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1 Introduction

The absence of direct signals of physics beyond the Standard Model (SM) at the LHC has
triggered increased activity in the context of indirect precision searches at low energies. The
theoretical tool to systematically calculate low-energy quantum effects of heavy new physics
are effective field theories (EFTs), which allow one to parametrize deviations from the SM, to
combine constraints from different energy regions, and to improve perturbation theory by
resumming large logarithms. At the scale of heavy new physics, the EFT can be matched
to the UV model of choice that describes the underlying new physics.

Under the assumption of linear realization of the electroweak symmetry, the deviations
from the SM in observables above the weak scale are described by the Standard Model
Effective Field Theory (SMEFT) [1, 2], which is invariant under the full SM gauge group,
see ref. [3] for a recent review. For observables below the electroweak scale, the heavy SM
particles should first be integrated out: the top quark, the Higgs boson, as well as the
electroweak gauge bosons. This results in the low-energy effective field theory below the weak
scale (LEFT), which is invariant only under the QCD and QED gauge groups. A complete
and non-redundant on-shell basis for the LEFT operators up to dimension six was worked
out in ref. [4] and later has been extended up to dimension 9 [5-7]. The LEFT generalizes
the well-known Fermi theory of weak interaction, which emerges as a special case if the LEFT
is matched to the pure SM at the weak scale. Going beyond the SM, the complete matching
of the LEFT to the SMEFT at dimension six was first worked out at tree level [4] and later
extended to one loop [8], expressing the renormalized LEFT parameters in terms of SMEFT
parameters. The dependence of the renormalized parameters on the renormalization scale is
described by the renormalization-group equations (RGEs), which at one loop up to dimension
six were calculated for the SMEFT in refs. [9-11] and for the LEFT in ref. [12]. Partial results
for the RGEs were known previously and have been studied to higher loop orders [13-40].

Very strong constraints on the Wilson coefficients in the LEFT can be derived from
precision observables at low energies. Of special interest are observables that are either
forbidden or at least highly suppressed within the SM. One example are electric dipole
moments of elementary or composite particles, which are sensitive probes of C'P violation
beyond the SM, a necessary ingredient in explanations of the baryon asymmetry of the
universe [41-44]. C'P violation beyond the SM is described in the LEFT in terms of higher-
dimension effective operators that contain explicit factors of 5 or the Levi-Civita symbol.
The definition of these objects cannot be continued analytically in the number of space-time
dimensions, which leads to the well-known difficulties with dimensional regularization [45].
The only scheme proven to be consistent to all loop orders is the original 't Hooft-Veltman
(HV) scheme [46, 47]. Typically, this scheme leads to spurious symmetry-breaking terms,
which can be restored by finite renormalizations. This is mandatory in the case of chiral
gauge theories, where the symmetry-breaking terms violate gauge invariance. In vector-like
gauge theories, global chiral symmetry is broken by the regulator: this is less severe, since
symmetry-breaking terms cancel in relations between observables and do not render the
theory inconsistent. However, the Ward identities following from the global symmetry are
broken in the modified minimal subtraction (MS) scheme and are restored only through
finite renormalizations.



In this paper, we work out the renormalization of the LEFT at one-loop order in the
HV scheme up to dimension six. We extend the physical operator basis by a complete set
of evanescent operators that vanish in four space-time dimensions, but are generated at
one loop in the HV scheme. We compute the finite counterterms to the physical operator
coeflicients that compensate both the insertion of evanescent operators in one-loop diagrams,
as well as the spurious symmetry-breaking terms generated by the renormalizable part of the
regularized Lagrangian. In the LEFT, global chiral symmetry is broken explicitly both by
the fermion mass terms as well as higher-dimension effective operators. We disentangle those
physical effects from the spurious symmetry-breaking terms due to the regulator by promoting
mass matrices and Wilson coefficients to spurions with appropriate chiral transformations.
In addition to achieving an effective separation of the physical sector from the unphysical
evanescent sector, our renormalization scheme maintains chiral spurion symmetry in one-loop
calculations in the LEFT and it allows us to avoid spurious chiral-symmetry-breaking terms,
e.g., in one-loop matching calculations, which otherwise only cancel in the final relations
between observables. Therefore, this establishes an HV scheme suitable for calculations at
next-to-leading-log (NLL) accuracy that incorporates chiral invariance and separates the
physical from the evanescent sector.

The article is structured as follows. In section 2, we define the Lagrangian of the
LEFT, discuss power counting, the appearance of redundant or nuisance operators, as well
as the background-field method, which allows us to avoid gauge-variant counterterms. The
explicit list of redundant operators is provided in appendix D.2. In section 3, we define
our chirally invariant renormalization scheme based on the HV scheme. This involves the
complete definition of evanescent operators, provided explicitly in appendix D.3, as well
as the definition of finite renormalizations that compensate the evanescent insertions as
well as spurious symmetry-breaking effects. In section 4, we discuss the renormalization
procedure as well as the non-linear field redefinitions that allow us to remove on-shell
redundant operators. We also discuss the renormalization of the theta terms and check
that our calculation in dimensional regularization correctly reproduces the chiral anomaly.
In section 5, we discuss our results and the cross-checks that we have performed, before
we conclude in section 6. In addition to the operator basis, the appendices summarize our
conventions. The explicit results of our calculations consist of very long expressions that
are provided as supplementary material.

2 LEFT

2.1 Lagrangian and power counting

The Lagrangian of the LEFT is given by!

Lrgrr = Lqep+QeD + Lo + Y Y LYo, (2.1)
d>5

!We denote the operator dimension by d, while D stands for the number of space-time dimensions.



where the QCD and QED part is defined by

2

L A 4 1 9* A ma e =
EQCD—&-QED = _ZGIWG e ZFMVFMV + HQCD 3972 G/U/G oy HQED@FMVF“V
+ Y ¥ (ib - MyPL — M Pg) v, (2.2)

Il}:u?d?e

with covariant derivative D, = 9, +2‘gTAGﬁ+ieQA#, where g and e are the gauge couplings.?
The photon and gluon field-strength tensors are

Fu = 0,4, — 0,A,, Gi, =0,Gy — 0,Giy — gf*P°GEGYT (2.3)
and the dual field-strength tensors are defined by
P Lowsops, | Gw_ Laweg, )

with the Levi-Civita symbol normalized to €y123 = +1. We include only left-handed neutrinos

with a lepton-number-violating Majorana mass term?

1
Lo = vridvs, — 3 (vECMv + i MICHT) . (2.5)

By introducing the Majorana neutrino
vy = I/L—l-CDIY;, Vn :CD]’I\;[, (26)

we can rewrite the neutrino Lagrangian as

L, = %aM (i — M, Pr — M} Pr) vas (2.7)
The LEFT Lagrangian contains an infinite tower of higher-dimension local operators in
addition to the renormalizable Lagrangian of QCD and QED. The complete non-redundant
set of gauge-invariant effective operators at dimension five and six was classified in ref. [4].
For convenience, we reproduce it in appendix D.1. By now, the operator basis is known
up to mass dimension 9 [5-7].
The organization of the LEFT Lagrangian in terms of canonical mass dimensions follows
from the power counting, which is dictated by the expansion parameter p/v or m/v, where
v denotes the electroweak scale, p an external momentum, and m a mass of the degrees of

freedom retained in the theory. A graph with insertions of effective operators of dimension
d; > 5 has LEFT dimension

d=4+ (d;—4). (2.8)

2The SU(3) generator T is in the fundamental representation for u- and d-quarks and zero when acting
on the leptons e.

3Since we do not explicitly specify the number of neutrino species, the LEFT also trivially covers the case of
additional right-handed neutrinos [48, 49]: these can be rewritten in terms of v, = C 1717;1,, which are left-chiral
fields and can be included in the flavor vector vy. This only affects the notion of lepton-number violation,
since the charge-conjugated right-handed neutrinos carry lepton number —1. We thank A. V. Manohar for
bringing this to our attention.



In the present work, we will consider effects up to dimension six in the power counting,
which include single insertions of dimension-six operators, as well as double insertions of
dimension-five operators [12]. If the LEFT is matched to the SMEFT at the electroweak
scale, the SMEFT power counting is inherited, which is an expansion in the small parameter
p/A or v/A, where A is the scale of new physics. At leading-log accuracy, double-insertions of
dimension-five operators are of dimension 8 in the SMEFT power counting, because the tree-
level matching only contributes to the dimension-five dipole-operator coefficients with terms
of O(v/A?). Therefore, double insertions of dipole operators in the LEFT are of the order

2 4
v 1 v
(%) =w> 5 (24)
where the first factor reflects the LEFT dimension 6 and the second factor shows the SMEFT
dimension 8. At NLL, the one-loop matching up to dimension six [8] leads to corrections
to the dipole-operator coefficients of the order O(m/v?) and O(m/A?). Therefore, also at
NLL double-dipole insertions are suppressed beyond dimension 6, either in the SMEFT or

the LEFT power counting. In the following we will stay agnostic about the matching at the
weak scale and treat dipole-operator coefficients as O(1/v).

2.2 Nuisance operators

The divergences or finite matching contributions encountered in the calculation of off-shell
Green’s functions do not all have the form of the canonical LEFT operator basis, but they
also contain terms corresponding to operators that vanish by the classical equations of motion
(EOM). These operators can be removed from the basis with appropriate field redefinitions
and hence their contribution to observables are redundant. In general, the renormalization of
effective operators involves three different types of counterterms [50-54]:

I. gauge-invariant operators without ghost fields that do not vanish by the classical EOM,

ITa. gauge-invariant “nuisance operators” without ghost fields that vanish by the classical
EOM,

IIb. additional gauge-variant nuisance operators allowed by the solutions of Ward-Slavnov-
Taylor identities, which can be constructed as BRST variations of operators with ghost

number —1.

The operators of class ITb can be avoided by making use of the background-field method [55, 56],
leaving gauge-invariant EOM operators of class IIa. To linear order in the operator insertions,
nuisance operators proportional to the classical EOM do not contribute to S-matrix elements.
At higher orders in the power counting, multiple insertions of EOM operators can give
non-vanishing contributions. In this case, the class-II operators are still redundant, but they
should be removed by applying field redefinitions, which lead to shifts in the coefficients
of higher-dimension operators.

We choose to work with a redundant set of operators, where the physical LEFT operator
basis is extended by operators with additional covariant derivatives. The complete list is
provided in appendix D.2. The class-ITa nuisance operators correspond to linear combinations



of these derivative operators and the physical operators given in appendix D.1. With this
choice of the operator basis, the identification of the divergences is more direct, but the
field redefinitions that remove the redundant operators also lead to a shift in the coefficients
of physical operators of the same and even lower mass dimension, as will be discussed in
section 4.2.

2.3 Background-field method

We will derive the one-loop counterterms by calculating diagrammatically the one-particle
irreducible (1PI) off-shell Green’s functions. In order to perform loop calculations in the LEFT,
we need to fix the gauge, which in general only leaves BRST invariance as a residual symmetry
and requires the introduction of class-IIb counterterms. In order to avoid this complication, it
is convenient to employ the background-field method [55, 56]: all fields are split into the sum
of a classical background field F' and a quantum field F that is the integration variable in
the functional integral. The gauge of the quantum gluon and photon fields are fixed by [55]

LGP — L (64)' @A), R =G - gfOGRG 20)
2%, 2%,

and the corresponding ghost Lagrangian reads

£8P0 = A 0648 4 g9, fACB(GOH + GOr) (2.11)

o ngCBGAgap + g2fACEfEDBGg(GDu + GD,u) nB ’

while QED ghosts decouple and can be ignored. Even after fixing the quantum-field gauge, the
Lagrangian remains invariant under gauge transformations of the classical background fields.
The 1PI Green’s functions of background fields are manifestly background-gauge invariant
and allow us to determine the counterterms for all gauge-invariant operators. Gauge-variant
nuisance operators of class IIb are not required for the renormalization of background-field
Green’s functions. In order to arrive at the results in terms of the physical LEFT operator
basis, the redundant operators need to be removed via field redefinitions. It should be noted
that even when using the background-field method off-shell Green’s functions are unphysical
quantities: although class-ITa counterterms correspond to gauge-invariant operators, in general
they can depend on the quantum-gauge parameters.

In practice, employing the background-field gauge in the LEFT merely requires the
modification of the three- and four-gluon vertices as in pure QCD [55]. For the fermion and
photon fields, no distinction between background and quantum fields is necessary since all
vertices are unaltered, including the vertex rules for effective operators.

3 Scheme definition

3.1 Dimensional regularization

We use dimensional regularization in D = 4 — 2¢ space-time dimensions. The LEFT operator
basis is defined in terms of chiral fermions. The chiral nature of the electroweak interaction



is imprinted in the Wilson coefficients of higher-dimension operators, which lead to Feynman
rules involving 5. In addition, the C P-violating three-gluon operator involves the Levi-Civita
tensor €27 Both these symbols are intrinsically four-dimensional objects and their treatment
in dimensional regularization is notoriously difficult, see ref. [45] for a review. The only
scheme that is proven to be mathematically consistent to higher loop orders is the original
scheme by 't Hooft and Veltman [46, 47]. In connection with minimal subtraction and related
schemes (such as MS), the HV scheme leads to a spurious breaking of chiral symmetry, which
however can be restored by finite renormalizations, as will be discussed in section 3.3.

The HV scheme is defined as follows: the Levi-Civita symbol and ~5 are treated as purely
four-dimensional objects, see appendix A. The metric tensor g"* in D dimensions is split into
a four-dimensional part g"” and a part §*” projecting onto —2e¢ dimensions

g =g" + 9", (3.1)

which satisfy

T 2 N

g"vg g

g gt =g 7 =0, §a=4, 3= 2. (3.2)
Projections of D-dimensional gamma matrices are defined by the contractions

W =g"v, A=3", (3.3)

and analogous projections are used for arbitrary Lorentz vectors and tensors.

We define the LEFT Lagrangian in D dimensions as follows. The renormalizable part is
defined by directly promoting eqs. (2.2) and (2.7) to D dimensions. In particular, the kinetic
terms of the gauge fields as well as the fermion gauge-kinetic terms are defined as in eqs. (2.2)
and (2.7) with Lorentz indices running over D dimensions, leading to the standard form for
propagators and gauge vertices in D space-time dimensions. Importantly, the Lagrangian
remains invariant under (background-field) gauge transformations in D dimensions.* Due
to the contractions with the Levi-Civita tensor, the Lorentz indices in the theta terms only
run over four dimensions.

The higher-dimension operators are defined by keeping the physical operator basis of
ref. [4] strictly in four space-time dimensions.® In the case of vector-type four-fermion
operators, this convention automatically coincides with the definition of the operators in
terms of chiral fields, since

Pry* Pr, = ’S/uPL . (3.4)

In the case of tensor structures, we define the Lorentz indices in physical operators to run
only over four dimensions, i.e., we replace the symbol o# = %['y“, ~¥] by its four-dimensional
counterpart o = %[’7“,’7” ]. Defining operators with tensorial bilinears in terms of chiral

4A different convention is possible but it would lead to gauge-symmetry-breaking terms in intermediate
steps of the calculation due to a gauge-variant evanescent sector.

5If one would keep all interactions in four space-time dimensions the scheme would have the attractive
feature that factorizable graphs do not contribute to RGEs after subtraction of sub-divergences at any loop
order [57].



fields and o instead of o#** would differ from our convention by evanescent terms. The same
applies to the dimension-six three-gluon operators, where we restrict the summed indices to
run only over four dimensions. Our convention for the basis is explicitly given in appendix D.1.
We use the same convention for the on-shell redundant operators listed in appendix D.2, i.e.,
all Lorentz indices only run over four space-time dimensions, as indicated by bars. Note that
these scheme definitions are a convention and many different choices are possible. The final
result for relations between observables is independent of these choices.

Due to the peculiarities of the HV scheme, we will not work with MS, as we will discuss
in the following. The complete specification of the scheme incorporates the definition of
evanescent operators, which will be given in section 3.2, as well as the definition of additional
finite renormalizations as specified in section 3.3.

3.2 Evanescent operators

When calculating loops in the regularized theory, one encounters divergences that correspond
to evanescent operators, i.e., operators that vanish when the regulator is removed. In the
HV scheme, most of the evanescent operators can be chosen to contain terms explicitly
projected onto the evanescent sub-space, e.g., evanescent Dirac matrices 4, or in general
Lorentz indices summed over —2¢ dimensions. The appearance of evanescent terms has two
important consequences. First, their definition is part of the renormalization scheme and
affects the physical sector, starting at one loop for the finite terms and at two loops for
divergent terms. Second, while tree-level matrix elements of evanescent operators vanish in
four space-time dimensions, the insertions of evanescent operators into loop diagrams can
lead to a physical effect: traces of terms of rank —2¢ can combine with a 1/e divergence of a
loop integral to give a finite one-loop contribution. Starting at two loops, the divergent parts
are also affected. It is desirable to avoid the mixing of unphysical coefficients of evanescent
operators into the coefficients of the physical operators. This is achieved by abandoning a
naive pure MS scheme and by performing a finite renormalization of the coefficients of the
physical operators that compensates the insertion of evanescent operators [14, 15, 18].

A term of the form e x O; (with O; a physical operator) is evanescent and can be used to
modify the basis of evanescent operators and therefore the renormalization scheme [18]. This
does not imply that evanescent operators in general are of O(e) (or O(h) times a physical
operator): since evanescent structures are of rank —2e, the insertion of two evanescent
operators can still lead to a finite physical one-loop effect. Evanescent operators are generated
not only by renormalization but also in matching calculations (including scheme changes),
where they potentially appear already at tree level [8, 58, 59]. In order to enable a consistent
perturbative treatment of evanescent terms, the coefficients of evanescent operators (but
not the operators themselves) need to be suppressed by a power counting. This can be the
loop expansion or the EFT power counting. In order to be as general as possible and to
cover the cases of evanescent operators generated in a tree-level matching, we will assign the
coefficients of evanescent operators a suppression by the LEFT power counting.



3.2.1 Bosonic and fermion-bilinear operators

(@)

We supplement the LEFT Lagrangian by evanescent operators £ and label the corresponding

coeflicients as

Loan =S KDe?. (3.5)

d>4 i

In the case of operators with at most two fermion fields, we provide an exhaustive list of
evanescent operators in tables 5, 6, and 7 in appendix D.3. For the renormalization of the
physical sector of the LEFT, it is most practical to assign a loop order to the coefficients Ki(d),
as the evanescent operators only arise as counterterms to loops with insertions of physical
operators. However, having matching calculations in mind that can potentially generate
evanescent operators at tree level, we do not assign a loop order to the coefficients but only
the LEFT power counting, i.e., we assume Ki(d) = O(v*™%). An exception are the evanescent
operators of mass dimension four, listed in table 5. A perturbative treatment requires a
suppression of their coeflicient by some power counting. We assign by hand KZ-(4) =0O(v1).
This is compatible with the LEFT renormalization, where the d = 4 evanescent counterterms
are generated only if higher-dimension operators are inserted into loop diagrams. We assume
that also in a matching calculation, the d = 4 evanescent operators are generated only with
the appropriate power-counting suppression.

With this power-counting assignment, we include all effects up to dimension six in
the LEFT expansion, corresponding to O(v~=2). We perform a finite renormalization of the
coefficients of physical operators that compensates the finite contribution of loop diagrams with
insertions of evanescent operators, in particular single insertions of dimension-six evanescent
operators as well as single and double insertions of dimension-five and -four evanescent
operators. Due to the large number of operators, this results in very long expressions that
are provided as supplementary material; see appendix B for the conventions.

We note that when taking the physical operator basis as the starting point for the
renormalization of the LEFT, one can assign a loop factor to the evanescent operator
coeflicients, hence single insertions of evanescent operators in one-loop diagrams correspond
to a two-loop effect, while double insertions would become relevant only at the three-loop level,
see appendix C. Not all of the operators listed in tables 5, 6, and 7 are required independently
as counterterms to one-loop insertions of physical operators, e.g., no divergences of the form
of £, or £z are generated [60].

3.2.2 Evanescent four-fermion operators and Fierz relations

In loop calculations, we encounter four-fermion structures with higher tensor products of
Dirac matrices, which in four space-time dimensions could be reduced to the physical LEFT
basis. Since the Dirac algebra in D = 4 — 2¢ dimensions is infinite dimensional, these tensor
products give rise to an infinite set of evanescent operators. The four-fermion structures
encountered in the loop calculation can be decomposed as follows. After the loop integration,
all remaining contractions are between Dirac matrices in the two different Dirac chains.
Dirac matrices in D dimensions are split as v* = 4" + 4", such that only contractions
between two four-dimensional or two —2e-dimensional Dirac matrices remain. Using the



Clifford algebra, the matrices in each Dirac chain can be ordered identically, with evanescent
matrices preceding the four-dimensional ones. Tensor products with more than two Dirac
matrices belonging to the four-dimensional sub-space can be further simplified by making
use of the Chisholm identity

VYN = VuGvx — VvGux + INGuv — i’70756uVA0 ) (3'6)

which holds in the HV scheme [61]. Therefore, a basis of four-fermion structures is given
by four-dimensional scalar, vector, and ¢*”-tensor structures, together with the evanescent
structures

PrA#t -4 PL) @ [PrAu, - Aun PL] »
PLAM -+ -4 PL) @ [PrAu = un PRI »
= (Pry"™ - - 4" 5" PrL) ® [PRAp, -+ Yun WlL]
PpA#t - 45" Pr) @ [PrAu, «+ A WwPr]
Prakt - 4" AP @ [PrAu, - Aun GuaPL] 5 (3.7)

as well as their parity-conjugated versions. The parentheses and brackets abbreviate Dirac
indices on the fermion bilinears. The evanescent four-fermion LEFT operators can then
be chosen in analogy to the four-dimensional operators given in appendix D.1, with Dirac
structures replaced by the evanescent structures of eq. (3.7).

In the case of baryon-number-violating operators, we do not use eq. (3.7) but instead adopt
the convention of ref. [15], which in addition involves an antisymmetrization of the evanescent
Lorentz indices. Without this antisymmetrization, the projection onto the physical operators
becomes more cumbersome in the B-violating sector, as illustrated by the following relation:

() CA*4 ) (hsAuAntbe) = =) CA*A ) (hsAuAnibe) — Ae(ibh Cbe) (bsty) . (3.8)

whereas

(T CAPA,) (DA Anbe) = — (W CAPAI,) (DA Auiin) - (3.9)

With an antisymmetrization of the Lorentz indices, the projection onto the physical sector
is simply achieved by dropping structures involving evanescent matrices 4, while without
antisymmetrization, this procedure is affected by the proper alignment of the B-violating
fermion chains, taking into account eq. (3.8).

In the baryon-number-conserving sector, these complications do not arise and we use
directly the evanescent structures (3.7) for the operator basis, without antisymmetrization
of the evanescent indices. This choice results in a different scheme compared to applying
the convention of ref. [15] also in the B-conserving sector, affecting finite one-loop effects
and divergences at the two-loop level [18].

In the physical LEFT operator basis given in appendix D.1, all redundancies are re-
moved in four space-time dimensions, including Fierz relations between different four-fermion
operators [4]. The Fierz identities are satisfied in four space-time dimensions and in chiral



notation they read

(Pry"Pr) ® [PryuPL
(Pry"Pr) ® [Py Pr
(PpLo"Pr) ® [Pro,.Pr
(PLo" Pp) ® [Prouw Pr

—(Pry"PL] ® [PryuPrL) »
2(Prl® [PL),

8(Prl @ [Pr) —4(PL) @ [Pr],
0

for D =4, (3.10)

]
]
]
]

where the minus sign from anticommuting the fermion fields is not included. Analogous
relations hold for opposite chirality. Away from four space-time dimensions, the Fierz identities
are not valid, even in the HV scheme. An exception is the last relation, which generalizes to

(Pro" Pr) ® [ProuwPr) =0, (3.11)
and can be derived using

B - (3.12)

1
Gy = — 3 etvaB 5

The other Fierz relations give rise to additional evanescent structures even in the HV scheme.
We define

(Pr"PL) @ [PryuPL] = —(Pry" Pr] @ [ProyPr) + By
(Pry*Pr) @ [PryuPr) = 2(Pr] @ [Pr) + B

(PL6" Pp) ® [PLo,wPr) = 8(PL] ® [PL) — 4(Py) ® [Py) + EV?

(3.13)
and analogous relations with opposite chirality. Note that in contrast to the NDR definitions
in ref. [8], all Lorentz indices in eq. (3.13) are restricted to the four-dimensional sub-space,
even for the vector structures without explicit bars due to eq. (3.4).

The appearance of Fierz-evanescent operators in eq. (3.13) might look surprising at first
sight, since the repeated Lorentz indices only run over four dimensions. The reason is that the
Fierz identities rely on a finite-dimensional representation of the Dirac algebra. In D = 4 — 2¢
space-time dimensions, the Dirac algebra is infinite dimensional and even in the HV scheme,
the Dirac matrices 4 cannot be represented as 4 x 4 matrices, see ref. [54] for an explicit
construction. The fact that the Fierz-evanescent operators in eq. (3.13) do not vanish in
the HV scheme can be verified by calculating their insertions into Green’s functions and
the resulting finite renormalizations of physical operators. We find that these insertions do
not lead to finite counterterms to fermion masses or dipole operators, but they generate a
non-vanishing finite one-loop effect in four-fermion operators.

The explicit list of evanescent four-fermion operators required at one loop is given in
tables 8, 9, 10, and 11 in appendix D.3.

3.3 Chiral symmetry

In four space-time dimensions, the massless QCD and QED Lagrangian (2.2) exhibits a
symmetry under the global chiral transformation

br = Ul VR > Uptr,
v e UL, YR — PRULT, b =u,d,e, (3.14)
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where Uzb, U;ﬁ € U(ny) are unitary ny X ny matrices. At the quantum level, the U(1) axial
symmetries are anomalously broken, but the flavor transformations remain a symmetry if the
theta angles are transformed simultaneously to compensate the anomalous shift [62]:

fqcop — O0qep + Z arg det(UgTUg) ,
Y=u,d

OqEp > Oqep + . 2N.q? arg det(URTUY) + 2q2 arg det (U UE) . (3.15)
Y=u,d

The kinetic term of the neutrino Lagrangian is invariant under the global U(n, ) transformation
vy — UZVL, vy — DLUIL/Jr . (3.16)

For non-vanishing mass matrices, chiral symmetry is explicitly broken, but it can be artificially
restored by promoting the mass matrices to spurion fields with the chiral transformation

My — UpMuUPT, M - U MU, ¥ =u,d,e,
M, — UY*M,UYT, M} — UYMIUYT, (3.17)

Similarly, the Lagrangian terms involving higher-dimension operators can be made chi-
rally invariant by also promoting their Wilson coefficients to spurions with appropriate
transformations, e.g.,

Ley = UfLey U,
Lt = LV g ustous, ust (3.18)
prst uvwWT  pu vr Ssw xt

The combined transformation of the chiral fields, theta terms, and spurions is a symmetry
of the effective theory and is respected by the perturbative expansion: terms that break this
symmetry need to cancel in relations between observables.

Dimensional regularization in the HV scheme leads to a violation of chiral invariance
in D dimensions, as is required by a scheme that reproduces the triangle anomaly. Besides
the hard chiral anomaly, the HV scheme combined with MS renormalization also leads to
spurious anomalies that break chiral symmetry in the spurion sense defined above. Consider
the fermion gauge-kinetic term, written in terms of chiral fields:

Gilb = il + Vrilibr + Yrilbvr + briPr . (3.19)

Each term is gauge invariant, but the evanescent contributions &LilAD@DR and ﬁRilbwL vio-
late chiral symmetry.® They contribute both to the fermion propagators and the fermion-
gauge-boson vertices, resulting in spurious effects that break chiral symmetry. At one loop,
contractions of evanescent symmetry-breaking terms can be multiplied by a divergence of a
loop integral, resulting in a finite symmetry-breaking contribution. At the two-loop level,
they also affect the 1/e divergences.

As is well known [46, 47, 54, 60, 63-68], these spurious symmetry-breaking effects can be
cured order by order in the perturbative expansion by the addition of appropriate symmetry-
restoring counterterms: these finite contributions are local as they come from UV-divergent

5Tn the case of neutrinos, the evanescent kinetic terms also violate lepton number.
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parts of loop integrals. This is similar to the procedure in chiral gauge theories, where the
symmetry-breaking terms violate the Slavnov-Taylor and Ward identities that follow from
gauge invariance. There, a restoration of the symmetry is mandatory in order to maintain
consistency of the theory. In the present context, the problem is less severe: despite the
presence of chiral fields, the LEFT is not a chiral gauge theory. The gauge interactions of the
LEFT are the vector-like QCD and QED interactions, i.e., left- and right-chiral fields are in the
same representation of the gauge groups. The regulator does not break gauge invariance but
only affects global chiral spurion symmetry. Therefore, the restoration of the global symmetry
is a pure choice of renormalization scheme and not strictly necessary for a consistent treatment
of the theory, since the symmetry-breaking terms cancel in relations between observables. It
is still desirable to maintain chiral symmetry in intermediate steps of the calculation in order
to avoid an intricate cancellation between matching coefficients, RGEs, and matrix elements.
This can be achieved by finite renormalizations of the coefficients of gauge-invariant operators,
which compensate the symmetry-breaking terms and restore chiral spurion symmetry.

We define our renormalization scheme as follows: we stay as close to MS as possible by
subtracting the pure 1/¢ divergences, as well as the following two finite contributions.

1. We perform a finite renormalization of the coefficients of the physical LEFT operators
that cancels the explicit insertion of evanescent operators into loop diagrams, as
explained in section 3.2.

2. We apply an additional finite renormalization of the coefficients of the physical LEFT
operators, which only depends on the physical operator coefficients and exactly cancels
the spurious terms that break chiral symmetry.

The symmetry-breaking terms are determined as follows. We calculate the one-loop con-
tributions to 1PI background-field Green’s functions with physical operator insertions up
to finite O(e") terms. We then apply a chiral spurion transformation and extract all non-
invariant terms. This requires to keep the full flavor structure of the mass matrices, in
particular one has to distinguish between M, and MJ) Since the finite symmetry-breaking
terms arise from the combination of the evanescent part of the fermion gauge-kinetic terms
with a UV divergence, they are local and well-defined even for generic (non-diagonal and
non-Hermitian) mass matrices, which can be treated as mass insertions. To this end, one
can either directly treat the masses as interaction terms, apply a Taylor expansion to the
fermion propagators, or use an exact propagator decomposition. We define the fermion
propagator with generic mass matrices as

Sy(p) =i (p— MyPL - MLPR)A . (3.20)

Denoting the loop momentum by ¢ and an external momentum by p, we use a Taylor
expansion before integration:
-1

S¢(l+p)=i|}—é(—p—l—MwPL—i-M:LPR)} 5;

k
- @'[Z (é (=p+ MyPr + M;PR)> ] ;; . (3.21)
k
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Expanding in both masses and momenta does not affect the UV divergences of loop integrals,
but introduces IR divergences and renders all integrals scaleless. However, at one loop it
is straightforward to distinguish between UV and IR divergences. As an alternative, we
apply the exact propagator decomposition [69, 70]

Sy(C+p) = Sm(0) = iSm(€) (MyPy + M[Pg —m — p) Su(C+p), (3.22)

where

-1 i(p +m)

p (3.23)

Sm(p) =i (p—m)
depends on an artificial common mass parameter m. The decomposition (3.22) and the
corresponding version for gauge-boson propagators can be used to reduce all one-loop integrals
to massive tadpole integrals plus integrals with a smaller degree of divergence, which after
recursive application of the decomposition eventually become finite. This allows one to easily
extract the UV-divergent parts of loop integrals for arbitrary mass matrices. The dependence
on the artificial mass parameter m drops out of the final results. We checked that we obtain
the same results with the Taylor expansion and the tadpole decomposition. When neglecting
UV-finite parts of loop integrals, a subtlety arises with the insertion of Fierz-evanescent
operators, where one needs to be careful to assign identical momentum routing for the two
contributions with different Fierz ordering.

An improved tadpole decomposition and an efficient algorithm based on Taylor expansion
is described ref. [71]. A slightly different version of the tadpole decomposition has been
used in ref. [57].

4 Renormalization and field redefinitions

4.1 Renormalization procedure

We start with the bare LEFT Lagrangian, where we extend the basis to include EOM-
redundant operators Ofed as well as evanescent operators &;:

LrLerr = Lqep+Qep + Lo+ Y LiOi + Y L0F + 3 K . (4.1)

We then compute the off-shell 1PI Green’s functions of the bare background fields. In order
to obtain a finite result, we renormalize the parameters of the Lagrangian

e = Zee" = pf(e () + e,
9=12Z49" = p*(g" (1) + ),
My = M () + M,
Xi=p" (X[ (0) + XY, X =L, LK (4.2)

as well as the background fields:

Au=2Z)PA,, GY=z PGl dr=2/10 vr=Zjh, (43)
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where Z;/ z and Zi}/ }2% are Hermitian matrices in flavor space. The powers n; of the renormal-
ization scale in eq. (4.2) are fixed by requiring that the Wilson coefficients have integer mass
dimension even in D space-time dimensions. Schematically, for a term in the Lagrangian

A
Lo X, (N AN 9N N (4.4)
the coefficient of the operator has mass dimension

D-1 D-2
[X;]=D—NY - NAZT 2

Dol wpP2_ iy, (@5)

hence n; = Niw + NZ»A — 2. E.g., for the physical operator coefficients up to dimension
six, we have

[Lyy) = [Lygl = -1 +¢,

Le) = [Lg = —2+¢.

[L -2+ 2¢. (4.6)

i

Since the background-field method preserves gauge invariance, one finds ZeZil/ =1 and
ZgZé/ > = 1. There is no need to renormalize the quantum fields [55]. At this stage of the
calculation, the 1PI off-shell Green’s functions of renormalized background fields are finite.
As described in sections 3.2 and 3.3, we do not use MS, but apply finite renormalizations that
restore spurion chiral symmetry and compensate the physical effect of evanescent-operator
insertions. In general, the counterterms can be written as

l, d’
Xt = ZZ ZO o€ ). (), ) AL (L5 (), (KEG)) . (47
n
where [ denotes the loop order and with n = 0 we include finite renormalizations. In the
following, we will drop the superscript " for simplicity.
Here, we only consider the one-loop counterterms, which we write as

S (%) = Loy XD (e g (M L) ALY, ()
Fa(X0) = 1y X g, (M (L) ALY, (),
n(X0) = g X0 e My}, 1L}, (L), () (1.9

where the finite renormalizations XZ-(LO) = X; (1 0 + Xz(e‘?) are split into the terms that
restore spurion chiral symmetry and terms that compensate evanescent insertions. Several

comments are in order.

e As will be discussed in section 4.2, the EOM-redundant operators O,fEd can be removed
by appropriate field redefinitions, which shift all the Wilson coefficients and in particular
allow us to set Lfd = 0. These field redefinitions can be applied order by order in the
loop expansion, hence we do not need to insert EOM-redundant operators into loop
diagrams and we can drop the dependence of the counterterms on L£ed.
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e The divergent physical counterterms do not depend on the coefficients of evanescent
operators: one-loop insertions of evanescent operators only generate finite physical
effects as well as evanescent divergences. Although these evanescent divergences exist,
we do not calculate them here, as they contribute neither at fixed one-loop nor at NLL
order, see appendix C.

o By definition, the terms &} (X;) that restore chiral symmetry do not depend on
evanescent coefficients, which instead contribute to 0 (X;).

o Finite renormalizations of evanescent operators are possible but not required. This is a
scheme choice that becomes relevant only at higher loop orders [66].

In summary, in the present work we calculate the following LEFT counterterms:

daiv(Li) = ! 1617TQ LY ({L;}),
S (L) = ;61772 DL,
da (K)o = %161 SKUD (L) (K = 0}),
Falli) = 75 LAV ALY)
L) = 1o L (L) 1Y)
(L) = S LI (L)),
(L) = w;Lizd;“’”)({Lj}, (). (4.9

where for simplicity the physical parameters L; collectively denote couplings, mass matrices,
and higher-dimension operator coefficients.

In a final step, we will remove the redundancies in the operator basis by applying
field redefinitions, which will shift L}*d to zero, but at the same time induce shifts in the
coefficients of the physical and evanescent operators.

4.2 Equations of motion and non-linear field redefinitions

The classical fermion EOM at dimension four are given by [12]
, i 5 i
('lw_MwPL —MwPR)"(b =0, w(llD +M¢PL+M¢PR) =0, Y=u,d,e vy, (4.10)

while the gauge-boson EOM read

(DG ) = gj™ 0, F™ = ejly, (4.11)
where the currents are
D D oo AU T N WE (4.12)
Y=u,d Y=u,d,e
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and the covariant derivative in the adjoint representation is given by (D,G"” VA = @LGA/“’ —
ngBCGfGC“V.

In contrast to a renormalizable field theory, the EFT allows non-linear field redefinitions
that respect the power counting. In addition to the linear field redefinitions (4.3) applied
in the renormalization procedure, up to dimension-six effects we can perform the following
redefinition of fermion fields [8]:

VLR = YLR + A%,RWR + B%,RUD@/’RL + C%,R('L.w)QwL,R
+ DY 6" Fuubr r + DY o™ GutbL g, (4.13)

where A, g, Br.r, C,r, and D], are generic matrices in flavor space and the term involving
the QCD field-strength tensor is only present for quarks, ¥y = u, d. In the case of neutrinos,
the field redefinition reads

vy — v+ Avp + By’iéI/R + Cy(ié)%/[/ + DV’YE'MVF,WVL ,
VR > VR + (AY) R + (BY) iy, + (CV)*(id)?vr — (DY) 6" Fvg . (4.14)

The gauge fields can be redefined up to dimension-six effects according to

Au = Au + b7 ayFyu + Z IELCZd}fVMwL + Z QLRC?{w’?MwR )

Y=u,d,e,v Y=u,d,e
Gf} > Gf} +0 (DGt + > (QZ_JLC#’_Y;LTAwL + @RC#%T%JR) 7 (4.15)
PY=u,d

where C’zjﬁ%, CzipR are matrices in flavor space.

These field redefinitions can be used to remove operators proportional to the classical
EOM from the EFT basis. In addition to setting the coefficients of EOM operators to zero, the
field redefinitions induce changes in the coefficients of operators of even higher dimension. Our
basis of on-shell-redundant operators is given in appendix D.2: we keep only the derivative part
of the EOM in the redundant operators, hence the field redefinitions that set their coefficients
to zero also induce a shift in the physical operators of the same and lower dimensions.

We include only four-dimensional Dirac structures in the field redefinitions (4.13)
and (4.14): additional evanescent field redefinitions could be used to remove EOM redundan-
cies in the set of evanescent operators. However, these redundancies are of no consequence
since the renormalization scheme prevents a mixing of the evanescent sector into the physical
sector. The linear terms Ay, p need to be included in eq. (4.13) in order to keep the kinetic
terms canonically normalized.

The coefficients of the field redefinitions start at the one-loop level and their LEFT
power counting is given by

{4 p BLg} =0 <11)> . {CY g DY, DY, 079, O = 0 (1)12) . (4.16)

The requirement that the field redefinitions shift the coefficients of the redundant operators

to zero does not fix all parameters of the field redefinitions. The combinations

A%_A%T’ A%_A%Tv B%_B;{%}Tv Bldi}’_BfT7 Cz/}_cdﬂra CId%J_CIlgT (4'17)
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are additional chiral transformations that can be used, e.g., to change to the basis of mass
eigenstates [8, 12, 62]. Here, we work in a basis with generic non-diagonal and non-Hermitian
mass matrices, but one can always perform chiral field redefinitions and change to a basis
with real diagonal mass matrices. Without this basis change, it turns out that even after
removing the EOM redundancies at the one-loop level, the finite counterterms dg) (L;) to
dipole operators and mass matrices that compensate evanescent-operator insertions depend
on the quantum gauge parameters § and ;. This dependence is related to the ambiguity
in the basis reflected by the unconstrained chiral transformations (4.17) and drops out of
physical quantities. Therefore, in a final step we perform chiral field redefinitions A% — A%T
and A;g — A%T that consist of two terms, proportional to { —1 and &, — 1, respectively, which
allow us to remove all gauge-parameter dependences from the one-loop counterterms. This
final field redefinition vanishes in Feynman gauge, but the calculation with generic gauge
parameters { and £, and the cancellation of the gauge-parameter dependence in the final
results provide a powerful check. It turns out that the field redefinition that removes the
gauge-parameter dependence fulfills

Tr[A} — A7T] = —Ty[AR — ART], (4.18)

i.e., it contains an axial part that leads to a shift in the theta terms at the two-loop level.
After the field redefinitions, the counterterms that we calculate are reduced to

1 1 1,1 11 1,1
da(Li) = 35z ALY s )| = qes KAL) (K = o),
1
5L = 1oz Lin (L3),
ev 1 (170)
5ﬁn(Li) = 1672 Li,ev ({Lj}7 {Kk})7 (4'19)

where L; again denote couplings, mass matrices, and the coefficients of higher-dimension
physical operators. The expressions for the counterterms are very long and we provide the
explicit results as supplementary material. The divergent counterterms for the physical
parameters are scheme independent and they determine the one-loop RGEs via

d
dlog u

Li = 2L = 32722 640 (L) (4.20)

)

Li := 167>
as discussed in appendix C.

4.3 Theta terms and anomalous axial rotations

Since the theta terms are total derivatives, usually they are do not contribute to perturbative
calculations. While the QED theta term plays a role in the presence of magnetic monopoles [72],
the QCD theta term is of phenomenological interest due to its non-perturbative contribution
to hadronic electric dipole moments (EDMs). The experimental bound on the neutron
EDM [73] implies that the effective QCD theta parameter is tiny, which is commonly referred
to as the strong CP problem.

In the presence of higher-dimension operators, the QCD and QED theta parameters
are renormalized. Even though the theta terms are total derivatives, this renormalization
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can be calculated in perturbation theory. The RGE of the theta terms was calculated in
the SMEFT [9] and LEFT [12]. The theta terms in the LEFT also receive a contribution
from the matching to the SMEFT [8].

We use the method of ref. [74] to calculate the renormalization of the theta terms in
ordinary perturbation theory. To this end, we multiply all sources of C'P violation in the
LEFT Lagrangian by an artificial parameter ¢ and supplement the Lagrangian by

0LLErT(C)

e 0 (4.21)

Lirrr(C) = LLerr(C) +
where 6 is a scalar dummy field. A change in the C' P-violating sources d¢ induces a change
in the theta parameters 660 = 0(()5¢. We calculate the (-dependent counterterms to these
shifts in the theta parameters

62

sy P " (4.22)

i O3 GG + 05 C)6¢

from the gluon-gluon-d¢ and photon-photon-d¢ three-point functions, which do not vanish
in perturbation theory due to the momentum insertion into the dummy field §¢. Finally,
the counterterms to the theta parameters are obtained from the counterterms to the shifts
00 via integration:

Gion = [ dCOen(€), O = [ dCOen(©), (.23

where the initial condition # = 0 is provided by the C P-conserving point ¢ = 0.

The calculation can be simplified if we notice that C'P-even operators do not induce
a theta term: therefore, the same result is obtained if all higher-dimension operators are
multiplied by the parameter ¢ and not only the C'P-odd sources, as we explicitly verified.
A further simplification is achieved if the C'P-odd mass terms are not multiplied by (:
dimensional analysis implies that the C'P-odd components of the mass matrices enter the
renormalization of the theta parameters only in conjunction with coefficients of higher-
dimension operators. Hence, multiplying only the effective operators by ( leads to the same
result as multiplying in addition the C'P-odd mass term by (, because the combinatorial
factor arising from the additional couplings of the dummy field §¢ to the mass terms is
compensated by the integral (4.23). Schematically, momentum insertion into k effective
operators leads to k terms that add up to

(4.24)

i

1
k x/ d¢m"¢F Ly, - Ly, = m" Ly, - Ly
0

whereas if the dummy field also couples to the mass terms, there are n additional topologies
with momentum insertion into the masses, leading again to

(4.25)

ke

1
(k+n) ></0 d¢mnCF L, - Ly, =m Ly, - L

We checked explicitly that these different methods all lead to the same result for the
renormalization of the theta parameters.
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As is well known, the theta parameters are not invariant under axial fermion-field
redefinitions but shift due to the chiral anomaly [75, 76]. The spurion transformation of the
theta parameters (3.15) compensates this anomalous shift, turning chiral transformations
into a spurion symmetry of the theory. The chiral anomaly is often derived in terms of the
variation of the measure of the path integral [77, 78]. In dimensional regularization, the
determinant of the field redefinition is always trivial and the anomaly is instead reproduced in
terms of evanescent operators [46], see, e.g., refs. [28, 79]. Our calculation of the counterterms
reproduces the anomaly as follows. Under a chiral transformation, the LEFT Lagrangian is
invariant if the mass matrices and Wilson coefficients are assigned the spurion transformations
of section 3.3. If similar spurion transformations are assigned to the coefficients of evanescent
operators, this remains true even in D space-time dimensions, with the exception of the
evanescent fermion kinetic terms (3.19) in the Lagrangian, which induce a shift in the
dimension-4 evanescent operators Eyp:

Kyp = Kyp +ULTUY — 1. (4.26)

The insertions of the dimension-4 evanescent operators induce a finite contribution to the
theta terms, which is compensated by the finite renormalization

1 1 1
Sfin(0QED) = 272N¢q12¢ <TT[KwD] ~ Te[K] ) - 5 TrlEypEyp] + iTr[K:LDK:LD] +.. ) :
1 1 1
5n(0acn) = 5- (Tr[w = Tr(K}p] = 5 Te[KypKyp] + 5 Te[K] pKp] + .. ) . (2n)
where N, 4 = N, No = 1, Tr denotes the trace in flavor space, and in our calculation we only

consider single and double insertions of £yp. The shift (4.26) in the evanescent coefficient
therefore induces a shift in the renormalized theta terms

1
6qep — fqup — 2Nyq3Im Ty [(UgTUg’ ~1) - S UETY 1 } ,
1
focp — fqep — ImTr [(Ug‘ng 1) - SR 1 4 } | (4.28)
Due to

1
arg det(ULTUY) = ImTrlog(ULTUY) = ImTr [(UgTU}f —1)— §(U}§TU3 —1)2 4. } :
(4.29)

this is exactly the anomalous shift that gets compensated by the spurion transformation (3.15).
If we choose a chiral transformation that renders the mass matrices real and diagonal

ULM ULt = U MIUET = Mge8 | (4.30)
then in this mass basis the theta terms become

fqep = fqEp + 2N¢q12/, arg det(My),
f0qcp = Oqep + argdet(My,) (4.31)

which are the well-known invariant combinations of theta angles and mass phases.
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5 Calculation and results

Our main result is the complete set of one-loop LEFT counterterms as defined in eq. (4.19).
Together with the operator basis in appendix D and the scheme definitions in section 3, this
establishes a chirally invariant HV scheme for the LEFT at one loop and NLL that separates
the physical from the evanescent sector. In particular, S-matrix elements are independent of
the coefficients of evanescent operators, i.e., the physical part of one-loop matrix elements
computed with the LEFT Lagrangian

L= p"Li(p)O; + Y " Ki(u)& + Let
Lo =D 1™ [Gaie (Le) + 03, (L) + 65 (L) | O + D 5™ (K)Ei (5.1)

is independent of K;, where L; and K; denote renormalized parameters. The same is true for
the two-loop RGEs, see appendix C. Up to dimension six, the counterterms 0f) (L;) contain
terms either linear or quadratic in K}, whereas dqiv(L;) and 6 (L;) are independent of
K. Therefore, at fixed one-loop order one would obtain the same physical results when
using the Lagrangian

L= ZunieLi(M)Oi + [’/ct s /ct = Zunie [5div(Li) + C%CH(LZ)] O;. (5,2)

Although 0giv(K;)| k=0 does not vanish, tree-level insertions of evanescent counterterms do
not contribute to physical one-loop matrix elements, hence we dropped evanescent operators
altogether in eq. (5.2). The renormalized parameters L;(x) in eq. (5.2) are identical to the
ones in eq. (5.1). When the matching to the LEFT produces tree-level contributions to
evanescent operators, it is best to use eq. (5.1) together with the method of regions [80], as the
naive use of eq. (5.2) with the method of regions would miss the finite renormalization [81].

In order to obtain the results for the counterterms, we made use of several tools that
facilitate the loop calculation: the Feynman diagrams were generated with ggraf [82] and we
evaluated them using our own Mathematica and FORM routines [83, 84]. In some intermediate
steps of the calculation, we were making use of FeynCalc [85-88] and Package X [89, 90].

For the loop calculation, we relied on two independent implementations and we performed
cross-checks of the final results for the counterterms. We were using generic quantum gauge
parameters { and §,: after the appropriate field redefinitions, the final result is gauge-
parameter independent.

We checked that the divergent counterterms for the physical operator coeflicients are
consistent with the LEFT RGEs of ref. [12] via the relation (4.20).” The form of the RGEs
obtained here differs from the result of ref. [12] by a chiral field redefinition (4.17) that involves
double-dipole insertions and only affects the RGEs of the mass matrices. As explained in
section 4.2, here we only perform a minimal field redefinition (4.17) that removes the gauge-
parameter dependence in the finite counterterms, but our choice for the chiral rotations (4.17)
does not contain a divergent part. As in refs. [8, 12], additional field redefinitions can
always be applied.

"Performing these checks, we found some minor mistakes in the results of ref. [12].
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The results are provided as supplementary material: we define the notations and con-
ventions in appendix B. We give the results for the counterterms only for coefficients of
operators listed explicitly in appendix D. The complete basis involves further operators that
are related by Hermitian conjugation to the given operators, as indicated by “ + h.c.” in the
tables. The counterterms for their coefficients directly follow from the requirement that the
Lagrangian be Hermitian and hence they can be easily deduced.

A large part of the expressions for the counterterms results from the contribution of
double insertions of dimension-five operators, which for most phenomenological applications
will be of minor relevance. If double insertions are not needed, the results can be simplified
significantly. For convenience, we also provide explicitly the results for the contribution
of single-operator insertions.

6 Summary and conclusions

In this paper, we have introduced a renormalization scheme for the LEFT at one loop and
NLL that is based on the original HV scheme, but directly implements the restoration of
spurion chiral symmetry, which is broken by the regulator. We have extracted the necessary
finite renormalizations by working with generic mass matrices, which together with the Wilson
coefficients of higher-dimension operators are promoted to spurions with appropriate chiral
transformation. In addition, we have defined a complete set of EOM-redundant operators
used in the intermediate steps of the off-shell renormalization, and we have classified the full
set of one-loop evanescent operators that are generated by the insertion of physical operators.
With the exception of four-fermion operators, we have classified the complete list of evanescent
operators in the HV scheme, including the ones that are not required as one-loop counterterms.

In our renormalization scheme, the physical effect of evanescent operators at one loop is
compensated by finite counterterms, which decouples the unphysical evanescent sector from
the physical one. Furthermore, our scheme has the advantage that spurion chiral symmetry
is preserved even in intermediate steps of calculations and is not only restored in relations
between observables. Therefore, we expect that our scheme leads to similar results as the NDR
scheme in cases where the inconsistencies of the NDR scheme are not visible, differing only by
chirally symmetric finite renormalizations. The symmetry-breaking contributions that arise
in a pure MS HV scheme can induce spurious effects, e.g., in one-loop matching calculations.
It will be interesting to compare in detail the application of our modified HV scheme to NDR
results. We leave this comparison of different schemes for future work. We stress that in
contrast to NDR, our scheme based on the HV definition of 75 and the Levi-Civita symbol is
algebraically fully consistent. Its application will be of particular interest for calculations
in the C'P-odd sector of the theory, e.g., for matching calculations to schemes amenable to
lattice computations in the context of the neutron EDM [28, 81, 91-94]. However, since we
define a scheme for the entire LEFT up to dimension six, we expect that our results are widely
applicable for fixed-order one-loop calculations in the LEFT. In addition, they represent
another step towards the completion of the EFT framework at next-to-leading-log accuracy.

— 21 —



Acknowledgments

We thank T. Engel, B. Grinstein, S. Kollatzsch, A. V. Manohar, A. Signer, Y. Ulrich, and
M. Zoller for valuable discussions and A. V. Manohar, D. Stockinger, and J.-N. Toelstede
for useful comments on the manuscript. Financial support by the Swiss National Science
Foundation (Project No. PCEFP2_194272) is gratefully acknowledged.

A Conventions

A.1 Dirac algebra

The matrix 5 and the chiral projectors are defined by
{ - 1 1
¥ =17 = Gy, Pu=5(1=%), Pr=(0+%), (A1)
where the Levi-Civita symbol is normalized to €y123 = +1. The matrix 75 fulfills the following

(anti-)commutation properties:

{7577&} = 07 [’7573/#] =0. (A2)
The charge-conjugation matrix fulfills
CruCl=—yL, C=C"=-C'=-Cl=-C", (A.3)

which in 4 space-time dimensions is realized by C' = i7?7°. We take the relations (A.3) to be
true also in D = 4 — 2¢ space-time dimensions [66, 68], in particular we use

CyC ' =-3L, C§.C7' =-4]. (A.4)
A.2 Color algebra
For SU(3)., we use Hermitian generators
)\A
o

where A\ are the Gell-Mann matrices. The quadratic Casimir operators in the fundamental

1
T4 = Te[TAT?] = §5AB, (A.5)

and adjoint representations are

N2
T5T5, = Cpoay = o 5M, fABC fABD — 0,5¢P = N.§CP . (A.6)

B Conventions for the supplementary material

The complete results for the divergent and finite counterterms after field redefinitions are
provided as supplementary material, which consists of a Mathematica notebook and a
subdirectory containing the results in the form of pure text files. The notebook allows one
to easily extract selected counterterms. We also provide simplified results restricted to the
contribution of only single-operator insertions.

The results are written in the form of Mathematica replacement rules for the counterterms.
The symbols appearing in the text files are explained in detail in table 1. We are using a
compact notation based on matrices in flavor space. The only indices are the open indices
of the replacement rule, e.g.,
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\[Delta] [KdD2LRDag[fm2_, fml_]] ->
-1/8% (CF*FCHN [{LdGDag, LdGDagl}, fm2, fm1])/(EpsilonUV*Pi~2) -
FCHN [{Ld\ [Gamma]Dag, Ld\[Gamma]lDag}, fm2, fm1]/(8*EpsilonUV*Pi~2)

translates into

1
Saiv (Kb pr = R [CF(LIIGLLG)IJT + (le'yLzl’Y)pT} : (B.1)
For the Wilson coefficients of Hermitian conjugate operators, we follow the convention of
refs. [8, 12], e.g.,

* S1,RR} S1,RR\*
Lhyi=(Ley) ,  Logi™ = (L3pR") (B.2)
pr rp prst rpts

Furthermore, in order to use a matrix-style notation that avoids sums over repeated flavor
indices, we denote rank-4 flavor tensors, e.g., by

FFA(LVER), FFB(LYER); = LV;;eLtR, (B.3)
prs

where the first two flavor indices are attached to the symbol FFA and the last two indices to the
symbol FFB, which always need to appear together in an expression. Therefore, the notation

\ [Delta] [LVLLee[fm2_, fml_, fm4_, fm3_]] ->
(e"2*FCHN [{FFB[LVLLeel}, fm4, fm3]*flTr[FFA[LVLLeel]l*kd[e, fm2, fmi]=*
qle]l~2)/(96*EpsilonUV*Pi~2) + ...

corresponds in the index notation of ref. [12] to the expression

2.2
€ q
5div(LXéLL)prst = 967_[_265 Lrt;ieli(spr +.... (B-4>

C Renormalization-group equations at two loops

In the present paper, we compute two types of finite counterterms: the counterterms 5§D(Li),
which restore spurion chiral symmetry, and the counterterms dg¥ (L;), which compensate the
insertion of evanescent operators. In order to use our scheme, one has to take into account
these finite renormalizations in NLL calculations, in particular in the finite parts of one-loop
calculations, e.g., in matching calculations or matrix elements. It is well known that the finite
renormalizations also affect NLL calculations through the two-loop RGEs [14, 15, 18, 59, 95].
Here, we review the derivation and the argument why the scheme of refs. [14, 15, 18] avoids
a mixing of the coefficients of evanescent operators into the physical sector. We treat the
generic case of multiple operator insertions and focus on the present situation in the HV
scheme including symmetry-restoring counterterms.

Distinguishing non-evanescent operators O; from evanescent operators &;, we write the
Lagrangian in terms of bare parameters schematically as

L= ZLiOi+ZKi5i (Cl)
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variable

code name

explanation

N.=3 Nc number of colors
Cr CF SU(3). fundamental Casimir invariant
Ne nf [e] number of charged lepton flavors
Ty nf [u] number of up-type quark flavors
ng nf [d] number of down-type quark flavors
ge = —1 qle] electron charge
qu = 2/3 q[ul up-quark charge
a=-1/3 qld] down-quark charge
e, g e, g QED and QCD gauge couplings
fqED, fqcp [\Theta]QED, [\Theta]QCD QED and QCD theta parameters
M,, MJ M[nu], Mdag[nu] neutrino mass matrix
M., M} M[el, Mdagle] charged-lepton mass matrix
M, M} M[ul, Mdag[u] up-quark mass matrix
Mg, M ; M[d], Mdag[d] down-quark mass matrix
e=(4—-D)/2 EpsilonUV dimensional regulator
Opr kd[f,p,r] flavor Kronecker delta for fermion type f
Tr[A--- B] f1Tr[A,...,B] trace in flavor space
(A---B)pr FCHN[{A,...,B},p,r] flavor chain: element 4, j of a product
of flavor-space matrices
(A)pr(B)st FCHN2 [{A},{B},p,r,s,t] product of two flavor chains
daiv( - ) \[Deltal [ - ] divergent counterterms
o, () \ [Deltal\[Chil [ -] finite symmetry-restoring counterterms
v () \[Deltalev[ -] finite evanescent-compensating counterterms
L., Le\ [Gamma] Wilson coefficients
Lygth LVSLR
uu uu

Table 1. LEFT variables appearing in the code with the one-loop counterterm results, provided as
supplementary material.

and as in eq. (4.2) introduce renormalized parameters and counterterms according to

L= ZN"’ Li(p) + L§NO; + Y w™e (K] () + K& . (C.2)
7
The counterterms are expanded as in eq. (4.7) into a power series in 1/e
1 l,
=y Z ey X AL WL AR, X = LK, (C3)

lan

where gauge couplings, masses, and Wilson coefficients are treated on an equal footing. In
loops with insertions of evanescent operators, the Dirac algebra produces either evanescent
structures or physical structures accompanied by a factor . In the HV scheme, this factor
can be traced back explicitly to the trace of an evanescent metric tensor g,* = —2¢ and it is
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useful to single it out in the calculation by denoting it by €, even though £ = €. To this end,
we split the counterterm coefficients (with some abuse of notation) as follows:

LWL ()} AR () = L (L5 ()}) + L8 (L5 ()} (K (1))
(

KM (LY AKE W)Y = K (L)) + KAL)y AKL (W), (C4)

(LI O

where
XMLy = XM AL AR =0)), X = LK. (C.5)

The strongest singularity of LS' at each loop level does not depend on the coefficients of
evanescent operators, f/(l’l) =0, or 8L§l’l)/8K]7f = 0.

)

The RGEs follow from the fact that the bare parameters do not depend on u:

r oo ! &mn) g1 » g7 (n) T
dL% () 1 1 (1,n) OL;"™ dLi(p) oL dK7(u)

= = —neLy (pn)— — ———— | ngeL” d it ,
dlog nieLi (1) ;7;0 em (1672)! nieli +; oOL; dlogu e OK] dlogp

oo 1
dK; (1) 11 (1)
Y e KT () — — | mek®
dlog i mie K (1) ZZ en (167r2)l Mmief; +;

I, (1,
oK™ dLi(p) K™ dKF (n)
oL;  dlogp 0K} dlogpn ’

1=1n=0
(C.6)
At omne loop accuracy, one obtains
, 1,1
‘;Llogﬁ _ 161%2 (—mL,(l’l) +;nj 8’;;; )L;(M)) +O(2loop) + O(e).  (C.7)
For a connected graph, the topological identity
V-I+1=1 (C.8)

holds, with [ the number of loops, I the number of internal lines, and V' = >, Vi the
total number of vertices, where Vj is the number of vertices with k legs. The number of
external legs is
E=)kVi—2I=) (k—2)V,—2(I—-1). (C.9)
k k

We determine Lgl’n) from the [-loop counterterm to 1PI diagrams with E = n; + 2 external
legs. The counterterm is a polynomial in all the Lagrangian parameters,

l,n Iin r Y
LS. ) = Zag,i )H(Lj,)vsm , (0.10)
g 3!
where V, ; is the number of insertions of vertex type j' in graph g. Therefore
() vy O (1) (i) "V,
_niLi + anLj (,u) L = —niLi -+ ZCL%i anvg,j H(Lj/) 9,3
J J 9 J 7
ln l,n r o/
=~ L 57l S (kg — 2)V, TT(L5) Yo
g J 7
= L") + (B + 200 - 1) Y ol T[@s) Yo = L™, (C.11)
g 5’
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pole of the counterterms as follows

hence the one-loop RGE can be extracted from the e
L(l 1)
+ O(2-loop) + O(e) , (C.12)

AL _,
1672

dlog i
which is manifestly independent of evanescent coefficients. Similarly, using the same topo-

logical argument, up to two-loop accuracy one obtains the RGE
A 07 (1,0
(1 é oL

T~ o
(161 ) [ ZzLM agy Zlel)aL(]) %:Mf ¢ 0K}
i(m;)Q ZQL 8;2;) + O(3-loop) + O(e). (C.13)
Since the RGE needs to be finite, one obtains the consistency condition
Ias DIL"Y , (C.14)

(22) _
L =3 z]: 7oLy
which follows from the properties of the loop integrals [46, 96]. Therefore, the RGE reads

dLi(p) _
(1, oL"? Sy ek KE oL
i e 8K]’7

dlogpu 1672
2,1) (1,0 0L
41> —EQL»’¥—§2L-
! . J OL" , J OL" 4
J J 7 J j
(C.15)

1 7D

1

T o2y
52’1) and

+ O(3-loop) + O(e) .
We have not shown all appearances of &: the parts of the counterterm coefficients L
i i
(1,0).

The requirement that the physical RGEs do not depend on the coefficients K of the
i

1,0 .
Lg ) that depend on evanescent coefficients contain factors of &/e
evanescent operators imposes a constraint on the finite renormalizations L

L™ oL pr i N0 L

e 0K} 8K7” oL: — OK[OL}
8K(1’1) 8ﬁ(10) ZK az ( 0) (C.16)
8K’"8K’“ ' '

Similarly to eq. (C.14), this follows from the property of the loop integrals [46, 96], which
A ai(l,o)
KD 1
+ zjj k| (C.17)

implies for evanescent insertions
(1 1) 8 8L( 0)

ey _ 1 £€:01,00
sLi 2 XJ:eLJ +Z € 8L’"
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provided that the finite renormalization Lz(l’o) is chosen to cancel the finite one-loop con-
tribution from the insertion of evanescent operators [14, 15, 18]. If eq. (C.16) is not used

as a cross check, the RGEs can be simplified to

dLi(p) _ 1 ,pan 1 7(20) ‘(1,0)81_/2(1’1) —(1,1)8E7(;1’0)
dlogp 167220 T gy |4 ;2%' oL >_2L; o (O19)

zorY

~-3 2
Z 7 e OK!

7 J

+ O(3-loop) + O(e) .

Kp=0

As can be seen in eq. (C.18), the two-loop RGEs of the physical parameters are directly
affected by the divergent counterterms dqiy(/K;) of evanescent operator coefficients, the
finite counterterms 0f) (L;) of physical operator coefficients that compensate evanescent
insertions, as well as the additional symmetry-restoring finite counterterms &3 (L;) (or any
other additional finite renormalization that one might choose to perform). Double insertions
of evanescent operators are not relevant for the two-loop RGEs.

D LEFT operator basis

D.1 On-shell basis

The following list of operators up to dimension six in the LEFT is reproduced from [4].
We adapt it to the HV scheme in our convention by keeping all operators strictly in four
space-time dimensions. As explained in section 3, explicit bars over Dirac matrices in vector
bilinears are not needed, since the chiral fields automatically project to four dimensions.
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(vv)X + h.c. (LR)X + h.c. X3

T =p 5 = ABC yAv (¥Bp C
Oy |V, C5" 01 ) Fy Ouy | €1p6" epr Fry Og|fABCGAVGBPGEH
Ou’y aLpa.uuuRT Fuzl fABCGAVGB/JGC;L

Od'y dea—lwdRr ELV

= = A A
OuG ULPO'HVT URr Guu

Ouc Cina'/’“/TAdR»,- Gﬁy

uRp’YMuIM dRs'Yude) Os(,du (DLpeRT)(JRsuLt)

(LL)(LL) (LL)(RR) (LR)(LR) + h.c.
oyt (VLpy vLe) (VLsuvrt) oytR (VLpy*vir)(rsYuert) OZRR (erperr)(€rsert)
OLM | (rpy™ers)(€rsuert) oL (erpy*err)(ErsVuert) OZFR | (erpers)(Ursurs)
Oyt (py*ver)(Ersyuert) o (VLpy*ver)(URsYutre) OL M | (erpo*” epr) (ULsOpwuRe)
OVHE | (v (ansyuure) o " (o7 vir) (drsVudre) O (eper)(drsdrr)
oyt | (T vee) (disyudie) ()fes (erpr*ers)(UrsYutre) 0L (€16 ere ) (dLsGwdre)
O | (e ers) (@rsuune) O (eLers) (drsyudrr) Ovidn | (rpere)(drsum)
Ot | @Eter)(diudn)  OLER (aLpy*urr)(@rsyucr:) 0Lt | (7po" ere)(dLsFuwum)
Ol/eﬁf (Trpy ers)(drsyutur:) + h.c. OV'LR (drpy*dr,)(ErsYucre) OFLER (@rpurr)(Urstrt)
Oyt | (urpy ure)(drsyuurt) Oyt oy ers)(drsyutine) + e OSBER| (T Aup,) (T upy)
Ou" | (opy"de)(drsyude)  OLPER (@rp*ury) (ARsYutre) OS5 (arpune)(dradre)
Ova ™| (urpy*urs)(drsyudiy) OVSLR! (apyy " Thup,) (Grsvu T ure) Oy ™| (tirpy T4 up,) (AL T4 dpy)
O ! (e T ur, ) oy TAdLe) - Oy ™™ (L urr) (drsvudre) 05 ™| (depdrr)(dLsdr)

(RR)(RR) O:?’i: (aL,,:y“TAqu)( rsVuT " dRe) Ozj‘iz (JLp?AdRr)( LsT4dR)
OV.RR @Ry err) (EreTucrr) O(‘Z'LR ) (de’Y:dLr)( RsYuURt) O:;d;R (irpdrr)(dLsury)
OV.RR (Erpyere) (rsutine) O,j/ul’LR (deTﬂT drr)(urs YT uR) O (uppTAd Ry ) (dpsTAupy)
oV (@rpr"err)(drsvudre) OVS?LI% (" dur)(drsvudre) (LR)(RL) + h.c.
OVER | (@poy un) (rsutie) O4a’ (drpy*TAd L) (drsy T dRy) OS] nrens)anvine)

V.RR OZ;éﬁR (trpy*drr)(drsyutre) + h.c. SRL| .- -
Ouq (drpy"drr)(drsvudre) B 02" | (erperr)(drsdre)
Ov1,RR ( ) Oq\jdgéiR (ﬁLp”/“TAdLr)(dRsWTA“Rt) +h.ec
)

OVEFR | (g TAup, ) (drs v, TAdRe)

Table 2. LEFT operators of dimension five, as well as LEFT operators of dimension six that conserve
baryon and lepton number.
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AL =4+ h.c.

OELLL (VngVLr)(VgsCVLt)

AL =2 + h.c. AB = AL =1 + h.c. AB = —-AL =1+ h.c.
OS5I (WE,Cvi)(Ensers) Oy’ | €apy(ugTCdL ) (d] Cryy) O |€apy (dSTCAYL, ) (Epyd],)
OLLL| (v],Co" vp,) (Crstuwert) Ogun |€apy (ST Cul, )it Ceyy) Oniif sy (ugl Cdy,) (7, dY,)
OSER| (],Cure)(ersers) O |€apy (ugTCul ) (dhCeg,) O™ |€ap (d3TCAL) (7 uf)
Ol (W, Cvpe)(nsurs) O easy (d3TCul, ) (uhiCep,) Ogin™ | eapy (A3 Cd}, ) (Ep )
OLEE (v, 00" viy) (insFuvtine) O |eap (ufih Culf, ) (A1 Cery) Ogui” | eapq (A Cdpy,) (gyd),)
o5t (VEPCVL’")@LSUM) Os‘ﬁL Eaﬁw(dﬁCU@)(UZZC%) Of&SR eaﬁ’v(u?ng%r)(’;Lsd}%t)
O (WE,Cve)(dredr) O™ | eapy (d5h Culp, )(d) 5 Cryy) O | eapn (dG Cdy, ) (€ o)
O (W Com v, ) (drstuvdre) O™ |eagy (3T Cd5, ) () Cvyy)
o (vi,Cvir)(drsdre) O R eagy(d‘ﬁgCufzr)(u;’%ZCem)
onhil (v, Cerr)(drsur)
055 (V00" ern) (dRrsG L)
onitl (W Cepr)(drsuny)
oy (v1,Cy" err)(drsYuure)
Ol‘//éf}f (Vng’Y"eRr)(JRs’mURt)

Table 3. LEFT operators of dimension six that violate baryon and/or lepton number.
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D.2 On-shell-redundant operators

In table 4, we provide a set of operators that extend the on-shell LEFT basis in appendix D.1
to an off-shell-complete basis. Together with the inclusion of evanescent operators, this
extended operator basis allows us to renormalize all off-shell Green’s functions.

(vww)D? +h.c.  (LR)D? + h.c. X2D?
OC WL C(id)?vr, O |y (i) er, Oyp| (8,F")(0 Fa)

O i, (iB)2une Ocp|(DpGP)A(D Gy, )2
Og?) de(i]Z)QdRr

(LL)D? (RR)D? (LL)XD (ER)XD
Olp| vip(i é)SVLT ol ERP(UZ)SGRT O%)m/ (DLPZ'E&/WVLT)FW Ogm (e pzwa;weRr)FW
OLy | erp(iD)er, Oy luny(iD)ur, OLp | (FrpGuwidvi, ) F* O, | (erpouilden,)F*”
OLp lury(iD)ur, OFy|dry(iB)*dr. OL | ( Lp%VLr)(é Fr)y - Ofp| (er p%fer)(a Frv)
Ok ldry(i ) dpr (’)]]5,%Y (éLpzlﬁU,“,eLr)FW ng (@ szlﬁUWuRT)F“”
Oy, | (CrypOpuviBer )P OFy | (any8uilun,) FH
OLp| (e ,ﬁ(,,_eLr)(a,LFW) O%p| (@ Rp%uRr)(a Frv)
OLLDM (Urpi PG ur,y)FH Oﬁ,h (d, pzlﬁawdRT)F“
Ony pr”D“Lr)F” O§D7 ( pUuVZDdRr)F“
Ol Lp%um)(@ Py Ofp (dRp'YVdRT)(a Frv)

(u
(u
Obay| LT’UDU"”d”)FW OBuc (uRleZ)aWT ug, )G
(drp@uildi, ) F*  Offpe| (00 TYiPur, )G
(A 3udin) BuF™) Ol (T urs ) (DuGH)*
Obuc (“Lp’%wT ur )G O 6| (drpi PG, T dr, )G
Ol | (Urpd,uw TAiDur, )G OF | (drp6,u TAiDdR, )G
Ol | (7T usr)(DuG) " Ofp |(dry3u T i) (D)
0L uc| (dryi B3, TAd, ) GA™
Olpe (JLpt?WTAiJf)dLT)GAW
Ok p| (diy3 TAdL,) (D, G )A

Table 4. Redundant LEFT operators of dimension five and six, which can be removed by field
redefinitions but are required to renormalize off-shell Green’s functions.
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D.3 Evanescent operators

The LEFT Lagrangian is supplemented by evanescent operators and corresponding coefficients
ﬁevan = Z Kzgz .
i

In the case of operators with at most two fermion fields, we provide an exhaustive list of
evanescent operators in tables 5, 6, and 7. Not all of them are required independently as
counterterms to one-loop insertions of physical operators, e.g., the operators £,/ and &g are
not required for the renormalization of the physical operators at one loop [60]. In the case
of evanescent four-fermion operators, the complete basis contains infinitely many elements
and we only list the operators required as counterterms to one-loop insertions of physical
operators in tables 8 and 10. Fierz-evanescent operators are listed in tables 9 and 11.

(D.1)

(vv)D + h.c. (LR)D + h.c. X2
E,p I/Lp (zﬁ)ym E.p éLp(ilD)eRr E | EuFH — F, Fr
uD uLp( ﬁ)uRT EG GfVGA“U — GﬁVGA“V
dD de( D)dRT ‘%’ FHVF/W
Ear GA, GAm

Table 5. Evanescent LEFT operators of dimension four in the HV scheme.

(IL)D2 (ER)D2 (1/1/)D2 + h.c. (fR)D2 + h.c.
ELp| Tupl(id), (D) ER|ErplGD), iD)en, EEE|WECGDNidwir EXE|EL,(iD)(iD)enr
EL | erpl(iDD), (iD)lenr EN|urpl(iDD), (i1D)|ury ELR Ly (i) (iD)ury
ngD ﬂLp[(zﬂ), (Zw)]uLT dD dRp[( lD)a( m)]dRr gdLLIJ% CZLp(i]p)(Up)dRr
Ebp | dup|GD), (iD))doy
(L)X (RR)X (vv)X + h.c. (LR)X + h.c.
S,f:y (TLptuyovie) FH 5612 (ErpiAuTverr)FH S,ﬁf (V{p(,*&w,qu)F“” SeLA/R (€LpGuvenrr)FH
ge,L:y (e WMWVELT)F“V 557 ({LRPWMTYV“RT)FW ELr (ﬁLP&IWURr)FW
51% ( Lqu'Yuqu)F“V Eﬁy (JRpi’AYu:YudRr)F“ 5dLR (‘ZLp6uude')Fuu
(‘:é‘,y (deZ’YM’}/,,dLT)FMV guRG (ﬂRpZ"%L’S/VTAURT)GAHV 55‘5 (ﬂLP&H,,TAuRT)GAW
ELL | (urpid, A TAur, ) GA™  ER | (dRpiY Y TAd Ry ) GAMY EXF (drpbu TAdR,)GAMY
gdLG (JLPW;LTYVTACILT)GAW

Table 6. Evanescent LEFT operators of dimension five in the HV scheme.
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(ZL)D® (ZL)XD (RR)XD (LR)XD + h.c.
P = = =
SfDl 17Lp(zé9)(2¢9)(1$ Vi Séu,yl (DLP?&W,VLT)FHV Ege’yl (éRPf_B)&uveRr)F“" gé?yl (5Lpi£6uu3Rr)F“"
ELpy | ELp (D) (i) (iD)er, EBun | PLpi@Apqove) F* EF | (ErpiPiAuivers)F*  EER (eLpiDmeny) FHY
Elpy |aLp (D) (i) (iP)urr 5:’,3,,{1 (VLpbuvidv,) Frv 551371 (erpbuvilPery) FH 55};{3 (erLpiPiAuTvens) FH
gdLDl dLP(iﬁ)(i )@P)dr g:waz (DLpi;Yu'_}’ui&VLr)F“V geﬂp»yz (éRpi’Q/u;VviweRr)F“U gefgﬁl (éLp&“yiﬁsRT)F‘—“/
g:wa (f’Lp’T/éVLr)(éuF#V) 557[) (éRp;/:RT)(éuF“V) 5!’52,2 (éLpﬁuuim€R7-)FHU
L P R = A _ A
(RR)D* EBem (CLp;lZ)JWCLr)Fw ERn (uRpg)awum)FW ELR | (ELpituiviber,) PP
eF Lo byl €| CrpiDitpver,)FH  ER | (rpiDifuyun,) FHr ELR (eLpAwerr) (OuFH)
eD1 eRp(ZD)(UD)(IB))eRr . [Z) r l}) eLn 5
- - Ex erp0uvilPer, ) FHY & URpO v tlPupr, ) FH*Y erLpYveRr Py
ER 1 |arp (i) (D) (i1D)ur, oo (CepPur ﬁ)“’ o (G I})R” o (Cntyenn) O.8)
_ ~ - ~ & - erpiYuyvilper,) FHY & URp Yt Pug, ) FHY £ urptlPo )RV
Efon DY D) D), Pz ) o I By (0t D)
ELp | (e )@uF™)  ERL | rpAeurd)@uF*) R | (i Do un) P
L A=y R =y g <=
EBun (ﬂLpf_Df’W“Lr)FW €Dan (dRPf_E)deRr)FW 51’55.,3 (@Lpi DA upe) FHY
3 A - .
() D* + hoc. gémz (@rLpt iy uLe) F* ggdn,z (drpi DAL dRr) I 55571 (aLpGuvilPupy)F*
RL N AN s - RS
&1 VLTPC(M)(M)(M)VM ngwl (GLpGuvildur,)FHY S(?le (dprp6uvilpdg, ) FHY 575‘11;72 (BLpGuvilPur,)FH
&) | VL C i) (i) iD)ver Elp | (ALpiuAvilur,)Fr Efnna | (drpiAuildp, )P ELE 5| (ALptuviPup, ) P
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Table 7. Evanescent LEFT operators of dimension six in the HV scheme containing at most two

fermion fields.
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Table 8. Evanescent four-fermion LEFT operators other than Fierz-evanescent ones that appear at
one loop in the HV scheme and conserve baryon and lepton number.
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(LL)[LL] — (LL][LL)

5551)’LL (erpy* err)(€rsyuert) — (€rpy ert)(ELsyuerr)
F1),LL|, - _ _ = 1 _
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5552)1,1%12
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E(FZ)I,RR

uddu

(F2)8,RR
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C.

o o _ _ 8Cr ,_ _ 8 _
(Urpa" TAup, ) (s T4 uRe) + 4(arp T up, ) (@rsT4upe) + T(“LpuRt)(uLsuRr) — (T ups) (ars T up,)
c

N,
7 — v 7 - 7 7 7 7 8 7 7
(drp"" dp,)(dLsOwdre) + 4(drpdry) (drsdre) +16(drpy T dge) (drs T dg,) + F(deth)(dLstr)
— . . - 8CF , - - 8 - -
(drp" T d g ) (drsG T die) + 4(drp T dpe ) (AT dpe) + NF (drpdre)(drsdrr) — ﬁ(deTAth)(dLsTAdRr)
o o ) ) N ) e )
(Urp" upe ) (drsGwdre) + 4(arpury) (drsdre) + 16(ar, T4 dre) (drsT4ury) + ~(Grpdre) (drsuny)
L - _ - 8Cr - 8 -
(1p0"" Ty ) (dLsb T4 dre) + 4Ly T upe ) (drsT dpe) + TF(uLdet)(dLsuRr) - F(ULPTAth)(dLSTAuRT')
R - _ . e - 8¢ -
(Urpe" dpe)(drsTuune) + 4(@rpdry ) (drsupe) + 16(ar, T upe) (drs T4 dRy) + F(uLpuRt)(dLstr)
o - _ . 8Cr . 8 .
(@rp" TAdRe) (A5G T ure) + 4(arpyTAdRe ) (drs T uge) + TF(ULPURZ)(dLstT) - ﬁ(uLpTAuRt)(dLsTAdRr)

Table 9. Fierz-evanescent LEFT operators that appear at one loop in the HV scheme and conserve
baryon and lepton number. Light gray operators are not needed as divergent counterterms and we do
not insert them into loops, but it is convenient to keep them for the extraction of finite counterterms.
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AL =2+ h.c. AB = AL =1+ h.c. AB = —-AL =1+ h.c.

ST (W, CA15 A ) @raAuduners)  Ema | Capy (uGTCE AT )Y Cory,)  Eniy " eapy (dRECATY AT, ) (E L Auud],)
SO W CARG A L) (rshuoaune)  Emmg Y sy (WELCVHF S WA CRuuryy) Ensy | eapn(uGTCEM Y ) (7,36, d},)
eV WF,00 0 i) (drAuoundis)  Epla " |eaps (5L CAM U ) (AR CRAL)  Enmpr™" | €apn (ufh CA#5 d] ><: LA vd]y)
Epntr (v, C3" e ) (drsipure) Ep | eapa(dgl Comul )l Coer)  Ep " eapy (dSECAHT AL, ) (7, AuTu],)
eSO (WE,0A e (drsudvure)  En " |eapy (AFECAMUE ) (WhhCRuers) s | €apn (AL CAM 7Y d3, )@ Autnd )
ELGVHEL 0P e ([dratudinuse)  En T |eapy (g A7 um(d TR g™ cas (G CE AR ) (71 5 y)
SuTe(;i‘LL (VL CAkqY U'\”@Lr)( Rs Vi Vv OrpULL) quf?’m foﬂv(d (eCLY )( Cf’w@m) 51‘;1(,,1;’“ fnﬁv(uilc’w’?"d DL i ,)
EnGntR (E,04" ) (drsyuune) Enii T €asn (dgE A5 U], ) (u] S CA e )
EXNEE 0, CA A e ) (dusiudvune)  En T eapy (ugT CART UG, ) (A CRyve )
Evi T WE O er ) (disiuiun)  Epu | eapy (dFECEP UG ) (W] Clpey,)
gli/esizlz,RL (’/LPCW”W Ferr)(dLsFuATauLe) 5%&})' Eaﬁ’y(de CHHAY uR J(ug C%’)u(’u)
ESVTE e en ) (dradivune)  Epg | eapn (dFECER UG, ) (d)E Coupy,)
ErRR (wl,CA*4" 3 e pe) (dRsFuAvirune) EyRL Capy (dgT O3, ) (ufy CRuTovry)

SQSJZ‘).RR Euﬁw(dRpCUWuRr)( ReCUuVeRL>

gz;/u(ul) o Em’f'v(dgp oAty uRT)(uLs CHuvery)

Table 10. Evanescent four-fermion LEFT operators other than Fierz-evanescent ones that appear at
one loop in the HV scheme and violate baryon and/or lepton number.

AB = AL =1+ h.c.

EFLLY ¢ 5y {(d%g;c‘?“yu[zr)(UZZC&IWQU) — 4(dgTCuf, ) (u}t Cers) + 8(dgT Cufl ) (uf CeLr)]
EFDRR e o, [(d‘IgC’(r“”um)(uRSCJWeRt) — (A5 Cufy, ) (ke Cern) + 8(d3E Cu) (i Ceny)]
ERDI eapn |(ugLCE df ) ()L CFpvre) — 4G Cdy ) ()L Cvre) + 8(ugTCdy, ) (d) - Cure)

AB = —-AL =1+ h.c.

ES | casy |(WEECTM dy ) P1sF i) + AU C AR, ) (Prady) — S(uSh Oy (Prody,)]

Table 11. Fierz-evanescent LEFT operators that appear at one loop in the HV scheme and violate
baryon and/or lepton number. Light gray operators are not needed as divergent counterterms and we
do not insert them into loops, but it is convenient to keep them for the extraction of finite counterterms.

,35,



Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1]

2]

[14]

[15]

W. Buchmiiller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor
Conservation, Nucl. Phys. B 268 (1986) 621 INnSPIRE].

B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Siz Terms in the Standard
Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

G. Isidori, F. Wilsch and D. Wyler, The Standard Model effective field theory at work,
arXiv:2303.16922 [INSPIRE].

E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the
Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [arXiv:1709.04486]
[INSPIRE].

Y. Liao, X.-D. Ma and Q.-Y. Wang, Fatending low energy effective field theory with a complete
set of dimension-7 operators, JHEP 08 (2020) 162 [arXiv:2005.08013] [INSPIRE].

C.W. Murphy, Low-Energy Effective Field Theory below the Electroweak Scale: Dimension-8
Operators, JHEP 04 (2021) 101 [arXiv:2012.13291] [INSPIRE].

H.-L. Li et al., Low energy effective field theory operator basis at d < 9, JHEP 06 (2021) 138
[arXiv:2012.09188] [INSPIRE].

W. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale: matching
at one loop, JHEP 10 (2019) 197 [Erratum ibid. 11 (2022) 148] [arXiv:1908.05295] [INSPIRE].

E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard
Model Dimension Siz Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087
[arXiv:1308.2627] INSPIRE].

E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard
Model Dimension Siz Operators II: Yukawa Dependence, JHEP 01 (2014) 035
[arXiv:1310.4838] [INSPIRE].

R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the
Standard Model Dimension Six Operators I1I: Gauge Coupling Dependence and Phenomenology,
JHEP 04 (2014) 159 [arXiv:1312.2014] [IxSPIRE].

E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the
Electroweak Scale: Anomalous Dimensions, JHEP 01 (2018) 084 [arXiv:1711.05270] [INSPIRE].

G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, QCD Nonleading Corrections to Weak
Decays as an Application of Regularization by Dimensional Reduction, Nucl. Phys. B 187 (1981)
461 [INSPIRE].

A.J. Buras and P.H. Weisz, QCD Nonleading Corrections to Weak Decays in Dimensional
Regularization and t Hooft-Veltman Schemes, Nucl. Phys. B 333 (1990) 66 [iINSPIRE].

M.J. Dugan and B. Grinstein, On the vanishing of evanescent operators, Phys. Lett. B 256
(1991) 239 [INSPIRE].

— 36 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(86)90262-2
https://inspirehep.net/literature/218149
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://inspirehep.net/literature/866649
https://arxiv.org/abs/2303.16922
https://inspirehep.net/literature/2647262
https://doi.org/10.1007/JHEP03(2018)016
https://arxiv.org/abs/1709.04486
https://inspirehep.net/literature/1623566
https://doi.org/10.1007/JHEP08(2020)162
https://arxiv.org/abs/2005.08013
https://inspirehep.net/literature/1796721
https://doi.org/10.1007/JHEP04(2021)101
https://arxiv.org/abs/2012.13291
https://inspirehep.net/literature/1838637
https://doi.org/10.1007/JHEP06(2021)138
https://arxiv.org/abs/2012.09188
https://inspirehep.net/literature/1837098
https://doi.org/10.1007/JHEP10(2019)197
https://arxiv.org/abs/1908.05295
https://inspirehep.net/literature/1749749
https://doi.org/10.1007/JHEP10(2013)087
https://arxiv.org/abs/1308.2627
https://inspirehep.net/literature/1247479
https://doi.org/10.1007/JHEP01(2014)035
https://arxiv.org/abs/1310.4838
https://inspirehep.net/literature/1261282
https://doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
https://inspirehep.net/literature/1268339
https://doi.org/10.1007/JHEP01(2018)084
https://arxiv.org/abs/1711.05270
https://inspirehep.net/literature/1636234
https://doi.org/10.1016/0550-3213(81)90473-9
https://doi.org/10.1016/0550-3213(81)90473-9
https://inspirehep.net/literature/158501
https://doi.org/10.1016/0550-3213(90)90223-Z
https://inspirehep.net/literature/279445
https://doi.org/10.1016/0370-2693(91)90680-O
https://doi.org/10.1016/0370-2693(91)90680-O
https://inspirehep.net/literature/301680

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[25]

[26]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Two loop anomalous dimension
matriz for AS = 1 weak nonleptonic decays I: O(a?), Nucl. Phys. B 400 (1993) 37
[hep-ph/9211304] [NSPIRE].

M. Ciuchini, E. Franco, G. Martinelli and L. Reina, The Delta S = 1 effective Hamiltonian
including next-to-leading order QCD and QED corrections, Nucl. Phys. B 415 (1994) 403
[hep-ph/9304257] [INSPIRE].

S. Herrlich and U. Nierste, Fvanescent operators, scheme dependences and double insertions,
Nucl. Phys. B 455 (1995) 39 [hep-ph/9412375] [InSPIRE].

G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev.
Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

M. Ciuchini et al., Nezt-to-leading order QCD corrections to Delta F = 2 effective Hamiltonians,
Nucl. Phys. B 523 (1998) 501 [hep-ph/9711402] [INSPIRE].

A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing
four quark operators within and beyond the standard model, Nucl. Phys. B 586 (2000) 397
[hep-ph/0005183] [INSPIRE].

M. Misiak and M. Steinhauser, Three loop matching of the dipole operators for b — sy and
b — sg, Nucl. Phys. B 683 (2004) 277 [hep-ph/0401041] [INSPIRE].

M. Czakon, U. Haisch and M. Misiak, Four-Loop Anomalous Dimensions for Radiative
Flavour-Changing Decays, JHEP 03 (2007) 008 [hep-ph/0612329] [INSPIRE].

V. Cirigliano, M. Gonzdlez-Alonso and M.L. Graesser, Non-standard Charged Current
Interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].

W. Dekens and J. de Vries, Renormalization Group Running of Dimension-Sixz Sources of Parity
and Time-Reversal Violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].

J. Heeck and W. Rodejohann, Neutrinoless Quadruple Beta Decay, EPL 103 (2013) 32001
[arXiv:1306.0580] [NSPIRE].

G.M. Pruna and A. Signer, The u — ey decay in a systematic effective field theory approach with
dimension 6 operators, JHEP 10 (2014) 014 [arXiv:1408.3565] [INSPIRE].

T. Bhattacharya et al., Dimension-5 CP-odd operators: QCD mizing and renormalization, Phys.
Rev. D 92 (2015) 114026 [arXiv:1502.07325] [NSPIRE].

J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six
operators for b — s and b — ¢ transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].

S. Davidson, u — ey and matching at my, Eur. Phys. J. C' 76 (2016) 370 [arXiv:1601.07166]
[INSPIRE].

F. Feruglio, P. Paradisi and A. Pattori, Revisiting Lepton Flavor Universality in B Decays, Phys.
Rev. Lett. 118 (2017) 011801 [arXiv:1606.00524] [INSPIRE].

A. Crivellin, S. Davidson, G.M. Pruna and A. Signer, Renormalisation-group improved analysis
of 1 — e processes in a systematic effective-field-theory approach, JHEP 05 (2017) 117
[arXiv:1702.03020] [iNSPIRE].

M. Bordone, G. Isidori and S. Trifinopoulos, Semileptonic B-physics anomalies: A general EFT
analysis within U(2)™ flavor symmetry, Phys. Rev. D 96 (2017) 015038 [arXiv:1702.07238]
[INSPIRE].

M. Misiak, A. Rehman and M. Steinhauser, NNLO QCD counterterm contributions to B — X
for the physical value of m., Phys. Lett. B 770 (2017) 431 [arXiv:1702.07674] [INSPIRE].

— 37 —


https://doi.org/10.1016/0550-3213(93)90397-8
https://arxiv.org/abs/hep-ph/9211304
https://inspirehep.net/literature/340945
https://doi.org/10.1016/0550-3213(94)90118-X
https://arxiv.org/abs/hep-ph/9304257
https://inspirehep.net/literature/353723
https://doi.org/10.1016/0550-3213(95)00474-7
https://arxiv.org/abs/hep-ph/9412375
https://inspirehep.net/literature/381905
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://arxiv.org/abs/hep-ph/9512380
https://inspirehep.net/literature/403867
https://doi.org/10.1016/S0550-3213(98)00161-8
https://arxiv.org/abs/hep-ph/9711402
https://inspirehep.net/literature/451338
https://doi.org/10.1016/S0550-3213(00)00437-5
https://arxiv.org/abs/hep-ph/0005183
https://inspirehep.net/literature/527535
https://doi.org/10.1016/j.nuclphysb.2004.02.006
https://arxiv.org/abs/hep-ph/0401041
https://inspirehep.net/literature/642361
https://doi.org/10.1088/1126-6708/2007/03/008
https://arxiv.org/abs/hep-ph/0612329
https://inspirehep.net/literature/735631
https://doi.org/10.1007/JHEP02(2013)046
https://arxiv.org/abs/1210.4553
https://inspirehep.net/literature/1191027
https://doi.org/10.1007/JHEP05(2013)149
https://arxiv.org/abs/1303.3156
https://inspirehep.net/literature/1223637
https://doi.org/10.1209/0295-5075/103/32001
https://arxiv.org/abs/1306.0580
https://inspirehep.net/literature/1236811
https://doi.org/10.1007/JHEP10(2014)014
https://arxiv.org/abs/1408.3565
https://inspirehep.net/literature/1311232
https://doi.org/10.1103/PhysRevD.92.114026
https://doi.org/10.1103/PhysRevD.92.114026
https://arxiv.org/abs/1502.07325
https://inspirehep.net/literature/1346401
https://doi.org/10.1007/JHEP05(2016)037
https://arxiv.org/abs/1512.02830
https://inspirehep.net/literature/1408895
https://doi.org/10.1140/epjc/s10052-016-4207-5
https://arxiv.org/abs/1601.07166
https://inspirehep.net/literature/1417007
https://doi.org/10.1103/PhysRevLett.118.011801
https://doi.org/10.1103/PhysRevLett.118.011801
https://arxiv.org/abs/1606.00524
https://inspirehep.net/literature/1466777
https://doi.org/10.1007/JHEP05(2017)117
https://arxiv.org/abs/1702.03020
https://inspirehep.net/literature/1512935
https://doi.org/10.1103/PhysRevD.96.015038
https://arxiv.org/abs/1702.07238
https://inspirehep.net/literature/1514906
https://doi.org/10.1016/j.physletb.2017.05.008
https://arxiv.org/abs/1702.07674
https://inspirehep.net/literature/1515045

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[50]

[51]

[52]

[53]

V. Cirigliano, S. Davidson and Y. Kuno, Spin-dependent u — e conversion, Phys. Lett. B 771
(2017) 242 [arXiv:1703.02057] INSPIRE].

J. Fuentes-Martin, P. Ruiz-Femenia, A. Vicente and J. Virto, DsizTools 2.0: The Effective Field
Theory Toolkit, Eur. Phys. J. C' 81 (2021) 167 [arXiv:2010.16341] INSPIRE].

J. Aebischer, M. Fael, C. Greub and J. Virto, B physics Beyond the Standard Model at One
Loop: Complete Renormalization Group Evolution below the Electroweak Scale, JHEP 09 (2017)
158 [arXiv:1704.06639] [INSPIRE].

M. Gonzélez-Alonso, J. Martin Camalich and K. Mimouni, Renormalization-group evolution of
new physics contributions to (semi)leptonic meson decays, Phys. Lett. B 772 (2017) 777
[arXiv:1706.00410] [INSPIRE].

A. Falkowski, M. Gonzélez-Alonso and K. Mimouni, Compilation of low-energy constraints on
4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].

G. Panico, A. Pomarol and M. Riembau, EFT approach to the electron Electric Dipole Moment
at the two-loop level, JHEP 04 (2019) 090 [arXiv:1810.09413] [INSPIRE].

M.B. Gavela, P. Hernandez, J. Orloff and O. Pene, Standard model CP violation and baryon
asymmetry, Mod. Phys. Lett. A 9 (1994) 795 [hep-ph/9312215] [INSPIRE].

M.B. Gavela, M. Lozano, J. Orloff and O. Pene, Standard model CP wviolation and baryon
asymmetry. Part 1: Zero temperature, Nucl. Phys. B 430 (1994) 345 [hep-ph/9406288]
[INSPIRE].

M.B. Gavela et al., Standard model CP violation and baryon asymmetry. Part 2: Finite
temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].

P. Huet and E. Sather, Electroweak baryogenesis and standard model CP violation, Phys. Rev. D
51 (1995) 379 [hep-ph/9404302] [INSPIRE].

F. Jegerlehner, Facts of life with s , Fur. Phys. J. C 18 (2001) 673 [hep-th/0005255]
[NSPIRE].

G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl.
Phys. B 44 (1972) 189 [NnSPIRE].

P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle,
Commun. Math. Phys. 52 (1977) 11 [INSPIRE].

M. Chala and A. Titov, One-loop matching in the SMEFT extended with a sterile neutrino,
JHEP 05 (2020) 139 [arXiv:2001.07732] [INSPIRE].

T. Li, X.-D. Ma and M.A. Schmidt, General neutrino interactions with sterile neutrinos in light
of coherent neutrino-nucleus scattering and meson invisible decays, JHEP 07 (2020) 152
[arXiv:2005.01543] [INSPIRE].

J.A. Dixon and J.C. Taylor, Renormalization of Wilson operators in gauge theories, Nucl. Phys.
B 78 (1974) 552 [INSPIRE].

H. Kluberg-Stern and J.B. Zuber, Renormalization of Nonabelian Gauge Theories in a
Background Field Gauge. 2. Gauge Invariant Operators, Phys. Rev. D 12 (1975) 3159 [INSPIRE].

S.D. Joglekar and B.W. Lee, General Theory of Renormalization of Gauge Invariant Operators,
Annals Phys. 97 (1976) 160 [INSPIRE].

W.S. Deans and J.A. Dixon, Theory of Gauge Invariant Operators: Their Renormalization and
S Matriz Elements, Phys. Rev. D 18 (1978) 1113 [inSPIRE].

— 38 —


https://doi.org/10.1016/j.physletb.2017.05.053
https://doi.org/10.1016/j.physletb.2017.05.053
https://arxiv.org/abs/1703.02057
https://inspirehep.net/literature/1516419
https://doi.org/10.1140/epjc/s10052-020-08778-y
https://arxiv.org/abs/2010.16341
https://inspirehep.net/literature/1827396
https://doi.org/10.1007/JHEP09(2017)158
https://doi.org/10.1007/JHEP09(2017)158
https://arxiv.org/abs/1704.06639
https://inspirehep.net/literature/1593947
https://doi.org/10.1016/j.physletb.2017.07.003
https://arxiv.org/abs/1706.00410
https://inspirehep.net/literature/1602183
https://doi.org/10.1007/JHEP08(2017)123
https://arxiv.org/abs/1706.03783
https://inspirehep.net/literature/1604898
https://doi.org/10.1007/JHEP04(2019)090
https://arxiv.org/abs/1810.09413
https://inspirehep.net/literature/1699600
https://doi.org/10.1142/S0217732394000629
https://arxiv.org/abs/hep-ph/9312215
https://inspirehep.net/literature/360734
https://doi.org/10.1016/0550-3213(94)00409-9
https://arxiv.org/abs/hep-ph/9406288
https://inspirehep.net/literature/38253
https://doi.org/10.1016/0550-3213(94)00410-2
https://arxiv.org/abs/hep-ph/9406289
https://inspirehep.net/literature/38254
https://doi.org/10.1103/PhysRevD.51.379
https://doi.org/10.1103/PhysRevD.51.379
https://arxiv.org/abs/hep-ph/9404302
https://inspirehep.net/literature/373196
https://doi.org/10.1007/s100520100573
https://arxiv.org/abs/hep-th/0005255
https://inspirehep.net/literature/527910
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://inspirehep.net/literature/74886
https://doi.org/10.1007/BF01609069
https://inspirehep.net/literature/124212
https://doi.org/10.1007/JHEP05(2020)139
https://arxiv.org/abs/2001.07732
https://inspirehep.net/literature/1777315
https://doi.org/10.1007/JHEP07(2020)152
https://arxiv.org/abs/2005.01543
https://inspirehep.net/literature/1794148
https://doi.org/10.1016/0550-3213(74)90598-7
https://doi.org/10.1016/0550-3213(74)90598-7
https://inspirehep.net/literature/94549
https://doi.org/10.1103/PhysRevD.12.3159
https://inspirehep.net/literature/99010
https://doi.org/10.1016/0003-4916(76)90225-6
https://inspirehep.net/literature/100168
https://doi.org/10.1103/PhysRevD.18.1113
https://inspirehep.net/literature/136277

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

J.C. Collins, Renormalization, Cambridge University Press, Cambridge (2023)
[DDI:10.1017/9781009401807] [INSPIRE].

L.F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys. B 185 (1981) 189
[INSPIRE].

L.F. Abbott, M.T. Grisaru and R.K. Schaefer, The Background Field Method and the S Matriz,
Nucl. Phys. B 229 (1983) 372 [INSPIRE].

E.E. Jenkins, A.V. Manohar, L. Naterop and J. Pages, An algebraic formula for two loop
renormalization of scalar quantum field theory, JHEP 12 (2023) 165 [arXiv:2308.06315]
[INSPIRE].

J. Aebischer and M. Pesut, One-loop Fierz transformations, JHEP 10 (2022) 090
[arXiv:2208.10513] [INSPIRE].

J. Fuentes-Martin et al., Fvanescent operators in one-loop matching computations, JHEP 02
(2023) 031 [arXiv:2211.09144] INSPIRE].

H. Bélusca-Maito et al., Two-loop application of the Breitenlohner-Maison/’t Hooft- Veltman
scheme with non-anticommuting vs: full renormalization and symmetry-restoring counterterms
in an abelian chiral gauge theory, JHEP 11 (2021) 159 [arXiv:2109.11042] [INSPIRE].

M. Jamin and M.E. Lautenbacher, TRACER: Version 1.1: A Mathematica package for gamma
algebra in arbitrary dimensions, Comput. Phys. Commun. 74 (1993) 265 [INSPIRE].

E.E. Jenkins and A.V. Manohar, Algebraic Structure of Lepton and Quark Flavor Invariants and
CP Violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].

R. Ferrari, A. Le Yaouanc, L. Oliver and J.C. Raynal, Gauge invariance and dimensional
reqularization with s in flavor changing neutral processes, Phys. Rev. D 52 (1995) 3036
[INSPIRE].

C.P. Martin and D. Sanchez-Ruiz, Action principles, restoration of BRS symmetry and the
renormalization group equation for chiral non-Abelian gauge theories in dimensional
renormalization with a nonanticommuting s , Nucl. Phys. B 572 (2000) 387 [hep-th/9905076]
[INSPIRE].

P.A. Grassi, T. Hurth and M. Steinhauser, Practical algebraic renormalization, Annals Phys. 288
(2001) 197 [hep-ph/9907426] [INSPIRE].

H. Bélusca-Maito, A. Ilakovac, M. Mador-Bozinovi¢ and D. Stéckinger, Dimensional
reqularization and Breitenlohner-Maison/’t Hooft- Veltman scheme for ~ys applied to chiral YM
theories: full one-loop counterterm and RGE structure, JHEP 08 (2020) 024
[arXiv:2004.14398] [INSPIRE].

C. Cornella, F. Feruglio and L. Vecchi, Gauge invariance and finite counterterms in chiral gauge
theories, JHEP 02 (2023) 244 [arXiv:2205.10381] INSPIRE].

H. Bélusca-Maito et al., Introduction to Renormalization Theory and Chiral Gauge Theories in
Dimensional Regularization with Non-Anticommuting s, Symmetry 15 (2023) 622
[arXiv:2303.09120] [INSPIRE].

M. Misiak and M. Miinz, Two loop mizing of dimension five flavor changing operators, Phys.
Lett. B 344 (1995) 308 [hep-ph/9409454] [iNSPIRE].

K.G. Chetyrkin, M. Misiak and M. Miinz, Beta functions and anomalous dimensions up to three
loops, Nucl. Phys. B 518 (1998) 473 [hep-ph/9711266] [INSPIRE].

-39 —


https://doi.org/10.1017/9781009401807
https://inspirehep.net/literature/209810
https://doi.org/10.1016/0550-3213(81)90371-0
https://inspirehep.net/literature/155719
https://doi.org/10.1016/0550-3213(83)90337-1
https://inspirehep.net/literature/13462
https://doi.org/10.1007/JHEP12(2023)165
https://arxiv.org/abs/2308.06315
https://inspirehep.net/literature/2687814
https://doi.org/10.1007/JHEP10(2022)090
https://arxiv.org/abs/2208.10513
https://inspirehep.net/literature/2140456
https://doi.org/10.1007/JHEP02(2023)031
https://doi.org/10.1007/JHEP02(2023)031
https://arxiv.org/abs/2211.09144
https://inspirehep.net/literature/2183261
https://doi.org/10.1007/JHEP11(2021)159
https://arxiv.org/abs/2109.11042
https://inspirehep.net/literature/1926257
https://doi.org/10.1016/0010-4655(93)90097-V
https://inspirehep.net/literature/319227
https://doi.org/10.1088/1126-6708/2009/10/094
https://arxiv.org/abs/0907.4763
https://inspirehep.net/literature/827023
https://doi.org/10.1103/PhysRevD.52.3036
https://inspirehep.net/literature/382959
https://doi.org/10.1016/S0550-3213(99)00453-8
https://arxiv.org/abs/hep-th/9905076
https://inspirehep.net/literature/499718
https://doi.org/10.1006/aphy.2001.6117
https://doi.org/10.1006/aphy.2001.6117
https://arxiv.org/abs/hep-ph/9907426
https://inspirehep.net/literature/504176
https://doi.org/10.1007/JHEP08(2020)024
https://arxiv.org/abs/2004.14398
https://inspirehep.net/literature/1793587
https://doi.org/10.1007/JHEP02(2023)244
https://arxiv.org/abs/2205.10381
https://inspirehep.net/literature/2086434
https://doi.org/10.3390/sym15030622
https://arxiv.org/abs/2303.09120
https://inspirehep.net/literature/2643048
https://doi.org/10.1016/0370-2693(94)01553-O
https://doi.org/10.1016/0370-2693(94)01553-O
https://arxiv.org/abs/hep-ph/9409454
https://inspirehep.net/literature/378108
https://doi.org/10.1016/S0550-3213(98)00122-9
https://arxiv.org/abs/hep-ph/9711266
https://inspirehep.net/literature/450885

[71]

[90]

[91]

[92]

[93]

J.-N. Lang, S. Pozzorini, H. Zhang and M.F. Zoller, Two-Loop Rational Terms in Yang-Mills
Theories, JHEP 10 (2020) 016 [arXiv:2007.03713] [INSPIRE].

E. Witten, Dyons of Charge ef/2r, Phys. Lett. B 86 (1979) 283 [INSPIRE].

C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys.
Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [iNSPIRE].

H. Georgi, T. Tomaras and A. Pais, Strong CP violation without instantons, Phys. Rev. D 23
(1981) 469 [INSPIRE].

S.L. Adler, Azial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

J.S. Bell and R. Jackiw, A PCAC puzzle: ™ — ~v in the ¢ model, Nuovo Cim. A 60 (1969) 47
[NSPIRE].

K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev. Lett. 42
(1979) 1195 [INSPIRE].

K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D 21 (1980) 2848
[Erratum ibid. 22 (1980) 1499] [INnSPIRE].

G. Bonneau, Trace and Azial Anomalies in Dimensional Renormalization Through Zimmermann

Like Identities, Nucl. Phys. B 171 (1980) 477 [InSPIRE].

M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl.
Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

O.L. Crosas et al., One-loop matching of the CP-odd three-gluon operator to the gradient flow,
Phys. Lett. B 847 (2023) 138301 [arXiv:2308.16221] [INSPIRE].

P. Nogueira, Automatic Feynman Graph Generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
J.AM. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman
amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys.
Commun. 207 (2016) 432 [arXiv:1601.01167] INSPIRE].

V. Shtabovenko, FeynHelpers: Connecting FeynCalc to FIRE and Package-X, Comput. Phys.
Commun. 218 (2017) 48 [arXiv:1611.06793] [INSPIRE].

V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements,
Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [NSPIRE].

H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals,
Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

H.H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of one-loop
integrals, Comput. Phys. Commun. 218 (2017) 66 [arXiv:1612.00009] [INSPIRE].

V. Cirigliano, E. Mereghetti and P. Stoffer, Non-perturbative renormalization scheme for the C'P
-odd three-gluon operator, JHEP 09 (2020) 094 [arXiv:2004.03576] [INSPIRE].

SYMLAT collaboration, Short flow-time coefficients of C'P-violating operators, Phys. Rev. D 102
(2020) 034509 [arXiv:2005.04199] INSPIRE].

E. Mereghetti et al., One-loop matching for quark dipole operators in a gradient-flow scheme,
JHEP 04 (2022) 050 [arXiv:2111.11449] [NSPIRE].

— 40 —


https://doi.org/10.1007/JHEP10(2020)016
https://arxiv.org/abs/2007.03713
https://inspirehep.net/literature/1805861
https://doi.org/10.1016/0370-2693(79)90838-4
https://inspirehep.net/literature/142191
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1103/PhysRevLett.124.081803
https://arxiv.org/abs/2001.11966
https://inspirehep.net/literature/1778151
https://doi.org/10.1103/PhysRevD.23.469
https://doi.org/10.1103/PhysRevD.23.469
https://inspirehep.net/literature/156707
https://doi.org/10.1103/PhysRev.177.2426
https://inspirehep.net/literature/55000
https://doi.org/10.1007/BF02823296
https://inspirehep.net/literature/54998
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://inspirehep.net/literature/140082
https://doi.org/10.1103/PhysRevD.21.2848
https://inspirehep.net/literature/152234
https://doi.org/10.1016/0550-3213(80)90382-X
https://inspirehep.net/literature/144644
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/literature/451284
https://doi.org/10.1016/j.physletb.2023.138301
https://arxiv.org/abs/2308.16221
https://inspirehep.net/literature/2692408
https://doi.org/10.1006/jcph.1993.1074
https://inspirehep.net/literature/315611
https://arxiv.org/abs/math-ph/0010025
https://inspirehep.net/literature/541001
https://arxiv.org/abs/1707.06453
https://inspirehep.net/literature/1610864
https://doi.org/10.1016/0010-4655(91)90130-D
https://inspirehep.net/literature/28757
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
https://inspirehep.net/literature/1413756
https://doi.org/10.1016/j.cpc.2017.04.014
https://doi.org/10.1016/j.cpc.2017.04.014
https://arxiv.org/abs/1611.06793
https://inspirehep.net/literature/1499508
https://doi.org/10.1016/j.cpc.2020.107478
https://arxiv.org/abs/2001.04407
https://inspirehep.net/literature/1775290
https://doi.org/10.1016/j.cpc.2015.08.017
https://arxiv.org/abs/1503.01469
https://inspirehep.net/literature/1347391
https://doi.org/10.1016/j.cpc.2017.04.015
https://arxiv.org/abs/1612.00009
https://inspirehep.net/literature/1501257
https://doi.org/10.1007/JHEP09(2020)094
https://arxiv.org/abs/2004.03576
https://inspirehep.net/literature/1790224
https://doi.org/10.1103/PhysRevD.102.034509
https://doi.org/10.1103/PhysRevD.102.034509
https://arxiv.org/abs/2005.04199
https://inspirehep.net/literature/1794914
https://doi.org/10.1007/JHEP04(2022)050
https://arxiv.org/abs/2111.11449
https://inspirehep.net/literature/1973849

[94] J. Biihler and P. Stoffer, One-loop matching of CP-odd four-quark operators to the gradient-flow
scheme, JHEP 08 (2023) 194 [arXiv:2304.00985] [INSPIRE].

[95] A.J. Buras, Weak Hamiltonian, CP violation and rare decays, in the proceedings of the Les
Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of
Particle Interactions, Les Houches, France, July 28 — September 05 (1997), p. 281-539
[hep-ph/9806471] [INSPIRE].

[96] G.’t Hooft, Dimensional reqularization and the renormalization group, Nucl. Phys. B 61 (1973)
455 [INSPIRE].

— 41 —


https://doi.org/10.1007/JHEP08(2023)194
https://arxiv.org/abs/2304.00985
https://inspirehep.net/literature/2648191
https://arxiv.org/abs/hep-ph/9806471
https://inspirehep.net/literature/472266
https://doi.org/10.1016/0550-3213(73)90376-3
https://doi.org/10.1016/0550-3213(73)90376-3
https://inspirehep.net/literature/85150

	Introduction
	LEFT
	Lagrangian and power counting
	Nuisance operators
	Background-field method

	Scheme definition
	Dimensional regularization
	Evanescent operators
	Bosonic and fermion-bilinear operators
	Evanescent four-fermion operators and Fierz relations

	Chiral symmetry

	Renormalization and field redefinitions
	Renormalization procedure
	Equations of motion and non-linear field redefinitions
	Theta terms and anomalous axial rotations

	Calculation and results
	Summary and conclusions
	Acknowledgements
	Conventions
	Dirac algebra
	Color algebra

	Conventions for the supplementary material
	Renormalization-group equations at two loops
	LEFT operator basis
	On-shell basis
	On-shell-redundant operators
	Evanescent operators


