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1 Introduction

Understanding the nature and origin of Dark Matter (DM) represents one of the great
challenges of contemporary research in cosmology, astro- and particle physics. While there is
little doubt in the community on the very existence of such a form of matter that does not
interact electromagnetically with ordinary matter, the Standard Model of particle physics
(SM) does not offer an obvious candidate particle to account for it.

Promising DM candidates are provided by models of physics beyond the SM (BSM)
featuring weakly interacting massive particles (WIMPs) with masses in the range of a few
hundred GeV to a few TeV. It is assumed that after a period of equilibrium between thermal
WIMP production and annihilation in the early Universe a freeze-out of their number density
occurred when the expansion rate of the Universe became larger than the relevant interaction
rate. The measured abundance of DM is compatible with the existence of a WIMP at the
electroweak (EW) mass scale.

A natural framework for WIMPs is provided by supersymmetric theories that complement
the particle spectrum of the SM by so-called superpartners with spin differing by one half.
The breaking of supersymmetry (SUSY) allows these particles to acquire masses different
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from their SM partners. In many SUSY models the lightest stable particle (LSP) represents
a viable DM candidate. A prime example of such a model is constituted by the Minimal
Supersymmetric Standard Model (MSSM). The MSSM contains a minimum number of SUSY
particles, i.e. one superpartner for each SM particle apart from the Higgs boson. The Higgs
sector has to be extended, resulting in five physical bosonic Higgs states and the same number
of fermionic higgsinos. Form a theoretical point of view, the MSSM is appealing not only
because of its underlying symmetry structure, but also by ensuring the unification of gauge
couplings, naturalness, and providing a DM candidate. In most realizations of the MSSM the
lightest neutralino, which effectively is a mixture of bino, wino and higgsino components, is
considered stable and thus constitutes a viable WIMP DM candidate.

Great hopes for the discovery of SUSY particles were pinned on the CERN Large Hadron
Collider (LHC) with the highest collision energies ever achieved on Earth by a proton
accelerator. Dedicated searches by the ATLAS and CMS experiments put limits on the
MSSM parameter space, but still leave room for the existence of SUSY particles, in particular
in so-called split scenarios where the LSP is much heavier than the scale of EW symmetry
breaking [1–3]. In such scenarios neutralino mixing effects are typically suppressed and the
DM candidate is part of a “pure” EW multiplet [4]. Such scenarios are appropriately referred
to as higgsino or wino type. Due to the large neutralino masses these DM models predict
they remain elusive to searches at colliders and direct detection experiments.

Depending on the underlying model, DM candidates are supposed to be produced in
pairs or in association with accompanying particles in collisions of SM particles [5, 6]. If
the masses of the DM particles are large and/or their interactions with SM particles feeble,
the corresponding production rates are low. The same limitation applies to direct detection
experiments that aim to identify the recoil of a DM particle off a nuclear target [7–10].

Promising alternatives for DM searches in such scenarios are constituted by indirect
detection strategies aiming at identifying annihilation signatures of DM particles [11, 12].
In particular, when such annihilation processes are accompanied by photon emission the
resulting gamma ray spectra feature a very characteristic peak structure at the kinematical
endpoint. The shape and intensity of such spectra can be heavily influenced by the so-called
Sommerfeld effect [13–15]. This, in turn, can be exploited to overcome severe limitations of
indirect searches due to large uncertainties in the distribution of DM in the inner galaxy and
omni-present astrophysical backgrounds. The Sommerfeld effect is ubiquitous in annihilation
processes involving non-relativistic particles that can exhibit long-range interactions. This
phenomenon applies to MSSM neutralinos, where the long-range interactions are mediated
by electroweak bosons.

A plethora of experiments and astrophysical observations has been devised to make
use of this detection strategy. Particularly interesting for indirect neutralino searches are
various observatories. These include the space telescope Fermi-LAT [16] which is suitable
for neutralino searches in the mass range of O(1)−O(100)GeV. Additional information
is coming from the currently operating Imaging Air Cherenkov Telescopes H.E.S.S. [17],
VERITAS [18], MAGIC [19], along with their next-generation counterparts CTA [20] and
LHAASO [21]. The water Cherenkov telescope HAWC [22] further enriches this list. These
Cherenkov telescopes are particularly suited for neutralino searches with somewhat heavier
masses in the range of O(0.1)−O(100)TeV.
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Specific SUSY searches using gamma-ray observations have been conducted in refs. [23–29]
while in refs. [30–35] similar searches and predictions have been presented for more generic
WIMP hypotheses.

From the theoretical point of view, exploiting the full potential of this search strategy
requires a quantitative understanding of the Sommerfeld effect. In the context of the
full MSSM, work to that effect has been limited. In particular, refs. [23, 26] are, to our
knowledge, the only papers including the Sommerfeld enhancement in their MSSM analyses.
In these studies, however, the incorporation of the Sommerfeld effect is achieved through the
matching of exclusive 2-to-2 Sommerfeld-resummed neutralino-annihilation cross sections.
This approach has some caveats and, as we will argue, cannot account for several pivotal
phenomenological aspects that can become crucial for future analyses.

We aim to fill that gap with this work. In particular, we compute all neutralino and
chargino annihilation cross sections into three-body final states that are relevant for obtaining
the continuum gamma-ray spectra. We obtain these annihilation cross sections in analytical
form for arbitrary spin and helicity combinations of the final-state particles.

While our results are valid for generic MSSM parameter sets, for our numerical discussion
we focus on the pure wino and higgsino limits. We find that the impact of the Sommerfeld
effect on the continuum spectrum is sizable even when the neutralino mass is of the order of a
few hundred GeV. Our results show that, besides the Sommerfeld effect being very large [36],
the chargino contribution dominates for the intermediate to the very high energy part of the
gamma-ray spectrum. This aspect has not been captured by previous computations.

The paper is structured as follows: in section 2 we briefly review the basic theoretical
aspects of indirect DM detection using gamma rays. We then move on to the discussion of
the Sommerfeld effect in the context of SUSY and the methods we used for the calculation of
annihilation cross sections in section 3. In section 4 we discuss our numerical results in the
context of pure wino and higgsino scenarios, and we then conclude in section 5. Conventions
and some technical aspects of our work are discussed in appendix A and appendix B.

2 The gamma-ray emission spectrum resulting from neutralino
annihilation

DM halos of nearby galaxies feature characteristic gamma-ray emission signals with an
associated flux

dΦ
dEγ

= 1
8πm2

χ

Jobs

〈
d(σv)
dEγ

〉
, (2.1)

where Jobs is the astrophysical “J” factor [37] for a given observed region and ⟨d(σv)/dEγ⟩ is
the velocity-averaged annihilation cross section of two DM candidate particles χ of mass mχ

into gamma rays. With some rare exceptions the J factors are independent of the gamma-ray
energy Eγ , and are thus irrelevant for the description of the spectral properties of the DM
gamma-ray signals, which are the focus of this work. We refer the reader interested in specific
J factors to refs. [38–40] for the Milky Way and to refs. [41–43] for other astrophysical
environments.
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Figure 1. Illustrative Feynman diagram for the continuum contribution to the gamma-ray emission
spectrum produced by neutralino annihilation. Red lines depict final-state photon radiation, blue lines
soft/collinear electroweak radiation, and purple lines internal bremsstrahlung.

Here, however, we concentrate on the DM annihilation cross section d(σv)/dEγ with
the DM candidate particle being constituted by the lightest neutralino χ0

1 of the MSSM.
This annihilation cross section has a kinematic endpoint at Eγ ≃ mχ.1 At this energy, the
spectrum features a quasi-monochromatic gamma-ray line with a (natural) broadening of
O(v2), where v is the average speed of the neutralinos in the DM halos of interest (v ≈ 10−3

in the Milky Way). The monochromatic nature of the line is due to the two-body kinematics
of the neutralino-annihilation process into photons, χ0

1χ0
1 → γγ. On top of the gamma-ray

spectral line, the endpoint spectrum of neutralino annihilation involves a Z resonance (from
the χ0

1χ0
1 → γZ∗ process) with a natural width of ΓZ/mZ ∼ 0.03. Both the γγ and the γZ

contributions at the endpoint of the spectrum are, in principle, loop suppressed. However,
the narrow width of the Z resonance and the significant influence of long-range interactions
between the neutralinos and the charginos due to the Sommerfeld effect make these features
highly intriguing in terms of detectability.

The remaining part of the spectrum, the continuum, is generated by the sum of all
processes where neutralinos annihilate into a gamma-ray photon in association with a
multiparticle configuration “X”, i.e. χ0

1χ0
1 → γ +X. At leading order (LO) in the electroweak

coupling, X consists of two SM particles. For clarity, we use a superscript in order to
differentiate such a two-body state X(2) from the more complex sub-states X that can occur
in general, and that are illustrated by figure 1.

In many simulations, such continuum configurations are approximated by matching fixed-
order computations for two-particle production processes to parton-shower programs such as
Pythia [44] or Herwig [45]. In this approach gamma-ray spectra from WIMP annihilation
are obtained using the parton-shower approximation formula

d(σv)
dEγ

≈
∑
X(2)

(σv)X(2)

dNMC
X(2)→γ

dEγ
, (2.2)

where, given a specific WIMP model, the coefficients (σv)X(2) are the (tree-level) cross
sections for the annihilation of two DM candidate particles into two SM particles (e.g.
X(2) = bb̄, τ+τ−, W +W−, . . .), while the model-independent functions dNMC

X(2)→γ
/dEγ for the

1We use natural units: ℏ = c = 1.
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gamma-ray emission off the SM particles are obtained from the aforementioned Monte-Carlo
event generators.2 These functions are available in specialized software packages such as
DarkSUSY [46], PPPC [47] or MicrOMEGAs [48].

As a diagrammatic visualization, in figure 1 we show an example of a Feynman diagram
for the continuum contribution to the gamma-ray emission spectrum produced by neutralino
annihilation. From that particular diagram only those photon lines that are emitted from final-
state legs are accounted for by the early implementations of eq. (2.2) (e.g. DarkSUSY versions
before v5 [49]). Such contributions are termed final-state radiation (FSR). Soft/collinear
electroweak radiation effects have also been included in the literature (see, e.g., ref. [50]). In
particular, the fragmentation functions provided by the PPPC code include these corrections.
Newer versions of DarkSUSY instead provide a more complete picture for the neutralino-
annihilation photon spectrum at the expense of losing the model-independence of eq. (2.2).
In addition to pure FSR calculations they capture potentially dominant processes such as the
so-called internal bremsstrahlung (IB) [51–55], which is absent in the PPPC approach [47].
This is achieved by computing the full fixed-order χ0

1χ0
1 → γ +X(2) annihilation cross section

for a given state X(2) (X(2) = W +W− in the sample diagram of figure 1) and matching it to a
parton-shower program while carefully subtracting redundant terms in order to avoid double
counting, see e.g. ref. [54]. In particular, IB becomes important in those cases where the
otherwise helicity-suppressed annihilation of non-relativistic Majorana particles into a particle-
antiparticle pair of light fermions becomes sizable once radiation effects are accounted for. It
has been even observed that in some WIMP models, IB gives the dominant contribution to the
gamma-ray spectrum in the medium-to-high energy regime (see refs. [56–58] for more details).

3 Sommerfeld effect

The previous discussion evidences that great progress have been achieved in understanding
the continuum part of the gamma-ray spectrum from neutralino annihilation. By combining
fixed-order computations with Monte-Carlo event generators (see eq. (2.2)), a relatively
adequate theoretical picture of the WIMP gamma-ray spectrum can be obtained. This
picture, however, fails at capturing virtual (loop) effects which, as we will see below, can
become crucial. In particular, multi-loop corrections such as the one depicted in figure 2 can
have an enormous impact on the annihilation cross sections of heavy neutralinos [36, 59, 60],
resulting in enhancement factors of several orders of magnitude.

The primary reasons for this phenomenon are (A) the non-relativistic nature of the initial
state consisting of two neutralinos, (B) t-channel interactions between them mediated by
the gauge and Higgs bosons of the theory (see sketch in figure 2), and (C) the fact that
these exchange bosons are lighter than the annihilating neutralinos. These features make a
quantum-mechanical approach in terms of static potentials the most appropriate in order
to account for the self-interactions of the neutralinos prior to their annihilation. In more
formal terms, the computation of Feynman diagrams such as the one depicted in figure 2 will

2In the leading-logarithmic approximation of the aforementioned event generators, the fragmentation of the
two SM particles is considered independently. This implies that dNMC

X(2)→γ
/dEγ in eq. (2.2) actually denotes

the sum of two fragmentation functions — one for each leg of primaries in figure 1.
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Figure 2. Prototypical ladder-like Feynman diagram contributing to the Sommerfeld effect.

inevitably yield terms that are (parametrically)3 of O(αnmn
χ/mn

W ), where n is the number of
loops in the given ladder-like diagram and α denotes the fine structure constant. Therefore,
since we assume that mW ≪ mχ, the contribution of each of these diagrams is large and
cannot be neglected. Rather all such terms need to be systematically resummed.

The resummation of these diagrams can be performed consistently in the context of
non-relativistic effective field theories (NREFTs) [61] (in the context of MSSM neutralino
annihilations, see e.g. refs. [62–64]) independently of the exclusiveness of the final state. For
the particular case of neutralino annihilation into photons, the resulting annihilation cross
section is given by [65, 66]

d(σv)
dEγ

= 2
∑
IJ

SIJ

[
d(σ̃v)
dEγ

]
IJ

, (3.1)

where SIJ is the matrix of the so-called Sommerfeld factors, and we will refer to d(σ̃v)/ dEγ

as the annihilation matrix for the Sommerfeld-corrected χ0
1χ0

1 → γ + X process. The pair
indices I, J denote all possible neutral combinations of neutralino-neutralino and chargino-
antichargino pairs within the MSSM [64]. There are 14 such combinations:

{(χ0
1χ0

1), (χ0
1χ0

2), (χ0
1χ0

3), (χ0
1χ0

4), (χ0
2χ0

2), (χ0
2χ0

3), (χ0
2χ0

4), (χ0
3χ0

3), (χ0
3χ0

4), (χ0
4χ0

4),
(χ+

1 χ−
1 ), (χ+

1 χ−
2 ), (χ+

2 χ−
1 ), (χ+

2 χ−
2 )} . (3.2)

We compactly denote each pair index K by nested particle indices distinguishing between
neutralino and chargino states using either round or angular brackets, i.e. K = {(îj)},
where (îj) = (1̂1), (1̂2), . . . for the four neutralinos (i, j = 1, . . . , 4) and K = {⟨xȳ⟩}, with
⟨xȳ⟩ = ⟨11̄⟩, ⟨12̄⟩, . . . for the two charginos (x, y = 1, 2). Note that while the neutralino states
satisfy (ĵi) = (îj), the chargino states are not exchange symmetric (⟨yx̄⟩ ̸= ⟨xȳ⟩).

Figure 3 captures the essence of eq. (3.1) in the representative χ0
1χ0

1 → γ + ff̄ process.
In that particular example, the corresponding (interference) term of the equation with
I = ⟨xȳ⟩ and J = (îj) is shown. The diagram explicitly illustrates that both the Sommerfeld
factors and the annihilation matrix elements can be expressed as products of quantities
corresponding to the intermediate states I and J , respectively. In the calculation of the
annihilation matrix elements, the amplitudes of the χ+

x χ−
y → γ + ff̄ and the (complex

3Note that the parameters v mχ, mZ , mW , mh are assumed to be of the same order of magnitude, and
much smaller than mχ.
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γ

Figure 3. Sketch of a typical term in the Sommerfeld resummation formula of eq. (3.1) for the
representative χ0

1χ0
1 → γ + ff̄ process.

conjugated) χ0
i χ0

j → γ + ff̄ processes enter. For the computation of the SIJ factors quantum
mechanical wave functions evaluated at the spatial origin have to be multiplied with their
complex conjugates. These wavefunctions describe the non relativistic χ0

1χ0
1

SE−−→ χ+
x χ−

y and
(complex conjugated) χ0

1χ0
1

SE−−→ χ0
i χ0

j transitions as we briefly discuss in the following.

3.1 Computation of the Sommerfeld factors

Up to corrections of O(v2) and O(m2
W /m2

χ), the resummation of ladder-like diagrams such
as the ones shown in figure 2 requires solving the following matrix Schrödinger equation4

for the multicomponent function uIK(r) [64]

− 1
mχ

d2uIK

dr2 (r) +
∑

J

[∆M + V (r)]IJ uJK(r) = mχv2uIK(r) , (3.3)

uIK(r = 0) = 0 ,
duIK(r = 0)

dr
= δIK . (3.4)

The Sommerfeld factors SIJ in eq. (3.1) are then given by

SIJ = U∗−1
I(1̂1)U

−1
J(1̂1) , (3.5)

where
UIK = lim

r→∞

[
eikIr

(duIK(r)
dr

− ikIuIK(r)
)]

, (3.6)

kI ≡
√

m2
χv2 − mχ(MI − 2mχ) and MI is the sum of the masses of the non-relativistic “I”

state, e.g. M⟨12̄⟩ = mχ±
1
+ mχ±

2
.

The potential matrix in terms of the “coupling matrices” α̂B
IJ is given by

VIJ(r) =


∑

B0=γ,Z,h,H0,A0

α̂B0

(îj),(k̂l)
e−mB0 r

r

∑
B+=W,H+

α̂B+

(îj),⟨zw̄⟩
e−mB+ r

r∑
B+=W,H+

α̂B+

⟨xȳ⟩,(k̂l)
e−mB+ r

r

∑
B0=γ,Z,h,H0,A0

α̂B0

⟨xȳ⟩,⟨zw̄⟩
e−mB0 r

r

 , (3.7)

4Here we are implicitly exploiting that in the partial-wave decomposition of the non-relativistic wave
functions the contribution of states with non-vanishing orbital momentum (ℓ ̸= 0) is suppressed by factors of
order O(v2ℓ). We thus only retain contributions with ℓ = 0.
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while the “mass-splitting” matrix ∆M in the basis of eq. (3.2) reads

∆M = diag(0, mχ0
1
+ mχ0

2
− 2mχ, . . . , mχ±

1
+ mχ±

2
− 2mχ, 2mχ±

2
− 2mχ) .

The Coulomb part of the potential (B = B0 = γ) satisfies

α̂γ

(îj),(k̂l) = 0 , and α̂γ
⟨xȳ⟩,⟨zw̄⟩ = α δxzδyw, (3.8)

where α is the fine-structure constant. The remaining coupling matrices depend on the MSSM
parameters through the neutralino and chargino mixing matrices defined in eqs. (A.1)–(A.2)
of appendix A. These had been already obtained in ref. [64], and we re-derived them using
the conventions of ref. [67] that we use throughout this work. In the Feynman gauge the
entries of these coupling matrices read

α̂Z
(îj),(k̂l) =

1
√
2δij

1
√
2δkl

α

s2
W

[
v

Z (0)
ik v

Z (0) ∗
jl − 3 a

Z (0)
ik a

Z (0) ∗
jl + s

GZ (0)
ik s

GZ (0) ∗
jl + (k ↔ l)

]
, (3.9)

α̂Z
⟨xȳ⟩,⟨zw̄⟩ =

α

s2
W

(vZ
xzvZ ∗

yw − 3 aZ
xzaZ ∗

yw + sGZ
xz sGZ ∗

yw ), (3.10)

α̂W
(îj),⟨zw̄⟩ =

1
√
2δij

α

s2
W

[
vW

iz vW ∗
jw − 3 aW

iz aW ∗
jw + sGW

iz sGW ∗
jw + (z ↔ w)

]
, (3.11)

for the vector mediators Z and W± and

α̂S
(îj),(k̂l) = 1

√
2δij

1
√
2δkl

α

s2
W

[
s

S (0)
ik s

S (0) ∗
jl + (k ↔ l)

]
, (3.12)

α̂S
⟨xȳ⟩,⟨zw̄⟩ =

α

s2
W

sS
xzsS ∗

yw , (3.13)

α̂H±

(îj),⟨zw̄⟩ =
1

√
2δij

α

s2
W

[
sH±

iz sH± ∗
jw + (z ↔ w)

]
, (3.14)

for the scalar and pseudoscalar mediators, where S collectively labels all physical neutral
Higgs bosons (S = h, H, A0) in the MSSM, and the would-be Goldstone bosons GZ , GW

associated with the Z and W bosons.
Explicit expressions for all the coefficients vB

IJ , aB
IJ and sB

IJ can be found in appendix A. We
obtained these by using the Mathematica [68] packages FeynArts [69] and FormCalc [70, 71]
with the MSSM model file [67]. At the relevant perturbative order, our potential agrees
with the corresponding results of ref. [64].

3.2 Computation of the annihilation matrices

In the previous section we briefly reviewed the NREFT methods that are necessary in
order to properly incorporate the Sommerfeld effect in the continuum spectrum prediction.
In particular, eq. (3.1) provides us with an elegant prescription on how to deal with this
problem. Given the Sommerfeld coefficients SIJ which can be computed by solving a system
of Schrödinger equations, we need to determine the [d(σ̃v)/dEγ ]IJ functions for every possible
combination I, J . The IJ element of the annihilation matrix is defined by[

d(σ̃v)
dEγ

]
IJ

= 1
(
√
2)id(I)+id(J)

1
4m2

χ

∑
X

∫
dΠ′

γ+Xδ
(
Eγ − E′

γ

)
A(ℓ,s)=(0,0)

I→γ+X A(ℓ,s)=(0,0) ∗
J→γ+X , (3.15)

– 8 –
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where the identical-particle index id(K) = δij for neutralino pairs [K = (îj)] or 0 for
chargino-antichargino pairs [K = ⟨xȳ⟩]. dΠ′

γ+X is the phase-space integration element for
the γ + X final state, and A(ℓ,s)=(0,0)

K→γ+X is the amplitude for the s-wave annihilation5 of the
two-particle state K into a γ + X state. It is implicitly understood that the sum over X

includes all possible spin and helicity combinations of the particles that are produced in
association with the gamma ray.

In this article we compute the annihilation matrices of eq. (3.15) for the production
of a photon in association with any possible combination of two SM particles X = X(2).
Concretely, in the MSSM the only possible combinations are6

X(2) = {W +W−, W±H∓, H+H−, ZS, SS′, f f̄} , (3.16)

where S and S′ are shorthand for two different neutral Higgs scalars in the MSSM and
ff̄ denotes any fermion anti-fermion pair within the SM. There are 14× (14 + 1)/2 = 105
independent symmetric combinations of the initial-state indices (see eq. (3.2)). Thus, for
each one of the aforementioned combinations of X(2) 105 independent matrix elements have
to be computed. Out of these matrix elements, in the literature only one is available [54],
corresponding to the neutralino-neutralino annihilation cross section with I = J = (1̂1). In
this work we compute the annihilation matrices for the remaining 104 combinations of I, J .

State-of-the-art software packages such as FeynArts [69] or FormCalc [70, 71] are capable
of computing differential cross sections in analytical form for annihilation processes within
complicated models such as the MSSM. However, the problem at hand requires some extra
processing for the s-wave projection of the I, J states and for computing the interference
of amplitudes with different initial states.

We addressed these issues by obtaining raw amplitudes for the 2-to-3 scattering processes
χ0

i χ0
j → γ + X(2) of all possible X(2) states of eq. (3.16) with arbitrary spin and helicity

combinations using FeynArts 3.11/FormCalc 9.8 and the built-in MSSM model file of
ref. [67]. We then processed these amplitudes in the framework of Mathematica [68] to obtain
the desired interference contributions.

3.2.1 Annihilation matrices in the FSR approximation

The calculation of the annihilation matrix d(σ̃v)/ dEγ presented above is exact at LO in the
electroweak couplings. Thus, when multiplied with the Sommerfeld factors and matched
with parton-shower simulations, the resulting prediction offers the most accurate description
of the continuum gamma-ray spectrum from annihilating neutralinos up to the present
day. However, an approximate treatment that exploits the fact that the computation of the
Sommerfeld factors is independent of the exclusiveness of the final state in the annihilation
process, is also possible and has already been considered in refs. [23, 26]. In that approach,

5A crucial point in eq. (3.15) is the fact that both the I and J states individually exhibit the same quantum
numbers as the (physical) initial state of the system, χ0

1χ0
1. In the partial-wave basis this is the s-wave state

with vanishing orbital (ℓ = 0) and spin (s = 0) quantum numbers in virtue of the Majorana nature of the
MSSM neutralinos, provided that v → 0.

6The processes χ0
1χ0

1 → γ + ZZ, γ + γZ and γ + γγ are forbidden because of the Landau-Yang theorem.
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eq. (2.2) generalizes to

d(σv)
dEγ

≈
∑
X(2)

(σv)SE
X(2)

dNMC
X(2)→γ

dEγ
, (3.17)

where, in analogy to eq. (3.1), the Sommerfeld-corrected 2-to-2 annihilation cross section
is given by

(σv)SE
X(2) = 2

∑
IJ

SIJ (σ̃v)X(2)
IJ , (3.18)

and, as just argued, the fragmentation functions remain the same as in eq. (2.2). Eq. (3.17)
is sensitive to the different polarizations of the 2-body final states. To emphasize this feature,
the polarization states can be indicated explicitly as

X(2) =
{
W +

T W−
T , W +

⊙ W−
⊙ , W±

L H∓, fLf̄L, fRf̄R, fLf̄R, fRf̄L, γT γT , γT ZT , ZT ZT ,

Z⊙Z⊙, Z⊙S, SS′} ,

where the subscripts “T” and “⊙” refer to their transverse and longitudinal polarization
components of the gauge bosons and the “L” and “R” subscripts denote the left- and
right-handed chirality of the fermions, respectively. While the unpolarized cross sections
for these 2-body states are already known [62], we obtain the polarized ones for the first
time in this work.

4 Numerical results

In light of the inherent complexity of the MSSM, a thorough exploration of our calculations
requires a dedicated study. In this section, we focus on two limiting scenarios of the MSSM:
the pure wino and the pure higgsino case. These models have been investigated intensively
in the last several years (see e.g. [23, 59, 72–76]). We note that even in the most generic
MSSM parameter sets, the Sommerfeld effect has a significant impact on the associated
indirect detection signals.

The most general form of the softly broken MSSM introduces 105 parameters in addition
to those present in the SM [77]. These are interdependent given a specific supersymmetry
breaking scenario. Current experimental efforts to search for SUSY, however, concentrate
on constrained versions of the MSSM such as the 18-parameter phenomenological MSSM
(pMSSM) [78] or the 4-parameter constrained MSSM (CMSSM) (see, e.g., refs. [27, 79]). The
pMSSM, for example, treats the mass terms for gauginos (M1, M2, M3), higgsino (±|µ|),
sfermions and trilinear couplings, as well as the ratio of the vacuum-expectation values of
the two Higgs doublets (tan β), as independent parameters.

In the pure wino and higgsino limits, the sfermion masses as well as the trilinear couplings,
the gluino mass parameter M3, and tan β are assumed to be infinitely large. In the pure
wino limit, in addition to integrating out the sfermions it is assumed that M1 → ∞ and
|µ| → ∞, leaving M2 as the only relevant MSSM parameter. In the spirit of the minimal DM
models discussed in ref. [72] (see also refs. [80, 81] for a more recent study on minimal DM)
the wino can be visualized as an SU(2) Majorana triplet which, after electroweak symmetry
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breaking, gives rise to one chargino and one neutralino degree of freedom. Similarly, the
pure higgsino limit can be constructed by introducing an SU(2) Dirac doublet that results
in two neutralinos and one chargino. Note that in these reduced scenarios, the Majorana
(neutralino/chargino) and the scalar (two-Higgs doublet) sectors of the MSSM can not
be coupled without explicitly breaking the electroweak symmetry. As a result, the Higgs
parameters do not play any role in our predictions.

The pure wino and higgsino scenarios do not provide satisfactory solutions to the hierarchy
problem and the unification of gauge couplings, which were among the primary motivations
for introducing SUSY. Moreover, for sub-TeV neutralino masses within the standard freeze-out
hypothesis they predict more DM than observed [4]. Nonetheless, these limiting scenarios
serve as highly valuable toy models. For instance, the dimension of the Sommerfeld and the
annihilation matrices in eq. (3.1) is reduced to two for the pure wino and to three for the
pure higgsino model, respectively, thus significantly reducing the complexity of calculations
and analyses as compared to the full MSSM.

For the numerical results shown below as electroweak input parameters we choose the
mass of the Z boson,mZ = 91.1876GeV, the Fermi constant, Gµ = 1.1663788× 10−5 GeV−2,
and the fine structure constant, α0 = 1/137.035999180 as quoted by the Particle Data
Group [82]. From these input parameters, the mass of the W boson, mW = 80.360GeV, and
the Weinberg angle sin2 θW = 0.22338 are obtained using the electroweak relations of ref. [82].
In our numerical implementations we use the running QED coupling evaluated at the scale mZ ,
α = 1/128.93. The masses of the u, d, s quarks, the electron and muon, and of all neutrinos
are neglected. For the c, b, t quarks, the tau lepton, and the Higgs boson we use the masses
quoted in ref. [82]: mc = 1.27GeV, mb = 4.18GeV, mt = 172.69GeV, mτ = 1.77686GeV,
and mh = 125.25GeV. Finally, for the relative speed of the annihilating particles we use
the nominal value of v = 10−3, which translates into a velocity of ∼ 300 km/s, which is a
typical value in Milky-Way sized halos. Rather fortunately, our results are insensitive to
this choice. This is because of a generic property of the Sommerfeld factor at low velocities
(v ≲ mW /mχ) in the presence of Yukawa potentials: when the de Broglie wavelength 1/(mχv)
is much larger than the range of the (leading) Yukawa interaction 1/mW , the Sommerfeld
coefficients become velocity-independent, see e.g. ref. [83].

For both, wino-like and higgsino-like models, we use the one-loop expressions given
in refs. [72, 84] for the mass splitting between the chargino and the lightest neutralino,
mχ±

1
− mχ0

1
. For the mass splitting between the two neutralinos in the pure higgsino scenario

we use mχ0
2
− mχ0

1
= 20MeV in all our examples, as done in ref. [85].

The numerical results that are reported below involve comparisons between different
prescriptions and approximations. For simplicity we introduce the following acronyms:

• ‘fixed_noSE’: neutralino-pair annihilation into a γ + X(2) final state at tree-level
with no Sommerfeld resummation at fixed order (O(α3)), as provided in ref. [86].
Generally, X(2) denotes a two-particle state. In the pure wino and higgsino models,
only X(2) = W +W− occurs.
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χ0
1 W−

χ0
1 W+

χ+
x

+

χ0
1 W−

χ0
1 W+

χ+
y + . . .

• ‘FSR_SE’: Sommerfeld-corrected neutralino-pair annihilation into a γ + X(2) final state
where only photon emission due to FSR in the soft/collinear approximation is taken
into account.

SE

χ0
1 W−

T

χ0
1 W+

T

+ SE

χ0
1 W−

T

χ0
1 W+

T

+ . . .

For the pure wino and higgsino scenarios, the only possible two-body final state is
X(2) = W +

T W−
T . The spectrum that is obtained using this approximation is computed

by using eq. (3.17) with the LO fragmentation function of ref. [50] which in this case
assumes the particularly simple form

dNW +
T W−

T

dEγ
= 4

mχ

α

π

{
Eγ

mχ − Eγ

[
log

(
mχ − Eγ

mW
+
√

(mχ − Eγ)2

m2
W

− 1
)

+
(

mχ − Eγ

Eγ
+ Eγ(mχ − Eγ)

m2
χ

)
log 2mχ

mW

]}
. (4.1)

• ‘full_SE’: neutralino-pair annihilation into a γ + X(2) final state including continuum
contributions and Sommerfeld resummation effects. In contrast to the two previous ap-
proaches, this computation receives contributions from all the two-particle combinations
of eq. (3.16).

SE

χ0
1 W−

χ0
1 W+

+ SE

χ0
1 f̄

χ0
1 f

+ . . .

Note that the Sommerfeld-corrected spectral line contributions χ0
1χ0

1 → γ + X(1) (where
X(1) = γ or Z)7 are not included in our results. These have already been studied extensively
in the literature, e.g. see ref. [60] and references therein. Including these contributions is
straightforward as they are proportional to Dirac delta functions centered at gamma-ray

7Our calculations do include a Z resonance feature (see our predicted spectra below) which, however, only
capture processes of the type χ0

1χ0
1 → γ + Z∗ → γ + ff̄ .
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Figure 4. Gamma-ray spectrum of neutralino annihilation in the higgsino-like (black) and the wino-
like (gray) scenarios with mχ = 400 GeV within our full calculation (solid lines) and the unresummed
LO computation of ref. [86] (dashed lines).

energies Eγγ
γ = mχ and EγZ

γ = mχ − m2
Z/(4mχ), respectively. We nonetheless checked that

the Sommerfeld-resummed neutralino annihilation cross sections into γγ (and γZ) agree
with ref. [60] (e.g. Fig 5 therein), and are thus in agreement with fixed-order computations
presented in refs. [87, 88] in the light (mχ ∼ 100GeV) pure wino/higgsino regime.

4.1 Scenarios with mχ = 400 GeV

In figure 4 we show the gamma-ray spectra of neutralino annihilation in these two scenarios
for our full calculation including the Sommerfeld effect and compare it to the unresummed
LO calculation of ref. [86]. Note that the results of the ‘FSR_ SE’ approach are zero in the
plot range due to the kinematic threshold in eq. (4.1) at Eγ ≈ mχ − mW ≈ 320GeV. The
comparison between the two remaining calculations illustrates impressively the relevance of the
effects that have been neglected in the past, even when there are no large hierarchies between
the masses of the lightest supersymmetric particles and the gauge bosons of the electroweak
theory. The most striking peculiarity of figure 4 is the appearance of a resonance associated
with a Z boson contribution which is omitted by the “naïve” fixed order computation. In
particular, the fixed-order calculation has a clear cutoff from the kinematic threshold of the
χ0

1χ0
1 → W +W−γ process at the energy Eγ = mχ−m2

W /mχ (corresponding to about 384 GeV
in the scenarios of figure 4). The Sommerfeld-corrected continuum spectra ‘full_ SE’ that
we compute here account for this Z-boson contribution by the inclusion of Feynman diagrams
like the one shown in figure 2. In such diagrams fermion pairs can be created resonantly from
a Z-boson in association with a photon with an energy that is larger than the aforementioned
cutoff. The resulting peak of the Z resonance is then at Eγ = mχ − m2

Z/(4mχ), amounting
to about 395 GeV in the scenarios of figure 4.

In addition to the Z resonance, the spectral region we uncovered in this work exhibits
further interesting features. The almost imperceptible kinks around the Eγ = mχ endpoint
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(400 GeV in the scenarios of this section) are due to the kinematic thresholds in the χ0
1χ0

1 →
ff̄γ processes, where f denotes any charged fermion of the SM with non-vanishing mass.
For instance, the χ0

1χ0
1 → bb̄γ process is only possible, if Eγ < mχ − m2

b/mχ (= 399.96GeV
in the current scenario).

The Sommerfeld effect in the spectral region that is covered by the original fixed-order
computation of ref. [86], i.e. below the W +W− threshold, yields a significant enhancement. As
the mχ/mW hierarchies become larger, the numerical impact becomes even more pronounced,
as we shall discuss below. Independent of the neutralino mass, however, annihilation cross
sections and Sommerfeld factors from wino-like neutralinos are generically larger than in
the higgsino-like case, because the electroweak charges in the pure wino limit are a factor of
two larger than those for the pure higgsino limit. For instance, the Born-level annihilation
cross section of wino-like neutralinos into W +W− pairs is sixteen times larger than the
corresponding cross section for higgsino-like neutralinos.

4.2 Scenarios with heavier neutralinos

Accounting for the Sommerfeld enhancement becomes more and more important as the mass
of the neutralinos is increased. In figure 5 we demonstrate this numerically for higgsino- and
wino-like scenarios with a lightest neutralino of mass 600 GeV and 2.4 TeV, respectively.

In each of these heavy neutralino scenarios, the predictions obtained within our full
calculation show strong enhancements compared to the fixed-order computations. In the
soft-photon part of the spectrum shown in figure 5 we observe how well the FSR predictions
‘FSR_ SE’ match our improved predictions ‘full_ SE’ and how this agreement improves,
as expected, when mχ is increased. In particular, due to the model-independence of the
splitting function of eq. (4.1), the ratios of the Sommerfeld-resummed calculations ‘FSR_ SE’
to the fixed-order results ‘fixed_ noSE’ are roughly independent of Eγ as long as Eγ ≪ mχ.
In the higgsino-like scenario these ratios amount to an enhancement by a factor of about
1.5 for mχ = 600GeV and of about 4.6 for mχ = 2.4TeV. In the wino-like scenario we find
enhancement factors of ∼ 1.9 for mχ = 600GeV and of 990 for mχ = 2.4TeV.

This huge enhancement of the gamma-ray spectrum in the large-mχ pure wino scenario
is due to the resonant nature of the Sommerfeld effect (see e.g. figure 1 of ref. [36]). For
particular neutralino masses the binding energy of a chargino-antichargino bound state is
exactly zero, which ultimately results in a strong enhancement of the DM annihilation cross
section. When varying the neutralino mass within our pure-wino scenario the enhancement
factor reaches a first resonance at mχ = 2.29TeV.8 It then decreases and increases again, until
the second resonance is reached at mχ = 8.83TeV. Note that, as discussed e.g. in ref. [90],
depending on the SUSY parameters, the Sommerfeld resummation can lead to suppressed
rather than enhanced annihilation rates. Pure winos and higgsinos with resonantly enhanced
cross sections are excluded by both Cherenkov and satellite telescopes even in the most
conservative assumptions about the DM halos [75, 76]. Off-resonance neutralinos with masses
of 600 GeV or 2.4TeV considered here are still allowed provided the DM distribution in the
center of the Galaxy is rather cored [75].

8The numerical value of the neutralino mass for which such resonance effects occur is very sensitive to the
chargino-neutralino mass splitting, and also depends on NLO corrections to the non-relativistic potential, see
e.g. ref. [89] and references therein.
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Figure 5. Upper panels: gamma-ray spectrum of neutralino annihilation in the higgsino-like (black)
and the wino-like (gray) scenarios with mχ = 600GeV (left) and mχ = 2.4TeV (right) within our
full calculation (solid lines), the unresummed LO computation of ref. [86] (dashed lines), and the
collinear-approximated computation of ref. [50] (dotted orange lines). Middle panels: full calculation
(solid lines) and unresummed LO computation (dashed lines) in the higgsino-like scenario close to
the endpoint region. Lower panels: full calculation (solid lines) and unresummed LO computation
(dashed lines) in the wino-like scenario close to the endpoint region.
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mχ = 400GeV mχ = 600GeV mχ = 2.4TeV
S(1̂1)(1̂1) 1.083 1.201 251.4
S(1̂1)⟨11̄⟩ 0.265 0.449 348.0
S⟨11̄⟩⟨11̄⟩ 0.065 0.168 481.8

Table 1. Elements of the Sommerfeld matrix in the pure-wino limit of the MSSM for the three
neutralino masses considered in this section.

As Eγ increases, the situation becomes even more intriguing, requiring us to consider
the relative impact of the various entries in eq. (3.1) for unraveling the underlying dynamics.
More specifically, in the pure wino limit eq. (3.1) can be decomposed into three terms:

d(σv)
dEγ

= 2S(1̂1)(1̂1)

[
d(σ̃v)
dEγ

]
(1̂1)(1̂1)

+ 4Re

S(1̂1)⟨11̄⟩

[
d(σ̃v)
dEγ

]
(1̂1)⟨11̄⟩


2S⟨11̄⟩⟨11̄⟩

[
d(σ̃v)
dEγ

]
⟨11̄⟩⟨11̄⟩

, (4.2)

where a numerical evaluation of the Sommerfeld factors yields the results listed in table 1. In
order to interpret the entries of the table, it is important to bear in mind that in the absence
of the Sommerfeld effect SIJ = δI(1̂1)δJ(1̂1). In the “low mass” scenario (mχ = 400 GeV), this
condition is satisfied at the level of about 30%. This, for instance, explains why in figure 4,
the deviations from the ‘fixed_ noSE’ with respect to the ‘full_ SE’ computations are
not extremely large in the Eγ ≪ 320GeV spectral region. However, as noted before, the
‘fixed_ noSE’ calculation misses the Z resonance effect and all additional ff̄γ contributions
resulting from the last term of eq. (4.2). As the neutralino mass increases, the numerical
significance of this term as well as of the interference term (second term in eq. (4.2)) grows
substantially. As shown below, the role of the charginos becomes more and more crucial
as the neutralino mass is increased.

Our ‘full_ SE’ calculation exhibits an interesting phenomenon at gamma-ray energies
that are somewhat smaller than the threshold energy of the W +W−γ final state, Eγ =
mχ − m2

W /mχ. Specifically, unlike the relatively “soft cutoff” behavior that is observed
in the ‘fixed_ noSE’ computation, the ‘full_ SE’ prediction exhibits a subtle additional
enhancement followed by a sharper decline near the threshold. This additional enhancement
becomes more pronounced as the neutralino mass is increased, as apparent from the two mχ

scenarios depicted in figure 5. In order to better understand this behavior, we introduce the
“normalized” matrix elements for the W +W−γ channel, which is the only annihilation channel
with non-vanishing diagonal and off-diagonal matrix elements in the wino/higgsino scenarios,

dNW +W−
IJ

dx
≡ mχ

(σ̃v)W +W−
IJ

d
dEγ

(σ̃v)W +W−γ
IJ , (4.3)

where x ≡ Eγ/mχ. These matrix elements are dimensionless and approach the LO fragmen-
tation function of eq. (4.1) asymptotically for sufficiently large mχ and small enough x. We
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Figure 6. Comparison of the normalized matrix elements dNW +W −

IJ / dx in the pure wino model, as
obtained using our ‘full_ SE’ calculation (solid lines), with the ‘endp_SE’ calculations of refs. [91, 92]
(dashed lines), as functions of (1− x) for three different values of mχ. Each color corresponds to the
contribution of a single matrix element with indices IJ as introduced in section 3.

plot them in figure 6. We observe that in the regime (1 − x) ≪ 1 and for scenarios with
heavy neutralinos, such as the considered case of mχ = 2.4TeV, the diagonal matrix element
with I = J = ⟨11̄⟩ is much larger than the corresponding matrix elements for all other IJ

combinations. In this case the three relevant Sommerfeld matrix elements SIJ listed in table 1
are comparable in order of magnitude. We see that, when they are combined with the relevant
annihilation matrix elements, the last term of eq. (4.2) in this scenario gives the dominant
contribution in the (1− x) ≪ 1 regime. The endpoint spectrum is thus dominated by virtual
chargino annihilations. This is a consequence of the increasing influence of Sudakov logarithms
for (1− x) ≪ 1, which are particularly large for the terms of eq. (4.2) involving charginos.

Besides the Sommerfeld effect, which is the focus of this work, a different kind of resum-
mation is necessary at the endpoint region of the spectrum. Indeed, for very heavy neutralinos
and Eγ → mχ our ‘full_ SE’ computation suffers from large logarithmic enhancements
that need to be incorporated (resummed) into the prediction. Such a resummation has
already been completed for the MSSM in ref. [66] at the next-to-leading logarithmic (NLL)
accuracy, while in refs. [65, 91] and [85] an NLL-prime (NLL’) accuracy9 was achieved for wino-
and higgsino-like DM, respectively (see ref. [94] for a short review). The NLL’ calculation
exhibits an accuracy of O(1%), while the accuracy of the NLL prediction is of order O(10%).
Similar calculations for wino-like DM can be found in ref. [95] at leading-logarithmic (LL)
accuracy and ref. [96] (NLL), and for higgsino-like DM in ref. [97] (LL’), where all anomalous
dimensions are given at 1-loop accuracy.

Indeed, we also verified that our results are consistent with the endpoint resummed
calculation of refs. [85, 91, 92], to which we refer as ‘endp_SE’ in the following, within
their kinematic regimes of validity, namely, mχ − Eγ ∼ O(mW ). For these comparisons
an additional step is required. While in the ‘endp_SE’ calculations, each annihilation-
matrix element [d(σ̃v)/ dEγ ]IJ incorporates terms resummed to all orders in the electroweak
coupling, annihilation matrix elements in the ‘full_ SE’ computation are computed at LO.

9In contrast to standard NLL computations, NLL’ resumations require that all relevant hard, soft and jet
functions are obtained at 1-loop, see e.g. ref. [93].
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Thus, for a meaningful comparison between the two calculations, a fixed-order expansion
of each annihilation matrix element of the ‘endp_SE’ calculation must be performed. The
LO term of the fixed-order expansion of the IJ-th annihilation matrix element in the
‘endp_SE’ calculation should then agree, up to power corrections of O(m2

W /m2
χ) that are not

included in our calculation, with the respective matrix element of the ‘full_ SE’ computation.
Indeed, we find that the annihilation matrix elements associated with the χ+

1 χ−
1 → γ + ff̄ ,

χ+
1 χ−

1 → γ + Zh and χ+
1 χ−

1 → γ + W +W− processes10 are exactly reproduced by the
expanded results of refs. [91, 92] at the leading order in the power expansion assumed there,
and provided that 1 − x ≪ 1. Note that, at LO, the γ + ff̄ and γ + Zh final states can
only occur when the initial state is composed of charginos, i.e. these channels only contribute
to the diagonal I = J = ⟨11̄⟩ annihilation matrix element. In contrast, γ + W +W− final
states can also result from neutralino annihilation, which receives contributions also from
the IJ = (1̂1)(1̂1) and IJ = (1̂1)⟨11̄⟩ combinations.

The agreement between our calculated annihilation matrix elements and those extracted
from refs. [91, 92] is very good for masses above the TeV scale, but poor for lighter neutralinos.
This is to be expected, as the ‘endp_SE’ results are valid only up to power corrections of
O(m2

W /m2
χ) which could be non-negligible for smaller neutralino masses such as mχ = 400GeV.

Our calculations, instead, provide the most accurate and reliable picture for the gamma-ray
spectrum from neutralino annihilations in that mass range.

In addition to the comparison with the ‘endp_SE’ calculation, we compared our results
for the I = J = (1̂1) annihilation matrix element analytically with the fixed-order neutralino
annihilation cross section into a W +W−γ final state in the pure wino and higgsino limits
that has been provided in ref. [86]. We found exact agreement.

5 Conclusions

In this work, we have presented the first calculation of the continuum gamma-ray spectra
resulting from neutralino annihilation including the Sommerfeld effect in the MSSM. The main
novelty of our work is the systematic inclusion of all combinations of chargino-antichargino
and neutralino pair annihilation processes into three-body final states that play a role in
the calculation. The impact of the Sommerfeld effect is generically very strong due to the
highly non-relativistic nature of the DM particles in the considered scenarios. For the sake of
concreteness we focused our numerical discussion on the pure wino and pure higgsino limits
of the MSSM. In the neutralino mass range of about 100 GeV to 1 TeV, we find qualitative
differences compared to calculations of continuum spectra including only final-state radiation
that are traditionally employed in gamma-ray searches for WIMP DM. For neutralinos heavier
than about a TeV, the endpoint of the continuum requires the resummation of large Sudakov
logarithms from soft/collinear electroweak radiation. Our work fills the gap between previous
calculations focusing on the endpoint regime and separate ones for the low-energy photon
regime where the widely used final-state radiation approximation is appropriate.

To ensure the correctness of our calculations we performed several stringent consistency
checks. We verified that our results agree with older ones in the appropriate limits, we

10These are the only calculations of chargino-antichargino annihilation cross sections into three-body final
states existing in the literature.
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checked gauge invariance, unitary safety, and we re-derived the non-relativistic potential for
the s-wave annihilation of neutralinos. We also showed that our results are consistent with
existing results employing the collinear approximation.

On the technical side, our results will allow for a reassessment of the impact of internal
bremsstrahlung by combining it with the Sommerfeld enhancement effect. This will pave the
way for robust global fits, especially in reduced-parameter MSSM scenarios. Most importantly,
though, our calculation will open the door to detailed phenomenological studies of the indirect
detection of neutralinos using gamma-ray observations from both satellite and Cherenkov
telescopes. In the light of improved energy resolutions and sensitivities of current and
next-generation gamma-ray telescopes this is a very timely achievement.
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A Conventions

A.1 Neutralino and chargino mixing matrices

All our computations within the MSSM employed the model file MSSM.mod that is contained
in FeynArts. Detailed information about the conventions used in this model file is given
in refs. [67, 98–100]. Here, we explicitly denote the elements of the neutralino (MN ) and
chargino (MC) mixing matrices, since these are of immediate relevance for the computations
that we present in this work. These are given by

MN =


M1 0 −mZsW cosβ mZsW sin β

0 M2 mZcW cosβ −mZcW sin β

−mZsW cosβ mZcW cosβ 0 −µ

mZsW sin β −mZcW sin β −µ 0

 , (A.1)

and

MC =
(

M2
√
2mW sin β√

2mW cosβ µ

)
, (A.2)

respectively.
The unitary mixing matrices Ñ , Ũ and Ṽ are defined by the following conditions:

Ñ∗MN Ñ−1 = diag(mχ0
1
, mχ0

2
, mχ0

3
, mχ0

4
) , Ũ∗MC Ṽ −1 = diag(mχ±

1
, mχ±

2
) , (A.3)

where mχ0
1

< mχ0
2

< mχ0
3

< mχ0
4

and mχ0
1

< mχ±
1

< mχ±
2

.

– 19 –



J
H
E
P
0
2
(
2
0
2
4
)
0
5
1

A.2 Static potential

The potential matrix VIJ(r) for the MSSM given by eq. (3.7) can be decomposed as

VIJ(r) = V diag
IJ (r) + V off

IJ (r) , (A.4)

where

V diag
IJ (r) = − α̂γ

IJ

r
− α̂Z

IJ

e−mZr

r
− α̂h

IJ

e−mhr

r
− α̂H0

IJ

e−mH0 r

r
− α̂A0

IJ

e−mA0 r

r
,

V off
IJ (r) = −α̂W

IJ

e−mW r

r
− α̂H+

IJ

e−mH+ r

r
.

The coupling matrices α̂B
IJ for each mediating boson B are block-diagonal for the neutral

mediators B0 = γ, Z, h, H0, A0 and off-diagonal for the charged bosons B+ = W +, H+,

α̂B0
IJ =

α̂B0

(îj),(k̂l) O10×4

O4×10 α̂B0

⟨xȳ⟩,⟨zw̄⟩

 , α̂B+
IJ =

 O10×10 α̂B+

(îj),⟨zw̄⟩
α̂B+

⟨xȳ⟩,(k̂l) O4×4

 . (A.5)

In eqs. (3.9)–(3.14) the coupling matrices have been expressed in terms of the coefficients
that are displayed below. In particular, the coefficients associated with massive vector boson
interactions are given by

v
Z (0)
ij = 1

2 cW
Im
(
Ni3N∗

j3 − Ni4N∗
j4

)
, a

Z (0)
ij = 1

2 cW
Re
(
Ni3N∗

j3 − Ni4N∗
j4

)
,

(A.6)

vZ
xy = − 1

4cW

(
Ũx1Ũ∗

y1 + Ṽ ∗
x1Ṽy1 + 2(c2

W − s2
W )δxy

)
, aZ

xy = − 1
4cW

(
Ũx1Ũ∗

y1 − Ṽ ∗
x1Ṽy1

)
,

(A.7)

vW
ix = 1

2

[
Ñ∗

i2Ũx1 + Ñi2Ṽ ∗
x1 +

1√
2

(
Ñ∗

i3Ũx2 − Ñi4Ṽ ∗
x2

)]
, (A.8)

aW
ix = 1

2

[
Ñ∗

i2Ũx1 − Ñi2Ṽ ∗
x1 +

1√
2

(
Ñ∗

i3Ũx2 + Ñi4Ṽ ∗
x2

)]
, (A.9)

where cW = cos θW and sW = sin θW , and the Nij , Ũij and Ṽij denote elements of the
unitary mixing matrices defined in eq. (A.3). The coefficients that are associated with
charged scalar bosons read

sGW
ix =− 1

2 cW

[
sβ

sW Ñ∗
i1 + cW Ñ∗

i2√
2

Ṽ ∗
x2 + cβ

sW Ñi1 + cW Ñi2√
2

Ũx2

− cβcW Ñi3Ũx1 + sβcW Ñ∗
i4Ṽ ∗

x1

]
, (A.10)

sH+
ix =− 1

2 cW

[
cβ

sW Ñ∗
i1 + cW Ñ∗

i2√
2

Ṽ ∗
x2 − sβ

sW Ñi1 + cW Ñi2√
2

Ũx2

+ sβcW Ñi3Ũx1 + cβcW Ñ∗
i4Ṽ ∗

x1

]
, (A.11)
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where cβ ≡ cosβ and sβ ≡ sin β. Finally, the coefficients for the neutral scalar bosons
are given by

s
GZ (0)
ij = i

4cW
{[(cβNi3 + sβNi4)(sW Nj1 − cW Nj2) + (i ↔ j)]− c. c.} , (A.12)

s
A0 (0)
ij = − i

4cW
{[(sβNi3 − cβNi4)(sW Nj1 − cW Nj2) + (i ↔ j)]− c. c.} , (A.13)

s
H (0)
ij = 1

4cW
{[(cαNi3 − sαNi4)(sW Nj1 − cW Nj2) + (i ↔ j)] + c. c.} , (A.14)

s
h (0)
ij = − 1

4cW
{[(sαNi3 + cαNi4)(sW Nj1 − cW Nj2) + (i ↔ j)]− c. c.} , (A.15)

sGZ
xy = − i

2
√
2

[
cβ(Ux2Vy1 − U∗

y2V ∗
x1)− sβ(Ux1Vy2 − U∗

y1V ∗
x2)
]

, (A.16)

sA0
xy = i

2
√
2

[
sβ(Ux2Vy1 − U∗

y2V ∗
x1) + cβ(Ux1Vy2 − U∗

y1V ∗
x2)
]

, (A.17)

sH
ij = − 1

2
√
2

[
cα(Ux2Vy1 + U∗

y2V ∗
x1) + sα(Ux1Vy2 + U∗

y1V ∗
x2)
]

, (A.18)

sh
ij = 1

2
√
2

[
sα(Ux2Vy1 + U∗

y2V ∗
x1)− cα(Ux1Vy2 + U∗

y1V ∗
x2)
]

, (A.19)

where sα ≡ sin α̃, cα ≡ cos α̃ and α̃ is the mixing angle of the CP-even Higgs doublet.

B Parameterization of the three-body phase space

In this work, we consider neutralino and chargino/antichargino pair annihilation processes
into three-particle final states of the type γ + X(2). The four-momenta of the particles are
denoted by ki with (i = 1, . . . 5) such that e.g.

χ+
x (k1) + χ−

y (k2) → X
(2)
1 (k3) + X

(2)
2 (k4) + γ(k5) , (B.1)

with the X
(2)
1,2 denoting the two final-state particles resulting from the X(2) system.

The non-relativistic initial-state particles are assumed to be at rest, i.e. k1 = (mχ, 0⃗)T

and k2 = (mχ, 0⃗)T . Assuming that the photon propagates along the z axis we find k0
5 =

||⃗k5|| = mχx = mχ − s34
4mχ

, with s34 = m2
X = (k3 + k4)2 = 4m2

χ(1− x) , where mX is the
invariant mass of the subsystem X(2) of the final state in a 2 → 3 scattering process of type
χ+

x χ−
y → γ + X(2). We choose a reference system where k⃗3 and k⃗4 are lying in the yz plane

(kx
3 = kx

4 = 0). The components of kµ
3 are given by

k0
3 = mχ

2z

(1 + z)
(

z − m2
4 − m2

3
4m2

χ

)
− (1− z)

√√√√z −
(

m4 − m3
2mχ

)2
√√√√z −

(
m4 + m3
2mχ

)2

cos θ∗3

 ,

ky
3 =− ky

4 = mχ√
z

√√√√z −
(

m4 − m3
2mχ

)2
√√√√z −

(
m4 + m3
2mχ

)2

sin θ∗3 ,

kz
3 =− mχ

2z

(1− z)
(
z − m2

4 − m2
3

4m2
χ

)
− (1 + z)

√√√√z −
(

m4 − m3
2mχ

)2
√√√√z −

(
m4 + m3
2mχ

)2

cos θ∗3

 ,
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where z = 1 − x with x = Eγ/mχ; θ∗3 (θ∗4) is the relative angle between k3 (k4) and k5 in
the rest frame of X(2). The components of k4 are obtained by interchanging m3, θ∗3 with
m4 and θ∗4 in the expressions for k3 above. The three-particle phase space can thus be fully
parametrized by the variables x and θ∗3.

The annihilation matrix elements of eq. (3.15) in this parametrization are given by

[
d(σ̃v)
dEγ

]
IJ

= 1
(
√
2)id(I)+id(J)

∑
X(2)

xλ
[
4m2

χ(1− x), m2
3, m2

4

]
(16π)3m3

χ(1− x)

×
∫ 1

−1
d(cos θ∗3)A

(ℓ,s)=(0,0) ∗
J→γ+X(2) A

(ℓ,s)=(0,0)
I→γ+X(2) , (B.2)

where λ[a, b, c] =
√

a2 + b2 + c2 − 2ab − 2ac − 2bc. In our generic notation the summation
over all possible spin and helicity configurations of the final-state particles is implied in
the summation over X(2).

As discussed in section 3, the amplitudes A(ℓ,s)=(0,0)
I→γ+X(2) are obtained by projecting the

(standard) amplitude for individual spins A(χ+
x (s1)χ−

y (s2) → γ(λ5) + X(2)) (λ5 = ±1 is the
photon helicity) that is generated by FeynArts and FeynCalc onto the s-wave (ℓ, s) = (0, 0)
state that is relevant for formula (B.2):

A(ℓ,s)=(0,0)
I→γ+X(2) =

1√
2

(
A(χ+

x (↑)χ−
y (↓) → γ + X(2))−A(χ+

x (↓)χ−
y (↑) → γ + X(2))

)
(B.3)

The FeynArts and FeynCalc expressions depend on both the u(ki, si) and v(ki, si)
(i = 1, 2) spinors of the incoming fermions. Using the z axis as the reference axis, in the
Weyl representation these spinors are given by

u(ki, si) =
√

mχ



1
2 + si

1
2 − si

1
2 + si

1
2 − si

 , v(ki, si) =
√

mχ


−1

2 + si

1
2 + si

1
2 − si

−1
2 − si

 . (B.4)

B.1 Final state parameterizations

B.1.1 Final states including vector bosons: W +W −γ, W ±H∓γ, ZSγ

The polarization vector of the photon is given by εγ(λ5) = (0,−1/
√
2, iλ5/

√
2, 0)T . For final

states with massive gauge bosons the corresponding polarization vectors are given by

εV (ki, λi ̸= 0) =



− i(1−z) sin θ∗3
2
√

2z

λi√
2

− i cos θ∗3√
2

i(1+z) sin θ∗3
2
√

2z


, (B.5)
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for λi = ±1 and

εV (k3, λ3 = 0) = 1
4m3mχz


λ(4m2

χz, m2
3, m2

4)(1 + z)− (4m2
χz + m2

3 − m2
4)(1− z)

0
√

z(4m2
χz + m2

3 − m2
4) sin θ∗3

−λ(4m2
χz, m2

3, m2
4)(1− z) + (4m2

χz + m2
3 − m2

4)(1 + z)

 ,

(B.6)
for λ3 = 0. For the W +W−γ case the polarization vector ε(k4, λ4 = 0) is obtained by
interchanging m3, θ∗3 with m4 and θ∗4 respectively. For the W±H∓γ, ZSγ final states, we
use the polarization vectors above (as functions of k3, λ3) for the massive gauge boson and
assume that the scalar particle has 4-momentum k4.

B.1.2 Final states with fermions: q̄qγ, l+l−γ, νν̄γ

The final-state spinors for (anti-)fermions f with mass mf and helicities s3, s4, are given by

uf (k3, s3) =



(
1
2 + s3

)√
mχ −

√
m2

χz − m2
f

cos θ∗3√
z

( 1
2−s3)mf−i( 1

2 +s3)
√

m2
χz−m2

f
sin θ∗3√

mχ−
√

m2
χz−m2

f

cos θ∗3√
z

( 1
2 +s3)mf−i( 1

2−s3)
√

m2
χz−m2

f
sin θ∗3√

mχ−
√

m2
χz−m2

f

cos θ∗3√
z(

1
2 − s3

)√
mχ −

√
m2

χz − m2
f

cos θ∗3√
z


, (B.7)

and

vf̄ (k4, s4) =



−
(

1
2 − s4

)√
mχ +

√
m2

χz − m2
f

cos θ∗3√
z

( 1
2 +s4)mf−i( 1

2−s4)
√

m2
χz−m2

f
sin θ∗3√

mχ+
√

m2
χz−m2

f

cos θ∗3√
z

( 1
2−s4)mf−i( 1

2 +s4)
√

m2
χz−m2

f
sin θ∗3√

mχ+
√

m2
χz−m2

f

cos θ∗3√
z

−
(

1
2 + s4

)√
mχ +

√
m2

χz − m2
f

cos θ∗3√
z


. (B.8)
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