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Abstract: The transverse momentum (pT) and centrality dependence of the nuclear modifi-
cation factor RAA of prompt and non-prompt J/ψ, the latter originating from the weak decays
of beauty hadrons, have been measured by the ALICE collaboration in Pb–Pb collisions at
√
sNN = 5.02 TeV. The measurements are carried out through the e+e− decay channel at midra-

pidity (|y| < 0.9) in the transverse momentum region 1.5 < pT < 10 GeV/c. Both prompt
and non-prompt J/ψ measurements indicate a significant suppression for pT > 5 GeV/c,
which becomes stronger with increasing collision centrality. The results are consistent with
similar LHC measurements in the overlapping pT intervals, and cover the kinematic region
down to pT = 1.5 GeV/c at midrapidity, not accessible by other LHC experiments. The
suppression of prompt J/ψ in central and semicentral collisions exhibits a decreasing trend
towards lower transverse momentum, described within uncertainties by models implementing
J/ψ production from recombination of c and c quarks produced independently in different
partonic scatterings. At high transverse momentum, transport models including quarkonium
dissociation are able to describe the suppression for prompt J/ψ. For non-prompt J/ψ, the
suppression predicted by models including both collisional and radiative processes for the
computation of the beauty-quark energy loss inside the quark-gluon plasma is consistent
with measurements within uncertainties.
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1 Introduction

Quantum chromodynamics (QCD) calculations on the lattice [1–4] predict the existence of
the quark-gluon plasma (QGP), a state of strongly-interacting matter characterised by quark
and gluon degrees of freedom, expected to be produced at extremely high temperatures and
energy densities. Such conditions can be realised in the laboratory by colliding heavy ions at
ultra-relativistic energies, enabling the study of the properties of this state of matter, as shown
by multiple measurements carried out at the SPS [5, 6], RHIC [7–10] and LHC [11]. Heavy
quarks, i.e. charm and beauty, are mainly produced in hard parton-parton scatterings and on
a shorter time scale than the QGP formation time at LHC energies (τQGP ≈ 1.5 fm/c) [12, 13],
thus experiencing the full QGP evolution. Charmonia, bound states of a charm and an anti-
charm quark, are interesting probes of the QGP. In fact, it was predicted that their production
would be suppressed in this medium due to static colour screening resulting from the high
density of colour charges inside it [14] or due to dynamical dissociation [15]. A suppression of
the J/ψ yield in heavy-ion collisions relative to proton-proton collisions was observed at the
SPS [16, 17], RHIC [18–21] and LHC [22–31]. However, at LHC energies, the J/ψ suppression
is significantly reduced compared to lower energy results, in particular at low transverse
momentum (pT) and in more central collisions. These findings are interpreted by considering
an additional contribution to the J/ψ production, known as regeneration, according to
which the abundantly produced charm and anti-charm quarks from different hard partonic
scatterings can recombine to form charmonium states [32, 33]. Previous ALICE inclusive J/ψ
measurements at both central and forward rapidity, which have revealed significantly less
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suppression of J/ψ at low transverse momentum compared to lower energies [27, 28, 31] as well
as non-zero elliptic flow [34, 35], have clearly demonstrated the relevance of this mechanism.

Different phenomenological scenarios are assumed for the description of charmonium
production in heavy-ion collisions. In the Statistical Hadronisation model [32, 36], the
abundances of all charmonium states are determined by thermal weights at the chemical
freeze-out. By contrast, according to several partonic transport models [33, 37, 38] the
charmonium states can be produced via regeneration throughout the full evolution of the
QGP phase. Recent inclusive J/ψ results in Pb–Pb collisions at √sNN = 5.02 TeV indicate that
both approaches can provide a description of the measured suppression within uncertainties in
the low-pT region [27, 28, 31]. Results of ψ(2S) suppression recently released by the ALICE
collaboration [39] show that transport models better reproduce charmonium measurements
for central events compared to the Statistical Hadronisation model. Besides providing a good
description of the production, transport models are also able to describe the elliptic flow of
inclusive J/ψ [34, 40]. As the pT of the J/ψ increases, the contribution from regeneration
becomes less relevant, while charmonium dissociation and fragmentation of high-energy
partons into charmonia become dominant.

Inclusive J/ψ production in high-energy hadronic collisions consists of several contribu-
tions: the J/ψ produced directly and from the decays of higher mass charmonium states (e.g.
ψ(2S) or χc), known as the “prompt” contribution, and J/ψ originating from the weak decays
of beauty hadrons. The latter component, referred to as “non-prompt”, is characterised by
a production vertex displaced with respect to the primary vertex of the collision, and this
feature is exploited experimentally to separate the two contributions. The measurement
of prompt J/ψ production enables a direct comparison with prompt charmonium models.
In addition, the non-prompt J/ψ production measurement grants a direct insight into the
suppression of beauty hadrons, which are expected to be sensitive to the properties of the
medium created in heavy-ion collisions as ancestor beauty quarks experience energy loss
by interacting with QGP constituents. The energy loss of partons inside the medium is
expected to happen via both radiative [41, 42] and elastic collisional processes [43–45]. The
relative contribution of the former is expected to increase with pT. The energy loss strongly
depends on the colour charge of the parton, being larger for gluons than for quarks, as well
as on the parton mass [46–48]. The production of open heavy-flavour hadrons in nuclear
collisions is also affected by in-medium hadronisation effects. Due to the high quark density
in the QGP, heavy quarks can also hadronise via coalescence, by recombining with other
light flavour quarks inside the medium [49–51].

In order to interpret both prompt and non-prompt J/ψ results in nuclear collisions, cold
nuclear matter (CNM) effects need to be considered. The main effect at LHC energies is
represented by the modification of the parton distribution functions of protons and neutrons
inside nuclei compared to the ones of the free nucleons [52]. These effects are usually addressed
through measurements in proton-nucleus collisions at the same centre-of-mass energy and are
expected to be effective below 3 GeV/c for prompt J/ψ, as shown by recent J/ψ results in
p–Pb collisions at √

sNN = 5.02 TeV [53]. For non-prompt J/ψ, a small suppression with no
significant pT dependence is observed, although with large uncertainties [53].
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At LHC energies in heavy-ion collisions, the production of prompt and non-prompt J/ψ
was measured at midrapidity by the CMS [22] and ALICE [54] collaborations in Pb–Pb
collisions at √sNN = 2.76 TeV. At the centre-of-mass energy of √sNN = 5.02 TeV in the central
rapidity region, the ATLAS [29] and CMS [30] collaborations measured the suppression of
prompt and non-prompt J/ψ at high transverse momentum. At low pT, inclusive J/ψ
measurements were carried out by the ALICE collaboration [28, 31]. In this article, pT
and centrality dependent measurements of prompt and non-prompt J/ψ production at
midrapidity in Pb–Pb collisions at √

sNN = 5.02 TeV are presented. These results, obtained
down to pT = 1.5 GeV/c, have a unique kinematic coverage at the LHC compared to existing
midrapidity measurements at the same centre-of-mass energy, which are available only at high
transverse momentum. Furthermore, they have a significantly improved precision compared
to previous published ALICE results at lower energy.

This article is organised as follows: the ALICE apparatus and data samples are described
in section 2, the analysis technique is presented in section 3, results and comparison with
similar measurements from other experiments and model calculations are discussed in section 4,
and finally the summary is provided in section 5.

2 Experimental apparatus and data sample

The ALICE detector consists of a central barrel with a pseudorapidity coverage of |η| < 0.9
and a forward rapidity muon spectrometer with a pseudorapidity coverage for muons of
−4 < η < −2.5. It also includes forward and backward pseudorapidity detectors employed
for triggering, background rejection, and event characterisation. Central barrel detectors
are placed inside a magnetic field B = 0.5 T provided by a solenoidal magnet. A complete
description of the detector and an overview of its performance are discussed in refs. [55, 56].
The main detectors employed for the analysis described in this article are the Inner Tracking
System (ITS) [56], the Time Projection Chamber (TPC) [57] and the V0 detector [58]. Both
ITS and TPC detectors enable the measurement of inclusive J/ψ mesons via the dielectron
decay channel in the central rapidity region down to zero pT. The ITS consists of six layers
of silicon detectors, with the two innermost layers composed of silicon pixel detectors (SPD)
which provide the spatial resolution to separate prompt and non-prompt J/ψ on a statistical
basis. The TPC is the main tracking detector of the central barrel. In addition, it allows for
particle identification via the measurement of the specific ionisation energy loss dE/dx in the
detector gas. The V0 detector consists of two scintillator arrays placed on each side of the
interaction point (with pseudorapidity coverage 2.8 < η < 5.1 and −3.7 < η < −1.7), and it is
used to reject offline beam-induced background events, to define a minimum bias trigger, and
to characterise the event centrality. The zero degree calorimeters [59], located at ±112.5 m
on both sides of the interaction point, are used to reject electromagnetic interactions and
beam-induced background in Pb–Pb collisions. The results presented in this article are based
on the same data samples of Pb–Pb collisions at √

sNN = 5.02 TeV employed for the inclusive
J/ψ analysis [31]. In particular, it consist of a combination of the data samples collected
during the years 2015 and 2018 of the LHC Run 2. In order to obtain a uniform acceptance
of the detectors, only events with a reconstructed primary vertex position along the beam
line located within ±10 cm from the centre of the detector were considered. In addition,
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consecutive events triggered within a time interval smaller than the readout time of the TPC
were discarded as these are expected to have a high total charge deposition in the active
volume and consequently significantly worse particle identification performance of the TPC.
The datasets are collected with a minimum bias triggered event sample, provided by the
coincidence of signals in the two scintillator arrays of the V0 detector. The corresponding
integrated luminosity is about 24 µb−1 [60]. In addition, centrality triggered samples, whose
trigger definition is based on the amplitude of the signal collected in the V0 detector, were
used. These correspond to central (0–10%) and semicentral (30–50%) events, equivalent to
an integrated luminosity of 105 and 51 µb−1 [60], respectively.

3 Data analysis

In order to estimate hot nuclear matter effects, the nuclear modification factor can be defined
as the production yield in Pb–Pb collisions at √

sNN = 5.02 TeV normalised to the reference
production cross section in pp collisions at the same energy and scaled by the average nuclear
overlap function ⟨TAA⟩ [60]:

RAA = dN/dpTdy
⟨TAA⟩ × dσpp/dpTdy . (3.1)

Inclusive J/ψ measurements with no separation between prompt and non-prompt con-
tributions are carried out by the ALICE collaboration at midrapidity (|y| < 0.9) in Pb–Pb
collisions at √

sNN = 5.02 TeV, as discussed in ref. [31]. The nuclear modification factors of
prompt and non-prompt J/ψ at midrapidity can be obtained by combining inclusive J/ψ RAA
measurements with non-prompt J/ψ fractions (fB), the latter defined as the ratios of the
production yields of J/ψ mesons originating from beauty-hadron decays to that of inclusive
J/ψ, estimated in both Pb–Pb collisions and pp collisions at the same centre-of-mass energy.

3.1 Non-prompt J/ψ analysis in Pb–Pb collisions

Selection of J/ψ candidates. The event selection and track quality requirements used
in the analysis discussed in this article are identical to those used for the corresponding
midrapidity inclusive J/ψ RAA analysis in Pb–Pb collisions at √sNN = 5.02 TeV [31]. Prompt
and non-prompt J/ψ measurements are carried out in the J/ψ transverse momentum interval
1.5–10 GeV/c and in four different centrality classes, namely 0–10%, 10–30%, 30–50%, and
50–90%. The results are presented as a function of the transverse momentum of the J/ψ,
as well as of the average number of participants (⟨Npart⟩). The latter can be estimated via
Glauber model calculations [61–64] for the different centrality intervals [60].

J/ψ candidates are reconstructed at midrapidity (|y| < 0.9) through the dielectron decay
channel. Electron candidates, reconstructed using both ITS and TPC detectors, are required
to have a pseudorapidity in the interval |η| < 0.9, a minimum transverse momentum of
1 GeV/c, and a minimum of 70 space points out of a maximum of 159 in the TPC. A hit in
at least one of the two SPD layers is also required to improve the tracking and the spatial
resolution. Several quality selection criteria, also employed for the inclusive J/ψ analysis [31],
are considered in order to ensure good track resolution, as well as to reduce the contribution
of electrons and positrons originating from photon conversion in the detector material and to
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reject secondary tracks originating from weak decays. The electron identification relies on
the measurement of dE/dx in the TPC, using stricter requirements than those considered for
the inclusive J/ψ analysis in order to increase the signal-to-background ratio, in particular at
low transverse momentum and in central events. For tracks reconstructed in more peripheral
centrality classes, namely 30–50% and 50–90%, the TPC dE/dx signal is required to lie
within the interval [−3, 3]σe relative to the expectation for electrons, where σe represents the
specific energy-loss resolution for electrons in the TPC. In addition, tracks consistent with the
pion and proton assumptions within 3.5σ are rejected. For the centrality classes 0–10% and
10–30%, the electron inclusion is requested to be [−2, 3]σe ([−1, 3]σe) for the pT of the electron
below (above) 5 GeV/c. A 4.5σ rejection for protons and pions is applied only below 5 GeV/c
of the electron momentum at the inner wall of the TPC, while above 5 GeV/c the rejection is
not applied to avoid reductions in the electron reconstruction efficiency. J/ψ candidates are
then obtained by considering all opposite-sign charged electron pairs. In 0–10% most central
collisions, only candidates where both electron decay tracks have a hit in the first layer of the
SPD are considered to optimise both the spatial resolution and signal-to-background ratio.
For other centrality classes as well as in the highest pT interval (7–10 GeV/c) in the 0–10%
centrality class, where the signal-to-background ratio is better, the condition is released to
increase the efficiency. Pair candidates where neither of the decay products has a hit in the
first layer of the SPD are excluded due to the poor resolution of the secondary vertex.

Separation of prompt and non-prompt J/ψ. The measurement of the non-prompt J/ψ
fraction is obtained through an unbinned two-dimensional likelihood fit procedure applied
to reconstructed J/ψ candidate pairs, following the same techniques employed in previous
publications [53, 54, 65–67]. A simultaneous unbinned log-likelihood fit of the J/ψ candidate
distribution as a function of invariant mass (mee) and pseudoproper decay length (x) values
is performed. The pseudoproper decay length is defined as x = c× Lxy ×mJ/ψ/pT, where
Lxy = (L⃗× p⃗T)/pT represents the projection in the transverse plane of the vector pointing
from the primary vertex to the J/ψ decay vertex (L⃗) and mJ/ψ is the J/ψ mass provided
by the Particle Data Group (PDG) [68]. The fit procedure maximises the logarithm of
a likelihood function

lnL =
N∑
i=1

ln
[
fSig × FSig(xi) ×MSig(mi

ee) + (1 − fSig) × FBkg(xi) ×MBkg(mi
ee)
]
, (3.2)

where N is the number of J/ψ candidates within the invariant mass interval
2.72 < mee < 3.40 GeV/c2 (2.60 < mee < 3.60 GeV/c2) in the centrality interval 0–10%
(10–90%). A tighter invariant mass window is considered in most central collisions in order
to increase the signal-to-background ratio in the fitting region, but still with a large enough
sample of candidates to constrain the background probability density functions (PDFs). The
relative amount of signal candidates, both prompt and non-prompt J/ψ, with respect to the
total number of candidates is quantified by the fit parameter fSig. The PDFs entering in
eq. (3.2), namely FSig(x) and FBkg(x) (MSig(x) and MBkg(x)), are used to describe the pseu-
doproper decay length (invariant mass) distributions of signal and background, respectively.
The pseudoproper decay length PDF of the signal is defined as

FSig(x) = f ′B × FB(x) + (1 − f ′B) × Fprompt(x), (3.3)

– 5 –



J
H
E
P
0
2
(
2
0
2
4
)
0
6
6

where FB(x) and Fprompt(x) are the x PDFs for non-prompt and prompt J/ψ, respectively,
while f ′B represents the fraction of J/ψ originating from beauty-hadron decays in the sample
of selected dielectron candidates. Both f ′B and fSig are left as free parameters in the fitting
procedure. A correction to the f ′B fraction obtained from the fit is applied to take into
account the different average acceptance-times-efficiencies of prompt and non-prompt J/ψ,
which is a consequence of two effects: (i) different J/ψ pT distributions inside the wide pT
intervals where the measurements are provided; (ii) different J/ψ polarisation, which can
modify angular distributions of decay products and thus the J/ψ acceptance. The corrected
fraction of non-prompt J/ψ, fB, is obtained as

fB =
(

1 + 1 − f ′B
f ′B

× ⟨A× ϵ⟩B
⟨A× ϵ⟩prompt

)−1

, (3.4)

where ⟨A × ϵ⟩prompt and ⟨A × ϵ⟩B represent the average acceptance-times-efficiency values
for prompt and non-prompt J/ψ, respectively, in the considered pT interval. The functional
forms of the different PDFs in eq. (3.2) are determined either based on data or on Monte
Carlo (MC) simulations, and are computed using the same procedures as in previous analy-
ses [53, 54, 65, 66]. The PDFs corresponding to the signal component, namely Fprompt(x),
FB(x), and MSig(mee), as well as acceptance-times-efficiency corrections of prompt and non-
prompt J/ψ in eq. (3.4), are determined from MC simulations. These simulations consist
of prompt and non-prompt J/ψ meson signals embedded in a background sample of Pb–Pb
collisions at √

sNN = 5.02 TeV produced with HIJING [69]. The intervals of centrality for the
Pb–Pb collisions considered in MC simulations are the same as those selected in experimental
data. The prompt J/ψ component is simulated with a pT spectrum based on existing inclusive
J/ψ Pb–Pb measurements at midrapidity, while PYTHIA 6.4 [70] is used to generate beauty
hadrons for non-prompt J/ψ simulations. The decays of beauty hadrons into final states
containing a J/ψ meson are handled by the EvtGen R01-03-00 [71] package, while the J/ψ
decay into the dielectron channel is performed using the EvtGen package coupled with the
PHOTOS model [72] for the treatment of radiative decays (J/ψ → e+e−γ). Prompt J/ψ
are assumed to be unpolarised, while for the non-prompt J/ψ a small residual polarisation
as predicted by EvtGen [71] is considered. No further assumptions on the polarisation of
both components are accounted, considering that existing measurements indicate small or
no polarisation [73, 74]. The particle transport through the ALICE apparatus is handled
by GEANT3 [75], considering a detailed description of the detector material and geometry.
Detector responses and calibrations in MC simulations are tuned to data, taking into account
time-dependent running conditions of all detectors included in the data acquisition.

The pT spectrum of prompt J/ψ in simulations is tuned to match experimentally observed
distributions, taking into account the centrality dependence. In particular, the fits to measured
inclusive J/ψ yields from earlier publications [28, 31] are considered. To propagate the
associated experimental uncertainties to the systematic uncertainties on acceptance-times-
efficiency, all possible variations of the pT shape within the envelope obtained by varying the
fitting parameters according to their uncertainties are also considered. For non-prompt J/ψ,
different hypotheses are considered for the pT distributions, including or excluding shadowing
or suppression effects predicted by model calculations, such as those discussed in section 4.
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Centrality class mee sidebands (GeV/c2) pT intervals (GeV/c)
0–10% 2.72−2.8, 2.8−2.9, 3.2−3.3, 3.3−3.4 1.5−3, 3−5, 5−7, 7−10

10–30%, 30–50%, 50–90% 2.64−2.75, 2.75−2.85, 3.2−3.35, 3.35−3.52 1.5−3, 3−5, 5−10

Table 1. Invariant mass and pT intervals considered for the definition of FBkg(x) in different centrality
classes (see text for details).

Taking into account all hypotheses discussed above for prompt and non-prompt J/ψ pT
spectra, an average correction factor for f ′B is evaluated. As the acceptance-times-efficiency
corrections are weakly dependent on pT, the resulting correction applied on f ′B according to
eq. (3.4) is small, being ∼5% for the pT integrated case, while for the different pT intervals
it ranges between 1% to 3%, depending on the width of the interval.

The resolution function, Fprompt(x) in eq. (3.3), defines the accuracy of x in the recon-
struction, and affects all different PDFs related to the pseudoproper decay length. It is
described by the sum of two Gaussians and a symmetric power law function. It is determined
as a function of both pT and centrality from MC simulations. A tuning procedure is applied
in MC simulations to minimise the residual discrepancy with respect to data in the average
distance of closest approach (DCA) of the track to the reconstructed interaction vertex in a
plane perpendicular to the beam direction. A small centrality dependence is found for the
x resolution, in particular the RMS of the resolution function changes by about 5% across
different centrality classes, getting worse towards more central collisions. For the non-prompt
J/ψ, the pseudoproper decay length distribution FB(x) is modelled by the kinematic distri-
bution of J/ψ from beauty-hadron decays obtained from the MC simulation described above,
and convoluted with the resolution function. Finally, MC simulations are also employed to
determine the shape of the invariant mass signal MSig(mee), which is parametrised using a
Crystal Ball function [76]. Background PDFs, for both invariant mass and pseudoproper decay
length distributions, are built from data. The invariant mass background shape MBkg(mee),
parametrised by a third order polynomial function, is estimated using the event-mixing
technique, already used for the inclusive J/ψ analysis at midrapidity [31], which also takes
into account the residual background originating from correlated semileptonic decays of
heavy-flavour hadrons. For the pseudoproper decay length background function, FBkg(x), the
same functional form and strategy described in ref. [54] is used. The function is determined
for each centrality class by a fit to the data in four invariant mass regions on the sidebands
of the J/ψ mass peak and in different pT intervals, as summarised in table 1. In each pT
interval, the x background function in the invariant mass region which contains the nominal
J/ψ mass value is obtained by an interpolation procedure as the weighted combination of the
PDFs determined in the other four invariant mass regions. The weights are chosen inversely
proportional to the absolute or squared difference between the mean of the invariant mass
distribution in the given mass interval and that in the interpolated region. Both hypotheses
for the weights are considered for the study of the systematic uncertainty on the pseudoproper
decay length background PDF. Additionally, the internal edges that define the invariant mass
windows in table 1 are shifted by ± 20 MeV/c2, either in the same or opposite directions,
and the interpolation procedure inside the signal region is repeated. For each pT interval,
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Figure 1. Invariant mass (left panel) and pseudoproper decay length (right panel) distributions
of J/ψ candidates with maximum likelihood fit projections superimposed. The distributions in the
figures correspond to selected candidates with 1.5 < pT < 3.0 GeV/c in the centrality class 30–50%.
The pseudoproper decay length distribution is shown for J/ψ candidates reconstructed under the J/ψ
mass peak, i.e. for 2.92 < mee < 3.16 GeV/c2, for display purposes only. The χ2 values, obtained by
comparing the binned distributions of data points and the corresponding projections of the total fit
function, are also reported.

a total of 9 (variations of mass intervals) × 2 (linear or quadratic weights) = 18 attempts
are obtained for FBkg(x), which are used in turn in the unbinned likelihood fit procedure to
determine f ′B. As the choice of a specific definition of mass intervals is in principle arbitrary,
the central value of f ′B is computed considering the average of all the different attempts.
Figure 1 shows an example of invariant mass (left panel) and pseudoproper decay length
(right panel) distributions, corresponding to the centrality class 30–50% and transverse mo-
mentum range 1.5 < pT < 3.0 GeV/c, with superimposed projections of the total maximum
likelihood fit functions. The non-prompt J/ψ fraction is measured in four (three) pT intervals
in the centrality class 0–10% (10–30% and 30–50%), as well as in the pT integrated case
(1.5 < pT < 10 GeV/c) in the centrality classes 0–10%, 10–30%, 30–50%, and 50–90%.

Systematic uncertainties. The systematic uncertainties on the measured non-prompt
J/ψ fractions in different pT intervals and centrality classes are summarised in table 2. Most
of the contributions are due to the incomplete knowledge of the different PDFs of mee and
x in the likelihood fit. An additional contribution originates from the assumptions of the
pT distributions of J/ψ in MC simulations.

The dominant uncertainty is represented by the PDF of the pseudoproper decay length
background, especially towards low pT and more central collisions. Other contributions which
become dominant in some cases are those originating from the resolution function, in particular
in the lowest pT intervals of each centrality, and the assumptions of the pT distributions of
J/ψ used in simulations, the latter particularly relevant for the pT integrated case.

The uncertainty on the resolution function is computed by considering the residual
mismatch between data and MC simulations observed on the single track DCA resolution
after the tuning procedure. The RMS of the resolution function is changed accordingly and
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Cent. 0–10% Cent. 10–30% Cent. 30–50% Cent. 50–90%
pT (GeV/c) 1.5–10 1.5–3 7–10 1.5–10 1.5–3 5–10 1.5–10 1.5–3 5–10 1.5–10
Resolution function 2.5 5.0 1.0 3.5 5.0 1.0 2.5 3.5 1.0 2.5
x PDF of background 11.0 15.0 5.0 6.0 14.0 5.0 5.0 8.0 3.0 4.0
MC pT distribution 6.0 1.5 3.0 6.0 1.5 4.0 6.0 1.5 3.0 6.0
x PDF of non-prompt J/ψ 2.0 2.0 1.5 2.0 4.0 1.0 2.0 2.5 1.0 3.0
mee PDF of signal 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
mee PDF of background 0.5 2.5 0.5 1.0 2.5 0.5 0.5 1.5 0.5 0.5
Total 13.0 16.3 6.1 9.6 15.3 6.6 8.5 9.3 4.5 8.2

Table 2. Systematic uncertainties on fB, expressed in %, for the pT integrated case, as well as for
the lowest and the highest pT interval in each centrality class.

the relative variation on fB is taken as systematic uncertainty. The corresponding values
are found to be larger at low pT due to the worse pseudoproper decay length resolution
and weakly dependent on centrality.

The uncertainty due to the pseudoproper decay length background PDF is estimated by
computing the RMS of non-prompt J/ψ fraction values obtained after changing the FBkg(x)
in the likelihood fit, considering the eighteen attempts previously mentioned, which depend
on the choice of the mee sidebands. The uncertainty on fB due to the FBkg(x) is the major
contribution, especially at low-pT and more central collisions where the signal-to-background
ratio gets worse.

The systematic uncertainty related to the pT distributions of prompt and non-prompt
J/ψ mesons in MC simulations, mainly affecting the acceptance-times-efficiency correction
on fB according to eq. (3.4), is evaluated by varying the prompt and non-prompt J/ψ pT
shape considering the variations previously discussed in this section. Taking into account all
combinations, an average correction factor for f ′B is evaluated, while the maximum variation
with respect to the average value is used to estimate the corresponding systematic uncertainty.
This contribution increases for wider pT intervals, reaching about 6% for the pT integrated
interval, and is relatively independent of centrality.

To quantify the systematic uncertainty related to the shape of the x PDF of non-prompt
J/ψ, the pT distribution of non-prompt J/ψ is changed according to the same hypotheses
considered for the estimate of the systematic uncertainty on the ⟨A × ϵ⟩ correction on fB.
Furthermore, the systematic uncertainty of the non-prompt J/ψ x PDF originating from the
description of the hb → J/ψ + X decay kinematic, with hb representing any beauty mesons
or baryons, is evaluated by considering PYTHIA 6.4 instead of EvtGen for decaying beauty
hadrons. For both EvtGen and PYTHIA, all default decay modes of beauty hadrons available
in the corresponding package and including a J/ψ in the final state, are considered.

The uncertainty on the invariant mass PDF of the J/ψ signal is evaluated by changing
the width of the Crystal Ball function in order to vary the fraction of candidates within the
signal interval 2.92 < mee < 3.16 GeV/c2 by ± 2.5%. The latter variation corresponds to the
systematic uncertainty on the MC signal shape assigned in the inclusive J/ψ analysis [31].

The uncertainty related to the invariant mass background PDF is evaluated by taking
the maximum variation obtained for fB after using in the likelihood fit procedure alternative
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pT (GeV/c) fpp
B at

√
s = 5.02 TeV

1.5–10 0.183 ± 0.004
1.5–3 0.110 ± 0.007
3–5 0.142 ± 0.004
5–7 0.190 ± 0.003
7–10 0.257 ± 0.005
5–10 0.227 ± 0.004

Table 3. Fraction of non-prompt J/ψ with the corresponding uncertainties in pp collisions at√
s = 5.02 TeV, obtained through the interpolation procedure, in different pT intervals (see text for

details).

functions, namely fourth and fifth order polynomial functions, for fitting the event mixing
based distribution used for the determination of MBkg(x).

The overall systematic uncertainty on fB reaches a maximum of about 16% in the lowest
pT interval and in 0–10% centrality class, mostly as a consequence of both the increasing
combinatorial background in more central collisions and the worsening of the x resolution
at low transverse momenta.

3.2 Non-prompt J/ψ fractions in pp collisions at
√
s = 5.02 TeV

In pp collisions at
√
s = 5.02 TeV, non-prompt J/ψ fractions are measured at midrapidity

by the ALICE collaboration [67] down to pT = 2 GeV/c. However, as the corresponding
uncertainties are large and the pT intervals in pp collisions do not match those of the Pb–Pb
measurements, the pT-differential fB fractions are obtained via an interpolation procedure,
already used in previous p–Pb and Pb–Pb analyses [53, 54, 65, 66]. This procedure is based
on available non-prompt J/ψ fraction measurements in pp and pp collisions at midrapidity
at several centre-of-mass energies, namely

√
s = 1.96 TeV (CDF [77]), 5.02 TeV (ALICE [67],

CMS [78]), 7 TeV (ALICE [79], ATLAS [80, 81], CMS [82]) and 8 TeV (ATLAS [80]). In
particular, using the semi-phenomenological function described in ref. [54], which employs
FONLL to describe the non-prompt J/ψ production cross section, the non-prompt J/ψ fraction
in pp collisions at

√
s = 5.02 TeV (fpp

B ) as a function of pT, needed for the computation of
the reference for prompt and non-prompt J/ψ RAA measurements, is derived via an energy
interpolation. The average fpp

B in each pT interval considered in the Pb–Pb analysis is
obtained by reweighting the pT-differential fpp

B values by the inclusive pT-differential J/ψ
cross section in pp collisions at

√
s = 5.02 TeV [83].

The values of fpp
B in the pT intervals considered in the Pb–Pb analysis are summarised in

table 3. The uncertainty, which amounts to about 6.5% in the lowest pT interval and decreases
to about 1.5% at higher pT, includes the contribution from experimental data and FONLL
predictions, as well as the systematic uncertainty due to the choice of the functional form
assumed for the energy interpolation (namely linear, exponential, and power law function).
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Figure 2. Non-prompt J/ψ fraction as a function of transverse momentum measured by the ALICE
collaboration in 0–10% most central Pb–Pb collisions (left panel) and in all centrality classes (right
panel). Results in the left panel are compared with ATLAS midrapidity measurements [29] in
the centrality class 0–10%, and with ALICE [67] and CMS [30] measurements in pp collisions at√
s = 5.02 TeV. The ALICE measurements in the right panel are compared with similar midrapidity

measurements from CMS [30], performed in the centrality class 0–100%. In both panels, the error
bars represent the quadratic sum of statistical and systematic uncertainties.

4 Results and discussion

4.1 Non-prompt J/ψ fractions and J/ψ yields

The non-prompt J/ψ fraction measured by the ALICE collaboration in 0–10% Pb–Pb collisions
as a function of pT in |y| < 0.9 is shown in the left hand panel of figure 2. It is compared with
similar results obtained by the ATLAS collaboration [29] at midrapidity, and available for
pT above 9.5 GeV/c. In the right hand panel, the pT-differential non-prompt J/ψ fractions
measured by the ALICE collaboration in different centrality classes are compared with
CMS results [30] available for pT > 6.5 GeV/c in the centrality class 0–100%. The ALICE
results complement the existing high-pT measurements from ATLAS and CMS, matching the
decreasing trend observed from high towards low pT. The results in the centrality interval
0–10% suggest a smaller fB compared to other centralities, in particular at low transverse
momentum. In the left panel, non-prompt J/ψ fraction measurements in pp collisions at√
s = 5.02 TeV obtained by the ALICE [67] and CMS [30] collaborations are also shown for

comparison, and exhibit a trend similar to the one observed in Pb–Pb collisions. In the pT
range 10 to 20 GeV/c, the non-prompt J/ψ fractions are clearly higher in Pb–Pb compared
to pp collisions, possibly suggesting a stronger nuclear suppression of prompt charmonia
compared to beauty hadrons. On the other hand, at low-pT results in the two systems
exhibit similar values within uncertainties.

Figure 3 presents the non-prompt J/ψ fraction as a function of centrality, expressed
in terms of the average number of participants ⟨Npart⟩, measured by ALICE in Pb–Pb
collisions at √

sNN = 5.02 TeV in the transverse momentum interval 1.5 < pT < 10 GeV/c.
Within uncertainties, no centrality dependence is observed between peripheral and semicentral
collisions, while the measured fB in 0–10% most central collisions decreases in comparison
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Figure 3. Centrality dependence (expressed in terms of average number of participants) of the non-
prompt J/ψ fraction measured by ALICE in Pb–Pb collisions at √

sNN = 5.02 TeV in the transverse
momentum interval 1.5 < pT < 10 GeV/c. Results are compared with previous ALICE measurements
performed in Pb–Pb collisions at √

sNN = 2.76 TeV [54]. The pT-integrated non-prompt J/ψ fraction
in pp collisions at

√
s = 5.02 TeV obtained from an interpolation procedure (see text for details) is

also shown. Statistical and systematic uncertainties are shown by error bars and boxes, respectively.

to an average value computed by considering all other centralities with a significance of
about 2.5σ considering both statistical and systematic uncertainties. This is consistent with
the observations for the pT-dependent results shown in figure 2 and is compatible with the
hypothesis of a strong contribution of prompt J/ψ originating from regeneration, which is
expected to be larger in central compared to peripheral collisions. Current results are compared
with earlier ALICE measurements based on Pb–Pb collisions at √

sNN =2.76 TeV [54]. The
statistical precision is significantly improved thanks to the larger event sample available
from LHC Run 2. In the same figure, the pT-integrated non-prompt J/ψ fraction in pp
collisions at

√
s = 5.02 TeV obtained by the interpolation procedure described in section 3.2

is also shown. The corresponding value is found to be comparable with the non-prompt J/ψ
fractions measured in peripheral and semicentral Pb–Pb collisions.

The pT-differential production yields of prompt and non-prompt J/ψ in a given centrality
interval are computed by combining the non-prompt J/ψ fractions with the measured yields
of inclusive J/ψ [31], dN incl. J/ψ/dydpT, as

dNJ/ψ←hB

dydpT
= fB × dN incl. J/ψ

dydpT
,

dNprompt J/ψ

dydpT
= (1 − fB) × dN incl. J/ψ

dydpT
. (4.1)

Figure 4 shows the pT-differential production yields of prompt and non-prompt J/ψ in the
centrality interval 0–10%. Statistical and systematic uncertainties on prompt and non-prompt
J/ψ yields are evaluated by adding in quadrature the corresponding uncertainties on fB and
inclusive J/ψ yields, the latter discussed in detail in ref. [31]. The statistical uncertainties
of inclusive J/ψ yields vary from about 5% to 10%, depending on the pT and the centrality
of the collision. Regarding the systematic uncertainty of the inclusive J/ψ yield, it ranges
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Figure 4. Prompt and non-prompt J/ψ pT-differential production yields measured by ALICE in the
0–10% centrality class at midrapidity, compared with similar measurements from the ATLAS collabo-
ration [29] in the same centrality class. Inclusive J/ψ yields measured by the ALICE collaboration
in 0–10% [31] are shown for comparison. Error bars and boxes represent statistical and systematic
uncertainties, respectively.

within 10–12% (8–10%) in the centrality class 0–10% (30–50%) and shows no significant pT
dependence. The measurements from ALICE are compared with pT-differential production
yields obtained by the ATLAS collaboration [29], as well as with inclusive J/ψ measurements
performed by the ALICE collaboration [31]. As already observed for the non-prompt J/ψ
fraction, the ALICE measurements provide complementary pT coverage to ATLAS results,
and they extend the measurement down to pT = 1.5 GeV/c. In addition, the ALICE and
ATLAS results are qualitatively compatible in the overlapping region and show similar slopes,
which result in an overall smooth trend over the full pT range. Given the relatively small
non-prompt J/ψ fraction below 10 GeV/c, the inclusive J/ψ yield and that of the prompt
J/ψ, both measured by the ALICE collaboration, are found to be comparable. However, the
inclusive J/ψ yield is measured in finer pT intervals and subtends a wider range in pT.

4.2 J/ψ nuclear modification factors

The nuclear modification factor RAA of prompt and non-prompt J/ψ is obtained by combining
the RAA of inclusive J/ψ [31], with the non-prompt J/ψ fractions measured in Pb–Pb collisions
at √

sNN = 5.02 TeV normalised to those in pp collisions obtained at the same centre-of-mass
energy through the interpolation procedure described in section 3.2:

R
J/ψ←hB
AA = fPb−Pb

B
fpp

B
×R

inclusive J/ψ
AA , R

prompt J/ψ
AA = 1 − fPb−Pb

B
1 − fpp

B
×R

inclusive J/ψ
AA . (4.2)

Statistical and systematic uncertainties on prompt and non-prompt J/ψ RAA are obtained
by adding in quadrature the corresponding uncertainties on inclusive J/ψ RAA [31] and non-
prompt J/ψ fractions in Pb–Pb and in pp collisions, assuming all of them uncorrelated
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from each other. Uncertainties on inclusive J/ψ RAA, both statistical and systematic,
include the corresponding contributions due to inclusive J/ψ yields previously mentioned and
inclusive J/ψ cross section in pp collisions at

√
s = 5.02 TeV [83], the latter used as reference

in the inclusive J/ψ RAA computation. The statistical uncertainty on the pp reference
cross section increases with pT from about 7% to 18%, while the systematic uncertainty is
poorly dependent on pT and it amounts to about 6%. The latter value do not include the
normalisation uncertainty due to luminosity determination, which is 2.2% and it is considered
within the global uncertainties when computing RAA.

The pT-differential nuclear modification factor of prompt J/ψ is shown in figure 5 in
different centrality classes, namely 0–10% (top left panel), 10–30% (top right panel) and
30–50% (bottom left panel). Global uncertainties, shown as boxes around unity, include
correlated uncertainties on the pp reference due to normalisation as well as on the ⟨TAA⟩ [31].
The latter uncertainty decreases with the collision centrality, varying from 0.7% in 0–10%
most central collisions to 2% in the 50–90% centrality class. The RAA of prompt J/ψ in
1.5 < pT < 10 GeV/c and as a function of centrality is shown in the bottom right panel of the
same figure. The global uncertainty includes the contributions from the inclusive J/ψ cross
section and from fpp

B in pp collisions, both integrated over pT (1.5 < pT < 10 GeV/c). For
pT > 5 GeV/c, the prompt J/ψ RAA in the centrality classes 10–30% and 30–50% reaches a
value of about 0.4, while in 0–10% collisions it decreases to about 0.2, indicating a stronger
suppression. The prompt J/ψ RAA increases towards low pT and it exceeds unity in the lowest
pT interval (1.5–3 GeV/c) of the 0–10% most central collisions. As a consequence, the pT
integrated prompt J/ψ RAA (1.5 < pT < 10 GeV/c) also rises towards most central collisions,
as shown in the bottom right panel of figure 5. According to prompt J/ψ measurements
performed by the ALICE collaboration in p–Pb collisions at √

sNN = 5.02 TeV [53], the RpPb
is found to be lower than unity within 1 < pT < 3 GeV/c, suggesting significant CNM effects
at play in Pb–Pb collisions in this transverse momentum region, while it becomes compatible
with unity for pT > 3 GeV/c. The results from the ALICE collaboration are compared with
similar measurements carried out by the ATLAS [29] and CMS [30] collaborations in the
rapidity intervals |y| < 2.0 and |y| < 2.4, respectively. In the centrality interval 0–10%, the
results from CMS and ATLAS are in good agreement with the ALICE measurements in the
overlapping pT interval, while in semicentral collisions the agreement is better with CMS
than with ATLAS. It is worth noting that a smaller suppression for ATLAS measurements
is expected in semicentral events, as the corresponding results use a significantly more
peripheral collision sample compared to ALICE and CMS.

Figure 6 shows the nuclear modification factor of non-prompt J/ψ as a function of pT
in the same centrality classes discussed previously for the prompt J/ψ RAA, namely 0–10%,
10–30% and 30–50%. The boxes around unity represent global uncertainties due to the
normalisation of the pp reference cross section and ⟨TAA⟩. Unlike the prompt J/ψ RAA, the
pT-differential nuclear modification factors of non-prompt J/ψ are similar in the different
centrality classes within experimental uncertainties below 5 GeV/c, while at higher pT the
suppression is larger in 0–10% most central collisions. The pT-integrated RAA in the bottom
right panel of figure 6 hints at a decreasing trend towards more central collisions, reaching
an RAA value of about 0.6 in the 0–10% centrality class. In the case of non-prompt J/ψ,
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Figure 5. Nuclear modification factor of prompt J/ψ as a function of pT in 0–10% (upper left panel),
10–30% (top right panel) and 30–50% (bottom left panel) centrality classes. Results are compared with
similar measurements from the ATLAS [29] and CMS [30] collaborations. The centrality dependent
prompt J/ψ RAA in 1.5 < pT < 10 GeV/c is shown in the bottom right panel (centrality is expressed
in terms of average number of participants). Error bars and boxes represent, respectively, statistical
and systematic uncertainties uncorrelated with pT (centrality, for the bottom right panel). Global
uncertainties are shown as boxes around unity.

CNM effects are found to be small in the full measured pT interval, as non-prompt J/ψ
RpPb measurements at √sNN = 5.02 TeV [53] are everywhere compatible with unity, although
uncertainties are large. Therefore, the observed modification can be attributed to the QGP
formation in Pb–Pb collisions. Results as a function of pT are shown together with non-
prompt J/ψ RAA measurements from the ATLAS [29] and CMS [30] collaborations, which
are in good agreement with ALICE measurements in the overlapping pT region. In 0–10%
most central collisions, the RAA from ALICE in the highest pT interval shows a small tension
of about 1.4σ and 2.5σ with respect to ATLAS and CMS, respectively. The non-prompt
J/ψ RAA measurements in 0–10% and 30–50% centrality classes are also compared with
non-prompt D0 results [84] measured at midrapidity by the ALICE collaboration. The results
are compatible within uncertainties, despite possible differences that might originate from
different decay kinematics of beauty hadrons to J/ψ and D0.
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Figure 6. Nuclear modification factor of non-prompt J/ψ as a function of pT in the 0–10% (upper left
panel), 10–30% (top right panel) and 30–50% (bottom left panel). Results are compared with similar
measurements from the ATLAS [29] and CMS [30] collaborations. Results in 0–10% and 30–50%
are also compared to non-prompt D0 RAA measurements [84] in the same centrality classes. The
centrality dependent non-prompt J/ψ RAA in 1.5 < pT < 10 GeV/c is shown in the bottom right panel
(centrality is expressed in terms of average number of participants). Error bars and boxes represent
statistical and systematic uncertainties uncorrelated with pT (centrality, for the bottom right panel).
Global uncertainties are shown as boxes around unity.

4.3 Comparison with models for prompt J/ψ production

In the following, prompt J/ψ measurements are compared with different phenomenological
models in relativistic heavy-ion collisions.

Figure 7 shows the pT-differential yields of prompt J/ψ in the centrality classes 0–10%
(left) and 30–50% (right), compared with different models, namely the statistical hadronisation
model (SHMc) by Andronic et al. [36] and the Boltzmann transport model (BT) by Zhuang
et al. [37, 85]. The bottom panels present the ratio of models to data, with the error bands
representing the relative uncertainties originating from the models. For the computation of
the ratio, an average value of the model is computed within the corresponding pT intervals
where the measurements are performed. Error bars around unity are the sum in quadrature
of statistical and systematic uncertainties on the measured yields. In the SHMc model, the
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Figure 7. Prompt J/ψ yields as a function of pT in the 0–10% (left panel) and 30–50% (right
panel) centrality classes compared with models [36, 37, 85]. Vertical error bars and boxes represent
statistical and systematic uncertainties, respectively. Shaded bands in the top panels represent model
uncertainties. Bottom panels show the ratios between models and data, with the bands representing
the relative uncertainties of the models. Error bars around unity are the quadratic sum of statistical
and systematic uncertainties on the measured yields.

totality of charm quarks are produced in the initial hard parton–parton scatterings and
thermalise inside the QGP. The total charm cross section employed in the SHMc calculations
is the one measured by the ALICE collaboration in Pb–Pb collisions at √

sNN = 5.02 TeV,
extracted from open-charm meson production measurements [84]. Effects from CNM are
taken into account when calculating the total number of charm quarks in Pb–Pb using rapidity
dependent measurements of the nuclear modification factor of D mesons in proton–nucleus
collisions [86], where interpolations, if necessary, are done via model calculations. The yield of
the different bound states is determined by thermal weights computed at a common chemical
freeze-out. The relative abundances of open and hidden charm hadrons are determined
using the equilibrium thermodynamical parameters obtained from fits to the measured yields
of light-flavoured hadrons and D-mesons, with the latter being used to extract the charm
fugacity. The spectra in the SHMc model are obtained by coupling the hadron yields with
a modified blast-wave function with input from hydrodynamical calculations for the flow
profiles [36]. In the BT model, the total charm cross section in Pb–Pb collisions is evaluated
from the charm-production cross section measured in pp collisions [87] scaled by the number
of binary collisions, while to estimate CNM effects the EPS09 [88] gluon distributions are used.
The dynamical evolution of the prompt charmonium states in the hot medium is described
with a Boltzmann-type transport equation, including terms of dissociation and regeneration.
The dissociation of charmonia inside the medium arises from the melting of the bound states
due to colour Debye screening, as well as from collisional processes of charmonia with the
medium constituents, and in particular from gluon dissociation. The regeneration cross
section is connected to the dissociation cross section via the detailed balance between the
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Figure 8. Prompt J/ψ RAA as a function of pT in the 0–10% (left panel) and 30–50% (right panel)
centrality classes compared with models [36, 37, 85, 89, 90]. Error bars and boxes represent statistical
and uncorrelated systematic uncertainties, respectively. Shaded bands represent model uncertainties.
The global uncertainty is shown around unity.

gluon dissociation and reversed process. The model employs the (2+1)-dimensional version
of the ideal hydrodynamic equations, including both a deconfined and a hadronic phase with
a first order phase transition between these two. The uncertainties plotted in figure 7 for
all models include contributions from total cc cross section, as well as uncertainties from
CNM assumptions. Both SHMc and BT models show an overall good agreement with data
within uncertainties, in particular for pT below 5 GeV/c. At higher pT, both models tend to
underpredict the data, with the SHMc model showing a larger discrepancy, which is mainly
due to the fact that in the SHMc model most of the produced J/ψ yields are thermal, with
only a small contribution from the collision corona.

Figure 8 presents the prompt J/ψ nuclear modification factor as a function of pT in
the centrality class 0–10% (left panel) and 30–50% (right panel) compared with model
calculations. In addition to the SHMc and BT models, prompt J/ψ RAA measurements
are also compared with the dissociation model by Vitev et al. [89]. In this model, which
employs rate equations, the collisional dissociation of charmonia includes thermal effects on
the wave function due to the screening of the cc attractive potential from the free colour
charges in the QGP. The medium is modelled by a (2+1)-dimensional viscous hydrodynamic
model. Non-relativistic quantum chromodynamics (NRQCD) theory [91] is used to obtain
the baseline nucleon–nucleon cross sections for charmonia and the pT-dependent feed-down
from excited states. As this model provides predictions for pT > 5 GeV/c, the contribution
from CNM effects is assumed to be negligible. The SHMc model reproduces the prompt J/ψ
RAA results at low pT in both centrality classes, while it is significantly below the data for
pT > 5 GeV/c. The BT model provides a good description of the measurements in the full
pT range in 0–10% most central collisions, while the model underpredicts the data in the
centrality class 30–50%. The dissociation model, available only above 5 GeV/c, provides a
good description of prompt J/ψ RAA measurements within uncertainties.

– 18 –



J
H
E
P
0
2
(
2
0
2
4
)
0
6
6

0 50 100 150 200 250 300 350 400

〉 
part

N 〈

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
A

R

Data

BT

ALICE  = 5.02 TeVNNsPb, −Pb

| < 0.9y, |ψPrompt J/

c < 10 GeV/
T

p1.5 < 

Figure 9. Centrality dependence (expressed in terms of average number of participants) of prompt
J/ψ RAA measured by ALICE in Pb–Pb collisions at √

sNN = 5.02 TeV in the transverse momentum
interval 1.5 < pT < 10 GeV/c. Results are compared with the BT model by Zhuang et al. [37, 85].
Error bars and boxes represent statistical and uncorrelated systematic uncertainties, respectively.
Shaded bands represent model uncertainties. The global uncertainty is shown around unity.

The centrality dependence of the pT-integrated (1.5 < pT < 10 GeV/c) RAA of prompt
J/ψ is compared with calculations from BT model in figure 9. The BT model, which shows a
rising trend with increasing number of participants from ⟨Npart⟩ ∼ 50, is in good agreement
with experimental results in 0–10% and 10–30% centrality classes. Below ⟨Npart⟩ ∼ 50, both
the data and the model exhibit a similar increasing trend towards more peripheral collisions,
however the agreement between data and model worsens.

4.4 Comparison with models for non-prompt J/ψ production

In the following, the comparison of non-prompt J/ψ measurements with models describing
open heavy-flavour production is discussed. As both the production mechanisms and the
interaction with the medium are significantly different for prompt charmonia and open
heavy-flavour hadrons, non-prompt J/ψ measurements are compared with a different set of
models with respect to those considered for prompt J/ψ results.

In figure 10, the yields of non-prompt J/ψ measured in the centralities 0–10% (left panel)
and 30–50% (right panel), are compared with partonic transport model calculations [92–97].
The ratios of the models to data are depicted in the bottom panels, where the error bands are
the model uncertainties. For computing the ratio, an average value of the model is considered
within the corresponding pT intervals where the measurements are performed. Error bars
around unity are the quadratic sum of statistical and systematic uncertainties on the measured
yields. In the transport model by Chen et al. [92] (LT1), as well as in the POWLANG transport
model by Monteno et al. [93, 94], the Langevin equation is used for describing the evolution
of the ancestor beauty quarks through the QGP. In POWLANG, transport coefficients
are obtained either through perturbative calculations using the hard thermal loop (HTL)
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Figure 10. Non-prompt J/ψ yields as a function of pT in the 0–10% (left panel) and 30–50% (right
panel) centrality classes compared with models [92–97]. Vertical error bars and boxes represent
statistical and systematic uncertainties, respectively. Shaded bands in the top panels represent model
uncertainties where applicable. Bottom panels show the ratios between models and data, with the
bands representing the relative uncertainties from the models. Error bars around unity are the
quadratic sum of statistical and systematic uncertainties on the measured yields.

approach or calculations based on lattice QCD (LatQCD) simulations. The medium expansion
is described by ideal (2+1)-dimensional hydrodynamic equations in LT1. In POWLANG,
the background medium description is done via a (3+1)-dimensional hydrodynamic model,
assuming no invariance for longitudinal boosts as considered in the (2+1)-dimensional case.
The initial distribution of bottom quarks is parametrised according to perturbative-QCD
calculations at fixed order with next-to-leading-log resummation (FONLL) [98] in LT1
and with the POWHEG-BOX package [99] in POWLANG. In both models, CNM effects
are accounted for by using the EPS09 [88] gluon parton distribution functions, and at the
hadronisation hypersurface, bottom and light-flavour quarks hadronise into beauty mesons via
the coalescence model. In LT1, medium-induced gluon radiation is also included in the energy
loss of heavy quarks, and becomes the dominant mechanism at large momentum, while in
POWLANG the interactions of the heavy quarks with the medium constituents happen solely
via collisional processes. In the calculations by Shi et al. [95, 96], the CUJET3.1 framework
is used to evaluate the jet energy loss in a (2+1)-dimensional hydrodynamic background,
implementing the contributions from collisional as well as from radiative processes. A set of
RAA and elliptic flow results from light hadrons in central and semicentral heavy-ion collisions
is used to constrain the model, which is then used to predict heavy-flavour observables. For
the initial pT distribution of beauty quarks, FONLL calculations [98] with CTEQ6M [100]
parton distribution functions are used. The formation of beauty hadrons happens via the
classical vacuum-like fragmentation using the Peterson parametrisation in ref. [101]. In
the model by Gossiaux et al. [97] (EPOS2+MC@sHQ), the Monte Carlo treatment of the
Boltzmann equation of heavy quarks (MC@sHQ) [102] is coupled to a (3+1)-dimensional
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Figure 11. Non-prompt J/ψ RAA as a function of pT in the 0–10% (left panel) and 30–50% (right
panel) centrality classes compared with models [92, 95–97, 105–108]. Error bars and boxes represent
statistical and uncorrelated systematic uncertainties, respectively. Shaded bands represent model
uncertainties where applicable. The global uncertainty is shown around unity.

fluid dynamical evolution of the locally thermalized QGP following the initial conditions from
EPOS2 [103, 104]. The initial transverse momentum spectra of beauty quarks is obtained
from FONLL calculations [98], and nuclear shadowing has been included according to the
EPS09 [88] parametrization of the nuclear parton distribution functions. The calculations
shown in this article consider two different configurations, either including pure collisional
processes or both collisional and radiative ones. In order to further constrain the model,
the corresponding cross sections are rescaled by a global factor K, which is chosen such
that the predictions give a reasonable agreement at intermediate and high pT with a set
of D-meson RAA measurements available in Pb–Pb collisions at √

sNN = 2.76 TeV [97]. In
particular, K = 0.8 (1.5) is considered when both collisional and radiative (pure collisional)
processes are included. After the evolution in the medium, the beauty quarks hadronize
via both fragmentation and coalescence. The LT1, POWLANG and EPOS2+MC@sHQ
models show systematically higher values compared to data, for both centrality classes in the
full measured transverse momentum range. The discrepancy looks larger for POWLANG,
especially in centrality class 0–10% and at higher pT, which could be related to the absence
of radiative processes in this model. The CUJET3.1 model, available only for pT above
5 GeV/c, is compatible with the data within uncertainties.

The nuclear modification factor of non-prompt J/ψ is compared with models in figure 11
in 0–10% (left panel) and 30–50% (right panel) centrality intervals. The results are compared
with the LT1, CUJET3.1, POWLANG and EPOS2+MC@sHQ models previously described
as well as with additional ones [105–108]. In these additional calculations, the space–time
evolution of the QGP is simulated using a (3+1)-dimensional viscous hydrodynamic model and
both collisional and radiative energy loss mechanisms inside a thermal medium are considered.
In the calculation by Li et al. [105], marked as LT2, the interactions between heavy quarks
and the QGP are described by an improved Langevin approach. The transport model by
Xing et al. [106] employs an extended linear Boltzmann transport (LBT) equation, which
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Figure 12. Centrality dependence (expressed in terms of average number of participants) of non-
prompt J/ψ RAA measured by ALICE in Pb–Pb collisions at √

sNN = 5.02 TeV in the transverse
momentum interval 1.5 < pT < 10 GeV/c. Results are compared with several partonic transport
models [92, 97, 105, 106]. Error bars and boxes represent statistical and uncorrelated systematic
uncertainties, respectively. Shaded bands represent model uncertainties where applicable. The global
uncertainty is shown around unity.

includes both short and long-range interactions of heavy quarks with the QGP. In both LT2
and LBT models, the initial heavy quark pT distribution is simulated according to FONLL
calculations using CT14NLO [109] parton distribution functions modified according to the
EPPS16 [110] next-to-leading-order parametrisation, while beauty hadrons are produced
through a hybrid fragmentation–coalescence model [111]. The calculation by Djordjevic
et al. [107, 108] employs a framework (DREENA-A) which combines the state-of-the-art
dynamical energy loss model with hydrodynamical simulations. The initial heavy-quark
spectrum is computed using next-to-leading-order calculations described in ref. [112] and
KLP [113] fragmentation functions are used for the formation of beauty mesons. In both
centralities all available model predictions except POWLANG show compatible values for
pT above 5 GeV/c, and within uncertainties are in an overall good agreement with the data.
The POWLANG model overpredicts the RAA in the centrality class 0–10% and at high
pT, which might be a consequence of the lack of radiative energy loss contributions in this
model. Below 5 GeV/c, the LT1 and POWLANG models sit on the upper side of the data
points in both centrality classes, still being compatible with them within uncertainties, while
the EPOS2+MC@sHQ model overpredicts the measurements. Both LBT and LT2 models
are compatible with the measured RAA within uncertainties in the full measured pT range,
and in both centrality classes.

Figure 12 depicts the non-prompt J/ψ RAA, integrated over pT in the interval
1.5 < pT < 10 GeV/c, as a function of the number of participants in comparison with transport
models. The LT1 model shows a slightly decreasing trend moving towards central collisions,
and is compatible with data within uncertainties for all centrality classes. The LBT, LT2 and
EPOS2+MC@sHQ models predict a similar decreasing trend for the non-prompt J/ψ RAA
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towards larger ⟨Npart⟩. The LBT and LT2 models show good agreement with RAA results in
0–10% centrality class, while for other centrality classes both models slightly underpredict
the data. The EPOS2+MC@sHQ model agrees with measured RAA in the most peripheral
class, while it tends to overestimate measurements towards more central collisions.

5 Summary

Prompt and non-prompt J/ψ production is measured by the ALICE collaboration in Pb–Pb
collisions at √

sNN = 5.02 TeV in the rapidity interval |y| < 0.9 as a function of pT and
centrality. In particular, pT-differential measurements of non-prompt J/ψ fractions, produc-
tion yields, and nuclear modification factors are carried out. The ALICE results extend the
existing CMS and ATLAS measurements at midrapidity, available only at high pT, down to
pT = 1.5 GeV/c, and all measurements look compatible within uncertainties in the common
pT intervals. Non-prompt J/ψ fractions show a rising trend with increasing pT, similar
to the one observed in pp collisions, while no significant dependence on the centrality is
observed within uncertainties, with the exception of most central collisions where fB exhibits
a significant decrease with respect to other centrality classes. The comparison with earlier
measurements in Pb–Pb collisions at √

sNN = 2.76 TeV shows compatible results at the two
centre-of-mass energies and highlights a significantly improved precision with Run 2 data.

For pT > 5 GeV/c, the prompt J/ψ RAA decreases with increasing centrality, while at
lower pT the suppression is smaller in 0–10% most central collisions, in particular in the
lowest pT interval where the prompt J/ψ RAA exceeds unity. These results are consistent
with pT-integrated measurements of prompt J/ψ RAA, which rises with ⟨Npart⟩, hinting at
an increasing contribution from regeneration at low pT and more central collisions. In 0–10%
most central collisions, the SHMc model and transport microscopic calculations that include
a contribution from regeneration are compatible with experimental data for pT < 5 GeV/c.
However, at higher pT, transport models are compatible with the measurements within
uncertainties, while the SHMc model significantly underpredicts the data. In semicentral
collisions there is less agreement between data and models. In particular, for pT above 3 GeV/c
the models either underpredict the data or sit at the lower edge of the experimental uncertainty.

The non-prompt J/ψ RAA integrated over pT hints at a decreasing trend towards more
central collisions. As a function of pT, the non-prompt J/ψ RAA in different centrality classes
are compatible within uncertainties below 5 GeV/c, while at higher pT the suppression is
larger in the centrality interval 0–10%. Results are consistent within uncertainties with non-
prompt D0 RAA measurements in the centrality classes 0–10% and 30–50%. Several transport
models are able to describe the data within uncertainties. All calculations, but POWLANG,
implement both collisional and radiative energy loss processes combined with a dynamically
expanding QGP, considering different hypotheses on transport dynamics, CNM effects, pT
distributions and hadronisation of beauty quarks. Above 5 GeV/c, all calculations predict a
similar suppression for non-prompt J/ψ and are consistent with the data within uncertainties,
with the exception of POWLANG, which overpredicts the data in most central events. This
points to the importance of radiative energy loss contributions in the high-pT region. At lower
pT and for the pT-integrated case, theoretical calculations predict different magnitudes of the
suppression. However, due to the current precision of the measurements it is not possible to
discriminate among them as all calculations are compatible with the data within uncertainties.
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Both prompt and non-prompt J/ψ measurements will improve significantly taking ad-
vantage of the larger expected data sample and the better spatial resolution provided at
midrapidity by the upgraded ITS [114] in the next LHC runs. In particular, further differ-
ential measurements in the non-prompt charmonium sector, in addition to yet unmeasured
observables such as the elliptic flow, could allow further constraining different open beauty
hadron production models.
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