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1 Introduction

One of the hallmarks of the Standard Model is the presence of chiral fermions transforming
in representations of the gauge symmetry group (SU(3) × SU(2) × U(1))/Γ, where Γ ∈
{1,Z2,Z3,Z6} is a possibly trivial discrete subgroup of the center of SU(3)×SU(2)×U(1).
Chiral fermions charged under the Standard Model gauge group have been realized in
numerous string theory constructions — see [1] for a review of recent developments. The
purpose of this paper is to analyze the chiral matter spectrum and aspects of the Yukawa
interactions of the universal tuned F-theory model with gauge group (SU(3) × SU(2) ×
U(1))/Z6 introduced in [2].

There are obvious motivations for finding specific, dynamically stable solutions of string
theory that reproduce all observed aspects of the Standard Model. However, rather than
aiming for a complete string-theoretic construction of the Standard Model, we instead
take a top-down approach and focus on sets of solutions in the space of string vacua that
exhibit the gross features of the Standard Model, specifically the gauge group and allowed
representations in the chiral matter spectrum. One reason for this approach is that taking
a bird’s eye view can give us a comprehensive picture of the set of candidate string vacua,
which may help to address broad questions about how the fundamental interactions of the
Standard Model can be reproduced by a self-consistent theory of quantum gravity (many
examples of which we expect to come from string theory). Some obvious questions of
this sort are how common or uncommon various realizations of the Standard Model are in
the space of string theory solutions with given supersymmetry, and what kinds of physics
beyond the Standard Model are associated with these different realizations. Another,
related, question is what, if any, constraints are imposed on the kinematics of Standard
Model-like theories, and whether or not these constraints can teach us anything about more
general constraints imposed by consistency with quantum gravity that we might expect to
be manifest at low energies. The set of string theory vacua with prescribed low-energy
data is sometimes referred to as part of the string landscape, while low-energy effective
theories with similar kinematic structure that do not admit a UV completion in string
theory (and therefore, perhaps not in quantum gravity more generally) are said to belong
to the swampland [3, 4]. Adopting this terminology, the questions described above can be
rephrased as questions about, respectively, the prevalence of Standard Model-like vacua
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within the string landscape, and identification of the “boundary” between the landscape
and the swampland as viewed from the perspective of Standard Model-like constructions.
Taking the broad approach of constructing large classes of Standard Model-like theories also
provides the more pragmatic opportunity of comparing how natural or phenomenologically-
relevant different classes of such constructions may be, and for identifying more specific
features of observed physics that may arise in subsets of the classes of constructed models.

The questions described above could in principle be explored in the context of various
different types of constructions belonging to different branches of string theory. In this pa-
per, however, we focus exclusively on Standard Model-like constructions in F-theory [5–7].
F-theory provides a remarkably effective set of tools for exploring the landscape of 4D
N = 1 string vacua. The reason for this is that F-theory relates nonperturbative type
IIB flux compactifications on compact Kähler threefolds with 7-branes to the geometry of
singular elliptically-fibered Calabi-Yau (CY) fourfolds, and this relationship has in turn
led to the development of a systematic procedure for constructing 4D N = 1 string vacua
with desired kinematics simply by tuning the mathematical properties of the elliptic CY
singularities using celebrated results in algebraic geometry. An enormous number of string
vacua have been constructed following this procedure, and although F-theory is dual in
certain regimes to other constructions such as heterotic string compactifications, F-theory
is believed to give the broadest global picture currently available of the supersymmetric
string landscape in terms of a unified space of elliptic CY fourfolds that are connected
through various topology-changing transitions (see, e.g., [8–11]).

An extensive literature on 4D F-theory flux compactifications has been produced over
the past fifteen years, with most papers on standard model-like F-theory vacua focusing
on GUT models whose gauge group is broken, giving the Standard Model gauge group at
low energies, see, e.g., [12–28], and [29] for a review of the extensive literature on SU(5)
F-theory GUT constructions. The topic of this paper is a somewhat less extensively ex-
plored type of construction, namely F-theory vacua with exact (SU(3)× SU(2)×U(1))/Γ
gauge symmetry and no larger geometric GUT symmetry. Specifically, we study the family
of F-theory vacua engineered by the universal tuned (SU(3) × SU(2) × U(1))/Z6 model
described in [2]. The (SU(3) × SU(2) × U(1))/Z6 model describes a universal class of F-
theory Weierstrass models with tuned1 (SU(3) × SU(2) × U(1))/Z6 gauge symmetry that
has geometrically generic matter for this gauge group,2 which includes the matter repre-

1A tuned gauge group is one that is directly tuned in the Weierstrass model defining the F-theory
compactification, corresponding to fixing some specific complex structure moduli, as opposed to one that
arises on a rigid divisor as a generic feature of the F-theory base geometry, or which arises from breaking a
larger such rigid group. In this sense, the standard SU(5) F-theory GUT constructions reviewed in [29] also
rely on tuning of the SU(5) structure, while the more recent flux-breaking GUT constructions of [27, 28] and
the direct SM construction of [30] use rigid gauge factors, which may be more prevalent in the landscape.

2The notion of genericity for matter representations in 6D and 4D F-theory was defined and explored
in [31]. Note that while universal tuned Weierstrass models will exist for other choices of global gauge
group structure associated with other quotient factors Γ, the Standard Model chiral matter is only generic
for Γ = Z6. Note also that generic matter types are associated with the geometry of general Weierstrass
tuning of any given gauge group; while in 6D this definition can be naturally understood as a feature of the
low-energy theory (where generic matter is associated with the largest-dimensional branch of the moduli
space for fixed gauge group), this distinction is less transparent in 4D, and other constructions such as that
of [28] do not seem to share the same natural structure of generic matter in 4D.
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sentations of the Minimal Supersymmetric Standard Model (MSSM) and three additional
exotic matter representations; these representations can combine into three independent
anomaly-free families (one of which is that of the MSSM). Note that a subclass of these
models, which arise naturally through a toric fiber (“F11”) construction [32], contains the
exact matter spectrum of the MSSM with no exotics; relatedly, chiral matter in F11 mod-
els was investigated in [33, 34], and vector-like matter in these models (which we do not
address here) has been explored in [35–38].

One of the primary questions we address in this paper is whether the tuned (SU(3)×
SU(2)×U(1))/Z6 model over an arbitrary base that allows this tuning naturally contains
chiral matter in the other two allowed families, or whether the other two families are for
some reason forbidden by F-theory geometry and hence belong to the swampland. To this
end we use the recently developed approach of [39] to determine the lattice of vertical fluxes
of the (SU(3)× SU(2)×U(1))/Z6 model defined over an arbitrary smooth base and in the
presence of a non-trivial flux background. By computing the full set of linear dependences of
the vertical fluxes, we show that all three independent families of anomaly-free chiral matter
are realized, and hence that the linear constraints imposed by F-theory geometry on chiral
multiplicities precisely match those imposed by 4D anomaly cancellation. Furthermore, we
examine aspects of the quantization of the fluxes (and hence, of the chiral indices) both in
general and for specific choices of F-theory base, and comment on the implications for the
numbers of allowed chiral families.

More precisely, we compute an explicit resolution of a presentation of the (SU(3) ×
SU(2) × U(1))/Z6 model in which the elliptic fiber is realized as a general cubic in P2.
We use this resolution to confirm that the gauge symmetries, matter representations, and
Yukawa interactions anticipated in [2] are realized geometrically by the singular elliptic
CY fourfold associated to the (SU(3)×SU(2)×U(1))/Z6 model. We then use the methods
of [39] to show that the lattice of vertical fluxes preserving the 4D local Lorentz and gauge
symmetry, which gives at least a subset of the full set of chiral multiplicities realized by
the F-theory model, spans the full linear space of anomaly-free chiral spectra transforming
under (SU(3)×SU(2)×U(1))/Z6. The analysis carried out here is performed in a (mostly)
base-independent fashion so that the results can be applied to a large number of F-theory
vacua with a wide range of bases. Note, however, that not all base geometries admit tuning
of this gauge structure. In particular, at large Hodge numbers, there are many rigid gauge
factors and it can become difficult to find room in the geometry for tuning additional
features.

The remainder of this paper is structured as follows: In section 2, we give a brief
summary of the main results of the paper. In section 3, we outline the basic setup and
describe explicitly the resolution of the universal tuned (SU(3)× SU(2)×U(1))/Z6 model.
In sections 4 to 6, we study the explicit resolutions of singularities at codimension one, two,
three, corresponding to the gauge factors, matter representations, and Yukawa interactions.
In section 7, we analyze the chiral matter multiplicities in the presence of (vertical) fluxes
using the formalism of [39], and in section 8 we consider explicit examples. In section 9 we
discuss some more detailed aspects of the quantization of chiral multiplicities. We conclude
in section 10 with a discussion of the results and further directions for future work.
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2 Summary of results

Our analysis of the chiral spectrum of the tuned GSM = (SU(3)× SU(2)×U(1))/Z6 model
is divided into two parts. First, we resolve the singular F-theory background X0 in order to
study the kinematics of the corresponding low-energy effective 4D theory for an arbitrary
choice of base and characteristic data where the tuned GSM structure is possible. Second,
we switch on a generic vertical flux background and use the geometry of the resolved model
to compute the corresponding chiral excesses induced in the 4D spectrum. We summarize
the results of these two parts of the analysis in the subsections below.

2.1 Resolution of singularities and 4D kinematics

Let X0 → B be the singular elliptic CY variety defining the (SU(3) × SU(2) × U(1))/Z6
model, where B is the base of the elliptic fibration. In section 3, we use well-established
methods3 to study the geometry of a particular resolution X5 → X0 in order to explore
the kinematic structure of the low-energy effective 4D theory. Although for the purposes
of computing the chiral spectrum following the approach of [39] it is sufficient to simply re-
solve the singularities of X0 and use the structure of the codimension-one singular fibers of
X5 to write the intersection numbers of X5 in terms of a basis of Cartan divisors, we never-
theless provide a comprehensive description of the singular fibers over the codimension-one,
codimension-two, and codimension-three components of the discriminant locus in B. Our
analysis of the singular fibers of X5 shows that the 4D effective theory exhibits the gauge
symmetries and charged matter spectrum listed in the left-hand columns of table 1. The
gauge symmetries and charged matter spectrum we find agree with the analysis of the sin-
gular limit X0 in [2], and hence our analysis provides a check of the predictions made in [2]
regarding the gauge symmetries and matter spectrum of the (SU(3) × SU(2) × U(1))/Z6
model. Our analysis also includes detailed geometric information relevant for further in-
vestigation of structures such as the Yukawa interactions of the theory — see table 2.

2.2 Vertical flux backgrounds and chiral matter spectrum

We next use the resolution X5 → X0 to compute the multiplicities of 4D N = 1 chiral
multiplets in the (SU(3) × SU(2) × U(1))/Z6 model induced by a non-trivial vertical flux
background. The multiplicities of 4D N = 1 chiral multiplets can be expressed in terms of
the chiral indices

χr = nr − nr∗ , (2.1)
3A distinctive feature of our analysis is the fact that the singular (SU(3) × SU(2) × U(1))/Z6 model

is constructed using a general cubic in P2 as opposed to the more standard Weierstrass equation. As a
result, the resolution X5 → X0 exhibits a rational, rather than holomorphic, zero section, which indicates
the presence of primitive BPS particles with non-trivial KK charge in the spectrum of the low-energy
3D theory corresponding to X5. The presence of non-trivial KK charges changes the way in which the
4D spectrum is “imprinted” on the spectrum of its 3D KK reduction, and thus some care is required in
recovering the 4D kinematics from the 3D KK theory. We stress that the methods we use in our analysis
here are not novel — other models sharing this feature have been similarly analyzed in the literature, see,
e.g., [32, 40, 41] for global analyses of other F-theory models with rational sections; global analyses of
gauge groups and matter spectra for F-theory models with either no sections or multisections (rather than
sections) have been carried out in, e.g., [42–47].
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g locus fiber

su(3) b1e2e3 = 0

×
×

su(2) d0e1 = 0
××

R locus fiber

(3,2) 1
6

b1e2e3 = d0e1 = 0

×
×

(3,1) 2
3

b1e2e3 = s8s
2
2 − s5s2s6 + s1s

2
6 = 0

××

(3,1)− 1
3

b1e2e3 = d2s
2
6 − d1s6s8 + d0e1s

2
8 = 0

×
×

(3,1)− 4
3

b1e2e3 = s2 = 0

×

(1,2) 1
2

d0e1 = ∆(a) = 0

×

(1,2) 3
2

d0e1 = s2 = 0

×

(1,1)1 Vq=1 = 0
××

(1,1)2 s1 = s2 = 0
×

Table 1. Singular elliptic fibers of the resolution X5 → X0 (see eq. (3.10)) of the (SU(3)×SU(2)×
U(1))/Z6 model over codimension-one and codimension-two components of the discriminant locus
∆ = 0; these singular fibers correspond to (resp.) gauge symmetries and charged matter represen-
tations. The nodes of the graphs in the right-most columns represent irreducible components of the
singular elliptic fibers, while the edges of the graphs correspond to points of intersection between
pairs of irreducible components. Each irreducible component is birational to P1. A blue (red) ‘×’
in the center of a node indicates that the curve represented by that node intersects the zero section
(generating section) at a point away from the points of intersection with other P1 components. A
blue node is an exceptional P1 wrapped by the zero section; such curves correspond in the M-theory
frame to primitive BPS particles whose KK central charges are approximately the same scale as
their Coulomb branch central charges. (Note that we express the loci in terms of the parameters
of the resolution X5, so that d0e1 = 0, b1e2e3 = 0 are, respectively, the SU(2), SU(3) gauge divisors
Σ2,Σ3 ⊂ B.)

where nr, nr∗ are the numbers of chiral and anti-chiral multiplets transforming in the com-
plex representations r, r∗. We direct the reader to section 7.2 for a detailed review of the
terminology and concepts discussed below.
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R× R′ × R′′ locus fiber

(3∗,2)− 1
6
× (3,1)− 4

3
× (1,2) 3

2
b1e2e3 = d0e1 = s2 = 0

×

(3∗,2)− 1
6
× (3,1) 2

3
× (1,2)− 1

2
b1e2e3 = d0e1 = s8s

2
2 − s5s2s6 + s1s

2
6 = 0 ×

×

(3∗,2)− 1
6
× (3,1)− 1

3
× (1,2) 1

2
b1e2e3 = d0e1 = d2s

2
6 − d1s6s8 + d0e1s

2
8 = 0

×
×

(3∗,1) 4
3
× (3,1) 2

3
× (1,1)−2 b1e2e3 = s2 = s1 = 0

×

(3∗,1)− 2
3
× (3,1)− 1

3
× (1,1)1 b1e2e3 = d2s

2
6 − d1s6s8 + d0e1s

2
8 = s8s

2
2 − s2s5s6 + s1s

2
6 = 0

×
×

(3∗,1) 4
3
× (3,1)− 1

3
× (1,1)−1 b1e2e3 = s2 = d2s

2
6 − d1s6s8 + d0e1s

2
8 = 0

×

(1,2) 1
2
× (1,2)− 3

2
× (1,1)1 d0e1 = s2 =

∆(a)

s1
= 0

×

(1,2) 1
2
× (1,2) 3

2
× (1,1)−2 d0e1 = s2 = s1 = 0

×

(1,2) 1
2
× (1,2) 1

2
× (1,1)−1 d0e1 = ∆(a) = Vq=1 = 0

× ×

Table 2. Table of singular elliptic fibers of the resolution X5 → X0 of the (SU(3) × SU(2) ×
U(1))/Z6 model over codimension-three components of the discriminant locus ∆ = 0; these singular
fibers correspond to Yukawa interactions. The left-most column describes the triples of chiral
representations that are contracted to gauge-singlets in each Yukawa interaction. See the caption
of table 1 for an explanation of the graphs in the right-most column and the definitions of the
singular loci.

Computing the chiral multiplicities for a 4D F-theory compactification in terms of
the geometry of a resolved elliptic CY is a well-studied problem in F-theory, reviewed
in [48]. Base-independent analyses of this problem for specific gauge groups have also been
worked out in, e.g., [49–52]. In [39], we developed a base-independent analysis, in which the
intersection numbers of a resolved elliptic CY X are used to compute the integral pairing
on the vertical homology subgroup,

M : Hvert
2,2 (X,Z)×Hvert

2,2 (X,Z)→ Z . (2.2)
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After homological equivalences on vertical cycles are modded out, this nondegenerate in-
tersection pairing Mred was found to be independent of the choice of resolution in many
cases, and conjectured to be resolution-independent in general. If true, the resolution-
independence of the matrix Mred suggests that the integral pairing on vertical cohomology
is intrinsic to the singular F-theory limit that directly encodes information about the low-
energy 4D theory; this is physically natural since all physical features such as the chiral
spectrum should be resolution-independent, but this kind of cohomology of singular spaces
is not fully understood mathematically. Other recent work aimed at a direct characteriza-
tion of the physics of F-theory models in terms of the singular geometry described by type
IIB string theory includes [53–55].

The chiral multiplicities of any theory of interest can be computed from simple linear
algebra using Mred, where schematically ΘIJ = M(IJ)(KL)φ

KL in terms of a (homologically
redundant) basis of surfaces SIJ = D̂I ∩ D̂J , φIJ parameterizes the allowed (vertical)
fluxes, and the chiral multiplicities can be related to certain ΘIJ , while other ΘIJ are
constrained to vanish by various symmetry principles. For example, for an F-theory Tate
model with a nonabelian gauge group (defined over an arbitrary base, and with generic
complex parameters, with no additional Kodaira singularities at higher codimension), the
reduced matrix Mred takes the schematic form

Mred =


Dα′ ·K ·Dα Dα′ ·Dα ·Dβ 0 0
Dα′ ·Dβ′ ·Dα 0 0 ∗

0 0 −κijΣ ·Dα ·Dα′ ∗
0 ∗ ∗ ∗

 , (2.3)

in a reduced basis S0α, Sαβ , Siα, Sij where 0 represents the zero section, indices α correspond
to base divisors, and i correspond to Cartan elements of the gauge group; the matrix
elements denoted by “∗” are undetermined and the non-zero matrix elements are given
by intersection products of divisors Dα in the base B, where K is the canonical class
of the base. A rational change of basis removes all the ∗ elements except the bottom
right block, which becomes a matrix Mphys relating chiral multiplicities to the subset of
flux parameters φIJ that correspond to symmetry-preserving F-theory fluxes (note that
all other flux parameters are forced to vanish in order to satisfy the constraints ΘIα = 0,
which are necessary to preserve 4D Poincaré and gauge symmetry). This simple schematic
structure becomes more complicated for models with additional abelian U(1) factors, as
described in [39]. In particular, the presence of additional sections complicates the form
of the reduced matrix (2.3), and makes it harder to describe the general solution of the
constraints as easily. This is described in some detail for a simpler model with gauge group
(SU(2) × U(1))/Z2 in [39]; working through the details of this for the more complicated
universal (SU(3)×SU(2)×U(1))/Z6 model is a central part of the work in this paper. The
matrix Mred representing the integral pairing for the resolved (SU(3)× SU(2)× U(1))/Z6
model is displayed in table 5 and table 6 in two particular homologically independent bases
for SIJ , which are useful in complementary aspects of the analysis. This reduced matrix
is used in section 7 to describe the chiral matter content of the model with fluxes.
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(3,2) 1
6

(3,1) 2
3

(3,1)− 1
3

(1,2) 1
2

(1,1)1 (3,1)− 4
3

(1,2) 3
2

(1,1)2

(MSSM) 1 −1 −1 −1 1 0 0 0
(exotic 1) 2 −1 −4 −2 0 1 0 1
(exotic 2) −2 2 2 −1 0 0 1 −1

Table 3. Multiplicities of the three anomaly-free families of generic chiral matter in 4D models
with (SU(3)× SU(2)×U(1))/Z6 gauge group.

An interesting question one can ask related to the landscape of F-theory compactifica-
tions is whether or not all linearly independent anomaly-free combinations of chiral matter
can be realized in F-theory, i.e., whether F-theory imposes further linear constraints on the
available chiral spectrum beyond those associated with anomalies. (Note that we expect
that all F-theory models will satisfy anomaly constraints; the geometric manifestation of
these constraints has been studied in, e.g., [52, 56–58]). We address this question by geo-
metrically computing the possible combinations of chiral matter multiplicities that can be
realized in the (SU(3) × SU(2) × U(1))/Z6 model and comparing them to the full list of
possible chiral matter combinations compatible with 4D anomaly cancellation, namely the
set of all integer values for the chiral indices χr (where r is one of the eight complex repre-
sentations appearing in the left-most column of the right hand table in table 1) subject to
the constraints

χ(3,1) 2
3

= −χ(1,1)1 + 2χ(1,2) 3
2
− χ(3,1)− 4

3

χ(3,1)− 1
3

= −χ(1,1)1 + 2χ(1,2) 3
2
− 4χ(3,1)− 4

3

χ(1,2) 1
2

= −χ(1,1)1 − χ(1,2) 3
2
− 2χ(3,1)− 4

3

χ(3,2) 1
6

= χ(1,1)1 − 2χ(1,2) 3
2

+ 2χ(3,1)− 4
3

χ(1,1)2 = − χ(1,2) 3
2

+ χ(3,1)− 4
3
.

(2.4)

Since there are eight possible chiral matter representations and five constraint equations
(above), this leaves behind a three-dimensional linear space of anomaly-free chiral mat-
ter multiplicities. One basis for the three linearly-independent families of anomaly-free
matter is displayed in table 3. Note that setting the chiral multiplicities of the exotic4

representations (1,2) 3
2
and (3,1)− 4

3
equal to zero reduces this three-dimensional family

of anomaly-free chiral multiplicities to a one-dimensional family corresponding to a single
generation of the MSSM chiral matter spectrum.5

We compare the anomaly-free chiral matter spectra satisfying eq. (2.4) to the chiral
indices of the resolved (SU(3) × SU(2) × U(1))/Z6 model induced by a non-trivial verti-

4We refer to charged matter transforming in representations that do not belong to the MSSM as “exotic”
matter, although these are still generic features of the class of universal tuned (SU(3)× SU(2)×U(1))/Z6

F-theory models.
5Another specific linear combination of the anomaly-free families (with multiplicities of each family

multiplied by 2, 0, 1 respectively), has no matter charged under the SU(3) factor and indeed the resulting
multiplicities correspond precisely to those of the (SU(2) × U(1))/Z2 model [32] whose chiral spectrum is
explored in [39].
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cal flux background; see eq. (7.47). Consistent with the findings of [39], namely that all
anomaly-free linear combinations of matter can be realized in F-theory (without consid-
ering multiplicities) for the models considered there, we indeed find that the full set of
three independent linear families of possible chiral matter multiplicities are realized in the
(SU(3)× SU(2)×U(1))/Z6 model in the presence of a non-trivial vertical flux background
for a generic choice of base. We comment on the precise quantization of the chiral indices
imposed by the geometry of specific F-theory vacua (i.e., a specific choice of base and
associated topological data) in section 9. In addition to the quantization constraints, tad-
pole constraints, which we do not consider here, will also limit the range of chiral matter
multiplicities available in any given model.

3 Basic setup and resolution

The universal tuned (SU(3)×SU(2)×U(1))/Z6 model was identified in [2] by un-Higgsing
a U(1) model with charge q = 4 matter introduced in [59]. The charge q = 4 U(1) model
of [59] was constructed as a singular hypersurface of an ambient projective bundle Y0 whose
fibers are isomorphic to P2 with homogeneous coordinates [u : v : w]. The hypersurface
equation is as follows:

pq=4
0 = (a1v + b1w)

(
d0v

2 + d1vw + d2w
2
)

+ u
(
s1u

2 + s2uv + s3v
2 + s5uw + s6vw + s8w

2
)

= 0 .
(3.1)

In terms of the above construction, the un-Higgsing U(1)→ (SU(3)× SU(2)×U(1))/Z6 is
achieved by restricting to a special locus in complex structure moduli space on which the
sections a1 = s3 vanish:

X0 = {pq=4
0 = a1 = s3 = 0} =: {p0 = 0} ⊂ Y0 , (3.2)

so that

p0 = b1w
(
d0v

2 + d1vw + d2w
2
)

+ u
(
s1u

2 + s2uv + s5uw + s6vw + s8w
2
)

= 0 . (3.3)

We now discuss this construction in more detail. First, observe that the above elliptic
fibration is equipped with two rational sections:6

zero section: {s1u+ s2v = w = 0} ,
generating section: {u = w = 0} .

(3.4)

The coefficients of the cubic (in u, v, w) monomials appearing in the homogeneous poly-
nomial p0 in eq. (3.3) are (the pullbacks to Y0 of) sections of various line bundles over B.

6Note that in this paper we assume, but do not prove, that X0 does not contain any additional rational
sections beyond those described in eq. (3.4), given a generic choice of sections as parameters for the cubic
polynomial p0 (see eq. (3.1)) and a generic base B. Although it would be interesting and useful to either
exclude or confirm the existence of additional abelian gauge symmetries in the (SU(3)× SU(2)×U(1))/Z6

model, computing the exact Mordell-Weil group of a general elliptic fibration such as X0 is a difficult
problem that we do not address further here.
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We may equivalently express these line bundles in terms of their first Chern classes, each
of which can in turn be expressed as a linear combination of the following divisor classes:

K , Σ2 = [d0] , Σ3 = [b1] , Y = [s2] . (3.5)

We refer to the above four divisor classes as the characteristic data of the elliptic fibration
Y0 → B. Let us describe these divisor classes in further detail:

• K is the canonical class of B;

• Σ2,Σ3 are the su(2), su(3) gauge divisors wrapped by 7-branes;

• and Y is the divisor class of the locus in B over which the zero section and the
generating section associated with the u(1) factor intersect.

The classes of the zero loci of the other sections appearing in p0 besides d0, b1, s2 are

[s1] = −K + Y − Σ3 − Σ2 ,

[d1] = −2K − Y − Σ3 ,

[d2] = −4K − 2Y − 2Σ3 − Σ2 ,

[s5] = −2Y − Σ3 − Σ2 ,

[s6] = −K ,

[s8] = −3K − Y − Σ3 − Σ2 .

(3.6)

The ambient space of the elliptic fibration, Y0, can be viewed as the projectivization of a
rank-two vector bundle:

Y0 = P(⊕3
i=1Li) $−→ B, Li → B . (3.7)

To ensure that the homogeneous polynomial p0 is a well-defined section of the line bundle

⊗iLi (3.8)

we assign the following choice (unique up to an overall additive constant) of divisor classes7

Li = c1(Li) to the hyperplanes u, v, w = 0 in the Chow ring of Y0

[u] = H + L1 = H − Y + Σ3

[v] = H + L2 = H −K − Y −Σ2

[w] = H + L3 = H −K + Σ3 .

(3.9)

Although the hypersurface equation eq. (3.3) differs from the standard Weierstrass form
presented in [2] (with the two equations being related by Nagell’s algorithm8), the singular
locus of X0 is nevertheless still given by the zero locus of the discriminant ∆ = 4f3 + 27g2.
Explicit expressions for f, g can be found in [2, 59] (for related discussions, see also [60, 61]).

7We use bold symbols D to denote divisor classes in the Chow ring of the ambient projective bundle Y0;
in particular, Dα denotes the pullback of a divisor Dα ∈ B (e.g., K = KαDα is the pullback of K to the
Chow ring of Y0).

8See appendix B of [60] for a discussion of Nagell’s algorithm.
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We resolve the singularities of X0 through codimension two by means of the following
sequence of blowups9

X5
(w,t|e5)−→ X4

(u,w|e4)−→ X3
(e2,w|e3)−→ X2

(b1,u|e2)−→ X1
(d0,u,w|e1)−→ X0. (3.10)

In this sequence of blowups, the variable t appearing in the defining equation for X4 is
defined as follows:

t := s2v + e1e2e3e4s1u . (3.11)

The first three blowups appearing in eq. (3.10) (counting from the right) are conceptually
straightforward, as they are restricted to codimension-one components of the discriminant
locus in B. However, the fourth and fifth blowups appearing in eq. (3.10), whose corre-
sponding blowdown maps are (respectively) X4 → X3, X5 → X4, are somewhat unintuitive
in that they appear to blow up the entire base B. However, it turns out that these choices
of blowups produce new divisors with precisely the desired geometry: the proper transform
of each blowup is topologically a small blowup of the base B at the points over which the
elliptic fibers become singular, and hence is a smooth birational representative of a rational
section (see eq. (3.4)).10

The proper transform of X0 under the above composition of blowups, X5, is the com-
plete intersection

X5 = {p5,1 = p5,2 = 0} ⊂ Y5

p5,1 = b1d1e3e4e5vw
2 + b1d2e1e

2
3e

2
4e

2
5w

3 + b1d0v
2w + e2e4tu

2 + e1e2e3e
2
4s5u

2w

+ e4s6uvw + e1e3e
2
4e5s8uw

2

p5,2 = − te5 + e1e2e3e4s1u+ s2v

(3.12)

9The notation fi+1 = (gi+1,1, . . . , gi+1,ni+1 |ei+1) is shorthand for the blowup fi+1 : Yi+1 → Yi of the
ambient space Yi along the blowup center {gi+1,1 = · · · = gi+1,ni+1 = 0} ⊂ Yi whose exceptional divisor
is the zero locus ei+1 = 0. The corresponding blowup Xi+1 → Xi is then given by the restriction of fi+1

to the complete intersection Xi = {pi,1 = · · · = pi,mi = 0} ⊂ Yi. We abuse notation and implement the
i + 1th blowup by making the substitution gi+1,j → ei+1gi+1,j whenever gi+1,j is a local coordinate, and
we denote the proper transform of Xi ⊂ Yi by Xi+1 ⊂ Yi+1.

10To see why the fourth and fifth blowups in eq. (3.10) have precisely the intended effect, let us study
blowups of this form in the context of a toy model. Let Y0 be the total space of a P2 fibration over a base
B. Suppose that the fibers of Y0 have homogeneous coordinates [x : y : z] and let us restrict to a C2 open
set of B with local affine coordinates (a, b). Let X0 ⊂ Y0 be the hypersurface ax+by = 0. The hypersurface
X0 has a section x = y = 0. There is a conifold singularity at a = b = x = y = 0. Suppose we resolve this
singularity by means of a blowup along x = y = 0, i.e. we make the substitution x → e1x, y → e1y with
e1 = 0 a local equation for the exceptional divisor in the ambient space. The proper transform X1 is the
hypersurface ax+by = 0 in the new ambient space Y1 with an affine open set described by the homogeneous
coordinates [x : y][e1x : e1y : z](a, b) (and some unspecified C∗ action). Having blown up the section, we
can study its proper transform by restricting to the exceptional locus e1 = 0. Away from the “discriminant
locus” a = b = 0 in B, we find that the exceptional divisor is isomorphic to the original section, and
corresponds to the set of points [−b : a][0 : 0 : z](a, b). When restricted to the discriminant locus, we find
that the point [0 : 0 : z] of the fiber has been replaced with a P1, i.e. the set of points [x : y][0 : 0 : z](0, 0).
Thus, we see that the proper transform of the section has the topology of a small blowup of the base B
at the point (0, 0). An analogous story holds for the proper transforms of the sections eq. (3.4) under the
fourth and fifth blowups in eq. (3.10).
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and the ambient space Y5 is equipped with homogeneous coordinates

[e1e2e3e4u : v : e1e3e4e5w] [e2e3e4u : e3e4e5w : d0]
[e4u : b1] [e2 : e4e5w] [u : e5w] [w : t]

(3.13)

The above homogeneous coordinates are identified under the rescalings

u→ λ0λ1λ2λ4u, v → λ0v, w → λ0λ1λ3λ4λ5w, d0 → d0λ1, b1 → b1λ2 , (3.14)

e1 →
e1
λ1
, e2 →

e2λ3
λ2

, e3 →
e3
λ3
, e4 →

e4
λ4
, e5 →

e5
λ5
, t→ λ0λ5t

for λi ∈ C∗. One can verify via explicit computation in the affine open sets of X5 that the
rank of the Jacobian [[∂ip5,j ]] does not (in general) reduce over any codimension-two loci in
B, indicating that X5 is smooth through codimension-two in B without additional tunings
of the parameters defining the (SU(3)× SU(2)×U(1))/Z6 Weierstrass model.11 We abuse
terminology and refer to X5 as “smooth”, a “resolution”, etc., keeping in mind that X5
may contain singular fibers over certain codimension-three loci; these codimension-three
singularities do not affect the main results of this paper.

We next analyze the geometry of X5 to identify the kinematics of the low-energy
effective 4D N = 1 supergravity theory describing the (SU(3)×SU(2)×U(1))/Z6 model at
long distances. Unless otherwise stated, throughout our analysis we work over an arbitrary
smooth base B.

4 Codimension one: gauge symmetry

In this section, we analyze the geometry of the singular elliptic fibers of X5 over codimension
one loci of the discriminant locus in B, in order to verify that our resolution correctly
exhibits the expected gauge algebra

g = ⊕sgs = su(3)⊕ su(2)⊕ u(1) (4.1)

characterizing the 4D N = 1 theory describing F-theory compactified on the singular
fourfold X0.

4.1 u(1)

In F-theory compactifications pure u(1) gauge symmetries are identified with the Mordell-
Weil (MW) group of rational sections of the elliptic fibration [7, 62–64], where the zero
section (i.e., a choice of zero element of the MW group, extended fiber-wise over B) cor-
responds to the Kaluza-Klein (KK) u(1) and all other sections generating the free part
of the MW group correspond to additional u(1) factors.12 Therefore, pure abelian gauge

11Note that certain choices of base B can impose additional specializations on the Weierstrass model pa-
rameters that can in principle lead to additional singularities appearing over higher codimension components
of the discriminant locus.

12More precisely, in the dual M-theory picture, in the vicinity of a divisor of a smooth elliptic CY, it is
possible to locally expand the M-theory 3-form in a basis of harmonic forms ωi as C3 = AI ∧ωI + · · · , where
Ai are abelian gauge fields and the harmonic forms ωi are Poincaré dual to the divisors D̂i. See section 4.3
of [48] and references therein for further discussion.
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symmetries are not determined by codimension one singularities in B, although they are
nonetheless associated to smooth divisors D̂ā of X5; see eq. (7.2) for a description of the
proper transforms of the zero and generating sections D̂0, D̂1 under the composition of
blowups leading to X5.

Note that since D̂0 is rational, rather than holomorphic, the resolution X5 describes
a phase of M-theory in which some of the primitive BPS particles in the 3D spectrum
carry non-trivial u(1)KK charge; this point is explored further in section 5.1.13 Since
3D BPS particles arise from M2-branes wrapping holomorphic curves C, these quantized
u(1)KK charges can be computed in terms of the intersection pairing D̂0̄ ·C. Similarly, the
addtional u(1) charges of BPS particles can be determined by computing the intersection
pairings D̂1̄ · C.

4.2 su(3)⊕ su(2)

In contrast to u(1) gauge symmetries, simple nonabelian gauge symmetries gs are associated
to singularities of the elliptic fibers over codimension one components of the discriminant
locus ∆ = 0 in B. Since the discriminant ∆ of the singular Weierstrass model eq. (3.3)
exhibits the following behavior,

f = O(ε0), g = O(ε0), ∆ = ε5b1
3d0

2 +O(ε6) , (4.2)

we can see there is an I2 singularity overe d0 = 0 and an I3 singularity over b1 = 0 in X0
(see, e.g., [65]). We use our explicit description of the resolution X5 → X0 in eqs. (3.12)
and (3.13) to verify that both singular fibers are split in the sense of arithmetic geometry
and indicate the presence of (resp.) su(2) and su(3) gauge symmetries. We describe the
singular fibers in more detail below.

In the following discussion, for convenience, we study the singular fibers and their
intersections in the affine open set e4e5 6= 0, away from possible points of intersection with
the rational sections D̂0, D̂1. The singular elliptic fibers F over the locus d0e1 = 0 split
into the following irreducible rational curves:

su(2) : F |d0e1=0 = F0 + F1 . (4.3)

Setting d0 = 0, we learn that the irreducible curve F0 is the normalization of the singular
cubic curve in P2 with coordinates [u : v : w] (after appropriate coordinate redefinitions),
where the singularity u = w = 0 has been replaced with the exceptional curve F1. Setting
e1 = 0, one can see that F1 is a smooth conic in P2 with coordinates [u : w : d0]. The
intersection F0 ∩ F1 consists of two distinct points, hence the generic fibers are type I2
and we associate F0, F1 to, respectively, the affine and non-affine nodes of the affine su(2)
Dynkin diagram. In codimension one, D̂0 intersects F0 in a point, whereas D̂1 intersects
F1 in a point.

Next we turn our attention to the fibers over the locus b1e2e3 = 0:

su(3) : F |b1e2e3=0 = F ′0 + F ′2 + F ′3 . (4.4)
13See, e.g., [40] for a discussion of the interplay between rational sections and KK charges in the context

of 6D F-theory compactifications.
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F0F1 ⇥⇥ F 0
0

F 0
3

F 0
2

⇥

⇥

Figure 1. Schematic diagram of the singular elliptic fibers over the codimension-one su(2) (left)
and su(3) (right) loci of the discriminant locus in B. Over the su(2) locus d0e1 = 0, the singular
elliptic fiber F is Kodaira type I2, and admits the decomposition F = F0 + F1; over the su(3)
locus b1e2e3 = 0, the singular elliptic fiber is Kodaira type Isplit

3 , and admits the decomposition
F = F ′0 + F ′2 + F ′3. Note that all irreducible components Fa, F ′b are rational curves. The blue ×
indicates that F0, F

′
0 intersect the zero section D̂0 in a point, whereas the red × symbol indicates

that F1, F
′
3 intersect the generating section D̂1 in a point.

Analogous to F0, we associate F ′0 to the affine node and F ′2, F ′3 to the other two nodes of the
affine su(3) Dynkin diagram. Making the redefinitions w → uw/(e3e5), e2 → e2/e3, v →
e1e4uv, we learn that F ′0 can be described locally as a smooth conic in a subspace birational
to P2 with coordinates [e2 : v : w] with the points [0 : 1 : 0] and [s2v : s1e2 : 0] removed.
Next, we consider the curve F ′2. Making coordinate redefinitions u → u/(e1e4), e3 →
e3/(e1e4e5w), we find that F ′2 is the sum of a base and fiber curve in F1 with homogeneous
coordinates [v : e3][u : b1] ∼= [λ0v : λ0e3][λ0λ2u : λ2b1]. Finally, in the case of the curve
F ′3, after making the coordinate redefinitions w → vd0w/(e4e5), u → vd0u/e4 we learn
that the class of F ′3 is a sum of the base and fiber curve classes in F−1 with homogeneous
coordinates [u : b1][e2 : w] ∼= [λ2u : λ2b1][λ−1

2 λ3e2 : λ3w]. It is straightforward to verify
that the three pairwise intersections F ′0 ∩ F ′2, F ′0 ∩ F ′3, F ′2 ∩ F ′3 are all points, and hence the
fibers over b1e2e3 = 0 are of Kodaira type Isplit

3 . In codimension one D̂0 intersects F ′0 in a
point, whereas D̂1 intersects F3 in a point.

See figure 1 for a schematic depiction of the codimension-one singular fibers.

5 Codimension two: local matter

In this section we study the geometry of the codimension-two singular fibers (i.e., collisions
of codimension-one singular fibers including those described in section 4) associated to local
matter representations

(R3,R2)w1̄ , (5.1)

where
Rs := rs ⊕ r∗s (5.2)

is an irreducible quaternionic representation of the nonabelian gauge algebra gs and w1̄ = q

is the u(1) charge. We show, in particular, that the codimension-two singularities are
consistent with the matter spectrum discussed in [2].
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5.1 Kaluza-Klein charges

As was mentioned briefly in section 4.1, a special feature of the resolution X5 is that the zero
section D̂0 is rational, rather than holomorphic, which is closely related to our realization
of the F-theory vacuum X0 as a hypersurface of a general P2 fibration as opposed to a
Weierstrass model y2z = x3 + fxz2 + gz3 (the Weierstrass model, by contrast, is naturally
equipped with a holomorphic zero section x = z = 0). It turns out that the zero section D̂0
is isomorphic to a small blowup of the base B at various points and is hence only birational
to B. This can be seen by noting that the locus s2 = 0, over which the zero and generating
sections intersect (and hence over which our choice of zero section fails to be holomorphic),
has non-trivial intersection with the discriminant locus. Thus, the singular elliptic fibers
of X0 over the codimension-two locus ∆ = s2 = 0 have singular points that are blown up
as part of the resolution X5 → X0; the proper transforms of these points are irreducible
P1 components of I2 singular fibers over ∆ = s2 = 0. Since these exceptional P1’s are by
definition extremal generators of the Mori cone of X5, they necessarily have non-trivial
intersection with D̂0 ∼= Bl{∆=s2=0}B, and thus it follows that the central charges of the
primitive 3D BPS particles corresponding to M2 branes wrapping these exceptional P1’s
carry non-zero u(1)KK charge. These 3D BPS particles’ KK central charges are in fact
small in comparison to their Coulomb branch central charges (see eq. (7.43)), so there is no
mass hierarchy between BPS particles with zero KK charge and BPS particles with non-
zero KK charge. While the presence of light particles with non-trivial KK charge clearly
does not alter the 4D spectrum, this does imply that we cannot simply read off the 4D
kinematics from the naive 3D BPS spectrum in the usual manner.14 Thus, we need to be
able to use the geometry of X5 to precisely specify the contribution of the KK charges to
the 3D Coulomb branch dynamics, so that we can disentangle the KK spectrum from our
analysis. We discuss how to do this below.

We first focus on the zero section. Rescaling the homogeneous coordinates appropri-
ately and defining w → e2uw, e4 → e4/u, we can describe the restriction of the zero section
to the locus s2 = 0 by the complete intersection

D̂0|s2=0 : s1e1e2e3e4 = e4t+ (s6v + b1d0v
2)w + s5e1e2e3e

2
4w = 0 . (5.3)

In the above equation, the monomial s1e1e2e3e4 vanishes on the union of three components
of the discriminant locus restricted to s2 = 0, namely the union of the loci s1 = 0, d0e1 = 0,
and b1e2e3 = 0:

f |s2=0 = O(ε0), g|s2=0 = O(ε0), ∆|s2=0 = ε9(b1e2e3)4(d0e1)3s2
1 +O(ε10) . (5.4)

We thus expect the intersection of D̂0 ∩ Ŷ with each of these codimension one loci to
describe the following collection of exceptional P1s:

14For example, in this situation the one-loop Chern-Simons couplings receive contributions from the KK
central charges. Thus, it is not possible to determine the form of the Chern-Simons couplings from purely
3D field-theoretic considerations, as the KK tower now participates in the light spectrum [40, 66].
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Setting e1 = 0 and working in the affine open set s1e2e3 6= 0, after appropriately
rescaling and defining new variables e4 → ve4/(e2e3), t→ vt we find

D̂0|s2=e1=0 : e4t+ b1d0w + s6e4w = 0 (5.5)

in a subspace birational to P1×P1 with homogeneous coordinates [e4 : d0][w : t]. Similarly,
by setting e3 = 0 and working in the open set s1e1e2 6= 0, after making some appropriate
coordinate redefinitions we find an identical local description in a subspace birational to
P1×P1 with homogeneous coordinates [e4 : b1][w : t]. Finally, by setting s1 = 0 and working
in the open set e1e2e3 = 0, and making the coordinate redefinitions d0 → d0/e1, b1 →
b1/(e2e3), e4 → e4/(e1e2e3), we may write

D̂0|s2=s1=0 : e4t+ s5we
2
4 + s6we4v + d0b1v

2w = 0 (5.6)

in a subspace birational to a Hirzebruch surface15 F1 with coordinates [e4 : v][w : t] ∼=
[λ0e4 : λ0v][λ5w : λ0λ5t]. In all three cases, we see that the zero section wraps a full
rational curve, i.e., the elliptic fiber splits as F → F ′+F ′′, with F ′, F ′′ ∼= P1. As discussed,
since these exceptional curves F ′ lie in D̂0, the primitive BPS particles corresponding to
M2 branes wrapping F ′ carry non-trivial KK charge given by D̂0̄ · F ′ 6= 0.

Having specified the geometric origin of the light BPS particles in the 3D spectrum
with non-trivial u(1)KK charges, we next turn our attention to local matter charged under
su(3)⊕ su(2)⊕ u(1).

5.2 (1,1)w1̄

The pure u(1) charged matter loci were found in [2] to corresponds to singular fibers of X0
over the following components of the discriminant locus ∆ = 0:

(1,1)1 : Vq=1 = 0
(1,1)2 : s1 = s2 = 0 .

(5.7)

In the above equation

Vq=1 = V \({s1 = s2 = 0} ∪ {b1 = s2 = 0} ∪ {d0 = s2 = 0})

V =


−d0b1s

2
1s2(d1s

2
2 − 2d0s2s5 + 2d0s1s6) + d3

0b
2
1s

4
1

+d2s
6
2 − s2

2(s2s5 − s1s6)(d1s
2
2 − d0s2s5 + d0s1s6)

= −b1d1s1s
3
2 + 2d0b1s1s5s

2
2 − 3d0b1s

2
1s2s6

+2b21d2
0s

3
1 + s4

2s8 − s3
2s5s6 + s1s

2
2s

2
6

 .
(5.8)

To see that the fibers in the resolution X5 degenerate as expected over the total transforms
of both loci described above, we work in the open set d0e1b1e2e3 6= 0. For the charge
q = 1 locus, we further restrict to the open set s2 6= 0 and solve for d2, s8 in the equation
Vq=1 = 0. Doing so, we find that

F |Vq=1=0 = F+
q=1 + F−q=1 (5.9)

15Fn denotes the Hirzebruch surface P(O ⊕ O(n))→ c, with divisor classes f, c satisfying f2 = 0, f · c =
1, c2 = −n.
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We learn also that the zero section intersects F+
q=1 in a point, while the generating section

intersects F−q=1 in a point. Moreover, it is straightforward to verify that the intersection
F+
q=1 ∩ F

−
q=1 consists of two distinct points, hence we see the fibers over Vq=1 = 0 are

type I2, as anticipated, where F+
q=1 as the affine component of the affine su(2) Dynkin

diagram describing the intersection structure of the enhancement. The enhancement of
the elliptic fiber to an I2 Kodaira fiber indicates the presence of charged matter and since
this enhancement occurs away from the components of the discriminant locus associated
to nonabelian gauge symmetry, we conclude this matter can only be charged under the
u(1) of the 4D gauge algebra. The u(1) charges can be checked by computing intersection
products D̂1̄ · F±q=1.

We treat the charge q = 2 locus in a similar manner. Setting s1 = s2 = 0, eq. (3.12)
splits into two components, p5,2(s1 = s2 = 0) = e5t = 0. It follows that the fibers over this
locus degenerate:

F |s1=s2=0 = F+
q=2 + F−q=2, F+

q=2 = F |s1=s2=t=0, F−q=2 = F |s1=s2=e5=0 . (5.10)

Notice that the above definitions imply that the zero section wraps the exceptional curve
F−q=2. To study the geometry of the degenerated fibers more explicitly, we use local de-
scriptions of the fibers in affine open sets, as we now describe.

For F+
q=2, Making the redefinitions u → u/(e1e2e4), w → w/(e1e3e4), we can describe

F+
q=2 locally as a smooth conic in P2 with homogeneous coordinates [u : v : we5] with

the point [0 : 1 : 0] removed. For F−q=2, we make the redefinitions w → e2e4uw/e3, e4 →
e4/(e1e2u) so that F−q=2 can be described locally as a sum of base and fiber curves in F1
with homogeneous coordinates [e4 : v][w : t] ∼= [λ0e4 : λ0v][λ5w : λ0λ5t].

The generating section D̂1 intersects F−q=2 in a point, but does not intersect F+
q=2.

Moreover, the intersection F+
q=2∩F

−
q=2 consists of two distinct points, hence the fibers over

the charge q = 2 locus are type I2. Once again, the charges can be determined explicitly
by computing the intersection products D̂1̄ · F±q=2.

5.3 (1,2)w1̄

The residual discriminant locus intersecting the codimension-one I2 locus d0 = 0 is

f =
(
4b1d1s2 − s2

6

)
2 +O(d0)

g =
(
4b1d1s2 − s2

6

)
3 +O(d0)

∆ = − 1
16d

2
0b

3
1s2∆(a)

(
4b1d1s2 − s2

6

)
2 +O(d3

0) ,

(5.11)

where

∆(a) = b21d
3
1s

2
1 + b1d

2
1s2s

2
5 − b1d2

1s1s5s6 − 2b1d2
1s1s2s8

− 2b1d2d1s
2
2s5 + 3b1d2d1s1s2s6 + b1d

2
2s

3
2 + d1s

2
2s

2
8

+ d1s1s
2
6s8 − d1s2s5s6s8 − d2s1s

3
6 + d2s2s5s

2
6 − d2s

2
2s6s8 .

(5.12)

thus according to Tate’s algorithm [65] we can anticipate the presence of localized matter
charged under su(2) for all codimension-two loci except for d0 = 4b1d1s2−s2

6 = 0. According
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×
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F t
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Figure 2. Schematic depiction of the degeneration of the I2 Kodaira fibers over the codimension-
two loci corresponding to local matter transforming in the representations (1,2)1/2 (over d0e1 =
∆(a) = 0) and (1,2)3/2 (over d0e1 = s2 = 0). Note that a blue (respectively, red) × in the center
of a node corresponding to an irreducible P1 component of the singular elliptic fiber indicates that
D̂0 (respectively, D̂1) intersects the said P1 in a point. The blue node is wrapped entirely by D̂0.

to the analysis of [2], we anticipate the following representations

(1,2) 1
2

: d0 = ∆(a) = 0 ,

(1,2) 3
2

: d0 = s2 = 0 .
(5.13)

In this subsection we focus on the local matter away from the collision of I2 and Isplit
3 fibers;

see figure 2. Bifundamental matter, which is localized at the collision of the I2 and Isplit
3

fibers, is discussed in section 5.5.
Judging from eq. (5.11), we expect the I2 fiber to enhance to Isplit

3 over ∆(a) = 0.
Unfortunately, an explicit algebraic description of the degeneration of the elliptic fibers
over ∆(a) = 0 is difficult to obtain so we simply verify that the discriminant ∆F0 of the
cubic polynomial defining F0 in eq. (4.3) vanishes on this locus. In particular, we find

∆F0 = (· · · )∆(a) . (5.14)

In the above equation, (· · · ) denotes factors of b1, e2, e3 responsible for the degeneration
leading to bifundamental matter; we analyze this degeneration in detail in section 5.5.
Schematically, we write

F0|∆(a)=0 = F+
0 + F−0 . (5.15)

Unfortunately, without an explicit algebraic description, it is not precisely clear how D̂0, D̂1
intersect the irreducible components F±0 of the elliptic fiber over this locus. However, given
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that the BPS particles corresponding to M2 branes wrapping F±0 have much larger KK
central charges than Coulomb branch central charges, we can further anticipate that D̂0
only intersects either F+

0 or F−0 in a point, rather wrapping the entire curve.
Turning next to s2 = 0 and keeping in mind p5,2(e1 = s2 = 0) = te5 = 0, we find

F1|s2=0 = F t1 + F e51 . (5.16)

The above equation describes a pair of curves intersecting transversally. A local algebraic
description of F t1 can be obtained by restricting the description of F1 (see eq. (4.3)) to the
locus s2 = 0. Making appropriate coordinate redefinitions, F e51 can be described locally as
a sum of a base and fiber curve in subspace birational to F1 with coordinates [u : d0][w :
t] ∼= [λ1u : λ1d0][λ1λ5w : λ5t]. A straightforward computation shows that the pairwise
intersections F0 ∩ F t1, F0 ∩ F e51 , F t1 ∩ F

e5
1 are distinct points and hence the degeneration

over s2 = 0 enhances the I2 fiber to an Isplit
3 fiber, indicating matter transforming in the

2 of su(2).
Note that D̂0 wraps the entire curve F e51 , and both D̂0, D̂1 intersect F t1 in distinct

points.

5.4 (3,1)w1̄

The residual discriminant intersecting the Isplit
3 locus b1 = 0 is

f = − s
4
6

48 +O(b21) ,

g = s6
6

864 +O(b41) ,

∆ = − 1
16b

3
1d

2
0s2s

3
6(s8s

2
2 + s1s

2
6 − s2s5s6)(d0e1s

2
8 + d2s

2
6 − d1s8s6)

+O(b41) .

(5.17)

Following Tate’s algorithm, we expect to see localized matter charged under su(3) at all
codimension-two components of the discriminant locus except for b1 = s6 = 0.16 The
analysis of [2] anticipates the following su(3) charged matter representations (see figure 3):

(3,1) 2
3

: b1 = s8s
2
2 − s5s2s6 + s1s

2
6 = 0

(3,1)− 1
3

: b1 = d2s
2
6 − d1s6s8 + d0e1s

2
8 = 0

(3,1)− 4
3

: b1 = s2 = 0 .

(5.18)

Over the locus s8s
2
2− s5s2s6 + s1s

2
6 = 0, we find that the fibers in the resolution X5 behave

as follows:

F ′0|s8s22+s1s26−s2s5s6=0 = F ′+0 + F ′−0 . (5.19)

Substituting w → w/(e4e5), e2 → e2/(e4u) we find in the open set s2 6= 0 that F ′±0 can be
given a local algebraic description as a pair of lines in P2 with coordinates [e1e3e2 : v : e1e3w]

16The locus b1 = s6 = 0 is an IV locus, and does not support any charged matter [2].
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3

F ′0

F ′3

F ′−2
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F ′0
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F ′t3

F ′2

×

(3,1)− 4
3

Figure 3. Schematic depiction of the degeneration of the Isplit
3 Kodaira fibers over the codimension-

two loci corresponding to local matter transforming in the representations (3,1)2/3 (over b1e2e3 =
s8s

2
2−s5s2s6 +s1s

2
6 = 0), (3,1)−1/3 (over b1e2e3 = d2s

2
6−d1s6s8 +d0e1s

2
8 = 0), and (3,1)−4/3 (over

b1e2e3 = s2 = 0). Note that a blue (respectively, red) × in the center of a node corresponding to an
irreducible P1 component of the singular elliptic fiber indicates that D̂0 (respectively, D̂1) intersects
the said P1 in a point. The blue node in the bottom-most graph is wrapped entirely by D̂0.

and the point [1 : 0 : 0] removed. Given this description, it is straightforward to verify that
the pairwise intersections F ′−0 ∩F ′2, F ′+0 ∩F ′3, F

′+
0 ∩F

′−
0 are distinct points, hence the fiber

enhances to Isplit
4 indicating matter in the 3. Note that D̂0 intersects F ′0

− in a point along
w = 0, whereas D̂0 does not intersect F ′0

+.
Similarly, over the locus d0e1s

2
8 +d2s

2
6−d1s8s6 = 0 the curve F ′2 degenerates as follows:

F ′2|d0e1s28+d2s26−d1s8s6=0 = F ′+2 + F ′−2 . (5.20)

Making the coordinate substitutions e3 → e3/(e4e5w), u → u/e4 we find that in the open
set s6s8 6= 0 that F ′±2 can be described locally as as a pair of lines in F1 (the homogeneous
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coordinates for this F1 are described in section 4.2). The pairwise intersections F ′+2 ∩
F ′0, F

′−
2 ∩ F ′3, F

′+
2 ∩ F

′−
2 are distinct points, and thus we find an enhancement to an Isplit

4
fiber again indicating matter in the 3 of SU(3).

Finally we come to the locus s2 = 0. The component F ′3 degenerates as follows:

F ′3|s2=0 = F ′t3 + F ′e53 . (5.21)

Making coordinate redefinitions t→ vt, u→ d0vu,w → d0vw, we find that the irreducible
components of the above degeneration can be described by

F ′t3 = {t = b1w + e2e4tu
2 + e4s6uw = 0} ⊂ P1

[e4u:b1] × P1
[w:t]

F ′e53 = {e5 = b1w + e2e4tu
2 + e4s6uw = 0} ⊂ F1[e4u:b1][e2:e4e5w]

(5.22)

where [e4u : b1][e2 : e4e5w] ∼= [λ2e4u : λ2b1][λ3λ
−1
2 e2 : λ3e4e5w]. The pairwise intersec-

tions F ′t3 ∩ F ′2, F ′e53 ∩ F ′0, F ′t3 ∩ F
′e5
3 , F ′0 ∩ F ′2 are all distinct points, hence we again find an

enhancement of type Isplit
4 .

Note that D̂0 wraps F ′e53 and D̂1 intersects F ′e53 in a point D̂0 ∩ D̂1 away from the
intersection F ′t3 ∩ F ′e53 .

5.5 (3,2)w1̄

In this section we describe the collision of I2, I
split
3 fibers over the codimension-two locus

b1 = d0 = 0:

F |b1e2e3=d0e1=0 = F00 + F02 + F10 + F12 + F13 , (5.23)

where Fab denotes the curve obtained by setting ea = eb = 0 for a, b 6= 0, or d0, b1 = 0 for
(resp.) a, b = 0.

The analysis of [2] indicates that su(3) ⊕ su(2) charged matter is localized at the
collision of the I2, Isplit

3 singularities (see figure 4):

(3,2) 1
6

: d0 = b1 = 0 . (5.24)

Working in the affine open set λ5 = e5 6= 0, we can give the above irreducible components
local descriptions as follows. For F00, making the redefinitions w → w/(e3e4e5), e2 →
e2/(e4u) leads to the local description of F00 as a smooth conic in P2 with coordinates [e1e2 :
v : e1w] with the point [0 : 1 : 0] removed. For F02, redefining u → e3e5wu, e2 → e2/e3
leads to a description as curve of bi-degree (1, 1) in P1×P1 with coordinates [v : e1w][u : b1].
For F10, redefining w → vw/(e4e5), e2 → ve2/e4u allows us to describe F10 locally as a line
in P2 with homogeneous coordinates [e3e2 : e3w : d0]. For F12, making the redefinitions
u → vu/e4, e3 → ve3/(e4e5w), we find that F12 can described as a curve of bi-degree
(1, 1) in F1 with homogeneous coordinates [e3 : d0][u : b1]. Finally, for F13, making the
redefinitions e4 → d0ve4/u,w → uw/e5 and rescaling the coordinates appropriately, we
find that F13 can be described by the equation

F13 = {s2e2e4 + b1w + s6e4w = 0} ⊂ F1 (5.25)
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Figure 4. Schematic depiction of the collision of I2 and Isplit
3 Kodaira fibers over the codimension-

two locus corresponding to local matter transforming in the representation (3,2)−1/6 (over d0e1 =
b1e2e3 = 0). Note that a blue (respectively, red) × in the center of a node corresponding to an
irreducible P1 component of the singular elliptic fiber indicates that D̂0 (respectively, D̂1) intersects
the said P1 in a point.

where the F1 in the above equation has homogeneous coordinates [e4 : b1][e2 : e4w] ∼=
[λ2e4 : λ2b1][λ−1

2 λ3e2 : λ3e4w]. It is straightforward to verify that the only intersections
F00 ∩ F02, F00 ∩ F10, F02 ∩ F12, F10 ∩ F13, F12 ∩ F13 are distinct points, hence we find that
the elliptic fiber is type Isplit

5 .
Note that D̂0 intersects F00 in a point, while D̂1 intersects F13 in a point.

6 Codimension three: Yukawa interactions

In this section, we study the degenerations of the elliptic fibers over codimension-three loci
in B that are characterized by triple intersections of matter curves,

CR1 ∩ CR2 ∩ CR3 ⊂ B. (6.1)

Since the orders of vanishing of the sections f, g,∆ can further increase at these codimen-
sion-three loci, the singularity type of the elliptic fibers can enhance; we refer to this
behavior as a degeneration of the elliptic fibers because analogous to the degenerations of
the elliptic fibers over codimension-one or codimension-two components of the discriminant
locus, these singularity enhancements also manifest themselves in the resolved geometry as
the splitting of one or more of the components of the elliptic fibers into multiple irreducible
P1 components. However, there is an important distinction to be made here, in that
the elliptic fiber degenerations over loci of the form eq. (6.1) do not produce additional
generators of the cone of effective curves. This is because the degenerations are of the
schematic form

FR1 = F ′R2 + F ′′R3 (6.2)
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at a given point in the locus eq. (6.1). In the above equation, FRi is an irreducible com-
ponent of the elliptic fibers (and hence a generator of the cone of effective curves) over a
generic point the codimension-two locus CRi , and thus we see that the classes of any ap-
parently “new” curves that appear as a result of these degenerations turn out to be linear
combinations of existing curve classes.

Eq. (6.2) implies that at each degeneration point in the resolved geometry, there resides
a localized interaction in the M-theory effective action that mediates the splitting of a BPS
state corresponding to an M2-brane wrapping FR1 into a pair of BPS states corresponding
to M2-branes wrapping F ′R2

and F ′′R3
[49]. The representation-theoretic version of this

statement that characterizes the F-theory limit is that degenerations of the form eq. (6.2)
indicate the existence of maps

R1 × R2 × R3 → 1, (6.3)

which produce gauge singlets from the weights of the matter representations in the low-
energy effective action. In other words, these codimension-three singularities correspond
to Yukawa interactions appearing in the low-energy effective 4D action [12–14] (see also
section 6 of [48] and references therein). An important check that such interactions in-
deed can appear in the low-energy effective action is to identify an explicit elliptic fiber
degeneration in the resolution of the singular F-theory background.17

In the case of the (SU(3) × SU(2) × U(1))/Z6 model, we anticipate the existence of
Yukawa interactions corresponding to the following gauge singlets:

(r3, r2)w1̄ × (r′3, r′2)w′1̄ × (r′′3 , r′′2)w′′′1̄
. (6.4)

To ensure that the couplings are gauge singlets separately for each gauge factor su(3), su(2),
u(1) we require that the nonabelian irreps are either singlets or pairwise complex conjugates
and that the u(1) charges sum to zero.18 In more detail, we compute the full list of possible
Yukawa interactions by identifying all solutions to the equation w1̄ + w′1̄ + w′′1̄ = 0, where
w1̄, w

′
1̄, w

′′
1̄ are a subset of u(1) charges in the low-energy (anti-)chiral spectrum, and then

excluding all candidate solutions for which the nonabelian factors cannot be combined into
a gauge singlet. With the exception of the possible gauge singlet described in footnote 18, it
turns out that all possible Yukawa interactions consistent with the matter representations
of the (SU(3) × SU(2) × U(1))/Z6 model arise as elliptic fiber singularity enhancements

17Note that while there are also Yukawa type couplings that include (non-chiral) adjoint representations of
the nonabelian factors, associated with non-localized matter fields in the bulk of the 7-branes, we focus here
on localized Yukawa couplings associated with nonabelian fundamental fields and the charge combinations
of local matter described in the previous section.

18As the one possible exception to this characterization of the Yukawa interactions in the (SU(3) ×
SU(2)×U(1))/Z6 model, we point out that there could also exist a Yukawa interaction of the form (3,1) 2

3
×

(3,1) 2
3
× (3,1)− 4

3
(along with its conjugate). This interaction would have to be localized at the double

intersection of the (3,1)− 4
3
locus b1e2e3 = s2 = 0 with the (3,1) 2

3
locus b1e2e3 = s8s

2
2 − s5s2s6 + s1s

2
6 = 0.

However, the only possible double intersection would occur at tangent point s2
6 = 0, which lies along the

IV locus b1e2e3 = s6 = 0, which does not support any charged matter, hence there is no additional Yukawa
interaction.
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over codimension-three loci in B, assuming generic characteristic data. In the following,
we discuss one of a pair of complex conjugate Yukawa interactions associated to each
codimension-three singularity.

6.1 (3∗,2)w1̄ × (3,1)w′1̄ × (1,2)w′′1̄
First we consider the case (w1̄, w

′
1̄, w

′′
1̄) =

(
− 1

6 ,−
4
3 ,

3
2
)
. Using the description of the fiber

degeneration eq. (5.23) associated with local matter transforming in (3,2) 1
6
, over the locus

s2 = 0 we observe an additional degeneration F ′13 → F ′t13 +F ′e513 inherited from the (3,1)− 4
3

degeneration F ′3 → F ′t3 + F ′e53 described in eq. (5.21), so that

F |b1e2e3=d0e1=s2=0 = F00 + F e510 + F e513 + F t13 + F t12 + F t02 . (6.5)

The nontrivial intersections are the distinct points F00 ∩ F e510 , F
e5
10 ∩ F

e5
13 , F

e5
13 ∩ F t13, F

t
13 ∩

F t12, F
t
12 ∩ F t02, F

t
02 ∩ F00, thus we observe an enhancement Isplit

5 → Isplit
6 . Note that D̂0

wraps F e510 and F e513 , while D̂1 intersects F e513 in a point.
The second case is (w1̄, w

′
1̄, w

′′
1̄) =

(
− 1

6 ,
2
3 ,−

1
2
)
. In the open set e5 6= 0 we observe the

further degeneration F00 → F+
00 + F−00, that is

F |b1e2e3=d0e1=s8s22−s2s5s6+s1s26=0 = F+
00 + F−00 + F02 + F10 + F12 + F13 . (6.6)

Setting s8 = (s2s5s6 − s1s
2
6)/s2

2, and making the coordinate redefinitions w → w/(e3e4e5),
the new rational curves can be described as

F+
00 = {s2e2 + s6w = 0} ,
F−00 = {s1s2e1e2 + s2

2v + s2s5e1w − s1s6e1w = 0} .
(6.7)

The new intersection points are F+
00 ∩ F

−
00, F

−
00 ∩ F02, F

+
00 ∩ F10, with all other intersection

points unchanged and thus we find another Isplit
6 enhancement. Here, D̂0 intersects F−00 in

a point.
The final case is (w1̄, w

′
1̄, w

′′
1̄) =

(
− 1

6 ,−
1
3 ,

1
2
)
. We observe the further degeneration

F02 → F+
02 + F−02, i.e.,

F |b1e2e3=d0e1=d2s26−d1s6s8+d0e1s28=0 = F00 + F+
02 + F−02 + F10 + F12 + F13 , (6.8)

where setting d2 = d1s8/s6 and making the coordinate redefinitions u → e3e5wu,w →
w/(e1e3e4e5), we may write

F+
02 = {d1b1 + s6u = 0} ,
F−02 = {s6v + s8w = 0} .

(6.9)

The new intersection points are F+
02 ∩ F

−
02, F

+
02 ∩ F12, F

−
02 ∩ F00 with all other intersection

points remaining the same, hence we again find an Isplit
6 enhancement.

See figure 5 for a schematic depiction of the singular fibers over these special points
in B.
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Figure 5. Singular fibers associated to Yukawa interactions of the form (3∗,2)w1̄ × (3,1)w′
1̄
×

(1,2)w′′
1̄
.

6.2 (3∗,1)w1̄ × (3,1)w′1̄ × (1,1)w′′1̄
First, consider the case (w1̄, w

′
1̄, w

′′
1̄) =

(4
3 ,

2
3 ,−2

)
. We use the description of the (3,1)− 4

3
degeneration given in eq. (5.21), in which we already see the degeneration F ′3 → F ′t3 +F ′e53 .
Over the locus s1 = 0 an additional exceptional curve F ′e50 appears due to the intersection
of the zero section D̂0 with the affine component F ′0 of the singular elliptic fiber, leading
to the degeneration

F |b1e2e3=s2=s1=0 = F ′t0 + F ′e50 + F ′2 + F ′t3 + F ′e53 . (6.10)
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The new intersection points are F ′e50 ∩F ′t0 , F
′e5
0 ∩F

′e5
3 , F ′t0 ∩F ′2, hence we find an enhancement

Isplit
4 → Isplit

5 . Notice that D̂0 now wraps both F ′e53 , F ′e50 , while D̂1 still intersects F ′e53 in
a point.

Next, consider the case (w1̄, w
′
1̄, w

′′
1̄) =

(
− 2

3 ,−
1
3 , 1
)
. We work with the description of

the (3,1) 2
3
degeneration in eq. (5.19), in which F ′0 → F ′+0 +F ′−0 . Here, consistent with the

local matter representation (3,1)− 1
3
, for which we see the degeneration F ′2 → F ′+2 + F ′−2 ,

we find that the elliptic fiber decomposes as

F |b1e2e3=d2s26−d1s6s8+d0e1s28=s8s22−s2s5s6+s1s26=0 = F ′+0 + F ′−0 + F ′+2 + F ′−2 + F ′3 . (6.11)

Solving simultaneously for s8, d1 and making the coordinate redefinitions w→w/(e1e3e4e5),
t→ s2t/e5, and u→ u/e4, we may write

F ′+2 = {s6t+ s8w = 0} ,
F ′−2 = {b1d0e1s6t+ e1s

2
6u+ b1d1s6w − b1d0e1s8w = 0} .

(6.12)

The new intersections points are F ′+2 ∩ F
′−
2 , F ′+2 ∩ F

′−
0 , F ′−2 ∩ F ′3, hence we find another

enhancement of the form Isplit
4 → Isplit

5 .
Finally, consider the case (w1̄, w

′
1̄, w

′′
1̄) =

(4
3 ,−

1
3 ,−1

)
. In this case we again work

with the (3,1)− 4
3
description given in eq. (5.21). Consistent with the (3,1) 1

3
degeneration

F ′2 → F ′+2 + F ′−2 , we find

F |b1e2e3=s2=d2s26−d1s6s8+d0e1s28=0 = F ′0 + F ′+2 + F ′−2 + F ′t3 + F ′e53 . (6.13)

Using the projective scaling symmetry of the ambient space and making the coordinate
redefinitions u→ u/(e1e4), e3 → e3/(e1e4e5w), d0 → d0/e1, the new irreducible curves can
be expressed as

F ′+2 = {s6v + s8e3 = 0}
F ′−2 = {s2

6u+ s6d0b1v + s6d1b1e3 − s8b1d0e3 = 0}
(6.14)

The new points of intersection are F ′+2 ∩ F
′−
2 , F ′+2 ∩ F ′0, F

′−
2 ∩ F ′t3 and therefore we see an

enhancement of the form Isplit
4 → Isplit

5 .
See figure 6 for a schematic depiction of the singular fibers over these special points

in B.

6.3 (1,2)w1̄ × (1,2)w′1̄ × (1,1)w′′1̄
The first case is (w1̄, w

′
1̄, w

′′
1̄) =

(1
2 ,−

3
2 , 1
)
. In this case, we borrow the description of the

fiber degeneration F1 → F t1 + F e51 that occurs over the codimension-two locus associated
to local matter transforming in the representation (1,2) 3

2
. In codimension three, we see

the degeneration
F |d0e1=s2=∆(a)/s1=0 = F+

0 + F−0 + F t1 + F e51 (6.15)

where now, in contrast to the discussion in section 5.3, the polynomial ∆(a) factors over
the locus s2 = 0:

∆(a)
s1

= s1d
3
1b

2
1e

2
2e

2
3 − s6s5d

2
1b1e2e3 − s3

6d2 + s2
6s8d1 +O(s2) . (6.16)
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Figure 6. Singular fibers associated to Yukawa interactions of the form (3∗,1)w1̄ × (3,1)w′
1̄
×

(1,1)w′′
1̄
.

The above factorization permits us to straightforwardly solve for an explicit algebraic
description of the curves F±0 . Solving ∆(a)/s1 = s2 = 0 for s8 and eliminating the unit e2
in the affine open set s1e1e3e4u 6= 0, we may use the following local descriptions

F+
0 = {b1d1e3e5w + s6u = 0} ,
F−0 = {−b1d2

1e3e
2
5t

2w + d1e5s6t
2u+ d1e1e3e4e5s5s6tuw

+ d1e1e3e4s1s
2
6uvw + d2e

2
1e

2
3e

2
4e5s1s

2
6uw

2 = 0} .
(6.17)

The new points of intersection are F+
0 ∩F

−
0 , F

+
0 ∩F t1, F

−
0 ∩F

e5
1 , hence we see an enhancement

Isplit
3 → Isplit

4 .
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Figure 7. Cartoon depiction of the various junctions of triples of matter curves CR, CR′ , CR′′ ∈ B
associated to candidate Yukawa interactions appearing in the low-energy 4D N = 1 action. Each
codimension-three point in B in the above figure (represented by a black dot) is labeled by the
triple of u(1) charges w1̄, w

′
1̄, w

′′
1̄ of the three representations r, r′, r′′ (see eq. (6.4)) contracted into

a gauge singlet term in the low-energy Lagrangian; note that each triple labels one of a pair of
possible complex conjugate interaction terms. The red, blue, and purple curves correspond to
matter curves associated to non-trivial su(3), su(2), and su(3)⊕ su(2) representations, respectively.
By contrast, the dashed lines denote matter curves corresponding to pure u(1) charges. Note also
that the (1,1)−1 matter curve intersects the (1,2)1/2 in a tangent point.

The next case is (w1̄, w
′
1̄, w

′′
1̄) =

(1
2 ,

3
2 ,−2

)
. This Yukawa interaction can be analyzed

in a manner analogous to that of the previous case, with the key distinction being that
we now solve ∆(a)|s2=0 = 0 by setting s1 = 0. Here, it is illuminating to denote both
degenerations by F0 → F t0 + F e50 , F1 → F t1 + F e51 :

F |d0e1=s2=s1=0 = F t0 + F e50 + F t1 + F e51 , (6.18)

where the points of intersection are F t0 ∩ F e50 , F t1 ∩ F
e5
1 F t0 ∩ F t1, F

e5
0 ∩ F

e5
1 . We thus see an

enhancement of the form Isplit
3 → Isplit

4 . Notice that D̂0 now wraps both F e50 and F e51 , while
D̂1 continues to intersect F t1 in a point.

The final case is (w1̄, w
′
1̄, w

′′
1̄) =

(1
2 ,

1
2 ,−1

)
. The restriction of the locus ∆(a) = Vq=1 = 0

to d0e1 = 0 can be expressed as

{∆(a) =Vq=1 =0}|d0e1=0 ={d2s
2
2−d1s5s2 +d1s1s6 =b1d1e2e3s1s2−s8s

2
2 +s5s6s2−s1s

2
6 =0}.
(6.19)

Note that the intersection of Vq=1 = 0 and ∆(a) = 0 occurs at a tangent point as depicted
in figure 7, i.e., if we write Vq=1 := {Vq=1,1 = Vq=1,2 = 0} then

∆(a)|Vq=1,1=0 = V 2
q=1,2, ∆(a)|Vq=1,2=0 = V 2

q=1,1 . (6.20)
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Figure 8. Singular fibers associated to Yukawa interactions of the form (1,2)w1̄×(1,2)w′
1̄
×(1,1)w′′

1̄
.

We solve the above equations by eliminating d2, s8. Over this codimension-three locus,
using the degeneration F0 → F+

0 + F−0 inherited from the codimension-two enhancement
associated with local matter in the representation (1,2) 1

2
described in eq. (5.15), we see

the further degeneration F+
0 + F−0 → F++

0 + F−−0 + F0:

F |d0e1=∆(a)=Vq=1=0 = F++
0 + F−−0 + F 0

0 + F1 , (6.21)

where the points of intersection of the irreducible components are F++
0 ∩ F 0

0 , F
−−
0 ∩ F 0

0 ,
signaling an enhancement Isplit

3 → Isplit
4 .

See figure 8 for a schematic depiction of the singular fibers over these special points
in B.
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7 Intersection theory, 3D Chern-Simons couplings, and chiral matter
multiplicities

In the preceding sections, we have studied the geometry of the resolution X5. This analysis
confirms that the singularities of X0 are consistent with the expected kinematics of the
low-energy 4D theory [2], and provides a geometric grounding for further investigation
of the structure of the matter spectrum and Yukawa interactions in the theory. In this
section, we shift our attention to computing the chiral excesses introduced to the 4D
matter spectrum by switching on a non-trivial flux background. Since we closely follow
the approach described in [39], we omit here many technical details of the methodology
involved and mostly focus on describing the results of using these methods to analyze the
(SU(3) × SU(2) × U(1))/Z6 model; the interested reader should refer to [39] for details of
the approach that are not spelled out here explicitly, and to [48] and further references in
these two papers for further background and the earlier literature on chiral matter analyses
in F-theory.

7.1 Quadruple intersection numbers and the reduced intersection matrix

The analysis of [39] provides a framework for understanding chiral multiplicities from fluxes
in terms of a reduced intersection pairing matrix on the vertical part of the middle coho-
mology of the resolution X5 → X0. This reduced intersection matrix can be computed from
the quadruple intersection numbers of divisors in X5. One of the central results of [39] was
the observation that the intersection pairing matrix appears to be independent of resolu-
tion, despite the fact that the quadruple intersection numbers are resolution-dependent.
If this result indeed always holds, it suggests that the reduced intersection pairing matrix
is the underlying resolution-independent mathematical structure that encodes information
about the chiral matter spectrum in 4D F-theory compactifications. In the following dis-
cussion, we adopt this viewpoint and turn our attention towards computing the reduced
intersection matrix associated to X5 as a means to recover the chiral spectrum of the
(SU(3)× SU(2)×U(1))/Z6 model.

The resolution X5 has a basis of divisors

D̂I=0,1,α,i2,i3 , (7.1)

which includes a rational zero section D̂0 and rational generating section D̂1 associated to
the u(1) gauge factor,

D̂0 = {e5 = 0} ∩X5, D̂1 = {e4 = 0} ∩X5 , (7.2)

as well as an su(2) Cartan divisor D̂i2 = D̂3, and su(3) Cartan divisors D̂i3 = D̂4, D̂5
appearing as irreducible components in the pullback of the gauge divisors Σs from B

to X5:

Σ̂2 = Σα
2 D̂α = (Σ̂2 − D̂3) + D̂3 = {d0e1 = 0} ∩X5 ,

Σ̂3 = Σα
3 D̂α = (Σ̂3 − D̂4 − D̂5) + D̂4 + D̂5 = {b1e2e3 = 0} ∩X5 .

(7.3)
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The u(1)KK and u(1) divisors (i.e., the images of D̂0, D̂1 under the Shioda map [67]) are
given by

D̂0̄ = σI0̄D̂I = D̂0 −
1
2K̂ , (7.4)

D̂1̄ = σI1̄D̂I = D̂1 − D̂0 + K̂ − Ŷ + 1
2D̂3 + 1

3(D̂4 + 2D̂5) , (7.5)

where K̂ = KαD̂α, Ŷ = Y αD̂α. Note that our convention for ordering the indices is of the
Cartan divisors D̂is matches the following presentation of the su(2)⊕ su(3) Cartan matrix:

[[κisjt ]] =

2 0 0
0 2 −1
0 −1 2

 . (7.6)

Now that we have identified a suitable basis of divisors, our next task is to compute
their quadruple intersection numbers. We use the adaptation of the pushfoward technology
of [68] to compute the pushforwards WIJKL of the quadruple intersection numbers

D̂I · D̂J · D̂K · D̂L (7.7)

(here, · denotes the intersection product in the Chow ring of X5) to the Chow ring of B. In
more detail, we first represent the pullbacks of the divisor classes D̂I as linear combinations
of the divisors Dα,H,Ei = [ei] restricted to the class X5 of the hypersurface X5 ∈ Y5:

D̂I ·X5 . (7.8)

In the above equation, the class X5 is given by

X5 := [p5,i] = 3H −K −Σ2 + 2Σ3 − 2Y − 2E1 −E2 −E3 −E4 −E5 (7.9)

and

D̂0 = E5, D̂1 = E4, D̂3 = E1, D̂4 = E2 −E3, D̂5 = E3 (7.10)

so that in terms of the projection

π : Y5 → B , (7.11)

the pushforwards of the quadruple intersection numbers can be expressed as

WIJKL = π∗(D̂I · D̂J · D̂K · D̂L ·X5) . (7.12)

The above formulas allow us to represent all intersection products as products of divisor
classes in the Chow ring of Y5. We then use the fact that the projection map π can be
represented as a composition of maps,

π = $ ◦ f1 ◦ · · · ◦ f5 , (7.13)

where fi are the blowups appearing in eq. (3.10) and the $ is the canonical projection
Y0 → B in eq. (3.7), to represent the pushforward map π∗ acting on elements of the Chow
ring of Y5 as the composition

π∗ = $∗ ◦ f1∗ ◦ · · · ◦ f5∗ . (7.14)
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Since the action of $∗, fi∗ on any formal power series in the appropriate Chow ring is known
explicitly, this decomposition enables us to compute the pushforward of any quadruple
intersection number — see appendix E of [39] for more details.

For convenience, we follow the approach of [69] and arrange the intersection numbers
into the generating function

eĴ = exp(ϕID̂I) ·X5 . (7.15)

The real parameters ϕI in the above expression, which may be regarded as real numbers
parametrizing a choice of Kähler form

Ĵ = ϕID̂I , (7.16)

provide a useful parameterization for the generating function. The pushforward of eq. (7.15)
is

Zϕ = π∗(eJ) . (7.17)

The intersection numbers can be extracted from Zϕ by computing derivatives:

WIJKL = ∂4

∂ϕI∂ϕJ∂ϕK∂ϕL
Zϕ

∣∣∣∣∣
ϕ=0

. (7.18)

The pushforward of the generating function eJ under the map π∗ encodes all of the inter-
section numbers of X5:

Zϕ = exp(ϕαDα) ·
(Z1
K

+ Z4 + Z6
(K + Y ) · (K + Σ3 + Y ) · (2K + Σ3 + Y ) · (2K + Σ2 + Σ3 + Y )

− Z2 + Z3
(K + Σ3) · (K + Σ2 + Σ3) · (K + Y ) + Z5

(K + Σ3 + Y ) · (2K + Σ2 + Σ3 + Y )

+ Z7
K · (K + Σ3) · (K + Y ) · (2K + Σ3 + Y )

)
(7.19)

where the functions Z1, . . . ,Z7 are given by

Z1 = eϕ
1K+ϕ3Σ2+ϕ5Σ3+ϕ0Y ,

Z2 = Σ2 · Y · eϕ
3(K+Σ2+Σ3)+ϕ0(K+Y ) ,

Z3 = (−K − Σ2 − Σ3 + Y ) · (K + Σ3) · eϕ0(K+Y ) ,

Z4 = −(3K + Σ2 + Σ3 + Y ) · (2K + Y + Σ3) · Σ3 · eϕ
4(−K−Y ) ,

Z5 = −(4K + Σ2 + 2Σ3 + 2Y ) · eϕ4Σ3 ,

Z6 = −
(
K · Σ3 · eϕ

4(−K−Y )

+(2K + Σ3 + Y ) · (K + Y ) · eϕ4Σ3
)
· Σ2 · eϕ

3(2K+Σ2+Σ3+Y ) ,

Z7 = −
(
Y · (2K + Σ3 + Y ) · e(ϕ4−ϕ5)(−K−Σ3)+ϕ0(K+Y )

+(K + Σ3) ·K · e(ϕ5−ϕ4)(2K+Σ3+Y )
)
· Σ3 · eϕ

4(K+Σ3)+ϕ3Σ2 .

(7.20)
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2 Y Σ3
2

15 Y2 Σ3 K Y Σ3 K2 Σ3 Y Dα Σ3 K Dα Σ3 Dα
2 Σ3 Y Σ2 Σ3 K Σ2 Σ3 Dα Σ2 Σ3 Σ2

2 Σ3 0 0 0 0 0 Y Σ3
2 K Σ3

2 Dα Σ3
2 Σ2 Σ3

2 0 Σ3
3

α5 -Y Dα Σ3 Y Dα Σ3 K Dα Σ3 0 Dα
2 Σ3 0 0 Dα Σ2 Σ3 0 0 0 0 Dα

2 Σ3 Dα Σ2 Σ3 -K Dα Σ3 -

Y Dα Σ3

-Y Dα Σ3 Dα Σ3
2 -2 Dα

2 Σ3 -2 Dα

Σ2 Σ3

2 K Dα

Σ3 +

Y Dα Σ3 +

Dα Σ3
2

-4 K Dα

Σ3 -

Y Dα Σ3 -

4 Dα Σ3
2

35 -Y Σ2 Σ3 Y Σ2 Σ3 K Σ2 Σ3 0 Dα Σ2 Σ3 0 0 Σ2
2 Σ3 0 0 0 0 Dα Σ2 Σ3 Σ2

2 Σ3 -K Σ2 Σ3 -

Y Σ2 Σ3

-Y Σ2 Σ3 Σ2 Σ3
2 -2 Dα

Σ2 Σ3

-2 Σ2
2 Σ3 2 K Σ2

Σ3 +

Y Σ2 Σ3 +

Σ2 Σ3
2

-4 K Σ2

Σ3 -

Y Σ2 Σ3 -

4 Σ2 Σ3
2

45 0 0 0 0 0 Dα
2 Σ3 0 0 Dα Σ2 Σ3 Σ2

2 Σ3 0 0 -K Dα Σ3 -

Y Dα Σ3

-K Σ2 Σ3 -

Y Σ2 Σ3

K2 Σ3 +

2 K Y

Σ3 +

Y2 Σ3

0 0 2 K Dα

Σ3 +

Y Dα Σ3 +

Dα Σ3
2

2 K Σ2

Σ3 +

Y Σ2 Σ3 +

Σ2 Σ3
2

-2 K2 Σ3 -

3 K Y

Σ3 -

Y2 Σ3 -

K Σ3
2 -

Y Σ3
2

4 K2 Σ3 +

4 K Y

Σ3 +

Y2 Σ3 +

4 K Σ3
2 +

2 Y Σ3
2 +

Σ3
3

55 -K Y Σ3 -

Y2 Σ3 -

Y Σ3
2

Y Σ3
2 K Σ3

2 -Y Dα Σ3 Dα Σ3
2 -2 Dα

2 Σ3 -Y Σ2 Σ3 Σ2 Σ3
2 -2 Dα

Σ2 Σ3

-2 Σ2
2 Σ3 0 0 2 K Dα

Σ3 +

Y Dα Σ3 +

Dα Σ3
2

2 K Σ2

Σ3 +

Y Σ2 Σ3 +

Σ2 Σ3
2

-2 K2 Σ3 -

3 K Y

Σ3 -

Y2 Σ3 -

K Σ3
2 -

Y Σ3
2

-K Y Σ3 -

2 Y Σ3
2

Σ3
3 -4 K Dα

Σ3 -

Y Dα Σ3 -

4 Dα Σ3
2

-4 K Σ2

Σ3 -

Y Σ2 Σ3 -

4 Σ2 Σ3
2

4 K2 Σ3 +

4 K Y

Σ3 +

Y2 Σ3 +

4 K Σ3
2 +

2 Y Σ3
2 +

Σ3
3

-8 K2 Σ3 -

5 K Y

Σ3 -

Y2 Σ3 -

12 K Σ3
2 -

3 Y Σ3
2 -

6 Σ3
3

Table 4. Matrix of pushforwards of quadruple intersection numbers M(IJ)(KL) = SIJ ·SKL (recall
that SIJ := D̂I · D̂J) associated to the resolution X5 of the (SU(3)×SU(2)×U(1))/Z6 model. The
entries of the uppermost (leftmost) row (column) are the indices IJ of the corresponding classes
SIJ . We work in the basis D̂I=0,1,α,is where D̂0, D̂1 are the rational sections, D̂α is the pullback
of a divisor in B, and D̂i2=3, D̂i3=4,5 are (resp.) the su(2), su(3) Cartan divisors. We omit the ·
notation indicating the intersection product for brevity and use the shorthand D2

α = Dα ·Dβ , D
3
α =

Dα ·Dβ ·Dγ .

Following the analysis of [39], we organize the pushforwards of the quadruple intersection
numbers into a matrix of intersection pairings:

M(IJ)(KL) = WIJKL = SIJ · SKL, SIJ := D̂I · D̂J ∈ ΛS , (7.21)

where we view the matrix M(IJ)(KL) as acting on an integer lattice ΛS spanned by the
elements SIJ . The components of M(IJ)(KL) are displayed in table 4. Although the matrix
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0α 1α αβ α3 α4 α5 33 34 55
0α K Dα

2 Y Dα
2 Dα

3 0 0 0 -Y Dα Σ2 0 -Y Dα Σ3

1α Y Dα
2 K Dα

2 Dα
3 Dα

2 Σ2 0 Dα
2 Σ3 Dα Σ2

2 0 Dα Σ3
2

αβ Dα
3 Dα

3 0 0 0 0 -2 Dα
2 Σ2 0 -2 Dα

2 Σ3

α3 0 Dα
2 Σ2 0 -2 Dα

2 Σ2 0 0 -Dα Σ2

(4 K + Y + 4 Σ2 + 2 Σ3)

-Dα Σ2 Σ3 -2 Dα Σ2 Σ3

α4 0 0 0 0 -2 Dα
2 Σ3 Dα

2 Σ3 -Dα Σ2 Σ3 -Dα Σ2 Σ3 Dα Σ3 (2 K + Y + Σ3)

α5 0 Dα
2 Σ3 0 0 Dα

2 Σ3 -2 Dα
2 Σ3 0 Dα Σ2 Σ3 -Dα Σ3 (4 K + Y + 4 Σ3)

33 -Y Dα Σ2 Dα Σ2
2 -2 Dα

2 Σ2 -Dα Σ2

(4 K + Y + 4 Σ2 + 2 Σ3)

-Dα Σ2 Σ3 0 -Σ2 8 K2 + 5 K Y + Y2 +

12 K Σ2 + 3 Y Σ2 +

6 Σ2
2 + 8 K Σ3 + 2 Y Σ3 +

6 Σ2 Σ3 + 2 Σ3
2

-Σ2 Σ3

(2 K + Y + 2 Σ2 + Σ3)

-2 Σ2
2 Σ3

34 0 0 0 -Dα Σ2 Σ3 -Dα Σ2 Σ3 Dα Σ2 Σ3 -Σ2 Σ3

(2 K + Y + 2 Σ2 + Σ3)

-Σ2 Σ3 (K + Σ2 + Σ3) Σ2 Σ3 (2 K + Y + Σ3)

55 -Y Dα Σ3 Dα Σ3
2 -2 Dα

2 Σ3 -2 Dα Σ2 Σ3 Dα Σ3 (2 K + Y + Σ3) -Dα Σ3 (4 K + Y + 4 Σ3) -2 Σ2
2 Σ3 Σ2 Σ3 (2 K + Y + Σ3) -Σ3

8 K2 + 5 K Y + Y2 + 12 K

Σ3 + 3 Y Σ3 + 6 Σ3
2

Table 5. Matrix elements Mred(IJ)(KL) for the reduced intersection pairing Mred of the lattice
Hvert

2,2 (X5,Z). We compute the matrix elements Mred(IJ)(KL) by quotienting by the equivalence
relation ∼, where φ ∼ φ′ iff M(IJ)(KL)(φ− φ′)KL = 0, assuming additional null vectors have been
removed to get reduced bases for Sαβ , SIα, etc.. Note that the indices used in this reduced basis are
IJ = Iα, 33, 34, 55. We use the same notation as in table 4, namely we omit the · notation indicating
the intersection product for brevity and use the shorthand D2

α = Dα ·Dβ , D
3
α = Dα ·Dβ ·Dγ .

M(IJ)(KL) may appear at face value to simply be a trivial repackaging of the intersection
numbers, as discussed in [39] we expect the nondegenerate part of this matrix to be in-
dependent of resolution (up to a choice of basis), despite the fact that complete set of
intersection numbers does not share this feature. The matrix M(IJ)(KL) has a non-trivial
null space

{νIJ ∈ ΛS |M(KL)(IJ)ν
IJ = 0 for all (KL)} , (7.22)

which is spanned by (at least) the following vectors:

Y αS1α − S01
S04
S14

Σα
2S1α − S13

KαS1α − S11
Σα

3S1α − S15
(K + Y )αS0α − Y αS1α − S00

(KΣ3 + Σ3Y )αS2α + (−K + Σ3 − Y )αSα4 − Σα
3S0α − Σα

3S1α − S44
(2K + Σ2 + Σ3 + Y )αSα3 − 2Σα

2S1α − S03 − S33 − S35
(2K + Σ2 + Σ3 + Y )αSα3 − 2Σα

2S1α − Σα
2Sα5 − S03 − S33

(−K − Y )αSα5 + Σα
3S1α + S05 − S45

(2K + Σ3 + Y )αSα5 − 2Σα
3S1α − S05 − S55



. (7.23)

The quotient of the lattice ΛS by the complete set of null vectors is isomorphic to the
nondegenerate lattice Hvert

2,2 (X5,Z) defined by the pairingMred. While in simple cases (such
as the base P3), the set eq. (7.23) is a complete basis of the nullspace of M , there may
be further null vectors, associated, for example, with fluxes φα3Dα = D, with D · Σ2 =
0. We write a general abstract form of Mred in table 5 and table 6, in two different
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0α 1α αβ α3 α4 α5 03 05 34
0α′ KD2

α Y D2
α D3

α 0 0 0 −Σ2Y Dα −Σ3Y Dα 0
1α′ Y D2

α KD2
α D3

α Σ2D
2
α 0 Σ3D

2
α Σ2Y Dα Σ3Y Dα 0

α′β′ D3
α D3

α 0 0 0 0 0 0 0
α′3 0 Σ2D

2
α 0 −2Σ2D

2
α 0 0 −Σ2Y Dα 0 −Σ2Σ3Dα

α′4 0 0 0 0 −2Σ3D
2
α Σ3D

2
α 0 0 −Σ2Σ3Dα

α′5 0 Σ3D
2
α 0 0 Σ3D

2
α −2Σ3D

2
α 0 −Σ3Y Dα Σ2Σ3Dα

03 −Σ2Y Dα Σ2Y Dα 0 −Σ2Y Dα 0 0 −Σ2Y (K + Σ2 + Y ) −Σ2Σ3Y 0
05 −Σ3Y Dα Σ3Y Dα 0 0 0 −Σ3Y Dα −Σ2Σ3Y −Σ3Y (K + Σ3 + Y ) 0
34 0 0 0 −Σ2Σ3Dα −Σ2Σ3Dα Σ2Σ3Dα 0 0 −Σ2Σ3(K + Σ2 + Σ3)

Table 6. Matrix elements Mred(IJ)(KL) in alternative basis. Compared to the basis used in table 5,
we find this basis to be more convenient in some approaches for computing the chiral indices — see
section 7.5.

choices of bases, with the understanding that some further null vectors may need to be
removed to define the reduced basis for some bases, as discussed above. While we have
computed this from a particular resolution, as in the cases studied in [39] we expect this
form of Mred to be resolution-independent. We discuss the relationship between M-theory
flux backgrounds and the middle cohomology subgroup Hvert

2,2 (X5,Z) in more detail in the
following subsection.

7.2 Fluxes preserving 4D (SU(3)× SU(2)×U(1))/Z6 gauge symmetry

7.2.1 Fluxes through vertical surfaces

As described in section 7.1, our primary purpose in computing the quadruple intersection
numbers is to determine an explicit parametrization for the lattice of M-theory fluxes
through vertical surfaces

ΘIJ =
∫
SIJ

G4 . (7.24)

In the above equation, G4 = dC3 is the field strength of the M-theory 3-form C3 and is
expected to satisfy the shifted quantization condition G4 − c2/2 ∈ H4(X5,Z) in consistent
M-theory vacua [70], and SIJ := D̂I · D̂J (see eq. (7.21)) are so-called “vertical” 4-cycles
whose homology classes generate the subgroup Hvert

2,2 (X5).
While G4 could in principle be any element of H4(X5,Z), because the middle coho-

mology of smooth elliptic CY fourfolds X admits an orthogonal decomposition [71, 72]

H4(X) = H2,2
vert(X)⊕H4

hor(X)⊕H4
rem(X) , (7.25)

for the purpose of computing eq. (7.24) we can restrict our attention to vertical flux back-
grounds, i.e., G4 ∈ H2,2

vert(X5,Z/2), possibly at the expense of being able to determine
the precise quantization of the chiral indices (further discussion of the quantization issue
appears in section 9). We follow this approach, and for convenience we parametrize the
vertical part of G4 by its Poincaré dual,

PD(Gvert
4 ) =: φ = φIJSIJ , (7.26)
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where we view φKL ∈ ΛS as an integer19 vector living in the integral lattice ΛS of vertical
flux backgrounds spanned by the 4-cycles SIJ . This convenient choice of parametrization
leads to the following simple linear algebraic expression for the space of vertical fluxes:

ΘIJ = SIJ · SKLφKL = M(IJ)(KL)φ
KL . (7.27)

7.2.2 Symmetry constraints

We are specifically interested in M-theory fluxes that lift to 4D F-theory fluxes preserving
local Lorentz and (SU(3)×SU(2)×U(1))/Z6 gauge symmetry. In the above equation (7.27),
these symmetry constraints can be imposed by restricting φKL to live in the sublattice ΛC ⊂
ΛS of vertical flux backgrounds that preserve 4D Poincaré and (SU(3)× SU(2)×U(1))/Z6
symmetry, i.e., flux backgrounds whose corresponding fluxes satisfy [12, 73]

ΘIα = 0 . (7.28)

We defer explicitly solving the constraints ΘIα = 0 to sections 7.5 and 7.6, where we give
two complementary approaches to analyzing the lattice of constrained fluxes. For now, we
focus on computing the constraints imposed on the vertical fluxes ΘIJ by the geometry of
the (SU(3)×SU(2)×U(1))/Z6 model defined over an arbitrary base, when these symmetry
conditions are imposed. These constraints on the vertical fluxes will reveal whether or
not the full set of chiral matter combinations compatible with 4D anomaly cancellation
can be realized in a generic F-theory compactification. In [39], it was observed that the
homology relations associated with the nullspace of the matrix M(IJ)(KL) correspond to
linear constraints on the vertical fluxes ΘIJ , due to the symmetry ofM . Thus, an arbitrary
null vector ν = νIJSIJ in the span of the vectors described in eq. (7.23) implies the existence
of a null relation among fluxes,

νIJΘIJ = νIJM(IJ)(KL)φ
KL = 0 . (7.29)

This implies that there exists a set of equivalences among vertical fluxes given by eq. (7.23),
in which the basis elements SIJ are replaced by fluxes ΘIJ . For example, Θ04 = 0 and
Y αΘ1α−Θ01 = 0. Restricting attention to fluxes obeying the symmetry constraints ΘIα =
0, this leads to the following relations among vertical F-theory fluxes:

0 = Θ01 = Θ04 = Θ14 = Θ13 = Θ11 = Θ15 = Θ00

0 = Θ44

0 = Θ03 + Θ33 + Θ35

0 = Θ03 + Θ33

0 = Θ05 −Θ45

0 = Θ05 + Θ55 .

(7.30)

19The flux background φ could also be a half-integer vector. This is required, for example, when c2 is
not an even class as a consequence of the shifted quantization G4 − c2/2 ∈ H4(X5,Z) as first pointed out
in [70]; see section 7.2.3 for further discussion.
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In section 7.4, after equating the F-theory fluxes ΘIJ to 3D Chern-Simons couplings, we
translate the above linear relations into relations among chiral indices and compare the
resulting relations to the 4D anomaly cancellation constraints to see whether or not F-
theory geometry is more restrictive then the physical anomaly cancellation conditions.

7.2.3 Integrality of the second Chern class

The shifted quantization condition G4−c2/2 ∈ H4(X5,Z) implies that when c2/2 is not an
integer class, G4 must also be a half-integer class. This in turn implies that φ = PD(G4)
cannot take integer values. Note, however, that φ can be fractionally quantized in some
cases even when c2/2 is an integer class, as discussed further in section 9, although in such
situations integer values of φ are still possible.

To clarify some of the issues involved here, let us define20 two sublattices of H4(X5,Z):

Λvert = spanZ(SIJ)/ ∼ (7.31)
Λ̄vert = H4(X5,Z) ∩Hvert

2,2 (X5,C) . (7.32)

The quotient in the first line of the above equation is by the nullspace of M , i.e., by the
equivalence relation

φ ∼ φ′ ⇔M(IJ)(KL)(φ− φ′)KL = 0 for all (IJ) . (7.33)

In general, Λ̄vert is an overlattice of Λvert. While Λvert is easily computed from the set of
integral divisors, as far as we know there is not yet any systematic way of determining Λ̄vert
for an arbitrary CY fourfold. When c2 is even, but c2/2 is not contained in Λvert, then
integer values of φ are still allowed. When c2 lies in Λvert but is not even in H4(X5,Z),
however, then φ must have some half-integer components. Half-integer elements of φ can
modify certain important aspects of the theory, such as the precise quantization of the
chiral indices or even the enforcement of the symmetry constraints (7.28), although as
discussed in more detail below we do not encounter the latter issue for the constructions
here. For this reason, it is important to determine for what choices of characteristic data
c2/2 fails to be an integer class.

One way to check if c2/2 is not an integer class is to compute χ/24 where χ is the Euler
characteristic of the smooth CY fourfold X5. If χ/24 fails to be an integer, this indicates
that c2/2 is not an integer class. In fact, from a physical standpoint, in such situations it
is important that c2/2 is not an integer class in order to maintain the integrality of the
M2-brane tadpole,

NM2 = 1
24χ(X5)− 1

2

∫
X5
G4 ∧G4 ∈ Z≥0 . (7.34)

When χ/24 fails to be an integer, the fractional part of χ/24 is precisely canceled by
contributions to the integral

∫
X5
G4∧G4 coming from the fractional part of G4 (i.e., c2/2),

see, e.g., [74].
20The expression Hvert

2,2 (X5,Z) is defined in [39] as the first of these objects, but may in other places in
the literature be defined as the latter; we define these distinct symbols to avoid confusion and ambiguity.

– 37 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
4

We can use the pushforward technology described in the previous subsection to evaluate
the pushforward of the Euler characteristic to B:21

χ(X5) =
∫
X5
c4

=− 12c2(B) ·K − 144K3 − 96K2 · Σ2 − 168K2 · Σ3

− 24K · Σ2
2 − 66K · Σ2

3 − 75K · Σ2 · Σ3 − 6Σ3
3 − 15Σ2 · Σ2

3 − 9Σ2
2 · Σ3

+
(
−144K2 − 51K · Σ2 − 111K · Σ3 − 3Σ2

2 − 21Σ2
3 − 18Σ2 · Σ3

)
· Y

+ (−66K − 15Σ2 − 27Σ3) · Y 2 − 6Y 3 .

(7.35)

This expression for the Euler characteristic may be useful in various aspects of further anal-
ysis of these constructions, for instance aspects involving the tadpole constraint (eq. (7.34)).
It is also useful to have an explicit expression for c2. For example, using the fact that the
hyperplane class is

H ·X5 = −K̂ − Σ̂3 + D̂0 + 2D̂1 + D̂3 + D̂5 (7.36)

we can represent the image of c2 of in the lattice Hvert
2,2 (X5,Z) as

c2(X5) = (−6K − 2Σ2 − Σ3 − Y )αS0α + (−6K + 2Σ2 + Σ3 + Y )αS1α

+
(
c2(B) + 5K2 + 2K · Σ2 +K · Σ3 + 5K · Y + Y 2 + Σ2 · Y

)αβ
Sαβ

+ (−4K − Σ3 − 2Y )αSα3 + (4K + Σ2 + Σ3 + 2Y )αSα4 + (Σ2 − 2K)αSα5

+ 3S03 + S05 − S34 . (7.37)

Notice that the above expression for c2 is expanded in the reduced basis SIα, S03, S05, S34 of
Hvert

2,2 (X5,Z). From this expression we can immediately see that for all our constructions,
c2/2 cannot be an element of Λvert, since it contains the components (3S03 + S05− S34)/2.
As discussed above, however, this does not definitively indicate that c2/2 cannot be an
integral element of H4(X5,Z), as it may live in Λ̄vert.

Another way to check if c2/2 is not an integer element of cohomology is to compute
c2

2/4. If this is not integer-valued, then c2/2 cannot be an integer class, since the intersection
product on integer cohomology takes integer values. The matrix Mred, of intersection
pairings of any two elements belonging to Hvert

2,2 (X5,Z) is presented in table 6 using the
basis relevant for eq. (7.37). Using the explicit expression given there for Mred, we find
that one-fourth of the square of the second Chern class is given by

1
4c2(X5)2 =− 6c2 ·K − 8K2 · Σ2 − 14K2 · Σ3 − 12K2 · Y − 12K3 − 17

4 K · Σ2 · Y

− 37
4 K · Σ3 · Y − 2K · Σ2

2 −
11
2 K · Σ

2
3 −

25
4 K · Σ2 · Σ3 −

11
2 K · Y

2

− 5
4Σ2 · Y 2 − 9

4Σ3 · Y 2 − 1
4Σ2

2 · Y −
7
4Σ2

3 · Y −
3
2Σ2 · Σ3 · Y −

5
4Σ2 · Σ2

3

− 3
4Σ2

2 · Σ3 −
1
2Σ3

3 −
1
2Y

3 . (7.38)

21Note that the total Chern class c(X5) can be expressed as a formal power series in Dα,H,Ei — see
appendix E of [39].
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Whenever the characteristic data K,Σ2,Σ3, Y are such that the above expression is non-
integer valued, c2 cannot be an even class. In section 8.1 we show explicitly that there
are many cases where this occurs, so that integer flux parameters φIJ are not possible in
those cases.

7.3 3D Chern-Simons couplings

As described in section 5 of [39], and following [51, 66, 75, 76], the final step in our strategy
for computing the chiral indices χr = nr−nr∗ of the (SU(3)×SU(2)×U(1))/Z6 model is to
match the vertical F-theory fluxes ΘĪ J̄ (satisfying the symmetry constraints eq. (7.28)) with
the one-loop Chern-Simons (CS) couplings Θ3D

Ī J̄
characterizing the low-energy 3D N = 2

action describing M-theory compactified on X5.22 We then use the fact that the 3D CS
couplings can be expressed as linear combinations of the chiral indices,

Θ3D
Ī J̄

= −xr
Ī J̄
χr , (7.39)

leading to the invertible23 system

ΘĪ J̄ = −xr
Ī J̄
χr . (7.40)

Inverting the matrix of coefficients xr
Ī J̄

allows us to write the chiral indices as linear com-
binations of ΘĪ J̄ .

Since we have already computed the F-theory fluxes through surfaces, what remains
is to compute the coefficients xr

ĪK̄
. This can be accomplished with the help of 3D N = 2

supersymmetry. From the point of view of the 3D effective field theory, the one-loop 3D
CS couplings can be expressed as24

Θ3D
ij =

∑
w

(1
2 + b|rKKϕ · w|c

)
sign(ϕ · w)wiwj ,

Θ3D
0̄i =

∑
w

( 1
12 + 1

2b|rKKϕ · w|c(b|rKKϕ · w|c+ 1)
)
wi ,

Θ3D
0̄0̄ =

∑
w

1
6b|rKKϕ · w|c(b|rKKϕ · w|c+ 1)(2b|rKKϕ · w|c+ 1) .

(7.41)

In order to match the above expressions with our M-theory vacuum, we must supply as
input the signs of the central charges of 3D BPS particles in the specific phase of the
vector multiplet moduli space described by the resolution X5. These signs can in principle

22The “gauge” basis indices Ī take the values Ī = 0̄, 1̄, α, 3, 4, 5, where D̂0̄, D̂1̄ are defined in eq. (7.4).
See also appendix A.

23It is not entirely clear that every crepant resolution corresponds to a 3D phase in which the system
eq. (7.40) is invertible — see appendix G of [39].

24Our conventions are as follows. Let g be a semisimple Lie algebra. We may view a collection of real
Coulomb branch moduli ϕi as the components of a real 3D vector multiplet scalar expanded in a basis of
simple coroots, ϕ = ϕiα∨i where i = 1, . . . , rank(g). Similarly, a weight w transforming in a representation r
of gmay be expanded in a basis of fundamental weights, w = wiω

i. The fundamental weights are canonically
dual to the simple coroots and we denote their inner product by α∨i · ωj = δji , hence ϕ · w = ϕiwi. We
define ϕ0̄ = 1/rKK.
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be computed geometrically by using the Kähler class Ĵ = ϕĪD̂Ī to compute the volumes
vol(Cw) = Ĵ · Cw = ϕĪwĪ of all primitive holomorphic and anti-holomorphic curves Cw
in the Mori cone of X5 (and its negative), as the 3D BPS particle spectrum descends
from M2 branes wrapping these curves.25 Since the volumes vol(Cw) are equal to the BPS
central charges, partitioning the Mori cone generators {Cw} into holomorphic and anti-
holomorphic (based on whether vol(Cw) is positive or negative) determines the full set of
signs associated to X5.

Rather than following the above approach, we use a shortcut. Namely, we identify the
signs appearing in eq. (7.41) by formally matching intersection numbers of the form WĪ J̄K̄

with 5D CS couplings kĪ J̄K̄ in which the coefficients have been appropriately “promoted”
to the classes of matter curves CR ∈ B; see section 5 of [39] for a more detailed discussion
of this procedure.

To simplify the task of computing the 5D CS couplings, we first focus on the KK
charges. To this end, we use the fact that Y is the pushforward of the intersection of the zero
section with the generating section to conclude that the only elementary BPS particles with
nontrivial KK charge are those transforming in the representations (1,1)2, (1,2) 3

2
, (3,1)− 4

3
,

as these are the only local matter representations whose associated matter curves in B have
the schematic form

CR = Y · (· · · ) . (7.42)

We then proceed to compute 5D Chern-Simons couplings according to the standard match-
ing procedure detailed in section 5.2 of [39]. Following this approach, we find that the
resolution eq. (3.10) that leads to X5 corresponds to the signs in table 7 and KK masses
in the parametric regime

b|rKKϕ · w(1,1)2 |c = b|rKKϕ · w
(1,2) 3

2
+ |c = b|rKKϕ · w

(3,1)− 4
3

− |c = 1 , (7.43)

with all other primitive BPS particles having vanishing KK charge. This data can in turn
be used to evaluate the one-loop exact expressions for the 3D Chern-Simons couplings
presented in eq. (7.41).

In the following subsection, we describe the results of inverting the linear system
eq. (7.40).

7.4 Chiral indices

Our goal in this section is to match the geometric fluxes with the 3D Chern-Simons (CS)
terms in order to determine the chiral indices of the (SU(3) × SU(2) × U(1))/Z6 model.
For ease of comparison, we first convert the fluxes to the gauge basis Ī = 0̄, 1̄, α, is using
eq. (A.5) (recall that the indices 0̄, 1̄ correspond, respectively, to the abelian gauge factors
U(1)KK,U(1)). In the gauge basis, we find that the linear relations eq. (7.30) can be

25The coefficients wĪ can either be interpreted as KK charges w0̄, or as Cartan charges/Dynkin labels wi
of weights transforming in some representation R of g.
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(1,1)w1̄ (1,2)w1̄ (3,1)w1̄ (3,2)w1̄


ϕ·w
|ϕ·w| w1̄ w3 w4 w5

+ 1 0 0 0
+ 2 0 0 0




ϕ·w
|ϕ·w| w1̄ w3 w4 w5

+ 1
2 1 0 0

+ 1
2 −1 0 0

+ 3
2 1 0 0

+ 3
2 −1 0 0





ϕ·w
|ϕ·w| w1̄ w3 w4 w5

+ 1
3 0 1 0

− 1
3 0 −1 1

− 1
3 0 0 −1

− −4
3 0 1 0

− −4
3 0 −1 1

− −4
3 0 0 −1

+ 2
3 0 1 0

+ 2
3 0 −1 1

+ 2
3 0 0 −1





ϕ·w
|ϕ·w| w1̄ w3 w4 w5

+ 1
6 1 1 0

+ 1
6 1 −1 1

+ 1
6 1 0 −1

+ 1
6 −1 1 0

− 1
6 −1 −1 1

− 1
6 −1 0 −1



Table 7. Signs and Cartan charges associated to the BPS spectrum of the (SU(3)×SU(2)×U(1))/Z6
model resolution eq. (3.10). The charges are the Dynkin coefficients wi of the weights w transforming
in various representations and the signs correspond to the signs of the BPS central charges ϕ ·w for
a given choice of Coulomb branch moduli ϕi. The indices i of the Dynkin coefficients are chosen
to match the indices of the Cartan divisors D̂i in eq. (7.10) associated to the simple coroots of the
gauge group. We adopt the convention that the Coulomb branch modulus ϕ1̄ dual to the u(1) factor
is non-positive in the Coulomb branch, in contrast to the Coulomb branch moduli ϕi2=3, ϕi3=4,5

associated to nonabelian Cartan u(1)s, which are non-negative.

expressed as:

0 = Θ0̄0̄ = Θ0̄4 = Θ35 = Θ44 ,

0 = Θ45 + Θ55 ,

0 = 3Θ1̄5 − 4Θ55 ,

0 = Θ0̄5 + Θ55 ,

0 = 6Θ1̄4 − 3Θ34 + 4Θ55 ,

0 = 6Θ1̄3 − 9Θ33 − 2Θ34 ,

0 = Θ0̄3 + Θ33 ,

0 = 12Θ1̄1̄ − 15Θ33 − 4Θ34 − 16Θ55 ,

0 = 6Θ0̄1̄ + 3Θ33 + 4Θ55 .

(7.44)

Moreover, the one-loop 3D Chern-Simons couplings Θ3D
Ī J̄

are given by

Θ3D
0̄1̄ = 1

12χ(1,1)1 −
11
6 χ(1,1)2 −

1
12χ(1,1) 1

2
− 7

4χ(1,1) 3
2

+ 1
6χ(3,1) 2

3
− 1

12χ(3,1)− 1
3

+ χ(3,1)− 4
3
− 1

12χ(3,2) 1
6
,

Θ3D
1̄1̄ = 1

2χ(1,1)1 + 6χ(1,1)2 + 1
4χ(1,2) 1

2
+ 9

2χ(1,2) 3
2

+ 2
3χ(3,1) 2

3
− 1

18χ(3,1)− 1
3
− 40

9 χ(3,1)− 4
3

+ 1
36χ(3,2) 1

6
,
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Θ3D
1̄3 = −3

2χ(1,2) 3
2
− 1

3χ(3,2) 1
6
,

Θ3D
1̄4 = 1

3χ(3,1)− 1
3
− 1

6χ(3,2) 1
6
,

Θ3D
1̄5 = 4

3χ(3,1)− 4
3
,

Θ3D
33 = χ(1,2) 1

2
+ 2χ(1,2) 3

2
+ χ(3,2) 1

6
,

Θ3D
34 = −χ(3,2) 1

6
,

Θ3D
35 = 0 ,

Θ3D
44 = χ(3,1) 2

3
− χ(3,1)− 4

3
+ χ(3,2) 1

6
,

Θ3D
45 = −1

2χ(3,1) 2
3

+ 1
2χ(3,1)− 1

3
+ 1

2χ(3,1)− 4
3
,

Θ3D
55 = χ(3,1) 2

3
− χ(3,1)− 1

3
− 2χ(3,1)− 4

3
. (7.45)

By identifying the 3D CS terms with the geometric fluxes in section 7.4 (see eq. (7.24)), we
learn that the following constraints are satisfied by the chiral multiplicities in the (SU(3)×
SU(2)×U(1))/Z6 model:

0 = −χ(1,1)2 − χ(1,2) 3
2

+ 1
3χ(3,1) 2

3
− 1

3χ(3,1)− 1
3
,

0 = −χ(1,2) 1
2
− 3χ(1,2) 3

2
+ 2

3χ(3,1) 2
3

+ 1
3χ(3,1)− 1

3
,

0 = −χ(3,1)− 4
3

+ 1
3χ(3,1) 2

3
− 1

3χ(3,1)− 1
3
,

0 = −χ(1,1)1 + 2χ(1,2) 3
2
− 4

3χ(3,1) 2
3

+ 1
3χ(3,1)− 1

3
,

0 = −χ(3,2) 1
6
− 2

3χ(3,1) 2
3
− 1

3χ(3,1)− 1
3
.

(7.46)

After rearrangement, these constraints exactly match those in eq. (2.4). The constraints
can also be used to write the chiral indices in terms of a minimal subset of the fluxes:

χ(1,1)1 = 2Θ33 + Θ34 + 2Θ55 ,

χ(1,1)2 = −Θ33 −Θ55 ,

χ(1,2) 1
2

= −3Θ33 −Θ34 ,

χ(1,2) 3
2

= Θ33 ,

χ(3,1)− 4
3

= −Θ55 ,

χ(3,1)− 1
3

= 2Θ55 −Θ34 ,

χ(3,1) 2
3

= −Θ34 −Θ55 ,

χ(3,2) 1
6

= Θ34 .

(7.47)

In terms of the parameterization in table 3, we see that the multiplicities of the first and
second families are given by −Θ55 and Θ33 respectively, and the number of Standard Model
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generations is given by Θ34 + 2(Θ33 + Θ55). When there is no exotic matter, the number
of generations of MSSM matter is then simply Θ34.

Note that in the chiral multiplicity formulae of eq. (7.47), we can freely replace the
fluxes Θ33,Θ55 with −Θ03,−Θ05, using eq. (7.44) and the fact that Θ0̄i = Θ0i in the
symmetry-constrained space where ΘαI = 0. This allows us to easily move back and forth
between the bases of table 5 and table 6.

7.5 Chiral spectrum

We now use the formulation of Mred in table 6 to solve the constraint equations ΘαI = 0
and compute formulae for the chiral multiplicities, where Θ ∼Mredφ is expressed in terms
of flux parameters φIJ . This can be done in a systematic fashion even though, as mentioned
above, in some bases null vectors may remain for table 6. However, unlike F-theory models
without U(1) factors, it is not straightforward to obtain a completely general solution by
solving the constraint equations for all flux parameters φαI . As discussed in [39], the
main obstruction to obtaining completely general solutions in models with U(1) factors is
imposing the constraints

Θ1α = 0 . (7.48)

Despite these apparent obstructions, in the case of the (SU(3)× SU(2)× U(1))/Z6 model
we nevertheless find that we are able to circumvent the difficulties associated with solving
the above constraints in full generality. The approach described in this subsection thus
leads to a general solution to the constraints ΘIα = 0, along with general expressions for
the associated fluxes and chiral multiplicities, but at the cost of leaving the solution for the
variable φ1α implicit. In section 7.6, we specialize to specific bases and follow an approach
that more closely parallels the approach used in [39] for purely nonabelian theories.

To illustrate our systematic solution, we spell out the first constraints explicitly. We
begin by solving the constraint Θαβ = 0. Note that the space of homologically nontrivial
Sαβ has the same dimension h1,1(B) as the space of, e.g., S0α by Poincaré duality. From
table 6, we see that this set of constraints simply imply that

φ1α = −φ0α . (7.49)

We next solve the equations Θ0α = 0 for the flux parameters φαβ , giving

φαβ = φ0α(Y −K)β + φ03(Σ2)αY β + φ05(Σ3)αY β . (7.50)

Next, consider the equation for Θα4:

φα5(Σ3)β = 2φα4(Σ3)β + φ34(Σ2)α(Σ3)β . (7.51)

Since φα5Dα is always combined with a factor of Σ3, we can use this equation to replace φα5

everywhere it appears, and although not all the parameters φα5 are fixed through this equa-
tion, those that are not are null vectors. Note that the constraint equations (7.49), (7.50)
and (7.51) are all consistent even when c2 is not an even class, so that the associated sym-
metries can be preserved even in such cases. For example, from eq. (7.37) we see that φ1α
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and φ0α each are half-integer flux parameters precisely when (Σ3 +Y )α is odd and c2 is not
even, so eq. (7.49) is consistent even in these cases. Similar arguments hold for the other
symmetry constraints, using in particular the fact that c2(B) +K2 is always even [74].

Continuing in this fashion, we can solve the Θα3 = Θα5 = 0 constraints, giving

φα3(Σ2)β = 1
2(−φ0α − φ34(Σ3)α − φ03Y α)(Σ2)β ,

φα4(Σ3)β = 1
3(−φ0α − φ34(Σ2)α − φ05Y α)(Σ2)β .

(7.52)

Note that this implies some extra nontrivial integral constraints on some of the flux pa-
rameters.

Putting this all together, the remaining constraint Θ1α = 0 states that

A · H̄ = φ34Σ2 · Σ3 − 9φ03Σ2 · Y − 8φ05Σ3 · Y (7.53)

where

A = φ0αDα = −φ1αDα (7.54)

and

H̄ = −12K − 4Σ3 − 3Σ2 + 12Y (7.55)

is the (scaled) height pairing divisor. Before imposing this set of constraints, the remaining
fluxes are given by

Θ03 = 1
2Σ2 · Y · (−3A+ φ34Σ3 − 2φ05Σ3 − φ03(2K + 2Σ2 + Y )) ,

Θ05 = −1
3Σ3 · Y · (4A+ φ34Σ2 + 3φ03Σ2 + φ03(3K + 3Σ2 + Y )) ,

Θ34 = 1
6Σ2 · Σ3 · (A+ (3φ03 − 2φ05)Y − φ34(6K + 2Σ2 + 3Σ3)) .

(7.56)

Note that this matches with the expectation that the exotic matter multiplicities χ(1,2) 3
2
,

χ(3,1)− 4
3
associated with Θ03,Θ05 explicitly can only be nonzero when Σ2 · Y,Σ3 · Y are

non-vanishing as expected from table 1, while the possibility of matter charged under both
the SU(3) and SU(2) factors controlled by Θ34 can only be non-vanishing if Σ2 · Σ3 is a
nontrivial curve in the base.

The constraints imposed by eq. (7.53) reduce the number of independent fluxes φ1α,
φ03, φ05, φ34 to three independent parameters that give the fluxes eq. (7.56) and some null
vectors associated with parameters in A. One way to think about these constraints is as a
geometric condition on curves. The curves Σ2 ·Σ3, Σ2 ·Y , Σ3 ·Y span a space of dimension
at most three in the linear space of curves on the base. We can think of H̄ as a linear
map from the space of divisors on B to the dual space of curves on B. The set of possible
flux configurations can be determined from the intersection of the image of this map H̄

with the space of curves spanned by the primary pair intersections listed above. These
constraints can be thought of as constraints on the parameters in A or on the φ03, φ05, φ34.
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For example, if all three of the primary pair intersections are independent and the image
of H̄ contains this full space (in which case, the curves are all contained in the divisor
H̄), then we can take as the basic set of three parameters any set of all or some of the
parameters φ03, φ05, φ34, and a complementary set of parameters in A.

In some sense, eq. (7.56) along with the constraint eq. (7.53) give the simplest general
formulation of the available fluxes for an arbitrary base geometry. We can proceed some-
what more explicitly, however, if we assume that the primary pair intersection products
appearing in the fluxes are non-vanishing. In particular, if Σ2 ·Σ3 is a non-vanishing curve
in the base, then we can simply solve eq. (7.53) for φ34Σ2 · Σ3 and plug into eq. (7.56).
This gives a general formula for the chiral multiplicities

χ(1,2) 3
2

= −Θ03 = Σ2 · Y · (K + Σ2 − 4Y )φ03 + Σ3 · Y · (Σ2 − 4Y )φ05

− 1
2A · Y ·

(
H̄ − 3Σ2

)
,

= Σ2 · Y · (K + Σ2 − 4Y )φ03 + Σ3 · Y · (Σ2 − 4Y )φ05

+A · Y · (6K + 2Σ3 + 3Σ2 − 6Y ) ,
χ(3,1)− 4

3
= Θ05 = −Σ2Y · (Σ3 + 3Y )φ03 − Σ3Y · (Σ3 + 3Y +K)φ05

− 1
3A · Y ·

(
H̄ + 4Σ3

)
= −Σ2Y · (Σ3 + 3Y )φ03 − Σ3Y · (Σ3 + 3Y +K)φ05

+A · Y · (4K + Σ2 + 4Y ) ,
χ(3,2)− 1

6
= Θ34 = −Σ2 · Y · (9K + 3Σ2 + 4Σ3)φ03 − Σ3 · Y · (8K + 3Σ2 + 4Σ3)φ05

+ 1
6A ·

(
Σ2 · Σ3 − H̄ · (6K + 2Σ2 + 3Σ3)

)
= −Σ2 · Y · (9K + 3Σ2 + 4Σ3)φ03 − Σ3 · Y · (8K + 3Σ2 + 4Σ3)φ05

−A · Y · (12K + 6Σ3 + 4Σ2)
+A ·K · (12K + 10Σ3 + 7Σ2)
+A · (Σ2 · Σ2 + 3Σ3 · Σ2 + 2Σ3 · Σ3) .

(7.57)

Note that there appear to be more than three independent flux parameters here since
there are multiple parameters in A; these linearly independent extra parameters, however,
correspond to a combination of null vectors of the full matrix Mred and directions that
are constrained by eq. (7.53) as discussed above. For generic characteristic data, there are
no further linear dependencies on these multiplicities, and we can realize all three linearly
independent sets of chiral matter for many bases with arbitrary characteristic data. Note,
however, that since the flux parameters on the l.h.s. of eq. (7.52) must be (half-)integer,
and there must be an integer (or half-integer) parameter φ05 satisfying eq. (7.53), there
are nontrivial constraints on the choices of flux parameters appearing in eq. (7.57). We
illustrate these features explicitly with some examples in the following section.

The general formula for the multiplicities eq. (7.57) holds whenever Σ3 · Σ2 is a non-
trivial curve, even if one of the other primary pair intersection products vanishes such as
Σ2 · Y = 0, in which case Θ03 = 0. In the cases where Σ3 · Σ2 = 0, we cannot have
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jointly charged SU(3) × SU(2) matter, and the theory simplifies significantly, essentially
to the combinations of anomaly-free matter expected for gauge groups (SU(2)×U(1))/Z2
(as described in more detail in [39]) and (SU(3) × U(1))/Z3. The multiplicities in such a
case can be similarly computed assuming, e.g., that Σ2 · Y is non-vanishing, in which case
we can solve eq. (7.53) for φ03Σ2 · Y and compute the resulting multiplicities in a similar
fashion to the above analysis.

7.6 Alternative treatment of the symmetry constraints

As an alternative approach, closer in spirit to the direct approach used for purely non-
abelian theories in which the constraints are solved immediately for all φIα, one can solve
the symmetry constraints ΘIα = 0 before restricting to the sublattice Hvert

2,2 (X5,Z). We
accomplish this by leaving φK̂L̂ free (note that the indices Î Ĵ are still restricted to an ap-
propriate subset of the indices IJ) and instead replacing the intersection matrix M(Î Ĵ)(K̂L̂)
with the formal projection26 (see appendix C of [39] for further details in a more general
context)

MC(Î Ĵ)(K̂L̂) = MCna(Î Ĵ)(K̂L̂) −MCna(Î Ĵ)(1α)M
+(1α)(1β)
Cna

MCna(1β)(K̂L̂) . (7.58)

In the above expression, MC(IJ)(KL) is the restriction of M(IJ)(KL) to ΛC and similarly
MCna(IJ)(KL) is the restriction of M(IJ)(KL) to the sublattice ΛCna ⊂ ΛS (note ΛC ⊂ ΛCna)
of backgrounds preserving local Lorentz symmetry and at least the nonabelian (in this
case, su(3) ⊕ su(2)) gauge symmetry. The symmetric matrix MCna can be obtained from
M by acting on the right with a projection matrix Pna,27

MCna = MPna = P t
naM (7.59)

and has the following nontrivial matrix elements:

MCna (IJ)(KL) = WIJKL −WIJ |is ·W
is|js′WKLjs′ −W0IJ ·WKL −WIJ ·W0KL (7.60)

+W00 ·WIJ ·WKL

MCna (1α)(KL) = Dα ·W1̄KL (7.61)

= Dα · (−W1|ks′′W
ks′′ |isWisKL +W1IJ −W0KL + (W00 −W01) ·WKL)

MCna (1α)(1β) = Dα ·Dβ ·W1̄1̄ (7.62)

= Dα ·Dβ · (−W1|ks′′W
ks′′ |isW1is + 2(W00 −W01)) .

26In generic situations, we may solve the symmetry constraints ΘIα = 0 by eliminating only independent
flux parameters of the form φIα (in fact, this can always be done for resolutions of F-theory models that
exhibit strictly nonabelian gauge symmetry and admit a holomorphic zero section). In such situations,
pairs of hatted indices Î Ĵ , for which Î , Ĵ = 0, 1, is, are used to label the remaining unconstrained flux
parameters. However, when the F-theory gauge algebra g includes u(1) factors, in some cases imposing the
symmetry constraints ΘIα = 0 cannot be accomplished without eliminating some independent parameters
φIJ for which I, J 6= α (and consequently leaving a subset of parameters of the form φIα unconstrained.)
In these somewhat special cases, we abuse notation and use Î Ĵ , more generally, to denote the parameters
that remain unconstrained after solving ΘIα = 0, keeping in mind that the definition Î 6= α does not apply.

27The right-acting projection Pna always exists for the class of resolutions of F-theory models analyzed
in [39].
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Note that in contrast to MCna , whose components can be expressed solely in terms of the
triple intersections of the characteristic data K,Σ2,Σ3, Y , the components of the matrix
M+
Cna

(which is the inverse of MCna (1α)(1β), assuming it exists) generically depend on more
intersection numbers of B as they are determined by the intersections of the height pairing
divisorW1̄q̄ with the vertical curves of B. Without a more general approach to the analysis,
M+
Cna

can only be computed explicitly for a specific choice of base, and thus has to be worked
out on a case-by-case basis. We can plug in the values of WIJKL presented in table 4 into
the above expressions in order to explicitly evaluate the fluxes ΘÎ Ĵ = MC(Î Ĵ)(K̂L̂)φ

K̂L̂. We
perform this analysis explicitly for the base P3 in the next section.

8 Examples

We next turn our attention to some examples with constrained choices of characteristic
data and/or a specific choice of base B.

8.1 B = P3

We describe the specific case B = P3,K = −4H,Σ2 = n2H,Σ3 = n3H,Y = yH to
illustrate features of the general theory, which we analyze in several complementary ways.

8.1.1 B = P3 as a special case of the general formalism

The allowed values of the parameters n2, n3, y must satisfy the inequalities

n2 > 0, n3 > 0, [s1] = 4 + y − n2 − n3 ≥ 0, [d2] = 16− 2y − n2 − 2n3 ≥ 0 , (8.1)

or
y = 0, n2 > 0, n3 > 0, [d2] = 16− n2 − 2n3 ≥ 0 , (8.2)

for a good Weierstrass model to exist with the gauge group (SU(3)×SU(2)×U(1))/Z6 and
no further enhancement of the group [2, 77]. Note that in this example there is a single
base index α = H.

Note that for this class of examples, we have

1
4c

2
2 = (17n2 + 37n3 − 192)y + 22n2

3 + 8(n2 − 16)n2 + 25n2n3 − 224n3 + 22y2 + 912

− 1
4[(5n2 + 9n3)y2 +

(
n2

2 + 6n3n2 + 7n2
3

)
y + n3(n2 + n3)(3n2 + 2n3) + 2y3] .

(8.3)

In order for c2/2 to be an integer class (and note that this is a necessary, but not sufficient
condition), we at least require that the term in square brackets in the second line of the
above expression is a multiple of 4. Even for the F11 model, there are many examples
where this condition cannot be satisfied and hence the flux must be half-integer quantized.
In the case of the F11 model over B = P3, we must set y = 0, so that the term in brackets
reduces to

n3(n2 + n3)(3n2 + 2n3) . (8.4)
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By scanning over various small integer values of n2, n3, one can verify that choices of
characteristic data within this class of examples for which c2/2 is not integer appear to be
quite common (for example, n2 = 4, n3 = 1), and hence the subtleties surrounding half-
integer quantization of the flux cannot generically be ignored when studying these models.

As mentioned earlier, a complication that appears to plague F-theory models with
U(1) gauge factors such as the (SU(3)× SU(2)×U(1))/Z6 model is that, unlike in purely
nonabelian theories, it is not straightforward to solve the constraints ΘIα = 0 directly for
the full set of variables φIα. The approach of section 7.5 gives a general, but somewhat
more indirect solution of this problem, while the more direct approach taken in section 7.6
involves inversion of the matrix of intersections of height pairing divisor with other base
divisors, typically giving a rational form of the solution. Fortunately, for the latter ap-
proach, in this specific example, the matrix of intersections of the height pairing divisor
with other base divisors is rather simple, namely

MC(1H)(1H) =: h/6 , (8.5)

where h is the (rescaled) height pairing divisor

h = 48 + 12y − 4n3 − 3n2 = 12[s1] + 8n3 + 9n2 . (8.6)

From the constraints on the characteristic data described at the beginning of this subsec-
tion, we know that h is invertible (in fact, positive) in the region of allowed values for
n2, n3, y. Thus, we can proceed by solving the constraint equations ΘIH = 0 for the cor-
responding φIH , leading to expressions with h in the denominator. Alternatively, we can
solve for other variables to get polynomial expressions, following the lines of section 7.5.
The following two subsections give the details of the solution using these two approaches.
We recall that the three independent non-trivial fluxes can alternatively be taken to be
Θ33,Θ34,Θ55 or Θ03,Θ05,Θ34. We use these two different basis sets in the two different
analyses that follow, recalling that they can be related through eq. (7.30).

8.1.2 Rational solution

Solving the constraint equations ΘIH = 0 for all φIH gives

ΘÎ Ĵ = MC(Î Ĵ)(33)(−φ
03 + φ33) +MC(Î Ĵ)(34)φ

34 +MC(Î Ĵ)(55)(−φ
05 − φ45 + φ55) , (8.7)

where the coefficients for Θ33 are

MC(33)(33) = −n2y(−192− 3n2
2 − 4n2n3 − 3n2y + 60n2 − 2n3y + 16n3 + 6y2 − 24y)

h
,

MC(33)(34) = −n2n3y(24− 3n2 − 2n3 + 6y)
h

,

MC(33)(55) = −n2n3y(48− 3n2 − 4n3)
h

,

(8.8)
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the coefficients for Θ34 are

MC(34)(33) = −n2n3y(24− 3n2 − 2n3 + 6y)
h

,

MC(34)(34) = −n2n3(−192− n2
2 − 3n2n3 + 4n2y + 28n2 − 2n2

3 + 6n3y + 40n3 − 48y)
h

,

MC(34)(55) = n2n3y(16− n2 + 4y)
h

,

(8.9)

and the coefficients for Θ55 are

MC(55)(33) = −n2n3y(48− 3n2 − 4n3)
h

,

MC(55)(34) = n2n3y(16− n2 + 4y)
h

,

MC(55)(55) = n3y(−192− 3n2n3 − n2y + 12n2 − 4n2
3 + 64n3 + 4y2 − 32y)

h
.

(8.10)

From these expressions it is clear that the chiral multiplicities are parameterized by the
three independent linear combinations of fluxes appearing in eq. (8.7). While these ex-
pressions all have a factor of h in the denominator, the fact that all flux backgrounds φÎ Ĵ
must be (half-)integral guarantees that this factor will be cancelled properly for any set of
allowed integer fluxes, such that corresponding fluxes ΘÎ Ĵ are then integral.

8.1.3 Polynomial expressions and chiral multiplicities

In the base P3, the triple intersection products in the base simply become products of
numerical integer factors. Thus, from the general form of Mred, in a basis of fluxes (we use
the index 2 here for the divisor H)

φ02, φ22, φ23, φ24, φ25, φ12, φ03, φ05, φ34 (8.11)

the reduced matrix of table 6 is simply

Mred =



−4 1 0 0 0 y −n2y −n3y 0
1 0 0 0 0 1 0 0 0
0 0 −2n2 0 0 n2 −n2y 0 −n2n3
0 0 0 −2n3 n3 0 0 0 −n2n3
0 0 0 n3 −2n3 n3 0 −n3y n2n3
y 1 n2 0 n3 −4 n2y n3y 0
−n2y 0 −n2y 0 0 n2y (4−y−n2)n2y −n2n3y 0
−n3y 0 0 0 −n3y n3y −n2n3y (4−y−n3)n3y 0

0 0 −n2n3 −n2n3 n2n3 0 0 0 n2n3(4−n2−n3)


,

(8.12)

Note that with this ordering we see the characteristic structure of the upper left 5 × 5 block,
which is resolution-independent and encodes the basic structure of the base geometry and
the nonabelian gauge factors.
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In this case the analysis of section 7.5 applies, and the space of curves on B is one-
dimensional (spanned by H2), so all curves in eq. (7.53) lie in the same one-dimensional
space and we can solve the constraint for any of the parameters involved. For variety, we
solve here explicitly for the φ2I variables except φ12 and use φ05 instead to solve eq. (7.53),
giving

Θ03 = n2
8
[
(n2 + 32− 4y)yφ03 − (48− 3n2 − 4n3)φ12 + n3(4y − n2)φ34

]
,

Θ34 = n2
8
[
(3n2 + 4n3)yφ03 + (n2 − 16− 4y)φ12 + n3(32− 3n2 − 4n3)φ34

]
,

Θ05 = −n2
8
[
(36− 3y − n3)yφ03 + n3(n3 + 3y − 4)φ34

−(192 + 32y − 4y2 − (12− y)n2 − 64n3 + 3n2n3 + 4n2
3)φ12

]
.

(8.13)

The requirement that all φIJ take integer (or, appropriately, half-integer) values provides
additional constraints that guarantee that these expressions related to chiral multiplicities
are all integers. These constraints all follow from the condition

8n3yφ
05 = −9n2yφ

03 + hφ12 + n2n3φ
34 , (8.14)

which is eq. (7.53). Generally, the resulting chiral multiplicities are all nonzero, so that
all three independent families of chiral matter are allowable, though the multiplicities only
take certain combinations of integer values when the flux parameters φIJ are (half-)integral.

In order to make a direct comparison with the rational solutions described in sec-
tion 8.1.2, we need to use the constraint eq. (8.14) to eliminate the parameter φ12 in the
expressions for Θ03,Θ34,Θ05 given in eq. (8.13). For generic choices of characteristic data,
the scaled height pairing divisor h 6= 0, so in any such case we impose the constraint

φ12 = 1
h

(9n2yφ
03 + 8n3yφ

05 − n2n3φ
34) . (8.15)

We also make use of the relations implied by the restriction of the null vectors eq. (7.23) to
the subspace ΛC defined by the condition Θ1α = 0. These relations enable us to account for
the redundancy in the set of parameters φ03, φ33, φ34, φ05, φ45, φ55 used to parametrize the
solutions of section 8.1.2. Specifically, we find that before eliminating the null directions,
we may make the identification

φ03S03 + φ33S33 + φ34S34 + φ05S05 + φ45S45 + φ55S55
∼= (φ03 − φ33)S03 + φ34S34 + (φ05 + φ45 − φ55)S05 .

(8.16)

The constrained null vectors also imply relations among the fluxes, in particular the last
3 relations of eq. (7.30). This in turn implies that when comparing the solutions in sec-
tion 8.1.2 to eq. (8.13), we should identify, e.g., the coefficient of (φ03 − φ33) in Θ33 in
section 8.1.2 with the coefficient of φ03 in Θ03 of eq. (8.13), and so on. As an explicit illus-
tration of this method of comparison, we impose the condition eq. (8.15) in the expression

– 50 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
4

for Θ03 in eq. (8.13) to obtain

Θ03 = −n2yφ03
(
3n2y + 2n3y + 3n2

2 − 60n2 + 4n2n3 − 16n3 − 6y2 + 24y + 192
)

3n2 + 4n3 − 12y − 48

+ n2n3yφ34(3n2 + 2n3 − 6y − 24)
3n2 + 4n3 − 12y − 48 − n2n3(3n2 + 4n3 − 48)yφ05

3n2 + 4n3 − 12y − 48 ,

(8.17)

which is precisely (minus) the expression for Θ33 whose coefficients are presented in eq. (8.8).
As an example of applying these results, consider the case with n2 = n3 = y = 1.

In this case eq. (8.14) becomes φ34 = −53φ12 + 9φ03 + 8φ34. While φ03, φ05, φ34 can be
half-integer valued (from eq. (7.37)), φ12 is integer-valued. This gives the fluxes

Θ03 = −25φ12+7φ03+3φ05, Θ05 = 19φ12−4φ03, Θ34 = −168φ12+29φ03+25φ05 , (8.18)

which are all clearly integer-valued, even when φ03, φ05 are both half-integers.
As another class of examples, we can look at the chiral multiplicities that are possible

without exotic matter representations. Setting Θ03 = Θ05 = 0 in eq. (8.12), the expression
for Θ34 simplifies to

Θ34 = 1
2(12− n2 − n3 − y)(4−m− n+ y)φ12 . (8.19)

For example with n2 = n3 = y = 1, the number of generations of Standard Model matter
is given by −27φ12/2. The condition from eq. (8.18) that Θ05 = 0 implies that φ12 is
a multiple of 2 (whether φ03 is an integer or of the form (2k + 1)/2), so the number of
generations is a multiple of 27. Imposing also the condition Θ03 = 0 gives the general
solution

φ03 = 19
2 β, φ05 = −11

2 β, φ12 = 2β, Θ34 = −198β , (8.20)

so in general the multiplicity can be any multiple of 198, when c2/2 is an even homology
class, and any odd multiple of 198 when c2/2 is not even (in this case eq. (8.3) is integral,
which does not answer the question of evenness — for further discussion of this distinction
see section 9). Note, as a cross-check on the equivalence of the different methods of analysis
used above, that plugging these values into eq. (8.17), the numerators of the first and third
terms add to 3225β/2, while the numerator of the second term is 25, so indeed (half-)integer
quantization of φ34 is compatible with the integrality of Θ34

8.2 Special cases Y = 0 (F11 model)

8.2.1 General F11 models

In the special case Y = 0 for which the (SU(3) × SU(2) × U(1))/Z6 model reduces to the
F11 model [32], the chiral indices of the exotic 4D matter must vanish and we are left with
a one-dimensional family of non-trivial fluxes. Θ34. In particular, in this particular class of
models, the flux parameters φ03, φ05 become null vectors of Mred, the multiplicity formulae
eq. (7.57) reduce to

Θ03 = 0 ,
Θ05 = 0 ,

Θ34 = 1
6Σ2 · Σ3 · (A− φ34(6K + 2Σ2 + 3Σ3)) ,

(8.21)
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and the constraint eq. (7.53) reduces to

A · H̄ = φ34Σ2 · Σ3 . (8.22)

Imposing the constraint we can alternatively write

χ(3,2)− 1
6

= Θ34 = −A(12K2 + 2Σ2
3 + 3Σ3Σ2 + Σ2

2 +K(10Σ3 + 7Σ2)) , (8.23)

where the parameters in A are constrained such that eq. (8.22) can be satisfied for (half-
)integer φ34; in particular, parameters in A with a nonzero image under the map induced
by H̄ from divisors to curves in any direction other than Σ2 ·Σ3 are fixed to vanish, while
parameters in A associated with divisors such that D ·H̄ = 0, D ·Σ2 ·Σ3 6= 0 can contribute.

8.2.2 Specialized “SU(5)” F11

Specializing further to the case Σ2 = Σ3 = −K, as studied in [34], which are associated
with a hidden broken SU(5) unification group [2] as all the gauge branes lie on the same
divisor, we have H̄ = −5K,Σ2 · Σ3 = K2, and

Θ34 = −AK2 = φ34

5 K3 , (8.24)

with the constraint 5AK = −φ34K2, in agreement with the results of [34]. For example, if
K = kK̃ with k ∈ Z and K̃, K̃2 a primitive divisor and primitive curve respectively, then
we can parameterize A = aÃ where Ã is the Poincaré dual divisor to K̃2, and we have
Θ34 = −ak2, with the quantization condition 5a = −φ34kK̃3. Taking the special case of
the base P3 (i.e., n2 = n3 = k = 4, K̃3 = 1), we have, as in [34]:

Θ34 = −16a = 64
5 φ

34 . (8.25)

In this case, all parts of c2 are manifestly even except for a shift by S03 + S05 + S34, so if
c2 is an even class the flux parameter φ34 is integral, while if c2 is an odd class, φ34 is of
the form (2k+ 1)/2. The quantization constraint shows that 4|a, and 5|φ34 when φ34 is an
integer, and 2|a, 5|2φ34 when φ34 is a half-integer. We discuss the question of whether c2
is even in the next section.

As another example, for the base B = P2 × P1, we have K = K̃,K3 = 18, and
Θ34 = −a = 18φ34/5, with similar quantization conditions.

9 Quantization of multiplicities

The question of precisely which chiral multiplicities are allowed for a given model is some-
what subtle. We give a few brief comments here that address some further aspects of
which fluxes and corresponding chiral multiplicities may be possible in a broad class of
flux compactifications. For convenience here, in parts of the discussion we take GZ =
G4 + c2(X5)/2 ∈ H4(X5,Z) to be an integer class, even when c2 is not even; when c2 is not
even, fluxes must be suitably shifted by a half-integer class to G4. The analysis here expands
in particular on related discussions in [34, 39]. Note that aside from the specific examples
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at the end of this section, most of the discussion of quantization here is relevant for general
classes of F-theory models, independent of the specific gauge group and matter structure.

Recall from eq. (7.31) and eq. (7.32) the definitions of the lattices Λvert, Λ̄vert. The
homology lattice H4(X5,Z) has a unimodular intersection pairing. Thus, for any surface S
that is a primitive28 element of this lattice, in particular for any primitive surface in Λ̄vert,
there exists some integer flux GZ ∈ H4(X5,Z) such that

∫
S GZ = 1. This would suggest that

chiral multiplicities can always be quantized in arbitrary integer units, and that essentially
any model would allow three generations of anomaly-free chiral matter (leaving aside the
issue, for the moment, of non-even c2). There are several reasons, however, why such a flux
may not be possible or may not correspond to a physical vacuum of interest. First, it may be
the case that a vertical surface SIJ = DI ∩DJ ∈ Λvert is primitive in Λvert but is an integer
multiple of an element of Λ̄vert and H4(X5,Z). In particular, a (vertical) matter surface Sr
can be primitive in Λvert but not primitive in Λ̄vert; in such a situation, since Sr = mS′, with
S′ primitive in Λ̄vert, the associated chiral multiplicities χr =

∫
Sr
GZ will always be multiples

ofm, and unit multiplicity, for example, (or multiplicity 3 if m 6= 3) is not possible. Second,
it is possible that the specific GZ that is dual to a surface S that is primitive in Λ̄vert and
H4(X5,Z) breaks Poincaré or gauge invariance by giving a nonzero

∫
SIα

GZ. If neither of
the conditions just summarized are the case, then, recalling the decomposition eq. (7.25),
the flux GZ that is dual to a primitive vertical matter surface S may have a fractional
component in the vertical cohomology and a fractional part in the horizontal or remainder
cohomology, and satisfy the desired properties. Completely determining which of these
scenarios is realized depends on a full understanding of H4(X5,Z) and its intersection
form. Note also that while in many models the matter surfaces lie in Λvert, this need not
be the case in general; in any specific model, a clear analysis of matter surfaces and/or the
relationship between chiral multiplicities and integrated fluxes ΘIJ is needed for precise
statements regarding allowed multiplicities. Finally, we must incorporate the possibility
of non-even values of c2 into the preceding discussion. Note that when c2 is not even, as
in many examples discussed in the preceding section, the chiral multiplicities associated
with integrating over matter curves are still integral,

∫
S c2 ∈ Z, in which case the allowed

multiplicities are odd multiples of some basic factor.
Because of the orthogonal decomposition (7.25), and the fact that the intersection

product on H4(X5,Z) is unimodular, the set of possible fluxes
∫
S GZ through vertical

surfaces, and hence the set of chiral multiplicities, can be characterized by considering φ′
in the projection of H4(X5,Z) to Λ̄vert, which is the dual lattice dual(Λ̄vert) (i.e., the set
of points in Hvert

2,2 (X5,C) with integer inner product under Mred with all points in Λ̄vert).
When Λ̄vert = Λvert, then this dual space is characterized by the set of necessary conditions
stated in [34], which are that

∫
S(G4 +c2(X5)/2) must be integer-valued for any allowed flux

G4 and vertical surface S ∈ Λvert.29 However, Λ̄vert could contain extra integral points not
28A lattice element S ∈ H4(X5,Z) is primitive iff there does not exist a distinct non-zero element S′ ∈

H4(X5,Z) such that S = mS′ for m ∈ Z>1.
29Note that when c2 is not even, in principle it is possible that

∫
S

(G4 + c2/2) may be half-integral for
some vertical surfaces, although physical consistency dictates that it must be integral for any vertical matter
surface, as in the examples studied in the previous section. In such situations, GZ, but not necessarily G,
must project to dual(Λ̄vert).
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realized in Λvert, in which case these necessary conditions would not be sufficient as there
would be points in dual(Λvert) that are not in dual(Λ̄vert) and hence do not correspond
to the set of physically-allowed fluxes. Furthermore, fluxes associated with some points in
dual(Λ̄vert) may break gauge or Poincaré invariance. The information of Λvert and Mred is
not generally sufficient to uniquely determine Λ̄vert. For example, the lattice defined by the
inner product diag(4, 4) can alternatively be embedded in a self-dual Euclidean 2D lattice
by extending to an overlattice that includes one half of each generator, or can represent
the complete integral 2D subspace of the unimodular lattice E8 along a pair of orthogonal
primitive vectors of length 4.

The upshot of this discussion is that to determine the possible chiral multiplicities for a
given model, one must consider the possible integer overlattices Λ̄vert of Λvert; for each such
overlattice the quantization condition is then determined by identifying all elements of the
dual space dual(Λ̄vert) that leave Poincaré and gauge invariance unbroken. Determining
which is the proper overlattice requires a complete determination of H4(X5,Z), which
is beyond the scope of this paper but will be addressed in future work. Note also that
consistent chiral multiplicities associated with points φv in dual(Λ̄vert) that are not in
Λ̄vert can be allowed only if non-vertical components of flux are turned on. In such cases,
the integrality of the D3-brane tadpole from φv can only be violated when the vertical
component of flux is considered; thus, that condition (which was used in [34]) is not actually
necessary for an allowed multiplicity, but rather amounts to the condition that the flux
φv lies in an allowed overlattice Λ̄vert. Moreover, when flux is quantized properly with
GZ ∈ H4(X5,Z), the D3-brane quantization condition is automatically satisfied. The
uncertainty of which overlattice is realized by Λ̄vert also means that unless there is a clear
signal such as non-integrality of eq. (7.38) indicating that c2/2 is not even, there may be
some overlattices Λ̄vert that contain c2/2, in which case c2 is even, and other overlattices
that do not, in which case c2 is not even — this further complicates the issue of precisely
determining the flux quantization and associated chiral multiplicities.

As a specific example of the kinds of overlattice conditions that may arise, let us
consider the quantization of chiral multiplicities in the simplest model considered above
in section 8.2.2, with base P3, and Σ2 = Σ3 = −K = 4H,Y = 0. In this case, Mred
from eq. (8.12) simplifies to (dropping the null directions φ03, φ05, and moving φ12 to the
second slot)

Mred =



4 0 1 0 0 0 0
0 4 1 −4 0 −4 0
1 1 0 0 0 0 0
0 −4 0 8 0 0 −16
0 0 0 0 8 −4 −16
0 −4 0 0 −4 8 16
0 0 0 −16 −16 16 64


. (9.1)

If we choose integer fluxes in Λvert, as discussed in section 8.2.2, the chiral multiplicity is
an integer multiple of 64 through eq. (8.25). The possible fluxes that preserve Poincaré
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and gauge invariance are of the form

φ = p/16(1,−1,−4,−3,−2, 1,−5/4) . (9.2)

When such a flux is allowed, it gives a chiral multiplicity Θ34 = p. The flux in eq. (9.2) is
in the dual lattice dual(Λ̄vert) whenever p is integral.

We now consider the issues of even/non-even c2 and possible overlattices for Λ̄vert in
this specific case. First, note that

c2/2 = c′ + (0, 0, 0, 0, 0, 0, 1/2) , (9.3)

where c′ ∈ Λvert. Thus, whether c2 is even depends upon whether S34/2 ∈ Λ̄vert. Note
that eq. (7.38) is integral in this case, so we cannot rule out the possibility that c2 is even.
Furthermore, there are several overlattices of Λvert that contain c2/2. There is a maximal
overlattice Λmax

over that includes the generators (S01−S12)/2, S23/2, S24/2, S25/2, S34/8, and
which is self-dual. If Λ̄vert = Λmax

over then c2 is even, the minimum allowed p in eq. (9.2) is
p = 16, the quantization is controlled by integer values of a in eq. (8.25) and the chiral
multiplicity must be a multiple of 16. There is another overlattice of Λvert that contains
only the additional vector c2/2. The dual of this overlattice consists of all vectors of the
form eq. (9.2) with even p. If this overlattice is Λ̄vert, then the chiral multiplicity must be
a multiple of 2, but non-vertical flux must be included for any multiplicity that is not a
multiple of 32. Finally, if Λ̄vert = Λvert then c2 is odd, since c2/2 is not in Λ̄vert. Because
c2 ∈ dual(Λvert) in this case, the flux associated with chiral multiplicity is quantized in
units of 1, but non-vertical flux must be included for any chiral multiplicity that is not of
the form χ = 32(2k+ 1), and, e.g., a model with χ = 3 will appear to violate the D3-brane
tadpole integrality condition unless the non-vertical flux is properly included). There are a
variety of other possible overlattices, such as other sublattices of Λmax

over that contain Λvert,
some of which contain c2/2 and others of which do not; we do not go through all the
possibilities here. Thus, even in this simple case there are many possibilities for Λ̄vert,
each of which gives distinct quantization conditions when restricted to vertical or more
general integral fluxes. It would be interesting to gain further detailed information about
H4(X5,Z) to determine the precise form of Λ̄vert and definitively determine the precise
quantization condition on chiral multiplicities for these models.

10 Conclusions

In this paper we have performed a detailed analysis of the geometry and flux-induced chi-
ral matter of the universal tuned GSM = (SU(3) × SU(2) × U(1))/Z6 Weierstrass model
identified in [2]. This model admits three linearly independent families of chiral matter
transforming under the Standard Model gauge group GSM. All three families can be pro-
duced by F-theory fluxes, so the observed Standard Model chiral matter structure is realized
in a subset of models where one or two discrete parameters are tuned to vanish. Tuning
the parameter Y = 0 gives the class of “F11” models identified and studied in [32–34] and
related works.
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The analysis of this paper provides a framework for more detailed study of further
phenomenological features of these tuned Standard Model-like models, including aspects
of Yukawa interactions, chiral and non-chiral spectra, and moduli stabilization. This class
of models complements other types of F-theory constructions such as the tuned SU(5)
GUT models [12–15] that have been studied for several decades, or the more recently
constructed models that arise from flux breaking of a rigid E6 or E7 symmetry [27, 28].
Comparing how these different classes of F-theory Standard Model constructions differ in
detailed phenomenology and in frequency in the landscape may provide insights into what
features of beyond the Standard Model physics are correlated with the most typical or
natural realizations of the Standard Model in F-theory.

While in this paper we have focused on the specific class of models with tuned gauge
group GSM, we have also developed here further the theoretical toolkit for analyzing the
geometric structure and chiral matter content of broad classes of F-theory compactifica-
tions, extending the framework developed in [39]. In particular, we have extended the
analysis of the middle intersection form on vertical cohomology to include theories with a
U(1) factor, which complicates the structure of the matrix Mred substantially, and we have
given a more thorough analysis of quantization questions related to the multiplicity of chi-
ral matter and allowed fluxes for large classes of F-theory models. One interesting aspect of
this is that in the particular class of models studied here we were able to completely solve
the flux constrained equations associated with Poincaré and gauge symmetries, although
part of the solution was implicit. It would be interesting to investigate whether this kind of
solution is possible for more general models with U(1) gauge factors. Regarding the quan-
tization of chiral multiplicities, the analysis here highlights the importance of attaining a
full understanding of the structure of H4(X5,Z) for F-theory models of interest.
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A Converting between the geometric and gauge bases

Let X → B denote a smooth CY manifold that is elliptically fibered over a smooth base B.
There is a natural relationship between divisors D̂Ī ⊂ X and gauge fields appearing in the
low-energy description of M-theory compactified on X. In particular, the divisors D̂Ī are
Poincaré dual to harmonic (1, 1)-forms ωĪ that appear in a local expansion of the M-theory
3-form C3 in the vicinity of the 7-brane loci, i.e., C3 = AĪ ∧ ωĪ + · · · . Thus, to each gauge
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field AI , there corresponds a particular choice of divisor D̂Ī , and the gauge charges qĪ of
BPS particles corresponding to M2 branes wrapping holomorphic curves C ⊂ X can be
computed in terms of their intersection product with D̂Ī , i.e., qĪ =

∫
C ωĪ = D̂Ī · C. This

suggests that the low-energy gauge-theoretic description of M-theory compactified on X

defines a canonical basis of divisors D̂Ī — we refer to this basis as the “gauge” basis of
divisors.

Despite the fact that the gauge basis is natural from the point of view of the low-energy
effective theory, in practice, it tends to be simpler to expand divisors of X in terms of the
“geometric” basis D̂I , where I = 0 corresponds to a (non-unique) choice of zero section and
I = a corresponds to a generator of the Mordell-Weil group of sections. As we describe
below, the divisors D̂0, D̂a are linearly related to the divisors D̂0̄, D̂ā, which correspond
(respectively) to Kaluza-Klein U(1)KK and U(1) factors belonging to the free abelian part
of the F-theory gauge group.

In this appendix, we describe how to convert between the gauge and geometric bases.
The change of basis from the geometric basis to the gauge basis is given by (see appendix B
in [39])

D̂Ī = σJ
Ī
D̂J (A.1)

where in the case of the (SU(3)× SU(2)×U(1))/Z6 model, the matrix elements σJ
Ī
are:

σI0̄ =
(

1, 0,−1
2K

α, 0, 0, 0
)I

σI1̄ =
(
−1, 1,Kα − Y α,

1
2 ,

1
3 ,

2
3

)I
σI
J̄

= δI
J̄
, J̄ 6= 0, 1 .

(A.2)

Note that D̂1̄ = σI1̄D̂I is the image of the Shioda map described in [67]. Using

(σ−1)Ī0 =
(

1, 0, 1
2K

α, 0, 0, 0
)Ī

(σ−1)Ī1 =
(

1, 1,−1
2K

α + Y α,−1
2 ,−

1
3 ,−

2
3

)Ī
(σ−1)ĪJ = δĪJ for J 6= 0, 1 ,

(A.3)

one can invert the above linear transformation:

(σ−1)ĪJσKĪ = δKJ , σJ
K̄

(σ−1)ĪJ = δĪ
K̄
. (A.4)

Thus, e.g., the change of basis from geometric fluxes ΘIJ to gauge basis fluxes ΘĪ J̄ relevant
for computing the image of the nullspace of M in the constrained sublattice ΛC ⊂ Λ is

Θ1̄I = σJ1̄ ΘJI = −Θ0I + Θ1I + Θ3I
2 + Θ4I

3 + 2Θ5I
3 , I 6= 1

Θ1̄1̄ = σJ1̄ σ
K
1̄ ΘJK = Θ00 − 2Θ01 −Θ03 + Θ11 + Θ13 + 2Θ14

3 + 4Θ15
3

+ Θ33
4 + Θ34

3 + 2Θ35
3 + Θ44

9 + 4Θ45
9 + 4Θ55

9 − 2Θ04
3 − 4Θ05

3 .

(A.5)

– 57 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
4

Note that ΘI0̄ = ΘI0 on the constrained sublattice, hence one can freely exchange the
indices 0 and 0̄.
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