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Abstract: In this article, building on our recent investigations and motivated by the
fuzzball-paradigm, we explore normal modes of a probe massless scalar field in the rotating
BTZ-geometry in an asymptotically AdS spacetime and correspondingly obtain the Spectral
Form Factor (SFF) of the scalar field. In particular, we analyze the SFF obtained from the
single-particle partition function. We observe that, a non-trivial Dip-Ramp-Plateau (DRP)
structure, with a Ramp of slope one (within numerical precision) exists in the SFF which is
obtained from the grand-canonical partition function. This behaviour is observed to remain
stable close to extremality as well. However, at exact extremality, we observe a loss of the
DRP-structure in the corresponding SFF. Technically, we have used two methods to obtain our
results: (i) An explicit and direct numerical solution of the boundary conditions to obtain the
normal modes, (ii) A WKB-approximation, which yields analytic, semi-analytic and efficient
numerical solutions for the modes in various regimes. We further re-visit the non-rotating
case and elucidate the effectiveness of the WKB-approximation in this case, which allows
for an analytic expression of the normal modes in the regime where a level-repulsion exists.
This regime corresponds to the lower end of the spectrum as a function of the scalar angular
momentum, while the higher end of this spectrum tends to become flat. By analyzing the
classical stress-tensor of the probe sector, we further demonstrate that the back-reaction
of the scalar field grows fast as the angular momenta of the scalar modes increase in the
large angular momenta regime, while the back-reaction remains controllably small in the
regime where the spectrum has non-trivial level correlations. This further justifies cutting
the spectrum off at a suitable value of the scalar angular momenta, beyond which the scalar
back-reaction significantly modifies the background geometry.
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1 Introduction

Understanding and identifying the signatures of unitarity in a quantum dynamics is a non-
trivial problem in physics. First, one needs a suitable diagnostic observable to both calculate
and measure that can detect e.g. the lack of unitarity. Secondly, since explicit time-dependence
is generally involved for any realistic system, one needs to track the system for a very long
time-scale to recover unitarity.1 Close to these, are ideas and notions of quantum chaos.
Spectral Form Factor (SFF) and Level Spacing Distribution (LSD) provide us with a very
useful diagnostic of the underlying integrable or chaotic dynamics. The extreme version of
quantum chaos is generally provided by systems under the Random Matrix Theory (RMT)
universality class, which displays a Dip-Ramp-Plateau (DRP) structure in the SFF, with
a ramp of slope unity and a Wigner-Dyson LSD. While RMT-class systems ensure the
collective existence of all these features simultaneously, it is still interesting to understand
whether each of the above features can be isolated from the others. Especially to this is
the existence of the slope unity ramp, which is thought to originate from the level-repulsion
of far-away eigenvalues of the spectrum.

1For example, for a system with discrete energy levels, this time-scale behaves as tH ∼ ∆−1, where ∆ is
the minimum gap in the spectrum. Clearly, this is proportional to the exponential of entropy, and is therefore
extremely large for a system with many degrees of freedom.
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Understanding quantum aspects of gravity and black holes has been a driving force in
decades of research in theoretical physics. One of the primary upshots is a potent debate
about the smoothness of the event horizon of a black hole. This conflict of ideas underlies
several burning issues in quantum aspects of gravity, especially unitarity [1, 2]. In particular,
it has been argued,e.g. in [3, 4] that quantum gravitational effects make the event horizon
non-smooth.2 Much earlier to these, ’t Hooft had considered a brickwall model of a (quantum)
black hole [5], in which a Dirichlet hypersurface was placed ad hoc in front of the event
horizon of a black hole.

In [6–8] we have initiated a re-visit of the brickwall-type model, especially within the
context of unitarity of the spectral form factor (SFF) of a probe (scalar) field in the given
brickwall geometry. Recently, in [9], an explicit calculation of the SFF of a quantum black
hole has been carried out In a low-dimensional model and it was demonstrated to fall under
the RMT-universality class. For related studies in the SYK model or in JT-gravity, see
e.g. [10–27]. However, at present, no analogous calculation exists in higher dimensions where
gravitons are true dynamical degrees of freedom. More directly, it has been established in [9]
that the SYK model and its close cousins are under the RMT universality class. Gravitational
wormholes play a crucial and a rather interesting role in these studies, see e.g. [28] for a
review on certain basic aspects of wormholes from this perspective.

In this article, we consider a brickwall model where a Dirichlet brane is placed outside the
event-horizon of a BTZ-geometry in an asymptotically AdS-background. In this geometry, we
consider the dynamics of a probe free scalar field whose normal mode spectra is determined
by solving the corresponding Klein-Gordon equation subject to Dirichlet boundary condition
on the wall and normalizability at the conformal boundary of AdS. Subsequently, we analyze
the single-particle sector partition function and the associated (analytically continued) SFF.
Note that, this is different from the studies of e.g. [9] in several ways: (i) We focus on the
dynamics of the probe scalar sector and not the full gravitational background itself. The
scalar sector partition function, nonetheless, can be viewed as capturing the physics of the
one-loop determinant. See e.g. [29] where functional determinants in thermal spacetimes
have been explored in detail. By construction, our results do not see the N of the large-N
CFT, since we are exploring the dynamics of a probe set of degrees of freedom. (ii) By
construction, we only consider the dynamics of the single-particle sector of the probe field.
(iii) The brickwall models do not involve e.g. the double-cone wormholes which are used to
calculate multi-particle SFF in toy models of gravity.

Note, however, that our observations may also be crucial in eventually realizing a many-
body chaos within this model and one that also senses explicitly the large N degrees of
freedom of the boundary CFT. This is a speculative comment at this point and it will be
great to explore this possibility in explicit details in future. Nonetheless, some recent results
in [30–32] already suggest that salient features of black hole thermodynamics, including but
not necessarily limited to the black hole entropy, temperature and quasi-normal modes, may
be extracted from the normal modes of this simple toy model. While there are several open
questions, these observations are, at least, encouraging signs of an interesting physics. We

2More specifically, it has been argued that there is a conflict between effective field theories, smooth
horizons and strong sub-additivity of entanglement entropy.
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further emphasize that, all our observations are crucially dependent on the large blue-shift
that a black hole (or a black hole mimicker) produces and are not otherwise observed in
a general curved geometry. Even though there is no theorem about it, we have explicitly
studied some models in our earlier works [6, 7] to demonstrate this observation.

Our underlying finer-grained motivation is rooted in the fuzzball-type scenario, in which
it is thought to be difficult to capture scrambling and chaotic properties of a black hole,
associated with its thermal description. At this point, it is worthwhile to emphasize that
the fuzzball-type scenario does not have any wormhole-type realization by construction and
therefore it is potentially fruitful to compare and contrast results obtained by these two
methods. Our model consists of an ad hoc Dirichlet boundary condition on a stretched
horizon which is localized at a fixed radial position. This can be viewed as a toy model for a
fuzzball, see e.g. [33–47]. While, generically, the fuzzballs are characterized by a non-trivial
profile function, in [6–8] we observed several interesting and robust features with a simple
Dirichlet boundary condition for a first-quantized probe scalar field and its corresponding
single-particle partition function.3 These are:

• The spectral form factor displays a robust dip-ramp plateau structure, with ramp of
slope unity.4

• No averaging is needed to observe the linear ramp.

• The single-particle spectrum displays level-repulsion.

Motivated by these observations, in this article, we explore a similar question in the
rotating BTZ geometry. There are multiple motivations of our present work: (i) First, rotating
BTZ geometry is a natural and interesting generalization of our earlier works. (ii) Secondly,
rotating BTZ geometry allows for the possibility of considering a grand-canonical ensemble
for the probe scalar field and the corresponding analytically continued SFF. We will observe
that this plays a crucial role and the above observations will hold provided we consider the
SFF obtained from the grand partition function. (iii) Thirdly, rotating BTZ allows for an
extremal limit which has several unique features associated to the black hole dynamics. We
will observe, among other things, that the near-extremal physics is qualitatively different
from the physics at exact extremality. At exact extremality both level-repulsion and the
DRP-structure of the corresponding SFF disappear. This further demonstrates that the
near-horizon Rindler structure along with a compact direction to support a non-vanishing
angular momentum are the crucial ingredients for this behaviour. (iv) Fourth, at a technical
level, the salient features related to quantum chaos in [6, 7] originate from the behaviour of
the normal modes as a function of the non-vanishing angular momenta of the scalar field.
It is thus interesting to understand the role of a global non-vanishing angular momentum
in this framework. For rotating BTZ, the black hole angular momentum provides us with
this additional scale. It is intriguing that at the maximal allowed value of the BTZ angular

3Note that, in [7], we have explicitly explored the role of an angle-dependent Dirichlet boundary and found
that, choosing a Gaussian random distribution with an order one variance produces a Wigner-Dyson like
level-spacing distribution.

4These features are visible in a log-log plot.

– 3 –



J
H
E
P
0
2
(
2
0
2
4
)
0
4
9

momentum, the normal modes become a linear function of the angular momenta of the scalar
sector and therefore reduce to a harmonic oscillator like behaviour.5

Before we end this section, let us summarize the key observations of this work:

• For a generic non-vanishing angular momentum of the BTZ-background, the spectral
form factor of the probe scalar field displays a robust dip-ramp plateau structure, with
ramp of slope unity.6 It is perhaps worth emphasizing that we need not carry out any
averaging to observe these features. However, an averaging may be done to sharpen
the features as a convenience.

• The above observations are done from an SFF which is obtained by analytically
continuing the grand-canonical partition function. It is noteworthy that the SFF
obtained from the canonical partition function does not exhibit a stable dip-ramp-
plateau structure. Instead, it transitions smoothly from chaotic RMT type to simple
harmonic oscillator (SHO) type, as the black hole’s angular momentum increases towards
extremality.

• The grand-canonical partition function can be equivalently viewed as emerging from re-
stricting the partition sum on positive modes only. These modes display the qualitatively
similar level-correlation that we have seen in our earlier works as well.

• Close to extremality, the DRP features remain unaffected. To the extent we could check
within our numerical constraints.

• At exact extremality, there is a qualitatively different physics. The SFF now appears
to resemble an integrable system and the normal modes seem to be linear and therefore
harmonic oscillator like. A clear demarcation between the close-to-extremality and
exact-extremality is the precise nature of red-shift produced by the black hole geometry.
While, at exact extremality, the surface gravity vanishes identically; close to extremality
it is arbitrarily small but non-vanishing. Equivalently, the former corresponds to physics
at exact T = 0 temperature, whereas the latter corresponds to a small non-vanishing
temperature.

• All our statements above are made for the single-particle Spectral Form Factor.

This article is divided into the following parts: in the next section, we begin with
our set-up describing a probe Klein-Gordon field in the rotating BTZ geometry. We first
review, using the previously unused WKB-approximation, the non-rotating case that was
reported in our earlier work. This approximation allows us for certain analytic regimes as
well as faster and more efficient numerical solutions. Subsequently we discuss the rotating
BTZ case. We use numerical methods, analytical and semi-analytical (WKB) methods in
exploring this case in general. We then analyze the exact extremal case separately, using the
WKB-approximation. We then conclude with several open directions as well as comments on

5Note that, even for the harmonic oscillator the level spacing distribution does display an extreme level
repulsion, since all energy levels are equispaced. The corresponding SFF, however, does not display any chaotic
behaviour.

6These features are, once again, visible in a log-log plot.
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our current works in progress in the Discussion section. We have relegated several technical
details to five appendices.

2 Probe scalar in rotating black hole background

Let’s consider rotating BTZ metric in 2 + 1 dimensions,

ds2 = gttdt
2 + grrdr

2 + 2gtψdtdψ + gψψdψ
2, (2.1)

where,

gtt =M − r2

l2
, gtψ = −J2 , gψψ = r2 and grr =

(
−M + J2

4r2 + r2

l2

)−1

. (2.2)

Here we have set c = 1 throughout the paper. M and J are respectively mass and angular
momentum of the black hole. The inner and outer (event horizon) horizons are defined by,

r2± = Ml2

2

1±
√
1− J2

M2l2

 . (2.3)

We want to quantize a massless probe scalar field in this background i.e. we want solve
the following Klein-Gordon equation,

□Φ ≡ 1√
|g|
∂µ

(√
|g|∂µΦ

)
= µ2Φ2. (2.4)

As the metric is invariant under the translation of t and ψ, we will use the ansatz, Φ =∑
ω,m e

−iωteimψϕω,m(r) and with this ansatz radial part of (2.4) satisfies,(
grr

(
ω − J

2r2m
)2

− m2

r2
− µ2

r2
+ 1
r

d

dr

(
r

grr

d

dr

))
ϕ(r) = 0. (2.5)

Here we have suppressed the subscript of ϕ(r). To write (2.5) in more familiar form, we
use a new radial coordinate z = r2−r2

+
r2−r2

−
and introduce a new radial function F (z) = ziα(1−

z)−βϕ(r), where

α = l2r+
2(r2+ − r2−)

(ω − ΩHm), β = 1
2(1−

√
1 + µ2). (2.6)

Here ΩH = J/2r2+ is the angular velocity at the horizon. In this new coordinate, z → 1 is the
boundary and z → 0 corresponds to outer horizon. With this changes (2.5) simplifies to,

z(1− z)d
2F (z)
dz2

+ (c− (1 + a+ b)z)dF (z)
dz

− abF (z) = 0, (2.7)

with

a = β − i
l2

2(r+ + r−)

(
ω + m

l

)
, b = β − i

l2

2(r+ + r−)

(
ω − m

l

)
, c = 1− 2iα, (2.8)
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solution is given by,

ϕ(z) = z−iα(1− z)β(C1 2F1(a, b; 1 + a+ b− c; 1− z)
+ C2(1− z)c−a−b 2F1(c− a, c− b; 1 + c− a− b; 1− z)) (2.9)

Near boundary behaviour of (2.9) is

ϕbdry(z) ≈ z−iα
(
C1(1− z)

1
2 (1−

√
1+µ2) + C2(1− z)

1
2 (1+

√
1+µ2)

)
, (2.10)

where the first term is non-normalizable and second one is normalizable. So normalizable
condition at boundary implies C1 = 0, i.e,

ϕ(z) ∼ z−iα(1− z)β (1− z)c−a−b 2F1(c− a, c− b; 1 + c− a− b; 1− z)

= z−iα(1− z)β
(
P 2F1(a, b; c; z) +Qz1−c2F1(a− c+ 1, b− c+ 1; 2− c; z)

)
= (1− z)β

(
P z−iα 2F1(a, b; c; z) +Qziα2F1(a− c+ 1, b− c+ 1; 2− c; z)

) (2.11)

where,

P = Γ(1− c)Γ(c− a− b+ 1)
Γ(1− a)Γ(1− b) , Q = Γ(c− 1)Γ(c− a− b+ 1)

Γ(c− a)Γ(c− b) (2.12)

Dirichlet boundary condition that field vanishes at some z = z0 implies:

Q

P
= −z−2iα

0
2F1(a, b; c; z0)

2F1(a− c+ 1, b− c+ 1; 2− c; z0)
. (2.13)

This is the quantization condition which gives rise to normal modes. When the position of
the stretched horizon is very close to the event horizon (z0 → 0), we can approximate the
ratio as −z−2iα

0 and then quantization condition becomes,

Q

P
= Γ(c− 1)

Γ(c− a)Γ(c− b)
Γ(1− a)Γ(1− b)

Γ(1− c) = −z−2iα
0

⇒ −z2iα0
Γ(c− 1)

Γ(c− a)Γ(c− b)
Γ(1− a)Γ(1− b)

Γ(1− c) = 1

⇒ Arg
( Γ(c− 1)
Γ(c− a)Γ(c− b)

)
+ α log z0 = −

(
n+ 1

2

)
π. (2.14)

Let ϵ = r0 − r+ denotes the separation between horizon and stretched horizon. Then (2.14)
can be written as the following,

α log
(

2 ϵ r+
r2+ − r2−

)
+ Arg

( Γ(c− 1)
Γ(c− a)Γ(c− b)

)
= −

(
n+ 1

2

)
π, where, n ∈ Z. (2.15)

We have solved this equation in Mathematica which gives us normal modes ω(n,m) as a
function of principal quantum number n and rotational quantum number m. In the subsequent
sections we will consider those modes for which ω(n,m)− ΩHm > 0, i.e. when partition sum
is well defined. Before that, let us revisit the non-rotating BTZ geometry first.
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Figure 1. Spectrum (left) and SFF (right) for static BTZ i.e. J = 0 case along m-direction. Here
n = 0, mcut = 400 and z0 = 10−20 and β = βH . The yellow line has slope one.

2.1 Non-rotating BTZ: J = 0 case

Let’s consider J = 0 case first i.e. static BTZ black hole which we have already studied in [6].
As (2.15) is symmetric under m→ −m, roots i.e. normal modes also preserve the symmetry
as shown in figure 1 (left). Corresponding spectral form factor is shown in the right of the
figure 1. Where β = βH represents the inverse temperature of the corresponding BTZ black
hole geometry without any brick wall. Although, in the absence of the horizon, β is merely a
parameter, it is noteworthy that in the limit r0 → rH , we can assign an effective temperature
β = βH to the system, at least at the level of the two-point functions [32].

2.1.1 Some analytical regimes & estimates

In this section, we will use the WKB approximation to explore analytical regimes of the
spectrum. Furthermore, as we will explicitly demonstrate, the WKB-approximation is also
efficient in numerically obtaining the normal modes. Some of the key details are provided in
appendix D and we will use them in this section. First of all, note that the Klein-Gordon
equation, given explicitly in the r coordinate of [6], can be written as:

(
r2 − 1

)2
ϕ′′(r) + 2r(r2 − 1)ϕ′(r) +

(
ω2 − (r2 − 1)

( 1
r2

(
m2 + 1

4

)
+ 3

4

))
ϕ(r) = 0 . (2.16)

This equation can now be written in the form of a Schrödinger equation:

d2Ψ
dr2

− V (r)Ψ(r) = 0 . (2.17)

The explicit form of the potential can be obtained from equation (D.7), which we will not
explicitly present here. Instead, we will refer the Reader to a generic form of the potential
in e.g. figure 2.

It is clear from the pictorial representation of the potential that there are three regions
where the WKB approximation yields analytic solutions, at least in terms of integrals. The full
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rH

r0

I

II

r

V(r)
V(r)

Figure 2. The Schrödinger potential corresponding to the Klein-Gordon equation in non-rotating
BTZ-background. We have chosen m = 1.6 and ω = 1 for this particular case. The shape of the
potential shown in this figure is, however, generic. The robust qualitative feature is that there exists
two regions I and II, where V (r) < 0 and V (r) > 0, respectively. These two regions are separated by
a classical turning point, denoted by rc where V (rc) = 0. Also, rH and r0 correspond to the location
of the event horizon and the cut-off surface, respectively.

solution of the wavefunction is given by (in what follows, we closely follow the notations of [33])

Ψ(r) = 1
|V (r)| 1

4

[
DI

+exp
(
i

∫ rc

r
|V (r)|

1
2dr

)
+DI

−exp
(
−i
∫ rc

r
|V (r)|

1
2dr

)]
, r < rc , (2.18)

= dI+Bi
(
V ′(rc)

1
3 (r − rc)

)
+ dI−Ai

(
V ′(rc)

1
3 (r − rc)

)
, r ∼ rc , (2.19)

= 1
|V (r)| 1

4

[
DII

+ exp
(∫ r

rc

|V (r)|
1
2dr

)
+DII

− exp
(
−
∫ r

rc

|V (r)|
1
2dr

)]
, r > rc . (2.20)

As obtained in [33], the corresponding WKB connection formulae relate the coefficients
{dI+, dI−} with {DI

+, D
I
−} and {dI+, dI−} with {DII

+ , D
II
− }:

[
dI+
dI−

]
= e−i

π
4
√
πV ′(rc)−

1
6

[
1 i

i 1

] [
DI

+
DI

−

]
, (2.21)[

dI+
dI−

]
=

√
πV ′(rc)−

1
6

[
1 0
0 2

] [
DII

+
DII

−

]
, (2.22)

which implies

[
DI

+
DI

−

]
=

√
πV ′(rc)−

1
6

[
1
2e

iπ
4 e−

iπ
4

1
2e

− iπ
4 ei

iπ
4

] [
DII

+
DII

−

]
. (2.23)

By observation, in the regime r > rc, normalizability of the solution as r → ∞ requires
DII

+ = 0, and hence dI+ = 0 using the connection formulae. This also fixes the other constants:

– 8 –
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dI− =
√
πV ′(rc)−1/6DII

− , DI
+ = e−iπ/4DII

− and DI
− = eiπ/4DII

− . Hence, the explicit solution is:

Ψ(r) = 2DII
−

|V (r)| 1
4
cos

(∫ rc

r
|V (r)|

1
2dr − π

4

)
, r < rc , (2.24)

= DII
− 2

√
πV ′(rc)−

1
6Ai

(
V ′(rc)

1
3 (r − rc)

)
, r ∼ rc , (2.25)

= 1
|V (r)| 1

4
DII

− exp
(
−
∫ r

rc

|V (r)|
1
2dr

)
, r > rc . (2.26)

The boundary condition Ψ(r0) = 0 now yields:

cos
(∫ rc

r0
|V (r)|

1
2dr − π

4

)
= 0 =⇒

∫ rc

r0
|V (r)|

1
2dr − π

4 = π

2 + 2nπ , n ∈ Z . (2.27)

To obtain the spectrum, let us collect some further explicit formulae. The potential,
V (r) is given by

V (r) = r2
(
4m2 − 4ω2 − 6

)
− 4m2 + 3r4 − 1

4r2 (r2 − 1)2
, r0 ≤ r ≤ rc , (2.28)

r2c = 1
3
(
−2m2 + 2

√
m4 − 2m2ω2 + ω4 + 3ω2 + 3 + 2ω2 + 3

)
. (2.29)

Although V (rc) = 0 admits four distinct solutions, only the above is real and positive and
hence we discard the rest. Fortunately, with the above potential the WKB-integral in (2.27)
can be performed analytically to yield:∫ rc

r0
|V (r)|

1
2dr = 1

8

(
−2

√
3tan−1(a1)+2

√
ω2+1log

(
b1+1
b1−1

)
−
√
4m2+1log

(
c1+1
c1−1

)
−
√
3π
)

a1 = −2m2−3r20+2ω2+3
√
3
√
−4m2(r20−1

)
−3r40+r2(4ω2+6)+1

, (2.30)

b1 = m2(−(r20−1
))
+
(
r20+1

)
ω2+2

√
ω2+1

√
−4m2(r20−1

)
−3r40+r20 (4ω2+6)+1

, (2.31)

c1 = −2m2(r20−2
)
+r20

(
2ω2+3

)
+1

√
4m2+1

√
−4m2(r20−1

)
−3r40+r20 (4ω2+6)+1

. (2.32)

While the above expressions are analytical, it is still difficult to invert them and obtain
an analytic expression of ω(m). It is, nonetheless, possible to numerically solve the WKB-
equation, obtain the normal modes and compare them with the normal modes that we have
already obtained by solving the boundary conditions directly. It is also possible to obtain
more intuition on the spectrum, by looking at specific regimes of the WKB-formulae above.

We will begin with the second case. It is particularly simple to consider the cut-off
surface r0 → rH : r0 = rH + ϵ and perform an ϵ-expansion of the above integrals. At the
leading order, we obtain:

3π
4 +2nπ= 1

8

(
−
√
4m2+1log

( √
4m2+1

√
ω2+1+m2+ω2+2

−
√
4m2+1

√
ω2+1+m2+ω2+2

)
(2.33)

− 2
√
3tan−1

(
ω2−m2

√
3
√
ω2+1

)
+2
√
ω2+1log

(
4
(
ω2+1

)2
ϵ2 (m4−2m2ω2+ω4+3ω2+3)

)
−
√
3π
)
.
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ϵ=10-3

m
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ω(m)

Figure 3. A pictorial representation of the analytic formula in (2.35), for given choices for ϵ which
has been explicitly shown in the figure above. In both cases, we have set n = 1. Evidently, the lower
ends of the spectrum coincide rather well. It is further evident from the trend of these curves that by
increasing ϵ, one decreases the curvature of the ω(m) function. It is thus conceivable that for large
enough ϵ, ω(m) will become a linear function.

The equation above is still somewhat unwieldy to invert. We can further assume that ω ≫ 1
as well as m ≫ 1 such that ω(m) ≪ m.7 In this limit, we obtain:

3π
4 + 2nπ = 1

4

(
ω log

(
4ω4

m4ϵ2

)
−
√
3 tan−1

(√
3ω
m2

))
. (2.34)

In the ϵ → 0 limit, the first term above dominates and we obtain:

ω(m) = π(8n+ 3)
4W

(
8
√
2πn+3

√
2π

4m
√
ϵ

) , (2.35)

where W is the product log function.8 The above approximation breaks down roughly at
ω ≈ m2/3ϵ4/3, which implies that we can use the approximate result for large enough angular
momenta, as long as mmax ∼ ϵ−2/3, for a given ϵ. Tuning ϵ appropriately, it is thus possible
to have an access to the high-end of the m-spectrum for the function ω(m). Note further,
that both the explicit solution in (2.35) as well as the ω ∼ m2/3 dependence satisfy the
criterion ω(m) ≪ m, for large enough m. Some of these features are demonstrated in figure 3.
Alternatively, one can obtain straightforward, albeit somewhat brute force, numerical solutions
of the WKB-equations. A representative such figure has been demonstrated in figures 4
and 5. Note that the WKB approximations yields rather nice results compared to the
numerical roots that we have earlier found out by solving directly the boundary conditions.
It is noteworthy that although both require a numerical solution in the generic regime, the
WKB-equations are substantially simpler to work with numerically.9

7This essentially implies that ω(m) is a slowly varying function of m, i.e. a logarithmic function.
8The Product Log function W (z) yields the principal solution for x satisfying: z = xex.
9Just as a comparison, using Mathematica, the time-scale it roughly takes to find O(103) roots of the

Dirichlet boundary conditions in (2.15) is larger than finding O(104) numerical solutions of the WKB-equations
in (2.27).
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m

ω(m)

ω(m)

Figure 4. A pictorial representation comparing the analytic formula in (2.35), for given choices for ϵ
with numerical solutions obtained by the leading term in the ϵ→ 0 limit. We have set ϵ = 10−5 and
n = 1 in the above figure. The blue dashed curve represents the formula in (2.35) while the red solid
curve represents numerical solutions. It is clear that (2.35) provides a reliable approximation to the
normal modes.

n

ω(n)
ω(n)

Figure 5. A pictorial representation of the dependence of normal modes with n, for a fixed value
of the angular momentum m. In this plot, the blue and the yellow curves correspond to m = 1 and
m = 30, respectively. It is evident that ω(n) closely resembles a linear function, and this dependence
is rather robust against the choice of m.
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Figure 6. Spectrum (left) and regulated spectrum (right) for BTZ black hole with J = 0.01. Here n =
0, mcut = 400 and z0 = 10−20. Note that, while the unregulated spectrum appears linear, the regulated
spectrum contains the qualitative features which we have seen to yield a non-trivial spectral form factor.

2.2 Non-vanishing rotation: J ̸= 0

We will now switch gears to the rotating black hole. For J ̸= 0, the defining equation (2.15)
is not symmetric under m → −m. This fact is reflected in figure 6 (left panel), which is
obtained by direct numerical solutions of the quantization conditions. Nonetheless, the
regulated ω̃ = ω(1,m) − ΩHm is symmetric, which is also shown in figure 6 (right panel).
A particularly noteworthy feature of the spectrum is: in the presence of a non-vanishing
J , the spectrum ω(m) is not necessarily positive. To define positive modes, we can work
with ω̃(n,m) = ω(n,m)− ΩHm. This, in turn, corresponds to considering a grand-canonical
partition function and the corresponding analytically continued spectral form factor:

Z [β] =
∑
m,n

e−βω(n,m) → Z [β,ΩH ] =
∑
m,n

e−β(ω(n,m)−mΩH) , (2.36)

where on the r.h.s. , the partition sum consists of summing over single particle energies for
each conserved angular momentum m, and subsequently summing over all angular momenta,
weighted by a chemical potential which is fixed by the angular velocity of the event horizon.
The corresponding spectral form factor is now obtained by sending β → β + it, keeping
ΩH real.10 In figure 7 we have demonstrated the generic dip-ramp-plateau behaviour of the
corresponding SFF. Let us emphasize that the existence of the DRP-structure, especially
the ramp with slope-one ramp, in the corresponding SFF is a robust feature. These features
are similar to our earlier observations in [6, 7]. Furthermore, the left panel of figure 8 shows
the behaviour of normal modes for fixed n with the angular momentum J of the black hole.
As J increases, ωs become more linear with slope unity. The regulated spectrum, on the
other hand, has a curvature near small angular momenta m; but it tends to flatten out for
increasing angular momentum of the scalar field.

10In principle, it is also possible to consider analytic continuation of ΩH → ΩH + is, where s is some
parameter, similar to the possibility that was mentioned in [6]. To the best of our knowledge, we are unaware
of study along this direction. We will, however, not explore this possibility here.
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Figure 7. SFF corresponding to the modes in figure 6 with β = βH . The yellow line has slope one.
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Figure 8. Spectrum (left) and regulated spectrum (right) for different J
M values. Extremal limit is

J
M = 1 and black line in the left panel corresponds to that. Here n = 0, mcut = 400 and z0 = 10−20.

2.2.1 Some analytical regimes & estimates

In this section, we will explore analytic regimes of the modes. Towards that, we will find a
“near-horizon” solution and a “near-boundary” solution and impose a matching condition.
This yields an algebraic equation which can be solved to obtain analytic expressions for the
normal modes. The general solution of the equation (2.7) can be written as:

ϕ(z) = z
1
2 (c−1)

[
C1 2F1(a, b; c; z) + C2(−1)1−cz1−c2F1(1 + a− c, 1 + b− c; 2− c; z)

]
, (2.37)

where C1,2 are hitherto undetermined constants. Now, we wish to impose the near-horizon
Dirichlet boundary condition. For this, we expand the above solution near z = z0, with
z0 ≪ 1, such that, at the leading order:

ϕ(z0) = z
−c/2
0

[
C1z

c− 1
2

0 + (−1)1−cC2z
1
2
0

]
, (2.38)

which, upon imposing ϕ(z0) = 0, yields: C2 = C1(−1)czc−1
0 . In deriving the above, we have

explicitly used Re(c− 1/2) = 1/2 and therefore both terms above are on equal ground. Upon
inserting the above relation in (2.37), we end up with a solution, denoted by ϕ(z)nh with
one undetermined constant. Let us now expand this solution near the boundary, as z → 1.

– 13 –



J
H
E
P
0
2
(
2
0
2
4
)
0
4
9

A straightforward series expansion near this point yields:

lim
z→1

ϕ(z)nh=
πC1csc(π(a+b−c))

(
zc−1

0 Γ(2−c)
Γ(1−a)Γ(1−b)−

Γ(c)
Γ(c−a)Γ(c−b)

)
Γ(a+b−c+1)

+(z−1)−a−b+cπC1(cot(π(a+b−c))−i)(z0Γ(c)Γ(a−c+1)Γ(b−c+1)−Γ(a)Γ(b)zc0Γ(2−c))
z0Γ(a)Γ(b)Γ(a−c+1)Γ(b−c+1)Γ(−a−b+c+1)

+... (2.39)

Normalizability of ϕ(z)nh near z → 1 imposes:

zc−1
0 = Γ(1− a)Γ(1− b)Γ(c)

Γ(2− c)Γ(c− a)Γ(c− b) . (2.40)

Note that this condition is identical to (2.13).
Now, using identities of hypergeometric functions, we can rewrite ϕ(z)nh as a function

of (1 − z). Towards this, we explicitly use:

2F1(a, b, c; z) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b, a+ b+ 1− c; 1− z) (2.41)

+Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) (1− z)c−a−b2F1(c− a, c− b, 1 + c− a− b; 1− z) .

The resulting expression for ϕ(z), which we denote by ϕ(1− z)b, is somewhat unwieldy, and
we refrain from providing it explicitly. It is nonetheless straightforward to carry out a series
expansion of ϕ(1 − z)b near z → 1. This yields:

ϕ(1− z)b = C1Γ(c)(1− z)−a−b+cΓ(a+ b− c)

×
( 1
Γ(a)Γ(b) −

Γ(1− a)Γ(1− b)
Γ(a− c+ 1)Γ(c− a)Γ(b− c+ 1)Γ(c− b)

)
+ . . . , (2.42)

where we have used (2.40) above. Comparing the above with (2.39), we obtain the constraint:

e−2i(a+b−c)π = 1 =⇒ a+ b− c = n , n ∈ Z , (2.43)

=⇒ ω =
(
r+
r−

ΩH
)
m and n = −1 . (2.44)

Note that, the formula above allows us to easily take two limits: (i) extremal: when r+ = r−,
we obtain ω = ΩHm; (ii) non-rotating: ΩH = 0, and r− = 0. It is reasonable to assume
that in this limit ΩH/r− remains constant11 and therefore ω(m) is still a linear function.12

While the extremal limit yields a straightforward result, the non-rotating limit is more subtle.
For this reason, we will treat this case separately.

11In fact, it is straightforward to check that the ratio ΩH
r−

→ 1
ℓ2√M

in the limit J → 0.
12Note that, this behaviour is expected for large values of ω, measured in units of temperature. At

extremality, the temperature vanishes and therefore every mode is infinitely large in this unit.
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ω=2.1, m=2
r

V(r)

M=2, J=
1

2

Figure 9. The Schrödinger potential corresponding to the Klein-Gordon equation in rotating BTZ-
background. There are two distinct qualitative classes of behaviours, which is shown in the blue and the
dark yellow curves. The first clearly does not have any classical turning point while the latter does. We
will only consider the situations with a classical turning point. The WKB-potential, in the admissible
regime, has the same qualitative features that we have seen in the non-rotating BTZ-geometry as
well. The location of the event horizon, r+, is demonstrated by the vertical dashed line.

2.2.2 Some analytical regimes & estimates: WKB

In this section, we will make use of the WKB-approximation to obtain the normal modes,
which we have already obtained by solving the boundary conditions. The purpose here
is to explore any potential analytical window as well as use numerical solutions on the
WKB-equations, which are technically simpler than the boundary conditions. As before, we
can obtain an explicit form of the WKB-potential, which in this case is somewhat unwieldy.
Instead of presenting the detailed expression, let us discuss some instructive limits of this
potential. First of all, it is clear from figure 9 that there are two qualitatively distinct
parametric regimes of the WKB potential: one which has a classical turning point and
one which does not. Note, however, that this depends crucially on the allowed values of
{ω,m} and therefore the spectrum which we are yet to determine. On physical grounds,
we will consider the first case only.

Let us investigate the role of the black hole angular momentum on the spectrum, by
turning on a small δ = J/M ≪ 1. The WKB potential takes the form:

V (r) = 4m2r2 − 8m2 + 3r4 − 4r2ω2 − 12r2 − 4
4r2 (r2 − 2)2

+ 2δmω
r2 (r2 − 2)2

+O(δ2) , (2.45)

where we have set ℓ = 1. It is straightforward to check that at δ = 0, the potential above
reduces to (2.28). It is now somewhat tedious to perform the WKB-integral using the above
potential. Nonetheless, it is possible. The detailed steps are rather messy, we therefore
present the final form of the integral. Clearly, the integral

∫ √
|V (r)|dr consists of two terms.
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These yield the following two contributions:

I = I1 + I2 , (2.46)

I1 = 1
8

2√3 tan−1(A1)−

√
4m2 + 2 log

(
A2+1
A2−1

)
+ 2

√
ω2 + 2 log

(
A3+1
A3−1

)
+

√
6π

√
2

 , (2.47)

I2 =

mω

2 log
(

X1+1
X1−1

)
√
4m2+2 +

log
(

X1+1
X1−1

)
√
ω2+2


8
√
2

, (2.48)

where

A1 =
2m2 + 3r2 − 2ω2 − 6√

3
√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

, (2.49)

A2 =
m2 (8− 2r2

)
+ 2r2ω2 + 6r2 + 4√

2
√
4m2 + 2

√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

, (2.50)

A3 =
r2
(
m2 − ω2)− 2

(
m2 + ω2 + 4

)
√
2
√
ω2 + 2

√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

, (2.51)

and

X1 =
m2 (8− 2r2

)
+ 2r2ω2 + 6r2 + 4√

2
√
4m2 + 2

√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

, (2.52)

X2 =
r2
(
m2 − ω2)− 2

(
m2 + ω2 + 4

)
√
2
√
ω2 + 2

√
4m2 (2− r2)− 3r4 + 4r2ω2 + 12r2 + 4

. (2.53)

To proceed further, let us now set M = 1 and r = 1 + ϵ, with ϵ ≪ 1. At the leading
order in both {ϵ, δ}, we obtain:

I = 1
8

(
−2

√
3 tan−1

(
ω2 −m2

√
3
√
ω2 + 1

)
−

√
3π
)

+1
8


(
mωδ − 2

(
ω2 + 1

))
log

(
ϵ2(m4−2m2ω2+ω4+3ω2+3)

4(ω2+1)2

)
√
ω2 + 1


+1
8

 log
( √

4m2+1
√
ω2+1+m2+ω2+2

−
√
4m2+1

√
ω2+1+m2+ω2+2

) (
−4m2 + 2mωδ − 1

)
√
4m2 + 1

 . (2.54)

Now an analytic expression for the normal modes can be obtained by solving the WKB-
equation in the limit m ≫ ω and mδ ≪ 1, which yields:

ω =
√√√√ 4π2a2

log
(

2
m2ϵ

) − 1 + δm

2 + . . . , a = 3
4 + 2n . (2.55)

It is straightforward to check that when δ = 0 and m2ϵ≪ 1 the formula in (2.55) matches
with (2.35). Note that, (2.55) is already suggestive about the role of a non-vanishing J in the
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spectrum: first, the leading order contribution already linearizes ω(m). It is therefore possible
that at the maximal J , the linear modes will dominate. However, this needs to be checked
separately, which we will do in the next section. Secondly, it is manifest that (ω − cJm)
behaves as the modes in (2.35), where c is an order one constant. Thus, an appropriately
defined SFF in terms of (ω − Jm) is expected to display the robust DRP-structure that we
have previously seen. Note that, this consideration directly leads to the SFF obtained from
the grand-canonical partition function, as already mentioned in (2.36).

2.3 Extremal BTZ: J = M case

Let us consider the special case of the extremal limit, which is obtained by setting J =Mℓ

in (2.1). Evidently, this sets r+ = r−. Let us write the corresponding metric as follows:

ds2 = −f(ρ)dt2 + dρ2

f(ρ) + ρ2
(
dy − r2H

ρ2
dt

)2

, with f(ρ) = (ρ2 − r2H)2
ρ2

, (2.56)

where rH = r+ = r−, ρ ∈ [rH ,∞] is the radial coordinate and y ∼ y + 2πRy is the compact
direction.

Before moving further, let us offer a few comments on the extremal geometry. The
extremal BTZ geometry can be written in the following form:

ds2 = r2Hdu
2
− + dx2 + e2xdu+du− , (2.57)

u± = y ± t , ρ2 − r2H = e2x , (2.58)

The coordinates u± are periodic: u± ∼ u± + 2π. The boundary is located at x→ ∞, where
u± become null directions; the horizon is located at x→ −∞. It is instructive to compare
the near-horizon geometry of a non-extremal black hole, i.e. a Rindler geometry, with the
metric in (2.57). While the non-trivial warp factor e2x fast approaches zero near the horizon
(as x→ −∞), the extremal geometry in (2.57) retains a constant du2− deformation supported
by r2H in the first term of the metric. This is qualitatively different from a Rindler×S1

geometry and explicitly can be written as an AdS2 × S1-background. This will be crucial
in a qualitatively different physics at the extremal point.

For convenience, we will redefine a radial coordinate: r2 = ρ2 − r2H and rewrite (2.56)
in the following form:

ds2 = −f(r)dt2+ r2

f(r)(r2 + r2H)
dr2+(r2+r2H)

(
dy2 − r2H

r2 + r2H
dt

)2

, with f(r) = r4

r2 + r2H
(2.59)

where r = 0 is horizon and r → ∞ is the conformal boundary. With the decomposition of
scalar field Φ(t, , r, y) ∼ e−iωteimyϕ(r), KG equation takes the following form,

ϕ(r)
(
m2

(
r2H − r2

)
− 2mr2Hω − µ2r4 + ω2

(
r2 + r2H

))
+ r5

(
rϕ′′(r) + 3ϕ′(r)

)
= 0. (2.60)

Let’s define two new variables p and q as p = m+ω and q = m−ω. In terms of z = irHq
r2 , (2.60)

is a confluent hypergeometric equation,

ϕ′′(z) +
(
− µ2

4z2 + ip

4rHz
− 1

4

)
ϕ(z) = 0, (2.61)
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with solution is in terms of Whittaker functions,

ϕ(z) = C1Mκ,ν(z) + C2Wκ,ν(z), with κ = ip

4rH
, ν =

√
1 + µ2

2 (2.62)

Near boundary (z → 0) expansion of (2.62) is,

ϕbdry(z) ∼ (C1 +AC2)z
1
2 (1+

√
1+µ2) + C2Bz

1
2 (1−

√
1+µ2), (2.63)

where first term is normalizable and second one is non-normalizable. So normalizability
of the scalar field near boundary implies C2 = 0, i.e. ϕ(z) ∼ Mκ,ν(z) whose near horizon
(z → ∞) behaviour is the following,

ϕhor(z) ∼ Γ(∆)

 e
z
2 z

− ip
4rH

Γ(∆2 − ip
4rH

)
+ (−1)

ip
4rH

−∆
2

e−
z
2 z

ip
4rH

Γ(∆2 + ip
4rH

)

 . (2.64)

Dirichlet boundary condition near horizon that ϕhor(z = z0) = 0 implies,

Γ(∆2 + ip
4rH

)
Γ(∆2 − ip

4rH
)
= −(−1)

ip
4rH

−∆
2 e−z0z

ip
2rH
0

= −e
pπ

4rH
+ iπ∆

2 e−z0

(
irHq

ϵ2

) ip
2rH

= −e
pπ

4rH
+ iπ∆

2 e−z0

(
rHq

ϵ2

) ip
2rH

e
− πp

4rH

= −e
iπ∆

2 e−
irH q

ϵ2

(
rHq

ϵ2

) ip
2rH

⇒
Γ(∆2 + ip

4rH
)

Γ(∆2 − ip
4rH

)
e

−iπ∆
2 e

irH q

ϵ2

(
rHq

ϵ2

)− ip
2rH = −1 (2.65)

Which leads to the following quantization condition,

2Arg
[
Γ
(∆
2 + ip

4rH

)]
+ rHq

ϵ2
− π∆

2 + p

2rH
log

(
ϵ2

rHq

)
= (2n+ 1)π, n ∈ Z. (2.66)

Where ϵ2 = irHq
z0

. When ϵ → 0 i.e. the position of stretched horizon is very close to the
event horizon, we can approximately write (2.66) as,

rHq

ϵ2
∼ (2n+ 1)π

⇒ ω(n,m) ∼ m− (2n+ 1)πϵ2 (2.67)

So in the extremal limit, normal modes ω are linear in both m and n, especially the slope
of ω(m) vs. m for fixed n is 1.
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Figure 10. The Schrödinger potential corresponding to the Klein-Gordon equation in extremal
BTZ-background. There are two distinct qualitative classes of behaviour: ω ̸= m, which is shown
in the blue curve (we have chosen ω = 1.6, m = 2 for a representative value). The other class
corresponds to setting ω = m, which is shown by the dark yellow curve. The latter clearly does
not have any classical turning point. We will discard this possibility explicitly. The WKB-potential,
in the admissible regime, has the same qualitative features that we have seen in the non-rotating
BTZ-geometry as well.

2.4 Extremal limit: WKB approximation

In order to carry out the WKB approximation, we will rewrite the Klein-Gordon equa-
tion (2.60) in terms of a Schrödinger equation of the following form:

d2Ψ(r)
dr2

− V (r)Ψ(r) = 0 , (2.68)

V (r) = 4m2 (r2 − r2H
)
+ 8mr2Hω + 3r4 − 4r2ω2 − 4r2Hω2

4r6 . (2.69)

The classical turning points of the above potential is given by:

V (rc) = 0 =⇒ r2c =
2
3

(
ω2 −m2 + (ω −m)

√
3 + (ω +m)2

)
. (2.70)

It is clear that ω = m is a special parametric locus, which does not have a turning point. We
have pictorially demonstrated the qualitative features of the potential in figure 10.

Given the potential, we can evaluate the integral on the l.h.s. of (2.27). This yields:

l.h.s. = 1
8
(
a+ 2

√
3 arctan(b) + (m+ ω) log(c)

)
, (2.71)

a = 2
√
−4m2 (ϵ2 − 1)− 8mω − 3ϵ4 + 4ω2 (ϵ2 + 1)

ϵ2
−
√
3π , (2.72)

b = 2m2 − 2ω2 + 3ϵ2√
3
√
−4m2 (ϵ2 − 1)− 8mω − 3ϵ4 + 4ω2 (ϵ2 + 1)

, (2.73)

c =

m(ϵ2−2)+ω(ϵ2+2)√
−4m2(ϵ2−1)−8mω−3ϵ4+4ω2(ϵ2+1)

+ 1
m(ϵ2−2)+ω(ϵ2+2)√

−4m2(ϵ2−1)−8mω−3ϵ4+4ω2(ϵ2+1)
− 1

, (2.74)
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where ϵ denotes the location of the cut-off surface. In the limit ϵ → 0, we an simply keep
the ϵ−2-term coming from a and ignore the rest. This yields:

Abs(ω −m) = 2πϵ2
(3
4 + 2n

)
=⇒ ω = m± 2πϵ2

(3
4 + 2n

)
, n ∈ Z. . (2.75)

Note that, in the strict ϵ = 0 case, the above analysis breaks down since there are no classical
turning points in this limit.

Let us demonstrate the behaviour of numerical solutions of the WKB-equations, which
is summarized in figure 11. In figures 11(a) and 11(b) we have shown the behaviour of the
normal modes ω(m), for two choices of ϵ = 10−1 and ϵ = 10−3, respectively. It is evident that
the function ω(m) is tantalizingly close to a linear one with unit, which becomes stronger
as ϵ is reduced. This observation is in qualitative agreement with the analytical formula
in (2.75). In figures 11(c) and 11(d) the corresponding SFFs are shown with β = 0. The
discernible ramp-structure has disappeared here. To further emphasize this point, we have
shown SFFs for β = 2 in figures 11(e) and 11(f),13 which looks very similar to a harmonic
oscillator SFF. We take these observations to conclude that at exact extremality, the SFF
displays integrable behaviour rather than a chaotic one.

3 Comments on back-reaction

In this section, we will comment on the validity of the probe limit. Our analyses will be
based on a classical consideration only and the physics point that we want to highlight here
is that modes with arbitrarily large m quantum number will back-react significantly on the
classical geometry and change the metric altogether. Therefore, it is sensible to cut-off the
partition sum at a finite value of m. We will only discuss some salient features here and refer
the interested Reader to appendix B for more technical details.

The classical stress-tensor of the scalar field reads:

Tαβ = ∂αΦ∂βΦ− 1
2gαβ (∂Φ)

2 . (3.1)

it is straightforward to evaluate the corresponding energy density ρ = Tαβu
αuβ , where uα is

a time-like unit vector. Given the BTZ-geometry, the corresponding energy density behaves
as (see equations (B.9) and (B.10)):

ρbdry ∼ O(r−6) + . . . , as r → ∞ (3.2)

ρhor ∼
1

r2 − 1 + oscillatory , as r → 1 . (3.3)

It is clear from the expressions above that near the boundary it is always safe to ignore the
back-reaction, however, near the horizon this is not the case. Ignoring the rapidly oscillatory
terms above, it is straightforward to estimate the diverging back-reaction as one approaches

13Note that, at exact extremality, the black hole temperature vanishes and therefore a natural choice of
β = T−1 → ∞. Choosing β = 0 is maximally far away from this parametric regime. It is highly instructive
that even in this limit we do not observe any ramp structure. On the other hand, an order one value of β

makes the SFF resemble a harmonic oscillator, with a very small classical Poincaré recurrence time. These are
strong hints that we loose the chaotic features at exact extremality.
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Figure 11. A pictorial representation of numerical solutions of the WKB-equations. We have shown
the behaviour of the modes, as well as the corresponding SFF, for representative choices of ϵ and β.

the horizon. From (B.11) and (B.12), the back-reaction is controlled by the parameter m/δ,
where δ = r0 − rH , and we have set rH = 1 here. Thus, our calculations are valid till
mcut ∼ δ−1 and this justifies the computation of a partition function with an explicit cut-off.
This behaviour can simply be fixed from dimensional analysis, if we assume that there is
no other scale when the brickwall is Planck distance away from the classical event horizon.
It is, however, interesting that here this relation holds for arbitrary δ.

Before concluding, let us offer some further comments. Note that, the above conclusion
is based solely on the classical back-reaction. It is known that a semi-classical (quantum)
back-reaction of a scalar field can produce a qualitatively different back-reaction, see e.g. [48–
51]. Therefore it merits a separate and thorough analyses to make a stronger claim regarding
cutting off the large m spectrum. We leave this for a future work.
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4 Discussions

In this article, we have explored the brickwall-like model for a rotating BTZ geometry,
especially in the context of a probe scalar single-particle spectral form factor. We have
explicitly demonstrated that, for a generic value of the black hole mass and angular momentum,
the dip-ramp-plateau structure, with a ramp of slope unity, is a stable feature of this sector.
However, the crucial observation is that the non-trivial SFF dynamics is visible using the
grand-canonical partition function, as opposed to the canonical partition function. This grand-
canonical partition function is obtained by summing over each angular momentum sector of
the probe field, in which the angular momenta of the rotating BTZ geometry plays the role
of a chemical potential. Clearly, in the vanishing limit of this rotation, the grand-canonical
partition function reduces to the canonical partition which we have explored in [6].

Furthermore, we have also demonstrated that close to extremality, i.e. as J →Mℓ this
structure appears to be a robust feature still. We have used two main technical methods: a
direct and brute force numerical solution of the Dirichlet boundary conditions and the WKB-
approximation. We have explicitly shown that the WKB-approximation is technically easier
for finding the normal modes, and it can also provide us with analytical answers in a suitable
regime of the parameter space. The latter is useful for several reasons: the central theme is
that it allows for an analytical understanding of the origin of the level-repulsion dynamics of
the modes, which is crucial to yield the DRP-structure, especially the ramp, of the SFF.

In contrast to the above, at exact extremality, i.e. at J = Mℓ, the DRP structure
appears lost from the SFF. At the same time, the corresponding level-spacing distribution
also resembles that of a harmonic oscillator.14 Thus the system becomes integrable. At
extremality we have T = 0 identically, where T is the temperature of the dual CFT. Naively,
it is therefore expected that any chaotic signature of the underlying dynamics will become
invisible at this point. On the other hand, the dual CFT has two distinct temperature for a
rotating BTZ geometry: the right-moving temperature T+ ∼ (r+ − r−) and the left-moving
temperature T− ∼ (r+ + r−). At extremality, the right temperature vanishes but the left
one remains non-vanishing. It is, therefore, an interesting question to explore how the SFF
can see the non-vanishing left temperature. This question is especially interesting since it
is known that an “early time chaos”, around the scrambling time-scale, can be observed
with the left temperature on a suitably chosen four-point out-of-time-order correlator, see
e.g. [52–54]. It may be possible to formulate an OTOC-calculation in our framework using
a boundary CFT approach, similar to the ones in [55, 56]. Alternatively, a bulk observer
localized to move along the stretched horizon may also describe a suitable CFT evolution,
by identifying the bulk integral curve generated by the bulk observer with a Hamiltonian
evolution on the boundary CFT [56]. We hope to address this issue in future.

Our observations, notwithstanding, raise several further questions. First, it is not
understood how one should think about the cut-off surface located at a bulk point in the
geometry, from the perspective of the dual CFT. In other words, our construction appears

14We emphasize, at the cost of repetition, that our discussion here is solely based on the single-particle SFF.
At this point, we can offer speculative remarks about whether these features tell us about the multi-particle
sector as we have done in the Introduction section. However, a substantial calculation is due towards a more
precise statement. We hope to address this in future.

– 22 –



J
H
E
P
0
2
(
2
0
2
4
)
0
4
9

agnostic about the specific UV-complete description and it is not clear to us how this aspect
affects the robust and universal observation that we have made. One way to address this
question is perhaps to consider a framework similar to the T T̄ -bar deformation where such a
bulk cut-off surface emerges, following e.g. [58], and re-interpret the Dirichlet hypersurface
as an IR cut-off.15 Although from a gravitational point of view, this appears possible, it
remains to be seen what this means in terms of the dual CFT. It would be rather interesting
if the corresponding operation to the CFT can be identified with fuzzball-like states. We
hope to address this question in near future.

A related question is to understand how a Dirichlet boundary condition can lead to, at
least, a thermal-like CFT correlator. The universal presence of the DRP-structure hints that a
corresponding thermal behaviour is expected, viewed from the dual CFT. It is thus interesting
to re-visit the standard AdS/CFT correlation function calculations, in the presence of the
Dirichlet surface in front of the horizon. Several works along this direction have recently
appeared in [30–32], which opens up several avenues of further following work.

Note that, by construction, our model is at best an effective one and is not expected to
provide answers to all fine-grained questions on the ramp emerges. Another way of probing the
UV-complete description of the DRP-structure is to investigate a full-fledged fuzzball geometry.
By now, there is a huge literature on such geometries, which are constructed from explicit
supergravity solutions. While these geometries are rather rich in structure, recent advances
in [33] obtain explicit correlation functions in such geometries and therefore greatly facilitates
an SFF-computation. Especially since, at a technical level, WKB-approximation is extremely
useful in such questions in the fuzzball-geometries. Building on our earlier as well as current
work, we are further exploring this question in a specific class of fuzzball geometries [60].

Note that, in the series of studies that we initiated in [6], followed by [7, 8], we have
considered the SFF obtained from the single-particle partition function. In other words, we
have explicitly set the density of states to be unity. However, non-trivial physics is expected
to result from a non-trivial density of states. For example, if we allow the normal modes to
be populated by an arbitrary number of particles, it is expected that the level-repulsion will
disappear from the resulting system. This is intuitive, since two non-interacting identical
systems will not retain the information about level-correlations that is present in one of
them. This can further be explicitly checked by taking e.g. multiple random matrix spectra
and observing that the resulting full spectrum displays a Poisson level spacing distribution,
as opposed to a Wigner-Dyson one. Therefore, if we consider a multi-particle SFF for our
system, without introducing any further interactions, it is expected that the DRP-structure
of the multi-particle SFF will disappear.16 It will be very interesting to study whether
“small” (perturbative) interactions in our model can lead to a chaotic phase with our observed
features. We are currently investigating this possibility.

The above possibility brings about several intriguing questions in the general context
of chaos in quantum field theories. We can formulate a QFT on a lattice: this essentially
entails defining spin-like degrees of freedom at each lattice site. Each such spin degree of

15We thank Monica Guica for a conversation related to this.
16It is, in principle, possible to verify this claim by an explicit computation. However, numerically, the

evaluation of the multi-particle SFF appears rather unwieldy and lacking in precision.
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freedom can obey a non-trivial spectrum. On one extreme, the spectrum can be a harmonic
oscillator like (or, any other integrable spectrum); on the other hand, it could be as chaotic as
a random matrix spectrum. Intuitively, we expect that such a QFT on the lattice as a whole
will always display integrable features, as long as the different spin degrees of freedom at
different sites do not interact. Turning an interaction on, however, is a potentially interesting
possibility. It is expected that for a certain class of interactions and in a certain regime of the
interaction strength, the underlying single-particle spectrum physics governs the multi-particle
dynamics, especially when it is chaotic. We are, however, not aware of any such precise
classification or statement in the existing literature. We plan to visit this issue within a
simplified lattice model in future.
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A Free scalar in a BTZ geometry

In this appendix, we collect some basic details related to the canonical quantization of a
free scalar field in a BTZ black hole geometry. The scalar field is treated in the probe
limit, whose action is given by

S =
∫
d3x

√
−g

(
−1
2g

µν∂µΦ∂νΦ− m2

2 Φ2
)

=
∫
d3xL , (A.1)

The resulting equation of motion is given by

□Φ−m2Φ = 0 . (A.2)

For convenience, we will consider the specific case of m = 0. The corresponding canonical
momenta are given by

π = ∂L
∂(∂tΦ)

= (−g)1/2gtµ∂µΦ . (A.3)

Subsequently, the following canonical commutation relations are imposed:[
Φ(t, x⃗),Φ(t, x⃗′)

]
= 0 =

[
π(t, x⃗), π(t, x⃗′)

]
, (A.4)[

Φ(t, x⃗), π(t, x⃗′)
]
= iδ(2)

(
x⃗− x⃗′

)
. (A.5)

Finally, a natural inner product can be defined as:

(Φ1,Φ2) = −i
∫
Σ
(Φ1∇µΦ∗

2 − Φ∗
2∇µΦ1)nµ

√
γd2x , (A.6)
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where Σ is a spacelike hypersurface, nµ is the corresponding normal and γ is the induced
metric on this hypersurface; furthermore Φ1,2 are solutions to the classical equations of motion
in (A.2). Here, we are considering real scalars, and hence Φ∗

2 = Φ2.
To define positive frequency modes, we need to choose a time-direction. Given a stationary

geometry, a time-like Killing vector Kµ can be defined and correspondingly the positive
modes are defined by

LKµfα = −iωαfα , (A.7)

where ωα and fα are eigenvalues and eigenfunctions of the corresponding time-evolution oper-
ator which is defined by the Lie derivative along the Killing vector Kµ.17 The eigenfunctions
are normalized according to the inner product defined in (A.6), such that (fβ , fα) = δβα. The
field Φ can now be expanded in terms of the positive modes, as follows:

Φ(t, x⃗) =
∑
α

(
fαaα + f∗αa

†
α

)
, (A.8)

with
[aβ , aα] = 0 =

[
a†β , a

†
α

]
,
[
aα, a

†
β

]
= δαβ . (A.9)

The corresponding spectra can be obtained starting with the vacuum aα |0⟩ = 0. The
corresponding number operator is defined as: N = a†αaα.

In our case, we have explicitly found out the solutions of the equations of motion in
terms of hypergeometric functions, subject to the appropriate boundary conditions. Even
though, in general, the hypergeometric functions are not orthonormal, we can construct an
orthonormal basis using e.g. the Gram-Schmidt procedure. For us, the explicit construction
of this is not essential. Given the normal modes, we can define the single-particle partition
function as follows:

Z = Tr
(
e−βHP

)
, P = δN,1 . (A.10)

The corresponding spectral form factor is obtained by appropriately analytically continuing
this partition function.

B Validity of probe limit

Let’s consider the Einstein-Hilbert action with matter field Φ. The action functional is
(up to boundary terms):

S[g; Φ] =
∫ ( 1

2κ(R− 2Λ) + LM
)√

−gd3x , (B.1)

with Lagrangian density of matter field is given by

LM = −1
2
(
gαβ∂αΨ∂βΨ+ µ2Ψ2

)
. (B.2)

17Note that, for both rotating and non-rotating BTZ, we have a unique choice for a globally defined time-like
Killing vector.
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Einstein field equations for (B.1) are:

Gαβ + Λgαβ = κTαβ , (B.3)

where
Tαβ = ∂αΦ∂βΦ− 1

2gαβg
µν∂µΦ∂νΦ .

Let’s consider massless scalar field in static BTZ metric for simplicity whose metric is given by

ds2 = −(r2 − r2H)dt2 +
dr2

r2 − r2H
+ r2dψ2 , (B.4)

with □Φ = 0 and Λ = −1. The energy density of scalar field as observed by a timelike
observer with velocity uα = 1√

−gtt
(1, 0, 0) is:

ρ = Tαβu
αuβ

= Ttt(ut)2 = −Tttgtt. (B.5)

With Φ ∼ e−iωteimψy(r), energy density is given by

ρ = e2i(mϕ−tω)

8r3 (r2 − 1)2
(y(r)2

(
−4m2

(
r2 − 1

)
r4 + 4r6ω2 − 8r4ω2 − 4r2ω2 + 1

)
(B.6)

+ 4r2y′(r)2 − 4ry(r)y′(r)))) . (B.7)

Near boundary, field goes as ybdry(r) ∼ r−1/2 and density is given by

ρbdry ∼
(
ω2 −m2

2
1
r4

− m2

2
1
r6

+ . . .

)
. (B.8)

Near horizon, field takes the following form [6]:

yhor ∼
√
r
(
P (1− r2)

−iω
2 +Qeπω(1− r2)

iω
2
)
, (B.9)

where P,Q are ω and m dependent functions. Substituting this into (B.6), near horizon
behaviour of energy density is given by,

ρhor ∼
ω2

(r2 − 1)4

(
PQ− P 2

2 (1− r2)−iω − Q2

2 (1− r2)iω
)
+ . . . (B.10)

When r → 1, last two terms in the above equation (B.10) are highly oscillatory. That’s why
to see the m-dependence of ρhor we will only focus on the first term. Let’s define,

ρ̃hor = ω2P Q (B.11)

In general ω and m are not independent variable but for any small neighbourhood of m we
can approximate any function by a straight line with slope determined by the tangent at that
point. So let’s assume ω = sm, where s is the slope of ω = f(m) curve at that m value. Then
when s is very small i.e. for larger values of m (for example see figure 1) we can approximate,

ρ̃hor ∼ 2−2im
Γ
(
1−im

2

)
πΓ
(
−im
2

)(1 + 2e−mπ + e−2mπ) +O(m) ∼ 2−2im
Γ
(
1−im

2

)
πΓ
(
−im
2

) (B.12)

whose absolute value is m
2π tanh

πm
2 , which is an increasing function of m. This implies for

larger values of m, back reaction grows so we have to cut-off the spectrum at some finite
m = mcut if we want to be in the probe limit.
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C WKB approximation

Here, we will review and collect the basics of the WKB approximation, which we have used
to determine an approximate spectrum. Consider the Schrödinger equation:

d2Ψ(x)
dx2

− V (x)
ℏ2

Ψ(x) = 0 , k(x)2 = −V (x)2 , (C.1)

where we have kept the ℏ-dependence explicit. The potential V (x) is general, but we will
assume that it is slowly varying, which will be made more precise momentarily. Towards
finding a solution of the equation (C.1), let us use an ansatz:18

Ψ(x) = e
i
ℏσ(x) , (C.2)

and the resulting equation becomes:

iℏσ′′(x)− σ′(x)2 + k(x)2 = 0 . (C.3)

In the semi-classical regime, it is sensible to assume a perturbative expansion of σ(x) in
powers of ℏ:

σ(x) = σ0(x) +
ℏ
i
σ1(x) +

(ℏ
i

)2
σ2(x) + . . . . (C.4)

Plugging this expansion back in the equation, we obtain:

O(ℏ0) :
(
σ′0(x)

)2 = k(x)2 =⇒ σ0(x) = ±
∫
k(x)dx . (C.5)

O(ℏ) : σ′′0(x) + 2σ′0(x)σ′1(x) = 0 =⇒ σ′1 =
σ′′0
2σ′0

= − k′

2k =⇒ σ1 = −1
2 log k . (C.6)

Upto this order, the wavefunction is given by

Ψ(x) = c1√
|k(x)|

e
i
ℏ

∫
k(x)dx + c2√

|k(x)|
e−

i
ℏ

∫
k(x)dx , (C.7)

where c1,2 are two undetermined constants and we have chosen k(x)2 > 0. Clearly, this
corresponds to the classically accessible region for the given potential. Similarly, for the
classically disallowed region, i.e. k(x)2 < 0, one obtains:

Ψ(x) = d1√
|k(x)|

e
1
ℏ

∫
|k(x)|dx + d2√

|k(x)|
e−

1
ℏ

∫
|k(x)|dx , (C.8)

where d1,2 are the two undetermined constants.
Note that, for the perturbative expansion to work, we must require:∣∣∣∣∣ℏ σ′′(x)

(σ′(x))2

∣∣∣∣∣ ≡
∣∣∣∣d(ℏ/σ(x))dx

∣∣∣∣≪ 1 . (C.9)

18Since the potential is slowly varying, we will assume that a plane-wave like solution exists, where the
phase will now be a slowly varying function of the coordinate x.
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Using the leading order solution σ′(x) = k(x) and defining a corresponding de Broglie
wavelength λ = 2πℏ/k(x), the above inequality corresponds to: |dλ/dx| ≪ 2π. Physically,
this essentially implies that the de Broglie wavelength is slowly varying at the scale of one
wavelength. This condition will be manifestly violated when k(x) → 0, i.e. near the classical
turning points. Also, note that, the probability of finding a particle within a length scale
where V (x) remains approximately constant, is determined by the time-scale for which
the particle spends time within such a region. Therefore, a factor of inverse momentum
is expected: |Ψ|2 ∼ k−1.

Let us now consider that the potential consists of a classically allowed region within
b ≤ x ≤ a and the classically forbidden regions are x > a and x < b. In this case, the
complete solution will take the form:

Ψ(x) = c1√
|k(x)|

e
i
ℏ

∫
k(x)dx + c2√

|k(x)|
e−

i
ℏ

∫
k(x)dx , b ≤ x ≤ a , (C.10)

Ψ(x) = d1√
|k(x)|

e
1
ℏ

∫
|k(x)|dx , x < b , (C.11)

Ψ(x) = d2√
|k(x)|

e−
1
ℏ

∫
|k(x)|dx , x > a . (C.12)

Near the turning point, i.e. when V (x) → 0 as x → x∗, let us assume that the potential is
still sufficiently slowly varying that we can approximate:

V (x) = V (x∗) + V ′(x∗)(x− x∗) + . . . = V ′(x∗)(x− x∗) , (C.13)

where x∗ = a/b, as we have chosen above. The general solution of the Schrodinger equation
is given in terms of Airy functions:

Ψ(x) = e1Ai
((

V ′(x∗)
ℏ2

)1/3
(x− x∗)

)
+ e2Bi

((
V ′(x∗)
ℏ2

)1/3
(x− x∗)

)
, x ∼ x∗ , (C.14)

Ai(y) = 1
π

∫ ∞

0
dt cos

(
yt+ t3

3

)
, (C.15)

Bi(y) = 1
π

∫ ∞

0
dt

[
sin
(
yt+ t3

3

)
+ exp

(
yt− t3

3

)]
, (C.16)

where Ai and Bi are the usual Airy functions and e1,2 are two undetermined constants. Now,
to fix the solution completely, we need to match the Airy functions with the corresponding
oscillatory and decaying parts in the corresponding regions.

D Klein-Gordon to Schrödinger

Let us begin with the Klein-Gordon equation in a non-rotating BTZ background. For
convenience, we will begin with the equation written in the coordinate of [6]. The metric is:

ds2 = −(r2 − r2h)dt2 +
dr2

(r2 − r2h)
+ r2dψ2 , −∞ < t <∞ , 0 < r <∞ , 0 ≤ ψ < 2π . (D.1)
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The massless Klein-Gordon equation □Φ = 0, in this background, takes the form:

(
r2 − 1

)2 d2ϕ
dr2

+ 2r
(
r2 − 1

) dϕ
dr

+
(
ω2 − U(r)

)
ϕ = 0 , (D.2)

U(r) =
(
r2 − 1

) [ 1
r2

(
m2 + 1

4

)
+ 1− 1

4

]
, (D.3)

where we have used an ansatz for the scalar field: Φ = ∑
m,ω e

imψe−iωtϕ(r)/
√
r, and set

rh = 1. Therefore every dimensionful quantity is measured in units of temperature, up to
an order one constant. We will not keep track of the constant, since it is not relevant for
the physics results that we are exploring.

To convert (D.2), note that any second order differential equation of the following form:

a1(r)ϕ′′ + a2(r)ϕ′ + a3(r)ϕ = 0 , (D.4)
with ϕ(r) = Ψ(r)g(r) , 2a1(r)g′(r) + a2(r)g(r) = 0 , (D.5)

can be recast as a Schrödinger equation of the following form:

d2Ψ
dr2

− V (r)Ψ(r) = 0 , (D.6)

where V (r) = −a1(r)g
′′(r) + a2(r)g′(r) + a3(r)g(r)

a1(r)g(r)

= 1
4a21

[
a22 − 2a2a′1 + 2a1

(
a′2 − 2a3

)]
. (D.7)

Similarly, an equation of the following form:

A(z)F ′′(z) +B(z)F ′(z) + C(z)F (z) = 0 , (D.8)

can be recast into a Schrödinger equation of the following form:

d2Ψ(z)
dz2

− V (z)Ψ(z) = 0 , F (z) = Ψ(z)g(z) , 2Ag′ +Bg = 0 , (D.9)

where V (r) = 1
4A2

[
B2 − 2BA′ + 2A

(
B′ − 2C

)]
. (D.10)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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