a series of states that emerge from the vacuum, and which couple diagrammatically
to the process described by amplitude F at composite vertices of the sort illustrated in
figures 6 and 10 above. We shall not pursue this concept of universality here, and leave
it as a subject for future work.

As noted above, an equivalent expression for a general amplitude has been derived in
ref. [26] by a somewhat different graphical analysis. In the next section, we apply the method
developed above to study weighted cross sections in leptonic annihilation.

We close this section by remarking briefly on the application of these methods to light-
cone ordered perturbation theory (LCOPT) [36–38]. In LCOPT, vacuum orderings are absent
altogether. The method here may be applied, however, whenever there are more than two
external momenta, which leads, as in time ordering, to pseudo-physical cuts. The result is just
of the form of eq. (5.37), with the Ei and ωj replaced by external and on-shell minus momenta,
respectively (in x+ ordering). In this way, pseudo-physical cuts are again eliminated.
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6 Vacuum polarization graphs, leptonic annihilation, and weighted cross
sections

In this section, we will adapt the general result for poset contributions to amplitudes, eq. (5.37),
to lepton annihilation processes, and their weighted cross sections. The essential feature of
this analysis is that it eliminates the pseudo-physical denominators altogether. A specific
diagram in the form of eq. (5.37), however, does not have a manifest ordering between
potential physical cuts. To provide such an order, we will adapt our procedure to the process
at hand, in this case, leptonic annihilation.

Given a vacuum polarization graph G, we single out two vertices i and o, where the
current carries positive and negative energy into the diagram, respectively. As in the vacuum
polarization diagrams of section 2, the external energies of all vertices α vanish, with the
exception of i and o,

Eα = Qδαi − Q′δα,o , (6.1)

where energy conservation will require Q = Q′. Next, we define the first set of embedded
extrema M̂1, using the extremal set Ŝ = (Min(D) ∪ Max(D)) \ {i, o}. We then continue with
our process of integrating out the largest antichain in M̂1. The main idea is to remove the two
extrema i, o at each stage in the procedure keeping all other extrema, whose time integrations
result in vacuum denominators (and soft pinches) only. This separates out, at the level of the
integrand, long time processes that only carry soft singularities in the IR from short time
processes that have the interpretation of taking place at the “hard scale”. As in section 5,
we define a set of next-to-extremal vertices γ1, and carry out the first set of integrals. In
general, M̂1 contains r1 embedded minima and s1 embedded maxima, and we find

2πδ
(
Q − Q′) πD (Q,LG) =

∑
γ1

r1∏
i=1

i

∆̃b1,i
[γ1]

s1∏
i=1

i

∆̃d1,i
[γ1]

×
|V [γ1]|∏

α=1

∫
XD[γ1]

dtαe−i(Eα+η
(α)
j [γ1](ωj−iϵ))tα , (6.2)

where we have used notation identical to that introduced in section 5. The difference from
eq. (5.17), however is that Eα[γ1] = Eα, given in eq. (6.1), by construction. This follows
from our choice to integrate out a set of vertices that do not carry external energy. As a
consequence, the denominators ∆̃b1,i

and ∆̃d1,i
are of the “vacuum” form,

∆̃b1,i
[γ1] = −

∑
j

∣∣∣η(b1,i)
j

∣∣∣ωj . (6.3)

for minima and

∆̃d1,i
[γ1] = −

∑
j

η
(d1,i)
j ωj , (6.4)

for maxima, where once again we observe that the difference from eqs. (5.14) and (5.16) is
simply the absence of external energy. These denominators therefore do not vanish anywhere
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except when all lines in the state carry zero momenta (which is a genuine pinch surface in
massless theories). In eqs. (6.3) and (6.4) we have explicitly dropped the iϵ’s to emphasize
the reality of these state denominators.

We now continue the process that we have described in section 5, but continue to leave out
vertices i, o at each stage, until these are the only extrema remaining. We emphasize that at
each stage we only generate denominators of the kind we encountered in eqs. (6.3), (6.4). The
process terminates after κ1 steps, when the set of embedded extrema is empty, M̂κ1+1 = ∅.
This does not mean that all vertices have been exhausted since we have explicitly excluded i

and o from the set of extrema at each stage and non-embedded extremal vertices may also
remain. We thus can write for the poset integrand πD,

2πδ
(
Q − Q′) πD (Q,LG) =

∑
γκ1

κ1∏
l=1

rl∏
i=1

i

−
∑

k

∣∣∣η [γl](bl,i)
k

∣∣∣ωk

sl∏
j=1

i

−
∑

k η [γl](dl,j)
k ωk

×
|V [γκ1 ]|∏

α=1

∫
XD[γκ1 ]

dtαe−i(Eα+η[γκ1 ](α)
j (ωj−iϵ))tα . (6.5)

Having separated the vacuum denominators we would like to order the remaining integrand
of the vacuum polarization poset diagram. The poset XD[γκ1 ] has no tadpole subdiagrams,
lacking external momenta and connected to the remaining diagram by a single vertex only.
This is because, as shown in appendix A, any nontrivial tadpole has an embedded extremal
vertex. But the times of all embedded extrema except i and o have been integrated over
in arriving at eq. (6.5).

By construction, the remaining diagram has at most two embedded extremal vertices, i

and o. Any additional extremal vertices must be non-embedded. Each non-embedded vertex,
whether extremal or not, connects two internally connected subdiagrams, one of which must
include i and the other o. This is because there are no tadpole subdiagrams.

We have three possibilities,

1. i ≤γκ1 o,

2. o ≤γκ1 i,

3. o ∼γκ1 i.

These three situations have been represented diagrammatically in figure 11.
Let us analyze cases (1), (2) first. Since we have integrated out all embedded extrema

excluding i, o, one of i, o is an embedded extremum. Suppose i ≤γκ1 o, and i were not a
minimum. This would imply there exists a minimal vertex x <γκ1 i which is not embedded.
By definition the cut succeeding x, ∆x would split the graph into two or more disconnected
subdiagrams, say V1 . . . Vk, k ≥ 2. Because x is a minimum, vertices in different Vi are
all mutually unordered. Then i, o would be in the same disconnected component, say V1,
since i ≤γκ1 o. This would therefore imply that all the other components V2 . . . Vk carry no
external momenta, that is, that there are tadpole subdiagrams, which we have shown cannot
be present in D[γκ1 ]. The same reasoning shows that i is itself an embedded minimum and
that there are no other minima in the poset D[γκ1 ]. A similar argument reveals that o is
the unique maximum in D[γκ1 ] for case (1).
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(a) (b)

(c) (d)

Figure 11. (a) A poset ordered graph after κ1 steps representing the situation when i < o. Here, G is
any graph containing no extrema. (b) A poset ordered graph after κ1 steps representing the situation
when o < i. Here, G′ is any graph containing no extrema. (c) A poset ordered graph with i ∼ o.
Here i is a minimum and o is a maximum, but i ≰ o and G1, G2 and G3 are subgraphs containing no
embedded extrema other than possibly i or o. This represents a situation with two non-embedded
extrema. Generically, i, o are either minima or maxima and there may be an arbitrary number of
intervening non-embedded extrema. (d) An example of a poset ordered graph with i ∼ o in QED at
three loops. Integrating the times of vertices 4, 1 yields a poset of the type in figure 11(c).

One can use similar reasoning to argue that if o ≤γκ1 i, i is the unique maximum and
o is the unique minimum in D[γκ1 ] . In cases (1), (2) we can either impose any total order
(time order) or continue along the lines of the arguments made in section 5. The remaining
integrals in eq. (6.5) can therefore be carried out either by constructing new posets or through
the imposition of a sum of time orders. Every time-ordered graph in cases (1) and (2) has a
unique minimum and a unique maximum. Carrying out the procedure outlined in section 5
is exactly equivalent to generating all possible time orders.

Turning to case (3), we treat the possibility that o ∼γκ1 i. It is easy to see using the
arguments made for the first two cases that both i, o are embedded extrema of the graph,
using the absence of tadpole subgraphs. Suppose o was an embedded extremum and i was not
an extremal element. This means there is an x ∈ (MinD[γκ1 ]) and y ∈ Max(D[γκ1 ]) such that
x ≤γκ1 i ≤γκ1 y. By assumption, both x, y are not embedded, and therefore, in the absence of
tadpole subdiagrams, x divides the graph into precisely two additional components, V1 and V2,
with i and y in the same component, say V1, and o ∈ V2. However, this means y cannot divide
the graph into two components without a tadpole subgraph. Thus, y must have been an
embedded extremum, contrary to our assumption. Thus, i must be an embedded extremum.

In summary, we learn that in all three cases, i, o are both unique embedded extrema.
In cases (1) and (2), vertices i and o are in a single, connected diagram, in which they are
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the only extremal vertices. That is, there are no non-embedded extrema. In these cases,
any other vertex y satisfies

i <γκ1 y <γκ1 o , case (1) ,

o <γκ1 y <γκ1 i , case (2) . (6.6)

Suppose we integrate ti first, (up or down) to time t
x
(κ1+1)
i′

. In the resulting poset, D[γκ1+1],
any remaining vertices y continue to satisfy the same inequalities. That is,

x
(κ1+1)
i′ <γκ1+1 y <γκ1+1 o , case (1) ,

o <γκ1+1 y <γκ1+1 x
(κ1+1)
i′ , case (2) . (6.7)

Therefore, vertex x
(κ1+1)
i′ is now an embedded extremum. The argument that x

(κ1+1)
i′ is also

an embedded extremum for case (3) in which i and o are in different subdiagrams, follows
the same pattern, using the fact that i and o are unique embedded extrema.

In order to now be able to order the resulting expressions diagrammatically, we will
only integrate the embedded extremum i (and not o). Following the procedure outlined
in section 5, we integrate over a single-element Mκ+1 = {i}. After integrating the time ti,
we will find a new extremal i′ with external energy Q flowing into it. Because there are
no additional embedded extremal vertices other than vertices i and o, this will also be an
embedded extremal vertex, although it may be a minimum or a maximum. If we again choose
κ to represent the total number of sequences in the process, the procedure terminates after
κ − κ1 + 1 steps (including the final integral that gives the energy delta function). At each
integration step κ1 + 1 ≤ l ≤ κ, there is a single time integral only, corresponding to the
sequence that begins with vertex i at step κ1 + 1. This results in the formula,

πD (Q,LG) =
∑
γκ1

κ1∏
l=1

rl∏
i=1

i

−
∑

n

∣∣∣η [γl](bl,i)
n

∣∣∣ωn

sl∏
j=1

i

−
∑

n η [γl](dl,j)
n ωn

×
∑

γκ|γκ1

κ∏
l=κ1+1

i

∆̃el
[γl] + iϵ

, (6.8)

where the sum over γκ is restricted to sets of next-to-extremal vertices consistent with the
choice γκ1 (see appendix B). Here el is defined to be the vertex that satisfies Eel

[γl] = Q > 0
in the notation of eq. (5.24), and the denominator is defined by

∆̃el
[γl] = λel

Q −
∑

k

∣∣∣η[γl](el)
k

∣∣∣ωk, (6.9)

where λel
= +1 when vertex el is a minimum, and −1 when it is a maximum. In the latter

case, the state denominators represented by ∆̃el
are negative definite. We note that as l

increases, the denominators change sign when vertex el reaches a previously non-embedded
extremal vertex (in case (3) above), which then becomes embedded. We also notice that
the denominators ∆̃ in eq. (6.9) are defined slightly differently from the definition of ∆ in
eqs. (5.14) and (5.16) in order to explicitly display the iϵ.
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Having obtained the expression for the forward scattering locally in phase space, we
immediately write down the contribution of a poset D to the e+e− total cross section’s
integrand, in terms of a sum over ordered final states, C,

Im [πD(Q,LG)] =
∑
γκ1

κ1∏
l=1

rl∏
i=1

i

−
∑

n

∣∣∣η [γl](bl,i)
n

∣∣∣ωn

sm∏
j=1

i

−
∑

n η [γl](dl,j)
n ωn

×
∑

γκ|γκ1

κ∑
C=κ1+1

κ∏
l=C+1

i

∆̃el
[γl]− iϵ

2πδ(∆̃C)
C−1∏

l=κ1+1

i

∆̃el
[γl] + iϵ

. (6.10)

This result is equivalent to the TOPT expression in eq. (2.9), but has been reorganized
through partial ordering to eliminate all pseudo-physical cuts.

We recall that to get the total cross section as defined in eq. (2.5), we multiply the
expression in eq. (6.10) by the poset numerator factor, sum over posets and finally over
graphs, giving the integrand

σ(Q,LG) =
∑
G

∑
D

ND

NG∏
i=1

1
2ωi

∑
γκ1

κ1∏
l=1

rl∏
i=1

i

−
∑

n

∣∣∣η [γl](bl,i)
n

∣∣∣ωk

×
sl∏

j=1

i

−
∑

n η [γl](dl,j)
n ωn

×
∑

γκ|γκ1

κ∑
C=κ1+1

κ∏
l=C+1

i

∆̃el
[γl]− iϵ

2πδ(∆̃C)
C−1∏

l=κ1+1

i

∆̃el
[γl] + iϵ

. (6.11)

This is the analog of the TOPT expression for the integrand of the cross section, again
without pseudo-physical cuts.

It is now straightforward to obtain a new expression for the integrand of the weighted cross
section defined in eq. (2.11). The relation (6.11) is fully local in loop momenta LG, and hence
specifies all contributions to the squared amplitude from each final state, C. We thus have

Σ[f, Q] =
∑
G

∫
dLG

NG∏
i=1

1
2ωi

∑
D

ND

∑
γκ1

κ1∏
l=1

rl∏
i=1

i

−
∑

n

∣∣∣η [γl](bl,i)
n

∣∣∣ωn

×
sl∏

j=1

i

−
∑

n η [γl](dl,j)
n ωn

∑
γκ|γκ1

κ∑
C=κ1+1

κ∏
l=C+1

i

∆̃el
[γl]− iϵ

2πδ(∆̃C)

×fC(q⃗1 . . . q⃗kC
)
(1 + λeC

2

) C−1∏
l=κ1+1

i

∆̃el
[γl] + iϵ

. (6.12)

In eq. (6.12) we have inserted a factor of
(1+λeC

2

)
to set the weight of cuts with negative

external energy, and hence λeC = −1, to zero. We can also keep them, but they will always
give zero because the argument of the energy conservation delta function is negative definite
for such states. In the sum over posets D, only those posets with i <γκ1 o or i ∼γκ1 o

can have λeC = 1.

– 48 –



J
H
E
P
0
2
(
2
0
2
4
)
1
0
1

Using eq. (6.12) and the δ function identity in eq. (3.1) we can collect terms with the
same denominator structure to write the analog of eq. (3.4)

Σ[f, Q] =
∑
G

∫
dLG

NG∏
i=1

1
2ωi

∑
D

ND

∑
γκ1

κ1∏
l=1

rl∏
i=1

i

−
∑

n

∣∣∣η [γl](bl,i)
n

∣∣∣ωn

(6.13)

×
sl∏

j=1

i

−
∑

n η [γl](dl,j)
n ωn

∑
γκ|γκ1

(
κ−1∑

C=κ1+1

κ−1∏
j=C+1

i

∆̃ej [γj ]− iϵ

×
(

fC(q⃗1 . . . q⃗kC
)
(1+ λeC

2

)
− fC+1(q⃗1 . . . q⃗kC+1)

(1+ λeC+1

2

)) C∏
i=κ1+1

i

∆̃ei [γi] + iϵ

−
κ∏

j=κ1+1

i

∆̃ej [γj ]− iϵ
f1(q⃗1 . . . q⃗k1)

(1 + λe1

2

)

+
κ∏

i=κ1+1

i

∆̃ei [γi] + iϵ
fκ(q⃗1 . . . q⃗kκ)

(1 + λeκ

2

))
.

This represents our final result for leptonic annihilation cross sections. It carries no unphysical
singularities and is power counting finite everywhere in the region of integration. It is a
sum of terms corresponding to all cuts of a vacuum polarization diagram with, in general,
elementary vertices and composite vertices that include vacuum denominators. Examples
can be found in figures 10(a) and 10(c) of section 4. As in the original form of eq. (3.21), the
final two terms in this expression only require contour deformations to manifest finiteness.

7 Summary

In this work, we have used TOPT to re-express infrared safe cross sections in electroweak
annihilation in a form that is manifestly power-counnting finite in four dimensions. We
observed that contributions to cross sections, in which the amplitude or complex conjugate
are disconnected, vanish after a sum over appropriate time orders. Generalizing to arbitrary
amplitudes, we reorganized TOPT expression using their poset structure, to derive results
similar to ref. [26]. We then applied this formalism to electroweak annihilation, to derive a
locally finite diagrammatic expression in which all pseudo-physical cuts are eliminated.

We anticipate that it will be possible to use an expression like eq. (6.13) as the starting
point for the numerical evaluation of weighted cross sections in leptonic annihilation, com-
plementing the loop-tree duality treatments of refs. [13]–[15]. This, of course, will require
a systematic method to use contour deformation or related methods to avoid or cancel
non-pinched singularities [39]. Beyond leptonic annihilation, the methods described here
may complement those of refs. [5, 6] to control infrared singularities locally in hadronic
cross sections.

A Embedded extrema

We would like to show that every connected, finite-order poset diagram has at least one
embedded extremal vertex.
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First, we recall that embedded vertex, v in poset diagram D is one whose elimination from
D leaves the remaining diagram, D \ v, connected. If, on the contrary, u is a “non-embedded”
vertex, we must have D \ u = ∪pu

i=1D
[u]
i , with pu the number of subdiagrams of D that share

vertex u and are otherwise disconnected. This is the case whether u is an extremum or not.
We begin our argument by picking an arbitrary extremum, e0, which for definiteness

we may choose to be a minimum. Say e0 is not embedded. Then, starting at e0, we choose
arbitrarily a path x1, x2 . . . , that follows the relation xj+1 > xi. We refer to this as an
“increasing” path. Because D is finite-order, this path must terminate at some maximum
vertex, e1. Either e1 is embedded, or not. If not, we know that D \ e1 = ∪pe1

i=1D
[e1]
i . We repeat

the process for vertex e1 in subdiagram, D
[e1]
i ⊂ D, chosen arbitrarily, where e0 ̸∈ D

[e1]
i . If e1

is not a maximum in D
[e1]
i , we can again follow an increasing path in the D[e1] to a second

maximum. If e1 happens to be a maximum in D
[e1]
i , we can follow a decreasing path until we

reach a minimum. In either case, the extremum, e2 at which we arrive may or may not be
embedded. If it is not embedded we repeat the process by choosing any of the subdiagrams
D

[e2]
j ⊂ D

[e1]
i , e1 ̸∈ D

[e2]
j . Because the complete poset D is of finite order,

0 < |D[e2]
j | < |D[e1]

i | , (A.1)

and this sequence of steps must terminate at an extremal vertex, en in some subdiagram
D

[en−1]
k , whose removal does not disconnect D

[en−1]
k . This is because eq. (A.1) represents the

first two terms in a sequence of strictly reducing positive integers. Such a sequence must
terminate at 0. The extremal vertex at which the sequence terminates is embedded.5

We conclude by observing that the arguments above apply to diagrams that are of the
tadpole topology: no external momenta and connected to the remainder of the diagram by
only a single vertex, which may or may not be extremal. Thus, as observed in section 6, every
tadpole has an embedded extremal vertex, by definition without an external momentum. In
the intermediate expression of eq. (6.5), all such time integrals have been carried out, and
in the process all tadpoles subdiagrams have been eliminated in poset D[γκ1 ].

B An explicit algorithm to identify γk+1

In this appendix, we would like to present one explicit algorithm to identify all the possible con-
sistent choices in γk+1, as defined for instance in eq. (5.7), given a poset D[γk] = {V [γk],≥γk}
and a choice in maximal embedded anti-chain Ak+1 = {bk+1,1 . . . bk+1,rk+1 , dk+1,1 . . . dk+1,sk+1}
= {ek+1,j}. We emphasize that the ordering of extremal elements in Ak+1 is arbitrary. As
in section 5.1 we define next-to-extremal sets,

Cbk+1,j
= {x ∈ V

[
γk
] ∣∣∣∣ bk+1,j ≺γk x},

Cdk+1,j
= {x ∈ V

[
γk
] ∣∣∣∣ x ≺γk dk+1,j},

Ck+1 =
rk+1⋃
j=1

Cbk+1,j

sk+1⋃
l=1

Cdk+1,l
. (B.1)

5Notice that extremum en−1 is considered part of D
[en−1]
k .
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We also define a set of next-to-extremal vertices,

γk
i ≡

⋃
q∈[1,k]

⋃
a∈[1,r̂q(k,i)]

x
(eq,a)
jq,a

, (B.2)

where

r̂q(k, i) = rq + sq if q ∈ [1, k − 1] ,
r̂q(k, i) = i if q = k . (B.3)

In the notation of eq. (B.3), D[γk
0 ] = D[γk], with D[γk] defined in terms of the bilinear

relation after the kth set of time integrals, eq. (5.32). We start with D[γk] and construct the
full explicit sum over D[γk+1], one extremal vertex at a time. We will iteratively define the
sum over D[γk+1] in terms of a sum over intermediate posets leading to D[γk

rk+1+sk+1 ].
Suppose we are given the poset D[γk

i ], which is, as usual, a set of vertices D[γk
i ], and a

binary relation ≥γk
i
, defined by direct analogy to eq. (5.32). To identify the poset D[γk

i+1], we
would like the minimum (maximum) ek+1,i+1 to be covered by (to cover) a unique element
x
(ek+1,i+1)
j . To do this, we find the set

C̃ek+1,i+1 =
{

x ∈ V
[
γk

i+1

] ∣∣∣∣ ek+1,i+1 ≺γk
i

x
}

if i + 1 ≤ rk+1

C̃ek+1,i+1 =
{

x ∈ V
[
γk

i+1

] ∣∣∣∣ x ≺γk
i

ek+1,i+1
}

if i + 1 > rk+1.

=
{

x
(ek+1,i+1)
1 , x

(ek+1,i+1)
2 . . . x

(ek+1,i+1)
ck+1,i+1

}
. (B.4)

We notice that generically, C̃e is distinct from Ce because we use the binary ≥γk in eq. (B.1)
while we use the binary ≥γk

i
in eq. (B.4). In fact, one generally finds C̃e ⊆ Ce since we

use the more restrictive binary ≥γk
i
. We understand this to follow from the observation

that having identified unique covering (covered) vertices for the extrema ek+1,j j ∈ [1, i],
there are fewer consistent covering (covered) vertices for ek+1,i+1. We now define a new
binary γk

i+1 that satisfies

• If a ≥γk
i

b, then a ≥γk
i+1

b

• If i+1 ≤ rk+1, we choose the earliest element x
(ek,i+1)
jk,i+1

∈ C̃ek+1,i+1 : y ≥γk
i+1

x
(ek,i+1)
jk,i+1

, ∀y ∈
C̃ek+1,i+1 ,

• If i+ 1 > rk+1, we choose the latest element x
(ek,i+1)
jk,i+1

∈ C̃ek+1,i+1 : y ≤γk
i+1

x
(ek,i+1)
jk,i+1

, ∀y ∈
C̃ek+1,i+1 .

With this definition of the binary relationship γk
i+1, we have identified a unique element

that provides a limit of integration for the extremum element ek,i+1. We may now define
an intermediate poset D

[
γk

i+1

]
,

D
[
γk

i+1

]
=

V
[
γk
]
\

i+1⋃
j=1

ek,j

 ,≥γk
i+1

 . (B.5)
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Using this definition, we can start from γk
0 and recursively find γk+1 = γk

rk+1+sk+1 . It is clear
from these definitions, that every consistent set of next to extremal vertices is generated.
An inductive proof of this follows from assuming the result for γk

i , and demonstrating that
it follows for γk

i+1.
It is now possible to define a recursive notation that makes explicit the many sums

over sets γk in the main text,

∑
γk

F

({
k⋃

m=1

rk+sk⋃
l=1

x
(em,l)
jm,l

})
=

ck,rk+sk∑
jk,rk+sk

=1
· · ·

ck,2∑
jk,2=1

ck,1∑
jk,1=1

∑
γk−1

F

({
k⋃

m=1

rk+sk⋃
l=1

x
(em,l)
jm,l

})
. (B.6)

In eq. (B.6) F is any function of the next-to-extremal vertices and ck,i is the number of
elements in the companion set C̃k,i as in eq. (B.4). Notice that the sum in eq. (B.6) is a
nested sum where the outer summations depend on the inner summations. The summation
over γk depends also on our choice in anti-chain Ak.
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