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that the dispersion relations of sound modes in the energy response explicitly pass through
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1 Introduction

Holographic quantum field theories provide an important source of tools and insight into the
physics of strongly coupled systems. One such important insight has been the phenomenon
of pole-skipping which identifies special points in complex momentum space (ω, k) where
the retarded Green’s function becomes ill-defined [1–5]. Remarkably, it has been quite gen-
erally established that in maximally chaotic systems there exists a family of pole-skipping
points in the energy density response (ω∗, k∗) whose locations are robustly related to the
Lyapunov exponent and butterfly velocity that govern the form of out-of-time-ordered cor-
relation functions (OTOCs). This provides a remarkable connection between energy dy-
namics and quantum many-body chaos in such systems, and supports a proposal of [2, 6]
for a hydrodynamic origin of chaos in such systems.

Since the discovery of the pole-skipping phenomenon, there has been much work study-
ing it in static planar black holes1 [1–5, 8–10]. More recent work has studied the connection
between chaos and energy-dynamics in rotating black holes. The simplest case is that of the
rotating BTZ black hole, which is dual to a 1 + 1 dimensional conformal field theory with
chemical potential for rotation, which was studied in detail in ref. [11] (see also [12, 13] for

1We note that pole-skipping has also been studied for a stationary bulk solution in the context of
holographic QFTs with a chiral anomaly in [7].
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the derivation of the form of the OTOC). Chaos and pole-skipping in the field theory dual to
3+1 dimensional rotating Kerr-AdS black hole was recently studied in [14]. While the phe-
nomenon of pole-skipping was still found to hold in this example, the analysis is extremely
technical and sophisticated. As a result of this, there are some limitations to the analysis
carried out in ref. [14]. Firstly, it was only possible to study the form of the OTOC in the
slowly rotating limit (limit of small chemical potential). Secondly, though an analytical ar-
gument was given that showed the existence of a quasinormal mode at the pole-skipping fre-
quencies, this was not verified numerically. Thirdly, since the linearised Einstein’s equations
are not separable in the Kerr-AdS geometry it is only possible to verify the pole-skipping
phenomenon using the Teukolsky formalism. This makes it valuable to provide an example
of pole-skipping in the field theory dual to a higher dimensional rotating black hole which
is more tractable to study than the Kerr-AdS geometry, which is the aim of this paper.

A spinning object in 4+1D has two orthogonal planes of rotation, so is characterised by
two angular momenta instead of one [15]. The Myers-Perry-AdS geometry generalizes the
Kerr metric to higher dimensions and provides the geometry for a spinning black hole in 4+
1D [16]. The isometry group of the Myers-Perry-AdS geometry is R×U(1)2, with a symme-
try for time translation invariance and two copies of U(1) for each plane of rotation. How-
ever, in the case where the two angular momenta are set equal to each other the geometry
has an enhanced symmetry group R×SU(2)×U(1) and the metric becomes co-homogeneity-
1, so that it depends non-trivially only on the radial parameter. This simplified geometry
presents a natural higher dimensional geometry to study the phenomenon of pole-skipping.

In section 2 we will review the details of the geometry of the Myers-Perry-AdS black
hole with equal angular momenta. In section 3 we study the OTOC using the eikonal phase
approximation, and derive the equation governing the angular profile of a gravitational
shockwave2 at the horizon which is associated with a high energy scattering process [18].
We refer to the equation governing the angular profile as the shockwave equation, and
we find that it can be solved analytically using Wigner D-functions. The most tractable
regime is the large black hole limit, where the OTOC on Hopf circles of the 3-sphere takes a
simple form. A key part of the results of this paper is that we are able to obtain an analytic
solution to the shockwave equation that determines the form of the OTOC in large black
holes away from the slowly rotating limit.

Following this we study the energy-density response3 and identify the pole-skipping
points. In section 4 we study ingoing metric perturbation near the horizon, and demon-
strate the energy response of the dual boundary theory exhibits pole-skipping at ω = i2πT 4

when the angular profile of perturbations satisfies the sourceless shock-wave equation dis-
cussed in section 3. In particular, for metric perturbations of frequency ω = i2πT the
vv-component of the linearised Einstein equations becomes identical to the (sourceless)
shockwave equation, ensuring the existence of an extra ingoing mode for perturbations

2The effects of axisymmetrical gravitational shockwaves on mutual information in the Myers-Perry-AdS5

black hole were recently studied in [17].
3The quasi-normal modes of the MP black hole have previously been studied in [19–21] and subsequently

in [22]
4This is the frequency in co-rotating angular coordinates.
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whose angular profile satisfies this equation. Due to the enhanced symmetry of the Myers-
Perry-AdS black hole with equal angular momenta the Einstein equations separate into a
coupled system of ODE’s. This ensures that the existence of an additional solution to the
linearized Einstein equations near the horizon will guarantee the existence of an additional
ingoing mode everywhere in the bulk, which is the gravitational origin of pole-skipping as
first shown in [2].

Again the most tractable limit corresponds to the large black hole limit. In this limit we
demonstrate that for perturbations whose angular momentum is aligned with the rotation
of the black hole the complex frequencies and wave-vectors associated to the pole-skipping
points precisely match those extracted from the OTOC for operator configurations on
Hopf circles, in an analogous manner to static black holes. In section 5, we perform a
more detailed analysis of these pole-skipping points. In particular we demonstrate that
they are equivalent to those of a boosted black brane, and numerically confirm using two
distinct methods that the dispersion relations of sound modes in the energy response of
the dual theory pass through these pole-skipping points. Finally, we emphasise that in
contrast to previous studies of higher dimensional rotating black holes in [14], all of our
results are valid for any value of the rotation parameter a/L. This allows us to identify
several new physical aspects of chaos and pole-skipping in rotating systems. In particular,
these include the observation that in the rest frame of the boundary theory one of the pole-
skipping points associated to chaos crosses into the lower half of the complex frequency
plane when the velocity a/L associated to the rotation of a large black hole exceeds the
conformal value of the butterfly velocity.

2 Myers-Perry-AdS5 black hole

We begin by reviewing the simply spinning Myers-Perry-AdS5 [16, 19, 21, 23, 24] black
hole, and introducing the coordinate systems that will be necessary to study chaos and
pole-skipping in the dual quantum field theory. In particular, the Myers-Perry-AdS5 black
hole for equal choices of angular momenta can be described by the metric

ds2 = −
(

1 + r2

L2

)
dt2 + dr2

G(r) + r2

4
(
σ2

1 + σ2
2 + σ2

3

)
+ 2µ
r2

(
dt+ a

2σ3

)2
, (2.1)

where
G(r) = 1 + r2

L2 −
2µ(1− a2/L2)

r2 + 2µa2

r4 .

The above metric has two horizons at the zeros of G(r). The mass constant µ is related to
the AdS-radius, L, the rotation parameter, a, and the location of the outer horizon, r0, by

µ = r4
0(L2 + r2

0)
2L2r2

0 − 2a2(L2 + r2
0)
. (2.2)

The one-forms that appear in the metric (2.1) are given by:

σ1 = sin(θ)cos(ψ)dφ− sin(ψ)dθ,
σ2 = cos(ψ)dθ + sin(θ)sin(ψ)dφ,
σ3 = dψ + cos(θ)dφ,
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where the angular coordinates (ψ, φ, θ) parameterise a 3−sphere in terms of the Hopf
fibration, with (φ, θ) being coordinates on the base S2 and ψ the coordinate on the fiber.
Their ranges are given by 0 ≤ θ < π, 0 ≤ φ < 2π and 0 ≤ ψ < 4π [19]. The variable
a parameterises the simultaneous rotation of the black hole in two perpendicular planes
of rotation5 in R4. In the above coordinates, this can be understood as a rotation in the
direction of the ψ coordinate. The metric (2.1) solves Einstein’s equations with negative
cosmological constant Λ = −6/L2.

It will prove convenient to introduce some compact notation for various combinations
of the constant parameters r0, a, L that will appear throughout this paper. We therefore
define constant parameters Σ,∆ and K by

Σ = L2 + r2
0, ∆ = L2r2

0(L2 + 2r2
0), K =

√
L2r2

0 − a2(L2 + r2
0).

In terms of these parameters the temperature of the dual black hole is then given by [19, 25]

2πT = L2r2
0(L2 + 2r2

0)− 2a2(L2 + r2
0)2

L3r2
0

√
L2r2

0 − a2(L2 + r2
0)

= ∆− 2a2Σ2

L3r2
0K

, (2.3)

and the angular velocity6 of the outer-horizon is given by:

Ω = −2a
( 1
L2 + 1

r2
0

)
. (2.4)

The dual quantum field theory corresponds to a conformal field theory on S3×Rt, at finite
temperature (2.3) and with equal chemical potentials for rotation in two orthogonal planes.

The near horizon structure of the geometry is not clear from the form of the met-
ric (2.1). In order to elucidate it, and introduce the analogue of Eddington-Finkelstein
and Kruskal coordinates, we first introduce the co-rotating angular coordinate ψ̃ and the
associated one form σ̃3 by

ψ̃ = ψ − Ωt, σ̃3 = dψ̃ + cos(θ)dφ, (2.5)

with Ω defined in (2.4). Then in co-rotating coordinates (t, r, ψ̃, φ, θ) the (t, r) components
of the metric (2.1) take the familiar form

ds2
(t,r) = −F (r)dt2 + dr2

G(r) , (2.6)

where F (r) is given by

F (r) = 1 + r2

L2 −
r2

0
r2

(
1 + r2

0
L2

)
− a2Σ2(r4 − r4

0)
L4r2r4

0
, (2.7)

which vanishes at r = r0 as expected in co-rotating coordinates.7

5The angular coordinates (ψ, φ, θ) are related to the embedding of the 3-sphere in R4 by x1 = cos((ψ −
φ)/2)sin(θ/2), x2 = sin((ψ − φ)/2)sin(θ/2), x3 = sin((ψ + φ)/2)cos(θ/2), x4 = cos((ψ + φ)/2)cos(θ/2).

6An extremal solution occurs when a/L = ±
√

L2r2
0+2r4

0√
2
√

L4+2L2r2
0+r4

0
and consequently the temperature van-

ishes. In the large black hole limit this expression reduces to a/L = ±1.
7Note the temperature (2.3) can be extracted as usual from (2.6) as 4πT = H ′(r0) with H(r) =√
F (r)G(r).
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We can now introduce analogues of ingoing (v) and outgoing (u) Eddington-Finkelstein
coordinates by:

dv = dt+ dr√
F (r)G(r)

, (2.8)

du = dt− dr√
F (r)G(r)

.

Finally, we can proceed as usual to define Kruskal-like coordinates, U and V ,which will be
necessary for studying the OTOC. Defining

U = −e−αu, V = eαv, (2.9)

where α = 2πT , we find the metric in Kruskal coordinates is given by

ds2 = A(UV )dUdV +B(UV )(UdV − V dU)σ̃3 + r2

4 (σ2
1 + σ2

2 + σ̃2
3) + µa2

2r2 σ̃
2
3 (2.10)

where the function r = r(UV ) is defined implicitly through (2.9) and

A(UV ) = F (r)
α2UV

, B(UV ) = a

2αUV
Σ(r4

0 − r4)
L2r2r2

0
. (2.11)

The metric (2.10) is manifestly smooth at both the U = 0 and V = 0 horizons at which
r(0) = r0.

3 The OTOC for Myers-Perry-AdS5 black holes

We now wish to examine the computation of out-of-time ordered correlators (OTOCs) in
the field theory dual to the geometry described by (2.1), following the approach8 of [18].
In particular, we will derive the shock-wave equation governing the angular profile of grav-
itational shockwaves that govern the form of the OTOC. We will see that the resulting
shockwave equation is significantly simpler than the one previously obtained for the Kerr-
AdS black hole in [14]. In particular it is possible to obtain an analytic solution for
the shockwave profile as an expansion in Wigner D-functions, which provide analogues of
spherical harmonics for the three-sphere. Furthermore, the computation of the OTOC sig-
nificantly simplifies in the large black hole limit, which allows us to obtain a simple closed
form expression for the OTOC for operators lying on a Hopf circle for any value of the
rotation strength. This is in contrast to the case of the Kerr-AdS black studied in [14], for
which exact results for the OTOC were only presented in the equatorial plane and in the
slowly rotating limit of large black holes.

In particular, for concreteness we consider the OTOC

〈Ŵ (t2,Ψ2,Φ2,Θ2)V̂ (t1,Ψ1,Φ1,Θ1)Ŵ (t2,Ψ2,Φ2,Θ2)V̂ (t1,Ψ1,Φ1,Θ1)〉, (3.1)
8We note that to obtain a rigorous justification of this formulation in the context of real-time holography

following [26–28] remains an important open question. We thank the referee for pointing this out.
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where capital letters denote boundary coordinates, t2− t1 � β and the angled brackets de-
note the trace with respect to the thermal density matrix e−βH/Z in the dual field theory.
As is now well known, this OTOC can be computed by considering the gravitational scatter-
ing amplitude between a particle of momentum pU1 travelling along the V = 0 horizon of the
black hole (corresponding to quanta created by the V̂ operator) and a particle of momentum
pV2 travelling along the U = 0 horizon (corresponding to quanta created by the Ŵ operator).
At the level of the eikonal approximation, the scattering amplitude for this process takes
the form eiδ where the eikonal phase δ is given by evaluating the Einstein-Hilbert action on
gravitational shockwave solutions sourced by the V̂ and Ŵ operators [18]. The OTOC is
then given by an integral, over momenta and angular coordinates, of eiδ weighted by bulk-
boundary wave functions, which describe the distribution of quanta along at the horizon.

We begin by considering the quanta created by the V̂ operator, corresponding to
a particle of momentum pU1 , whose trajectory approximates the null geodesic given by
(U = U(τ), V = 0, ψ̃1, φ1, θ1).9 The only non-zero component of the stress tensor of such a
particle is given by:

TUU = 1√
−g

pU1 δ(V )δ(ψ̃ − ψ̃1)δ(φ− φ1)δ(θ − θ1), (3.2)

Likewise, the quanta created by the Ŵ operator can be represented by a second particle
of momentum pV1 following the null-geodesic (U = 0, V = V (τ), ψ̃2, φ2, θ2), with the stress
tensor

T V V = 1√
−g

pV2 δ(U)δ(ψ̃ − ψ̃2)δ(φ− φ2)δ(θ − θ2). (3.3)

The eikonal phase δ is then given by determining the linearised gravitational backreaction
δgµν sourced by (3.2) and (3.3), and evaluating the quadratic Einstein Hilbert action on
these solutions [18]:

δ = 1
4

∫
d5x
√
−gδgµνTµν = 1

4

∫
d5x
√
−g(δgUUTUU + δgV V T

V V ). (3.4)

We begin by computing the gravitational back-reaction due to (3.2). After lowering indices
with (2.10) the only non-zero component of the stress tensor sourced by the V̂ quanta
is TV V = A(0)2TUU/4. As usual the gravitational backreaction of this source can be
computed by considering an ansatz for a geometry corresponding to a shockwave across
the U = 0 horizon

δgV V = −A(0)f1(ψ̃, φ, θ)δ(V ). (3.5)

Inserting the shockwave ansatz (3.5) into Einstein’s equations one finds the only non-trivial
component of Einstein’s equations is the V V -component, which reduces to the following
partial differential equation for the angular profile f1(ψ̃, φ, θ):

Df1(ψ̃, φ, θ) = 16πGN
sin(θ1)

K

Lr2
0
pU1 δ(ψ̃ − ψ̃1)δ(φ− φ1)δ(θ − θ1), (3.6)

9Note the fact we are in co-rotating coordinates is important for this to be a geodesic.
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where the differential operator D is given by:

� + λ1 + λ2∂ψ̃ + λ3∂
2
ψ̃
, (3.7)

with � one quarter of the Laplacian on the unit 3-sphere written in terms of the Hopf
fibration

� = cot(θ)∂θ + ∂2
θ + csc2(θ)∂2

ψ̃
+ csc2(θ)∂2

φ − 2cot(θ)csc(θ)∂ψ̃∂φ, (3.8)

and λ1, λ2, λ3 constants given by the expressions

λ1 = (2K2 + L2r2
0)(2a2(r2

0 + L2)2 −∆)
4L4r2

0K
2 , λ2 = −2a(r2

0 + L2)K
L3r2

0
, λ3 = −a

2(r2
0 + L2)
L2r2

0
.

(3.9)
The W quanta travelling on the U = 0 horizon source an analogous metric perturba-

tion. The calculation mirrors the one performed above, with the shockwave giving rise to
a Kruskal geometry with a shift across the U = 0 horizon V → V + f2(ψ̃, φ, θ). To linear
order in f2 this leads to the following metric perturbation

δgUU = −A(0)δ(U)f2(ψ̃, φ, θ), (3.10)

which solves Einstein’s equations sourced by (3.3) subject to f2(ψ̃, φ, θ) satisfying the fol-
lowing equation

D̃f2(ψ̃, φ, θ) = 16πGN
sin(θ2)

K

Lr2
0
pV2 δ(ψ̃ − ψ̃2)δ(φ− φ2)δ(θ − θ2), (3.11)

where D̃ is now the differential operator given in (3.7) but with ∂ψ̃ → −∂ψ̃ and ∂φ → −∂φ.
We are now in a position to compute the eikonal phase δ using equation (3.4). To do

so, we first introduce the function f(ψ̃, φ, θ, θ′) as the Green’s function of the Laplacian on
S3 with normalised delta-function source

Df(ψ̃, φ, θ, θ′) = − 1
2 sin(θ′)δ(ψ̃)δ(φ)δ(θ − θ′) (3.12)

in terms of which we find that the action (3.4) evaluated on (3.7) and (3.11) gives rise to
the eikonal phase10

δ = 16πGNK
Lr2

0
A(0)pU1 pV2 f(ψ2 − ψ1, φ2 − φ1, θ2, θ1) (3.13)

Due to the large time separation the between the V̂ , Ŵ the typical centre of mass of energy
of the collision grows exponentially in time as pU1 pV2 ∼ e2πTt. In co-rotating coordinates
the eikonal phase therefore grows exponentially in time with an exponent 2πT and has an
angular profile governed by the solution f(ψ̃, φ, θ, θ′) to the shockwave equation.

10Note here we have used translational symmetry in the φ, ψ̃ directions and that f̃(ψ̃1 − ψ̃2, φ1 −
φ2, θ1, θ2) = f(ψ̃2− ψ̃1, φ2−φ1, θ2, θ1) with f̃ the solution to the analogous equation to (3.12) with D → D̃.
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Exact solution for angular profile of shockwave. It is possible to obtain an ex-
act analytic solution to (3.12) as an expansion in Wigner D-functions. These are the
eigenfunctions of the Laplacian on S3, and provide a complete set of functions analo-
gous to the case of spherical harmonics for the 2-sphere. In particular, the Wigner D-
functions are indexed by either integer or half-integer J , together with quantum num-
bers K,M such that |M| ≤ J , |K| ≤ J . The Wigner D-functions then have the form
DJKM(ψ̃, φ, θ) = dJKM(θ)eiKψ̃+iMφ̃ and satisfy

�DJKM + J (J + 1)DJKM = 0. (3.14)

They form a complete set of functions on the three-sphere, with the completeness rela-
tion [29]

1
sin(θ1)δ(ψ̃ − ψ̃1)δ(φ− φ1)δ(θ − θ1)

=
∞∑

J=0,1/2,1,...

J∑
K=−J

J∑
M=−J

2J + 1
16π2 DJKM(ψ̃, φ, θ)DJ∗KM(ψ̃1, φ1, θ1).

Using this completeness relation to expand the delta function in (3.12) in terms of Wigner
D-functions, and making use of (3.14), we find that the normalised shockwave profile is
given by

f(ψ̃, φ, θ, θ′) =
∞∑

J=0,1/2,1,...

J∑
K=−J

J∑
M=−J

2J + 1
16π2

dJKM(θ′)dJKM(θ)
J (J + 1)− λ1 − iλ2K + λ3K2 e

iKψ̃+iMφ.

(3.15)
We therefore obtain an exact expression for the shock-wave equation in the Myers-Perry-
AdS5 black hole as a sum over Wigner D-functions. In the next section we will see that in
case of large black holes it is possible to perform this infinite sum analytically and obtain
an explicit expression for the shockwave profile and hence OTOC for operator insertions
lying on Hopf circles of the three-sphere, which corresponds to setting θ = θ′ = 0 in (3.15).

3.1 OTOC on Hopf circles

In the last subsection we presented an exact expression (3.15) for the shock-wave profile
governing the form of the eikonal phase related to the OTOC. For general configurations
(ψ, φ, θ, θ′) we are not aware of a simple way of computing the sum in (3.15). However, a
particularly interesting configuration of the OTOC that we can directly analyse are when
external operators V̂ and Ŵ lie on a Hopf circle, that is they have the same coordinates
on the base S2 and are separated only in the direction of the fibre coordinate ψ that is
parallel to the rotation. Concretely, we therefore consider OTOCs of the form:

H(t,Ψ) = 〈W (t2,Ψ2,Θ,Φ)V (t1,Ψ1,Θ,Φ)W (t2,Ψ2,Θ,Φ)V (t1,Ψ1,Θ,Φ)〉 (3.16)

where t = t2 − t1 and Ψ = Ψ2 − Ψ1. Such operator configurations can be mapped by an
isometry to the North pole, and henceforth we therefore set Θ = Φ = 0 without loss of
generality.
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For such operator configurations, then in the large black hole limit it is possible to
obtain a simple closed form expression for the OTOC, making use of the existence of
radially in-falling geodesics that satisfy θ̇ = φ̇ = 0 [30]. In particular, in the large black
hole limit r0 � L the bulk to boundary wave-functions describing the distribution of
quanta on the horizon will be sharply peaked in the angular coordinates on the horizon
around ψ̃2 − ψ̃1 = Ψ − Ωt, θ1 ≈ θ2 ≈ 0, φ1 ≈ φ2 ≈ 0. Expanding the standard expression
from [18] for the OTOC in terms of the eikonal phase to leading order in GN , and using
that the bulk-to-boundary wave-functions are sharply peaked around pU1 p

V
2 ∼ e2πTt, the

OTOC then takes the form

H(t,Ψ) ∼ 1− cGNe2πTtf(Ψ− Ωt). (3.17)

Here c is a constant, f(ψ̃) is the solution to equation (3.12) with θ = θ′ = φ = 0 and we
note that in the large black hole limit the expressions (2.3) and (2.4) reduce to

2πT = 2r0
L2

√
1− a2/L2, Ω = −2a/L2. (3.18)

As we show in appendix A, in the large black hole limit the expression (3.15) can be
approximated by an integral, leading to the expression

f(ψ̃) =
∫ ∞

0
dJ

∫ J
−J

dK J4π2
eiKψ̃

J 2 − λ1 − iλ2K + λ3K2 (3.19)

for the shock-wave profile on Hopf circles. This integral can be computed exactly by contour
integration (see appendix A for details), to give

f(ψ̃) = −e
−k+ψ̃

4π|ψ̃|
, ψ̃ > 0,

f(ψ̃) = − e
k−ψ̃

4π|ψ̃|
, ψ̃ < 0, (3.20)

where

k± = r0

L
√

1− a2/L2

(√
3
2 ∓

a

L

)
. (3.21)

In co-rotating coordinates, the OTOC is therefore exponentially growing in time with an
exponent 2πTt and exponentially decaying in the ψ̃ direction governed by k±. In terms of
the fixed boundary coordinates (t,Ψ) the exponentially growing piece of the OTOC (3.17)
takes the functional form

H(t,Ψ) ∼ −
exp

(
2πT+

(
t− LΨ

2v+
B

))
4π|Ψ− Ωt| , Ψ− Ωt > 0,

H(t,Ψ) ∼ −
exp

(
2πT−

(
t− LΨ

2v−B

))
4π|Ψ− Ωt| , Ψ− Ωt < 0, (3.22)
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where in the large black hole limit Ω = −2a/L2 , LΨ/2 corresponds to the spatial distance
between the operators V̂ , Ŵ 11 and the exponents T±, v±B are given by

2πT± = 2r0

L2
√

1− a2/L2

(
1∓

√
3
2
a

L

)
, (3.23)

and
2πT±
v±B

= 2r0

L2
√

1− a2/L2

(√
3
2 ∓

a

L

)
. (3.24)

The form of the above expressions can be understood by applying a boost of velocity
v = −ΩL/2 = a/L to the expression H4 ∼ exp(2πT0(t− LΨ/2v(0)

B )) for the OTOC of the
AdS5-Schwarzschild black brane. Under such a boost one finds

2πT± = 2πT0γv

(
1∓ v

v
(0)
B

)
,

2πT±
v±B

= 2πT0γv

( 1
v

(0)
B

∓ v
)
, (3.25)

which are equivalent to (3.23) and (3.24) upon using the expressions 2πT0 = 2r0/L
2 and

v
(0)
B =

√
2/3, with v(0)

B the butterfly velocity of the static Schwarzschild-AdS5 black brane
(which we refer to as the conformal butterfly velocity).

4 Near horizon ingoing metric perturbations

We now wish to study the energy density response of the field theory dual to the geometry
given by (2.1). In order to do this, we will study in-going metric perturbations about (2.1)
from which we can extract information about the retarded Green’s function GRT 00T 00 . We
will see that this exhibits the characteristic features of pole-skipping as identified in [1–3].
In particular, we will show that at a special value of the frequency ω = i2πT the linearized
Einstein equations admit an additional ingoing mode when the angular profile of the metric
component δgvv at the horizon is a solution to the (sourceless) shockwave equation (3.6)
that governs the form of the OTOC.

In particular, we work in ingoing coordinates (v, r, ψ̃, φ, θ) where v and ψ̃ are defined
in (2.8) and (2.5) respectively. We then study linearised perturbations of the metric (2.1),
and for convenience perform a Fourier transform with respect to v and the co-rotating
angle ψ̃:

δgµν(v, r, ψ̃, φ, θ) = ei(kψ̃−ωv)δgµν(r, φ, θ) (4.1)

Inserting this ansatz into the linearized Einstein equations will give rise to a coupled set
of coupled PDEs for δgµν(r, φ, θ). However, a significant simplification of the equations
is made possible due to the enhanced symmetry of the simply-spinning black hole. In
particular, after parameterising the spatial profile of the metric components in terms of
Wigner D-functions the Einstein equations can be reduced to a coupled set of ODEs for the
radial profiles of each metric component [20, 22, 31], which we discuss further in section 5.

For the purposes of identifying pole-skipping however, it is sufficient to work directly
with the ansatz (4.1) and analyse the near horizon behaviour of the linearised Einstein

11Note ψ runs from 0 to 4π over a circle of radius L.
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equations. In particular, as in previous examples of pole-skipping, we find that at ω = i2πT
the vv component of the Einstein equations at r = r0 reduces to a decoupled equation for
the angular profile of δgvv at the horizon. In particular, all other metric perturbations
decouple from this component of the Einstein equations, which evaluates at the horizon to

((cot(θ)∂θ+∂2
θ−csc2(θ)k2+csc2(θ)∂2

φ−2icot(θ)csc(θ)k∂φ)+λ1+iλ2k−λ3k
2)δgvv(r0,φ,θ)=0

(4.2)
where λ1, λ2 and λ3 the same constants defined in equation (3.9). This equation (4.2) is pre-
cisely the source-less version of the shockwave equation governing the form of OTOC (3.6),
after a Fourier transform with respect to the ψ coordinate. The key point is that the metric
perturbation δgvv(r0, φ, θ) must either have a specific angular profile on the horizon (i.e.
be a non-trivial solution to (4.2)) or it must be zero at the horizon. As such, for metric
perturbations with a particular angular profile related to the shockwave equation we expect
an extra ingoing mode, and the pole-skipping phenomenon.

4.1 Pole-skipping criterion in terms of Wigner D-functions

As we mentioned in the previous subsection, in the simply spinning Myers-Perry AdS
black hole the angular and radial dependence of the linearised Einstein equations can
be decoupled by considering metric perturbations whose angular profile is governed by a
Wigner D-function [20, 22, 31]. It is instructive to ask how these Wigner D-functions are
related to the angular profiles satisfying (4.2) for which we expect pole-skipping.

In particular, let us recall that the Wigner D-functions are the eigenfunctions of the
differential operator �. I.e. we have DJKM(ψ̃, θ, φ) = dJKM(θ)eiKψ̃+iMφ where

�DJKM + J (J + 1)DJKM = 0. (4.3)

For integer and half-integer J with |M|, |K| ≤ J there is a unique solution to (4.3) that
is regular on S3. In order to consider pole-skipping, it is necessary to relax the condition
thatM,K,J be integers and consider them to be arbitrary complex parameters. This cor-
responds to considering angular profiles of the metric components that are not necessarily
regular on the three-sphere. In particular, the horizon equation (4.2) is equivalent to the
statement that at pole-skipping points the angular profile of δgvv satisfies (4.3) but where
the quantum numbers K and J are related by

λ1 + iλ2K − λ3K2 = J (J + 1). (4.4)

Note that, as a result of the equivalence between the horizon equation and shockwave
equation, this relationship corresponds exactly to the locations at which the summand in
the shockwave profile (3.15) has poles. In the large black hole limit, we can use this to
obtain a precise connection between the locations of pole-skipping points and the form of
the OTOC on Hopf circles computed in (3.22). In order to compare to (3.22) we again
take the large black hole limit r0/L � 1 while keeping a/L ∼ O(1). In the this limit the
constants λ1, λ2, λ3 simplify to:

λ1 = r2
0

2L4 (2a2 − 3L2), λ2 = −2ar0
L2

√
1− a2

L2 λ3 = − a
2

L2 .
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We now consider the class of pole-skipping points where the quantum number K parallel
to the rotation direction takes its maximal value, i.e. we set K = J . Further, using that
in the large black hole limit we have K ∼ r0/L � 1, we find that (4.4) reduces to the
following quadratic equation for K(

1− a2

L2

)
K2 + 2iar0

L2

√
1− a2

L2K + r2
0

2L4 (3L2 − 2a2) = 0 (4.5)

whose solutions are given by:

K = ± ir0

L
√

1− a2/L2

(√3
2 ∓

a

L

)
= ±ik±. (4.6)

We therefore see these modes exhibit pole-skipping at a frequency ω = i2πT and at precisely
the same wave-vectors k± that appear in the exponential form of the OTOC on Hopf circles
computed in (3.22).

Finally, we note that so far we have been working in terms of co-rotating coordinates,
which corresponds to studying the boundary response in coordinates (t, ψ̃, θ, φ). If we
transform these results to the standard coordinates (t, ψ, θ, φ) for the three sphere then
we find that the wave-vectors k± at which pole-skipping occurs are unchanged, whilst the
frequencies at which pole-skipping occurs are modified to

ω± = i(2πT ± k±Ω) = 2ir0

L2
√

1− a2/L2

(
1∓

√
3
2
a

L

)
. (4.7)

As we will shortly discuss in more detail, the locations (ω,K) = (ω±,±ik±) at which
pole-skipping occurs in these coordinates are precisely what one obtains by applying a
boost to the pole-skipping points of the AdS5 black brane, and correspond precisely to the
frequencies and wave-vectors that appear in the profile of the OTOC on Hopf-circles that
we computed in section 3.1.

5 Full perturbation equations and numerical checks of pole-skipping

In the last section we used a near-horizon analysis to argue that for the existence of
pole-skipping in the retarded energy density Green’s function when the quantum num-
bers J ,K,M parameterising the angular profile of fluctuations satisfy (4.4). Here we will
numerically confirm our results for the large black hole limit, in which we argued that
pole skipping locations with K = J are given in the rest frame of the boundary theory by
(ω,K) = (ω±,±ik±) defined through (4.6) and (4.7).

To do this, we review the structure of the gravitational perturbation equations around
the rotating black hole (2.1) in more detail. In particular, as was first discussed in [20, 31],
general bulk metric perturbations δgµν can be parameterised in terms of the Wigner-
D functions and radial functions δhab(r) where a, b run over t, r and the indices +,−, 3
associated with the one forms in (2.1). For given quantum numbers one then obtains a set
of coupled ODEs for δhab(r). Solving these ODEs subject to ingoing boundary conditions
then allows one to extract the retarded Green’s functions of the boundary stress tensor.
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A significant simplification in the perturbation equations occurs if we restrict the pa-
rameters in the Wigner functions as K = J , which can be interpreted as choosing the
angular momentum of the fluctuations to be parallel to angular momentum of the back-
ground rotation. Upon doing so one finds that the system of fluctuations equations for
δhab(r) splits into decoupled scalar, vector, and tensor sectors [19] due to the aforemen-
tioned SU(2)×U(1) symmetry of the rotating black hole metric (2.1).

Furthermore, we now consider the large black hole limit defined by taking [22, 32]

(r0/L)� 1 : ω → (r0/L) 2ν , K → (r0/L)K , J → (r0/L) j , (5.1)

simultaneously with the black hole horizon radius and radial coordinate scaling given by

(r0/L)→∞ , r → (r0/L) r , (5.2)

and keep only leading order terms in (r0/L). After these steps, the system of perturbation
equations of the three channels can be reduced to three decoupled ordinary differential
equations, each for one gauge invariant master field [22, 32].

In the scalar channel, this yields the fluctuation equation (after setting L = 1 for
simplicity of presentation in the remainder of this section)

0 =
(
a2 (4u2 − uν2 − 4

)
− 2ajuν − u

(
j2 + 4u

)
+ 4

)
a2 − 1 Z0(u)+

+ f(u)
u

(
3u2 − 5

)
Z ′0(u) + f(u)2

u2 Z ′′0 (u),
(5.3)

where Z0(u) is the master variable formed from the coupled fluctuations

Z0(u) = (2
(
j2
(
a2 − z4 − 1

)
− a2ν2

(
z4 + 1

)
− 2ajνz4 + ν2

)
h+−(u)

+
(
a2 − 1

)
(j2htt(u)− 4jνht3(u) + 4ν2h33(u))) (5.4)

where the ±-coordinate-directions are defined by σ± = 1
2(σ1 ∓ iσ2), and we recall that the

parameter, a, quantifies the rotation of the background metric.12

Now we note that the explicit dependence on the rotation parameter a can be removed
with a linear redefinition of the frequency and momentum

q2 = (aν + j)2

1− a2 , q = k

2πT ,

w2 = (ν + aj)2

1− a2 . w = ω

2πT ,

(5.5)

after which the resulting a-independent equation is equivalent to the equation for the master
field governing (scalar sector, spin-0) metric perturbations around a Schwarzschild AdS
black brane [33]. Furthermore, the linear definition (5.5) is simply a boost transformation
of the frequency ν and wavevector j of the fluctuations.

12While the σ3-direction is associated with eigenvalues K of the SU(2) × U(1)-operator W3 through
W3D

J
KM = KDJKM, the σ±-directions are associated with ladder operators W± = W1 ± iW2 of that

SU(2)×U(1)-algebra [19, 20, 22].
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Hence, (5.3) is simply the master equation for scalar fluctuations around a boosted
black brane, where the momentum of the fluctuations is aligned with the boost direction.
In fact, in all three sectors (scalar, vector, tensor) of the rotating system, in the large black
hole limit, metric perturbations with K = J can be reduced in the same way to fluctuations
around a boosted Schwarzschild AdS black brane. This dramatically simplifies the calcula-
tion of the QNMs. In particular, we can directly compute the pole-skipping locations simply
by boosting the known pole-skipping locations of the Schwarzschild AdS black brane.

Note, however, that there is only one of the four solutions to equation (5.5) which
correctly reduces to the statement that q = j and w = ν in the limit that a → 0. This
branch is the physical branch, given by

q = aν + j√
1− a2

, w = aj + ν√
1− a2

. (5.6)

This is the solution we choose to transform the numerically known pole-skipping points
of the AdS Schwarzschild black brane [5] to the pole-skipping points of the rotating black
hole in the large black hole limit (5.1).

Pole-skipping locations. As discussed above, the locations of the pole-skipping points
for a system at rest can be continued into the rotating pole-skipping points, in the large
black hole limit (5.1), using the relation given in (5.6). Here we will discuss the pole-
skipping locations in the scalar channel, which are relevant for a comparison with the
results of section 4 and are those expected to be directly related to the OTOC. However
one also perform analogous calculations to analyse other pole-skipping locations in the
vector and tensor channel, and we briefly present such results in appendix B.

In particular, for a non-rotating Schwarzschild AdS black brane geometry the pole-
skipping points in the scalar channel are given by [18]

w = i, q = ±
√

3
2 i . (5.7)

Utilizing equation (5.6) this gives that the pole-skipping points for the rotating system in
the large black hole limit are

νscalar = i√
1− a2/L2

(
1∓
√

3√
2
a

L

)
, jscalar = i√

1− a2/L2

(
±
√

3√
2
− a

L

)
, (5.8)

where we have restored factors of L for ease of comparison with the pole-skipping points in
the rest frame given in section 4. Using w = ω/2πT, q = k/2πT one sees these results are
identical to those for (ω,K) = (ω±,±ik±) in equation (4.7), confirming, as we previously
remarked, that the pole-skipping locations are simply those of a boosted black brane.

As well as boosting the pole-skipping points of the Schwarzschild AdS black brane,
we have explicitly verified pole-skipping at these locations by numerically solving for the
dispersion13 relation of the (sound) QNM in the scalar sector of perturbations for each

13The spectrum of quasi-normal modes of the Myers-Perry-AdS5 black hole geometry with regular angular
profiles were originally studied in [21] using a different, but equivalent, decomposition of gravitational
perturbations to the Wigner D-functions discussed here.
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value of a/L. We have done this using two independent methods from two independently
constructed routines,14 firstly from a static Schwarzschild black brane whose modes are
then boosted and secondly directly from the large black hole limit of the rotating black
hole (for further details see appendix C).

These numerical results are illustrated in figure 1. The pole-skipping locations (5.8)
obtained from a boost are indicated with black symbols in figure 1 for increasing values of
rotation a/L. Note that the rotation parameter a/L affects both the frequency and wave-
vector of the pole-skipping points, in contrast to static planar black holes for which only
the wave-vector changes as one varies microscopic parameters at a fixed temperature (e.g.
as in the general results of [2, 3] and the Reissner-Nordstrom-AdS geometry of [34]). As we
previously noted at the special value a/L =

√
2/3 at which the boost speed is equivalent to

the conformal butterfly velocity, the pole-skipping point associated with (ω,K) = (ω+, ik+)
crosses over into the lower half plane of the complex frequency plane (which has been
highlighted in the figure with a cross).15

Lyapunov exponent and butterfly velocities. We have now explicitly confirmed the
existence of pole-skipping in the energy density Green’s functions at (ω,K) = (ω±,±ik±),
which precisely matches the functional form of the OTOC on Hopf circles in the large black
hole limit we presented in section 3.1. It is now interesting to highlight several surprising
physical implications of these results.

In particular, the fact that the pole-skipping location (ω,K) = (ω+, ik+) enters the
lower half complex frequency plane when the boost associated to rotation exceeds v(0)

B has
interesting implications for the associated butterfly velocity. In particular extracting a
butterfly velocity from the pole-skipping locations (or equivalently the OTOC profile as we
did in section 3.1) by ω±/k± = v±B we obtain associated butterfly velocities

v±B =

√
2
3 ∓

a
L

1∓
√

2
3
a
L

, (5.9)

which is nothing but relativistic addition of velocities obtained by applying a boost with
speed a/L parallel to ±v(0)

B .16 The fact that this is an addition of velocities stems from
the transformation given in equation (5.5) being a Lorentz boost, as discussed in [32]. The
butterfly velocity v+

B is plotted in figure 2 as a function of the rotation parameter a/L. Note
14The numerical code used to construct these solutions is publicly available. Please see

the supplementary material to find the primary Mathematica notebook titled dispersion_rela-
tion_Numerics_JHEP_version.nb which contains instructions for its use.

15It would be interesting to study how rotation affects the relation between critical points and pole-
skipping points for gapped modes found in [35]. There, it was discovered that critical points computed
from massive scalar, vector and tensor probe fields are bounded from above by the set of all pole-skipping
points when the dimension of the dual operator (mass of the perturbed field on the gravity side) is treated as
a parameter, see figure 8 in [35]. Note, that massive (scalar, tensor, and vector) probe fields are considered
in [35], whereas in the present work we consider metric perturbations; the equation of motion for the spin-2
(tensor) metric perturbation agrees with the massless tensor probe field of [35].

16This has been independently verified in private communication between the authors, Casey Cartwright
and Matthias Kaminski, with Navid Abbasi.
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a/L=9/10
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1.0

Im(j)

Im
(ν
)

Figure 1. Chaos in the sound dispersion. The complex-valued dispersion relation ν(j) for the
rotating black hole in the large black hole limit (as given by equation (5.1) with the top signs).
Displayed is the imaginary part of the frequency parameter Imν of the perturbation as a function
of the imaginary part of its angular momentum Imj. Each color (and different symbol) represents
a different value for the angular momentum per mass a/L in incremental steps of 3/10. The black
line indicates the trajectory of the pole-skipping location as the angular momentum per mass, a/L,
varies. The cross, x, highlights the point where one of the pole-skipping points associated to this
dispersion relation ceases to be located in the upper half plane, corresponding to a/L =

√
2
3 .

that the butterfly velocity v+
B vanishes at a/L =

√
2/3 (the magnitude of the conformal

butterfly velocity) precisely at same time that the pole skipping location (ω,K) = (ω+, ik+)
passes into the lower half complex frequency plane.

The vanishing of the butterfly velocity v+
B at a/L =

√
2/3 can be naturally interpreted

with the help of the large black hole limit. In this limit, perturbations of the rotating black
hole experience a fluid boosted with a velocity a/L. A perturbation traveling upstream
against this fluid flow in a conformal theory will be experienced by an observer at rest as sit-
ting still exactly when the perturbation has the speed |a/L|. Thus, a perturbation moving
at the conformal butterfly speed

√
2/3 appears to sit still when the fluid streams with veloc-

ity |a/L| =
√

2/3. When the fluid flows faster, |a/L| >
√

2/3, this perturbation is dragged
downstream. This phenomenon could not be observed in previous studies of OTOCs and
pole-skipping in rotating black holes. In particular, in the BTZ black hole case [11, 13] the
butterfly velocity is equal to the speed of light, and likewise in studies of pole-skipping and
OTOCs in Kerr-AdS [14] were restricted to the slowly rotating limit in the which the rota-
tion speed was parametrically smaller than the corresponding conformal butterfly velocity.

Finally, we note that the Lyapunov exponent λL associated to the OTOC on Hopf
circles in the large black hole limit can be extracted from H(t, 0) in (3.22) (see [12]). This
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3
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2
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2

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5
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v
B

Figure 2. Butterfly velocity in a rotating plasma. The butterfly velocities v±
B given in (5.9) are

displayed as a function of the rotation parameter a/L. The colored dashed lines indicate the
conformal value v(0)

B = ±
√

2/3 whilst the black dashed lines indicate the speed of light. Notice that
the “upstream” butterfly velocity v+

B crosses zero at exactly the same value of rotation a/L =
√

2
3

for which the pole-skipping point plotted in figure 1 ceases to be located in the upper half complex
frequency plane.

gives λL = 2πT+ = Im(ω+) (for a > 0) and λL = 2πT− = Im(ω−) (for a < 0). We thus have

λL = 2πT
(

1−
√

3
2
|a|
L

)
= 2πT

(
1− |v|/v(0)

B

)
(5.10)

which saturates a velocity-dependent generalization of the Maldacena/Shenker/Stanford
chaos bound [36] that was proposed in [12]. Furthermore, this saturates the generalized
bound for the positive operators θaQa proposed in [12], given by

|θa[Qa]µ∂µH|
1−H ≤ 2π . (5.11)

where H is the OTOC, θa are chemical potentials and Qa are the corresponding generators.
In our case the operators are given by θaQa = β(H̃+ΩJ) (with β the inverse temperature,
H̃ the Hamiltonian, J the angular momentum and Ω the angular velocity) and the
generalized bound given above in equation (5.11) reduces to

|∂tH(t, ψ) + Ω∂ψH(t, ψ)|
1−H(t, ψ) ≤ 2πT . (5.12)

Inserting the definition of the OTOC given in equation (3.17) one finds the bound is
saturated. It was pointed out already in [14], that rotating systems in 1+1 d (e.g. [13])
have been noticed to satisfy the generalized MSS bound of [12].
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6 Discussion

We have studied the relationship between many-body quantum chaos and energy dynamics
for the theory dual to a five-dimensional Myers-Perry-AdS black hole with equal angular
momenta. In the context of many-body chaos we obtain a closed form expression (3.15)
for the gravitational shock wave at the horizon that governs the functional form of the
OTOC. Furthermore in section 4 we demonstrated using a near-horizon expansion that
the retarded energy density response of the dual boundary theory exhibits pole-skipping
at a frequency ω = i2πT (in co-rotating coordinates) whenever the angular profile of bulk
fluctuations satisfies the (sourceless) shockwave equation at the horizon. Concretely, this
condition corresponds to the constraint (4.4) on the quantum numbers J , K,M of Wigner
D-functions that are typically used to diagonalise the angular response of the boundary
theory on the 3-sphere.

Furthermore, we demonstrated that in the large black hole limit this leads to a precise
connection between the functional form of the OTOC for operators lying on Hopf circles of
the boundary S3, and a family of pole-skipping points associated to perturbations whose
angular momentum was aligned with the rotation of the background geometry (i.e. K = J ).
In particular, we found that there was pole-skipping in the dual rest frame at complex values
of frequency and momenta that precisely match those extracted from the exponential profile
of the OTOC on Hopf circles (see (3.22) and (4.7)), in an entirely analogous manner to the
usual statements of pole-skipping in static planar black holes.

It is worth emphasising that in contrast to previous studies of the Kerr-AdS black
hole [14], these results are valid for any value of the rotation parameter a/L. Furthermore,
we were also able to explicitly confirm numerically that the dispersion relations of quasi-
normal modes in the sound channel of scalar perturbations pass through the pole-skipping
locations as expected. Intriguingly, we found that both the form of the OTOC on Hopf
circles and the associated pole-skipping points with K = J were, in the large black hole
limit, equivalent to those of a boosted black brane.

Despite their simple form, these results for large black holes had several interesting
implications for the physics of the dual theory. Firstly, as in previous examples of rotat-
ing black holes, whilst the pole-skipping points associated to chaos we examined always
take place at a frequency ω = i2πT in co-rotating angular coordinates, the pole-skipping
frequencies are shifted in the rest frame of the boundary theory. Interestingly, we found
that for large black holes with K = J one of these pole-skipping points passes into the
lower half plane when the velocity v = a/L associated to rotation exceeds the value of the
butterfly velocity in the conformal non-rotating theory. Furthermore, at the same time,
the butterfly velocity associated to “upstream” perturbations becomes negative. Whilst
these features can be understood from the equivalence to a boosted black brane, this
phenomenon could not be seen in previous results in rotating black holes in BTZ [12] or
Kerr-AdS black holes [14]. Furthermore, we found that the Lyapunov exponent associated
to chaos saturated a generalised MSS bound for rotating ensembles proposed in [12]. It
would be interesting to understand in the future how general these phenomena are for other
examples of rotating black holes.
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Finally, we emphasise that whilst the detailed analysis of section 5 was limited to
perturbations of large black holes with K = J , our near horizon analysis predicts pole-
skipping for any value of r0/L whenever the quantum numbers J ,K,M characterising the
angular dependence of quasi-normal modes satisfy the constraint (4.4). In principle, there
are two types of corrections to the results of section 5, both those associated to L/r0-
corrections and those from relaxing the condition K = J . The physical significance of
L/r0-corrections is that in the strict large black hole limit the perturbation equations for
K = J are identical to perturbation equations of a boosted black brane; and the boost is
a symmetry transformation. When taking into account L/r0-corrections, the perturbation
equations for the rotating black hole are no longer related to a black hole at rest by
any symmetry transformation we are aware of. From example computations of the L/r0-
corrections [32], we expect effects on the pole-skipping locations to be smooth and still
negligible at r0/L ≈ O(10). Thus, we expect our results to be a good approximation to
the full rotating black hole result if the black hole is sufficiently large r0/L > 10. More
difficult and possibly more drastic could be the effect of allowing perturbations to rotate
transverse to the direction of rotation of the fluid by choosing K 6= J , upon which the
bulk metric perturbations do not (naively) decouple into distinct scalar, tensor and vector
sectors. However, it would be interesting to test explicitly the existence of pole-skipping at
the locations at (4.4) with this condition relaxed. In principle, this should still be tractable
due to the fact that the bulk perturbations can be decoupled using the Wigner D-functions
into a series of coupled ODEs for the radial profiles δhab(r) of metric perturbations, and
we leave this as an interesting question for future work.
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A Analytic solution to shock-wave equation

Here include the details of the computation of the analytic expression for the shock-wave
profile for large black holes when θ = θ′ = 0. Recall, the exact solution to (3.12) for the
shockwave profile f(ψ̃, φ, θ, θ′) and with a normalised delta function source at (ψ̃′ = 0, φ′ =
0, θ′) is given by (3.15), which for clarity we reproduce below

f(ψ̃, φ, θ, θ′) =
∞∑

J=0,1/2,1,...

J∑
K=−J

J∑
M=−J

2J + 1
16π2

dJKM(θ′)dJKM(θ)
J (J + 1)− λ1 − iλ2K + λ3K2 e

iKψ̃+iMφ,

(A.1)
with λ1, λ2, λ3 the constants given in (3.9). As discussed in the main text, the OTOC on
Hopf circles in the large black hole limit can be extracted from the shockwave profile with
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θ = θ′ = 0. In this case, it is possible to perform the infinite sum in (A.1) analytically and
obtain a simple expression for the OTOC. In particular, using that dJKM(0) = δKM (see
e.g. [29]) we have that (A.1) reduces to

f(α) =
∞∑

J=0,1/2,1,...

J∑
K=−J

2J + 1
16π2

eiKα

J (J + 1)− λ1 − iλ2K + λ3K2 , (A.2)

where α = ψ̃ + φ. The large black hole limit corresponds to taking K ∼ J ∼ r0/L � 1
with Kα fixed. In this limit the summations in (A.2) can be replaced by integrals to obtain

f(α) =
∫ ∞

0
dJ

∫ J
−J

dK J4π2
eiKα

J 2 − λ1 − iλ2K + λ3K2 .

We now make the substitution K = J cos t where t ∈ [0, π]. The integral becomes

f(α) =
∫

0

∞
dJ

∫ π

0
dt
J 2 sin t

4π2
eiαJ cos t

J 2 − λ1 − iλ2J cos t+ λ3J 2 cos2 t
,

which can equivalently be written as

f(α) =
∫ π/2

0
dt

∫ ∞
−∞

dJ J
2 sin t
4π2

eiαJ cos t

J 2 − λ1 − iλ2J cos t+ λ3J 2 cos2 t
, (A.3)

where we have first adjusted the limits on the integrals and then swapped the order of
integration. The above expression is convenient because the cos t factor in the exponent
is now manifestly positive for t ∈ (0, π/2). The above integral can then be computed by
using contour integration to first perform the J integral, and then finally performing the
remaining integration over t. In particular, we note that the integrand in (A.3) has simple
poles at J±(t) where

J±(t) = −2iar0
√

1− a2/L2 cos t± ir0
√

6L2 − 5a2 − a2 cos 2t
2L2 − 2a2 cos2 t

(A.4)

To evaluate the integral over J we then consider an integration contour consisting of the
integral along the real J axis interval [−R,R] and then along a semicircle ΓR in the UHP
complex J plane where we set J = Reiχ for 0 ≤ χ ≤ π. Denoting the integral along
the interval [−R,R] as IR and the integral along the semicircle as IΓR

we have from the
residue theorem that IR + IΓR

is 2πi times the residue at J+(t) (which is the only pole in
the upper half plane for t ∈ (0, π/2)). This gives

IR + IΓR
= −

∫ π/2

0
dt

i

2π
J 2

+(t) sin t
(1− a2/L2 cos2 t)(J+(t)− J−(t))e

iαJ+(t) cos t. (A.5)

In order to perform the t integral we now note that using the explicit expressions for J±(t)
in (A.4) we find the identity,

J 2
+(t) sin t

(1− a2/L2 cos2 t)(J+(t)− J−(t)) = −1
2
d(J+(t) cos t)

dt
,
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from which we deduce that the integrand in (A.5) is a total derivative. Performing the t
integral we therefore obtain

IR + IΓR
= 1

4πα

[
1− e−K+α

]
,

where J+(0) = iK+ with

K+ = r0
L

1√
1− a2/L2

(√3
2 −

a

L

)
= k+. (A.6)

The shockwave profile for α > 0 is then given by f(α) = limR→∞ IR. To obtain this, we
note that using the standard parameterisation J = Reiχ on ΓR it is straightforward to
show that limR→∞ IΓR

= 1/(4πα). We thus obtain the shockwave profile

f(α) = −e
−K+α

4πα , α > 0. (A.7)

An entirely analogous computation can be performed for the case α < 0 by considering a
semi-circular contour in the lower half J plane. Following the same steps outlined above
we find

f(α) = eK−α

4πα , α < 0, (A.8)

where
K− = r0

L

1√
1− a2/L2

(√3
2 + a

L

)
= k−. (A.9)

B Pole-skipping in other channels

As discussed in section 5, the gravitational perturbation equations of the AdS Myers-Perry
black hole with quantum numbers satisfying K = J dramatically simplify in the large black
hole limit, and are equivalent to those of a boosted black brane. One can thus obtain pole-
skipping locations by applying a boost with velocity v = a/L to the pole-skipping locations
of the static Schwarzschild AdS5 black brane. In the main text we discussed this in the
context of the pole skipping locations associated to many-body quantum chaos, i.e those
that take place in the scalar channel at a frequency ω = i2πT in co-rotating coordinates.
However it is well known that there exist other pole skipping locations, in the lower half
complex frequency plane [4, 5], both in the scalar sector and in other channels. Whilst not
related directly to quantum many-body chaos, these other pole-skipping locations provide
important constraints on the spectrum on QNMs of a theory.

As an illustration, we now utilize (5.6) further to identify examples of pole-skipping
locations in the tensor and vector sectors of the AdS Myers-Perry black hole. Explicit forms
of the tensor and vector fluctuation equations can be found in [22] and [32], respectively. For
a Schwarzschild-AdS5 black brane at rest in the spin 1 and spin 2 sector the pole-skipping
points are given by, in the notation of section 5, as [5]

Spin 1 - Vector: w = −i, q = ±
√

3
2 ,

Spin 2 - Tensor: w = −i, q = ±i
√

3
2 .
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Using the transformation in (5.5) one immediately obtains

Spin 1 - Vector: νvector = −±
√

3a+ i
√

2√
2
√

1− a2
, jvector = ±

√
3 + ia

√
2√

2
√

1− a2
,

Spin 2 - Tensor: νtensor = −±
√

3a+
√

2√
2
√

1− a2
i , jtensor = ±

√
3 + a

√
2√

2
√

1− a2
i .

where these results are valid at leading order in the large black hole limit for perturbations
with K = J .

C Details of the numerical method

The linearized Einstein equations for gravitational perturbations take the form [37]

Ṙµν = 2Λ
D − 2δgµν

where
Ṙµν = −1

2∇µ∇νδg −
1
2∇

λ∇λδgµν +∇λ∇(µδgν)λ ,

and Λ = −6/L2, D = 5 and δg = δg µ
µ = δgνµg

µν . The covariant derivatives are defined
with respect to the background metric (2.1). The rotating black hole metric (2.1) has a
spatial SU(2)×U(1) symmetry along with a time translation symmetry which is reflected
in a set of 5 Killing vectors. Construction of a mutually commuting set of observables
leads to the decomposition of the metric in terms of Wigner D-functions, as discussed in
section 5. Using this decomposition in the linearized Einstein equation leads to a set of
coupled ODEs for the radial profiles hab(r) as discussed in section 5 and references therein.
As discussed in section 5 upon setting K = J the equations for hab(r) decouple into distinct
scalar, vector and tensor sectors. The relevant components of hab(r) for the scalar sector
are displayed in [22]. Taking the large black hole limit in (5.1) and (5.2) the fluctuation
equations reduce to those of a Schwarzschild black brane uniformly boosted along one of
the spatial directions [22, 32].

The quasi-normal mode frequencies of the dual theory can by extracted from the system
of coupled ODEs for hab(r) for each sector in one of two ways. Firstly one can introduce a
gauge invariant master field variable as discussed in section 5, reducing the set of coupled
equations to a single ODE. Alternatively one can represent the coupled set of ODEs for
the relevant modes hab(r) as a generalized eigenvalue problem. In this case for performing
our numerics of the QNM dispersion relations in the scalar sector we have chosen to obtain
the QNM frequencies by solving the generalized eigenvalue problem [38]. Schematically,
the linearized Einstein field equations takes the form, A · φ = νB · φ, where φ represents
a set of coupled fields in the fluctuation equations and A and B are differential operators,
which depend on the value of the momentum j (but do not depend on the frequency ν).
Numerically, the operators are represented as discrete differential operators by invoking an
Nth order truncated Chebyshev representation of the fields. One then solves the resulting
linear system for the quasi-normal mode frequency ν given a choice of momentum j. The
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Figure 3. More chaos in the sound dispersion. The dispersion relation ν(j) for the rotating black
hole in the large black hole limit (5.1) as already displayed in figure 1. Here, the black dots were
added as they were computed independent of the colored data points. The colored data points
were calculated in a static Schwarzschild black brane at rest with subsequently applying the boost
transformation (5.5). The black dots were calculated directly from the perturbation equations of
the rotating black hole in the large black hole limit. These two methods are in excellent agreement
with the difference between the data for each point within the parameter range displayed here being
on the order of 10−6.

discretization procedure introduces spurious modes, which can be filtered by comparing
the frequencies obtained when using an Nth order Chebyshev representation of the fields
to that of an Mth order Chebyshev representation (with M > N).

The data displayed in figure 1 is the result of solving the generalized eigenvalue problem
associated with scalar perturbations of the static Schwarzschild black brane. The obtained
dispersion relation, as displayed in blue, is then boosted according to (5.6) to obtain the
orange, green and red curves. The computed modes are represented as dots while the lines
are simply interpolations of the data, added to the plot to guide the eye.

As a check of both our numerics and our understanding of the interpretation of the large
black hole limit, we have computed the dispersion relations displayed in figure 1 by a second
independent numerical method using an independently constructed routine. The second
routine works directly with the equations describing the scalar sector of perturbations of the
rotating black hole in the large black hole limit (i.e. no boost transformations). The results
of the second approach are displayed as small black dots in figure 3 along with the modes,
shown in color, as computed in the first approach. Interpolating the mode frequencies
as a function of the momentum, we have compared the relative percent difference, r ≡
2(A − B)/(A + B) of the two independent codes and found r ∼ O(10−6) for every point
displayed. The agreement of these two independent schemes provides a consistency check on
the numerical results and gives an independent verification of the interpretation of the large
black hole limit of the Myers-Perry-AdS black hole as a boosted Schwarzschild black brane.
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