
J
H
E
P
0
2
(
2
0
2
4
)
0
1
3

Published for SISSA by Springer

Received: October 26, 2023
Revised: December 22, 2023
Accepted: January 6, 2024

Published: February 1, 2024

Double copy for tree-level form factors. Part II.
Generalizations and special topics

Guanda Lin a,b and Gang Yanga,c,d

aCAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences,
Beijing 100190, China

bDepartment of Physics, University of California,
Berkeley, CA 94720, U.S.A.

cSchool of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study,
UCAS, Hangzhou 310024, China

dInternational Centre for Theoretical Physics Asia-Pacific,
Beijing/Hangzhou, China

E-mail: linguandak@pku.edu.cn, yangg@itp.ac.cn

Abstract: Both the Bern, Carrasco, and Johansson (BCJ) and the Kawai, Lewellen, and Tye
(KLT) double-copy formalisms have been recently generalized to a class of scattering matrix
elements (so-called form factors) that involve local gauge-invariant operators. In this paper,
we continue the study of double copy for form factors. First, we generalize the double-copy
prescription to form factors of higher-length operators tr(ϕm) with m≥ 3. These higher-length
operators introduce new non-trivial color identities, but the double-copy prescription works
perfectly well. The closed formulae for the CK-dual numerators are also provided. Next, we
discuss the v⃗ vectors which are central ingredients appearing in the factorization relations of
both the KLT kernels and the gauge form factors. We present a general construction rule for
the v⃗ vectors and discuss their universal properties. Finally, we consider the double copy for
the form factor of the tr(F 2) operator in pure Yang-Mills theory. In this case, we propose a
new prescription which involves a gauge invariant decomposition for the form factor and a
mixture of different CK-dual numerators appearing in the expansion. The new prescription
for the more complicated double copy has been verified up to five external gluons.

Keywords: Scattering Amplitudes, Gauge Symmetry, Space-Time Symmetries

ArXiv ePrint: 2306.04672

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2024)013

https://orcid.org/0000-0002-5120-384X
mailto:linguandak@pku.edu.cn
mailto:yangg@itp.ac.cn
https://arxiv.org/abs/2306.04672
https://doi.org/10.1007/JHEP02(2024)013


J
H
E
P
0
2
(
2
0
2
4
)
0
1
3

Contents

1 Introduction and review 1

2 Double copy for form factors of high-length operators 4
2.1 Form factor of tr(ϕ3) 4

2.1.1 The four-point case 5
2.1.2 Higher-point cases 7

2.2 Form factor of tr(ϕm) 9
2.3 The universal master numerators 15

2.3.1 Review of the tr(ϕ2) numerators 15
2.3.2 Form factors of tr(ϕ3) with three scalars 18
2.3.3 Form factors of tr(ϕm) with four or more scalars 19

3 Further discussion on the v⃗ vectors 26
3.1 The v⃗ vectors revisited 26
3.2 The closed formula 28
3.3 The universality 34

4 Towards the double copy of the tr(F 2) form factor 37
4.1 The three-point case 38
4.2 Higher-point generalizations 43

5 Discussion 49

A Some further remarks on the v⃗ vectors 53

B The Lagrangians and generalizations 56
B.1 The Lagrangians 56
B.2 Further generalizations of the high-length double copy 57

C The four-point tr(F 2) double-copy solution 59

1 Introduction and review

The study of scattering amplitudes has revealed many hidden structures in gauge and gravity
theories. Among these, a significant finding is the so-called double copy relations, exposing
the intimate connection between gauge and gravity theories. Various double copy formalism
has been developed, including the Kawai, Lewellen and Tye (KLT) relations [1], the Bern,
Carrasco and Johansson (BCJ) double copy [2, 3], as well as the Cachazo, He and Yuan
(CHY) formula [4, 5]. While significant progress has been made in understanding the double
copy for amplitudes (see reviews [6–8]), much less is understood for the double copy of other
physical quantities, such as matrix elements involving gauge invariant operators.
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In our recent work [9, 10], the double-copy construction was generalized for the first time
to the form factor observables using the BCJ and KLT formalism. The form factors are natural
extensions of on-shell amplitudes when local operator insertions are included [11–13], defined as

FO,n(1, . . . ,n)=
∫
dDxe−iq·x⟨1, . . . ,n|O(x)|0⟩= δD(q−

n∑
i=1

pi)⟨1, . . . ,n|O(0)|0⟩ . (1.1)

In this context, 1, . . . ,n are n on-shell asymptotic states carrying momenta pi, i=1, . . . ,n, O(x)
is the (gauge-invariant) local operator, and q=∑i pi is the off-shell momentum associated
with the operator.

In the previous work [9, 10], we mainly focused on form factors of length-2 operators
like tr(ϕ2). The aim of this paper is to provide a concrete generalization to more general
operators such as the higher-length operators tr(ϕm) and the pure YM operator tr(F 2). Other
important topics such as the general structure of v⃗ vectors and certain universality properties
observed in the double copy for form factors will also be discussed in detail.

Before diving into the structure of this paper, we will first summarize some of the
key points from [9, 10], which will introduce relevant notations and set the stage for the
topics in this paper.

The guiding principle is to construct diffeomorphism invariant quantities via double copy.
As mentioned in [9, 10], such a construction can be achieved by imposing the condition of
color-kinematics(CK) duality. The idea of CK duality, first introduced for amplitudes in [2],
stipulates that every Jacobi relation satisfied by the color factors Ci of certain cubic diagrams
has a dual relation satisfied by the numerators Ni of the same diagrams:

Ci+Cj+Ck =0 ⇒ Ni+Nj+Nk =0 . (1.2)

For form factors, the inclusion of local operators provides new color relations and thus induces
new numerator relations, called the operator-induced relations∑

iO

CiO =0 ⇒
∑
iO

NiO =0 . (1.3)

Such relations are in general not Jacobi relations and can involve four or more color factors
as we will show in this paper. Combining all these relations, one can solve for the CK-dual
numerators for form factors, which exhibit the following properties: (1) because of the
additional relations, the CK-dual numerators can be uniquely determined and are manifestly
gauge invariant; (2) these numerators contain “spurious”-type poles in the sense that these
poles do not genuinely exist in the full gauge-theory form factors. Given the CK-dual solutions,
the double copy of the form factor can be executed as

F =
∑

i

CiNi∏
αDi,α

⇒ G=
∑

i

N2
i∏

αDi,α
. (1.4)

Interestingly, after performing the double copy via squaring cubic diagram numerators,1 the
“spurious”-type poles survive and become real physical poles in gravity. In particular, the
double copy quantities G have nice factorization behaviors on these poles.

1Note that the vertex associated with a high-length operator is not necessarily cubic, but for convenience,
we will still use “cubic diagrams”.
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In parallel with this cubic diagram representation, there is an alternative double-copy
prescription by introducing color-ordered form factor basis and propagator matrices. The two
representations are closely related to each other. The CK duality makes it possible to relate
the numerators basis N⃗ to the color-ordered form factor basis F⃗ via a propagator matrix ΘF :

F⃗ =ΘF ·N⃗ . (1.5)

Compared to the propagator matrices in amplitudes [14], the new feature for form factors
is that the propagator matrices are invertible. One can inverse the propagator matrix and
define the KLT kernel SF as

N⃗ =SF ·F⃗ . (1.6)

What is crucial is that one can explicitly see the “spurious”-type poles in SF , and consequently
in N⃗ . Explicitly, the double-copy result G takes the form

G= N⃗T ·F⃗ = F⃗T ·SF ·F⃗ , (1.7)

in which the pole structure of G becomes transparent|there are two types of poles: the first
are those “physical”-type poles inherited from the gauge form factor F , and the other are
the new “spurious”-type poles from N .

To investigate the factorization of G on its poles, some intriguing structures involving
the building blocks in (1.7) are in order. As mentioned in [9, 10], a special set of vectors
v⃗ as rational functions of Mandelstam variables play important roles. First, the v⃗ vectors
appear in the following hidden factorization relation for gauge form factors:

v⃗ ·F⃗n

∣∣
ssp=0=Fm×Am′ , (1.8)

where Fm and Am′ are lower-point form factors and amplitudes, and the special kinematics
of spurious pole ssp=0 is taken. Second, we have the matrix decomposition relation for
the KLT kernel:

Residue of SF
n on “spurious”-type poles=VT ·(SF

m⊗SA
m′)·V , (1.9)

where each row of the matrix V corresponds to a v⃗ vector mentioned above.
In this paper, we present further generalizations of the above framework for a broader

range of form factors and discuss some universal properties.
In section 2, we first exemplify the prescription by studying tr(ϕ3) form factors. Then

we demonstrate that the generalization to tr(ϕm) (m≥ 4) operators is also achievable. One
notable feature is that such higher-length form factors contain non-trivial operator-induced
color relations (satisfied also by the CK-dual numerators) that involve m≥ 4 terms. We
also study two kinds of multi-scalar multi-gluon form factors: one is for the tr(ϕ2) operator
and the other is for the tr(ϕm) operator. We find some interesting universal structures in
the CK-dual numerators for these form factors.

In section 3, we focus on the v⃗ vectors and discuss their properties in various details.
The v⃗ vectors are important for following reasons: (1) they induce the structure of both
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F in (1.8) and SF in (1.9); and (2) one can combine (1.8) and (1.9) together and confirm
the double-copy factorization on the “spurious”-type poles.2 Given the importance of the v⃗
vectors, a closed formula for computing v⃗ vectors will be presented. Interestingly, it turns
out that such a closed formula for v⃗ vectors has a universal structure in the sense that it
applies to different form factors.

In section 4, we generalize the double-copy approach to the pure gluonic form factors
of tr(F 2). These form factors have novel structures that render the generalization highly
non-trivial. As a result, we must modify the double-copy prescription, in particular, a
gauge-invariant decomposition is required, which leads to interesting new features when
performing the double copy.

We conclude in section 5 by summarizing the form factor double-copy prescription and
offering some outlooks for future research.

Some further remarks or technical details are included in the appendices. Appendix A
contains some further explanation on the construction of v⃗ vectors. In appendix B we present
various Lagrangians, as well as some generalizations, of the theories mentioned in this paper.
Finally, we present some data of the tr(F 2) double copy in appendix C.

2 Double copy for form factors of high-length operators

In this section, we generalize the double copy prescription to form factors of high-length
operators. Specifically, we focus on the tr(ϕm) form factors in the Yang-Mills scalar (YMS)
theory, with m scalars and any number of gluons. We start with considering the tr(ϕ3) form
factor in section 2.1 which is similar to the tr(ϕ2) case. Next we consider the general tr(ϕm)
(m≥ 4) form factors in section 2.2, and some new features such as the operator-induced
relation like (2.30) with multiple terms will be discussed. Finally, in section 2.3, we consider
the expressions of the CK-dual numerators and the closed formula will be given.

2.1 Form factor of tr(ϕ3)

We first consider the form factors of the length-3 operator tr(ϕ3):

F tr(ϕ3),n(1ϕ,2ϕ,3ϕ,4g, . . . ,ng)=
∫
dDxe−iq·x⟨ϕ(p1)ϕ(p2)ϕ(p3)g(p4) . . .g(pn)|tr(ϕ3)(x)|0⟩ .

(2.1)
The minimal form factor has three external scalars

F tr(ϕ3),3(1ϕ,2ϕ,3ϕ)= (2π)4δ(4)(q−
3∑

i=1
pi) da1a2a3 , (2.2)

where the fully symmetric color factor is

da1a2a3 =tr(T a1T a2T a3)+tr(T a1T a3T a2) . (2.3)

The double copy of the minimal form factor is trivial, reading G[ϕ3]
3 =1 (omitting the

delta function of momentum conservation).
2This part is one central topic in [10], where the v⃗ vectors used there was regarded as predetermined.
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p1

Figure 1. Feynman diagrams for the four-point form factor of tr(ϕ3). In the second diagram, p2 and
p4 are intentionally twisted to get a desired sign of its color factor.

2.1.1 The four-point case

Let us go through the double copy procedure described in section 1 for the first non-trivial
example F tr(ϕ3),4. Since the gluons can couple to each of the three scalars, there are three
diagrams to consider, as shown in figure 1.

CK duality. The form factor can be expanded in terms of cubic diagrams as

F tr(ϕ3),4(1ϕ,2ϕ,3ϕ,4g)= C1N1
s14

+C2N2
s24

+C3N3
s34

, (2.4)

where the color factors are

C1= da2a3bf ba1a4 , C2=−da3a1bf ba2a4 , C3= da1a2bf ba3a4 , (2.5)

and they satisfy

C1+C3=C2 . (2.6)

Note that this is similar to the color Jacobi relation. By imposing the CK duality, one
requires that

NCK
1 +NCK

3 =NCK
2 . (2.7)

To solve the CK-dual numerators, we can extract the color-ordered form factors Ftr(ϕ3),4
from (2.4) and obtain(

Ftr(ϕ3),4(1ϕ,4g,3ϕ,2ϕ)
Ftr(ϕ3),4(1ϕ,3ϕ,4g,2ϕ)

)
=
( 1

s14
+ 1

s34
− 1

s34

− 1
s34

1
s24

+ 1
s34

)
·
(
NCK

1
NCK

2

)
, (2.8)

where the color-ordered basis has two elements, and the matrix on the r.h.s. is the propagator
matrix ΘF :

Θ
Ftr(ϕ3)
4 =

( 1
s14

+ 1
s34

− 1
s34

− 1
s34

1
s24

+ 1
s34

)
, with det

(
Θ

Ftr(ϕ3)
4

)
=− s123−q2

s14s24s34
. (2.9)

One can see that the propagator matrix is a full-ranked 2 by 2 matrix. Thus the master
numerators can be uniquely determined from (2.8) as(

NCK
1

NCK
2

)
=S

Ftr(ϕ3)
4 ·

(
Ftr(ϕ3),4(1ϕ,4g,3ϕ,2ϕ)
Ftr(ϕ3),4(1ϕ,3ϕ,4g,2ϕ)

)
, (2.10)
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where the four-point KLT kernel for the tr(ϕ3) form factors is

S
Ftr(ϕ3)
4 = −1

s123−q2

(
s24(s14+s34) s14s24

s14s24 s14(s24+s34) .

)
(2.11)

The color-ordered four-point form factor results can be obtained as

Ftr(ϕ3),4(1ϕ,4g,3ϕ,2ϕ)= ε4 ·p1
s14

− ε4 ·p3
s34

, Ftr(ϕ3),4(1ϕ,3ϕ,4g,2ϕ)= ε4 ·p3
s34

− ε4 ·p2
s24

, (2.12)

and the numerators can be given in the manifestly gauge invariant expressions:

NCK
1 =−

2fµν
4 p1,µp(2+3),ν
s123−q2

, NCK
2 =−

2fµν
4 p(1+2),µp3,ν

s123−q2
, (2.13)

where fµν
i ≡ pµ

i ε
ν
i −pν

i ε
µ
i is the linearized field strength. We can see that a spurious-type pole

s123−q2 in the CK-dual numerators (which also appears in the numerator of det
(
Θ

Ftr(ϕ3)
4

)
in (2.9)).

Double copy. Now we perform the double copy. By squaring the numerators, the double
copy of the form factor is

G[ϕ3]
4 = (NCK

1 )2
s14

+(NCK
2 )2
s24

+(NCK
3 )2
s34

. (2.14)

Equivalently, it can written as

G[ϕ3]
4 =(NCK

1 , NCK
2 )·Θ

Ftr(ϕ3)
4 ·

(
NCK

1
NCK

2

)
=(F1, F2)·S

Ftr(ϕ3)
4 ·

(
F1
F2

)
, (2.15)

where F1,2 are the two color-ordered form factors in (2.12) and S
Ftr(ϕ3)
4 =

(
Θ

Ftr(ϕ3)
4

)−1 is the
KLT kernel explicitly given on the r.h.s. of (2.10).

Furthermore, one can check that the above double-copy quantity is indeed a well-defined
gravitational observable. First, the gauge invariance of the numerators immediately tells
the diffeomorphism invariance of G[ϕ3]

4 under the transformation εµν
4 → εµν

4 +p(µ4 ξν). Second,
after double copy, the pole s123−q2 becomes a real pole in G[ϕ3]

4 . Consider the factorization
of G[ϕ3]

4 w.r.t. this new pole, one has the nice factorization properties

Ress123=q2
[
G[ϕ3]
4
]
=
[
s24Ftr(ϕ3),4(1,3,4,2)+(s24+s34)Ftr(ϕ3),4(1,4,3,2)

]2
s123=q2

=G(ϕ3)
3 (1ϕ,2ϕ,3ϕ) M3(qS

3 ,−qS ,4h) .
(2.16)

This corresponds to a new diagram with a massive scalar propagator s123−q2, which is given
in the last diagram in figure 2. One can check that, summing up the Feynman diagrams
in figure 2 coincides with (2.14).

For completeness, we also give the decomposition of the KLT kernel SFtr(ϕ3) . By taking
the residue of SFtr(ϕ3) on the s123−q2 pole, we see it factorize to be

Ress123=q2 [S
Ftr(ϕ3)
4 ] = (s24,s24+s34)T ·S

Ftr(ϕ3)
3 ·(s24,s24+s34) , (2.17)

– 6 –



J
H
E
P
0
2
(
2
0
2
4
)
0
1
3

p3

q
p4

p1

p2

p1

q
p4

p2

p3

p2

q
p4

p3

p1

p3

p2 p4

q

p1

Figure 2. Feynman diagrams for the double copy of the four-point form factor of tr(ϕ3).

note that S
Ftr(ϕ3)
3 is just 1. This can be checked by a direct calculation. The vector

(s24,s24+s34) is actually a simple v⃗ vector in this case.
Moreover, we have the hidden factorization relation satisfied by the color-ordered form

factor as

s24Ftr(ϕ3),4(1,3,4,2)+(s24+s34)Ftr(ϕ3),4(1,4,3,2)
∣∣
s123=q2

=Ftr(ϕ3),3(1,3,2)A3(q3,4,−q) ,
(2.18)

in which the same v⃗ vector is involved.

2.1.2 Higher-point cases

Now we consider the n-point form factor F tr(ϕ3),n.

Propagator matrix. To begin with, we define the propagator matrix. As discussed in [10],
the propagator matrix elements can be interpreted as form factors in the bi-adjoint scalar
theory. This picture also applies to higher-length form factors. Concretely, we need a
bi-adjoint scalar theory with two different types of scalars {ϕ,Φ}, having the Lagrangian
(this is also equation (4.11) in [10])

Lϕ3 =1
2 trC

(
Dµϕ

IDµϕI
)
+1
2 trC

(
DµΦIDµΦI

)
−λ3

3! f̃
IJKfabcϕI,aϕJ,bΦK,c

−λ1
3! f̃

IJKfabcϕI,aϕJ,bϕK,c−λ2
3! f̃

IJKfabcΦI,aΦJ,bΦK,c ,

(2.19)

where we use {I,J,K} to denote the flavor (FL) index and {a,b,c} to denote the color (C)
index. Roughly speaking, the little ϕ is the same as the scalars in the YMS form factors (2.1),
while the capital Φ plays the role of gluons in the YMS form factors.

To obtain the propagator matrix, it is also necessary to properly define a gauge invariant
operator in the bi-adjoint scalar theory [15–17]. The operator is introduced as Oϕ3 =
(1/2!)2dabcd̃IJKϕI,aϕJ,bϕK,c, and the reason for selecting this operator is that the color and
flavour factors must be identical, and the color part matches the color factor of the minimal
form factor (2.2). Given all these definitions, the propagator matrix can be defined as

Θ
Ftr(ϕ3)
n [α|β] =

∫
dDx eiq·x⟨1ϕ,2ϕ,3ϕ,4Φ . . .nΦ|Oϕ3(x)|0⟩

∣∣
trC(α)trFL(β)

, (2.20)

where α refers to an ordering of color indices (C) and β to an ordering of flavor (FL) indices.
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As in the previous four-point case, the propagator matrix is full-ranked, with the
following numerator/denominator of the determinants

numerator=
n−4∏
r=0

∏
{i1,...,ir}
⊂{4,...,n}

(
s123i1...ir −q2

)r!×(n−4−r)!
,

denominator=
3∏

j=1

(
n−3∏
r=1

∏
{i1,...,ir}
⊂{4,...,n}

(sji1···ir)(r−1)!×(n−2−r)!
)
.

(2.21)

The zeros of the numerator provide the possible spurious poles, which are s123···−q2 with
· · · representing certain gluon momenta.

The inverse of the propagator matrix is the KLT kernel SFtr(ϕ3) , which is an (n−2)! by
(n−2)! matrix with only simple poles s123···−q2. The residues of such a propagator matrix on
these poles satisfy the matrix decomposition relation like (2.17), see also (3.34) below.

Choice of basis. Next we choose a proper color basis and define the corresponding (basis)
color-ordered form factors and (basis) CK numerators. We define the basis by introducing
the generalized DDM color basis associated with the following trivalent graph (with the blue
dot associated with the dabc color factor from the tr(ϕ3) operator)

Γ[{i};{j}] :=
· · · · · ·

1 2

3i1 ir j1 jt

, (2.22)

where {i1, . . . , ir} and {j1, . . . , jt} (here r+t=n−3) are complementary subsets of the gluon
set {4, . . . ,n}. The orderings in both subsets can be arbitrary.3 Note that we take two scalars
{1,2} to be special such that no gluon is attached to the leg of scalar 3. The specificity
of such a basis choice is that all the gluons are directly connected to the scalar “skeleton”,
i.e. no gluon self-interaction vertices appear in these basis cubic diagrams, which will also
be valid for form factors of higher-length operators. The reason why the color factors of the
diagrams in (2.22) form a basis should be clear: due to the color Jacobi relation, there exists
a color basis containing no gluon self-interaction vertex; likewise, given the color relations
similar to (2.5), we can remove all the gluons on one of the scalar lines.

CK-dual numerators and double copy. We further consider the numerators. The
CK-dual numerators of the half ladder diagram (2.22) can be identified as4

N

( · · · · · ·

1 2

3i1 ir j1 jt )
=N [1, i1, . . . , ir,3, j1, . . . , jt,2] , (2.23)

3For example, when n = 5, {{i1, . . . , ir},{j1, . . . , jt}} can be {∅,{4,5}}, {∅,{5,4}}, {{4,5},∅}, {{5,4},∅},
{{4},{5}} and {{5},{4}}.

4As commented in the tr(ϕ2) discussion, we point out that (2.23) is a special case for simple operators like
ϕ2 and ϕ3. We will see the generalization in section 2.2.
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Figure 3. Feynman diagrams for the five-point form factor of tr(ϕ4).

where the numerators are related to the color-ordered form factors as

Ftr(ϕ3)(1,β,2)=
∑

β′∈Sn−2

ΘFtr(ϕ3) [β|β′]N [1,β′,2] . (2.24)

Examining the expressions, we observe that the numerators (2.23) have only s123···−q2

spurious-type poles, and can be spelt out via a Hopf-algebra-based closed formula, see
section 2.3.

Finally, we explicitly present the double copy as

G[ϕ3]
n =

∑
β1,2∈Sn−2

N [β1]ΘFtr(ϕ3) [β1|β2]N [β2] =
∑

β∈Sn−2

N [β]Ftr(ϕ3)[β] , (2.25)

and assert that Gn has the desired pole structures and the corresponding factorization proper-
ties, which are corroborated by the hidden factorization relations and matrix decompositions
discussed in section 3.3.

2.2 Form factor of tr(ϕm)

Similar discussions can be generalized form factors of higher-length operators tr(ϕm). Here a
main new feature is that, unlike the color relation (2.6) in the length-3 case that is similar to the
standard Jacobi relations, we will have some more general color relations. In the following, we
will mainly focus on the length-4 operator tr(ϕ4) which can be discussed in explicit expressions
and at the same time can capture the salient features for the higher-length operators.

The minimal form factor has four external scalars

F (ϕ4)
4 (1ϕ,2ϕ,3ϕ,4ϕ)= (2π)4δ(4)(q−

4∑
i=1

pi)da1a2a3a4 , (2.26)

where the color factor d is fully symmetric as

da1a2a3a4 :=
∑

σ∈S4/Z4

tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4)) . (2.27)

We also trivially have the double copy as G[ϕ4]
4 =1.

The five-point case. To make the discussion less trivial, we add gluons to the form factors.
The five-point form factor can be expanded in terms of four cubic diagrams shown in figure 3 as

F (ϕ4)
5 (1ϕ,2ϕ,3ϕ,4ϕ,5g)= C1N1

s15
+C2N2

s25
+C3N3

s35
+C4N4

s45
, (2.28)
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with the color factors

C1= da2a3a4bf ba1a5 , C2= da1a3a4bf ba2a5 , C3= da1a2a4bf ba3a5 , C4= da1a2a3bf ba4a5 , (2.29)

and they satisfy

C1+C2+C3+C4=0 . (2.30)

Note that this is different from the usual Jacobi relation. Remarkably, as we will see below,
the CK duality and double copy still work nicely with these more general relations.

Imposing the CK duality, one requires that

NCK
1 +NCK

2 +NCK
3 +NCK

4 =0 . (2.31)

The equation (2.31) is saying that there are three independent numerators. One can take
three of the numerators, for example N1,2,4, as the basis numerators. Alternatively, it turns
out to be useful to choose a different basis as

Na =NCK
1 , Nb =NCK

2 +NCK
1 , Nc =−NCK

4 . (2.32)

And NCK
3 =−Nb+Nc from (2.31). As we will see shortly, this special choice of numerators has

the following advantages: (i) they are related to color-ordered form factors via a symmetric
propagator matrix, and (ii) they have a “closer” relationship to the tr(ϕ2) numerators.

Applying the color decomposition, one hasFtr(ϕ4),5(1,5,3,4,2)
Ftr(ϕ4),5(1,3,5,4,2)
Ftr(ϕ4),5(1,3,4,5,2)

=


1

s15
+ 1

s35
− 1

s35
0

− 1
s35

1
s35

+ 1
s45

− 1
s45

0 − 1
s45

1
s25

+ 1
s45

·

Na

Nb

Nc

 , (2.33)

in which the propagator matrix, as well as its determinant, is

Θ
Ftr(ϕ4)
5 =


1

s15
+ 1

s35
− 1

s35
0

− 1
s35

1
s35

+ 1
s45

− 1
s45

0 − 1
s45

1
s25

+ 1
s45

 , det(Θ
Ftr(ϕ4)
5 )=− s1234−q2

s15s25s35s45
. (2.34)

As for the numerators, we can see again that using (2.33), they are uniquely determined
by the requirement of CK duality and are also manifestly gauge invariant5

Na

Nb

Nc

= −1
s1234−q2

s15τ5,(2+3+4) s15τ5,(2+4) s15s25
s25τ5,(2+4) τ5,(1+3)τ5,(2+4) s25τ5,(1+3)
s15s25 s25τ5,(1+3) s25τ5,(1+3+4)



F (ϕ3)
4 (1,2,3,4,5)

F (ϕ3)
4 (1,5,2,3,4)

F (ϕ3)
4 (1,2,5,3,4)

 ,

(2.35)

resulting in

Na =−
2fµν

5 p1,µp(2+3+4),ν
s1234−q2

, Nb =−
2fµν

5 p(1+3),µp(2+4),ν
s1234−q2

, Nc =−
2fµν

5 p(1+3+4),µp2,ν

s1234−q2
. (2.36)

5Here we remind the reader that we use the τ factors to express the results concisely: τij ≡ 2pi ·pj and
τi,(j+...+k) ≡ τij +. . .+τik.
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p4

q p5

p1

p2

p1

q p5

p2

p3

p2

q p5

p3

p4

p2

q p5

p4

p3

p4

p2 p5

q

p1

p3 p4 p1 p1 p3

Figure 4. Feynman diagrams for the double copy of the five-point form factor of tr(ϕ4).

One can observe that these numerators are similar to (2.13), which is not a coincidence
and will be discussed in section 2.3.

We are now ready to make the double copy and obtain

G[ϕ4]
5 = (NCK

1 )2
s15

+(NCK
2 )2
s25

+(NCK
3 )2
s35

+(NCK
4 )2
s45

. (2.37)

The gauge invariance of the numerators immediately implies the diffeomorphism invariance
of G[ϕ4]

5 . Moreover, on the new pole s1234−q2, G[ϕ4]
5 factorizes as

Ress1234=q2
[
G[ϕ4]
5
]
=G[ϕ4]

4 (1ϕ,2ϕ,3ϕ,4ϕ) M3(qS
4 ,−qS ,5h) , (2.38)

which corresponds to a new diagram in figure 4(the last one).

The n-point generalization. The generalization with more external legs for the ϕ4 form
factor is straightforward, and below we summarize the main features.

1. To begin with, the propagator matrix is defined similarly to (2.20) as

Θ
Ftr(ϕ4)
n [α|β] =

∫
dDx eiq·x⟨1ϕ, . . . ,4ϕ,5Φ, . . .nΦ|Oϕ4(x)|0⟩

∣∣
trC(α)trFL(β)

, (2.39)

with the operator

Oϕ4 =(1/3!)2d1234d̃1234
4∏

k=1
ϕakIk .

with d̃1234=∑σ∈S4/Z4 trFL(T
Iσ(1)T Iσ(2)T Iσ(3)T Iσ(4)). Specifically, the α/β involved here

belong to Sn−2/S2, which permute {3ϕ,4ϕ,5g, . . . ,ng} but leave the relative ordering of
{3ϕ,4ϕ} invariant. Using this definition, one can check that the five-point propagator
matrix is indeed the one in (2.34).

2. Next we come to color basis and ordered form factor basis. The color factors satisfy
two types of relations, the normal Jacobi relations and the operator-induced relations
like (2.30). We can specify one set of color bases, which are color factors of a special
subset of cubic diagrams. These diagrams can be chosen as (see also the explanation
below (2.22))

Γ[{i};{j};{k}] :=

· · · · · ·

1 2

4

i1 ir j1 jt

· · ·
ks

k1

3

(2.40)
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where r+s+t=n−4=ng, which is the total number of external gluons. The number of
elements in the basis is (n−2)!/2= (ng+2)!/2!, which is consistent with the size of the
propagator matrix above.

The basis of color-ordered form factors can be taken to be Ftr(ϕ4)(1,α,2) with α∈
Sn−2/S2, the same as stated above. For n=5, we need Ftr(ϕ4)(1,3,4,5,2),
Ftr(ϕ4)(1,3,5,4,2), and Ftr(ϕ4)(1,5,3,4,2), exactly those in (2.33).

3. Now we discuss the numerators. In the CK-dual representation, we have for each
trivalent diagram in (2.40) a numerator N(Γ), which will form a basis of CK-dual
numerators. On the other hand, we will also look for an alternative set of numerators
N [β] satisfying

Ftr(ϕ4)(1,α,2)=
∑

β∈Sn−2/S2

Θ
Ftr(ϕ4)
n [α|β]N [β] , (2.41)

where the propagator matrix Θ
Ftr(ϕ4)
n is defined in (2.39). Like the remarks given

around (2.32), the advantages of introducing such numerators are: (i) they are related
to the color-ordered form factors by the propagator matrix in (2.39), and (ii) their
expressions can be given in a compact closed formula, which will be discussed in the
next subsection. We will discuss more on these two sets of numerators (namely, N [Γ]
and N [β]) below.

4. As a result, given N [β], the length-4 double copy is formally defined as

G[ϕ4]
n =

∑
β1,2∈Sn−2/S2

N [β1]Θ
Ftr(ϕ4)
n [β1|β2]N [β2] =

∑
β∈Sn−2/S2

N [β]Ftr(ϕ4)[β] . (2.42)

Brief comment on the tr(ϕm) form factors. The generalization to the higher-length
operators is straightforward, and we only briefly comment on a few main points. The first
point is that the operator itself has a fully symmetric color structure so that the minimal form
factor is proportional to the color factor da1···am =∑σ∈Sm/Zm

tr(T aσ(1) · · ·T aσ(m)). Moreover,
the high-length operator tr(ϕm) induces an m-term color relation generalizing (2.30) (and
an m-term numerator relation generalizing (2.31)):

C1+C2+. . .+Cm =0 , (2.43)

with C1= da2a3...ambf ba1am+1 and Ci by permutations. Imposing these relations, as well as
the dual Jacobi relations, will uniquely determine all the CK-dual numerators, and the
subsequent double copy is straightforward. Importantly, the “spurious”-type pole in the
tr(ϕm) case can only be (qm+gluon momenta)2−q2.

We will not go into details, since one can follow the above steps and consider the cubic
diagram basis, the propagator matrix, the color-ordered form factor basis, and so on. Here we
only mention that the number of elements in these bases are (n−2)!/(m−2)!, and the cubic
diagram basis is similar to (2.40) having one scalar leg untouched and gluons distributed in
all possible ways, and ordered form factors can be chosen as F(1,α,2) with α∈Sn−2/Sm−2
maintaining the relative position of m-scalars.
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Remark on the two kinds of numerators. In the discussion above, we meet two different
kinds of numerators: (1) The CK-dual numerators N(Γ) defined for cubic diagrams Γ, which
are obtained by imposing all the dual Jacobi relations and the high-length-operator-induced
relations like (2.30); and (2) the new N [β] in (2.41), which are, as we will explain, numerators
defined according color orderings β. We refer to the former as the cubic-diagram numerator
and the latter as the color-ordered numerator.

The definition of the color-ordered numerators deserves further clarification. The basic
idea is that we can naturally define a color factor C[β] associated to an ordering β, which is
nothing but the color trace. We can express the color traces in terms of cubic color factors
C(Γ), which are color factors of cubic diagrams. Within this relation, we directly replace
both kinds of color factors with numerators N [β] and N [Γ]. Then there comes a relation
between two kinds of numerators.

Concretely, we find special linear combinations of the (cubic) color basis C(Γ), where Γ
are of the cubic diagrams in (2.40), with linear coefficients cβΓ, to give C[β] as

C[β]≡
∑

Γ∈ (2.40)
cβΓC(Γ) . (2.44)

The equations needed to constrain these coefficients cβΓ are

C[β]
∣∣
tr(1,β′,2)= δββ′ for β′ ∈Sn−2/S2 . (2.45)

where C|tr means for a color factor C taking the coefficient of the corresponding trace in the
subscript. Let us see how (2.45) works as constraints on cβΓ. Expanding the cubic color factor
C(Γ) will give a linear combination of all the color traces, and we are interested in the traces
like tr(1,β′,2). Among all these traces, only the coefficient of tr(1,β,2) is 1 for a specific β.
This means cβΓ in (2.44) have to be special. To see why cβΓ can be completely determined,
we refer to the following counting argument: (2.45) can be translated into (n−2)!/2 linear
equations, and uniquely fix all the numbers cβΓ (recall that the number of β is also (n−2)!/2).

Then the CK-duality comes into play. Starting from (2.44), we translate C(Γ) to N(Γ),
the cubic-diagram numerators, and more importantly C[β] to N [β], which is the color-ordered
numerator that we would like to define here:

N [β] =
∑

Γ∈ (2.40)
cβΓN(Γ) , (2.46)

where N(Γ) is the CK-dual numerator of the cubic diagram Γ. Working with this new
definition, it is easy to check that the Na,b,c used in (2.36) are simply

Na =N [1,3,4,5,2] , Nb =N [1,3,5,4,2] , Nc =N [1,5,3,4,2] . (2.47)

We give a comment about this definition (2.46). Here we use the tr(ϕ4) form factor to
illustrate the definition. When applying the definition to the tr(ϕ2) and tr(ϕ3) form factors,
we reproduce the N [β] that we used6 previously for the these operators. For instance, when

6The previous definitions of N [β] for the tr(ϕ2) and tr(ϕ3) form factors are (2.23) in this paper and (4.4)
in the previous paper [10].
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looking back at the tr(ϕ3) numerators defined in (2.23), we find that we are secretly using
a equation like (2.46), requiring that for the ordering β0= {1, i1, . . . , ir,3, j1, . . . , jt,2}, only

the numerator of the half-ladder diagram Γ0=
· · · · · ·

1 2

3i1 ir j1 jt

contributes. In other

words, only cβ0Γ0 is 1 and all other cβ0Γ vanish. This is why we end up with N(Γ0)=N [β0]
in (2.23), where we have a cubic-diagram numerator on one side but have a color-ordered
numerator on the other side.

We would like to introduce the commutator of color-ordered numerators, which is
understandable in the context of color-kinematics duality. The commutator can be defined
for color factors. Color commutators can be expressed as

T aiT aj −T ajT ai = f ijkT ak , (2.48)

and one can embed it into color traces as follows. Consider two orderings only differ by
swapping an adjacent pair of labels β1= {1, . . . , i, j, . . . ,2} and β2= {1, . . . , j, i, . . . ,2}, and we
define a commutator [, ]

tr(1, . . . , [i, j], . . . ,2)≡ tr(1, . . . , i, j, . . . ,2)−tr(1, . . . , j, i, . . . ,2)= f ijktr(1, . . . ,k, . . . ,2) . (2.49)

Furthermore, we take the numerator of C[β1,2] and define its commutator as

C[1, . . . ,[i, j], . . . ,2]≡C[β1]−C[β2] (2.50)
=
(
tr(1, . . . , i, j, . . . ,2)±other traces

)
−
(
tr(1, . . . , j, i, . . . ,2)±other traces

)
=
(
tr(1, . . . , [i, j], . . . ,2)±other traces’ commutators

)
.

For numerators, the CK-duality tells us that

N [1, . . . , [i, j], . . . ,2]≡N [β1]−N [β2] , (2.51)

which serves as the definition of commutators for color-ordered numerators.
Finally, we give two remarks:

• These two kinds of numerators can be transformed into each other. One relation we
know is (2.46), and the inverse relation has actually commutators (2.51) involved. This
is a reasonable expectation because commutators of trace color factors create cubic
color factors, and the color-kinematics duality is saying that the same commutators of
color-ordered numerators should give cubic-diagram numerators.7

• These two kinds of numerators are preferred in different scenarios: the dual relations
like Jacobi relations and operator-induced relations are naturally expressed in terms
of the cubic-diagram numerators N(Γ), while the color-ordered numerators N [β] are
closer related to the color-ordered form factors using equations like (2.24) and (2.41).

7In the Hopf algebra constructions in [18, 19] the commutators of “pre-numerators” give cubic diagram
numerators. Our definition of color-ordered numerators is essentially equivalent to the pre-numerators defined
there. See further discussions below.
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2.3 The universal master numerators

In this subsection, we discuss the expressions of the numerators. We will see that the
numerators take some universal structures, which allow us to obtain compact closed formulas.
For simplicity, we discuss only scalar+gluon form factors in this subsection.

The story begins with observing that all the CK-dual numerators of form factors with
only one gluon are taking the same form, see (2.13) and (2.37) in this paper and (3.12)
and (6.13) in the previous paper [10]. Basically, if, in a cubic diagram as below, the gluon
separates the scalars into two groups denoted as ϕL,1 · · ·ϕL,m and ϕR,1 · · ·ϕR,m′

Γ=
φL,1 φR,1

φL,m φR,m′n

· · ·· · ·
, (2.52)

then the corresponding master numerator is roughly

N(Γ)=−
2fµν

n

(∑
i pϕL,i

)
µ

(∑
j pϕR,j

)
ν(∑

i pϕL,i
+∑j pϕR,j

)2−q2 × possible flavor factors , (2.53)

where we recall the definition of (linearized field strength)

fµν
i ≡ pµ

i ε
ν
i −pν

i ε
µ
i . (2.54)

Such an expression is manifestly gauge invariant and has the expected spurious pole (∑pϕ)2
−q2. Moreover, it satisfies the corresponding dual Jacobi or beyond-Jacobi relations.

The above formula can be generalized to cases with multiple external gluons and it will
also present a property of universality, meaning that: for a large class of form factors, their
numerators have a universal kinematical part as a function of momenta and polarizations,
together with a flavor factor which can be trivially spelled out. Below we show this by
establishing a map from the numerators of the tr(ϕ2) m-scalar form factors to the numerators
of the tr(ϕm) m-scalar form factors. The reason why we consider these two theories is that
the former is the theory that has been thoroughly discussed in the previous paper [10], while
the latter has the simplest flavor structure, which is just the identity. Other form factors
will be mentioned in the appendix B.

2.3.1 Review of the tr(ϕ2) numerators

Below we give a review of the tr(ϕ2) numerators, which was originally given in [10]. Here
we will focus more on the multi-scalar cases, and the theory is YMS theory with also scalar
self-interaction −λ1

3! f̃
IJKfabcϕI,aϕJ,bϕK,c in the Lagrangian. Note that the scalars carry flavor

indices, and thus the numerators will contain a flavor factor.
Let us consider the color-ordered numerator N [1ϕ,α(3ϕ, . . . ,mϕ,(m+1)g, . . . ,ng),2ϕ]. The

permutation α mixes the positions of gluons and scalars, and also changes the relative positions
among the scalars or gluons. One denotes the scalar ordering as s= {1ϕ, i1, i2, . . . , im−2,2ϕ} and
the gluon ordering as g= {j1, j2, . . . , jn−m}, which are two ordered subsets of the combined
ordering {1,α,2}.
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The tr(ϕ2) numerator formula. The numerator is a sum of contributions from all the
ordered partitions, reading

N [1ϕ,α(3ϕ, . . . ,mϕ,(m+1)g, . . . ,ng),2ϕ] = trFL(tI1tIi1 · · · tIim−2 tI2)
|g|∑

r=1

∑
τ∈P(r)

g

n
(1α2)
(τ1),...,(τr) ,

(2.55)
where P(r)

g is the ordered partition as the collection of all possible ways dividing the gluon
set g into r (ordered) subsets, |g| is the length of the gluon set, τ is one particular way
dividing g into r subsets, and these r subsets are (τ1), . . . ,(τr), and the flavor trace factor
trFL is defined according to the scalar ordering s= {1ϕ, i1, i2, . . . , im−2,2ϕ}.

Next, we write down the concrete expression for n(1α2)
(τ1),...,(τr). The so-called “musical

diagrams” are needed here, of which the definition was given in [10, 19]. The diagram,
uniquely defined by the scalar ordering s, the partition τ of the gluon ordering g and
combined ordering {1,α,2}, can be drawn with the following two steps. (1) we put the scalars
as well as the partitions of gluons τ1 to τr on different levels with τi+1 above τi and τ1 above
s. (2) projecting the elements on all the levels onto the bottom line has to be exactly {1,α,2}.
We use again the following example: the total ordering is {1ϕ,5g,6g,4ϕ,8g,3ϕ,9g,7g,2ϕ}, and
s= {1ϕ,4ϕ,3ϕ,2ϕ} while g= {5g,6g,8g,9g,7g}. We split g into two parts, τ1= {6g,9g,7g} and
τ2= {5g,8g}. Then the musical diagram is

(s)

(τ1)

(τ2)

1 2

6

5 8

9 7

4 3

. (2.56)

Given the musical diagram, we can write down the following expression for n(1α2)
(τ1),...,(τr) as

n
(1α2)
(τ1),...,(τr)=

(−2)r
r∏

i=1

(
pΞ̃L(τi)

·f(τi) ·pΞ̃R(τi)

)
(p2s−q2)(p2sτ1−q2) · · ·(p2sτ1···τr−1−q2)

, (2.57)

where Ξ̃L(τi) is the collection of indices in the musical diagram, lower-left to the first element
of τi, and Ξ̃R(τi) is the collection of indices lower-right to the last element of τi, including
the scalars; also f(τi) is a contraction of field strength with two open indices ρ,σ, reading

fρ
τi,1,ν1f

ν1
τi,2,ν2 · · · f

µr−1
τi,r,σ ,

where τi,k is the k-th element of τi and r is the length of τi. Taking the example in (2.56),
we have

pΞ̃L(τ1)
= p1, pΞ̃R(τ1)

= p2, pΞ̃L(τ2)
= p1, pΞ̃R(τ2)

= p2+p3+p7+p9= p2379, (2.58)

so that

n
(156483972)
(679),(58) =

(−2)2
(
p1 ·f697 ·p2

)(
p1 ·f58 ·p2379

)
(p21234−q2)(p21234679−q2)

=
(−2)2

(
p1 ·f6 ·f9 ·f7 ·p2

)(
p1 ·f5 ·f8 ·(p2+p3+p7+p9)

)
(p21234−q2)(p21234679−q2)

.

(2.59)
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The above discussion gives us a clear presentation of the color-ordered numerators
N [1,β,2]. Now we discuss the cubic-diagram numerators N [Γ]. In particular, we focus on
the numerators for the DDM basis diagrams. Their expressions then take a simple form as

N

(
1 2

· · ·β(3) β(n) )
= f̃1i1x1 f̃x1i2x2 · · · f̃xm−3im−22

|g|∑
r=1

∑
τ∈P(r)

g

n
(1β2)
(τ1),...,(τr) , (2.60)

in which the n(1β2)
(τ1),...,(τr) are given in (2.57). We also would like to remind the reader that

f̃ is the flavor group structure constant, and ik are elements in the scalar ordering s. The
important point is that (2.55) and (2.60) only differ by their flavor factor. Specifically, we
define Ñ to represent the kinematic part, so that

N

(
1 2

· · ·β(3) β(n) )
= f̃1i1x1 f̃x1i2x2 · · · f̃xm−3im−22Ñ [1,β,2] ,

N [1ϕ,β(3ϕ, . . . ,mϕ,(m+1)g, . . . ,ng),2ϕ] = trFL(tI1tIi1 · · · tIim−2 tI2)Ñ [1,β,2] ,

(2.61)

or

N

(
1 2

· · ·β(3) β(n) )
flavor factor→1

=N [1ϕ,β(3ϕ, . . . ,mϕ,(m+1)g, . . . ,ng),2ϕ]flavor factor→1 .

(2.62)
We finally comment on the relation between the two kinds of numerators (N [1,β,2] and

N [Γ]), which was originally proposed in [18, 19]. In a word, the cubic-diagram numerators
are (nested) commutators of the color-ordered numerators. For example, we have

N

(
1 2

63 4 5 )
=N

[
[[[[1,3],4],5],6],2

]
, (2.63)

where the small blue square brackets indicate commutators as in (2.51). Such a nested
commutator relation holds for any numerators of DDM basis diagrams, and one can prove
the nested commutators give indeed (2.61), see [19].

The above discussions have two-fold importance to this paper:

1. They are the reason why the map from the tr(ϕ2) numerators to the tr(ϕm) numerators
are reasonable.

2. They provide an understanding of the relation between the numerators defined for
orderings and for cubic diagrams.8

This ends our reviews of tr(ϕ2) numerators, and next we discuss their relations to the
tr(ϕm) numerators.

8The statement in this paper is a closely related statement from the fundamental understanding given
in [19]. We will not focus on the kinematic algebra as the authors did in [18, 19], so we use this alternative
understanding instead.
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2.3.2 Form factors of tr(ϕ3) with three scalars

We first discuss the form factors with three external scalars, and we want to show that the
tr(ϕ3) numerator can be simply obtained from the tr(ϕ2) ones via

N
Ftr(ϕ3) =N

Ftr(ϕ2) |flavor factor→1 . (2.64)

We stress that here the numerators are with three external scalar particles plus an arbitrary
number of gluons. Also, since the tr(ϕ3) numerators considered here have a trivial overall
flavor factor, we simply set it to be one.

The tr(ϕ2) numerators are given as a special case of (2.55):

N
Ftr(ϕ2) [1ϕ,4g, . . . ,kg,3ϕ,(k+1)g, . . . ,ng,2ϕ] = trFL(tI1tI3tI2)Ñ [1,4, . . . ,k,3,(k+1), . . . ,n,2] ,

Ñ [1,4, . . . ,k,3,(k+1), . . . ,n,2]=
n−3∑
r=1

∑
τ∈P(r)

g

(−2)r
r∏

i=1

(
pΦLΞL(i) ·f(τi) ·pΦRΞR(i)

)
(p2123−q2)(p2123τ1−q2) · · ·(p

2
123τ1···τr−1−q2)

, (2.65)

where g is the gluon set {4g, . . . ,ng}. A word about notation: comparing to (2.57), here we
denote pΞ̃L(τi)

as pΦLΞL(i). Roughly speaking, ΞL,R is deleting the scalars from Ξ̃L,R. ΞL,R(i)
denote two special subsets of Ξ(i)≡{τ1, τ2, . . . , τi−1}: ΞL(i) contain the elements in Ξ(i) which
are smaller than the first element in τi; ΞR(i) contain the elements in Ξ(i) which are bigger
than the last element in τi. The rules of assigning proper scalars to ΦL and ΦR are:

if min(τi)<k, ΦL = {1ϕ}, otherwise ΦL = {1ϕ,3ϕ};
if max(τi)>k, ΦR = {2ϕ}, otherwise ΦR = {2ϕ,3ϕ}.

Then we claim that exact the same formula (2.65) can be used to describe the tr(ϕ3)
numerators as in (2.64):

N
Ftr(ϕ3) [1ϕ,4g, . . . ,kg,3ϕ,(k+1)g, . . . ,ng,2ϕ] = Ñ [1,4, . . . ,k,3,(k+1), . . . ,n,2] . (2.66)

This claim is not strange because these two numerators should have the same structure:
first, they should both have the same spurious poles after double copy, which are s123···−q2;
second, they should be both manifestly gauge invariant; most importantly, they have to
satisfy dual Jacobi relations.9 The last requirement is highly non-trivial. One can check that
the particular form (2.65) indeed satisfies all the desired properties (see [10]).

So far we consider the color-ordered numerators as in (2.65) and (2.66). In this case, it
is also straightforward to work out the numerators N [Γ] as associated with cubic diagrams as

N
Ftr(ϕ2)

( · · · · · ·

1 2

34 k k+1 m )
= f̃123Ñ [1,4, . . . ,k,3,k+1, . . . ,m,2] ,

N
Ftr(ϕ3)

( · · · · · ·

1 2

34 k k+1 m )
= Ñ [1,4, . . . ,k,3,k+1, . . . ,m,2] .

(2.67)

9Technically, the dual Jacobi relations are suitably expressed for the cubic-diagram numerators. But since
the two kinds of numerators are expressionally equivalent, it does not really matter to distinguish them.
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Here the first line of (2.67) is true because we have used the relation (2.62), saying that
ignoring the flavor factor, for the tr(ϕ2) form factors, the color-ordered numerator and the
cubic-diagram numerator (of the DDM basis of course) are the same.10 As for the second
line, it comes from straightforward calculations.

From (2.67), (2.65) and (2.66), one can see clearly for both the two kinds of numerators,
the simple relation (2.64) holds. We comment that the three-scalar case is particularly simple
so that there is no need to distinguish the two types of numerators (note that (2.66) and
the second line of (2.67) are the same). More scalars will bring more intriguing structures,
as will be clarified in the next subsection.

2.3.3 Form factors of tr(ϕm) with four or more scalars

For form factors with four scalars, again we want to confirm that

N
Ftr(ϕ4) =N

Ftr(ϕ2) |flavor factor→1 , the case with four external scalars . (2.68)

To do this, we take the strategy that assuming (2.68) is true, we can get the (conjectured) tr(ϕ4)
numerators from the tr(ϕ2) ones; then we show that these conjectured numerators satisfy all
the desired relations and they are indeed the correct numerators that we are looking for.

Color-ordered numerators. It is easier to focus first on the color-ordered numerators
N [1,β,2]. By specializing (2.55) to the four-point case, we have

N tr(ϕ2)[1ϕ,5g, . . . ,kg
1 ,3ϕ,(k1+1)g, . . . ,kg

2 ,4ϕ,(k2+1)g, . . . ,ng,2ϕ]
= trFL(T I1T I3T I4T I2)Ñ [1,5, . . . ,k1,3,(k1+1), . . . ,k2,4,(k2+1), . . . ,n,2] ,

Ñ [1,5, . . . ,k1,3,(k1+1), . . . ,k2,4,(k2+1), . . . ,n,2]

=
n−4∑
r=1

∑
P(r)

τ

(−2)r
r∏

i=1

(
pΦLΞL(i) ·f(τi) ·pΦRΞR(i)

)
(p21234−q2)(p21234τ1−q2) · · ·(p

2
1234τ1···τr−1−q2)

.

(2.69)

Here s= {1,3,4,2} is the ordered scalar set and the rules for the Φ functions are

ΦL = p1 if min(τi)≤ k1, ΦR = p24 if m<min(τi)≤ r,

ΦL = p134 if k2<min(τi), ΦR = p234 if max(τi)≤ k1,

ΦL = p13 if k1<max(τi)≤ k2, ΦR = p4 if r <max(τi).
(2.70)

Then, assuming (2.68), the tr(ϕ4) numerator should be given by the tr(ϕ2) ones via

N tr(ϕ4)[1, . . . ,2]=N tr(ϕ2)[1, . . . ,2]
∣∣
flavor factor→1 . (2.71)

One can check the above equation gives the right numerators in the sense that they satisfy
the relation (2.41) involving also propagator matrix and ordered form factors.

10There is another case worth considering: we take the theory to be bi-adjoint ϕ3 coupled to Yang-Mills, and
the operator to be either Oϕ3 before in (2.20) or the three-scalar interaction vertex (with off-shell momentum
q). Then the flavor factor can be either d̃123 or f̃123, see the appendix B for details.
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Cubic-diagram numerators. When it comes to the cubic-diagram numerators N(Γ),
things are a bit more complicated. The diagrams for tr(ϕ2) and tr(ϕ4) are different, because of
the four-point vertex associated with the operator for the latter. Diagrammatically, we need to
shrink propagators to create a quadruple vertex, and we expect the following relation to hold

N
Ftr(ϕ4)

(
B

A D

C

γB

γA γD

γC )
=N

Ftr(ϕ2)

(
B

A D

C

γB

γA γD

γC )
flavor factor→1

, (2.72)

where A,B,C,D are scalar lines and γA,B,C,D denote the remaining subdiagrams.
One question naturally arises from (2.72): there are three different ways of shrinking

a numerator to get the l.h.s. diagram; will they lead to the same answer? The answer is
positive. We have the following relation

N
Ftr(ϕ2)

(
B

A D

C

γB

γA γD

γC )
flavor factor→1

=N
Ftr(ϕ2)

( γB

γA γD

γC )
flavor factor→1

=N
Ftr(ϕ2)

( γB

γA γD

γC )
flavor factor→1

,

(2.73)

which is not surprising after realizing the following fact: if we have

Ns−Nu =Nt, Ns

∣∣
flavor factor−Nu

∣∣
flavor factor =Nt

∣∣
flavor factor , (2.74)

then it is reasonable to expect (which is just (2.73))

Ns

∣∣
flavor factor→1=Nu

∣∣
flavor factor→1=Nt

∣∣
flavor factor→1 , (2.75)

where

Ns =N
Ftr(ϕ2)

(
B

A D

C

γB

γA γD

γC )
, Ns

∣∣
flavor factor = f̃ABxf̃xCD ,

Nt =N
Ftr(ϕ2)

( γB

γA γD

γC )
, Nt

∣∣
flavor factor = f̃DAxf̃xBC ,

Nu =N
Ftr(ϕ2)

( γB

γA γD

γC )
, Nu

∣∣
flavor factor = f̃ACxf̃xBD .

(2.76)
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To make the above argument less abstract, we consider the following example. If
there is no gluons between 3,4, then ΦL(i) is p1 or p1+(p3+p4); ΦR(i) is p2 or p2+(p3+p4).
Importantly, p3,4 are always combined together. This means, following from checking the
concrete expressions,

Ñ [1, . . . ,3,4, . . . ,2]= Ñ [1, . . . ,4,3, . . . ,2]≡ Ñ0 , (2.77)

where we define Ñ0 just to simplify notations, and

N
Ftr(ϕ2)

( 3 4

21

· · · · · · )
= f̃13xf̃x42Ñ0, N

Ftr(ϕ2)

( 4 3

21

· · · · · · )
= f̃14xf̃x32Ñ0 .

(2.78)
Moreover, one can also derive

N
Ftr(ϕ2)

( 3 4

21

· · · · · · )
= f̃21xf̃x34Ñ0 (2.79)

from the dual Jacobi relations satisfied by these three numerators. Thus, we can see

N
Ftr(ϕ2)

( 3 4

21

· · · · · · )
flavor factor→1

=N
Ftr(ϕ2)

( 4 3

21

· · · · · · )
flavor factor→1

=N
Ftr(ϕ2)

( 3 4

21

· · · · · · )
flavor factor→1

(2.80)

which is an example of (2.73). All the three terms in (2.80) give NFtr(ϕ4)

( 3 4

21

· · · · · · )
.

For general cases in which each of γA,B,C,D in (2.73) may contain some gluons, one can
show that (2.73) is true by explicit calculations. Now we can conclude that (2.72) is a
consistent map with no ambiguity.

Then we verify that the tr(ϕ4) numerator given in (2.72) satisfies the dual relations.
If (2.72) is indeed true, then it should automatically be consistent with the Jacobi relations
and the operator-induced relations. To check these relations, working with concrete examples
and expressions is one way out, but we can do better. We will show that, given the dual
Jaocbi-relations satisfied by the tr(ϕ2) numerators on the r.h.s. of (2.68), one can prove that
the numerators on the l.h.s. of (2.68) indeed satisfy all the required relations.
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Let us start by considering the following two Jacobi relations satisfied by the tr(ϕ2)
numerators

N
Ftr(ϕ2)

( γB γC

γA γD

)
−NFtr(ϕ2)

( γB γC

γA γD

)
=N

Ftr(ϕ2)

( γB γC

γA γD

)
,

N
Ftr(ϕ2)

( γB γC

γA γD

)
−NFtr(ϕ2)

( γB γC

γA γD

)
=N

Ftr(ϕ2)

( γB γC

γA γD

)
.

(2.81)

After summing up the above two equations, what we get is a four-term identity

N
Ftr(ϕ2)

( γB γC

γA γD

)
−NFtr(ϕ2)

( γB γC

γA γD

)
=

N
Ftr(ϕ2)

( γB γC

γA γD

)
−NFtr(ϕ2)

( γB γC

γA γD

)
.

(2.82)

Such a four-term identity for tr(ϕ2) numerators is meaningful because they correspond
to the operator-induced relation for high-length operators such as in (2.31). To show this,
we take the map from tr(ϕ2) numerators to the tr(ϕ4) numerators. Note that the flavor
structure of all the numerators involved is the same so that one can cancel the same flavor
factor on both sides of (2.82). This gives us

N
Ftr(ϕ4)

( γB

γA γD

γC )
−NFtr(ϕ4)

( γB

γA γD

γC )
=

N
Ftr(ϕ4)

( γB

γA γD

γC )
−NFtr(ϕ4)

( γB

γA γD

γC )
,

(2.83)

which is exactly the four-term equation describing the tr(ϕ4) operator-induced numerators
relation.11

11In (2.83) and its derivation, we have used a fact that flipping a gluon against a subdiagram gives a minus
sign.
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We also mention that the ordinary Jacobi relations of the tr(ϕ4) numerators trivially
stem from the Jacobi relations of the tr(ϕ4) numerators, and we will omit the details here.

To summarize, we have shown that it is convincing that the map (2.68) is valid, because
it is consistently defined, gives the right relation to amplitudes, and the tr(ϕ4) numerators
inherit all the desired structures and relations from the tr(ϕ2) ones.

Further discussion on the relation between two types of numerators. The final
point that we want to make is to understand the relation between the two kinds of numerators
as an application of the map (2.68). We want to establish such a “commutative diagram” as

NFtr(ϕ2)[1,β,2] flavor factor→1−−−−−−−−−→ NFtr(ϕ4)[1,β,2]
⇓ [, ] ⇓ [, ]

N
Ftr(ϕ2)

(
B

A D

C

γB

γA γD

γC )
flavor factor→1−−−−−−−−−→ N

Ftr(ϕ4)

(
B

A D

C

γB

γA γD

γC ) (2.84)

In this diagram, the top line contains the color-ordered numerators, while the bottom line
has the cubic-diagram numerators. The horizontal arrows have been discussed above, and
the down arrows represent commutators.

We want to use (2.84) to understand better the red down-arrow, which is the relation
between the two kinds of tr(ϕ4) numerators. We already discussed the other three arrows
in (2.84), and the last red one will become self-evident after getting the rest three clarified.

The left down-arrow corresponds to the action of performing commutators for tr(ϕ2) nu-

merators: as commented in (2.61) and (2.62), NFtr(ϕ2)[1,β,2] andNFtr(ϕ2)
(

1 2

· · ·β(3) β(n) )
are basically the same, and the latter serve as master numerators, whose commutators give
the CK-dual numerator of any cubic diagram

NFtr(ϕ2)
(

1 2

· · ·β(3) β(n) )
commutators=⇒ N

Ftr(ϕ2)

(
B

A D

C

γB

γA γD

γC )
. (2.85)

Meanwhile, the two horizontal arrows correspond to the map taking the flavor factor to 1. Note
that the map is linear. Therefore, combining all these three arrows gives an understanding of
the last red arrow: the tr(ϕ4) cubic-diagram numerator, which comes from removing the color
factors of the tr(ϕ2) cubic-diagram numerator, can be expressed as commutators of tr(ϕ4)
color-ordered numerators, of which the pre-image (as tr(ϕ2) color-ordered numerators) can
also take the same commutators to get the aforementioned tr(ϕ2) cubic-diagram numerator.

We use a simple two-gluon example to illustrate the commutative diagram (2.84). We
start from the upper-left corner of (2.84). Since we will consider commutators, we need
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at least two tr(ϕ2) numerators, which are

N
Ftr(ϕ2) [1,5,3,4,6,2]= trFL(T I1T I3T I4T I2)× (2.86)[−2p1 ·f56 ·p2

s1234−q2
+4(p1 ·f5 ·p234)(p1345 ·f6 ·p2)

(s1234−q2)(s12345−q2)
− 4(p134 ·f6 ·p2)(p1 ·f5 ·p2346)

(s1234−q2)(s12346−q2)

]
,

N
Ftr(ϕ2) [1,5,3,6,4,2]= trFL(T I1T I3T I4T I2)× (2.87)[−2p1 ·f56 ·p24

s1234−q2
+4(p1 ·f5 ·p234)(p135 ·f6 ·p234)

(s1234−q2)(s12345−q2)
+ 4(p1 ·f6 ·p24)(p1 ·f5 ·p2346)

(s1234−q2)(s12346−q2)

]
.

And apparently we can obtain N
Ftr(ϕ2)

(
1 2

5 3 64 )
and NFtr(ϕ2)

(
1 2

3 65 4 )
by replacing trFL(T I1T I3T I4T I2) with f̃13xf̃x42 in (2.86) and (2.87), respectively.

We then follow the first right-arrow in (2.84). The tr(ϕ4) numerators can be directly
read out as

N
Ftr(ϕ4) [1,5,3,4,6,2]=N

Ftr(ϕ2) [1,5,3,4,6,2]
∣∣
flavor factor→1

=N
Ftr(ϕ2)

(
1 2

5 3 64 )
flavor factor→1

,

N
Ftr(ϕ4) [1,5,3,6,4,2]=N

Ftr(ϕ2) [1,5,3,6,4,2]
∣∣
flavor factor→1

=N
Ftr(ϕ2)

(
1 2

3 65 4 )
flavor factor→1

.

(2.88)

Next, we consider the black down-arrow in (2.84). Taking the commutator of the above two
tr(ϕ2) numerators is nothing but the dual Jacobi relation

N
Ftr(ϕ2)

(
1 2

3 65 4 )
−NFtr(ϕ2)

(
1 2

5 3 64 )
=NFtr(ϕ2)

(
1 2

3 65 4 )
,

(2.89)
where the numerator on the r.h.s. is

N
Ftr(ϕ2)

(
1 2

3 65 4 )
= f̃13xf̃x42× (2.90)

[2p1 ·f56 ·p4
s1234−q2

− 4(p1 ·f5 ·p234)(p1235 ·f6 ·p4)
(s1234−q2)(s12345−q2)

− 4(p134 ·f6 ·p4)(p1 ·f5 ·p2346)
(s1234−q2)(s12346−q2)

]
.

Note that the flavor factor does not change.
At last, we take away the flavor factors from both sides of (2.89), which exemplified

the red down-arrow in (2.84), reading

N
Ftr(ϕ4) [1,5,3,4,6,2]−NFtr(ϕ4) [1,5,3,6,4,2]=N

Ftr(ϕ4)

(
1 2

3 65 4 )
, (2.91)

where on the r.h.s. we have used (2.72) to change (2.90) to be a tr(ϕ4) numerator.
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Independent of the derivation of (2.91) from the commutative diagram (2.84), one can
actually confirm that (2.91) is true solely from the map (2.68). The expressions for the l.h.s.
can be found using (2.71), while on the r.h.s. one recognizes that it is the example used to
illustrate (2.68) discussed around (2.80). This check provides independent evidence of the
assertion that commutators of the color-ordered numerators are the cubic-diagram numerators.

For more general situations, we give the following remarks:

1. In general, the commutators are not as simple as (2.91). Usually, they are the so-called
nested commutators. We have learned from (2.91) that moving one gluon requires
one commutator “[, ]”, and it is easy to expect that for a diagram like in (2.40), an
s-fold (s is the number of gluons on the scalar line 3) nested commutators [. . . [[, ], ] . . . , ]
of N [1,β,2] is required. Just to specify the nested commutator, we use the following
example

N [1,3, [4, [[5,6],7]],8,2]=N [1,3,4,5,6,7,8,2]−N [1,3,4,6,5,7,8,2]−
N [1,3,4,7,5,6,8,2]+N [1,3,4,7,6,5,8,2]+
N [1,3,5,6,7,4,8,2]−N [1,3,6,5,7,4,8,2]−
N [1,3,7,5,6,4,8,2]+N [1,3,7,6,5,4,8,2]

(2.92)

2. One should notice that N [1,β,2] with β ∈Sn−2/S2 form a numerator basis, while the
numerators for the cubic diagrams in (2.40) form another basis with the same number
of elements. Then the nested commutators can be interpreted as a basis change, just as
the inverse operation of (2.46) which is employed to define N [1,β,2].

3. As in section 3.3, the understanding of the tr(ϕ4) numerators makes it straightforward
to generalize to the tr(ϕm) (m> 4) case. For the m> 4 case, the new operator-induced
numerator relations are m-term relations, like the 4-term relation (2.83). They can also
be generated by manipulating the tr(ϕ2) numerator identities and then taking the map.
We will omit the details of the generalization here.

Before ending this section, we comment on the relation between the construction illus-
trated in this subsection and the Hopf Algebra construction in [19]. We have learned above
that taking commutators of color-ordered numerators give cubic diagram numerators. This is
reminiscent of the Hopf Algebra construction in [19] where commutators of “pre-numerators”
gives the CK-dual numerator for a given cubic diagram. The commutators taken in both cases
are the same. The color-ordered numerators and pre-numerators in [19] both play important
roles in both constructions. The pre-numerators there were pre-determined from algebra,
but here we give a more physical interpretation from (2.46), stating that these numerators
are naturally defined for orderings with the help of CK duality.12

12An interesting comment is about the counting of color-ordered numerators. In (2.46), we confine ourselves
to the orderings 1,β,2 with β ∈Sn−2/S2. The reader may wonder if it is possible to change cβΓ there and
define more than (n−2)!/2 such numerators. The answer is no, which is due to the fact that the linear relations
from (2.45) have no solutions. In [19], only the N [1,β,2] numerators are non-vanishing and all the N [1,κ,2,ρ]
numerators vanish (ρ ̸= ∅). This fact reflects the consistency of the two definitions of color-ordered numerators
(or pre-numerators).
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3 Further discussion on the v⃗ vectors

As discussed in [10], the v⃗ vectors play a crucial role of connecting the hidden factorization
relation and the matrix decomposition relation. In this section, we provide a more extensive
and advanced study of the v⃗ vectors. We first give a brief review of the v⃗ vectors and how
they appear in the hidden factorization relation and the matrix decomposition relation in
section 3.1. In section 3.2, we pack the expressions for the v⃗ vectors into an all-multiplicity
closed formula. In section 3.3, we show further that the v⃗ vectors are universal in the sense
that the same expressions can lead to the hidden factorization and the matrix decomposition
for different form factors. We leave some further remarks on the properties of v⃗ vectors
and details of the closed formula in appendix A. The reader is especially encouraged to
read section 3, section 6 and appendix A of [10] to have some simple examples in mind
before reading this section.

3.1 The v⃗ vectors revisited

Although an elementary example has been given in section 2.1, some more examples are
required to initiate the thorough discussion of the v⃗ vectors in this section. Consider the
following special case of the hidden factorization relation where the involved v⃗ vector is
particularly simple∑

γ∈{3,4,...,(n−1)}�{n}
v[1,γ,2]Fn(1,γ,2)

∣∣
q2

n−1=q2
(3.1)

=
[
τn2Fn(1,3, . . . ,n,2)+

n−1∑
i=3

τn,(2+i+···+(n−1))Fn(1,3 . . . , i−1,n, i . . . ,n−1,2)
]∣∣∣∣

q2
n−1=q2

=Fn−1(1,3, . . . ,n−1,2)×A3(qn−1,n,−q)

where qn−1=
∑n−1

i=1 pi, τab=2pa ·pb, and the components of the v⃗ vector are

v[α] = τn,(2+i+···+(n−1)) if α= {1,3 . . . , i−1,n, i . . . ,n−1,2} . (3.2)

The above hidden factorization relation (3.1) for form factors can be compared with the
following BCJ relations of amplitudes [2]

τn2An(1,3, . . . ,n,2)+
n−1∑
i=3

τn,(2+i+···+(n−1))An(1,3 . . . , i−1,n, i . . . ,n−1,2)=0 . (3.3)

We can see that the same v⃗ vector

v⃗= {τn2, τn,(2+3+...+(n−1)), τn,(2+4+...+(n−1)), . . . , τn,(2+(n−1))} (3.4)

appears in both (3.1) and (3.3). In this sense, the factorization relation (3.1) can be understood
as the generalization of the BCJ relations for form factors.

With a glimpse of what the v⃗ vectors are, now we review their two important properties.
The first important aspect of the v⃗ vectors is again the hidden factorization relation, but
now we present it in a more general form compared to (3.1).
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Specifically, for a given spurious pole q2
m−q2 (with qm always means ∑m

i=1 pi), the hidden
factorization relation takes the following form13

∑
β∈Sn−2

v[1,β,2]Fn(1,β,2)|q2
m=q2 =Fm(1,3, . . . ,m,2)×Am′(qm,(m+1), . . . ,n,−q) . (3.5)

We may understand that the v⃗ vectors take higher-point form factors as an input and give
lower-point form factors and amplitudes as an output. We explain the notion of (3.5) in
more detail as follows

a. β is a permutation in Sn−2 acting on {3,4, . . . ,n}, and we use this ordering to label the
vector element.

b. F(1,β,2) is the n-point color-ordered form factor of tr(ϕ2). The ordering {1,β,2} is
the short of {1,β(3,4, . . . ,n),2}. These ordered form factors form a basis.

c. v[1,β,2] is the vector element of the v⃗ vector.

d. The form factor on the r.h.s. is of the same type as the one on the l.h.s. , but has a
smaller number of gluons.

e. The m′=(n−m+2) point amplitude Am′ on the r.h.s. has two massive external scalars
(with mass square m2= q2) coupled to gluons. We will see that this amplitude factor is
universal for different types of form factors.

We point out that (3.5) is the “normal” version of the hidden factorization relation in the
sense that we have chosen a normal order of gluons as {3,4, . . . ,n}. We can permute the gluons
in both the form factor and the amplitude and the factorization relation takes the form as∑

β∈Sn−2

v(κ̄,ρ̄)[1,β,2]Fn(1,β,2)|q2
m=q2 =Fm(1, κ̄,2)×Am′(qm,(m+1), ρ̄,−q) , (3.6)

where κ̄ and ρ̄ are permutations acting on {3, . . . ,m} and {(m+2), . . . ,n} respectively. We
denote the new v⃗ vector as v⃗(κ̄,ρ̄) which is related to v⃗≡ v⃗(1,1) via proper permutations. The
explicit relation between v⃗(κ̄,ρ̄) and v⃗(1,1) will be discussed later.

Next, we move on to the matrix decomposition, which is the other important aspect of
the v⃗ vectors. Again, the v⃗ vectors are connecting higher- and lower-point objects, and this
time the object is the KLT kernel. However, the roles of input and output are reversed: the
factorized kernel (a tensor product of lower-point kernels) is the input while the higher-point
kernel (its residue if we want to be rigorous) is the output. The equation is∑

κ̄1,2∈Sm−2
ρ̄1,2∈Sm′−3

v(κ̄1,ρ̄1)[β1]
(
SF

m[κ̄1|κ̄2]SA
m′ [ρ̄1|ρ̄2]

)
v(κ̄2,ρ̄2)[β2] =Resq2

m=q2

[
SF

n [β1|β2]
]
, (3.7)

where v[β] is just the shortened notation for the v[1,β,2] above, SF is the form factor
KLT kernel, and SA is the amplitude KLT kernel. Note that here we have used symmetric

13We use the notation v[1,β,2] in (3.5) which is same as the one in (3.1), but reader should keep in mind
they are different in general|the v⃗ in (3.1) is just a simple special case.
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representations of the kernels. The expressions and properties of the kernels can be found
in [10], and here our focus is the v⃗ vectors, which act in a bi-linear way on the kernels.
Importantly, we want to emphasize that the two SF on both sides are the kernels used
to double copy the tr(ϕ2) form factors with two external scalars|these form factors only
differ by the number of gluons.

Before ending this review section, we suggest the readers to check the explicit expressions
given in appendix A in [10] to have a better sense of the v⃗ vectors, where all the expressions
up to six points were given. Some properties can be observed from those expressions (and
can also be deduced from the above two aspects), and we summarize some of them below

1. The v⃗ vectors have mass dimension two, which is the same as a τij or sij . This simple
property will be important in determining the general form of v⃗ vectors.

2. The v⃗ vectors in general contain poles. For the factorization related to the spurious
pole q2

m−q2, the v⃗ vectors have the following pole structure:14

v⃗ ∝
n−1∏

k=m+1

1
s12···k−q2

, (3.8)

which is a degree (n−m−1) polynomial. By dimension analysis, the v⃗ vector must have
a numerator factor of a degree-(n−m) polynomial, and the major task is to study this
degree (n−m) polynomial.

3. From all the known explicit results, we find that the (n−m) polynomial factorize into
(n−m) linear factors, each of which is a linear combination of some τabs. Note that the
number (n−m) is also the number of gluons in the amplitude in the hidden factorization
relation (3.6).

3.2 The closed formula

In this subsection, we present the closed formula for the v⃗ vectors. Although we do not have a
general proof yet, highly non-trivial checks up to eight points have been done which strongly
support the following compact rules for the v⃗ vectors. We point out that this subsection is
relatively technical. For understanding the remaining part of the paper, knowing the existence
of such a formula would be sufficient and this subsection may be skipped in a first reading.

The expressions of v⃗ vectors depend on the factorization channel. We have seen the case
associated with the spurious pole q2

n−1−q2 in (3.1), where the v⃗ vector has a very simple
form as (3.2). The expressions in other channels are generally more complicated. To clearly
show the pattern, it is helpful to directly work out the most “complicated” case, where the v⃗
vector appears in the following hidden factorization relation on the spurious pole q2

2−q2

v⃗n ·F⃗n|q2
2=q2 =

∑
β∈Sn−2

vn[β]Fn[β]|q2
2=q2 =F2(1ϕ,2ϕ)×An(q2,3, . . . ,n,−q) . (3.9)

We will explain the generalization for other spurious poles afterwards. As mentioned before,
it is sufficient to work on the v⃗(1,1) vectors, and we will omit the subscript (1,1) for simplicity.
We will also discuss how to determine v⃗(κ̄,ρ̄) from v⃗(1,1) later.

14Even without the explicit expression, this is also understandable due to the Feynman propagator
s12···m···(m+i)−q2 (0<i<n−m) in the amplitudes on the r.h.s. of (3.5).
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The explicit rules for the q2
2 = q2 pole. The closed formula for the v⃗ vectors, defined

for the q2
2 = q2 pole, is

v⃗n = {vn[β]} , vn[β] = (−1)ϖ(β)
∏n

i=3 li[β]∏n−1
k=3(s12···k−q2)

, (3.10)

where li[β] is a linear function of certain τab assigned for the gluon i, and ϖ is a function
controlling the sign. They can be determined via the following steps:

1. We first pick out a subset of gluons {j1, . . . , jr} such that each element ja satisfies:
3<ja<n, and either {ja−1, ja, ja+1} or {ja+1, ja, ja−1} is a subordering15 of the
ordering β. These are the first set of gluons.

2. For each of the above gluons ja, we define

lja [β] = τja,ΞL(ja;β)+(s12···(ja−1)−q2), if {ja−1, ja, ja+1} is a subordering of β;
lja [β] = τja,ΞR(ja;β)+(s12···(ja−1)−q2), if {ja+1, ja, ja−1} is a subordering of β.

Here we use the notation ΞL(j;α) (or ΞR(j;α)) to represent the sum over momenta
with index k < j and on the left (or right) side of the element j in the ordering α. More
precisely, for a ordering α and an element j ∈α, we can simply delete the particles
j+1, . . . ,n in α (leaving 1,2, . . . , j unchanged) and get a subordering Ξ(j,α) of α such
that

Ξ(j,α)= { 1, . . .︸ ︷︷ ︸
ΞL(j;α)

, j, . . . ,2︸ ︷︷ ︸
ΞR(j;α)

} . (3.11)

Note that |Ξ(j,α)|= j. For example,

Ξ(4,{1,3,5,4,6,2})= {1,3,4,2}, τ4,ΞL(4;{1,3,5,4,6,2})=τ4,(1+3), τ4,ΞR(4;{1,3,5,4,6,2})=τ42.
(3.12)

See also appendix C of [10] for more details.

3. The rest of the gluons belong to the second set. For them, we define an ordered list by
deleting gluons in the first set and {1,2}:

β=β\({j1, . . . , jr}∪{1,2}) ,

say β= {x1, . . . ,xn−2−r}, which is a subordering in β.
Now lxb

[β] is either τxb,ΞL(xb;β) or τxb,ΞR(xb;β). To tell which one, we sort the list β and
get β′= {xk1 , . . . ,xkn−r−2} with xkc < xkc+1 . Suppose in the new ordering, x1 is in the
s-th position, that is x1=xks . We have that

lxks
[β] = lx1 [β] = τx1,ΞL(x1;β) . (3.13)

Then we ask that the ΞL and ΞR appear in an alternating way according to the ordering
β
′. Specifically, we have the alternating list

. . . , lxks−1
[β] = τxks−1 ,ΞR(xks−1 ;β), lx1 [β] = τx1,ΞL(x1;β), lxks+1

[β] = τxks+1 ,ΞR(xks+1 ;β), . . .

15We say A is a subordering, or an ordered subset, of B, if A⊂B and the order of elements in A is exactly
the same as their order in B.
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or say
lxt [β] = τxkt

,ΞL(xkt
;β), if (t−s)= 0(mod 2) ,

lxt [β] = τxkt
,ΞR(xkt

;β), if (t−s)= 1(mod 2) .
(3.14)

We would like to stress the difference of expressions between lxt for the second set and
lja for the first set: in the first set lja , there is an extra term (s12···(ja−1)−q2).

4. Finally, we determine the overall sign for v[β]. The result is

ϖ(β)=
[
1+

∑
xb∈β

(xb+n−1)+n(ι+1)
]
(mod 2) , (3.15)

where the quantity ι from β as
ι= s(mod 2)

where s means, as above, the first element in β is the s-th element in the sorted β
′.

We briefly recapitulate the underlying idea of the above rules. This idea is to separate
the ordering β into three parts: the scalars {1,2} having no corresponding l[β] contributions,
the gluon subset {ja} satisfying some relative-position conditions, and the rest gluons forming
the second set β. Suppose initially all the gluons have the canonical {3,4, . . . ,n} ordering,
and then we act on the permutation β. Some of the gluons satisfy the subordering criteria,
which form the first set {j1, . . . , jr} above. Their lja [β]s are easier to handle. On the other
hand, for the rest of gluons in β, their positions do not satisfy the subordering criteria in β,
and it takes efforts to write down their l[β] factor and the overall sign.

To make these rules more user-friendly, we give also the following explicit examples:

1. To begin with, we consider a simple five-point example v[β1] with β1= {1,5,4,3,2}.

The first type of gluons has only one element {4}, where {5,4,3} is a subordering of β1.
And we can write down l4= τ4,ΞR(4,β1)+(s123−q2), with τ4,ΞR(4,β1)= τ4,(1+3).

For the remaining gluons, we have β1= {5,3}. Here we see that 5 is the first element
and 3 is the second. We then sort β1 and get β′1= {3,5}, in which 5 is the second and
3 is the first. And we directly give l5= τ5,ΞL(5;β1)= τ51. In β′1, 3 appears one site ahead
of 5, so that if we use ΞL for 5, we need ΞR for 3, namely, l3= τ3,ΞR(3;β1)= τ32.

The last step is to determine the overall sign. The ι for β1 is 0 because the first element
of β1 is at the second place in β

′
1. Using (3.15), we have

ϖ(β1)= [1+((3+4)+(5+4))+5(0+1)](mod 2)=0.

In the end, we get

v[β1] =
(−1)ϖ(β1)∏5

j=3 lj [β1]
(s123−q2)(s1234−q2)

= (−1)0τ32τ51
s1234−q2

( τ4,(1+3)
s123−q2

+1
)
.
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2. Next we consider a seven-point example v[β2] with β2={1,4,5,3,7,6,2}.

The first type of gluons has only one element {5}, and {4,5,6} is an ordered subset of
β2. This means

l5[β2] = τ5,ΞL(5;β2)+(s1234−q2)=τ5,(1+4)+(s1234−q2).

Deleting {1,2,5} in β2, we obtain the subordering β2= {4,3,7,6} for the remaining
gluons. And it becomes β′2= {3,4,6,7} after sorting. The first element in β2 is 4 and it
is the second one in β

′
2. We use ΞL in l4, and ΞR in l3 and l6, and ΞL in l7. This is to

make an alternating list.

Finally we determine the sign. The first element in β2 is the second in β
′
2, making ι to

be 0. A straightforward calculation according to (3.15) gives ϖ(β2)= 0.

Thus we have the final expression

v[β2] =
(−1)0τ3,ΞR(3;β2)τ4,ΞL(4;β2)τ6,ΞR(6;β2)τ7,ΞL(7;β2)

(s123−q2)(s12345−q2)(s123456−q2)
(τ5,ΞL(5;β2)
s1234−q2

+1
)

=
τ32τ41τ62τ7,(1+3+4+5)

(s123−q2)(s12345−q2)(s123456−q2)
( τ5,(1+4)
s1234−q2

+1
)
.

3. Since the above examples are both odd-point ones, we conclude with an eight-point
example: v[β3] with β3= {1,3,4,7,8,6,5,2}, in which some simplifications can be
introduced.

Again, we first pick out the gluons with their adjacent suborderings in β3. We have
j1=4 with {3,4,5} a subordering and j2=6 with {7,6,5} is a subordering. They give
factors

l4[β3] =τ4,ΞL(4;β3)+(s123−q2)= τ4,(1+3)+(s123−q2),
l6[β3] =τ6,ΞR(6;β3)+(s12345−q2)= τ6,(2+5)+(s12345−q2).

The subordering removing {1,2, j1, j2} is β3= {3,7,8,5} and β
′
3= {3,5,7,8} sorted.

The first element in β3 is also the first one in β
′
3. This helps us to fix l3,5,7,8 to be

τ3,ΞL(3;β3), τ5,ΞR(5;β3), τ7,ΞL(7;β3) and τ8,ΞR(8;β3) respectively, based on the alternating
list requirement.

As for the sign, because n=8 is an even number, we do not bother to write down ι and
ϖ(β3) is basically just summing up β3 (and a 1), this makes ϖ(β3)= 0.

We have the full expression

v[β3] =
(−1)0τ3,ΞL(3;β2)τ5,ΞR(5;β2)τ7,ΞL(7;β2)τ8,ΞR(8;β2)

(s123−q2)(s1234−q2)(s123456−q2)(s1234567−q2)
(τ4,ΞL(4;β2)
s123−q2

+1
)( τ6,ΞR(6;β2)
s12345−q2

+1
)

=
τ31τ52τ7,(1+3+4)τ8,(2+5+6)

(s123−q2)(s1234−q2)(s123456−q2)(s1234567−q2)
( τ4,(1+3)
s123−q2

+1
)( τ6,(2+5)
s12345−q2

+1
)
.
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Generalizations to other poles. The generalization of the v⃗ vectors for other spurious
poles like s12···m−q2 is straightforward. Only some minor modifications are required for
the rules given above.

First, we need a new supplementary rule in the beginning:16

• Step 0. v[β] is non-zero only if {1,3, . . . ,m,2} is a subordering of β.
Next, we need the following small changes to the previous rules:

• In the step 1, for ja ∈{j1, . . . , jr}, instead of requiring 3<ja<n, now we ask for that
(m+1)<ja<n.

• The step 2 stays the same.

• In the step 3, we modify the subordering β as β=β\({j1, . . . , jr}∪{1,2, . . . ,m}).17

• In the step 4, we need to modify ϖ(β) slightly as

ϖ(β)=
[
1+

∑
xb∈β

(xb+n−1)+(n−m)(ι+1)
]
(mod 2) .

We illustrate this briefly with the example v[1,5,3,7,6,4,2] for the pole s1234−q2. First,
this v element is not zero because {1,3,4,2} is indeed a subordering of {1,5,3,7,6,4,2}.
Second, there are no first-type gluons, and for the gluons of the second type, we have
β= {5,7,6} and β′= {5,6,7}. Following the rules, the factors l5,6,7[β] are τ51, τ6,(2+4), and
τ7,(1+3+5), respectively. As for the overall sign, we have ι=1 and

ϖ(β)= [1+((5+6)+(6+6)+(7+6))+3(1+1)](mod 2)=1 , (3.16)

thus there is an overall minus sign. In conclusion, we have that

v[1,5,3,7,6,4,2]=−
τ51τ6,(2+4)τ7,(1+3+5)

(s12345−q2)(s123456−q2)
, (3.17)

associated with the factorization relation for the spurious pole s1234−q2.

Permutational Covariance. Now we consider the hidden factorization relation (3.6)
associated with general color-ordered form factors. To relate an arbitrary v⃗(κ̄,ρ̄) to the standard
v⃗(1,1), we need the property of the v⃗ vectors referred to as the permutation covariance.

We start by performing the following permutation on both sides of the hidden factorization
relation (3.6)(̂̄κ)−1(̂̄ρ)−1 ∑

β∈Sn−2

v(κ̄,ρ̄)[β]Fn(1,β,2)=
(̂̄κ)−1(̂̄ρ)−1

Fm(1,κ̄,2)A(q2,(m+1),ρ̄,−q)

⇓∑
β∈Sn−2

((̂̄κ)−1(̂̄ρ)−1
v(κ̄,ρ̄)[β]

)
Fn(1,κ̄−1ρ̄−1β,2)=Fm(1,3,...,m,2)A(q2,(m+1),...,n,−q)

where
(̂̄κ)−1

,
(̂̄ρ)−1

are sub-permutations acting on {3, . . . ,m} and {(m+)2, . . . ,n}.
16Again, we stress that we are dealing with the standard v(1,1)[β]. When we have v(κ̄,1)[β], it is non-zero if

κ̄{3, . . . , r} is a subordering of β.
17In other words, the non-contributing part that needs to be dropped out in β becomes {1,2, . . . ,m}.
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In comparison, we also have∑
β∈Sn−2

v(1,1)[β]Fn(1,β,2)=Fm(1,3, . . . ,m,2)A(q2,(m+1), . . . ,n,−q)

⇓∑
β∈Sn−2

v(1,1)[κ̄−1ρ̄−1β]Fn(1, κ̄−1ρ̄−1β,2)=Fm(1,3, . . . ,m,2)A(q2,(m+1), . . . ,n,−q) .

The consistency of the above two equations gives

v(1,1)[κ̄−1ρ̄−1β] =
(̂̄κ)−1(̂̄ρ)−1

v(κ̄,ρ̄)[β] ⇒ ̂̄κ ̂̄ρ v(1,1)[κ̄−1ρ̄−1β] = v(κ̄,ρ̄)[β] . (3.18)

This is the permutational covariance of the v⃗ vectors, meaning that it is sufficient to just
determine the standard v⃗(1,1) and write down other v⃗’s by applying permutations.

Below we use some concrete examples to illustrate the relation (3.18). The first non-trivial
example is the five-point v⃗ vectors for the s12−q2 spurious pole. The two v⃗ vectors are v5,(1,1)
and v5,(1,σ2)= v5,(1,(4,5)), with the following concrete expressions

v5,(1,1)[1,3,4,5,2]=− τ31τ52
s1234−q2

( τ4,(1+3)
s123−q2

+1
)
, v5,(1,1)[1,3,5,4,2]=−

τ31τ42τ5,(1+3)
(s123−q2)(s1234−q2)

,

v5,(1,1)[1,5,3,4,2]=− τ31τ42τ51
(s123−q2)(s1234−q2)

, v5,(1,1)[1,4,3,5,2]=
τ32τ41τ52

(s123−q2)(s1234−q2)
,

v5,(1,1)[1,5,4,3,2]=
τ32τ51

s1234−q2
( τ4,(2+3)
s123−q2

+1
)
, v5,(1,1)[1,4,5,3,2]=

τ32τ41τ5,(2+3)
(s123−q2)(s1234−q2)

,

and

v5,(1,σ2)[1,3,4,5,2]=−
τ31τ4,(1+3)τ52

(s123−q2)(s1235−q2)
, v5,(1,σ2)[1,3,5,4,2]=− τ31τ42

s1235−q2
( τ5,(1+3)
s123−q2

+1
)
,

v5,(1,σ2)[1,5,3,4,2]=
τ31τ41τ52

(s123−q2)(s1235−q2)
, v5,(1,σ2)[1,4,3,5,2]=− τ32τ41τ52

(s123−q2)(s1235−q2)
,

v5,(1,σ2)[1,5,4,3,2]=
τ32τ42τ51

(s123−q2)(s1235−q2)
, v5,(1,σ2)[1,4,5,3,2]=

τ32τ51
s1235−q2

( τ4,(2+3)
s123−q2

+1
)
.

And now we can check term by term that the following permutational covariance holds (note
that ρ̄=(4,5), κ̄=1 and (4,5)2=1)

v5,(1,σ2)[β] = (45)v5,(1,1)[(45)β] , (3.19)

say
v5,(1,σ2)[1,5,3,4,2]=

τ31τ41τ52
(s123−q2)(s1235−q2)

= v5,(1,1)[1,4,3,5,2]
∣∣∣
p4↔p5

= τ32τ41τ52
(s123−q2)(s1234−q2)

∣∣∣
p4↔p5

.
(3.20)

Next we look at a more non-trivial example, where the inverse (κ̄−1/ρ̄−1) plays a role.
Consider the following two vector elements

v6,(1,1)[1,3,4,6,5,2]=
τ31τ52τ6,(1+3+4)

(s1234−q2)(s12345−q2)
( τ4,(1+3)
s123−q2

+1
)
,

v6,(1,(4,5,6))[1,3,6,5,4,2]=
τ31τ62τ4,(1+3+5)

(s1235−q2)(s12356−q2)
( τ5,(1+3)
s123−q2

+1
)
,

(3.21)
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showing that for the ordering

(4,5,6)−1{1,3,4,6,5,2}=(6,5,4){1,3,4,6,5,2}= {1,3,6,5,4,2} , (3.22)

and the r.h.s. of these two identities are consistent up to a permutation p4→ p5→ p6→ p4.

3.3 The universality

In the previous subsection, we give the closed formula of the v⃗ vectors for the tr(ϕ2) form
factor. Remarkably, exactly the same expressions of v⃗ can lead to the hidden factorization
relations and the matrix decomposition for other form factors, namely, form factors of
different operators or different types of external states. In particular, v⃗ depends only on the
number of point n and the “spurious”-type pole q2

m−q2. We refer to this as the universality
of the v⃗ vectors.

To be more precise, we use the following diagrammatic expression to represent the
hidden factorization relation

~v{〈O|Φn〉} 〈qm, q|Φm′〉〈O|Φm〉× , (3.23)

where on the l.h.s. the input is a basis set of n-point form factors and on the r.h.s. we have
m-point form factors and m′-point amplitudes. Note that both the operator O and the
asymptotic states |Φn⟩= |Φm⟩⊗|Φm′⟩ can be arbitrary.

Similarly, we can discuss the matrix decomposition relations given as

~vS〈O|Φm〉 S〈qm,q|Φm′〉⊗ Resq2m=q2S
〈O|Φn〉 . (3.24)

Here S⟨⋆⟩ are the KLT kernels defined for the form factor/amplitude ⟨⋆⟩. Once again, (3.24)
is valid as long as the operators and the asymptotic states on both sides are consistent.

Below we will decode the universality in (3.23) and (3.24) by plugging in concrete form
factors. To be more precise, we clarify the form factors involved in this subsection:

• the tr(ϕ2) form factors with r (r≥ 2) external scalars in the YMS+ϕ3 theory, as
discussed in [10];

• the form factors of the high-length operators tr(ϕk) with k (k > 2) external scalars in
the YMS theory, which will be covered at length in section 2.

Note that an arbitrary number of external gluons is assumed. We discuss some further
generalizations in appendix B.

As mentioned above, v⃗ vectors will depend on the type of the s12···m−q2 poles. The first
non-trivial case is the v⃗ vector defined for the s123−q2 pole.18

18The reason is that the only form factors that allow the s12−q2 spurious pole are the tr(ϕ2) form factors
with two external scalars.
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The s123−q2 pole. When considering the s123−q2 pole, (3.23) and (3.24) can be translated
to the following statement: for the tr(ϕ2) form factors with two or three external scalars,
and tr(ϕ3) form factors with three external scalars, the same v⃗ vectors appear in the hidden
factorization relations and the matrix decomposition. Explicitly, for the hidden factorization
relation, we have (we use the red color to highlight some minor differences)∑

β∈Sn−2

v[1,β,2]Ftr(ϕ2),n(1ϕ,β{3g,4g, . . . ,ng},2ϕ)
∣∣
s123=q2

(3.25)

=Ftr(ϕ2),3(1ϕ,3g,2ϕ)An−1(qS
3 ,4g, . . . ,ng,−qS) ,∑

β∈Sn−2

v[1,β,2]Ftr(ϕ2),n(1ϕ,β{3ϕ,4g, . . . ,ng},2ϕ)
∣∣
s123=q2

=Ftr(ϕ2),3(1ϕ,3ϕ,2ϕ)An−1(qS
3 ,4g, . . . ,ng,−qS) ,∑

β∈Sn−2

v[1,β,2]Ftr(ϕ3),n(1ϕ,β{3ϕ,4g, . . . ,ng},2ϕ)
∣∣
s123=q2

=Ftr(ϕ3),3(1ϕ,3ϕ,2ϕ)An−1(qS
3 ,4g, . . . ,ng,−qS) .

The n=4 case can be found in (3.42) and (6.16) in [10], and (2.18) in this paper. Although
these are equations for different form factors, the v[1,β,2] is universal for the three equations.
We give a few remarks here: (1) in each one of them, the operator and asymptotic states on
both sides are the same to make the equation consistent; (2) all the elements of v[1,β,2] are
non-zero, due to the closed formulas discussed in the last subsection; and (3) the amplitude
factor on the r.h.s. is also universal.

For completeness, we also give all the three matrix decomposition relations as

Ress123=q2
[
S
Ftr(ϕ2),a
n [α1|α2]

]
=

∑
ρ̄1,2∈Sn−4

v(1,ρ̄1)[α1]
(
S
Ftr(ϕ2),a
3 [1|1]SA

n−1[ρ̄1|ρ̄2]
)
v(1,ρ̄2)[α2] ,

Ress123=q2
[
S
Ftr(ϕ2),b
n [α1|α2]

]
=

∑
ρ̄1,2∈Sn−4

v(1,ρ̄1)[α1]
(
S
Ftr(ϕ2),b
3 [1|1]SA

n−1[ρ̄1|ρ̄2]
)
v(1,ρ̄2)[α2] ,

Ress123=q2
[
S
Ftr(ϕ3)
n [α1|α2]

]
=

∑
ρ̄1,2∈Sn−4

v(1,ρ̄1)[α1]
(
S
Ftr(ϕ3)
3 [1|1]SA

n−1[ρ̄1|ρ̄2]
)
v(1,ρ̄2)[α2] ,

(3.26)
where SFtr(ϕ2),a, SFtr(ϕ2),b and SFtr(ϕ3) mean the KLT kernel for tr(ϕ2) form factors with two
scalars, for tr(ϕ2) form factors with three scalars and for tr(ϕ3) form factors (with three
scalars), respectively. Note that the expression for the form factor KLT kernel depends on
the external asymptotic states, which is why we keep track of asymptotic states in (3.24).
Four-point examples are given in (3.44) and (6.15) in [10] and (2.18) in this paper.

The s1234−q2 pole and beyond. Although the above s123−q2 case has clarified (3.23)
and (3.24) to a good extent, it is not the full story. There is a new feature in the s12···m−q2

(m≥ 4) cases, namely, when considering the tr(ϕ4) or even higher-length operators, one
encounters a counting mismatch: the v⃗ is originally defined with (n−2)! vector elements
for the tr(ϕ2) form factors, but the color-ordered form factors of tr(ϕ4), for instance, have
(n−2)!/2 elements (which will be explained shortly).

In order to deal with this, we take a closer look at the expression of the v⃗ vectors.
Consider the tr(ϕ2) form factors with two external scalars, the v⃗ vectors associated with
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the q2
m−q2 pole (with m≥ 4) can have some zero matrix elements. For instance, we have

the hidden factorization relation∑
β∈Sn−2/S2

v[1,β,2]Ftr(ϕ2),n(1ϕ,β{3g,4g, . . . ,ng},2ϕ)
∣∣
s1234=q2

(3.27)

=Ftr(ϕ2),4(1ϕ,3g,4g,2ϕ)An−2(qS
4 ,5g, . . . ,ng,−qS) .

Here β ∈Sn−2/S2 means that the permutation β does not change the relative order of {3,4}.
Other β’s that shift {3,4} lead to zero v[1,β,2] so they can be dropped from the sum. This
solves the mismatch problem mentioned above.

As discussed in section 2.2, the number of form factor basis for the tr(ϕ4) operator is
(n−2)!/2 which can be taken as F(1,β{3, . . . ,n},2) with β ∈Sn−2/S2. So it is reasonable
to expect ∑

β∈Sn−2/S2

v[1,β,2]Ftr(ϕ4),n(1ϕ,β{3ϕ,4ϕ, . . . ,ng},2ϕ)
∣∣
s1234=q2

(3.28)

=Ftr(ϕ4),4(1ϕ,3ϕ,4ϕ,2ϕ)An−2(qS
4 ,5g, . . . ,ng,−qS) .

Now we can observe the clear similarity between (3.27) and (3.28). This also means the
input process in (3.23) is to sum over β ∈Sn−2/S2.

Upon inspecting the KLT kernel matrix decomposition, we are facing the same problem.
The SF for tr(ϕL) with L=2,3 and SF for tr(ϕ4) are not of the same size: the former is
(n−2)! by (n−2)! and the latter is (n−2)!/2 by (n−2)!/2. The idea is that we take the
upper-left (n−2)!/2 by (n−2)!/2 minor of S

Ftr(ϕ2,3)
n as follows

S
Ftr(ϕ2,3)
n =

(
SF [α1|α2] SF [α1|α̂2]
SF [α̂1|α2] SF [α̂1|α̂2]

)
, (3.29)

where α1,2 ∈Sn−2/S2 permuting {3, . . . ,n} but leave the relative order of {3,4} invariant,
while α̂1,2 ∈Sn−2 but gets {3,4} swapped. And then the matrix decomposition formulas for
the red minor look exactly the same as for S

Ftr(ϕ4)
n , which is

Ress1234=q2
[
S
Ftr(ϕ4)
n [α1|α2]

]
=

∑
ρ̄1,2∈Sn−5

v(1,ρ̄1)[α1]
(
S
Ftr(ϕ4)
4 [1|1]SA

n−2[ρ̄1|ρ̄2]
)
v(1,ρ̄2)[α2] , (3.30)

where α1,2 ∈Sn−2/S2 and v(1,ρ̄)[αi] are exactly the non-zero vector elements of v⃗.19 We see
again that the “correct” number of non-zero elements for certain v⃗ is the key. It is interesting
to notice that for the tr(ϕ2,3) form factors, we have exactly the same form

Ress1234=q2
[
S
Ftr(ϕ2,3)
n [α1|α2]

]
=

∑
ρ̄1,2∈Sn−5

v(1,ρ̄1)[α1]
(
S
Ftr(ϕ2,3)
4 [1|1]SA

n−2[ρ̄1|ρ̄2]
)
v(1,ρ̄2)[α2] ,

(3.31)
19Based on the permutational covariance, v(1,ρ̄)[α] is ρ̄v(1,1)[ρ̄−1α]. Since ρ̄ only act on the gluons {5, . . . ,n}

and α∈Sn−2/S2 permuting {3,4,5, . . . ,n} without changing the relative position of {3,4}, we have ρ̄−1α also
belongs to Sn−2/S2. Therefore, v(1,ρ̄)[α] is non-zero.
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if we also confine ourselves to α1,2 ∈Sn−2/S2. We give a comment here. From the original
version of the matrix decomposition (3.7), one may expect the following equation for the
tr(ϕ2,3) case

Ress1234=q2
[
S
Ftr(ϕ2,3)
n [α1|α2]

]
= (3.32)∑

κ̄1,2∈S2

∑
ρ̄1,2∈Sn−5

v(κ̄1,ρ̄1)[α1]
(
S
Ftr(ϕ2,3)
4 [κ̄1|κ̄2]SA

n−2[ρ̄1|ρ̄2]
)
v(κ̄2,ρ̄2)[α2] .

However, if we consider only α1,2 ∈Sn−2/S2, then in the first sum, only κ̄1,2=1 gives non-
trivial contribution. If either one of κ̄1,2 is σ2, which is the other element in S2, then
v(σ2,ρ̄i)[αi] is zero.20

For general s12···m−q2 cases, the diagrammatic equations (3.23) and (3.24) are always
valid. Translating these diagrammatic equations into explicit expressions, we have∑

β∈Sn−2/Sm−2

v[β]Fn(1,β,2)
∣∣
s12···m−q2

=Fm(1,3, . . . ,m,2)Am′(qm,(m+1), . . . ,n,−q), (3.33)

and

Resq2
m=q2

[
SF

n [α1|α2]
]
=

∑
ρ̄1,2∈Sm′−3

v(1,ρ̄1)[α1]
(
SF

m[1|1]SA
m′ [ρ̄1|ρ̄2]

)
v(1,ρ̄2)[α2] , (3.34)

where α1,2 ∈Sn−2/Sm−2, which are permutations acting on {3, . . . ,n} but leave the relative
ordering of {3, . . . ,m} invariant. The form factor F can be any form factor that has the
s12···m−q2 pole after double copy, as long as we are consistently using the same class of form
factors on both sides of the above equations.

In summary, the v⃗ vectors can be regarded as universal quantities that relate higher-
and lower-point form factors, as indicated in (3.23) and (3.24). They depend solely on n (the
number of particles) and the spurious pole q2

m−q2. Such a universality may have a more
profound interpretation, see discussions in section 5.

4 Towards the double copy of the tr(F 2) form factor

In this section, we consider form factors of tr(F 2) in the pure Yang-Mills theory. As we
will see, these form factors have very different structures and the double-copy construction
requires a genuinely new prescription.

Let us start with the simple two-point minimal form factor

Ftr(F 2)(1,2)= (f1)µ
ν(f2)ν

µ , (4.1)

where we recall the definition fµν
i ≡ pµ

i ε
ν
i −pν

i ε
µ
i . In this case, one can make the double copy

by simply squaring the form factor as

G2(1,2)=
(
Ftr(F 2)(1,2)

)2
, (4.2)

20We can even go one step further. The matrix S
Ftr(ϕ2,3)
4 is a 2 by 2 matrix, which has 4 matrix elements.

For each one of the matrix elements, we can define a (n−2)!/2 by (n−2)!/2 minor as in (3.31) by replacing
S

Ftr(ϕ2,3)
4 [1|1] with other matrix element of S

Ftr(ϕ2,3)
4 and change the corresponding v⃗ vector. These four

minors are exactly the four minors in (3.29).
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Figure 5. The cubic diagram for the three-point tr(F 2) form factor.

which is well-defined and corresponds to the form factor of R2=RµνσρR
µνσρ operator. Since

the form factors of tr(F 2) can be understood as Higgs plus gluon amplitudes in the Higgs
EFT with an effective interaction vertex Htr(FµνF

µν)(see appendix B), the double-copy
quantities are expected to correspond to Higgs and graviton amplitudes with the interaction
vertex HRµνσρR

µνσρ.
For higher-point non-minimal form factors, however, the double-copy generalization is

non-trivial. In section 4.1, we will explain using the three-point example which can capture
most of the salient features. In section 4.2, we discuss the more complicated four- and
higher-point cases.

4.1 The three-point case

We begin with the first non-minimal case: the three-point form factor. In this example, we will
explicitly reveal the difficulties appearing in a naive application of the previous double-copy
procedure and show how to tackle them. Before the concrete discussion, we would like
to emphasize first that a physical double-copy construction must satisfy diffeomorphism
invariance and have consistent factorization properties on all poles, which will be of central
importance below.

Problem of an undesirable pole. The three-gluon form factor of tr(F 2) in general
involves three cubic diagrams as shown in figure 5 and has the following form

F tr(F 2),3(1g,2g,3g)= CaNa

s12
+CbNb

s13
+CcNc

s23
. (4.3)

We emphasize that there are three cubic diagrams contributing to this form factor, which is
different from the form factor Ftr(ϕ2),3(1ϕ,2ϕ,3g) involving only two diagrams. The different
numbers of diagrams will give different pole structures. Let us naively follow the previous
double-copy procedure as in the tr(ϕ2) form factors. We impose the CK duality and require
the numerators to satisfy

Ca =Cb =Cc ⇒ Na =Nb =Nc . (4.4)

The CK-dual numerators can be solved uniquely as

NCK=Na =Nb =Nc =
s12s13s23Ftr(F 2),3(1g,2g,3g)
s12s23+s13s23+s12s13

. (4.5)
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where Ftr(F 2),3(1g,2g,3g) is the color-ordered form factor. Then we make the naive double
copy of (4.3) as

G′
3(1h,2h,3h)= N2

a

s12
+N2

b

s13
+N2

c

s23
= s12s23s13
s12s23+s13s23+s12s13

(
Ftr(F 2),3(1g,2g,3g)

)2
. (4.6)

Although this expression satisfies the diffeomorphism invariance, an obvious problem is that
there is an “unwanted” pole (s12s23+s13s23+s12s13). This pole can no longer be understood
as a massive Feynman propagator as in the tr(ϕ2) form factor. One can also check that,
after plugging in the explicit expression for F3 in terms of Lorentz product of εi and pi,
there is no possibility to eliminate this unwanted pole. Thus the double-copy quantity (4.6)
cannot be explained as a Higgs plus graviton amplitude or any other physical quantity with
only local propagators.21

Special MHV case. To understand the above problem better, we notice that for the
MHV form factor in four dimensions, the form factors of tr(F 2) and tr(ϕ2) are proportional
to each other:

Ftr(F 2),3(1−,2−,3+)= ⟨12⟩2Ftr(ϕ2),3(1ϕ,2ϕ,3+)= ⟨12⟩4
⟨12⟩⟨23⟩⟨31⟩ . (4.7)

In this case, one may simply define the double copy of the tr(F 2) form factor as

G3(1−,2−,3+)= ⟨12⟩4Gtr(ϕ2),3(1ϕ,2ϕ,3h) . (4.8)

One can check that the double copy defined as such indeed satisfies the factorization property
and corresponds to a Higgs and three gravitons (-,-,+) amplitude.

Diagrammatically, this comes from the fact that for the MHV form factor, the diagram
(a) in figure 5 does not contribute, because the three-point vertex coupled to three minus
helicity gluons vanishes. In particular, the two negative-helicity gluons play the roles of the
two scalars in the tr(ϕ2) form factors, thus the cubic diagrams of the MHV tr(F 2) form
factors are the same as the tr(ϕ2) form factors. Therefore, the same propagator matrices
appear of which the inverse are free of the above unwanted type of poles. This picture also
applies to higher-point MHV form factors.

NMHV case and general solution. Can the MHV story be generalized to the general
non-MHV case? While the structure of non-MHV form factors is certainly more complicated
than the MHV cases, the above MHV picture provides a clue. Let us consider the NMHV case
with three minus-helicity gluons. Like the MHV form factors where the two minus-helicity
gluons are mapped to the two external scalars (in the tr(ϕ2) form factors), is it possible to
also map the NMHV form factor to the tr(ϕ2) form factors with three external scalars, of
which the double copy is known? This picture turns out to be true!

Specifically, the above idea implies that we should make connections between the tr(F 2)
form factors and the tr(ϕ2) ones, in order to make use of the double copy of the latter.
This connection is intuitively natural: one can “pull out” part of the polarization vectors

21One may not exclude the possibility that this new type of pole may have some higher-derivative kinetic
terms or some non-local interpretation.
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Figure 6. Feynman diagrams for the double copy of the three-point tr(F 2) form factor.

and expand the tr(F 2) form factors in terms of the tr(ϕ2) ones. For the three-point form
factor, one has the following decomposition

Ftr(F 2),3(1−,2−,3+)= ⟨12⟩2Ftr(ϕ2),3(1ϕ,2ϕ,3+)
Ftr(F 2),3(1−,2−,3−)= ⟨12⟩2Ftr(ϕ2),3(1ϕ,2ϕ,3−)+⟨13⟩2Ftr(ϕ2),3(1ϕ,2−,3ϕ)

+⟨23⟩2Ftr(ϕ2),3(1−,2ϕ,3ϕ)+⟨12⟩⟨23⟩⟨31⟩Ftr(ϕ2),3(1ϕ,2ϕ,3ϕ).
(4.9)

These two equations can be encoded in one unified D-dimensional form

Ftr(F 2),3(1g,2g,3g)=trf(1,2)Ftr(ϕ2),3(1ϕ,2ϕ,3g)+trf(1,3)Ftr(ϕ2),3(1ϕ,2g,3ϕ)
+trf(2,3)Ftr(ϕ2),3(1g,2ϕ,3ϕ)+2trf(1,2,3)Ftr(ϕ2),3(1ϕ,2ϕ,3ϕ),

(4.10)

where we introduce the notation trf(i1, . . . , ik) as

trf(i1, . . . , ik)= fµk
i1,µ1

fµ1
i2,µ2

· · · fµk−1
ik,µk

. (4.11)

Now let us see how to make use of such a connection. The double copy of all the
scalar-Yang-Mills blocks in the r.h.s. of (4.10) are known from previous discussions. We
use the special cubic-diagram form that manifests CK-duality for all the scalar form factor
blocks, such as Ftr(ϕ2),3(1ϕ,2ϕ,3g)=N1×(1/s13+1/s23). As a result, we have the following
pre-double-copy form, which is a specific cubic diagram expansion with numerators composed
of CK-dual blocks

Ftr(F 2),3(1g,2g,3g)= trf(1,2)
(
N1
s13

+N1
s23

)
+trf(1,3)

(
N2
s12

+N2
s23

)
+trf(2,3)

(
N3
s13

+N3
s12

)
+2trf(1,2,3)

( 1
s12

+ 1
s23

+ 1
s13

)
= trf(1,2)N1+trf(2,3)N3+2trf(1,2,3)

s13
+cyc(1,2,3), (4.12)

where N1,2,3 are the CK numerators given in [10]

N1=
2p2 ·f3 ·p1
s12−q2

, N2=
2p1 ·f2 ·p3
s13−q2

, N3=
2p3 ·f1 ·p2
s23−q2

. (4.13)
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And the full-color three-point form factor is simply

F tr(F 2),3(1g,2g,3g)= f123Ftr(F 2),3(1g,2g,3g) , (4.14)

since the three cubic diagrams all contribute to F3 and have identical color factors.
We need to point out that, given the numerator representation in (4.12), (4.14) does not

satisfy the “global” CK-duality like (4.4). To satisfy that duality, the numerators of the three
cubic diagrams with propagators s12, s13 and s23 have to be identical. The three numerators
in (4.12) (and thus in (4.14)) are related by the cyclic permutation, so that the numerator
Ns13 =trf(1,2)N1+trf(2,3)N3+2trf(1,2,3) would have to be cyclic invariant to make the
CK-duality valid. By examining the explicit expression, however, it is not the case. Therefore,
we would not have a meaningful double-copy result by simply squaring these numerators.

To cure this problem, we inspect the representation (4.12) and notice the sub-blocks in the
numerators are gauge invariant. This implies that we may relax the requirement of CK duality
while we can still keep the double copy quantity diffeomorphism invariant. Concretely, we note
that there are three terms in the numerator Ns13 of the s13 propagator in (4.12), denoted as ñi

ñ1=N1trf(1,2) , ñ2=N3trf(2,3) , ñ3=trf(1,2,3) . (4.15)

Rather than squaring the full numerator Ns13 , we propose an ansatz of the double-copy
numerator given in a form allowing quadratic mixing between different ñi’s:

N ansatz
s13 =

3∑
i,j=1

Mijñiñj , (4.16)

where Mij are just rational numbers. We will refer to M as the mixing coefficient matrix.
The double copy quantity can be obtained as

Gansatz
3 =

N ansatz
s13

s13
+cyc(1,2,3) . (4.17)

The above ansatz form can be viewed as a generalization of the usual double copy operation
where one simply replaces color factors with dual kinematic numerators. Here the CK duality
is only used at the level of scalar form factor blocks. As already emphasized above, since our
ansatz is built out of gauge invariant blocks, the double-copy result is manifestly invariant
under the linear diffeomorphism transformation.

Given the ansatz, we still need to solve for the constant matrix Mij in (4.16). We achieve
this by requiring (4.17) to have consistent factorization properties. Also, we expect that
the result of (4.17) should match the diagrams in figure 6. We need to mention that it is
a priori not known whether the ansatz works (4.17)|this needs to be justified by explicit
calculations. Fortunately, after inspecting all factorization relations (in four-dimensional
kinematics), we find there exists indeed a solution; in this case, it is also unique. The
mixing coefficient matrix Mij is

M =

1 0 2
0 1 2
2 2 6

 . (4.18)
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We point out that the definition of the matrix Mij in (4.16) is not unique, and we will
choose the matrix to be symmetric (which is always possible) just for convenience. The
double-copy result is given as

G3(1h,2h,3h)= 1
s13

[
(trf(1,2)N1)2+(trf(2,3)N3)2+4trf(1,2,3)trf(2,3)N3+

4trf(1,2,3)trf(1,2)N1+6(trf(1,2,3))2
]
+cyc(1,2,3) .

(4.19)

We can specify it to the MHV and NMHV helicity sectors, which are given respectively as22

G3(1−,2−,3+)=
(trf(1−,2−)Nϕϕ+

1 )2
s13

+(trf(1−,2−)Nϕϕ+
1 )2

s23
, (4.20)

G3(1−,2−,3−)=
1
s13

[
(trf(1−,2−)Nϕϕ−

1 )2+(trf(2−,3−)N−ϕϕ

3 )2+4trf(1−,2−,3−)trf(2−,3−)N−ϕϕ

3

+4trf(1−,2−,3−)trf(1−,2−)Nϕϕ−
1 +6(trf(1−,2−,3−))2

]
+cyc(1,2,3) .

Here Nϕϕ+
i and Nϕϕ−

i are the four-dimensional CK-dual numerators with special helicities, e.g.

Nϕϕ+
1 =2×⟨12⟩[13][32]

s12−q2
, Nϕϕ−

1 =2×⟨32⟩[12]⟨13⟩
s12−q2

. (4.21)

The MHV expression is consistent with the previously discussed result (4.8). Moreover, both
the MHV and NMHV results given by G3 in (4.19) match the Feynman diagram results as
shown in figure 6. In particular, it satisfies the factorization on the spurious-type poles like
s12−q2 in the second line diagrams in figure 6.

Subtlety in D dimensions. It may be tempting to conclude that this G3(1g,2g,3g)
in (4.19) is just the object that we are looking for. But one should still ask whether the
four-dimensional valid result is true in D dimensions. Indeed, it shares most of the desired
properties. For example, the spurious-type poles like s12−q2 are simple poles and G3 has
consistent factorization on those poles. However, when checking the massless poles like s12,
we find no solution from our ansatz (4.17) that matches the D-dimensional tree products.

Since the solution (4.19) is already consistent in four dimensions, the missing terms can
only be given in an expression that is non-zero in D dimensional kinematics but vanishes in
four dimensions. Such terms will be named as evanescent corrections.23 It turns out that an
evanescent correction ∆3 is needed to make the D-dimensional factorization correct:

Ress12=0
(
G3+∆3

)
=

∑
helicityI

G2(3h,P I(ε))M3(−P I(ε̄),1h,2h) , (4.22)

where
∆3=

( 1
s12

+ 1
s23

+ 1
s13

)
Gram(p1,p2,p3,ε1,ε2,ε3) (4.23)

22Note that trf(−+) or trf(−−+) are zero, which explains why the MHV case is simple.
23A systematic construction of gluonic evanescent operators in YM theory, as well as their relation to

D-dimensional form factors, has been recently studied in [20, 21].
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with the Gram determinant defined as

Gram(u1, . . . ,ur)=det
(
(Tab)r×r

)
, with Tab =ua ·ub, a,b=1, . . . , r . (4.24)

Clearly, Gram(p1,p2,p3,ε1,ε2,ε3) (and thus ∆3) is zero in four dimensions.24

Finally, we comment that given the ansatz Gansatz
3 in (4.17), there is no way to get ∆3

by adjusting the Mij matrix therein. Therefore, the original ansatz can only produce a
consistent double copy in four dimensions. It needs to be complemented by some evanescent
terms to make it valid in D dimensions.

4.2 Higher-point generalizations

We can generalize the above procedure to higher points. Let us recapitulate the main steps
used in the previous three-point example:

1. First, we use a gauge-invariant decomposition to decompose the tr(F 2) form factor into
the tr(ϕ2) ones, with coefficients encoding the polarization information given in terms
of traces of field strength, as in (4.10).

2. Next, we take the CK-dual numerators of the tr(ϕ2) ones and make a numerator ansatz
in general quadratic form of those scalar numerators, as in (4.16). A (numeric) mixing
matrix M is introduced.

3. Finally, we solve for the ansatz, in particular the numbers in the matrix M , by requiring
the double copy ansatz to be consistent with all factorization conditions (at least in
four-dimensional kinematics).

The three-point example is fully symmetric and relatively simple. Below we will consider in
detail the four-point case which can provide more explanations needed for the higher-point
cases. For the reader’s convenience, we also summarize the above strategy for performing
double copy in figure 7.

1) The gauge-invariant decomposition. To express the decomposition in different
helicity sectors, we follow the same strategy and obtain:

Ftr(F 2),4(1−,2−,3+,4+)=⟨12⟩2Ftr(ϕ2),4(1ϕ,2ϕ,3+,4+),
Ftr(F 2),4(1−,2−,3−,4+)=⟨12⟩2Ftr(ϕ2),4(1ϕ,2ϕ,3−,4+)+⟨13⟩2Ftr(F 2),4(1ϕ,2−,3ϕ,4+)

+⟨23⟩2Ftr(F 2),4(1−,2ϕ,3ϕ,4+)+⟨12⟩⟨23⟩⟨31⟩Ftr(ϕ2),4(1ϕ,2ϕ,3ϕ,4+),
Ftr(F 2),4(1−,2−,3−,4−)=

∑
i<j

⟨ij⟩2Ftr(ϕ2),4(. . . , iϕ, . . . , jϕ, . . .) (4.25)

+⟨12⟩⟨23⟩⟨31⟩Ftr(ϕ2),4(1ϕ,2ϕ,3ϕ,4−)+cyc(1,2,3,4)

+
(
⟨12⟩2⟨34⟩2−⟨13⟩2⟨24⟩2

)
Fϕϕϕϕ
a +

(
⟨14⟩2⟨23⟩2−⟨13⟩2⟨24⟩2

)
Fϕϕϕϕ
b .

24Gram(p1,p2,p3,ε1,ε2,ε3) can be viewed as the on-shell presentation for the gravitational operator
δν1ν2ν3ν4ν5ν6

µ1µ2µ3µ4µ5µ6 Rµ1µ2
ν1ν2 Rµ3µ4

ν3ν4 Rµ5µ6
ν5ν6 , where δν1ν2ν3ν4ν5ν6

µ1µ2µ3µ4µ5µ6 = ϵµ1µ2µ3µ4µ5µ6 ϵν1ν2ν3ν4ν5ν6 is the rank-
6 Kronecker symbol, and Rµ1µ2

ν1ν2 corresponds to (pµ1 εµ2 −pµ2 εµ1 )(pν1 εν2 −pν2 εν1 ). The Kronecker symbol
makes it clear that the Gram vanishes in four dimensions. It is straightforward to generalize to higher-point
Gram with higher-rank Kornecker symbols.
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Ftr(F 2) Ntr(F 2) G ∼ ∑ N2
tr(F2)

Figure 7. An illustrative figure for the main strategy of the double copy prescription for the
tr(F 2) form factor. First we relate the tr(F 2) form factor to the tr(ϕ2) ones via a gauge invariant
decomposition. Next we express the tr(F 2) numerators in terms of tr(ϕ2) CK numerators. Then the
double-copy numerators are written in the general quadratic form of those scalar numerators.

Since we need to consider CK duality later, we would like to present the cubic diagram
representation for these tr(ϕ2) form factor blocks as

F(1φ, 2φ, 3−, 4−)

12

3 4

12

3 4

F(1φ, 2−, 3φ, 4−)

1

2
3

4
1

2 3

4

1 2

4 3 4

1 2

3

Fφφφφ
bFφφφφ

aF(1φ, 2φ, 3φ, 4−)

12

3 4

23

4 1

(4.26)

in which we have used the diagrammatic convention that: a single diagram with multiple
double-line q-legs is actually a sum of diagrams containing a single q-leg in all positions.
For example,

12

3 4

= + +
12

3 4

12

3 4

12

3 4

. (4.27)

Note that the last two Fϕϕϕϕ
a,b in (4.26) are two four-scalar blocks, for example,

Fϕϕϕϕ
a = 1

s23s123
+ 1
s23s234

+ 1
s14s234

+ 1
s14s412

+ 1
s14s23

. (4.28)
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Moreover, the D-dimensional version encoding all the helicity configuration in (4.25) is

Ftr(F 2),4(1g,2g,3g,4g)=
(∑

i<j

trf(i, j)Ftr(ϕ2),4(. . . , iϕ, . . . , jϕ, . . .)
)

(4.29)

+2
(
trf(1,2,3)Ftr(ϕ2),4(1ϕ,2ϕ,3ϕ,4g)+cyc(1,2,3,4)

)
+2
((

trf(1,2,3,4)−trf(4,2,3,1)
)
Fϕϕϕϕ
a +

(
trf(1,2,3,4)−trf(2,1,3,4)

)
Fϕϕϕϕ
b

)
,

which goes back to (4.25) by specifying to appropriate helicity sectors.
We mention that the gauge invariant decomposition can be generalized to higher points

conveniently if we rewrite it in terms of double-ordered form factors in the Yang-Mills-
Scalar+bi-adjoint-ϕ3 theory. The expansion is (see [22] for a systematic study)

Ftr(F 2),4(1g,2g,3g,4g)=
∑

i1<i2

trf(i1, i2)F tr(ϕ2)
4 (i1, i2|1,2,3,4)

+2
∑

i1<i2<i3

trf(i1, i2, i3)F tr(ϕ2)
4 (i1, i2, i3|1,2,3,4)

+2
∑

σ∈S4/(Z4×S2)
trf(σ(1,2,3,4))F tr(ϕ2)

4 (σ(1,2,3,4)|1,2,3,4) ,

where the F (α|β) are the double ordered form factors. For the purpose of the present paper,
however, we still prefer the diagrammatic representation in (4.26).

2) CK-dual numerators for the tr(ϕ2) form factors. With the gauge invariant de-
composition, our next target is to write the gauge-theory form factors in a form similar
to (4.12), where the numerators of cubic diagrams are composed of gauge-invariant CK-dual
blocks. We first directly spell out such blocks and then explain where they are from. The
three types of blocks are

ñ=trf(a,b)N1(aϕ, cg,dg, bϕ) ,
ñ′=trf(a,b,c)N2(aϕ,dg, bϕ, cϕ) ,
ñ′′=trf(a,b,c,d)−trf(b,a,c,d) ,

(4.30)

with a,b,c,d should be properly chosen as a permutation of 1,2,3,4, and

N1(aϕ, cg,dg, bϕ)=−
2
(
fµν
c fd,νρpa,µp

ρ
b

)
(sab−q2)

+ 4(fµν
c pa,µpb,ν)

(
fµν
d pb,µqν

)
(sab−q2)(sabc−q2)

+ 4
(
fµν
d pa,µpb,ν

)
(fµν

c pa,µqν)
(sab−q2)(sabd−q2)

,

N2(aϕ,dg, bϕ, cϕ)=− 2fd,µνp
µ
a(pb+pc)ν

(sabc−q2)
. (4.31)

These numerator blocks emerge from the CK-dual representation of the form factors
appearing in the gauge-invariant decomposition (4.25). Let us look at some examples. For
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the following ϕ2 form factors, one can take the manifestly CK-dual representation as

Ftr(ϕ2),4(1ϕ,2ϕ,3g,4g)= (4.32)

N1(2ϕ,3g,4g,1ϕ)P
(

12

3 4 )
+
(
N1(2ϕ,3g,4g,1ϕ)−N1(2ϕ,4g,3g,1ϕ)

)
P

(
12

3 4 )
Ftr(ϕ2),4(1ϕ,2ϕ,3g,4g)=

N1(2ϕ,3g,4g,1ϕ)P
( 2

1

3

4

)
+
(
N1(2ϕ,3g,4g,1ϕ)−N1(2ϕ,4g,3g,1ϕ)

)
P

(
1

2 3

4

)

Ftr(ϕ2),4(1ϕ,2ϕ,3ϕ,4g)=N2(1ϕ,2ϕ,4g,3ϕ)P
(

23

4 1 )
+N2(2ϕ,3ϕ,4g,1ϕ)P

(
12

3 4 )

Fϕϕϕϕ
tr(ϕ2),4a =P

( 1 2

4 3

)
, Fϕϕϕϕ

tr(ϕ2),4b=P

( 1 2

4 3

)
.

where P (Γ) means the propagator corresponding to the cubic diagram Γ. For the detailed
derivations, see [10].

Substituting these form factors back in the expansion (4.29), we see that first we also
get a cubic diagram form for the tr(F 2) form factors, and then the corresponding tr(F 2)
numerators now include the trf factor and the tr(F 2) CK-dual numerators N1,2. This means
that the first two rows of (4.30) are recovered. As for the third one in (4.30), it naturally
comes from the Fϕϕϕϕ terms in the expansion (4.29). Interestingly, although the numerators
of pure scalar form factors are trivial, the corresponding trf factors do bear the CK structures.
Concretely, the trf factor before Fϕϕϕϕ

a is trf(1,2,3,4)−trf(4,2,3,1), the trf factor before
Fϕϕϕϕ
b is trf(1,2,3,4)−trf(4,2,3,1), and we can exchange 2↔ 1 in Fϕϕϕϕ

a and get a new
diagram with the following trf factor trf(1,3,4,2)−trf(1,3,2,4). Therefore, we have the
following three diagrams

1 2

4 3

1 2

4 3

2 1

4 3

(4.33)

with the associated trf factor satisfying

[
trf(1,2,3,4)−trf(4,2,3,1)

]
−
[
trf(1,2,3,4)−trf(2,1,3,4)

]
=
[
trf(1,3,4,2)−trf(1,3,2,4)

]
which looks exactly the same as the dual Jacobi relation for the three s, t,u-channel diagrams
in 4-point amplitudes.
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In the end, we see conclusively that the tr(F 2) numerators are indeed composed of the

blocks in (4.30). For example, for the diagram
1

2 3

4
, the numerator is

trf(1,4)N1(1ϕ,2g,3g,4ϕ)−trf(1,3)N1(1ϕ,2g,4g,3ϕ)+
trf(1,2)

[
N1(1ϕ,3g,4g,2ϕ)−N1(1ϕ,4g,3g,2ϕ)

]
+trf(1,2,3)N2(1ϕ,2ϕ,3g,4ϕ)+ (4.34)

trf(1,2,3)N2(4ϕ,3ϕ,2g,1ϕ)−trf(1,2,3)N2(1ϕ,2ϕ,4g,3ϕ)+
[
trf(1,2,3,4)−trf(2,1,3,4)

]
with 3+3+1=7 blocks in total. Another type of cubic diagram is like

1

2 3

4
, and there

are 4+4+1=9 blocks in the numerator.

3) Performing double copy. The discussion above is actually reaching the so-called
pre-double-copy form like (4.12), where the tr(F 2) form factor is expressed via a cubic diagram
expansion of which the numerators are like (4.34). Starting from this pre-double-copy form,
we perform the double copy by introducing a mixing matrix Mij similar to (4.17). The only

difference is that we have two Mijs here, defined for the diagrams
1

2 3

4
and

1

2 3

4

respectively. Therefore, we can write the ansatz as

Gansatz
4 (1h,2h,3h,4h)=

(∑9
i,j=1M

(1)
ij ñi

1ñ
j
1

s34s234
+perm(1,2,3,4)/perm(3,4)

)
+ (4.35)

(∑11
i,j=1M

(2)
ij ñi

2ñ
j
2

s12s34
+perm(1,2,3,4)/(perm(3,4)×perm(1,2))

)
,

where ñi
m take the form of the building blocks defined in (4.30), e.g. for the diagram

1

2 3

4
, the blocks in (4.32) are denoted as those ñi

1.25 The total unfixed numbers from

the two matrices Mij is 111.
To solve for the ansatz, we first impose some general conditions, which should be valid

regardless of dimensions or the specific helicity configurations

1. Diagrammatic symmetry: the numerator has the same symmetry as the cubic diagram.

For example, for the diagram
1

2 3

4
, we demand its numerator ∑i,jM

(1)
ij ñi

1ñ
j
1 to

be invariant under the (3,4) permutation.

2. Crossing symmetry:

Gansatz
4 (1h,2h,3h,4h)=Gansatz

4 (σ(1h,2h,3h,4h)) , ∀σ ∈S4 . (4.36)

Note that the first two symmetry requirements have also been used in the three-point
ansatz (4.17) construction.

25We need a more detailed clarification about ñi
m here. Technically, ñi

1 does not have a term by term
correspondence with (4.34). ñ1

1 to ñ6
1 are indeed the first six terms in (4.34) (the two particle and three particle

parts). But we also have ñ7
1 = trf(1,2,3,4), ñ8

1 = trf(1,3,2,4) and ñ9
1 = trf(1,2,4,3), each is gauge invariant.

Thus in total we choose nine ñi
1 as in the sum in (4.35). This is also the case with ñ2, where we have 9+2 = 11

terms.
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3. No double pole:

lim
δ→0

(
δ×Gansatz

4 |s12−q2=δ

)
= finite, lim

δ→0

(
δ×Gansatz

4 |s123−q2=δ

)
= finite .

These conditions put strong constraints on Mij , and there are only 32 free parameters
remaining.

Next, we consider the factorization conditions. We will temporarily consider the result
in four-dimensional kinematics. There are four channels s12=0,s123=0 and s12=q2,s123=q2:

Ress12=0Gansatz
4 (1,2,3,4)=

∑
helicityI

G3(PI(ε),3h,4h)M3(−PI(ε̄),1h,2h) ,

Ress123=0Gansatz
4 (1,2,3,4)=

∑
helicityI

G2(PI(ε),4h)M4(−PI(ε̄),1h,2h,3h) ,

Ress12=q2Gansatz
4 (1,2,3,4)=G2(1h,2h)M4(qϕ

2 ,3h,4h,−qϕ) ,
Ress123=q2Gansatz

4 (1,2,3,4)=G3(1h,2h,3h)M3(qϕ
3 ,4h,−qϕ) .

(4.37)

In the first two equations, M represents pure graviton amplitudes (which explains the helicity
sum), while in the last two equations the M is amplitudes containing two scalars. Practically,
in performing each concrete 4-dimensional factorization, helicity configurations for external
gluons must be specified. We are looking for proper values of the Mij so that our ansatz
Gansatz
4 has desired factorization properties for all helicity configurations. This means each

of the equations in (4.37) represents three equations. Via all these conditions, the mixing
matrices M (1),(2)

ij are both completely determined, as in the three-point case. One can find
the result, which still holds a nice structure, in appendix C.

Since the complete result is a little bit lengthy, here we only present a simplified
version of the four-point solution, specified to the NMHV form factor, to give a taste. This
expression shows the consistency between higher- and lower-point double-copy solutions.
When considering the NMHV form factors (say 1−,2−,3−,4+), in which all the trf(a,b,c,d)
factors are actually zero, we have

9∑
i,j=1

M
(1)
ij ñ1,iñ1,j =

[
trf(1−,3−)N1(1ϕ,2−,4+,3ϕ)

]2 (4.38)

+
[
trf(1−,2−)(N1(1ϕ,3−,4+,2ϕ)−N1(1ϕ,4+,3−,2ϕ))

]2
+4trf(1−,2−,3−)N2(2ϕ,1ϕ,4−,3ϕ)trf(1−,3−)N1(1ϕ,2−,4+,3ϕ)
+4trf(1−,2−,3−)N2(1ϕ,2ϕ,4−,3ϕ)

[
trf(1−,2−)(N1(1ϕ,3−,4+,2ϕ)−N1(1ϕ,4+,3−,2ϕ))

]
+6
[
trf(1−,2−,3−)N2(2ϕ,1ϕ,4−,3ϕ)

]2
.

We see that the numerical coefficients are simple integers {1,4,6}, which are the matrix
elements of Mij , and are the same as the previous three-point result (4.20). In fact, if taking
the soft limit of 4+, one can see this has to be true.

Finally, we want to comment on the generalizations to D dimensions. When trying to
make (4.37) valid in D dimensions, we examine the four equations, and the only one that can be
trivially satisfied is the last one. Like in the three-point discussion, we need to add an evanes-
cent contribution ∆4. To make (G4+∆4) satisfy all the factorization channels in D dimensions,
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we need ∆4 to have sij , sij−q2, sijk−q2 poles. To construct ∆4, one straightforward attempt is
to make use of the known ∆3 in certain factorization channel: for example, one can construct an
ansatz for ∆4 including the factors like Gram(p1,p2,p3,ε1,ε2,ε3)(p1 ·f4 ·p2)(p2 ·f4 ·p3). However,
our calculation shows that such a naive ansatz fails to give a ∆4 consistent with all factorization
channels. This suggests that more complicated structures like Gram(p1,p2,p3,p4,ε1,ε2,ε3,ε4)
or Gram(p1,p2,p3,ε1,ε2)×Gram(p2,p3,p4,ε3,ε4) are required. To construct ∆4 systemati-
cally, one would need to understand the complete basis for the evanescent space, which is an
interesting technical problem. We leave further analysis of these evanescent contributions
to future study.

In summary, we have proposed a prescription of performing double copy for Ftr(F 2) in
pure YM theory. The first crucial step is a gauge-invariant decomposition of Ftr(F 2), which
has an n-point closed formula in [22]. This is to connect the Ftr(F 2) double copy to the Ftr(ϕ2)
ones, since the double-copy of the latter is known for all-multiplicity, which is discussed in the
previous paper [10] (also see discussions in section 2.3). By allowing mixings between different
terms in the decomposition, we can get a double-copy solution that is valid for any helicity
configurations for four-dimensional kinematics. We have introduced some numerical matrix
Mijs to describe the mixing, and some consistency between higher- and lower-point mixing
matrices has been shown. Checks are performed up to 5 points verifying that the strategy
works, which is non-trivial considering the complexity if one tries to evaluate Feynman
diagrams of 5 gravitons and one scalar. We comment that the pattern for the number matrix
Mij in general higher-point cases deserves study, and it would be interesting to understand
the existence of evanescent corrections in general D dimensions.

5 Discussion

In this paper, and in the previous one [10], we discuss the double-copy construction for
form factors in detail, a topic first reported in the letter [9]. A graphic summary of the
structure of these two papers can also be found in figure 1 in [10]. We summarize the
main new results as follows.

• A key new observation is that new poles appear when performing the double copy for
form factors. These poles, referred to as spurious-type poles, are not singularities of
gauge-theory form factors, but they become exposed as physical poles in gravity during
the double-copy procedure.

• The origin of the spurious-type poles can be attributed to the new feature of form factors:
the operator insertion introduces new color relations (determined by the operator’s color
factor), and requiring the double-copy quantity to satisfy diffeomorphism invariance
introduces new numerator relations, named as operator-induced relations, which are
dual to these color relations.

• The spurious-type poles have a clear physical interpretation in the gravity theory: they
take the form of massive Feynman propagators with the mass square equivalent to q2.
The factorization properties are nicely maintained when considering the residues on
such poles.
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• Examining these factorizations in more detail turns out to be very fruitful. On one
hand, the factorization can be understood at the level of matrix decomposition, which
is related to the factorization of the KLT kernel. On the other hand, it reveals a hidden
factorization property of gauge-theory form factors when taking the spurious poles to
be zero.

• Within the factorization relations, an important quantity is the so-named v⃗ vector. The
v⃗ vectors have been observed to be insensitive to the types of operators and external
states. Moreover, the all-multiplicity construction rules are given for the expression of
v⃗ vectors. Although these statements still lack rigorous mathematical proof, numerous
non-trivial checks have been carried out.

• Regarding the CK-dual numerators, one distinct feature that differs from usual ampli-
tude cases is that the form-factor numerators are uniquely fixed; in other words, there is
no so-called “generalized gauge transformation” for the form-factor CK-dual numerators.
At the practical level, this is because the form-factor propagator matrices are invertible.
Consequently, the CK-dual numerators can be related to the color-ordered form factors
in an unambiguous way.

• Since the numerators are uniquely defined, we also managed to obtain a conjectured
compact closed form of CK-dual numerators which has passed various checks. Another
type of universality also appears for the expressions of numerators, essentially stating
that, neglecting the flavor factors, CK-dual numerators do not depend on the operator
(at least in the context of operators composed of scalar fields).

• While the most fundamental examples considered involve the tr(ϕ2) operator in the
Yang-Mills-scalar theory, we also show that the above properties apply for form factors
with more general operators, including high-length operators or operators with different
matter fields. For the double copy of these form factors, an important novelty is that
new types of color relations involving four or more color factors appear, but the CK
duality and double copy work perfectly.

• The double copy for form factors of tr(F 2) with purely gluon external states is also
presented. In this case, a non-trivial new prescription is required, which involves a
decomposition for the form factor and a mixture of different BCJ numerators appearing
in the expansion.

As a concluding remark, it should be instructive to briefly recap the fundamental reason
behind all these new features. In essence, color-singlet is the key. Our new approach depicts
the double copy of form factors, which are intrinsically defined to have a color-singlet operator
insertion, as well as the amplitudes with color-singlet particles such as amplitudes of Higgs
plus quarks and gluons, in both the standard model or the Higgs EFT. For normal (gauge-
theory) amplitudes with colored external particles, each cubic diagram has its unique color
factor. In contrast, in the case of form factors, the insertion of the color-singlet operator
can generate different diagrams (with various propagator structures) that share the same
color factor. A similar complication exists for amplitudes involving an external color-singlet
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particle. Therefore, imposing CK duality for the form factor diagrams is significantly more
non-trivial. Interestingly, despite such complications, the propagator matrices exhibit elegant
structures for a large class of form factors, including the simplicity of their determinants and
factorization properties. This is not always the case though, the diagrams for the tr(F 2) form
factor in pure YM theory are too intricate to impose CK duality directly, and we have to
introduce an additional decomposition and apply CK duality only for the simpler sub-blocks.

To give some outlook, we also list open questions deserving further exploration based
on the previous results.

• First, it would be important to understand the various factorization properties better,
such as the hidden factorization relation for the gauge form factors and the associated v⃗
vectors. As discussed in (3.1)–(3.3), the hidden factorization relations in some channels
are analogous to the fundamental BCJ relations for amplitudes. It may be possible
to understand these relations along the lines of proof for amplitudes using recursion
relations [23] or as string theory relations in the low energy limit [24, 25]. This may
also help to understand the universality property of the v⃗ vectors and provide proof for
their construction rules.

• Understanding the algebraic structure for duality-satisfying numerators is another
problem to investigate. An explicit derivation for the proposed closed formula for
CK-dual form factor numerators should make a concrete step. One promising approach
is to adopt the Hopf-algebra-related method [18, 19, 26–30]. In particular, equivalence
between some of the numerator results in this paper and in [19] have been observed,
and proof of these findings would be welcome. It would be interesting to also discuss
the kinematic algebra from a more physical perspective, such as those given in [31–33].

• While we have presented the form factor double copy mainly in the YMS or YMS+ϕ3
theories, it should be straightforward to generalize to theories with more general matter
fields. We have discussed operators with fermions like tr(ψ̄ψ) in Higgs+quarks+gluons
context in [10]. As mentioned before, the gauge-invariant operator in the form factor
can be identified as a color-single scalar, thus it would be interesting to apply our
prescription to EFT amplitudes that contain a color-single scalar particle.

• For the form factors of tr(F 2) in pure YM theory, we have constructed the double-copy
using an ansatz and found concrete solutions up to five external gluons. It would be
interesting to have a systematic extension to higher-point cases and understand the
general pattern of double-copy results. Ideally, one would have some explicit rules
for the solutions without recourse to an ansatz. Additionally, a more comprehensive
understanding of the difference, existing in the current constructions, between four-
dimensional and D-dimensional kinematics would be desirable.
We have only considered the length-2 tr(F 2) operator and one may try to extend this
to form factors of more general operators such as tr(Fm) (see [34] and also more recent
papers [35, 36] for the study of such operators in the context of EFT amplitudes). By
examining the procedure in this paper, it appears that such a generalization may be
feasible, in the sense that: (1) the gauge invariant decomposition that relates the tr(F 2)
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form factors to the tr(ϕ2) ones appears applicable for the tr(Fm) case, and (2) the
tr(ϕm) form factors, serving as building blocks in the decomposition, have also had
their double copy as discussed in this paper.

• For amplitudes, the double copy possesses a natural extension to string theory, as
evidenced by the initial discovery of the KLT relation within string theory [1]. One
may wonder if it is possible to achieve these in the context of form factors. A modest
starting point may be to include some α′ corrections into the discussion about the
double copy of form factors, like the Z-theory discussion in amplitudes [37, 38]. More
ambitiously, it is worth investigating whether a full string theory extension could exist
for form factors, possibly in the context of string field theories. In particular, it would
be important to explore whether the hidden factorization relations for form factors
could be interpreted as certain string monodromy relations [24, 25].

• Furthermore, the CHY formula [4, 5] is a string-inspired method describing a large
class of massless amplitudes in general spacetime dimensions. Given the abundant form
factor double copy results presented in this and previous papers, it is natural to ask
whether a CHY formalism exists. Several attempts have been made to address some
specific form factors in four dimensions [39–41], but it would be valuable to pursue a
consistent description of form factors in general dimensions.

• In the context of EFTs, the KLT bootstrap has been developed in [42–44]. One may
test these within the framework of the form factor double copy. Conversely, the form
factor double copy may provide new insights for these methods. For example, in the
KLT-bootstrap method, certain analytic properties of the KLT kernel are assumed,
however, allowing the new spurious-type poles, as appearing in the form factors, may
lead to novel possible solutions.

• So far all the discussions about the form factor double copy are at tree level. It would be
important to have the loop-level generalization. We would like to briefly comment on the
difference between the new double copy prescription for form factors and the previous
CK-dual loop constructions [45–51]. In the previous loop constructions, operator-
induced relations are not considered and the CK duality (for the Jacobi relations) was
primarily used as an ansatz input to simplify loop integrand constructions. In contrast,
to fulfill the double-copy construction for form factors, operator-induced relations are
necessitated by diffeomorphism invariance. A full loop-level double-copy construction
should take into account these operator-induced relations as well. The challenge would
be to find the CK-dual solutions that are consistent with physical requirements like
unitarity cuts.

Apart from the inherent significance of loop constructions, such a generalization could
potentially offer further clarity on the physical interpretation. At the tree level, one
can perceive the operator insertion as a massive particle, which makes its coupling
to gravity more or less natural after double copy. A possible alternative picture to
interpret the operator after double copy is through a semi-classical graviton dressed
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operator, similar to those discussed in worldline theory [52–54]. A concrete loop-level
construction should help to understand the picture better.

• CK duality and double copy have been explored for operator-associated quantities in
other contexts: including but not limited to the double copy structure between the
gluon and gravity boundary correlators in curved space [55–70]. It could be interesting
to explore potential connections to the form factors here. It would also be highly
interesting to extend our discussion to generalized form factors that involve multiple
operator insertions.
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A Some further remarks on the v⃗ vectors

In this appendix, we give some more remarks on the v⃗ vectors.

The v⃗ vectors as null vectors. In this first part, we show that the v⃗ vectors are null
vectors of the propagator matrix, if evaluated on the spurious pole.

Let us consider first the simple but illustrative four-point example. Concretely, we need
the fact that the propagator matrix ΘF is the inverse of SF , implying that the v⃗ vectors
involved in the decomposition of SF must lie in the null space of ΘF . Let us see how it
happens for the four-point case where δ=(q2−s12)� 0

ΘF
4 ·SF

4 =1 ⇒ lim
δ�0

(
ΘF

4 ·SF
4

)
=1 . (A.1)

We know that ΘF
4 is finite when δ� 0 and SF

4 is divergent. Then we have a Laurent series
expansion: (

ΘF
4
∣∣
q2=s12

+· · ·
)
·
(1
δ

Res
[
SF
4

]
q2=s12

+SF
4
∣∣
q2=s12

+· · ·
)
=1 , (A.2)

where the r.h.s. is finite and irrelevant to δ, so that

ΘF
4
∣∣
q2=s12

·Res
[
SF
4

]
q2=s12

=0 . (A.3)

We also have a similar equation by commuting Θ and S.
Then we plug in the matrix decomposition for the four-point kernel

Ress12=q2

[
SF
4

]
=

 τ31τ42
τ3q2

τ32τ41
τ3q2

·
(
1× τ13τ34

s14

)
·
(
τ31τ42
τ3q2

τ32τ41
τ3q2

)

=(v⃗A
4 )T ·

(
SF
2 ⊗SA

4

)
·v⃗A

4 ,

(A.4)
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and get

ΘF
4
∣∣
q2=s12

·
(
(v⃗A

4 )T ·
(
SF
2 ⊗SA

4

)
·v⃗A

4

)
=0=

(
(v⃗A

4 )T ·
(
SF
2 ⊗SA

4

)
·v⃗A

4

)
·ΘF

4
∣∣
s12=q2

. (A.5)

Since the S kernels are full-ranked matrices, the following relation must be true

ΘF
4
∣∣
q2=s12

·(v⃗A
4 )T =(v⃗A

4 )·ΘF
4
∣∣
q2=s12

=0 . (A.6)

stating that the v⃗ is the null vector of ΘF
4
∣∣
q2=s12

.
Apparently, this conclusion can be generalized to higher points as

ΘF
n

∣∣
q2

m=q2
·v⃗T

(κ̄,ρ̄)= v⃗(κ̄,ρ̄) ·ΘF
n

∣∣
q2

m=q2
=0 , (A.7)

where ΘF
n

∣∣
q2

m=q2
is the propagator matrix ΘF

n evaluated on the special kinematics q2
m = q2. We

comment that the null vector condition (A.7) is a particularly useful condition to determine
the v⃗ vectors.

Comment on the alternating list in the v⃗ vector closed formula. In this part we
will provide some observation (and the proof) of the v⃗ vector closed formula in section 3.2.

We will first review the formula, especially the Step 3. Given an ordering β for which we
want to express v[β], we need to split the β ordering into two parts, based on their different
contribution to the vector element v[β].

The first part consists of particles ja such that either {ja−1, ja, ja+1} or {ja+1, ja, ja−1}
is a subordering of β. Although this first part will not be the target of the discussion here, it
is helpful to emphasize its definition for comparison. On the other hand, the second part,
denoted as β, is just simply defined as the complement of {j1, j2, . . . , js} mentioned above.
Note that if we write β as {1,x1, . . . ,x−1,2}, both x1 and x−1 must belong to β.

As mentioned in section 3.2 (the Step.3), given an element xb ∈β, its contribution to the
vector element v[β] takes the form of either τxb,ΞL(xb,β) or τxb,ΞR(xb,β). Previously, we have
observed that x1 gives τx1,ΞL(x1,β); now we further assert that x−1 gives τx−1,ΞR(x−1,β). This
is a natural expectation based on the reflection of β. The rest of this part of the appendix is
to prove this point, in which we get to better understand the structure of β and β.

Let us recall the alternating list construction in section 3.2 (the Step.3). First, we sort
β and get β′. Then we find x1 in β

′, assign τΞR
to the first element on x1’s right, assign

τΞL
to the second element on x1’s right and so on. Therefore, to have τx−1,ΞR(x−1,β), there

must be even number of elements between x1 and x−1

β
′= {. . . ,x1 , . . . ,︸︷︷︸

even number

x−1, . . .} (A.8)

(suppose x1 is on the left side of x−1; it is similar if x1 and x−1 are switched). We first
examine this via some examples.

1. β= {1,3,4,5,6,7,8,9,2}.
This is the standard ordering in which β= {3,9}. We sort β and get a β′= {3,9}. We
see importantly that there is an even number of elements (which are zero in this case)
between x1=3 and x−1=9 in β

′.
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2. β= {1,3,4,7,6,5,8,9,2}.

In this example, we swap 5,7 compared with the first standard ordering above. Then
β= {3,7,5,9}, and we see again that there is an even number of elements (now there
are two) in β between x1=3 and x−1=9.

A heuristic argument on why this is true is that when exchanging a pair of particles
not in β (for instance 5,7 in this case) will make this pair show up in β, because the
exchange will spoil the three-element subordering condition.

3. β= {1,3,5,4,8,7,6,9,2}.

This is a more disordered list and β now is {3,5,4,8,6,9}, and again even number of
elements are between x1=3 and x−1=9.

4. β= {1,4,3,5,6,7,9,8,2}. Now we turn to more non-trivial examples. In this case,
β= {4,3,9,8} and β

′= {3,4,8,9} so that there is zero (which is an even number)
element between x1=4 and x−1=8.

5. β= {1,4,3,7,6,5,9,8,2}. This is another example following the above example 4. In this
case, we have β= {4,3,7,5,9,8} and β

′= {3,4,5,7,8,9}, so that there are two element
between x1=4 and x−1=8.

To understand, one can also try to consider a subordering of β consists of yi ∈β
satisfying x1< yi< x−1 (or x1> yi> x−1 if x1> x−1). Adapting the approach, we first
delete 3,9 (and 1,2 of course) in β and get a reduced ordering {4,7,6,5,8}. Then we can
use the argument in the second example that exchanging two particles is equivalent to
adding two particles in β. The deleting process does not change the number of elements
between 4 and 8 in the sorted β

′, because 3 and 9 are not in the range x1< yi< x−1.

The proof is given below, following the same argument outlined in the fifth example.
First, we delete the elements in β which are not in the range (x1,x−1) (for simplicity we
assume x1< x−1). Then we have a list taking the form β̃= {x1,x2, . . . ,x−1}. And as what
we have done on β, splitting β into parts is required, and defining β̃ and getting it sorted
to get β̃

′
is possible. The point is, if we define β̃

′
and calculate the number of elements

between x1 and x−1, it must be the same as the number in β
′. Then we just need to make

sure such a number is even.
If x1< x2< · · ·< x−1, then β̃

′
= {x1,x−1}, which means there are zero elements between x1

and x−1. If the elements in β̃ do not follow the standard ordering, we need to be more careful.
There exists a unique permutation bringing β̃ back to the standard ordering, and since every
permutation can be formed by a series of two-element swaps, it is sufficient to consider only
two-element swaps. The claim is that each two-element-swap can only possibly change the
number of elements in β̃ by 0 or 2. Verifying this requires a careful inspection of all possibilities.
Here we just give one case. Suppose β̃ is β̃= {x1, . . . ,xi−1,xi,xi+1, . . . ,xj−1,xj ,xj+1, . . . ,x−1}.
Then we see xi and xj are not in β̃.26 Then, if we swap xi and xj , both of them will be

26Remember that the difference between β̃ and β̃ are the elements with the corresponding three-element
ordered subset in β̃.
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in β̃. All possible cases include all possible relative positions of xi,j xi,±1, which have
been checked thoroughly.

B The Lagrangians and generalizations

Here we give the Lagrangians of the gauge and gravity theories mentioned in the main text.
In particular, we further generalize the discussions in section 2 and give the form factor
double copy with more general high-length operators and external states.

B.1 The Lagrangians

The most basic one is the Yang-Mills-scalar theory, of which the Lagrangian is

LYMS=1
2 trC (DµϕD

µϕ)− 1
4trC(F

µνFµν) , (B.1)

where ϕ is the scalar field carrying color index, Fµν is the Yang-Mills field strength, g is the
Yang-Mills coupling and the trC means the color trace. The form factors in section 2, except
for the tr(ϕ2) numerator review in section 3.3.1, are defined in this theory.

The first one is the most commonly used theory in this paper, which is the Yang-Mills-
scalar+bi-adjoint ϕ3 scalar theory.

LYMS+ϕ3 = 1
2 trC

(
Dµϕ

IDµϕI
)
− 1
4trC(F

µνFµν)−
g2

4 trC
([
ϕI ,ϕJ

]2)
− g′

3! f̃
IJKfabcϕI,aϕJ,bϕK,c , (B.2)

where the bi-adjoint scalar ϕ carries a scalar index I and a color index a. The form factors
in section 3 and 3.3.1 are defined specifically via this Lagrangian, and the operator of these
form factors is tr(ϕ2)=∑a,I ϕ

a,Iϕa,I .
The following one is used to define the propagator matrix

L{ϕ,Φ}= 1
2 trC

(
Dµϕ

IDµϕI
)
+1
2 trC

(
DµΦIDµΦI

)
−λ3

3! f̃
IJKfabcϕI,aϕJ,bΦK,c

−λ1
3! f̃

IJKfabcϕI,aϕJ,bϕK,c−λ2
3! f̃

IJKfabcΦI,aΦJ,bΦK,c ,

(B.3)

where we use {I,J,K} to denote the flavor (FL) index and {a,b,c} to denote the color (C)
index. The propagator matrices are considered in details in section 2.1 and section 2.2;
see also section 4.2 and 6 in [10].

In section 4, the gluonic form factors can be regarded as the Higgs plus gluons amplitudes
using the Higgs effective Lagrangian. Although Higgs has no direct interaction with gluons
(but through a quark loop) in the Standard Model when the top mass mt is much larger
than Higgs mass mH, the Higgs-gluon amplitudes can be greatly simplified using an effective
theory where the top quark is integrated out, leaving a dimension-5 Higgs-gluon interaction
vertex in the effective Lagrangian as [71–73]:

LHiggs-EFT =LYM+λHtr(FµνFµν) . (B.4)

In this case, the amplitude with a Higgs plus n gluons is equivalent to the n-point tr(F 2)
form factors considered in section 4.
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B.2 Further generalizations of the high-length double copy

The target of the following discussion is to generalize the high-length double-copy discussions
in section 2, where only the YMS theory is considered and we require that the number of
external scalars is the same as the number in the operator (called scalar-minimal). The easier
step is to reproduce the scalar-minimal results for the new YMS+ϕ3 Lagrangian. To achieve
this, we realize first that the scalar field now bears both a scalar and a flavor indices. A
natural generalization of the tr(ϕm) operator defined in section 2.2 would be

Õϕm =
∑

ak,Ik

V a1···am Ṽ I1···Im

m∏
k=1

ϕakIk (B.5)

where V can be any tensor with m indices. We only require the tensor V a1···am and Ṽ I1···Im , for
the color and flavor groups respectively, are the same.27 Such a definition makes it reminiscent
of the standard bi-adjoint scalar amplitudes bearing the color-kinematics duality structure.

After clarifying the operator, we give a simple argument on the reason why the minimal-
scalar case for the new form factors with operator (B.5) in the theory (B.2) is equivalent to
our discussions in section 2. Considering each Feynman diagram contributing to the form
factor, we see that only the operator vertex has a flavor structure Ṽ I1···Im , and depriving
this flavor factor will give back to the Feynman diagram in the YMS theory in section 2.
Dressing a universal Ṽ I1···Im does not affect the color-kinematics duality and the double
copy can be easily confirmed.

The more non-trivial scenarios are to include more external scalars. We would like to
justify two points in the following discussion: (1) these form factors can be double copied; (2)
the numerators can be related to the tr(ϕ2) numerators given in section 2.3. In particular,
the flavor structure will play a more non-trivial role here, and we discuss the form factor
without gluon external lines to begin with. Concretely, we have

FÕϕ4
(1ϕ, . . . ,5ϕ)=

∑
σ∈S5/(S3×S2)

σ(1) σ(2)

σ(3) σ(5) σ(4)

=
∑

σ∈S5/(S3×S2)

(
fσ(4)σ(3)xV σ(1)σ(2)σ(3)x

)(
f̃σ(4)σ(3)xṼ σ(1)σ(2)σ(3)x

)
sσ(4)σ(5)

,

(B.6)

where σ ∈S5/(S3×S2) to avoid over counting. The number of diagrams is 10 in total. We
see that such color and flavor factors are definitely satisfying the same algebraic relations,
and the double copy of such a form factor is simply itself. This is a behavior similar to
the bi-adjoint ϕ3 amplitudes.28

27For example, they can be both fully symmetric, antisymmetric, symmetric between the first two elements
and so on.

28It is also similar to the form factor propagator matrix defined in e.g. (2.39). However, the difference is
that we intentionally defined two kinds of scalar fields in (2.39) so that the operator can only couple to one of
them. In (B.6), there is only one kind of scalar, making the number of diagrams greater compared with (2.39)
because the operator can now couple to any lines.
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Afterward, we can dress gluons on the pure scalar form factor. For the one-gluon form
factor, there are three types of diagrams

Γa(σ) : Γc(σ) :Γb(σ) :
σ(1) σ(2)

σ(3) σ(5) σ(4)
6

σ(1) σ(2)

σ(3) σ(5) σ(4)
6

σ(1) σ(2)
σ(3)

σ(5) σ(4)6

(B.7)

A direct calculation shows that the double copy can also be achieved, of which the calculational
detail will be given later. The conclusion is, that in the double-copied quantity, the following
diagrams show up

σ(1) σ(2)

σ(3) σ(5) σ(4)
6

σ(1) σ(2)

σ(3) σ(5) σ(4)

σ(1) σ(2)
σ(3)

σ(5) σ(4)
6

6

σ(1) σ(2)

σ(3) σ(5) σ(4)

6

(B.8)

with appropriate permutations σ. The last set of diagrams having s12345−q2 is as expected.
Concretely, we specify the CK numerators in the previous example. The numerators

corresponding to the three diagrams in (B.7) are respectively

Na(σ{1,2,3,4,5},6)≡N(Γa(σ))=−
2pσ(1)σ(2)σ(3)σ(5) ·f6 ·pσ(4)

s12345−q2
f̃σ(5)σ(4)xṼ σ(1)σ(2)σ(3)x ,

Nb(σ{1,2,3,4,5},6)≡N(Γb(σ))=−
2pσ(1) ·f6 ·pσ(2)σ(3)σ(4)σ(5)

s12345−q2
f̃σ(5)σ(4)xṼ σ(1)σ(2)σ(3)x ,

Nc(σ{1,2,3,4,5},6)≡N(Γc(σ))=−
2pσ(1)σ(2)σ(3) ·f6 ·pσ(4)σ(5)

s12345−q2
f̃σ(5)σ(4)xṼ σ(1)σ(2)σ(3)x .

(B.9)

Note that the numerators have flavor structures easily read out from the diagram. One
can easily show that, with the help of these flavor structures, the following dual numerator
relations hold

1. One operator induced dual relation similar to (2.83)

Nb(1,2,3,4,5,6)+Nb(2,1,3,4,5,6)+Nb(3,1,2,4,5,6)+Nc(1,2,3,4,5,6)=0 . (B.10)

2. Another operator induced dual relation similar to (2.83) but with gluons replaced with
scalars, which relies in particular on the flavor structure

Nb(1,2,3,4,5,6)+Nb(1,3,4,2,5,6)+Nb(1,4,2,3,5,6)+Na(4,2,3,1,5,6)=0 . (B.11)

3. Dual Jacobi relation

Na(1,2,3,4,5,6)+Na(1,2,3,5,4,6)=Nc(1,2,3,4,5,6) . (B.12)

Another important point is that we recognize that after stripping off the flavor factor,
the numerators look like the results given in section 2.3 in the sense that

N
F

Õ
ϕ4 |flavor factor→1=N

Ftr(ϕ2) |flavor factor→1 . (B.13)

– 58 –



J
H
E
P
0
2
(
2
0
2
4
)
0
1
3

To make this precise, we need to specify what are the diagrams to which the numerators
correspond. We give only one example here

N
F

Õ
ϕ4


1 2

3 5 4
6


flavor factor→1

=N
Ftr(ϕ2)


1 2

3 5 4
6


flavor factor→1

(B.14)

and the reader should be able to work out the general case. This is another evidence of the
universality of the numerators stated in section 2.3.

In general, we can add even more gluons and the double copy will still work. We have
the spurious poles with the form q2

m−q2 (with m≥# of external scalars) which become real
poles after double copy. Besides, the CK-dual numerators satisfying all the dual relations
can be obtained by dressing the kinematical parts of the tr(ϕ2) numerator with appropriate
flavor factors. Furthermore, one can also further generalize the theory to introduce different
types of scalars and more general operators, with the requirement that the color and flavor
structure of the operator are the same. One can easily verify that the form factors of these
operators with solely scalar external lines can be double-copied. Although non-trivial to give
proof, we believe that as long as the double copy makes sense for pure scalar form factors
(without gluons), it works for the gauged case (with an arbitrary number of gluons). This
belief is based on the universal properties mentioned throughout this paper and the general
principles, such as gauge invariance and the CK duality, behind them.

C The four-point tr(F 2) double-copy solution

The four-point tr(F 2) double-copy solution is as follows.

9∑
i,j=1

M
(1)
ij ñ1,iñ1,j =(trf(1,3)N1(1ϕ,2g,4g,3ϕ))2+(trf(1,4)N1(1ϕ,2g,3g,4ϕ))2+ (C.1)

(trf(1,2)(N1(1ϕ,3g,4g,2ϕ)−N1(1ϕ,4g,3g,2ϕ)))2+
4trf(1,2,3)N2(2ϕ,1ϕ,4g,3ϕ)trf(1,3)N1(1ϕ,2g,4g,3ϕ)+
4trf(1,2,3)N2(1ϕ,2ϕ,4g,3ϕ)(trf(1,2)(N1(1ϕ,3g,4g,2ϕ)−N1(1ϕ,4g,3g,2ϕ)))+
4trf(1,3,4)N2(3ϕ,4ϕ,2g,1ϕ)trf(1,3)N1(1ϕ,2g,4g,3ϕ)−
4trf(1,3,4)N2(3ϕ,4ϕ,2g,1ϕ)trf(1,4)N1(1ϕ,2g,3g,4ϕ)+
4trf(1,2,4)N2(1ϕ,2ϕ,3g,4ϕ)trf(1,4)N1(1ϕ,2g,3g,4ϕ)−
4trf(1,2,4)N2(1ϕ,2ϕ,3g,4ϕ)(trf(1,2)(N1(1ϕ,3−,4+,2ϕ)−N1(1ϕ,4+,3−,2ϕ)))+
8trf(1,2,3)trf(1,3,4)N2(2ϕ,1ϕ,4g,3ϕ)N2(3ϕ,4ϕ,2g,1ϕ)−
8trf(1,2,4)trf(1,3,4)N2(1ϕ,2ϕ,3g,4ϕ)N2(3ϕ,4ϕ,2g,1ϕ)−
8trf(1,2,3)trf(1,2,4)N2(1ϕ,2ϕ,3g,4ϕ)N2(2ϕ,1ϕ,3g,4ϕ)+
6(trf(1,2,3)N2(2ϕ,1ϕ,4g,3ϕ))2+6(trf(1,2,4)N2(1ϕ,2ϕ,3g,4ϕ))2

+6(trf(1,3,4)N2(3ϕ,4ϕ,2g,1ϕ))2+
4trf(1,2)(trf(1,2,3,4)−trf(2,1,3,4))(N1(1ϕ,3g,4g,2ϕ)−N1(1ϕ,4g,3g,2ϕ))+
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4trf(1,3)(trf(1,2,3,4)−trf(2,1,3,4))N1(1ϕ,2g,4g,3ϕ)−
4trf(1,4)(trf(1,2,3,4)−trf(2,1,3,4))N1(1ϕ,2g,3g,4ϕ)+
12trf(1,3,4)(trf(1,2,3,4)−trf(2,1,3,4))N2(3ϕ,4ϕ,2g,1ϕ)+
12trf(1,2,3)(trf(1,2,3,4)−trf(2,1,3,4))N2(2ϕ,1ϕ,4g,3ϕ)−
12trf(1,2,4)(trf(1,2,3,4)−trf(2,1,3,4))N2(1ϕ,2ϕ,3g,4ϕ)+
6(trf(1,2,3,4)−trf(2,1,3,4))2+
1
3(tr

f(1,2,3,4)trf(1,3,2,4)−2trf(1,2,3,4)trf(2,1,3,4)+trf(1,3,2,3)trf(2,1,3,4)) .

11∑
i,j=1

M
(2)
ij ñ2,iñ2,j =(trf(1,3)N1(1ϕ,2g,4g,3ϕ))2+(trf(1,4)N1(1ϕ,2g,3g,4ϕ))2+ (C.2)

(trf(2,3)N1(2ϕ,1g,4g,3ϕ))2+(trf(2,4)N1(2ϕ,1g,3g,4ϕ))2+
4trf(1,2,3)N2(2ϕ,1ϕ,4g,3ϕ)trf(1,3)N1(1ϕ,2g,4g,3ϕ)+
4trf(1,2,3)N2(2ϕ,1ϕ,4g,3ϕ)trf(2,3)N1(2ϕ,1g,4g,3ϕ)+
4trf(1,3,4)N2(3ϕ,4ϕ,2g,1ϕ)trf(1,3)N1(1ϕ,2g,4g,3ϕ)−
4trf(1,3,4)N2(3ϕ,4ϕ,2g,1ϕ)trf(1,4)N1(1ϕ,2g,3g,4ϕ)+
4trf(2,3,4)N2(3ϕ,4ϕ,1g,2ϕ)trf(2,3)N1(2ϕ,1g,4g,3ϕ)+
4trf(2,3,4)N2(3ϕ,4ϕ,1g,2ϕ)trf(2,4)N1(2ϕ,1g,3g,4ϕ)+
4trf(1,2,4)N2(1ϕ,2ϕ,3g,4ϕ)trf(1,4)N1(1ϕ,2g,3g,4ϕ)−
4trf(1,2,4)N2(1ϕ,2ϕ,3g,4ϕ)trf(2,4)N1(2ϕ,1g,3g,4ϕ)+
8trf(1,2,3)trf(1,3,4)N2(2ϕ,1ϕ,4g,3ϕ)N2(3ϕ,4ϕ,2g,1ϕ)+
8trf(1,2,3)trf(1,3,4)N2(2ϕ,1ϕ,4g,3ϕ)N2(3ϕ,4ϕ,2g,1ϕ)−
8trf(1,2,3)trf(2,3,4)N2(2ϕ,1ϕ,4g,3ϕ)N2(3ϕ,4ϕ,1g,2ϕ)−
8trf(1,2,4)trf(2,3,4)N2(1ϕ,2ϕ,3g,4ϕ)N2(3ϕ,4ϕ,1g,2ϕ)+
6(trf(1,2,3)N2(2ϕ,1ϕ,4g,3ϕ))2+6(trf(1,2,4)N2(1ϕ,2ϕ,3g,4ϕ))2+ (C.3)
6(trf(1,3,4)N2(3ϕ,4ϕ,2g,1ϕ))2+6(trf(2,3,4)N2(3ϕ,4ϕ,1g,2ϕ))2+
4trf(1,3)(trf(1,2,3,4)−trf(2,1,3,4))N1(1ϕ,2g,4g,3ϕ)−
4trf(1,4)(trf(1,2,3,4)−trf(2,1,3,4))N1(1ϕ,2g,3g,4ϕ)−
4trf(2,3)(trf(1,2,3,4)−trf(2,1,3,4))N1(2ϕ,1g,4g,3ϕ)+
4trf(2,4)(trf(1,2,3,4)−trf(2,1,3,4))N1(2ϕ,1g,3g,4ϕ)+
12trf(1,3,4)(trf(1,2,3,4)−trf(2,1,3,4))N2(3ϕ,4ϕ,2g,1ϕ)+
12trf(1,2,3)(trf(1,2,3,4)−trf(2,1,3,4))N2(2ϕ,1ϕ,4g,3ϕ)−
12trf(1,2,4)(trf(1,2,3,4)−trf(2,1,3,4))N2(1ϕ,2ϕ,3g,4ϕ)−
12trf(2,3,4)(trf(1,2,3,4)−trf(2,1,3,4))N2(3ϕ,4ϕ,1g,2ϕ)+
6(trf(1,2,3,4)−trf(2,1,3,4))2+
(trf(1,2,3,4)trf(1,3,2,4)−2trf(1,2,3,4)trf(2,1,3,4)+trf(1,3,2,3)trf(2,1,3,4)) .
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