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1 Introduction

Since the first direct observation of gravitational waves [1–5], a flurry of observations and
theoretical predictions have greatly advanced the fields of black-hole physics and general
relativity. Important questions regarding the intrinsic properties of black holes, the dynamics
of binary black-hole processes, and more, can all be investigated in depth through high-
precision gravitational-wave observations and theoretical calculations.
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One widely used and highly successful analytical tool for the study of binary black-hole
systems is the Post-Newtonian (PN) expansion [6–39] and the effective one-body formula-
tion [40–45]. Recently, several varieties of modern methods, e.g. the double copy [46–53], the
Kosower-Maybee-O’Connell (KMOC) formalism [54], heavy-mass effective theories [55–62],
the eikonal approach [63–66], velocity cuts and the exponential representation of the S-
matrix [67–69], worldline effective theory [70–75] and worldline quantum field theory [76–78],
have emerged as powerful theoretical frameworks for studying binary black-hole physics to
high Post-Minkowskian (PM) order from different points of view. In particular they have been
successfully applied to compute the conservative part of the binary dynamics of gravitationally
interacting systems [67, 69, 79–107] to high orders in the PM expansion.

Research directly focused on the gravitational waveforms of binary black-hole systems
in the PM expansion is evolving rapidly. The tree-level waveforms for spinless objects
were computed in [108–110] and reproduced in [77, 111] in the worldline picture. The
tree-level waveform was studied in [112, 113] using the scattering-amplitude based KMOC
formalism [54, 112] and investigated using the eikonal approach in [63, 64]. At one loop,
the study of the gravitational waveform was initiated recently in [62, 114–116] where the
principal value contribution was obtained and shown to be consistent between KMOC and
a heavy-mass effective field theory (HEFT) framework. The remaining terms beyond this
principal value part were pointed out in [117] and shown to give an additional contribution
to the waveform. The existence of such terms was also suggested by comparing with the
Multipolar-Post-Minkowskian waveform in [118].

Gravitational waveforms are influenced by various intrinsic properties of black holes.
One of the most significant factors among them is their spin. An important building
block for including spin effects in waveforms is the minimal coupling between a classical
spinning black hole and a graviton obtained using the massive spinor-helicity formalism [119].
Further important developments made use of spinor helicity [56, 120–135], the covariant
amplitude form [43, 44, 55, 136–143], gravitational solutions [144–148], and the worldline
picture [76, 77, 103, 106, 149, 150]. At tree level, the spin contribution to the waveform up
to quadratic order was obtained in [151, 152] using a worldline effective theory.

In this paper, by employing the definition of waveforms in terms of five-point ampli-
tudes [112], we compute gravitational waveforms involving spinning black holes, crucially
without the need to expand in their spin. The building blocks entering the recursive BCFW
construction [153, 154] of the five-point amplitude, adapted to the classical amplitude [62],
are the three-point and four-point Compton amplitudes with massive particles of arbitrary
classical spin, which were constructed in [155, 156] using a bootstrap technique which makes
use of entire functions. After expanding in spin, this form of the Compton amplitude agrees
with results obtained from black-hole perturbation theory [134, 142, 145] for Kerr black holes
up to at least fourth order in spin. However we note that this Compton amplitude can be
upgraded with additional contact terms to match with the Teukolsky equation [144, 145],
and the method discussed in this paper can be immediately applied to incorporate such
additional terms once these are available.

In this work we mainly focus on the time-domain waveform. First, we perform the Fourier
transform over the frequency; the exponential factors in the spinning amplitude then produce a
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simple extra delta function when transforming to impact parameter space [77, 114, 151]. This
additional delta function localises the integral further and simplifies the tree-level amplitude
greatly. Finally, thanks to Cauchy’s theorem, as used in [157], the remaining one-dimensional
integral localises to contour integrals around physical poles only. We stress here that our
approach does not require any expansion in the spin parameters. Importantly, this allows us
to preserve the (partially) resummed form of the Compton amplitude, and thus enables us to
obtain a first glimpse at large-spin effects in gravitational waveforms.

The rest of the paper is organised as follows. In the next section we introduce the
kinematics of the process, together with the definition of the spin variables we employ. In
section 3 we introduce the three-point amplitude and the Compton amplitude with spinning
particles. These are then used in section 4 to construct the five-point amplitude of four
massive spinning particles with the emission of a gravitational wave, using a particular form
of the BCFW recursion relation introduced in [62] for classical amplitudes. In section 5 we
introduce the general method to compute the time-domain waveforms and illustrate how
this computation reduces to a sum of residues on physical factorisation poles only, in the
simpler case of spinless particles. We then present the general expression of the waveform for
arbitrary spins of the two black holes. In section 6 we specialise to the case of a Schwarzschild
and a Kerr black hole, and also present several plots of the waveforms for increasing values
of the spin of the Kerr black hole. In section 7 we make some interesting observations by
comparing the waveforms obtained using the resummed Compton amplitudes to those derived
from the Compton amplitudes expanded in the spin parameter. Section 8 presents a short
derivation of the memory of the gravitational wave in the spinning case, to all orders in the
spins of the Kerr black holes, which we have then used to test our analytic results. Finally,
two appendices complete the paper. In Appendix A we perform some useful simplifications of
the expression of the four-point Compton amplitude, which are convenient in the derivation of
the memory; and in appendix B we list the coefficients appearing in the q2

1- and q2
2-channels

of the classical, tree-level five-point amplitude derived in section 5.
The interested reader can find Mathematica notebooks with expressions for the spinning

HEFT amplitudes with one emitted graviton, and explicit time-domain waveform results in
the system of a Schwarzschild and a Kerr black hole SpinningWaveform GitHub repository.

Note added. While preparing this manuscript we became aware of the nice work [157],
with which our paper has some overlap. We have checked that our results agree with theirs.
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2 Kinematics of the scattering and spin variables

Here we review the kinematics of the scattering of two heavy spinning particles of masses m1
and m2 and spin vectors a1 and a2, with the emission of a graviton of momentum k:

p1 = p̄1 +
q1
2

p2 = p̄2 +
q2
2 p′2 = p̄2 −

q2
2

p′1 = p̄1 −
q1
2

k = q1 + q2 (2.1)

As usual we have introduced barred variables, defined as [87, 158]

p1 = p̄1 +
q1
2 , p′1 = p̄1 −

q1
2 ,

p2 = p̄2 +
q2
2 , p′2 = p̄2 −

q2
2 ,

(2.2)

which satisfy

p̄1·q1 = p̄2·q2 = 0 . (2.3)

We also introduce barred masses,

m̄2
i := p̄2

i = m2
i −

q2
i

4 , i = 1, 2 , (2.4)

with the HEFT expansion being organised in powers of the m̄i.
To parameterise the scattering process we choose five independent Lorentz-invariant

quantities as in [62],

y := v1·v2 ≥ 1 , q2
i ≤ 0 , wi := vi·k ≥ 0 , i = 1, 2, (2.5)

where the four-velocities are defined by pi=mivi, with v2
i=1. We also note that y is the

relativistic factor 1√
1−v2

rel
, where vrel is the relative velocity of one of the two heavy particles

in the rest frame of the other. We will also use the barred versions w̄i := v̄i·k and ȳ := v̄1·v̄2
of the above quantities, with p̄i := m̄iv̄i and v̄i

2 = 1.
The spin tensors for incoming and outgoing massive particles in terms of the spin vectors

si are given by

Sµνi (pi) = − 1
mi
ϵµναβpi αsi β(pi) , Sµνi (p′i) = − 1

mi
ϵµναβp′i αsi β(p′i) . (2.6)

To expand this in the heavy-mass limit we change variables from pi, p
′
i to p̄i and qi as

in (2.2). We follow the method of [125] and use an infinitesimal Lorentz transformation
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from p̄i to p̄i ±
q

2 to write

sµi

(
p̄i ±

q

2

)
= (δµν ± ωµν)si(p̄i)ν

=
[
δµν ∓ 1

2m̄2 (p̄
µ
i qν − qµp̄i ν)

]
si(p̄i)ν (2.7)

= si(p̄i)µ ∓
p̄µi
2m̄2 q·si(p̄i) +O(m̄−2) .

This is valid since m̄i (which will eventually be the classical mass) is much larger than the
typical value of q. This allows us to expand the spin tensors as

Sµνi (pi) = − 1
m̄i
ϵµναβ p̄i αsi β(p̄)−

1
2m̄i

ϵµναβqαsi β(p̄i) +O(m̄−2) ,

Sµνi (p′i) = − 1
m̄i
ϵµναβ p̄i αsi β(p̄i) +

1
2m̄i

ϵµναβqαsi β(p̄i) +O(m̄−2) ,
(2.8)

where, remarkably, the shifts in sµi (p
(′)
i ) drop out to this order in the m̄ expansion, due to

the antisymmetry of the Levi-Civita. We can also define the classical spin parameter as

aµi := sµi (p̄i)
m̄i

, (2.9)

to write

Sµνi (pi) = −ϵµναβ
(
p̄i α + qα

2

)
ai β +O(m̄−2

i ) ,

Sµνi (p′i) = −ϵµναβ
(
p̄i α − qα

2

)
ai β +O(m̄−2

i ) .
(2.10)

Finally, in the large m̄i limit the two spin tensors in (2.10) become the same, and we define
our classical spin tensors as

Sµνi := −ϵµνρσp̄i ρai σ , (2.11)

which satisfies Sµνi p̄iν=0, known as the spin supplementary condition [33, 159], while ai
satisfies p̄i·ai = 0. We can also invert this relation,

aµi = − 1
2m̄2

i

ϵµναβ p̄i νSi αβ . (2.12)

Note that aµi has mass dimension −1 so that Sµνi is dimensionless. The spin vector of a
heavy particle is then

sµi := m̄ia
µ
i . (2.13)

Much like p̄µ and v̄µ, both sµ and aµ are well defined in the classical/large-m limit. Finally,
the gravitational coupling we use is κ :=

√
32πG.
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3 Classical gravitational Compton amplitude with spin

3.1 Three-point amplitude

The three-point amplitude for two classical massive spinning particles is given by [119, 121,
122, 128]

M3 = −iκ (p̄·ε1)2 exp
(
−ik1·S · ε1

p̄·ε1

)
, (3.1)

where p is the momentum of the massive particle, k1 is the momentum of the graviton with
polarisation ε1 and S is the spin tensor of the massive particle introduced in (2.11). The
amplitude (3.1) can also be written as [139, 155, 160]

M3 = −iκ(p̄·ε1)(w1·ε1) , (3.2)

where

wµ1 := cosh(k1·a)p̄µ − i
sinh(k1·a)
k1·a

(k1·S)µ , (3.3)

and we have used the notation (k1·S)µ = k1νS
νµ.

3.2 The Compton amplitude

We now move on to discuss the four-point amplitude. For convenience, in this section
we will call the momenta p, k1, k2, p

′ where p, p′ are the momenta of the massive particles,
p2=(p′)2=m2 and k1,2 are the momenta of the gravitons, with k2

1,2=0.

p S p′

k1 k2

(3.4)

The four-point classical Compton amplitude can be divided into three pieces [156],

M4 = −iNdc
2k1·k2

+ −iNr
4p̄·k1p̄·k2

− iNc. (3.5)

The first term is obtained from the double copy and corresponds to propagation without
changing the direction or magnitude of the spin [155],

Ndc = −
[

w1·F1·F2·w2
k1·p̄

−
(
iG2 (x1, x2) (a·F1·F2·S·k2 + a·F2·F1·S·k1)

+ iG1 (x12) tr (F1·S·F2) +G1(x1)G1(x2)(a·F1·p̄a·F2·k1 − a·F1·k2a·F2·p̄)

+ k1·p̄ G1(x1)G1(x2)a·F1·F2·a
)]( p̄·F1·F2·p̄

k2·p̄

)
, (3.6)

with

xi := ki·a , xi...j := (ki + · · ·+ kj)·a , F µνi = kµi ε
ν
i − εµi k

ν
i . (3.7)
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Note that it contains both massless and massive poles and we already take the HEFT
expansion. This term gives the minimal amplitude to fit the test particle scattering angle
in the Kerr metric.

The second term allows for a change of direction of the spin, and we refer to it as
the “spin-flip” term [156],

Nr =
[
(∂x1 − ∂x2)G1(x1)G1(x2)

]
×
[
p̄·k2 (p̄2a·F1·F2·a a·F2·F1·p̄+ a2p̄·F1·F2·p̄ a·F1·F2·p̄)− (1 ↔ 2)

]
+ i
[
(∂x1 − ∂x2)G2(x1, x2)

]
×
[
p̄·k2 a·F2·F1·p̄ (a·F2·p̄ a·F̃1·p̄− a·F1·p̄ a·F̃2·p̄) + (1 ↔ 2)

]
, (3.8)

where F̃µν ≡ 1
2ϵ
µνρσFρσ denotes the Hodge dual of the linearised field strength. Note that this

term only gives rise to massive poles. Finally, the last contribution consists of contact terms,

Nc =
[
(∂x1 − ∂x2)2

2! G1(x1)G1(x2)
] [
a·F1·p̄ a·F2·p̄ a·F1·F2·a (3.9)

− 1
2a

2(a·F1·F2·p̄ a·F2·F1·p̄− a·F1·F2·a p̄·F1·F2·p̄)
]

+ e1

[
i(∂x1 − ∂x2)2

2! G2(x1, x2)
] [
a·F1·F2·a a·F2·p̄ a·F̃1·p̄− (1 ↔ 2)

]
+ e2

[
i(∂x1 − ∂x2)2

2! G2(x1, x2)
] [
p̄2(a·F1·F2·a)(a·F2·F̃1·a)− (1 ↔ 2)

]
+ e3

[
i(∂x1 − ∂x2)2

2! G2(x1, x2)
] [
a2(a·F2·F1·p̄)(a·F̃1·F2·p̄)− (1 ↔ 2)

]
.

The G-functions appearing in the expressions above can be defined in terms of hyperbolic
functions as [155]

G1(x) :=
sinh(x)
x

,

G2(x1, x2) :=
1
x2

(sinh(x12)
x12

− cosh(x2)
sinh(x1)
x1

)
, (3.10)

and are entire functions, free of singularities. Note that G2(x2, x1) = −G2(x1, x2).
The contact terms in the first two lines of (3.9) only begin contributing at quartic

order in the spin and their numerical coefficients have been fixed against results at quartic
order in the spin arising from black-hole perturbation theory (BHPT) [145] or equivalently
using the “spin-shift symmetry” [134, 142]. At O(a4), these two methods to constrain the
contact terms are in agreement.

The remaining three lines in (3.9) involve contact terms which contribute from quintic
order in the spin. We have chosen to fix their numerical coefficients e1, e2, e3 assuming spin-
shift symmetry applied at this order [133, 142], setting them to be e1=− 3/4, e2=0, e3=0.
However, we note that recent work [145] has shown that at O(a5) the spin-shift symmetry
is in fact broken, and instead such coefficients should be fixed by comparison to BHPT
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or alternatively fixed to the method of multipole moments of the Kerr BH [161]. These
two methods are in agreement at O(a5) [161] but do not agree with spin-shift symmetry.
Therefore, the results derived here are only applicable to Kerr black holes up to quartic order
in the spin. We have chosen to set e1= − 3/4, e2=0, e3=0 simply to illustrate the general
matching principle, although our method makes it easy to deal with any values of the ei’s
and also with further contact terms starting at O(a6) and beyond, as we will discuss in [162].

Finally, we note here that, as described in detail in [144, 145], results from BHPT are
valid in the physical regime ai

Gmi
< 1 but can be analytically continued to the super-extremal

regime where ai
Gmi

> 1 in order to match with results formulated from amplitudes. Such an
analytic continuation is in fact trivial up to O(a4). We conclude that at leading PM order
and up to fourth order in spin the Compton amplitude, and hence our spin-expanded results
for the waveform, do not distinguish between physical versus super-extremal Kerr.

4 Spinning five-point amplitude

The crucial ingredient to compute the waveforms is the classical part of the five-point
amplitude of two spinning particles with one radiated graviton. 1 It can be derived using
the HEFT BCFW recursion relation introduced in [62] and is obtained from the following
two recursive diagrams,

v̄1, a1

v̄2, a2 H

k
q1

v̄1, a1

v̄2, a2

H

kq2 (4.1)

corresponding to the q2
1 and q2

2 channels, respectively. In the scalar case, these BCFW
diagrams capture all of the ‘contact terms’ in the classical amplitude (that is terms without
poles in q2

1 or q2
2 but possibly with massive poles). In the spinning case we will follow the

same procedure and, although we have no general proof that these contact terms are captured
fully, we have checked that the contributions from the two BCFW diagrams satisfy the correct
soft behaviour. Regardless, such contact terms without poles in q2

1 or q2
2 do not contribute

to the tree-level waveform as we will see in sections 5 and 7.
The contribution of each of the two diagrams is obtained by gluing a three-point amplitude

with a four-point Compton amplitude, given in (3.1) and (3.5), respectively. In doing so one
has to sum over the intermediate states of the exchanged graviton, using∑

h

εµa

−q̂ε
νa
−q̂ε

µb
q̂ ε

νb
q̂ = 1

2

[
ηµaµbηνaνb + ηµaνbηνaµb − 2

D − 2η
µaνaηµbνb

]
. (4.2)

For convenience, we introduce a tensor current by extracting the polarisation vector from
the Compton amplitude:

J µν
i εµν = M4(−qi, k, v̄i, ai) . (4.3)

1In the next section we will see that actually only the residues on the physical factorisation channels are
needed for computing the waveform. However, since the computation of the five-point amplitude is so simple
we cannot resist to present it here.
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Then, the amplitude in each channel is of the form

Mq2
1
= 1
q2

1

∑
h

(
cosh(a1·q1)(v̄1·ε)2εµνJ µν

1 − iG(a1·q1)v̄1·ε q1·S1·ε εµνJ µν
1

)
= 1
q2

1

(
cosh(a1·q1)

(
v̄1·J1·v̄1 −

1
2tr(J1)

)
− i

2G(a1·q1)
(
q1·S1·J1·v̄1 − v̄1·J1·S1·q1

))
,

(4.4)

and

Mq2
2
= 1
q2

2

∑
h

(
cosh(a2·q2)(v̄2·ε)2εµνJ µν

2 − iG(a2·q2)v̄2·ε q2·S2·ε εµνJ µν
2

)
= 1
q2

2

(
cosh(a2·q2)

(
v̄2·J2·v̄2 −

1
2tr(J2)

)
− i

2G(a2·q2)
(
q2·S2·J2·v̄2 − v̄2·J2·S2·q2

))
.

(4.5)

The full amplitude can be obtained directly adding (4.4) and (4.5),

M5,HEFT = Mq2
1
+Mq2

2
. (4.6)

Both channels have the spurious pole 1
k·q1

, which cancels after summing the two contributions.
To see this, we must use the Bianchi identity in D-dimensional momentum space [163]

A·Fk·B k·C +B·Fk·C A·k + C·Fk·A k·B = 0 , (4.7)

where A,B,C can be any vector. For example, a particular application is

v̄1·S2·Fk·q2 = k·q2v̄1·Fk·S2·v̄1 − k·S2·v̄1v̄1·Fk·q2
q2·v̄1

. (4.8)

The resulting expression for the amplitude only contains the following field-strength products:

a1·Fk·v̄1, a2·Fk·v̄1, q1·Fk·v̄1, v1·Fk·v̄2, q1·S1·Fk·v̄1,

q1·S2·Fk·v̄1, v1·Fk·S1·v̄2, v̄1·Fk·S2·v̄1, tr (Fk·S1) , tr (Fk·S2) . (4.9)

The complete expression for the five-point amplitude of two spinning black holes is included
in the GitHub repository associated to this paper.

In this paper we will present waveforms in the simpler situation of the scattering of
a Schwarzschild and a Kerr black hole, deferring the study of the waveform produced by
two Kerr black holes to [162]. Without loss of generality, we will therefore set a2=0, which
dramatically simplifies the contribution from the q2

1-channel. Then the amplitude in each
channel has a very compact form

Mq2
1
= 1
q2

1

[
cosh(a1·q1)

(
v̄1· J2|a2=0 ·v̄1 −

1
2tr(J2|a2=0)

)

− i

2G(a1·q1)
(
q1·S1· J2|a2=0 ·v̄1 − v̄1· J2|a2=0 ·S1·q1

)]
,

(4.10)

and

Mq2
2
= 1
q2

2

[
v̄2·J1·v̄2 −

1
2tr(J1)

]
. (4.11)
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5 The time-domain waveform

5.1 Waveforms from amplitudes

We begin by briefly reviewing the emergence of waveforms in black-hole scattering. We
consider the classical gravitational field produced by the scattering of two black holes which
are modelled by two massive spinning particles using the KMOC approach [54, 112]. The
corresponding initial two-particle state has the form

|ψ⟩in :=
ˆ 2∏
j=1

dΦ(pj)eip1·bϕ(p1)ϕ(p2)|p1, a1, p2, a2⟩in . (5.1)

Following [54, 62, 112, 114, 115], one finds that

⟨hout
µν (x)⟩ψ=κ

ˆ 2∏
j=1

dΦ(p̄j) |ϕ(p̄1)|2|ϕ(p̄2)|2
[∑

h

ˆ
dΦ(k)e−ik·x ε(h)∗

µν (k̂)
[
iW

]
+ h.c.

]
, (5.2)

where k:=ωk̂. Here W=W (⃗b, k;h) is the spectral waveform for the emission of a graviton of
momentum k and helicity h, which at leading order in the PM expansion is 2

W (b, kh) := −i
ˆ
dµ(D) eiq1·b M5,HEFT(q1, q2, a1, a2;h) , (5.3)

where we have introduced the D-dimensional measure (for regularisation purposes)

dµ(D) := dDq1
(2π)D−1

dDq2
(2π)D−1 (2π)Dδ(D)(q1 + q2 − k)δ(2p̄1·q1)δ(2p̄2·q2) , (5.4)

with q1,2=p1,2−p′1,2 being the momentum transfers, and D=4−2ϵ. Here we are ignoring
zero-modes in the amplitude which only have support when the graviton energy ω is zero.

In the far-field limit, corresponding to large observer distance r:=|x⃗| and time t with
fixed retarded time u:=t−r, (5.2) can be simplified to 3

⟨hout
µν (x)⟩ψ=

κ

4πr

[∑
h

ε(h)∗
µν (k̂)

ˆ +∞

0

dω

2π e
−iωuW (b, kh) + h.c.

]
k=ω(1,x̂)

. (5.5)

Alternatively, extending the ω integration from −∞ to +∞,

⟨hout
µν (x)⟩ψ = κ

4πr
∑
h

ˆ +∞

−∞

dω

2π e
−iωu

[
ε(h)∗
µν (k̂) θ(ω) W

(
b, kh

)∣∣∣
k=ω(1,x̂)

+ ε(h)
µν (k̂)θ(−ω) W ∗(b, kh)∣∣∣

k=−ω(1,x̂)

]
.

(5.6)

We now define 4

⟨h+ ± ih×⟩ := ⟨hout
µν ⟩ε

µν
(±±) :=

1
4πr (h

∞
+ ± ih∞× ) . (5.7)

2The factor of −i cancels the i from our definition of amplitudes as matrix elements of i T . Furthermore,
we have defined the physical impact parameter b := b1 − b2, where the bi are taken to be orthogonal to pi, and
finally we have set b2 = 0.

3Henceforth, we omit an overall factor of
´∏2

j=1 dΦ(pj) |ϕ(p1)|2|ϕ(p2)|2.
4We comment that in our normalisations, the combination ⟨h+−ih×⟩ is proportional to the strain h(x), specif-

ically h(x)= − (1/2)⟨h+−ih×⟩, where the strain is related to the Newman-Penrose scalar Ψ4 as Ψ4=d2h/du2.

– 10 –
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Using the properties of the positive/negative helicity polarisation vectors ε
(±)∗
µ =ε(∓)

µ ,
ε

(±)∗
µ εµ(±) = −1, ε(±)∗

µ εµ(∓) = 0, we get

h∞+ ± ih∞× = κ

ˆ +∞

−∞

dω

2π e
−iωu

[
θ(ω) W

(
b, k±

)∣∣
k=ω(1,x̂) + θ(−ω) W ∗(b, k∓)∣∣

k=−ω(1,x̂)

]
. (5.8)

We can now combine the two terms in (5.8). In order to do so, we first note that the five-point
spinning amplitude has the form

−iM5,HEFT = εµν(k)mµν , with mµν = mµν
even + imµν

odd , (5.9)

where mµν
even and mµν

odd are real, and contain even and odd powers of the spin, respectively.
Then we observe that we can separate out the ω dependence of the amplitude: we perform
a rescaling of q1,2 and define

q1,2 := ωq̂1,2, k := ωk̂, w1,2 := ωŵ1,2 , (5.10)

where the wi variables were defined in (2.5). Then we have

M5,HEFT(q1, q2, k
h, a1, a2)

∣∣∣
Sn

= ωn

ω2 M5,HEFT(q̂1, q̂2, k̂
h, a1, a2)

∣∣∣
Sn

, (5.11)

where |Sn denotes the term containing n powers of the spin in the HEFT amplitude. Note
that M5,HEFT(q̂1, q̂2, k̂

h, a) is ω-independent. Combining (5.9) and (5.11) we find that

W ∗(b, kh)
∣∣∣
k=−ω(1,x̂)

= W (b, k−h)
∣∣∣
k=ω(1,x̂)

, (5.12)

and we can thus rewrite

h∞+ ± ih∞× = κ

ˆ +∞

−∞

dω

2π e
−iωu W (b, k±)

∣∣
k=ω(1,x̂) . (5.13)

For convenience, in the following we will call this quantity

h∞(u) :=κ

ˆ +∞

−∞

dω

2π e
−iωu W (b, k)|k=ω(1,x̂)

= − iκ

ˆ +∞

−∞

dω

2π e
−iωu

ˆ
d4q1
(2π)2 δ(2p̄1·q1)δ(2p̄2·(k − q1)) eiq1·b M5,HEFT ,

(5.14)

leaving the dependence on the helicity understood, and where in all formulae k=ω(1, x̂).
The above no longer appears manifestly real but in fact it is (when expressed in a

basis of real polarisation tensors) thanks to the properties of −iM5,HEFT in (5.9) and (5.11).
That is, a real term in the amplitude has an even power of the spin and hence after the
re-scaling (5.10) is an even function of ω; its Fourier transform is thus real. On the other
hand, terms containing a factor of i will feature an odd power of the spin and so are odd
functions of ω; their Fourier transform is thus imaginary and this cancels the additional
factor of i, with the final result being real.

– 11 –
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5.2 A scalar warm-up

Here we detail the computation of the scalar tree-level waveform, as a warm-up to the spinning
case. Many of the simplifications we discuss here apply to the spinning waveform as well,
in particular the intriguing fact that the computation boils down to a simple application
of Cauchy’s theorem. We begin with the expression for the waveform (5.14) derived in the
previous section (here and for the rest of the paper we will drop the explicit bars on all
of the variables to reduce clutter)

h∞(u) = −iκ
ˆ +∞

−∞

dω

2π e
−iωu

ˆ
d4q1
(2π)2 δ(2p1·q1)δ(2p2·(k − q1)) eiq1·b M5,HEFT , (5.15)

First, we rescale the momentum transfers by ω, as discussed above, introducing hatted
momenta (5.10). The classical scalar amplitude then scales universally like ω−2, which cancels
the power of ω2 coming from the change of variables, to give

h∞(u)=−iκ
ˆ +∞

−∞

dω

2π e
−iωu

ˆ
d4q̂1
(2π)2 δ(2p1·q̂1)δ(2p2·(k̂ − q̂1)) eiωq̂1·b M5,HEFT(q̂1, q̂2, k̂

h) .

(5.16)

In addition, it is useful to rescale the energy and retarded time by
√
−b2, as ω → ω/

√
−b2

and u →
√
−b2u. Effectively this means we are measuring the retarded time u in units of√

−b2. With this choice, the tree-level waveform becomes

h∞(u)= −iκ√
−b2

ˆ +∞

−∞

dω

2π e
−iωu

ˆ
d4q̂1
(2π)2 δ(2p1·q̂1)δ(2p2·(k̂ − q̂1)) e

iω
q̂1·b√
−b2 M5,HEFT(q̂1, q̂2, k̂

h) .

(5.17)
In fact, we are free to set

√
−b2 = 1 in the expression above (and in all subsequent expressions)

since bµ only appears in the exponent through bµ/
√
−b2. To restore

√
−b2 we simply count

the mass dimension of the expression, obtaining the 1/
√
−b2 factor above. Similarly, one can

recover the original definition of the retarded time u by counting mass dimension.
Next, it is useful to split the amplitude into the two terms coming from the BCFW

diagrams (4.1). This gives us two contributions to the waveform, which we call h∞
q2

1
(u)

and h∞
q2

2
(u),

h∞q2
1 ,q

2
2
(u) = −iκ

ˆ +∞

−∞

dω

2π e
−iωu

ˆ
d4q̂1
(2π)2 δ(2p1·q̂1)δ(2p2·(k̂ − q̂1)) eiωq̂1·b Mq2

1 ,q
2
2
(q̂1, q̂2, k̂) .

(5.18)
The two contributions Mq2

1
and Mq2

2
are related by the replacements v1↔v2, q1↔q2, which

allows us to obtain the waveform contribution in the q2
2-channel from the q2

1-channel. To
do this we perform the following replacements

h∞q2
1
(b·k̂ − u) v1↔v2−−−−→ h∞q2

2
(u) , (5.19)

which can be seen immediately using the definition (5.18). The asymmetric shift in the proper
time u is due to our asymmetric choice of impact parameter in (5.1).

– 12 –
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To compute the first cut, we decompose q̂1 onto a basis of four-vectors [112]

q̂µ1 = z1v
µ
1 + z2v

µ
2 + zvv

µ
⊥ + zbb

µ , (5.20)

where
v⊥ := ϵ(v1 v2 b •) , (5.21)

and then change integration variables from q1 to z1, z2, zv, zb. In this parameterisation, we
can use the two delta functions in (5.18) to localise the variables z1 and z2 to

z1 = (v2·k̂)(v1·v2)
(v1·v2)2 − 1 = ŵ2y

y2 − 1 , z2 = − v2·k̂
(v1·v2)2 − 1 = − ŵ2

y2 − 1 . (5.22)

The remaining integrals are then over zv, zb and ω,

h∞q2
1
(u) = −iκ

(4π)2m1m2

ˆ +∞

−∞

dω

2π dzvdzbe
−iω(u+zb)Mq2

1

∣∣∣
z1= ŵ2y

y2−1
, z2=− ŵ2

y2−1

. (5.23)

The integral over ω also gives a delta function which we can immediately use to localise
the zb integral,

h∞q2
1
(u) = −iκ

(4π)2m1m2

ˆ +∞

−∞
dzvMq2

1

∣∣∣
z1= ŵ2y

y2−1
, z2=− ŵ2

y2−1
, zb=−u

. (5.24)

To compute the final integral in zv we use Cauchy’s residue theorem, as used in [157], hence we
need to examine the pole structure of the q2

1-cut. The integrand contains three types of poles
in zv which arise from certain denominator structures in the tree-level amplitude. These are

Physical pole: 1
q2

1
∼ 1

(zv − iA)(zv + iA) , (5.25)

Spurious pole: 1
q2

1 q1·k
∼ 1

(zv − iA)(zv + iA)(zv −B) , (5.26)

Pole at infinity:


zv

q2
1
∼ zv

(zv−iA)(zv+iA) −−−−→
zv→∞

1
zv
,

z2
v

q2
1 q1·k

∼ z2
v

(zv−iA)(zv+iA)(zv−B) −−−−→
zv→∞

1
zv
,

(5.27)

where A and B are real functions of the external kinematics. To compute the zv integral we
will close the integration contour in the upper half plane to capture the pole at zv = iA and
regulate the pole at infinity with a principal value prescription. This is equivalent to taking
the integration limits zv→−∞ and zv→+∞ in a symmetric fashion, and implies that the
pole at infinity receives an extra factor of 1

2 . The spurious pole at zv = B (coming from the
factor q1·k) lies on the integration contour, however we know that this pole cancels when we
combine the two cuts in q2

1 and q2
2. Hence we are free to ignore the residue on this spurious

pole since it would cancel at the end of the computation (as we have checked explicitly).
In fact, we can further simplify the integral (5.24) using the following observations. First,

the integral of one of the terms with a pole at infinity in (5.27) is actually zero,
ˆ +∞

−∞
dzv

zv
(zv − iA)(zv + iA) = 0 . (5.28)

– 13 –
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This can be seen from the fact that the integrand is odd in zv, or that the residue at zv = iA

cancels with half the residue at infinity (recalling the principal value prescription mentioned
earlier). The second term with a pole at infinity in (5.27) can also be simplified as

z2
v

(zv−iA)(zv+iA)(zv−B) = ((zv−B)+B)2

(zv − iA)(zv + iA)(zv −B)

= B

(zv−iA)(zv+iA)
+ B2

(zv−iA)(zv+iA)(zv−B) + · · · (5.29)

where + · · · are terms which vanish after integration due to (5.28). The remaining terms
above are in the form of (5.25) and (5.26). Thus, after simplifications the only terms relevant
to the waveform integral (5.24) are

1
q2

1
∼ 1

(zv − iA)(zv + iA) ,
1

q2
1q1·k

∼ 1
(zv − iA)(zv + iA)(zv −B) , (5.30)

for which we only compute the residue on the physical pole zv = iA. The computation
for the second cut Mq2

2
proceeds in an identical way, or alternatively we can obtain the

second cut using the replacements (5.19).
We have thus learned that the computation of the waveform can be efficiently reduced

to the evaluation of residues on physical poles. The same general principle will be used in
the spinning case. The final expression for the scalar waveform is simply the sum of h∞

q2
1

and h∞
q2

2
, and is included in the GitHub repository.

We can choose a frame such that the kinematics are given by

v1 = (1, 0, 0, 0), v2 = (y,
√
y2 − 1, 0, 0)

k̂ = (1, sin θ cosϕ, sin θ sinϕ, cos θ), v⊥ = (0, 0,
√
y2 − 1, 0)

ε(+) = 1√
2
(
0, cos θ cosϕ− i sinϕ, cos θ sinϕ+ i cosϕ,− sin θ

)
, b = (0, 0, 0, 1) , (5.31)

and then in figure 1 we present the scalar waveform at fixed angles θ = π
4 and ϕ = π

4 for
various values of y.

5.3 General expression of the time-domain waveform for arbitrary spins

We now turn to the spinning case. The first observation to make is that, in principle, the
Fourier transform to impact parameter space in (5.14) is ill-defined due to the large-q1
behaviour of the integrand giving rise to an ultraviolet (UV) divergence. An elegant way to
regularise this is to leave the hyperbolic and exponential functions in the Compton amplitudes
unexpanded (in the spin vectors), introduce a new spin parameter as

ã1,2 := ia1,2 , (5.32)

and temporarily take ã1,2 to be real. Assuming that the final spinning waveform has an
expansion around a1,2 → 0, this analytic continuation should not change the expansion
coefficients. In support of this approach we mention that the a1 → 0 limit of our waveform
gives the correct scalar result, and for a1 ̸= 0 has the correct gravitational memory (computed
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Figure 1. Scalar waveforms h∞
+ at various values of y.

in section 8); and finally, our results also agree with the recently derived waveform of [157],
obtained by expanding in spin and then integrating, up to and including O(a4

1). Indeed, one
can expand the amplitude in the spin parameters before integration, and the amplitude’s
degree of divergence would grow with each additional order in the spin. However, as we see
in section 7, these divergences can be ignored since they only contribute to contact terms
in q2

1 and q2
2, and both methods (the analytic continuation and expanding in spin before

integration) give the same result.
Proceeding now with the analytic continuation in the spin (5.32), we observe that in the

large-q1 limit, i.e. q1→λ q1 with λ→∞, the scaling behaviour of the amplitude is now O(λ−1)
as λ→ ∞. Pleasingly, this is precisely the same behaviour as that of the scalar amplitude.
This logarithmic divergence will appear, identically to the scalar case, as a pole at infinity
which we can again regulate with a principal value prescription. The waveform is therefore
well-defined once we tame this logarithmic divergence,

h∞(u) = − iκ

ˆ +∞

−∞

dω

2π e
−iωu

ˆ
d4q̂1
(2π)2 δ(2p1·q̂1)δ(2p2·(k̂ − q̂1))eiωq̂1·b

ω2
(
Mq2

1
(ωq̂1, ωq̂2, ωk̂) +Mq2

2
(ωq̂1, ωq̂2, ωk̂)

)
,

(5.33)

where the hatted variables were defined in (5.10). The factor of ω2 comes from the re-scaled
measure, while the amplitude itself depends on ω in a manner which we now describe.
Writing the hyperbolic functions within the expression of the Compton amplitude (4.1) in
terms of exponential functions, we find that the tree-level amplitude can be rewritten as
a linear combination of at most eight exponential factors, with a very simple frequency
dependence. Specifically, we find that only three different powers of the frequency ω can
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appear for arbitrary classical spins,

Mq2
1
=

∑
ϱ1,ϱ2,ϱ3=±1

eϱ1iωã1·q̂1+ϱ2iωã2·q̂1+ϱ3iωã2·k̂ 1
ω2

( 2∑
i=0

M(i)
q2

1
(ϱ1, ϱ2, ϱ3)ωi

)
,

Mq2
2
=

∑
ϱ1,ϱ2,ϱ3=±1

eϱ1iωã2·q̂2+ϱ2iωã1·q̂2+ϱ3iωã1·k̂ 1
ω2

( 2∑
i=0

M(i)
q2

2
(ϱ1, ϱ2, ϱ3)ωi

)
,

(5.34)

where the sum is extended to all values of ρi∈{−1, 1}, i=1, 2, 3. Note that the M(i)
q2

2
(ϱ1, ϱ2, ϱ3)

now do not depend on ω and thus are functions of the hatted variables q̂1, q̂2, k̂. Hence, the
waveform integral has a simple general structure. In the remainder of this section we will focus
on M(i)

q2
1
, and the case of M(i)

q2
2

is similar. Similarly to the scalar case, the four-dimensional
integration is immediately reduced to a two-dimensional one using the δ-functions in (5.33).
Furthermore, for each exponential factor, the Fourier transform to the time domain generates
a third delta function, which constrains the integration over q̂1 to the hyperplane defined by

b·q̂1 + ϱ1ã1·q̂1 + ϱ2ã2·q̂1 + ϱ3ã2·k̂ − u = 0 . (5.35)

Following similar manipulations to (5.29) in the scalar case, the master integrands are of
the form

1
(q̂1·X + Y ·Z)q̂2

1
,

1
q̂2

1
,

q̂1·W
q̂2

1
, (5.36)

where W can be chosen to be orthogonal to the localising hyperplane and q̂1·X+Y ·Z denotes
a generic spurious pole linear in q̂1 and featuring external vectors X,Y and Z which may
be the spins ai or k. The first two master integrals are UV convergent, while the last one is
logarithmically divergent. However, the last master integral is an odd function of q1, and
hence vanishes when integrated on a symmetric domain, identically to (5.28) in the scalar
case. This corresponds to a principal value (PV) regularisation of the divergent integral, or
equivalently a PV regularisation of the pole at infinity. With this regularisation, the residue
of the pole at q̂2

1 = 0 of the third term in (5.36) cancels the residue of the pole at infinity.
Therefore, we can drop the last master integral altogether.

Now that the pole at infinity has been removed, we can perform the integration of the
remaining terms using Cauchy’s theorem on the finite poles. There is only one physical pole
in this channel, namely q̂2

1=0. The residues on the spurious poles k̂·q̂1 in the integrand can
be discarded since they cancel when combining with the q̂2

2-channel, a fact we have confirmed
by explicit calculations. The residues of the spin-dependent spurious poles in the three-point
and Compton amplitudes (coming from the entire functions Gi) cancel when performing
an expansion in the spins a1 and a2, and so they can also be ignored. A similar statement
holds for these poles in the final integrated waveform.
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In summary, the closed-form expression of the time-domain waveform with arbitrary
spin at tree level is then

h∞(u) = − iκ
∑

ϱ1,ϱ2,ϱ3=±1

2∑
j=0

(i∂u)j
[ ‰

(q̂2
1)+=0

d4q̂1
(2π)2 δ(2v1·q̂1)δ(2v2·(k̂ − q̂1))

δ(b·q̂1 + ϱ1ã1·q̂1 + ϱ2ã2·q̂1 + ϱ3ã2·k̂ − u)M(i)
q2

1 ,fin(ϱ1, ϱ2, ϱ3)

+
‰

(q̂2
2)+=0

d4q̂1
(2π)2 δ(2v1·q̂1)δ(2v2·(k̂ − q̂1))

δ(b·q̂1 + ϱ1ã2·q̂2 + ϱ2ã1·q̂2 + ϱ3ã1·k̂ − u)M(i)
q2

2 ,fin(ϱ1, ϱ2, ϱ3)
]
,

(5.37)

where M(i)
q2

j ,fin denotes the UV-convergent part of the amplitude coming from the first two
master integrals in (5.36). We denote as (q̂2

1,2)+ = 0 the physical poles in the upper half plane.

6 The waveform from the scattering of a Schwarzschild and a Kerr black
hole

In this paper, we will focus on the case where the first black hole is spinning while the second
is spinless, that is a2=0. Furthermore, in order to show explicitly powers of the frequency
ω, in this section we rescale k, q and the wi by ω, as in (5.10), dropping the hats on these
rescaled quantities in order not to clutter formulae.

6.1 The q2
1-channel

For the contribution to the amplitude in the q2
1-channel, the waveform integrand is obtained

from gluing a three-point spinning amplitude with a four-point spinless amplitude. The
amplitude in this channel is very simple thanks to our restriction a2 = 0, and from (4.10)
we obtain, up to overall constant pre-factors

ω2eiωb·q1−iωuMq2
1
=ω2eiωb·q1−iωu

(
c1 cosh (ωa1·q1)
ω2q1·q1k·q1

+ c2 (q1·Fk·v1) 2 cosh (ωa1·q1)
ω2q1·q1k·q1

+ c3 (q1·Fk·v1) 2q1·S1·v2G1 (ωa1·q1)
ωq1·q1k·q1

+ c4q1·Fk·v1k·S1·q1G1 (ωa1·q1)
ωq1·q1k·q1

+ c5G1 (ωa1·q1) q1·S1·Fk·v1
ωq1·q1

+ c6q1·Fk·v1 cosh (ωa1·q1)
ω2q1·q1k·q1

+ c7q1·Fk·v1q1·S1·v2G1 (ωa1·q1)
ωq1·q1k·q1

+ c8k·S1·q1G1 (ωa1·q1)
ωq1·q1k·q1

+ c9k·q1 cosh (ωa1·q1)
ω2q1·q1

+ c10q1·Fk·v1 cosh (ωa1·q1)
ω2q1·q1

+ c11k·q1q1·S1·v2G1 (ωa1·q1)
ωq1·q1

+ c12q1·Fk·v1q1·S1·v2G1 (ωa1·q1)
ωq1·q1

+ c13k·S1·q1G1 (ωa1·q1)
ωq1·q1

+ c14 cosh (ωa1·q1)
ω2q1·q1
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+ c15q1·S1·v2G1 (ωa1·q1)
ωq1·q1

+ c16q1·Fk·v1G1 (ωa1·q1) q1·S1·Fk·v1
ωq1·q1k·q1

+ c17G1 (ωa1·q1) q1·S1·Fk·v1
ωq1·q1k·q1

)
, (6.1)

where the coefficients ci are independent of q1 and ω,and hence can be factored out in the
waveform integration, their precise form is given in appendix B. For this channel the amplitude
scales with ω as ω0 with the remaining ω dependence exponentiating. In this channel, there
are only two sectors from the exponential factors:

(I) : e−iω(−ã1·q1−b·q1+u), (II) : e−iω(ã1·q1−b·q1+u). (6.2)

Again we have the parameterisation of q1 on the four-dimensional vector basis given by
the vectors

v1, v2, b, v⊥. (6.3)

As in the scalar case, we temporarily set b2 = −1 which means regarding the spins ai and
retarded time u as dimensionless and measured in units of

√
−b2. The overall dependence on

b can then be reinstated by counting of mass dimension and gives simply a prefactor of 1√
−b2 .

However, the parameterisation (6.3) is not well suited to the particular sectors and does
not cleanly identify the UV-divergent term in (5.36). It is more convenient to introduce
a sector-dependent basis as

v1, v2, b̃j , ṽj , (6.4)

where in each sector we introduce an effective impact parameterb̃(I) := −b− ã1

b̃(II) := −b+ ã1
, (6.5)

and correspondingly

ṽj := ϵ(v1v2b̃j•), j = I, II . (6.6)

We then parameterise q1 as

q1 = z1v1 + z2v2 + zvṽj + zbb̃j , j = I, II , (6.7)

in terms of the basis vectors defined above. The divergent part in (5.36) is then of the form

zv
c− z2

v

, (6.8)

which vanishes once we perform the integration as in the scalar case; hence we drop such terms.
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Examples with constrained spin: in this paper we present results for the case where
the Kerr black hole spin a1 satisfies the additional constraint

ã1·v2 = 0 . (6.9)

In this case b, ã1 are both constrained to the hyperplane orthogonal to v1 and v2 as
ã1·vi=b·vi=0. The q1 variable is also constrained to another parallel hyperplane defined by
q1·v1=0, q1·v2=k·v2=w2. Then the extra δ-function after the time-domain Fourier transform
is, in the two sectors,

δ (−ã1·q1 − b·q1 + u) = δ(b̃(I)·q1 + u), δ (ã1·q1 − b·q1 + u) = δ(b̃(II)·q1 + u) (6.10)

and the q1 integral localises to the line as shown in the following figure,

v⊥

−b

−b− ã

−b+ ã

−u

−u

changing−−−−−−−→
vector basis

ṽ

b̃−u

(6.11)

The plane depicted here is the one orthogonal to v1 and v2 which corresponds to the integrals
over zv and zb in each sector (6.7). The variable b̃·q1 = b̃2zb is localised to −u using (6.10)
and the integral over zv is taken along the red line orthogonal to the basis vector b̃. In
the following we use b̃(I), b̃(II) to denote the shifted impact parameters in the two sectors,
and ṽ(I), ṽ(II) to denote the corresponding orthogonal directions. We also note that when
we replace back ã1 = ia1 in terms of the physical spin the quantities b̃(I), b̃(II) and ṽ(I), ṽ(II)
are complex conjugates of each other.

We now go into some explicit examples. First, consider the term

c14 cosh (ωa1·q1) eiωb·q1−iωu

q1·q1
. (6.12)

Then according to (5.37), we need to sum over the two sectors and get
c14

4
√
w2

2 b̃(I)·b̃(I) − u2 (y2 − 1)
+ c14

4
√
w2

2 b̃(II)·b̃(II) − u2 (y2 − 1)
, (6.13)

which is a real result since b̃(I), b̃(II) are a complex conjugate pair. This is a general feature of
the integrals encountered in the following calculation, namely when replacing ã1 = ia1 the
sector variables are complex but appear in combinations such that the resulting waveform
is real (for a basis of real polarisations). A second example is

c13ωk·S1·q1e
iωb·q1−iωuG1 (−iωã1·q1)
q1·q1

. (6.14)
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The contribution to the waveform is

ic13
4

(−k·S1·ṽ(I)

√
w2

2 b̃(I)·b̃(I) + u2 (1− y2) + u
(
y2 − 1

)
b̃(I)·S1·k − w2b̃(I)·b̃(I)k·S1·v2

u (y2 − 1) ã1·b̃(I)

√
w2

2 b̃(I)·b̃(I) − u2 (y2 − 1)− ã1·ṽ(I)
(
u2 (y2 − 1)− w2

2 b̃(I)·b̃(I)
)

−
−k·S1·ṽ(II)

√
w2

2 b̃(II)·b̃(II) + u2 (1− y2) + u
(
y2 − 1

)
b̃(II)·S1·k − w2b̃(II)·b̃(II)k·S1·v2

u (y2 − 1) ã1·b̃(II)

√
w2

2 b̃(II)·b̃(II) − u2 (y2 − 1)− ã1·ṽ(II)
(
u2 (y2 − 1)− w2

2 b̃(II)·b̃(II)
)).

(6.15)

In this form, the poles which depend on the spin vector a1 are due to the spurious pole
in the G1 function. As with the G1 function itself, this pole explicitly cancels once we
expand for |a1| ≪ 1 giving

− c13w2
(
uw0

(
y2 − 1

)
ã1·b+

(
−uw3y

2 + uw3 + w1w2y − w2
2
)
ã1·v⊥

)
2 (y2 − 1)

(
−u2 (y2 − 1)− w2

2
) 3/2

+ c13w
3
2
(
uw0

(
y2 − 1

)
ã1·b+

(
−uw3y

2 + uw3 + w1w2y − w2
2
)
ã1·v⊥

)
4 (y2 − 1)2 (−u2 (y2 − 1)− w2

2
) 7/2

×
((
y2 − 1

) (
u2
(
y2 − 1

)
− 4w2

2

)
(ã1·b) 2 +

(
u2
(
y2 − 1

)
+ w2

2

)
(ã1·v⊥)2

)
+ · · · , (6.16)

where w1 := k·v1, w2 := k·v2, w3 := k·b, w0 := k·v⊥.
A third example is

c3ω (q1·Fk·v1) 2q1·S1·v2e
iωb·q1−iuωG1 (−iωã1·q1)

q1·q1k·q1
. (6.17)

In this case, there is a trivial log-divergent term which we remove using the method described
in section 5.3. Thus the integral gives

II∑
j=I

(−1)j−1

4(y2 − 1)

[ ic3

(
ṽj ·S1·v2

√
w2

2 b̃j ·b̃j − u2 (y2 − 1) + u
(
y2 − 1

)
b̃j ·S1·v2

)
k·ṽj

√
w2

2 b̃j ·b̃j + u2 (1− y2) + u (y2 − 1) b̃j ·k + w2 (w2 − w1y) b̃j ·b̃j(
ṽj ·Fk·v1

√
w2

2 b̃j ·b̃j + u2 (1− y2) + u
(
y2 − 1

)
b̃j ·Fk·v1 − w2b̃j ·b̃jv1·Fk·v2

)2

b̃j ·b̃j
√
w2

2 b̃j ·b̃j − u2 (y2 − 1)
(
ã1·ṽj

√
w2

2 b̃j ·b̃j − u2 (y2 − 1) + u (y2 − 1) ã1·b̃j
)

− ic3 (ṽj ·Fk·v1) 2ṽj ·S1·v2

b̃j ·b̃j ã1·ṽjk·ṽj

]
. (6.18)

The last term is the removed log-divergent term that can be removed trivially. One can also
directly check that the spurious poles 1

ã1·ṽj
and 1(

ã1·ṽj

√
w2

2 b̃j ·b̃j−u2(y2−1)+u(y2−1)ã1·b̃j

) cancel

among the sectors. Again, by expanding for |a1| ≪ 1 we see that the spurious poles cancel,

−ic3w
2
2 (v1·Fk·v2) 2b·S1·v2

2 (y2 − 1)
(
u2 (1− y2)− w2

2
) 3/2

1(
w1w2y − w2

2 − w0
√
u2 (1− y2)− w2

2 − uw3 (y2 − 1)
)2

×
(
−w0(u2(y2 − 1)− w2

2)
√
u2 (1− y2)− w2

2 − u3
(
y2 − 1

)2
w3 − w1w

3
2y + w4

2

)
+ · · · . (6.19)
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The spin-independent spurious pole is still present and will only cancel after summing with
the corresponding terms in the q2

2-channel.

6.2 The q2
2-channel

For the second graph in (4.1), the physical propagator is

1
q2

2
= 1

(k − q1)2 . (6.20)

It is convenient to shift the integration variable as q1 → q1 + k and the physical propagator
becomes simply 1

q2
1
, the same as in the q2

1-channel. The spurious pole 1
k·q1

is invariant under
the shift due to the on-shell condition of the external graviton, while the spin dependent
spurious poles become

1
a·q1

,
1
a·k

. (6.21)

The delta functions coming from the definition of the waveform (5.14) are shifted corre-
spondingly as

δ(2v1·q1 + 2w1), δ(2v2·q1). (6.22)

Applying the residue theorem to evaluate the integrals is then the exact same process as
the q2

1-channel with the following integrand

(ω2eiω(b·k+b·q1)−iωu)Mq2
2
= (ω2eiω(b·k+b·q1)−iωu)×[cosh (ωa1·(k + q1))

(
2w2

1 (v1·Fk·v2)2 − 4w1yv1·Fk·v2q1·Fk·v1 +
(
2y2 − 1

)
(q1·Fk·v1) 2

)
4w2

1ω
2q1·q1k·q1

+ iG1 (ωa1·(k + q1))
2w2

1ωq1·q1k·q1

(
w1v1·Fk·v2 − yq1·Fk·v1

)(
− w2q1·S1·Fk·v1

+ k·S1·v2q1·Fk·v1 + q1·S1·v2q1·Fk·v1 + v1·Fk·v2k·S1·q1 − w2k·S1·Fk·v1
)

+ G2 (ωa1·q1, ωa1·k) (c33q1·S1·Fk·v1 + (c25q1·S1·v2 + c48) q1·Fk·v1 + c41q1·S1·v2 + c19)
q1·q1

+ G1 (ωa1·(k + q1)) (c29q1·Fk·v1 + c43)
ωq1·q1

+ G1 (ωa1·k)G1 (ωa1·q1)
q1·q1

(
c2 + c68q1·Fk·v1

+ a1·q1 (c63q1·Fk·v1 + c70) + c62 (q1·Fk·v1) 2 + k·q1 (c7q1·Fk·v1 + c11)
)

+ G1 (ωa1·k) cosh (ωa1·q1)
ωq1·q1

(c12q1·Fk·v1 + c51) +G′′
e (ωa1·q1, ωa1·k)ω2

(c4k·q1
q1·q1

+ c16a1·q1k·q1
q1·q1

+ c58a1·q1
q1·q1

+ c74 (a1·q1) 2

q1·q1
+ c57q1·Fk·v1

q1·q1
+ c72a1·q1q1·Fk·v1

q1·q1

)
+G′

e (ωa1·q1, ωa1·k)ω
(c66a1·q1q1·Fk·v1

q1·q1
+ c64a1·q1k·q1

q1·q1
+ c69 (a1·q1)2

q1·q1
+ c82a1·q1

q1·q1

+ c10k·q1q1·Fk·v1
q1·q1

+ c14 (q1·Fk·v1)2

q1·q1
+ c71q1·Fk·v1

q1·q1
+ c22 (k·q1)2

q1·q1
+ c67k·q1

q1·q1
+ c59
q1·q1

)
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+G
′′
o (ωa1·q1, ωa1·k)ω2

(c44a1·q1q1·S1·Fk·v1
q1·q1

+ c52a1·q1q1·Fk·v1
q1·q1

+ c46a1·q1k·S1·q1
q1·q1

+ c53a1·q1k·q1
q1·q1

+ c76a1·q1q1·S1·v2
q1·q1

+ c61a1·q1
q1·q1

+ c81 (a1·q1) 2

q1·q1
+ c45q1·S1·v2q1·Fk·v1

q1·q1

+ c5q1·Fk·v1
q1·q1

+ c47k·q1q1·S1·v2
q1·q1

+ c6k·q1
q1·q1

)
+G

′
o (ωa1·q1, ωa1·k)ω

(c32a1·q1q1·S1·Fk·v1
q1·q1

+ c20a1·q1q1·Fk·v1
q1·q1

+ c13a1·q1k·q1
q1·q1

+ c40a1·q1q1·S1·v2
q1·q1

+ c50 (a1·q1) 2

q1·q1
+ c80a1·q1

q1·q1

+ c15q1·S1·v2q1·Fk·v1
q1·q1

+ c34q1·S1·Fk·v1
q1·q1

+ c21q1·Fk·v1
q1·q1

+ c26k·q1q1·S1·v2
q1·q1

+ c35k·S1·q1
q1·q1

+ c49k·q1
q1·q1

+ c73q1·S1·v2
q1·q1

+ c60
q1·q1

)]
, (6.23)

where

G
′
o(x1, x2) := (∂x1 − ∂x2)G2(x1, x2), G

′
e(x1, x2) := (∂x1 − ∂x2)G1(x1)G1(x2)

G
′′
o (x1, x2) :=

(∂x1 − ∂x2)2

2 G2(x1, x2), G
′′
e (x1, x2) :=

(∂x1 − ∂x2)2

2 G1(x1)G1(x2) . (6.24)

The coefficients are listed in appendix B. The integrand is composed of four parts:
• terms including the functions G1 and cosh and with spurious pole 1

k·q1
: in this part, the

entire function are G1(ωa1·(k + q1)), cosh(ωa1·(k + q1)). All the terms are of O(ω0). It
is easy to see that the spurious pole is cancelled when adding the corresponding terms
in the q2

1-channel.

• terms with the functions cosh, G1, G2 and without the spurious pole 1
k·q1

: they are all
of O(ω0).

• terms with the functions G′
o, G

′
e: they are of O(ω0) and O(ω1). All of them do not

contain the spurious pole 1
k·q1

• terms with the functions G′′
o , G

′′
e : they are of O(ω0), O(ω1) and O(ω2). All of them do

not contain the spurious pole 1
k·q1

. They also do not contain the physical massive pole
1
k·v1

= 1
w1

.
Unlike in the q2

1-channel, here we have more general entire functions coming from the
Compton amplitude for the particle with spin a1 and consequently we now have four sectors
with different exponential factors

(I) : exp (−iω (−ã1·k − ã1·q1 − b·k − b·q1 + u)) ,
(II) : exp (−iω (−ã1·k + ã1·q1 − b·k − b·q1 + u)) ,
(III) : exp (−iω (ã1·k − ã1·q1 − b·k − b·q1 + u)) ,
(IV) : exp (−iω (ã1·k + ã1·q1 − b·k − b·q1 + u)) . (6.25)

In each sector, we still use the sector-dependent basis in (6.4) and parameterise the q1
variable of (6.7) withb̃(I) = b̃(III) = −b− ã1

b̃(II) = b̃(IV) = −b+ ã1
, ṽj = ϵ(v1v2b̃j•) , j = I, II, III, IV. (6.26)
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Using this, the extra δ-functions in each sector are

(I) : δ
(
−ã1·k − b·k + b̃(I)·q1 + u

)
, (III) : δ

(
ã1·k − b·k + b̃(III)·q1 + u

)
,

(II) : δ
(
−ã1·k − b·k + b̃(II)·q1 + u

)
, (IV) : δ

(
ã1·k − b·k + b̃(IV)·q1 + u

)
. (6.27)

Then the integration localises onto a hyperplane for each sector and the method is exactly
the same as in the last section. The new feature is the appearance of the entire functions
G′
o, G

′
e, G

′′
o , G

′′
e . The derivatives will lead to entire functions that are not homogeneous with

respect to ω even while ignoring the exponential factors. Hence the integrand has three
different powers of ω, schematically

1×Aω0e−iω(u+a) + ω ×Aω1e−iω(u+b) + ω2 ×Aω2e−iω(u+c) , (6.28)

where the Aωi and a, b, c do not depend on ω. Performing the ω integral leads to a result
of the form

1× δ(u+ a)Aω0 + i∂u
(
δ(u+ b)Aω1

)
− ∂2

u

(
δ(u+ c)Aω2

)
. (6.29)

In practice, our result is obtained from evaluating the δ-functions by integrating over zb as
usual and replacing ω by i∂u at the end, as shown in (5.37).

We now perform a numerical check that the result is free of spin-dependent spurious
poles. After a random numerical replacement, the spin-dependent spurious pole is located at

ã1 · v⊥ − 42ã1 · b
5 = ξ → 0 . (6.30)

We extract the singular terms at the spurious pole, finding

− 1323
√
3u

640
√
−25u2 − 700u− 17444ξ3

+ 5245317u
1100800

√
−75u2 − 2100u− 58732ξ3

− 9261
√
3

320
√
−25u2 − 700u− 17444ξ3

+ 36717219
550400

√
−75u2 − 2100u− 58732ξ3

− 277641
1100800ξ3

+ · · · 1345 more terms · · · (6.31)

After applying the derivative operators and setting u=0 we get

0.0123034 + 0.140702i
ξ2 + 0.0205579 − 0.00156661i

ξ

− 0.0123034 + 0.140702i
ξ2 − 0.0222046 − 0.0033312i

ξ

+ 0.00164663 − 0.00176459i
ξ

= 0. (6.32)

We have also tested that for several other values of u and find the singular term is always
vanishing. This indicates that the final result is free of spurious poles to any spin order.
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6.3 Discussion of the resummed spin waveform

The final result of the waveform has three contributions coming from terms each with up
to two u-derivatives acting on them,

h∞(u) =
(
h∞0 (u) + ωh∞1 (u) + ω2h∞2 (u)

)∣∣∣
ω→i∂u

, (6.33)

and in terms of ã, b, v⊥, k, v1, v2 takes the following schematic form(
2y2 − 1

)
v1·F2·v2 (v⊥·F2·v1 (ã1·b− 1)− ã1·v⊥b·F2·v1)

8w2
1w2 ((y2 − 1) (ã1·b− 1) 2 + (ã1·v⊥) 2)

+
(
2y2 − 1

)
v1·F2·v2 (ã1·v⊥b·F2·v1 − v⊥·F2·v1 (ã1·b+ 1))

8w2
1w2 ((y2 − 1) (ã1·b+ 1) 2 + (ã1·v⊥) 2)

+ · · · 336 more terms · · · (6.34)

We note that the poles in w1, w2 correspond to the physical massive poles 1
v1·k2

and 1
v2·k2

.
The singular behaviour on these poles does not depend on the contact terms present in the
Compton amplitude, which by definition are free of such poles, and so this behaviour is exact
up to any spin order. The explicit result in the case of a1·v2=0 can be found in the GitHub
repository. In the remainder of this subsection, we focus on the properties of the waveform
by plotting its numerical values as a function of the retarded time u and the spin parameter.
As in the scalar case, we can choose a frame such that the kinematics are given by

v1 = (1, 0, 0, 0), v2 = (y,
√
y2 − 1, 0, 0)

k̂ = (1, sin θ cosϕ, sin θ sinϕ, cos θ), v⊥ = (0, 0,
√
y2 − 1, 0)

ε(+) = 1√
2
(
0, cos θ cosϕ− i sinϕ, cos θ sinϕ+ i cosϕ,− sin θ

)
, b = (0, 0, 0, 1). (6.35)

Then we can further parameterise the constrained spin a1 such that a1·v2 = 0 as

a1 = (0, 0, a cosψ, a sinψ), (6.36)

where a > 0 is the magnitude of the spin and ψ the angle of the spin’s direction in the
plane orthogonal to v1 and v2.

In figures 2 and 3 we show the time-domain waveform h+ at y = 3
2 , θ =

π
4 , ϕ = π

4 . In all
of our graphs, we set κ=m1=m2=1, so each graph is missing a factor of κ4m1m2. Figure 2
shows the waveform dependence on the retarded time u and angle ψ. When the magnitude
of the spin is equal to 0.2, a small spin parameter compared to the magnitude of the impact
parameter |b|, the time-domain waveform is similar to the scalar case. The spin effect on
the waveform can then be taken as a perturbation on top of the spinless cases. However,
for a larger magnitude, for example 0.65, the time-domain waveform is modified greatly due
to the effects of spin. To highlight the effect of changing the magnitude of the spin, in the
figure 3 we plot the various spinning waveforms at fixed spin angle ψ = π

4 .
From the waveform, we can extract the gravitational memory effect using

∆h∞ = h∞(+∞)− h∞(−∞). (6.37)
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Figure 2. Waveform of h∞
+ at a/b = 0.0, a/b = 0.2, a/b = 0.65.
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Figure 3. Waveform of h∞
+ for different values of a/b with spin angle ψ=π
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We first study the Taylor expansion around u → ∞ of the individual pieces h∞i (u) which
contribute to the waveform in (6.33) and find they all have similar behaviour

h∞i (u) ∼ ci +O
(1
u

)
. (6.38)

The contributions h∞1 and h∞2 have the derivative i∂u acting on them as such their behaviour
in the large u limit is sub-leading and they do not contribute to the memory. The memory
can then by computed from the contribution h∞0 and we find

∆h∞ = κ4m1m2
8π

v1·Fk·v2

4w2
1w

2
2
√
y2 − 1 (4 (a1·b) 2 + (a1·a1 + 1) 2)

×
(
2a1·bv1·Fk·v2

((
1− 2y2

)
a1·k + w0y (a1·a1 − 1)

)
+ 4w2a1·b

((
1− 2y2

)
a1·Fk·v1 + y (a1·a1 − 1) v⊥·Fk·v1

)
− (a1·a1 + 1) (−2w2b·Fk·v1 + w3v1·Fk·v2)

(
2yv2·S1·b+ 2y2 − 1

) )
. (6.39)

In this compact formula, we notice that all the terms contain at least one pole in w1 and
w2. This indicates that contact terms in the Compton amplitude do not contribute to the
memory at any order in spin. As such we should expect that the waveform we have computed
fully captures the memory to all orders in the spin. In addition, we compute a formula for
the tree-level gravitational memory at all orders in spin (8.35) in section 8 below using a
classical soft factor. The two formulae are indeed in agreement. We also mention again that
we have compared our results to those of [157], finding agreement (see also [164]).

A graph of the memory, for the same kinematics as before and various values of the
magnitude of the spin and direction, is presented in figure 4. When |a| tends to 1, there
are two singular points at ψ = 0, π corresponding to when the spin vector and impact
parameter are orthogonal.

7 Comparison with the spin-expanded waveforms

If the spin parameter is small with respect to the impact parameter a ≪ |b| then we can
evaluate the waveform integration order by order in a spin expansion. When we perform such
an expansion the tree-level five-point amplitude is free of the spin-dependent spurious poles.
One can still work in the q2

1 and q2
2 channels separately, which only contain one spurious pole

1
q1·k . After the usual re-scaling qi = ωq̂i, the waveform integrand is given by

Mq2
1
= 1
ω2

( ∞∑
i=0

M(i)
q2

1
ωi
)
, Mq2

2
= 1
ω2

( ∞∑
i=0

M(i)
q2

2
ωi
)
. (7.1)

We still integrate over the frequency first but now after expanding in the spin parameter
there is only one sector per cut. Thus the integrand contains the same delta functions
as in the scalar case δ (−b·q̂1 + u) q2

1-channel,
δ (−b·q̂2 + u) q2

2-channel.
(7.2)
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Figure 4. Gravitational memory: the top graph (blue) is the imaginary part, corresponding to h∞
× ,

and the bottom graph (orange) is the real part, corresponding to h∞
+ .

The extra powers of ω become derivatives in the retarded time, i∂u, as before. Now using
the original parameterisation (5.20), after we localise zb each term in the integrand belongs
to one of the following general expressions

c0 + c1zv + c2z
2
v + c3z

3
v + · · ·

(zv + c̃)(z2
v + c̄) ,

c̄0 + c̄1zv + c̄2z
2
v + c̄3z

3
v + · · ·

(z2
v + c̄) , (7.3)

where the c’s are functions of the external kinematics. The 1
z2

v+c′2
is the physical q2

1 (or q2
2)

pole and 1
zv+c′1

is the spurious pole at q1·k. Since the waveform only receives contributions
from the physical pole, we can use polynomial division to reduce the numerators. Explicitly,
we perform polynomial division over the physical pole, and obtain

c′0 + c′1zv
(zv + c̃)(z2

v + c̄) + (terms without physical poles),

c̄′0 + c̄′1zv
(z2
v + c̄) + (terms without physical poles). (7.4)

Terms without physical poles correspond to contributions that are proportional to delta
functions in b (and derivatives thereof) and hence do not contribute to the long-range
waveform. Thus we only have the following two types of master integrals after performing
partial fractions over the spurious pole

c
′′
0

(zv + c̃)(z2
v + c̄) ,

c̄
′′
0 + c̄

′′
1zv

(z2
v + c̄) = c̄

′′
0

(z2
v + c̄) + (terms that integrate to zero). (7.5)
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Figure 5. Waveform of h+ at a/b = 0.65, a/b = 0.2.

The two master integrals can then be evaluated by calculating the residue on the physical
pole. The final result of the q1 integral is of the form

h∞expanded(u) =
( ∞∑
i=0

ωih∞i (u)
)
|ω→i∂u

∼
[
ω4a1·a1a1·k̂ v⊥·Fk̂·v1 a1·Fk̂·v1

24 (y2 − 1) −
iω3a1·a1 v⊥·Fk̂·v1tr

(
Fk̂, S1

)
48 (y2 − 1)

−
ŵ0
(
2y2 − 1

) (
v1·Fk̂·v2

) 2

8ŵ2
1ŵ

2
2 (y2 − 1) −

(
2y2 − 1

) (
v1·Fk̂·v2

) 2

8ŵ2
1ŵ

2
2 (y2 − 1)

√
−u2 (y2 − 1)− ŵ2

2

×
(
−ŵ0

√
u2 (−y2) + u2 − ŵ2

2 + uŵ3y
2 − uŵ3 + ŵ1ŵ2y − ŵ2

2

)

+ · · ·more terms · · ·
]∣∣∣∣∣
ω→i∂u

. (7.6)

The full waveform result expanded in the spin parameter up to a4 order is included in
the GitHub repository. Our result contains contributions at orders beyond a4 but these
will in general be incomplete until possible additional contact terms are included in the
Compton amplitude.

We now comment on the difference between the resummed spinning waveform versus
the spin-expanded waveform truncated at O(a4). To do so, we illustrate the spin-expanded
waveform at a/b = 0.2 and a/b = 0.65 in figure 5. Comparing with the resummed result
shown for the same values in figure 2, we see that for a/b = 0.2 the spin-expanded result
at O(a4) is accurate. However, at a/b = 0.65 the spin expansion breaks down and the
perturbative result is no longer valid.

To see more clearly the difference between the resummed spin result and the perturbative
spin result truncated at O(a4), we also fix ψ = π

4 . For lower values of spin, for example
a/b = 0.2, the expanded and resummed waveforms are nearly identical, as shown in the
right-hand side of figure 6. Conversely, for large values of the spin, for example a/b = 0.65,
the expanded and resummed results are markedly different, although their limiting values
as u → ±∞ are similar.
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Figure 6. Comparison of the expanded and resummed waveforms h+ at a/b = 0.65 and a/b = 0.2
with spin angle ψ = π

4 . For a/b = 0.2 the graphs are indistinguishable.

The above comparisons between our expanded and resummed waveforms require a number
of considerations. For physical black holes we require a/Gm ≪ 1, and additionally, in the
PM expansion we require Gm/b ≪ 1. For the case of large spin a, for example a/b = 0.65
plotted above, it is clear that only one of the ratios, Gm/b or a/Gm, can be taken as small.
If we consider physical black holes, a/Gm≪ 1, then Gm/b is no longer small, and we require
higher orders in the PM expansion to reliably reproduce the physical waveform. Thus the
plots in figure 6 would then change significantly once we include such terms. Alternatively,
we could consider again the case where a∼b but now require that Gm/b≪ 1 such that we
only need consider low orders in the PM expansion. In this case, we must again resum in
the spin parameter a/b, but now we are in fact considering super-extremal Kerr, a/Gm≫ 1.
Figure 6 much more accurately reproduces the waveform in this regime, and we see that
resuming in spin substantially changes the waveform.

Finally, we also remind the reader that the results presented in this paper are valid
up to O(a4), as discussed in section 3.2.

8 Gravitational memory

8.1 General strategy

An elegant way to compute the memory was discussed in [114] for the spinless case, and we
adapt it to the case of spinning heavy particles. Given a function

f(u) :=
ˆ +∞

−∞

dω

2π e
−iωuf̃(ω) (8.1)
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of the retarded time u, the memory is defined as

∆f := f(u→ +∞)− f(u→ −∞) =
ˆ +∞

−∞
du

d

du
f(u)

= −i
ˆ +∞

−∞
dω δ(ω)

[
ωf̃(ω)

]
,

(8.2)

showing that it is determined by the pole at ω=0, i.e. its soft limit, as observed by [165].
We now apply (8.2) to (5.13) to compute the gravitational memory, getting

∆(h∞+ ± ih∞× ) = −iκ2

[
lim
ω→0+

[
ωW

(
b, k±

)]
k=ω(1,x̂) + lim

ω→0−

[
ωW ∗(b, k∓)]

k=−ω(1,x̂)

]
. (8.3)

From this relation we see that the memory effect arises from the leading soft behaviour of
the five-point amplitude, which factorises into a soft factor times a four-point amplitude,
schematically

M5 → Soft×M4. (8.4)

Correspondingly, as ω → 0 the waveform tends to its leading soft limit,

Wsoft
(
b, kh

)
= −i

ˆ
dµ(D)eiq·bSHEFT

W (k, q;h)MHEFT
4 (q) , (8.5)

where [62]

SHEFT
W = −κ2 ε

(h)
µν (k)

[
pµ1q

ν + pν1q
µ

p1·k
− pµ1p

ν
1

q·k
(p1·k)2 − 1 ↔ 2

]

= −κ2
1
ω
ε(h)
µν (k)

[
pµ1q

ν + pν1q
µ

p1·k̂
− pµ1p

ν
1

q·k̂
(p1·k̂)2

− 1 ↔ 2
]
,

(8.6)

is the classical Weinberg soft factor for the emission of a graviton with momentum k=ωk̂
and helicity h, with q=q1=− q2 in the soft limit and k̂=(1, x̂) (see [62] for a derivation of the
classical soft factor and a discussion of classical limits in the HEFT context).

We then change integration variables q→ − q, and use

SHEFT
W (−k,−q;h) = SHEFT

W (k, q;h) , (8.7)[
SHEFT

W (k, q,−h)
]∗ = SHEFT

W (k, q, h) , (8.8)

also noting that, at tree level in the spinning (and spinless) case, 5

−iMHEFT
4 (q) =

[
− iMHEFT

4 (−q)
]∗
, (8.9)

which can be checked from the explicit expression derived later in (8.25). With these
observations, we get

W ∗
soft
(
b, k−h

)∣∣∣
k=−ω(1,x̂)

=
ˆ
dµ(D)e−iq·b

[
SHEFT

W (−k, q;−h)
]∗(−iMHEFT

4 )∗(q)

=
ˆ
dµ(D)eiq·bSHEFT

W (−k,−q;h)(−iMHEFT
4 )∗(−q)

=
ˆ
dµ(D)eiq·bSHEFT

W (k, q;h)(−iMHEFT
4 )(q) .

(8.10)

5In the spinless case we further have MHEFT
4 (−q) = MHEFT

4 (q). This is no longer true in the presence of
spin.
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Hence we can write
lim
ω→0+

[
ωW

(
b, kh

)]
k=ω(1,x̂) + lim

ω→0−

[
ωW ∗(b, k−h)]

k=−ω(1,x̂)

=
ˆ
dµ(D)eiq·bSHEFT

W (k̂, q;h)(−iMHEFT
4 ) .

(8.11)

In conclusion

∆(h∞+ ± ih∞× ) = −i κ
ˆ
dµ(D)eiq·bSHEFT

W (k̂, q;±)
(
− iMHEFT

4
)
(q)

= −i κSHEFT
W

(
k̂,−i ∂

∂b
;±
) ˆ

dµ(D)eiq·b
(
− iMHEFT

4
)
(q)

= −i κSHEFT
W

(
k̂,−i ∂

∂b
;±
)
δHEFT ,

(8.12)

or

∆(h∞+ ± ih∞× ) = −i κSHEFT
W

(
k̂,−i ∂

∂b
;±
)
δHEFT , (8.13)

where

δHEFT :=
ˆ
dµ(D)eiq·b

(
− iMHEFT

4
)
(q) , (8.14)

and SHEFT
W is given in (8.6), and we also recall that k=ωk̂. Note that δHEFT is real because

of the property (8.8).
In the spinless case, one can further simplify this result by noticing that

∂

∂bµ
=− P b̂µ

∂

∂J
, (8.15)

where J = P
√
−b2, and the relation between the scattering angle and the real part of

the HEFT phase

− ∂

∂J
Re δHEFT = χ, (8.16)

which itself is already a real quantity at tree level. Using these one finds

SHEFT
W

(
k̂,−i ∂

∂bµ
;h
)
δHEFT = −iPSHEFT

W (k̂, b̂µ;h)χ , (8.17)

leading to the compact relation, valid in the spinless case,

∆(h∞+ ± ih∞× ) = −κ
2

2 Pε
±±
ρλ s

ρλ(k̂, b̂)χ , (8.18)

where we have set

SHEFT
W := κ

2 ε
±±
ρλ s

ρλ(k̂, b̂)

sµν(k̂, b̂) = −
[
pµ1 b̂

ν + pν1 b̂
µ

p1·k̂
− pµ1p

ν
1

b̂·k̂
(p1·k̂)2

− 1 ↔ 2
]
,

(8.19)

and we recall that k̂ = (1, x̂) and b̂ = b/
√
−b2. In the spinning case we do not have a simple

relation such as (8.16) and we will instead make use of (8.13). To compute the gravitational
memory in the spinning case we will then use (8.13) and (8.14).

We now move on to compute the tree-level-four-point amplitude that features in (8.14).
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8.2 Four-point two-to-two spinning amplitude

In this section we derive the tree-level amplitude for the two-to-two scattering of two heavy
particles with spin vectors a1 and a2 to all orders in the spin. We will then compute its
Fourier transform to impact parameter space needed in (8.14).

We can derive the four-point amplitude using the HEFT BCFW method first described
in [62], to which we refer the reader for further details. There is a single diagram in the
q2-channel for which we glue two of the three point amplitudes (3.2) with the BCFW-shifted
momenta described in [62]. We find that the four-point tree-level amplitude M4 is then

M4 = − i
κ2

q2m
2
1m

2
2

[(
y2 − 1

2

)
cosh (a·q)

+ i y

(
sinh (a2·q) cosh (a1·q)

ϵ (a2qv1v2)
a2·q

+ sinh (a1·q) cosh (a2·q)
ϵ (a1qv1v2)

a1·q

)]
+M4,c ,

(8.20)

where a:=a1 + a2, and the contact term M4,c is

M4,c := −iκ2m2
1m

2
2

[
y a1·v2 a2·v1 − a1·a2

(
y2 − 1

2

)] sinh(a1·q)
a1·q

sinh(a2·q)
a2·q

. (8.21)

We note however that contact terms play no role for the computation of the memory, since
they only contribute delta-function supported terms after Fourier transforming to impact
parameter space. We will then drop them from now on (denoting the contact terms as O(1)).

We now simplify the expression (8.20) for the four-point amplitude making use of the
new spin vectors [43, 123]

aµi := ϵ(aiµv1v2)√
y2 − 1

, i = 1, 2, (8.22)

which are orthogonal to both v1 and v2. These quantities also satisfy the following Gram
determinant relations

(ai·q)2 = (iai·q)2 +O(q2) , (8.23)

which are proven in appendix A, and their “square rooted” form

ai·q = ±iai·q , (8.24)

valid up to terms of O(q2), that is q on-shell and so necessarily complex. Furthermore, as
both cosh(ai·q) and sinh(ai·q)

ai·q are parity-even functions of ai·q, the sign ambiguity drops out
and the amplitude can be simplified to

M4 = − iκ
2

q2 m
2
1m

2
2

{(
y2 − 1

2

)
cosh(ia·q) + y

√
y2 − 1 sinh(ia·q)

}
+O(1)

= − iκ
2

q2
m2

1m
2
2

2

{(
y2 − 1

2 + y
√
y2 − 1

)
eia·q +

(
y2 − 1

2 − y
√
y2 − 1

)
e−ia·q

}
+O(1) ,

(8.25)
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where

a:=a1+a2 . (8.26)

Note the nontrivial fact that at tree level the pole part of the amplitude that we have
considered so far depends only on the sum a of the spins of the two heavy particles. We
also remark that the contact term (8.21) does not have this property.

8.3 Fourier transform to impact parameter space

Having cast the amplitude (up to contact terms) in the form (8.25), we can perform the
Fourier transform to impact parameter space to all orders in the spin, which will trivially
shift bµ → bµ ± a, as was seen in [123]. We have

M̃4 =
ˆ

dDq

(2π)D−2 δ(2p1·q)δ(2p2·q) eiq·bM4 = 1
4m1m2

√
y2 − 1

ˆ
dD−2q⊥
(2π)D−2 e

−iq⃗⊥ ·⃗bM4 , (8.27)

where q⊥·p1,2=0 and

M4 = f+(y)
eia·q

q2 + f−(y)
e−ia·q

q2 , (8.28)

with

f±(y) := −i κ
2m2

1m
2
2

2

(
y2 − 1

2 ± y
√
y2 − 1

)
. (8.29)

Thus, we have to compute the Fourier transform

M̃4 =
ˆ

dDq

(2π)D−2 δ(2p1·q)δ(2p2·q)
[
eiq·(b+a)f+(y) + eiq·(b−a)f−(y)

]
. (8.30)

We use

ˆ
ddq

(2π)d e
−iq⃗·⃗b|q⃗ |p =

2pπ− d
2 Γ
(
d+p

2

)
Γ
(
−p

2
) 1

|⃗b |d+p
, (8.31)

which in our case gives the result, as D → 4,

ˆ
dD−2q

(2π)D−2
e−iq⃗·⃗b

q⃗ 2 =
Γ
(
D−4

2

)
4πD−2

2 |⃗b |D−4
−−−→
D→4

− 1
2π log(|⃗b |) + · · · , (8.32)

where the dots stand for b-independent terms. This leads to

M̃4 = 1
8πm1m2

√
y2 − 1

[
f+(y) log(|b+ a|) + f−(y) log(|b− a|)

]
+ · · · , (8.33)

where we observe that the vector a=a1 + a2 lives in the same two-dimensional subspace
orthogonal to p1 and p2 as b. (8.33) agrees with (51) of [123].
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8.4 Result for the gravitational memory

Finally, to compute the gravitational memory we use (8.13) and (8.14). Introducing the
two vectors

b± := b± a , with b̂± := b±
|b±|

, (8.34)

we have at once

∆(h∞+ ± ih∞× ) = − iκ

8πm1m2
√
y2 − 1

[
SHEFT

W (k̂, b̂+;±)f+(y)
|b+|

+ SHEFT
W (k̂, b̂−;±)f−(y)

|b−|

]
,

(8.35)

which is the final result for the memory, with SHEFT
W defined in (8.19) and f± in (8.29).

This result is exact to all orders in the spin vector a. One can expand it to various order
in a, and doing so one finds perfect agreement with the result of [151] for the memory in
the aligned spin case up to O(a2).

We also note that in the spinless case, the previous formula becomes

∆(h∞+ ± ih∞× )
∣∣
a=0 = − iκ

8πm1m2
√
y2 − 1

(−iκ2m2
1m

2
2)

1
|b|

(
y2 − 1

2

)
SHEFT

W (k̂, b̂;±)

= −κ
3

8π
m1m2√
y2 − 1

1
|b|

(
y2 − 1

2

)
SHEFT

W (k̂, b̂;±) ,
(8.36)

in agreement with known results (see e.g. [151]).
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A Simplifying the four-point amplitude

In the main text we have defined a new spin vector (8.22), and a := a1 + a2 which are all
orthogonal to both v1 and v2. Now from the square of the Levi-Civita tensor we obtain
a Gram determinant, for i = 1, 2,

[
ϵ(aiqv1v2)

]2 = (ai·q)2

1− y2 + q2
[
(ai·v1)2 + (ai·v2)2 − 2y ai·v1ai·v2 + a2

i (y2 − 1)
]
, (A.1)
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valid with the HEFT constraints v1,2·q=0. Using that vi·ai=0 we then find

[
ϵ (a1qv1v2)

]2 = −(a1·q)2

y2 − 1 + q2
(
(a1·v2)2 + a2

1(y2 − 1)
)
,

[
ϵ (a2qv1v2)

]2 = −(a2·q)2

y2 − 1 + q2
(
(a2·v1)2 + a2

2(y2 − 1)
)
.

(A.2)

In the calculation in impact parameter space, O(q2) terms do not contribute, giving (8.23)
in the main text.

To simplify the four-point amplitude we actually used the square root of the above
relations, that is

ϵ (a2qv1v2)
a2·q

= ϵ (a1qv1v2)
a1·q

= ∓i
√
y2 − 1 +O(q2) , (A.3)

which are again valid up to terms order O(q2). Since the amplitude is parity even, the sign
ambiguity in these relations drops out.

One might ask what determines the sign on the right-hand side of (A.3). A simple way
to answer this question is to go to the rest frame of particle one, and show that the ∓ sign
in (A.3) follows the particular choice of the on-shell momentum q. We can set

v1 = (1, 0, 0, 0) , v2 =
(
y, 0, 0,

√
y2 − 1

)
. (A.4)

Now, q is on-shell, q2=0, and satisfies the usual constraints q·v1=q·v2 = 0, hence it must
have the form

q = (0, r,±ir, 0) . (A.5)

Finally, using a1·v1 = 0 and a2·v2 = 0, the spin vectors are of the form

a1 = (0, a1x, a1y, a1z) ,

a2 =
(
s

y
, a2x, a2y,

s√
y2 − 1

)
,

(A.6)

and hence we can evaluate, for i = 1, 2,

ϵ(v1v2aiq) = ϵ(v⃗2a⃗iq⃗) = ±
√
y2 − 1 r (iaix ∓ aiy) ,

ai·q = ir(iaix ∓ aiy) .
(A.7)

In conclusion

ϵ(v1v2aiq)
ai·q

= ∓i
√
y2 − 1 , (A.8)

with the same plus or minus sign appearing for a1 or a2 and following from the solution (A.5)
chosen for the on-shell momentum q. Finally note that the right-hand side of (A.3) is mani-
festly imaginary, and the above discussion shows that the left-hand side of that equation is too.
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B More on the integrand

In this appendix we provide the ci coefficients used in the formulae for the residues in each
channel which appear in sections 6.1 and 6.2. As in section 6, in this appendix the k, qi and
wi should be understood as the hatted quantities with all ω dependence scaled out and once
again we drop these hats purely for conciseness. The q2

1-channel coefficients in section 6.1 are

c1 →−1
2 (v1·Fk·v2)2, c2 →

1−2y2

4w2
1
, c3 →

iy

2w2
1
, c4 →

iyv1·Fk·v2

2w2
1

,

c5 →− iyv1·Fk·v2

2w2
1

, c6 →
yv1·Fk·v2

w1
, c7 →− iv1·Fk·v2

2w1
, c8 →− i(v1·Fk·v2)2

2w1
,

c9 →−
(
2y2−1

)
(v1·Fk·v2)2

4w2
1w

2
2

, c10 →−
(
2y2−1

)
v1·Fk·v2

2w2
1w2

, c11 →
iy (v1·Fk·v2)2

2w2
1w

2
2

,

c12 →
iyv1·Fk·v2

w2
1w2

, c13 →
iy (v1·Fk·v2)2

2w2
1w2

, c14 →
y (v1·Fk·v2)2

w1w2
,

c15 →− i(v1·Fk·v2)2

2w1w2
, c16 →− iw2y

2w2
1
, c17 →

iw2v1·Fk·v2

2w1
.

(B.1)

The coefficients in the q2
2-channel, which appear in section 6.2, are listed below:

c2 → −1
2a1·a1 (v1·Fk·v2)2

c4 → (a1·v2) 2 (a1·Fk·v1) 2 − 1
4a1·a1a1·Fk·v1 (a1·Fk·v1 − 2a1·v2v1·Fk·v2)

c5 → 1
16(−3)ia1·k

(
a1·a1 − 2 (a1·v2) 2) tr (Fk·S1) ,

c6 → 3
16 i

(
a1·a1 − 2 (a1·v2) 2) tr (Fk·S1) a1·Fk·v1,

c7 → y (a1·v2a1·Fk·v1 + a1·a1v1·Fk·v2)
2w3

1
,

c10 →
a1·Fk·v1

(
2ya1·ka1·v2 + w1

(
(a1·v2) 2 +

(
y2 − 1

)
a1·a1

))
4w3

1
,

c11 → − (a1·Fk·v1) 2 + 2a1·v2v1·Fk·v2a1·Fk·v1 + 2a1·a1 (v1·Fk·v2) 2

4w2
1

,

c12 →
i
(
2y2 − 1

)
tr (Fk·S1)

8w2
1

, c13 →
(
1− 2y2) tr (Fk·S1) a1·Fk·v1

16w2
1

,

c14 → −
w1a1·k

(
(a1·v2) 2 +

(
y2 − 1

)
a1·a1

)
+ y (a1·k) 2a1·v2 + w2

1ya1·a1a1·v2

4w3
1

,

c15 → a1·Fk·v1 (ya1·k + w1a1·v2)
4w2

1
,

c16 → ya1·Fk·v1 (2a1·v2a1·Fk·v1 + a1·a1v1·Fk·v2)
2w1

,

c19 → − i (w1a1·v2v1·Fk·v2tr (Fk·S1) + a1·Fk·v1k·S1·Fk·v1)
4w1

,

c20 →
tr (Fk·S1)

((
2y2 − 1

)
a1·k + 2w1ya1·v2

)
16w2

1
,

c21 →
tr (Fk·S1)

(
2ya1·ka1·v2 − w1

(
a1·a1 − 2 (a1·v2) 2))

16w1
,

c22 → −ya1·v2 (a1·Fk·v1) 2

4w3
1

, c25 → iya1·Fk·v1

2w2
1

, c26 → −y (a1·Fk·v1)2

4w2
1

,
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c29 → − iyv1·Fk·S1·v2

2w2
1

, c32 → a1·Fk·v1

8w1
, c33 → − ia1·Fk·v1

4w1
, c34 → −a1·ka1·Fk·v1

8w1
,

c35 → − (a1·Fk·v1) 2

8w1
, c40 → v1·Fk·v2a1·Fk·v1

4w1
, c41 → − iv1·Fk·v2a1·Fk·v1

2w1
,

c43 → iv1·Fk·v2v1·Fk·S1·v2

2w1
, c44 → 3ia1·ka1·Fk·v1

8w1
, c45 → 3ia1·ka1·v2a1·Fk·v1

4w1
,

c46 → 3i (a1·Fk·v1) 2

8w1
, c47 → −3ia1·v2 (a1·Fk·v1)2

4w1
, c48 → iya1·v2tr (Fk·S1)

4w1
,

c49 → −ya1·v2tr (Fk·S1) a1·Fk·v1

8w1
, c50 → yv1·Fk·v2tr (Fk·S1)

8w1
, c51 → − iyv1·Fk·v2tr (Fk·S1)

4w1
,

c52 → 3iya1·ka1·v2tr (Fk·S1)
8w1

, c53 → −3iya1·v2tr (Fk·S1) a1·Fk·v1

8w1
,

c57 → 1
4a1·Fk·v1

(
a1·a1 (a1·k + 2w2a1·v2)− 4a1·k (a1·v2) 2) ,

c58 → − (a1·v2) a1·Fk·v1 (w2a1·Fk·v1 + a1·kv1·Fk·v2) ,

c59 → −1
4a1·a1v1·Fk·v2 (w2a1·Fk·v1 + a1·kv1·Fk·v2) ,

c60 → 1
16

(
a1·k

(
a1·Fk·v1

(
tr (Fk·S1)−

2k·S1·Fk·v1

w1

)
− 2a1·v2v1·Fk·v2tr (Fk·S1)

)
− 2w2a1·v2tr (Fk·S1) a1·Fk·v1

)
,

c61 → 3i (tr (Fk·S1) (2w2a1·v2a1·Fk·v1 − a1·k (a1·Fk·v1 − 2a1·v2v1·Fk·v2)))
16

+ 3itr (Fk·S1) (2a1·ka1·Fk·v1k·S1·Fk·v1)
16w1

,

c62 → −y (a1·ka1·v2 + a1·a1 (w1y − w2))
2w3

1
, c64 → (w1 − 2w2y) a1·Fk·v1 − 2ya1·kv1·Fk·v2

4w3
1

,

c63 → a1·Fk·v1 (v1·Fk·v2 (ya1·k + w1a1·v2) + w2ya1·Fk·v1)
4w3

1
,

c66 → −
v1·Fk·v2

(
2w1a1·ka1·v2 + y (a1·k) 2 + w2

1ya1·a1
)
+ w2a1·Fk·v1 (ya1·k + w1a1·v2)

4w3
1

,

c67 → a1·Fk·v1 (− (v1·Fk·v2) (a1·ka1·v2 + w1ya1·a1)− w2a1·v2a1·Fk·v1)
4w2

1
,

c68 → 2a1·a1 (2w1y − w2) v1·Fk·v2 + a1·k (a1·Fk·v1 + 2a1·v2v1·Fk·v2)
4w2

1
,

c69 → −v1·Fk·v2 (w2a1·Fk·v1 + a1·kv1·Fk·v2)
4w2

1
,

c70 → v1·Fk·v2 (w2a1·Fk·v1 + a1·kv1·Fk·v2)
2w2

1
,

c71 →
v1·Fk·v2

(
(a1·k) 2a1·v2 + 2w1ya1·a1a1·k + w2

1a1·a1a1·v2
)
+ w2a1·Fk·v1 (a1·ka1·v2 + w1ya1·a1)

4w2
1

,

c72 → −a1·Fk·v1 (4ya1·ka1·v2 + a1·a1 (w1 − 2w2y))
4w1

,

c73 → −a1·Fk·v1 (w2a1·Fk·v1 + a1·kv1·Fk·v2)
4w1

,

c74 → a1·Fk·v1 ((w1 − 2w2y) a1·Fk·v1 − 2ya1·kv1·Fk·v2)
2w1

,
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c76 → 3ia1·Fk·v1 (w2a1·Fk·v1 + a1·kv1·Fk·v2)
4w1

,

c80 → 2v1·Fk·v2tr (Fk·S1) (w1a1·v2 − ya1·k) + a1·Fk·v1 ((w1 − 2w2y) tr (Fk·S1) + 2k·S1·Fk·v1)
16w1

,

c81 → −3itr (Fk·S1) ((w1 − 2w2y) a1·Fk·v1 − 2ya1·kv1·Fk·v2)
16w1

,

c82 →
(
(a1·k) 2 + w2

1a1·a1
)
(v1·Fk·v2) 2 + 2w2a1·kv1·Fk·v2a1·Fk·v1 + w2

2 (a1·Fk·v1) 2

4w2
1

. (B.2)
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