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1 Introduction

One of the most promising approaches to achieve robust, fault-tolerant quantum computing
is through the use of topology, with the so-called topological quantum computing (TQC),
see for example [1–5]. A preeminent role in this context is played by (2+1)-dimensional
quasiparticle excitations known as anyons, which are thought to realize TQC because of
their statistical interactions. These interactions are robust to local perturbations, due to
their topological nature. More technically, anyons are representations of the braid group
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BN and are characterized by fusion and braiding properties, in which world-lines of these
particles fuse together and intertwine. In topological quantum computers, information is
encoded in the fusion spaces of anyons and quantum gates are implemented as elements
of the appropriate braid group. Thus the premise for this construction makes them im-
mune to errors that can occur while processing information. A general introduction to the
applications of anyons in quantum computing can be found in the textbook [4] or in [6–8].

Some of the most widely studied anyonic systems in the literature include the Ising
anyons, the Fibonacci anyons and the Jones-Kauffman anyons. They are non-Abelian
anyons associated to irreducible representations of the quantum group SU(2)k [9, 10], ap-
pearing at levels k = 2, 3 and k = 4, respectively. Among them, the Fibonacci anyons have
found importance in quantum computing as they help generate a universal set of gates
by braiding alone [11–15]. On the other hand the level k = 4 anyons can realize universal
quantum computing by supplementing the braiding gates with non-topological ones [16, 17].

There are several physical realizations where these anyons are thought to exist, like
Ryberg atoms, fractional quantum Hall systems and parafermionic models, among oth-
ers [18–22]. While it is experimentally feasible to realize these systems, there have been
theoretical challenges [23]. More formally, anyonic systems are also seen via Temperley-Lieb
recoupling theories and spin networks [24–29], which we will use in this paper.

The scope of this paper is to approach the anyonic systems above from a novel prospec-
tive, the one of supersymmetry algebras realized on spin chains. Many lattice models have
a continuum limit that possess supersymmetry, some examples being the tricritical Ising
model and Ashkin-Teller models at special values of the coupling constants [30–33]. More-
over well studied spin chains like the XXX, and XXZ models can be generated using
dynamical lattice supercharges [34–36]. All this has lead to a search for models with super-
charges satisfying the supersymmetry algebra on one-dimensional lattices or models with
explicit lattice supersymmetry. The first known example of such models is by Hermann
Nicolai [37]. Then there is also a class of lattice models called theMk models, see [38–42].
In general these models have an extensive ground state degeneracy, with exponentially
growing numbers of states being the common trend more often than not [43–48]. Some
of these supersymmetric spin chains have also shown to exhibit localization effects similar
to many body localized systems [49, 50] and these supercharges have been used to obtain
solutions of the Yang-Baxter equation and its generalization [51].

In this paper we consider three models similar to the Nicolai supersymmetric spin
chain and we study their zero modes (ground states) in detail. This allows us to establish
a connection between these zero mode states and the fusion spaces of anyons and, conse-
quently, topological quantum computation. In this regard [52] considers defects in theMk

lattice supersymmetric models that have fusion rules of the Ising and Fibonacci anyons.
And also in this line there has been an earlier attempt to connect supersymmetry and
quantum computation [53], however this is quite different from what we intend to do here.

More specifically, we construct three different supercharges on a spin chain, where each
chain site is endowed with a Hilbert space which is either C2 or C2 ⊗ C2. The spectrum
inherits a Z2-grading from supersymmetry and is divided in a bosonic and fermionic sec-
tor. We study the zero modes of these systems, which have entangled and non-entangled
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(product) states. The product states display a very specific scaling with the number of
spin sites, which can be precisely mapped to the dimension of the fusion spaces of the
Fibonacci anyons (when the Hilbert space is C2) and of the Jones-Kauffman and Ising
anyons (when the Hilbert space is C2⊗C2). Equipped with this correspondence, we go on
with expressing the braid group generators acting on those anyonic fusion spaces in terms
of the supersymmetric zero modes of the spin chain.

This shows that we can mimic TQC via anyons on these spin chains without actually
realizing non-Abelian anyons. This is especially useful given the fact that it is difficult to
find actual non-Abelian anyons in fractional quantum Hall systems. Another advantage in
using supersymmetric spin chains seems to arise from the fact that the quantum information
now needs to be stored in product states which are essentially classical. This could reduce
errors during the encoding process. Furthermore, as explained in detail in 6.1, we find that
the braid generators are supersymmetric and hence the quantum gates built using these
braid generators cannot access parts of the supersymmetric Hilbert space that are not the
product zero modes, thus reducing errors while implementing the quantum gates as well.

This paper is organized as follows. In general, we try to keep things as self-contained
as possible and for this reason we begin with a brief review of anyons and the construction
of their fusion spaces in section 2. The mathematical treatment of this subject can get
rather abstract, so we keep the language of categories to a minimum and list exactly
those properties that are useful for the goals of this work. We provide the examples of
SU(2)k anyons in the same section and also count the dimensions of the fusion basis of the
k = 2, 3, 4 cases. We then proceed to construct three kinds of supersymmetric spin chains
in section 3. There we also study in detail the product zero modes of the three systems.
The main correspondence between the two spaces — the space of product supersymmetric
zero modes and the fusion basis of the Fibonacci, the Jones-Kauffman and the Ising anyons
— is then established in section 4. Using this correspondence the braid groups on the space
of supersymmetric zero modes are constructed in section 6 after reviewing the construction
of braid groups on anyon fusion spaces in section 5. In section 6.2 we discuss the important
issue of the stability of the product zero modes to deformations of the SUSY Hamiltonians.
This explains the robustness properties of topological quantum computation on SUSY
spin chains considered here. Before we conclude we look at how the correspondence can
be extended to the case where the local Hilbert space is not C2, but more generally Cd

in section 6.3. This requires the use of the supersymmetric systems based on inverse
semigroups developed in [49]. We end with an outlook in section 7 and keep some of the
more tangential details in appendices.

2 Review of anyons and their fusion spaces

To keep this article self-contained we briefly review anyons and their fusion spaces, closely
following [4, 7].

Since the discovery of anyons as quasiparticle excitations in two-dimensional systems,
an elaborate mathematical approach based on category theory has been developed to study
their properties. In this perspective, anyonic systems are thought of as unitary braided
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fusion categories, described by a set C of anyon species

C = {a, b, c, . . .}. (2.1)

Different anyonic particles φa, φb, . . . are labelled by the species to which they belong and
obey a set of fusion rules

φa × φb =
∑
c∈C

N c
ab φc. (2.2)

Here N c
ab are non-negative integers denoting the multiplicity of a particular fusion channel,

namely the number of different ways in which anyons of species a and b can combine to
form an anyon of species c. The fusion rules in (2.2) are both commutative and associative,
implying

N c
ab = N c

ba,
∑
e∈C

N e
abN

f
ec =

∑
e∈C

Nf
aeN

e
bc, (2.3)

respectively. Among the anyonic species there is the 1, which is unique and is called the
vacuum. It is defined by the fact that its fusion with any other species gives back that
species itself, that is N c

a1 = N c
1a = δac. An important distinction is between Abelian

anyons, for which N c
ab = 1 for only one value of c and N c′

ab = 0 for all c′ 6= c, and non-
Abelian anyons, for which there is at least one a and b such that there are multiple fusion
channels c with N c

ab 6= 0. We will mostly be interested in examples of non-Abelian anyons
with no multiplicity, and henceforth we only consider the case in which N c

ab = 0, 1. Every
anyon φa has an anti-particle φā (which can possibly be φa itself), such that they fuse to
the vacuum in precisely one way, that is N1

aā = 1. Besides annihilating into the vacuum,
they may also annihilate into other species.

To every fusion channel one can associate a vector space V c
ab, called fusion space, with

dim(V c
ab) = N c

ab and basis vectors |a, b; c〉. The dual to the fusion space is the splitting space
V ab
c spanned by 〈a, b; c|. Physically, splitting can be thought of as the time reversed process

of fusion. Together they define the inner product, which we take to be the canonical one.

〈a, b; i1|a, b; i2〉 = δ(i1, i2), (2.4)

where i1 and i2 represent two different anyon species corresponding to different fusion
channels of the anyons a and b.

One can generalize the vector space V c
ab (V ab

c ) to the case where more particles fuse
(split) into (from) d. For example, V d

abc has three initial particles of species a, b, c and a
final particle of species d. This space can be obtained in two ways, according to the order
in which the anyons fuse, either as (ab)c or as a(bc). These two processes are unitarily
related by so-called F -matrices, as shown in figure 1.

In terms of basis kets, this is encoded in the following relation

|ab; i〉|ic; d〉 =
∑
j

(
F abcd

)
ij
|bc; j〉|aj; d〉. (2.5)

Later on we will refrain from mentioning the anyons that are fusing (splitting) when it is
understood from the context. In such situations, |ab; i〉|ic; d〉 ≡ |i〉 and |bc; j〉|aj; d〉 ≡ |j〉.
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a b c

i

d

=
∑
j

(
F abcd

)
ij

a b c

j

d

Figure 1. Definition of the F -matrix as a basis change in fusion space. Graphically, this corresponds
to sliding the b line from a to c.

The F -matrices can be thought of as sliding the anyon line b from a to c, see figure 1,
justifying the nomenclature of F -move. As this operation also resembles the associativity
condition in algebra, this is sometimes also denoted as the associativity move.

One can also consider a general fusion space V a1,...,am
a′1,...,a

′
n
, with arbitrarily many in and out

particles. This can be decomposed into tensor products of the elementary fusion (splitting)
spaces V c

ab (V ab
c ). The order of fusion (splitting) of the anyons should not matter and

this is guaranteed to be the case if the F -matrices satisfy the so-called pentagon identity,
schematized in figure 2 for the V abcd

e case.
From the figure, one can read off that the pentagon identity for this process is∑

j1,j2

(
F abj2e

)
i1j1

(
F i1cde

)
i2j2

=
∑

k1,j1,j2

(
F bcdj1

)
k1j2

(
F ak1d
e

)
i2j1

(
F abci2

)
i1k1

. (2.6)

Fusing or splitting with the vacuum does not change the state of the anyon. This physical
condition imposes that the corresponding F abcd is trivial, i.e. F abcd = 1 [6], when either of
a, b or c is 1. Note that this is not true when anyon d is the vacuum and we will see such
cases soon.

Another operation that can be performed on anyonic lines is braiding, with the so-
called R-move. This is done by the unitary R-matrix as defined in figure 3.

In equations this is
|b, a; c〉 = Rabc |a, b; c〉, (2.7)

for every c in the fusion channel of a and b. This ‘disentangling’ of the anyon lines is
essential for finding the braid group on these fusion spaces, as we shall see.

While fusing anyons we can braid some of them in the process. This can be done in
several different orders and for them to be consistent we require the F - and R-matrices to
satisfy the so-called hexagon identity, see figure 4. This reads∑

g

Race

(
F acbd

)
eg
Rbcg =

∑
f,g

(
F cabd

)
ef
Rcfd

(
F abcd

)
fg
. (2.8)

This identity guarantees the compatibility between the F - and R-matrices. This relation
will become quite ubiquitous and crucial for the construction of the braid group on fusion
spaces.
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a b c d

i1
i2
e

F

a b c d

i1 j2

e

F

a b c d

j1
j2

e

F

a b c d

i2
k1

e F

a b c d

j1

k1

e

F

Figure 2. One can go from left to right either with the two F -moves in the upper part of the
diagram or with the three F -moves in the lower part. Equating these two ways to fuse four anyons
gives the pentagon identity in (2.6).

a b

c

= Rabc

a b

c

Figure 3. The R-move untwists fusing anyon lines. Note that the anyon line b crosses over a. An
undercrossing would correspond to using R−1 instead of R.

An alternative hexagon identity is obtained when the c line in figure 4 is wound below
the a and b lines, as shown in figure 5.

This leads to the equation∑
g

(
R−1

)ac
e

(
F acbd

)
eg

(
R−1

)bc
g

=
∑
f,g

(
F cabd

)
ef

(
R−1

)cf
d

(
F abcd

)
fg
. (2.9)
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a b c

e

d

R

a b c

e

d

F
a b c

g

d
R

a b c

g

d

F

a b c

f

d

R

a b c

f

d

F

Figure 4. The compatibility between the F - and R-matrices is encoded in the diagram above,
in which one can go from left to right along the upper or lower path. The equivalence of the two
procedures leads to the hexagon identity (2.8).

There are many more quantities that can be defined on fusion spaces and we refer the
interested reader to [7]. However, for our purposes of finding the braid group, the quantities
defined above and their relations will suffice. Solving pentagon and hexagon identities is
enough to define anyonic systems, as stated by the MacLane coherence theorem [54]. This
is however very difficult to do in general. For this reason we shall only work with specific
examples, based on the SU(2)k quantum group.

2.1 SU(2)k anyonic systems

The quantum group SU(2)k is a rich source of examples of anyonic systems [4]. At level
k, its irreducible representations (IRR’s) are labelled by C =

{
0, 1

2 , 1, . . . ,
k
2

}
, which can be

interpreted as different anyonic species. Analogously to what is done for SU(2), one can
combine IRR’s (‘add angular momenta’) to form other representations. The fusion rule to
be followed to this scope is

j1 × j2 = |j1 − j2| ⊕ |j1 − j2|+ 1⊕ · · · ⊕min {j1 + j2, k − (j1 + j2)}. (2.10)

We now illustrate this for specific values of k.
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a b c

e

d

R−1

a b c

e

d

F
a b c

g

d
R−1

a b c

g

d

F

a b c

f

d

R−1

a b c

f

d

F

Figure 5. The same idea applied to the F - and R−1-matrices leads to the alternate hexagon
identity (2.9).

× 0 1
2 1

0 0 1
2 1

1
2

1
2 0 + 1 1

2

1 1 1
2 0

Table 1. Fusion rules at level k = 2.

k = 2 — Ising anyons. The first system we consider is provided by SU(2)2. This
has only three possible IRR’s labelled by

{
0, 1

2 , 1
}
, with fusion table given in table 1.

Identifying 0 with the vacuum, 1
2 with the anyonic species σ and 1 with the anyonic species

ψ, one obtains the fusion rules

1× a = a× 1 = a, a ∈ {1, σ, ψ}
σ × ψ = ψ × σ = σ, ψ × ψ = 1, σ × σ = 1 + ψ, (2.11)

which are precisely the fusion rules of the Ising anyons.
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× 0 1
2 1 3

2

0 0 1
2 1 3

2
1
2

1
2 0 + 1 1

2 + 3
2 1

1 1 1
2 + 3

2 0 + 1 1
2

3
2

3
2 1 1

2 0

Table 2. Fusion rules at level k = 3.

× 0 1 2
0 0 1 2
1 1 0 + 1 + 2 1
2 2 1 0

Table 3. Fusion rules at level k = 4 for the integer IRR’s.

k = 3 — Fibonacci anyons. At level k = 3 the fusion table is given by table 2.
Focusing only on the integer representations, upon identifying 0 with the vacuum and 1
with the anyonic species τ , one obtains the fusion rules

1× τ = τ × 1 = τ, τ × τ = 1 + τ (2.12)

of the Fibonacci anyons. Note that we have not included the half-integral IRR’s in the
definition of the Fibonacci anyons. As we shall see in section 2.2, the fusion of the τ ’s
result in a fusion basis whose dimension scales as the Fibonacci number. This is the origin
of the nomenclature for these anyons. However this scaling property does not hold when
we fuse the half-integral anyons and hence the half-integral anyons are not considered in
the definition of the Fibonacci anyons.

k = 4 — Jones-Kauffman anyons. At level k = 4 the IRR’s are labelled by{
0, 1

2 , 1,
3
2 , 2
}
. The fusion table of the integer IRR’s of SU(2)4 is reported in table 3.

Identifying 0 with the vacuum, 1 with the anyonic species τ and 2 with the anyonic species
µ gives the fusion rules (omitting the trivial ones involving fusing with 1)

τ × τ = 1 + τ + µ, µ× τ = τ × µ = τ, µ× µ = 1 (2.13)

of the Jones-Kauffman anyons. For the same reason as in the definition of the Fibonacci
anyons the half-integral IRR’s are not included in the defintion of the Jones-Kauffman
anyons.

2.2 Basis of the fusion spaces

We now proceed to writing down explicitly the basis of different fusion spaces, starting
with the case of the Fibonacci anyons. Consider V τ

τ⊗N , the space in which N Fibonacci
anyons of species τ fuse to give another τ . This space is spanned by the possible outcomes
in the fusion channels of N τ ’s. For example, the N = 3 and 4 cases are shown in figure 6.
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|1〉 ≡

τ τ τ

1

τ

|τ〉 ≡

τ τ τ

τ

τ

N = 3

|1τ〉 ≡

τ τ τ τ

1
τ

τ

|τ1〉 ≡

τ τ τ τ

τ
1

τ

|ττ〉 ≡

τ τ τ τ

τ
τ

τ

N = 4

Figure 6. Fusion basis resulting from the fusion of N = 3 and N = 4 Fibonacci anyons.

Forbidden Allowed
11 1τ , τ1, ττ

Table 4. The forbidden and allowed configurations in the basis states of Fibonacci anyons.

For N = 3 there are two elements in the basis, given by {|1〉, |τ〉}, while for N = 4 there
are three elements, given by {|1τ〉, |τ1〉, |ττ〉}. This shows that the basis states spanning
this fusion space are sequences made of 1’s and τ ’s. It is easy to see that it is impossible to
obtain consecutive 1’s in these sequences. As an example, for N = 5 the allowed sequences
are 1τ1, 1ττ, τ1τ, ττ1, τττ . We can summarize the allowed and forbidden configurations in
table 4.

The allowed sequences are nothing else than the Fibonacci sequences, as we now show.
Let f(N) be the number of basis states with N anyons. From the above, we see that
f(3) = 2, f(4) = 3, f(5) = 5. For general N , we may count f(N) recursively by the
following algorithm. First, we decompose f(N) into two categories: let f1(N) and fτ (N)
be the number of sequences starting with 1 and τ , respectively, so that

f(N) = f1(N) + fτ (N). (2.14)

However, if a sequence starts with 1, then the next state must be a τ . Therefore, the
number of fusion sequences of length N starting with 1 is the same as the number of fusion
sequences of length N − 1 starting with τ . In other words, f1(N) = fτ (N − 1) and (2.14)
can be now expressed as

f(N) = fτ (N − 1) + fτ (N). (2.15)

Now we may count fτ (l) in the following way. Let us take an admissible fusion sequence
s of length l − 1. Now, if we attach a τ at the beginning of s, then τs will become an
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Forbidden Allowed
11, µµ 1τ , τ1, ττ
1µ, µ1 τµ, µτ

Table 5. The forbidden and allowed configurations in the Jones-Kauffman sequences.

|1〉 ≡

τ τ τ

1

τ

|τ〉 ≡

τ τ τ

τ

τ

|µ〉 ≡

τ τ τ

µ

τ

N = 3

|1τ〉 ≡

τ τ τ τ

1 τ
τ

|τ1〉 ≡

τ τ τ τ

τ
1
τ

|τµ〉 ≡

τ τ τ τ

τ
µ

τ

|µτ〉 ≡

τ τ τ τ

µ
τ

τ

|ττ〉 ≡

τ τ τ τ

τ
τ

τ

N = 4

Figure 7. Fusion basis resulting from the fusion of N = 3 and N = 4 Jones-Kauffman anyons.

admissible fusion sequence of length l + 1 starting with τ . Therefore fτ (l + 1) = f(l).
Combining this with (2.15), we conclude

f(N) = f(N − 2) + f(N − 1), (2.16)

which is the definition of the Fibonacci sequence.
In a similar manner, one can construct the fusion basis for N Jones-Kauffman anyons

of species τ , by identifying the forbidden and allowed configurations that make up the
sequence. These are listed in table 5 and some examples of fusion basis states are shown
in figure 7.

As done above for the Fibonacci case, we can now count the basis states for N Jones-
Kauffman anyons, which we denote by j(N). From the figure 7, we see that j(3) =
3, j(4) = 5. In general, we may write j(N) = jτ (N) + j1µ(N), where jτ (N) is the number
of basis states starting with τ and j1µ(N) is the number of basis states starting with 1
or µ. Now, if a sequence starts with 1 or µ, then the next state has to be τ . Therefore
j1µ(N) = 2jτ (N − 1) and

j(N) = jτ (N) + 2jτ (N − 1). (2.17)
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N j1µ(N) l = 2 l = 3 l = 4 l = 5 l = 6 jτ (N) j(N)
3 |1〉, |µ〉 |τ〉 1 3
4 |1τ〉, |µτ〉 |τ1〉, |τµ〉 |ττ〉 3 5

5
|1ττ〉, |µττ〉
|1τµ〉, |µτµ〉
|1τ1〉, |µτ1〉

|τ1τ〉, |τµτ〉 |ττ1〉, |ττµ〉 |τττ〉 5 11

6 10

|τ1ττ〉
|τ1τ1〉
|τ1τµ〉
|τµττ〉
|τµτ1〉
|τµτµ〉

|ττ1τ〉,
|ττµτ〉

|τττ1〉
|τττµ〉 |ττττ〉 11 21

7 22 10

|ττ1ττ〉
|ττ1τ1〉
|ττ1τµ〉
|ττµττ〉
|ττµτ1〉
|ττµτµ〉

|τττ1τ〉
|τττµτ〉

|ττττ1〉
|ττττµ〉 |τττττ〉 21 43

8 42 22 10

|τττ1ττ〉
|τττ1τ1〉
|τττ1τµ〉
|τττµττ〉
|τττµτ1〉
|τττµτµ〉

|ττττ1τ〉
|ττττµτ〉

|τττττ1〉
|τττττµ〉 43 85

Table 6. Number of basis states in the Jones-Kauffman anyons space. Here l denotes the first
location where the sequence of τ is broken by 1 or µ.

It is then enough to compute jτ (N). However, jτ (N) = j(N − 1), because by simply
inserting τ in the first position of fusion sequences with N − 1 anyons, one obtains the
fusion sequences for N anyons starting with τ . One finally has

j(N) = j(N − 1) + 2j(N − 2). (2.18)

Table 6 gives an illustration of the above algorithm.
Finally, we look at the fusion basis obtained by fusing N Ising anyons σ. In this case

one needs to consider the odd and even N cases separately, as the outcomes are fixed in
each case respectively. In the odd case the outcome can only be another σ, whereas in the
even case it can either be a 1 or a ψ. Unlike the k = 3 and k = 4 cases, the fusion space
for both odd and even N has a tensor product structure. This is easily seen by inspection,
for example in the odd case the basis states of the fusion space take the form,

|1/ψ, σ, 1/ψ, σ, · · · , σ〉, (2.19)

and in the even case they look like

|1/ψ, σ, 1/ψ, σ, · · · , σ, 1/ψ〉. (2.20)

The forbidden and allowed configurations of these basis states are given in table 7.
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Forbidden Allowed
11, σσ, ψψ 1σ, σ1,

1ψ, ψ1 ψσ, σψ

Table 7. The forbidden and allowed configurations in the Ising sequences.

The dimensions of the fusion basis can be computed by looking at the form of the basis
states. We arrive at

dim V σ
σ⊗N = 2

N−1
2 , dim V

1/ψ
σ⊗N

= 2
N−2

2 , (2.21)

for the odd and even cases, respectively. This formula also confirms the tensor product
structure of these fusion spaces.

3 Nicolai-like supersymmetric spin chains

The scope of this article is to reproduce the anyonic fusion spaces reviewed above from
spin chains endowed with a certain supersymmetric grading of their spectra.1 Specifically,
we are interested in 0+1-dimensional spin chains with N sites and a N = 2 SUSY algebra
generated by supercharges Q and Q†, satisfying

Q2 = (Q†)2 = 0, {Q,Q†} ≡ QQ† +Q†Q = H, (3.1)

where H is the Hamiltonian of the system. This is supersymmetric, as it commutes with
both Q and Q†. It follows from the supersymmetry algebra that H =

(
Q+Q†

)2
, making

the spectrum of the system non-negative. The resulting Hilbert space is now divided into
two parts, which we dub ‘bosonic’ and the ‘fermionic’ sectors, the projectors2 to which are
B = QQ† and G = Q†Q, respectively. If supersymmetry is spontaneously broken, then

Q|0〉 6= 0, 〈0|H|0〉 > 0, (3.2)

where |0〉 is the vacuum state. For later purposes, it is convenient to define the operator
W = (−1)G, known as the Witten index. This operator serves as an order parameter for
spontaneous supersymmetry breaking and reduces to W = 1− 2G, which follows from the
relation G2 = G.

In order to define the global supercharges Q and Q† on the whole spin chain, we start
by introducing local supercharges qi on each site, with i = 1, . . . , N . The supercharges on
different sites commute with each other. To obtain anticommuting supercharges we define

θj =
∏
k<j

(1− 2Gk) qj . (3.3)

1Supersymmetry is usually seen as an extension of the Poincaré symmetry in relativistic systems. In
this article, we simply think of supersymmetry as a way to enforce a Z2-grading on a spin chain.

2They are projectors as the supercharges follow the additional identity QQ†Q = Q. This is easily verified
for all the supercharges considered in this paper.
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It is an easy check that {θi, θj} = 0, when qq†q = q and q†qq† = q†. Using these local
supercharges as basic ingredients, we can now construct global supercharges Q,3 on the
whole spin chain obeying the supersymmetry algebra (3.1) as follows

Q =
N−2∑
j=1

θjθj+1θj+2. (3.4)

This construction for various representations of the supercharge was presented in [49],
to which the reader is referred for more details. A deformed version of this supercharge
with periodic and open boundary conditions was studied in [46] and is denoted as the Z2
Nicolai model.4

At this point we endow the spin chain with a Hilbert space. We are going to be
interested in two different choices, which we dub HF and HJK ≡ HI and which will lead
to three different models. The former will realize a Fibonacci anyonic system, whereas the
latter will realize the Jones-Kauffman anyonic system and the Ising anyon system.

As first choice we take

HF =
N⊗
j=1

C2
j , (3.6)

where C2
j is a complex two-dimensional vector space placed on every site. It is spanned

by the vectors |b〉 =
(

1
0

)
and |f〉 =

(
0
1

)
, such that q|f〉 = |b〉, q|b〉 = 0 and q†|f〉 = 0,

q†|b〉 = |f〉. It follows from these expressions that

q =
(

0 1
0 0

)
, q† =

(
0 0
1 0

)
, qq† =

(
1 0
0 0

)
, q†q =

(
0 0
0 1

)
. (3.7)

This system has a global b↔ f symmetry given by the operator

P =
N∏
j=1

(
θj + θ†j

)
. (3.8)

We have (
θj + θ†j

)
θj = θ†j

(
θj + θ†j

)
, (3.9)

for each site and hence P is a global symmetry of the Hamiltonian. This is often denoted
as particle-hole symmetry in the literature.

3This operator is indeed a supercharge as each term in the sum squares to zero and as neighboring terms
anticommute due to {θi, θj} = 0.

4The Nicolai model on an open chain with odd number of sites is defined by the supercharge,

QNic =

N−1
2∑
j=1

θ2j−1θ
†
2jθ2j+1. (3.5)

Notice that unlike the supercharge in (3.4) there are fewer terms as consecutive terms skip two sites. Due
to this difference we call the models defined by (3.4) as Nicolai-like models.
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To construct the other two supercharges we use the Hilbert space

HJK ≡ HI =
N⊗
j=1

[
C2 ⊗ C2

]
j
, (3.10)

spanned by {
|b1〉 =

(
b

0

)
, |b2〉 =

(
0
b

)
, |f1〉 =

(
f

0

)
, |f2〉 =

(
0
f

)
,

}
, (3.11)

where b and f are shorthand for
(

1
0

)
and

(
0
1

)
, respectively.

To build the fusion space of the Jones-Kauffman anyons the global charge in (3.4) is
built out of the local supercharge,

12×2 ⊗ θ =
(
θ 0
0 θ

)
, (3.12)

on every site. Here θ is built using the supercharge given in (3.7) and 12×2 is the two-
dimensional identity matrix.

The fusion basis of Ising anyons is built on the same Hilbert space with the global
supercharge,

Q =
N−2∑
j=1

(12×2 ⊗G)j (12×2 ⊗ θ)j+1 (12×2 ⊗G)j+2

+ (12×2 ⊗B)j
(
12×2 ⊗ θ†

)
j+1

(12×2 ⊗B)j+2 , (3.13)

Both these systems continue to enjoy the global particle-hole symmetry of (3.8) with ap-
propriately constructed supercharges θ.

3.1 Product zero modes

The next step in our analysis is to write down the zero modes of the supersymmetric
systems introduced above, namely the states that satisfy

Q|z〉 = Q†|z〉 = 0. (3.14)

In general, the supersymmetric spin chains governed by the supercharge in (3.4) have
both non-entangled (or product) and entangled zero modes. Here we count the number of
product zero modes. This will allow to establish the correspondence with the basis vectors
of the anyonic fusion spaces studied earlier.

We start with the first case, based on HF . For the supercharge Q built out of the
local supercharges in (3.7), it is easy to realize that the product zero modes occur when
the configuration on the chain made of local |f〉’s and |b〉’s do not contain the sequences
|fjfj+1fj+2〉 or |bjbj+1bj+2〉 on three consecutive sites.

The counting then goes as follows. Let fP (N) be the number of product zero modes
on N sites. For N = 1, 2, 3, we have the results in table 8, from which one obtains
fP (1) = 2, fP (2) = 4, fP (3) = 6.
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N Product ground states
1 |b1〉, |f1〉
2 |b1b2〉, |b1f2〉, |f1b2〉, |f1f2〉
3 |b1b2f3〉, |b1f2b3〉, |b1f2f3〉, |f1b2b3〉, |f1b2f3〉, |f1f2b3〉

Table 8. Product ground states.

In general, we may find the expression of fP (N) recursively with the following proce-
dure:

1. Start the sequence with |b〉 (or |f〉).

2. Let k be the first site which is occupied by |f〉 (or |b〉). For example, |b1b2f3 · · · 〉 and
|b1b2b3f4 · · · 〉 correspond to k = 3 and k = 4 respectively.

3. If k = 2, 3, then we may treat it as a new sequence of length N − k+ 1 starting with
|fk〉 (or |bk〉). Discard the product state if k ≥ 4.

Thus we conclude that

fP (N) = fP (N − 1) + fP (N − 2). (3.15)

Consequently, fP (N) is a Fibonacci sequence with initial conditions fP (1) = 2, fP (2) = 4.
As for the choice HJK , when the global supercharges are constructed out of 12×2⊗θ on

each site, the product zero mode configurations exclude more sequences. More precisely,
the product states are built out of configurations made of |f1〉, |f2〉 and |b1〉, |b2〉 and we
have a four-dimensional vector space on each site. The excluded sequences in this case are
given by |(fi1)j(fi2)j+1(fi3)j+2〉 and |(bi1)j(bi2)j+1(bi3)j+2〉, with i1, i2 and i3 taking values
1 or 2 and j being the site index as before.

We may also count the number of product zero modes using the similar algorithm as
above. Let jP (N) be the number of product zero modes on N sites. From inspection we see
that jP (1) = 4, jP (2) = 16, jP (3) = 48. In general, we may find the product zero modes of
HJK from those of HF as follows. Let |b1f2 · · · fn〉 be a product zero modes of HF . Then by
taking ik = 1, 2, we may obtain |(bi1)1(fi2)2 · · · (fin)n〉 as a product ground state of HJK .
Moreover, all the product zero modes of HJK can be obtained via this correspondence.
Thus, we conclude that

jP (N) = 2NfP (N). (3.16)

In addition, we deduce the following recursion relation

jP (N) = 2[jP (N − 1) + 2jP (N − 2)], (3.17)

which is similar to the counting of the JK anyon fusion basis, (2.18).
The supercharge in (3.13) on HI is responsible the product zero modes that exclude

the sequences
|(fi1)j(fi2)j+1(fi3)j+2〉, |(bi1)j(bi2)j+1(bi3)j+2〉,
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and
|(fi1)j(bi2)j+1(fi3)j+2〉, |(bi1)j(fi2)j+1(bi3)j+2〉,

with i1, i2, i3 = 1, 2. The number of such zero modes can be easily counted by noting that
the only allowed sequences with these four exclusions are either

ffbbffbb · · · or bbffbbff · · · .

However on each of the f and b labels we can add the index 1 or 2 making the total 2N+1

for a N -site chain.

4 Anyonic fusion space from zero modes

We are now in the position to conjecture a correspondence between the product zero modes
of the two supersymmetric systems considered in the previous section and the basis of the
anyon fusion spaces of the level k = 3 and k = 4 anyons of the SU(2)k quantum group.
The main evidence pointing to such correspondence is the observation that the number of
product zero modes is proportional to the number of allowed configurations used to build
the basis states of the anyonic fusion space. This is due to the fact that the same kind of
sequences are excluded in the construction of the product zero modes on the chain and in
the allowed configurations of the basis of the anyonic fusion spaces. As a consequence, one
can identify each anyon with a pair of sites on the supersymmetric chain.

Here we note that this correspondence is not really a function but a dictionary between
the two spaces. More precisely, given a sequence of anyons of a fusion basis element, we
can use this dictionary to find two product zero modes of the SUSY spin chain. The reason
for getting two zero modes is the global b←→ f symmetry of the SUSY spin chains. The
zero mode we get is determined by the type of local supersymmetric state the first anyon
in the sequence gets mapped to. These statements will become clear when we see them
through the three examples considered in this paper.

4.1 Fibonacci anyons and the chain with HF

We start by considering the Fibonacci anyons, which as we have seen in section 2.1 come
in two species: 1 and τ . We make the following identifications

1 −→ bb, ff

τ −→ bf, fb (4.1)

between the two anyonic species and the sequences of b’s and f ’s in the product zero
modes of (3.7). Note how the global b↔ f symmetry doubles this space, as there are two
configurations for each anyon that are related by this symmetry. We find that the number
of zero modes on an N site chain is

F̃ (N) = 2 dim
(
V τ
⊗τN+1

)
= 2F (N + 1), (4.2)

with the factor 2 due to the global b↔ f symmetry and F (N) the N -th Fibonacci number.
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N = 5 Fibonacci basis Product zero modes of N = 4 SUSY chain
|1ττ〉 |bbfb〉, |ffbf〉
|1τ1〉 |bbff〉, |ffbb〉
|ττ1〉 |bfbb〉, |fbff〉
|τ1τ〉 |bffb〉, |fbbf〉
|τττ〉 |bfbf〉, |fbfb〉

Table 9. The correspondence for N = 5.

As an example consider the case of four τ ’s fusing. As seen before, this space is spanned
by the vectors {1τ, τ1, ττ}. By the correspondence in (4.1), one has

1τ −→ bbf, ffb,

τ1 −→ bff, fbb,

ττ −→ bfb, fbf, (4.3)

which are precisely the six zero modes we would expect on a chain with three sites. The
correspondence for N = 5 is illustrated in table 9.

We can write down more general supercharges with product zero modes corresponding
to the basis states of the Fibonacci fusion spaces. Consider global supercharges built out
of the local supercharges

q =
(

0 1m×m
0 0

)
, q† =

(
0 0

1m×m 0

)
. (4.4)

The local fermions and bosons are given by

|fi〉 =
(

0 · · · f︸︷︷︸
i

· · · 0
)T

, |bi〉 =
(

0 · · · b︸︷︷︸
i

· · · 0
)T

, i = 1, . . . ,m. (4.5)

Here f =
(

0
1

)
and b =

(
1
0

)
, as done before. The correspondence then becomes

1 −→ bibj , fifj

τ −→ bifj , fibj , i, j = 1, . . . ,m. (4.6)

The number of zero modes in this case is given by

F̃ (N) = 2m2 dim
(
V τ
⊗τN+1

)
= 2m2F (N + 1). (4.7)

4.2 Jones-Kauffman anyons and the chain with HJK
We now move on to the Jones-Kauffman anyons. The identifications

1 −→ b1b1, b2b2/f1f1, f2f2,

µ −→ b1b2, b2b1/f1f2, f2f1,

τ −→ b1f1, b1f2, b2f1, b2f2/f1b1, f1b2, f2b1, f2b2, (4.8)
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with f1, f2 and b1, b2 given by (4.5) lead to the desired correspondence. Here too we have
a doubling of the space due to the global b ↔ f symmetry of (3.8). It is easy to see that
11, 1µ, µ1 and µµ result in forbidden sequences in the supersymmetric space that do not
lead to product zero modes. Every other pair, namely 1τ , τ1, ττ , τµ and µτ that are used
to construct the basis of the Jones-Kauffman anyon fusion space, lead instead to sequences
that are part of the product zero modes in the supersymmetric system.

More generally, one can consider supersymmetric systems built out of the local super-
charge

1m×m ⊗ θ, (4.9)

with θ built out of the q given by (3.7). The product zero modes of this system corresponds
to the Jones-Kauffman anyons via

1 −→ bjbj/fjfj , j = 1, . . . ,m,
µ −→ bjbk/fjfk, j 6= k = 1, . . . ,m,
τ −→ bjfk/fjbk, j 6= k = 1, . . . ,m, (4.10)

where fj and bj are given in (4.5).

4.3 Ising anyons and the chain with HI

To establish the correspondence between the fusion basis of Ising anyons to the zero modes
of the supersymmetric system defined by (3.13), we use exactly the same identification
as in (4.8), with µ replaced by ψ and τ replaced by σ. Then we see that the forbidden
configurations in table 7 (11, σσ, ψψ, 1ψ, ψ1) are precisely the product zero modes of this
supersymmetric system.

We can obtain a more general correspondence between the fusion space of Ising anyons
and the spin chain constructed by replacing 12×2 by 1m×m in the supercharge in (3.13).
The identification for this purpose is precisely the same as the one shown in (4.10).

5 Braid group on anyonic fusion spaces

Again, in the spirit of keeping this article self-contained, we briefly review the braid group
and its action on anyonic fusion spaces. This will serve later as the basis for the formulation
of the braid group in terms of the zero modes of the supersymmetric spin chain.

The braid group on N strands, BN , is generated by σi (i = 1, . . . , N −1) obeying braid
and far commutativity relations

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , N − 2,
σiσj = σjσi, |i− j| > 1. (5.1)

They can be represented pictorially as in figure 8.
Multiplication in BN is obtained by stacking the generators one above the other. For

example, the braid relation is proved pictorially in figure 9.
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σi =

1 i i+ 1 N

· · · · · · σ−1
i =

1 i i+ 1 N

· · · · · ·

Figure 8. Pictorial realization of the N -strand braid generators, σi and σ−1
i .

σiσi+1σi =

1 i+ 1 i+ 2

=

1 i+ 1 i+ 2

= σi+1σiσi+1

Figure 9. Pictorial realization of the braid relation.

Representations of BN are obtained via the homomorphism

BN 7→ GL(m), (5.2)

where m is the dimension of the representation. In general, one can obtain both local and
non-local representations. By non-local representations we mean that the representation
space does not have a tensor product structure like those of the local representations. More
often than not, the representations on anyonic fusion spaces are non-local.

On the other hand for local representations σi acts on a tensor product of vector spaces,
V ⊗ V ⊗ · · · ⊗ V . In this case the generator σi acts non-trivially only on strands i and
i+ 1. For example, when N = 3 one has that σ1 = σ⊗ I and σ2 = I ⊗ σ, with I being the
identity operator on V . In such cases the far commutativity is automatically satisfied and
the braid relation reduces to the Yang-Baxter equation (YBE)

(σ ⊗ I) (I ⊗ σ) (σ ⊗ I) = (I ⊗ σ) (σ ⊗ I) (I ⊗ σ) , (5.3)

on V ⊗ V ⊗ V . Thus solving the YBE amounts to solving for the matrix σ which helps us
build all the generators of BN . However this is not the case for non-local representations
where we need to construct the generators of BN separately for each N . This is indeed the
case for the Fibonacci example as we shall see next.
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σi,i+1

i i+ 1
τ

τ

τ

· · ·

τ τ

· · ·

τ

a b c

=

i i+ 1
τ

τ

τ

· · ·

τ τ

· · ·

τ

a b c

Figure 10. Action of σi on the anyon fusion basis.

σ1

τ

τ

τ

=

τ τ

τ

= Rτττ

τ

τ

τ

Figure 11. Construction of σ1, the lone generator of B2. Here Rτττ = λ.

5.1 Braid group on the Fibonacci anyon fusion space

We will now find the representation of BN on the Fibonacci anyon fusion space follow-
ing [55]. This space does not have a tensor product structure, hence the resulting repre-
sentations are non-local and are derived from the Temperley-Lieb-Jones algebra. They are
known as the Jones representations and result in the Jones polynomials, a set of knot/link
invariants.

The F -, R-moves and the pictorial representation of the BN generators guide us in
finding the desired representations. The procedure goes as follows:

1. The anyon lines in the basis vectors of the fusion space are taken as the strands on
which the braid group generators act. For an arbitrary case the action of σi,i+1 is
shown in figure 10.5

2. We then use the F - and R-moves repeatedly to unwind the braided anyonic lines and
rewrite them in terms of the vectors of the fusion basis.

3. Repeat this procedure for each vector in the fusion basis to establish the braid group
generator.

We illustrate this first for the 2-strand case or B2 in figure 11.
The lone generator σ1 is just the scalar λ as the 2-strand fusion space is one-

dimensional. Note that for Fibonacci anyons Rτττ takes a specific value, but we do not
use that here to keep the representation as general as possible. We will see that this is
only possible for the 2-strand and 3-strand braid groups where we obtain a one-parameter

5We pick a convention where the left strand crosses behind the neighboring right strand (see figure 8)
The construction is equally valid for the opposite convention using the alternate hexagon identities, 2.9.
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σ1

τ

τ
1

τ τ

=

τ ττ

τ
1

= Rττ1

τ

τ
1

τ τ

σ1

τ

τ
τ

τ τ

=

τ ττ

τ
τ

= Rτττ

τ

τ
τ

τ τ

Figure 12. Construction of σ1, a generator of B3. Here Rττ1 = κ and Rτττ = λ.

family of representations. This is because the far commutativity relations play no role in
these cases eliminating a constraint on the representations. We will lose this freedom when
the number of strands is more than three, fixing the value of the lone parameter.

Moving on to the 3-strand case we need to find two generators, σ1 and σ2 that are
two-dimensional, as this fusion space contains just two basis vectors. The generator σ1 is
obtained by just using the R-moves as shown in figure 12.

This results in

σ1 =
(
κ 0
0 λ

)
, (5.4)

or
σ1 = R. (5.5)

Again we have left λ and κ arbitrary to keep the representation as general as possible.
For the generator σ2 we need to use both the F - and the R-moves to fix this represen-

tation. Furthermore we take F to be unitary or, F−1 = F and the form of F as

F =
(
a b

b −a

)
, (5.6)

with a2 + b2 = 1 as F 2 = 12×2. The action of σ2 on the two basis vectors of the 3-strand
fusion space is shown in figures 13–14.

We end up with the generator

σ2 =
(

a2κ+ b2λ ab (−λ+ κ)
ab (−λ+ κ) b2κ+ a2λ

)
=
(
a b

b −a

)(
κ 0
0 λ

)(
a b

b −a

)
, (5.7)

or
σ2 = FRF. (5.8)
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τ

τ

τ τ

1

= (F ττττ )11

τ

τ

τ τ

1

+ (F ττττ )1τ

τ

τ

τ τ

τ

= (F ττττ )11 R
ττ
1

τ

τ

τ τ

1

+ (F ττττ )1τ R
ττ
τ

τ

τ

τ τ

τ

= (F ττττ )11 R
ττ
1


(F ττττ )−1

11

τ

τ

τ τ

1

+ (F ττττ )−1
1τ

τ

τ

τ τ

τ



+ (F ττττ )1τ R
ττ
τ


(F ττττ )−1

τ1

τ

τ

τ τ

1

+ (F ττττ )−1
ττ

τ

τ

τ τ

τ



Figure 13. Action of σ2 ∈ B3 on the fusion basis vector |1〉. The elements of the F -matrix are
in (5.6).

Thus from (5.5) and (5.8), we see that

σ1σ2σ1 = σ2σ1σ2, (5.9)

provided F and R satisfy the hexagon identity. Note that there are no far commutativity
relations to be satisfied in B3. However to prove the braid relations for σ1 and σ2 and to
obtain the representations of BN , it is convenient to use the Jones representation as this
greatly simplifies the ensuing algebra. As a consequence, we also obtain in the process
non-local representations of the Temperley-Lieb algebra on the anyonic fusion space.

Before going to the Jones representation we note that we could have also braided the
anyon strands in the opposite way in figures 12, 13 and 14 resulting in the B3 generators,

σ1 = R−1, σ2 = FR−1F. (5.10)

These generators satisfy the braid relation, σ1σ2σ1 = σ2σ1σ2 provided the alternate
hexagon identity, eq. (2.9) is satisfied. However we will use the braiding conventions used
in figures 12, 13, 14 and will not pursue the opposite convention any more.
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Figure 14. Action of σ2 ∈ B3 on the fusion basis vector |τ〉. The elements of the F -matrix are
in (5.6).

5.2 Temperley-Lieb algebra and the Jones representation

Consider the N -strand Temperley-Lieb algebra TLN (δ), generated by Ui (with i =
1, . . . , N − 1) satisfying the relations

U2
i = δUi,

UiUi±1Ui = Ui,

UiUj = UjUi, |i− j| > 1. (5.11)

This algebra is usually defined on a ring Z
[
A,A−1] and δ = −A2 − A−2. Define now the

BN generator using the TL algebra as

σi = A I +A−1 Ui. (5.12)

This is seen to satisfy the braid relations from

σiσi+1σi = A3I +A (Ui + Ui+1) +A−1 [UiUi+1 + Ui+1Ui] , (5.13)
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= λ + λ−1

Figure 15. Jones representation of the braid group in pictures. Here A = λ.

which is symmetric under the interchange, i↔ i+ 1. Far commutativity follows from the
TL relations (5.11). This is known as the Jones representation and is pictorially depicted
in figure 15.

This expression leads to the construction of the bracket polynomial as a state sum
model and is related to the Jones polynomial. We will use this representation to obtain
BN representations on N -strands.

We start with B3. We will closely follow the notation of [55]. The generator σ1 in (5.5)
can be decomposed as

σ1 = λI + λ−1
(
δ 0
0 0

)
, (5.14)

with δ = λ (κ− λ). We now identify λ with A in (5.12) and equate −λ2 − λ−2 = λ (κ− λ)
to find κ = −λ−3. Then

U1 =
(
δ 0
0 0

)
, U2

1 = δU1. (5.15)

Thus imposing the Jones representation leads to a relation between λ and κ. Next we look
at σ2 in (5.8). We find

σ2 = λI + λ−1U2 = F
(
λI + λ−1U1

)
F, (5.16)

which implies U2 = FU1F and

U2
2 = FU1FFU1F = FU2

1F = δFU1F = δU2, (5.17)

as desired. More compactly, we can write

U1 = δ|w〉〈w|, U2 = δ|v〉〈v|, (5.18)

with |w〉 =
(

1
0

)
and |v〉 = F |w〉. From this we see that

U1U2U1 = δ2a2U1, (5.19)

and so we have a = δ−1. This gives us a B3 representation,

σ1 =
(
−λ−3 0

0 λ

)
, σ2 = FRF = 1

1 + λ4

(
λ5

√
1+λ4+λ8

λ√
1+λ4+λ8

λ −λ−3

)
, (5.20)

in terms of the parameter λ, a 1-parameter family. In this process we have also obtained
a representation of TL3(δ) on the anyonic fusion space. Note that we have still not used
the specific form of the parameters for Fibonacci anyons.
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Figure 16. The basis vectors in the bulk on which σi has a non-trivial action.

Next we proceed to obtain the representations of BN using the Jones form. We divide
the generators into those acting on the left end, [σ1, σ2], those acting in the bulk, σi (with
i = 3, . . . , N − 2), and the generator acting on the right end, σN−1.

The bulk generators σi,i+1 act on the basis states shown in figure 16.
The braiding of the anyonic lines indexed by i and i+ 1 correspond to the basis states

with indices i− 2, i− 1 and i as illustrated in figure 17.
Thus we obtain five states

{
|· · · 1i−2τi−11i · · ·〉, |· · · 1i−2τi−1τi · · ·〉, |· · · τi−21i−1τi · · ·〉, |· · · τi−2τi−11i · · ·〉, |· · · τi−2τi−1τi · · ·〉

}
,

on which the bulk generators act non-trivially. The action of σi on these states can be

– 26 –



J
H
E
P
0
2
(
2
0
2
3
)
2
5
1

1 2 3 i i+ 1 i+ 2 N − 1 N

τ

τ

τ τ

· · ·

τ τ τ

· · ·

τ τ

a1 a2 ai−2 ai−1 ai aN−3 aN−2

Figure 17. Indexing of the anyons in the basis vectors with respect to the position of the fusing
anyons. This indexing is important to index the local boson and fermion states of the supersym-
metric Hilbert space. The anyon labels a are either 1 or τ . The anyon ai corresponds to cici+1 in
the supersymmetric Hilbert space. Here c is either a local boson or a fermion.

obtained by using the F - and R-moves. The final expressions for the action of the braid
and TL generators are

σi |· · · 1i−2τi−11i · · ·〉 = κ |· · · 1i−2τi−11i · · ·〉,
σi |· · · 1i−2τi−1τi · · ·〉 = λ |· · · 1i−2τi−1τi · · ·〉,
σi |· · · τi−2τi−11i · · ·〉 = λ |· · · τi−2τi−11i · · ·〉, (5.21)
σi |· · · τi−21i−1τi · · ·〉 =

(
a2κ+ b2λ

)
|· · · τi−21i−1τi · · ·〉+ ab (κ− λ) |· · · τi−2τi−1τi · · ·〉,

σi |· · · τi−2τi−1τi · · ·〉 = ab (κ− λ) |· · · τi−21i−1τi · · ·〉+
(
b2κ+ a2λ

)
|· · · τi−2τi−1τi · · ·〉,

and

Ui |· · · 1i−2τi−11i · · ·〉 = δ |· · · 1i−2τi−11i · · ·〉,
Ui |· · · 1i−2τi−1τi · · ·〉 = 0,
Ui |· · · τi−2τi−11i · · ·〉 = 0, (5.22)
Ui |· · · τi−21i−1τi · · ·〉 = a |· · · τi−21i−1τi · · ·〉+ b |· · · τi−2τi−1τi · · ·〉,
Ui |· · · τi−2τi−1τi · · ·〉 = b |· · · τi−21i−1τi · · ·〉+ δb2 |· · · τi−2τi−1τi · · ·〉,

respectively. Next we find the condition for the TL relations to hold for the bulk TL
generators, Ui. It is easily seen that

UiUi+1Ui |τi−2τi−1τiτi+1〉 = δ2b4 Ui |τi−2τi−1τiτi+1〉, (5.23)

which implies that δ2b4 = 1 or

δ − 1
δ

= ±1, δ = φ ≡ 1 +
√

5
2 , (5.24)

which reduces the representation to that of the Fibonacci anyons. The solution for φ
corresponds to the +1 value of δ − δ−1. The other root, − 1

φ = 1−
√

5
2 corresponds to

the Galois conjugate of the Fibonacci anyons, known as the Yang-Lee anyons. The F -
matrices, solved using the pentagon equation of (2.6), is unitary for the Fibonacci case and
non-unitary for the Yang-Lee case [56].
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Now we move on to the representations of σ1 and σ2, the generators on the left end of
the anyonic fusion space. The two basis states on which σ1 acts are {|11 · · ·〉, |τ1 · · ·〉} and
the three basis states on which σ2 acts are given by {|11τ2 · · ·〉, |τ1τ2 · · ·〉, |τ112 · · ·〉}. The
action of the braid and TL generators on these states are given by

σ1 |11 · · ·〉 = κ |11 · · ·〉,
σ1 |τ1 · · ·〉 = λ |τ1 · · ·〉,

σ2 |11τ2 · · ·〉 =
(
a2κ+ b2λ

)
|11τ2 · · ·〉+ ab (κ− λ) |τ1τ2 · · ·〉,

σ2 |τ1τ2 · · ·〉 = ab (κ− λ) |11τ2 · · ·〉+
(
b2κ+ a2λ

)
|τ1τ2 · · ·〉,

σ2 |τ112 · · ·〉 = λ |τ112 · · ·〉, (5.25)

and

U1 |11 · · ·〉 = δ |11 · · ·〉,
U1 |τ1 · · ·〉 = 0,

U2 |11τ2 · · ·〉 = a |11τ2 · · ·〉+ b |τ1τ2 · · ·〉,
U2 |τ1τ2 · · ·〉 = b |11τ2 · · ·〉+ δb2 |τ1τ2 · · ·〉,
U2 |τ112 · · ·〉 = 0, (5.26)

respectively.
The generator on the right end of the fusion space σN−1 acts on the basis states

|· · · 1N−3τN−2〉, |· · · τN−31N−2〉, and |· · · τN−3τN−2〉. The action of σN−1 and UN−1 on
these states are summarized as

σN−1 |· · · 1N−3τN−2〉 = λ |· · · 1N−3τN−2〉,
σN−1 |· · · τN−31N−2〉 =

(
a2κ+ b2λ

)
|· · · τN−31N−2〉+ ab (κ− λ) |· · · τN−3τN−2〉,

σN−1 |· · · τN−3τN−2〉 = ab (κ− λ) |· · · τN−31N−2〉+
(
b2κ+ a2λ

)
|· · · τN−3τN−2〉, (5.27)

and

UN−1 |· · · 1N−3τN−2〉 = 0,
UN−1 |· · · τN−31N−2〉 = a |· · · τN−31N−2〉+ b |· · · τN−3τN−2〉,
UN−1 |· · · τN−3τN−2〉 = b |· · · τN−31N−2〉+ δb2 |· · · τN−3τN−2〉, (5.28)

respectively.
The construction of the generators of BN outlined in this section carries over for other

anyon systems with the changes occurring in the number of fusion basis states and the
F - and R-matrices. For example in the case of SU(2)4 containing the Jones-Kauffman
anyon system, {1, τ, µ} we can follow the steps outlined above to construct the braid group
generators. In particular we find that the B2 representation is one-dimensional and is
generated by σ1 = Rτττ similar to the Fibonacci case. This is also true for B2 in other
anyon systems with no multiplicity in the fusion channels. The fusion basis for three τ
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Jones-Kauffman anyons is three dimensional, (figure 7) and hence the three-strand braid
group, B3 is also three dimensional. We find the braid generators to be σ1 = R and
σ2 = FRF where the R- and F -matrices are that of the Jones-Kauffman anyons [6]. We
can continue this procedure for higher-strand braid groups to determine all the generators.
The generators will have a larger dimension than that of the braid groups supported on
the Fibonacci anyon fusion basis as there are more fusion channels in the case of the
Jones-Kauffman anyons. Clearly this procedure can be applied to other SU(2)k anyons.

We remind the reader that the Jones-Kauffman and Ising anyons cannot realize uni-
versal computation through braiding alone [17, 57], in contrast to the Fibonacci anyons
and so we do not go into the braid generators of these systems any further.

6 Braid group on supersymmetric zero modes

Using the correspondence between the anyonic fusion basis and the product zero modes
of the supersymmetric systems above we can write down the BN generators in terms of
operators acting on the Hilbert spaces of the spin chain. We will write down the expressions
for the bulk and boundary generators in what follows.

We begin with the action of the bulk operator σi on |· · · 1i−2τi−11i · · ·〉 which corre-
sponds to

σi |· · · bi−2bi−1fifi+1 · · ·〉 = κ |· · · bi−2bi−1fifi+1 · · ·〉 (6.1)

in the supersymmetric Hilbert space. The ellipses in the state above correspond to a
Fibonacci sequence. For each of those Fibonacci sequences we have a similar relation as
given above. This implies that on this state σi acts as

∑
κ (· · ·Bi−2Bi−1GiGi+1 · · · ), where

the
∑

represents a sum over projectors to the appropriate Fibonacci sequence.
Going further we see that the action on the state |· · · τi−21i−1τi · · ·〉 corresponds to

σi |· · · bi−2fi−1fibi+1 · · ·〉

=
(
a2κ+ b2λ

)
|· · · bi−2fi−1fibi+1 · · ·〉+ ab (κ− λ) |· · · bi−2fi−1bifi+1 · · ·〉 (6.2)

and

σi |· · · fi−2bi−1bifi+1 · · ·〉

=
(
a2κ+ b2λ

)
|· · · fi−2bi−1bifi+1 · · ·〉+ ab (κ− λ) |· · · fi−2bi−1fibi+1 · · ·〉. (6.3)

The ellipses in the states above represent a Fibonacci sequence as before. Thus the action
of σi on this state is represented by

∑ (
a2κ+ b2λ

)
[(· · ·Bi−2Gi−1GiBi+1 · · · ) + (· · ·Gi−2Bi−1BiGi+1 · · · )]

+
∑

ab (κ− λ)
[(
· · ·Bi−2Gi−1qiq

†
i+1 · · ·

)
+
(
· · ·Gi−2Bi−1q

†
i qi+1 · · ·

)]
. (6.4)
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Following this logic the full expression for the bulk and boundary generators on the super-
symmetric space are given by

σi =
∑ [

κ {· · ·Bi−2Bi−1GiGi+1 · · ·+ · · ·Gi−2Gi−1BiBi+1 · · · }

+ λ {· · ·Bi−2Bi−1GiBi+1 · · ·+ · · ·Gi−2Gi−1BiGi+1 · · ·
+ · · ·Bi−2Gi−1BiBi+1 · · ·+ · · ·Gi−2Bi−1GiGi+1 · · · }
+
(
a2κ+ b2λ

)
{· · ·Bi−2Gi−1GiBi+1 · · ·+ · · ·Gi−2Bi−1BiGi+1 · · · }

+
(
b2κ+ a2λ

)
{· · ·Bi−2Gi−1BiGi+1 · · ·+ · · ·Gi−2Bi−1GiBi+1 · · · }

+ ab (κ− λ)
{
· · ·Bi−2Gi−1qiq

†
i+1 · · ·+ · · ·Gi−2Bi−1q

†
i qi+1 · · ·

+ · · ·Gi−2Bi−1qiq
†
i+1 · · ·+ · · ·Bi−2Gi−1q

†
i qi+1 · · ·

}]
, i = 3, . . . , N − 2, (6.5)

σ1 =
∑

κ (B1B2 · · ·+G1G2 · · · ) + λ (B1G2 · · ·+G1B2 · · · ) , (6.6)

σ2 =
∑ (

a2κ+ b2λ
)

[B1B2G3 · · ·+G1G2B3 · · · ]

+
(
b2κ+ a2λ

)
[B1G2B3 · · ·+G1B2G3 · · · ]

+λ [B1G2G3 · · ·+G1B2B3 · · · ]
+ab (κ− λ)

[
11q
†
2q3 · · ·+ 11q2q

†
3

]
(6.7)

and

σN−1 =
∑ (

a2κ+ b2λ
)

[· · ·BN−3GN−2GN−1 + · · ·GN−3BN−2BN−1] (6.8)

+
(
b2κ+ a2λ

)
[· · ·BN−3GN−2BN−1 + · · ·GN−3BN−2GN−1]

+λ [· · ·BN−3BN−2GN−1 + · · ·GN−3GN−2BN−1]
+ab (κ− λ)

[
· · ·BN−3GN−2

(
qN−1 + q†N−1

)
+ · · ·GN−3BN−2

(
qN−1 + q†N−1

)]
,

respectively. The
∑

is a sum over the projectors to the Fibonacci sequences. For example,
consider a 4-site Fibonacci sequence bjbj+1fj+2bj+3. The projector to this sequence is given
by BjBj+1Gj+2Bj+3. The ellipses in the expressions above for the braid generators repre-
sent the projectors to these kinds of sequences. This also shows that the braid generators
act non-trivially only on a few sites, while it leaves the remaining sites unchanged.

As an explicit example we write down the generators of the three-strand braid group
realized on the product zero modes of the SUSY spin chain as

σ1 = −λ−3 [B1B2 +G1G2] + λ [B1G2 +G1B2]
σ2 = λ [B1B2 +G1G2]− λ−3 [B1G2 +G1B2]

− 1
λ (λ−2 + λ2) [B1B2 +G1G2 −B1G2 −G1B2] +

√
1 + λ−4 + λ4

λ (λ−2 + λ2)
[
q2 + q†2

]
. (6.9)

As matrices on this four dimensional space spanned by {|bb〉, |bf〉, |ff〉, |fb〉} we see that

σ1 =
(
R 0
0 R

)
, σ2 =

(
FRF 0

0 FRF

)
, (6.10)

which is easily seen to satisfy the braid relations.
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6.1 Supersymmetric quantum circuits

Some comments about the relevance of these results for topological quantum computing
are now in order. The important observation is that the braid generators defined on
the supersymmetric Hilbert space act non-trivially only on the product zero modes of
the Nicolai-like system. All the other states of the spectrum contain at least one set of
three consecutive f ’s or b’s. Such states are killed by the braid generators. Because of
this, one can show that the braid generators constructed on the zero modes of the spin
chain commute with the supercharge Q. This can be proved in general as follows. The
Hilbert space of the supersymmetric system can be split into two orthogonal subspaces,
the space of the zero modes H0 and the space of positive energy modes H+, which occur
as supersymmetric doublets. Furthermore, the space of zero modes H0 consists of product
zero modes HP0 and entangled zero modes HE0 , which are orthogonal to each other. Thus
the total supersymmetric Hilbert space is a union of these three orthogonal spaces. Let
us verify that the braid generators commute with the supercharges on each of these three
spaces. We will use the fact that σi|pz〉 ∈ Hp0, where |pz〉 is a product zero mode.

1. Commutativity on HP0 :

Qσi |pz〉 = 0, σiQ |pz〉 = 0, (6.11)

by the definition of the zero modes.

2. Commutativity on HE0 :

Qσi |ez〉 = 0, σiQ |ez〉 = 0. (6.12)

This follows from the fact that σi kills all the states that are orthogonal to the
product zero modes. Also Q|ez〉 6∈ HP0 , as by definition of zero modes they belong to
the cohomology of the supercharge Q, that is those states that cannot be written as
Q of some other state.

3. Commutativity on H+:
Qσi |+〉 = 0, σiQ |+〉 = 0. (6.13)

This again follows from the fact that the braid generators annihilate all states or-
thogonal to those in HP0 and that Q|+〉 6∈ HP0 .

Thus the braid generators commute with the supercharges and hence are supersymmetric.
As a consequence of this, any quantum gate realized as an element of the braid group BN
will continue to commute with the supercharges and hence the quantum circuits built out
of such gates are supersymmetric. Additionally, these braid generators also commute with
the supersymmetric Hamiltonian.

Furthermore, if we encode information in the product zero modes and act on them with
quantum gates built out of the braid group realized on this space, we are ensured that the
states cannot move into orthogonal subspaces which can be viewed as errors. Thus we can
suppress such errors during information processing. We see this as a potential advantage
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offered by the supersymmetric system, as the product zero modes precisely emulate the
basis states of the fusion basis.

We would like to emphasize here that the product zero modes do not realize non-
Abelian anyons. By realizing the fusion space braid groups on the product zero modes of
these supersymmetric systems we are merely emulating the effects that non-Abelian anyons
would offer via braiding and fusing. Thus this circumvents the actual need to find non-
Abelian anyons in a physical system to eventually build a quantum computer. We could
in principle equivalently realize a topological quantum computer on a supersymmetric spin
chain by simply working with the product zero modes (classical states) of such a system.

6.2 Robustness of topological quantum computing

Braid groups are inherently topological as their properties are insensitive to the length
and shape of the strands. This is also expected to hold for the physical systems carrying
braid group representations. We can ensure this for the SUSY systems if deforming them
does not mix the fusion basis with the non-fusion basis. To this effect we can think of two
possibilities of deformed SUSY Hamiltonians that continue to support the braid group and
hence topological quantum computing.

1. In the first case the deformed Hamiltonians leave each of the product zero modes
unchanged. In such a situation the braid group and consequently the quantum gates
built using them are unchanged as well. This is the most ideal scenario with regard
to quantum computing.

2. For the second case we consider perturbations that can shuffle the product zero modes
among themselves hence lifting the degeneracy but nevertheless they do not connect
the product zero modes to positive energy SUSY doublets or to entangled zero modes.
Such systems continue to support the braid group which is a rotated version of the
braid group computed in the previous case.

In what follows we will consider two ways of deforming the SUSY Hamiltonian, either
by directly perturbing them by adding terms to the SUSY Hamiltonian or by deforming
the supercharges generating the SUSY Hamiltonian. We shall analyze this for all the SUSY
systems considered so far.

SUSY preserving perturbations

An arbitrary perturbation to the SUSY Hamiltonian can lift the degeneracy of the product
zero modes. This is also true for generic quantum platforms for quantum computing. On
the other hand we expect SUSY preserving deformations to keep the topological quantum
computation stable by not mixing the fusion and non-fusion bases. We will now check this
in the different cases.

Fibonacci anyons. The only terms preserving the supercharges in (3.4) and its conjugate
is the identity operator and hence these are trivial perturbations. They represent a constant
shift in the energy levels and hence the deformed system continues to support the braid
group and hence topological quantum computing.
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Jones-Kauffman anyons. We can find more non-trivial local perturbations that can be
added to this SUSY system. The local terms of the form(

I 0
0 0

)
i

,

(
0 0
0 I

)
i

,

with I being the identity matrix on every site i leaves the space of product zero modes for
the supercharge built using (3.12) unchanged. A more non-trivial choice corresponds to
the local perturbation,

Pi =
(

0 I
I 0

)
i

,

on every site i. This operator interchanges
(
b
0

)
,
(
f
0

)
with

(
0
b

)
,
(

0
f

)
. In terms of the

Jones-Kauffman anyons , {1, τ, µ} and under the correspondence (4.8), we see that this local
perturbation interchanges the anyons 1 and µ and leaves τ unchanged. This is true when

the local perturbation is of the form
N∑
i=1

Pi or
N−1∑
i=1

PiPi+1. Thus such local perturbations
shuffle some of the product zero modes and lift the degeneracy. Note that though the
perturbations change the eigenvalues of the product zero modes, they do not change the
structure of them. That is, the perturbed states continue to be sequences of 1, τ and µ such
that they do not contain 11, 1µ, µ1 and µµ. For example when N = 3, the space of product
zero modes in the fusion basis of four τ anyons is spanned by, {|1τ〉, |τ1〉, |τµ〉, |µτ〉, |ττ〉}.
The eigenstates and the corresponding eigenvalues of the perturbed Hamiltonian,

H̃ = HSUSY + P1 + P2 + P3, (6.14)

are given by {|1τ〉+ |µτ〉, |τ1〉+ |τµ〉} with eigenvalue 3, {−|1τ〉+ |µτ〉,−|τ1〉+ |τµ〉} with
eigenvalue -1 and |ττ〉 with eigenvalue 0. Clearly these states, though they are entangled,
are still sequences built out of the configurations, ττ , 1τ , τ1, τµ and µτ and they do not
contain the forbidden configurations 11, 1µ, µ1 and µµ (see table 5). This rotated basis
spans the same space as the product zero modes and they continue to support the braid
group. The difference is that these states have different energy eigenvalues. We illustrate
the change in the rotated braid generator by looking at σ1 generating B4. In the fusion
basis {|1τ〉, |τ1〉, |τµ〉, |µτ〉, |ττ〉},

σ1 =


Rττ1

Rτττ
Rττµ

Rτττ
Rτττ

 (6.15)

with Rττ1 , Rτττ and Rττµ being the R-matrix elements in the Jones-Kauffman case, obtained
by solving the pentagon and hexagon equations [6]. For the perturbed Hamiltonian, H̃,
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this operator becomes,

σ̃1 =



Rττ1 +Rττµ
2 −Rττ1 −R

ττ
µ

2
Rτττ

−Rττ1 −R
ττ
µ

2
Rττ1 +Rττµ

2
Rτττ

Rτττ


. (6.16)

We can write down the other deformed braid generators in a similar manner. The argu-
ments of section 6.1 continue to hold for the deformed braid generators σ̃i and the braid
group continues to be supersymmetric and as a consequence the quantum circuit built out
of the deformed braid generators will also be supersymmetric.

Ising anyons. The perturbations that commute with the supercharge generating the
Jones-Kauffman fusion basis also commute with the supercharges generating the Ising

anyon fusion basis. As in the Jones-Kauffman case, the perturbations,
(
I 0
0 0

)
i

,

(
0 0
0 I

)
i

,

leave the product zero modes invariant shifting the total spectrum by a constant. Thus
the braid group and the resulting quantum gates is unchanged in this case.

On the other hand the perturbations Pi =
(

0 I
I 0

)
i

, having the same effect on the

local bosons and fermions as in the Jones-Kauffman case, shuffle the product zero modes
lifting the degeneracy. However they do not mix the fusion basis with the non-fusion basis
and hence as seen before the perturbed version of this SUSY system continues to support
topological quantum computation due to Ising anyons.

Deformed SUSY algebras

We can find deformed SUSY Hamiltonians by deforming the supercharges generating them.
The resulting Hamiltonians are part of the SUSY algebra unlike the deformed SUSY Hamil-
tonians considered earlier. We consider two possible ways to deform the supercharges.

Disordered supercharges. In the first case introduce a site-dependent parameter for

every local supercharge, that is use q̃i =
(

0 αi
0 0

)
. Then the SUSY Hamiltonian correspond-

ing to the supercharge (3.4),

H =
N−2∑
i=1

[BiBi+1Bi+2 +GiGi+1Gi+2]

+
N−3∑
i=1

[
θi (Bi+1Bi+2 +Gi+1Gi+2) θ†i+3 + h.c.

]

+
N−4∑
i=1

[
θiθi+1θ

†
i+3θ

†
i+4 + h.c.

]
, (6.17)

appears with site-dependent couplings breaking bulk translational invariance. Clearly this
does not alter the structure of the product zero modes as they have eigenvalues zero. Hence
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deforming the local supercharges on each site does not change the space of product zero
modes. Such deformations are possible for all the three SUSY systems considered in this
paper as the local supercharge q is the fundamental building block for all three of them.

Modified supercharges. Next we consider adding the class of supersymmetric terms

N−2k∑
i=1

θiθi+1θi+2θi+3 · · · θi+2k, k ∈ {2, 3, · · · }, (6.18)

to the supercharge in (3.4) and this generates a new SUSY algebra. Every product zero
mode of the supercharge in (3.4) is also a zero mode of this new term and they exhaust the
possible product zero modes and hence the new SUSY system will continue to have the same
number of product zero modes in their ground state spectrum. Note that we cannot add

the linear term
N∑
i=1

θi to the supercharge in (3.4) as this term does not have any zero mode.

This follows from the form of the local supercharges, (3.7). Thus the space of product zero
modes is stable to these deformations as well. Such terms, when appropriately modified,
can also be added to the supercharges generating the Jones-Kauffman anyon system, (3.12).

6.3 Braid group on the zero modes of qudit SUSY systems

Up to this point we have considered supersymmetric systems with on each site a copy of
C2, namely we have considered qubits. To address cases where the local Hilbert space on
the chain is not C2 but is instead C3 for example, then we need to construct the appro-
priate supercharges. The supersymmetric systems constructed out of symmetric inverse
semigroups (SIS’s) precisely provide such examples [49]. The reader is referred to that
reference for details.

Consider the system built out of the SIS S3
1 , namely the partial bijections on a set of

three elements. On a single site we have the Hilbert space C3 (a qutrit) and the supercharge
is given by

q = 1√
2

 0 1 1
0 0 0
0 0 0

 , q† = 1√
2

 0 0 0
1 0 0
1 0 0

 , (6.19)

which are easily to seen satisfy the supersymmetry relations q2 =
(
q†
)2

= 0. The local C3

is spanned by three states,|b〉 =

 1
0
0

 , |f〉 = 1√
2

 0
1
1

 , |z〉 = 1√
2

 0
1
−1


 ,

which satisfy
q|f〉 = |b〉, q†|b〉 = |f〉, q|z〉 = q†|z〉 = 0. (6.20)

Consider the global supercharges in (3.4) constructed out the local supercharges in (6.19).
These systems continue to have both product and entangled zero modes. The product zero
modes are obtained by filling each site with f ’s and b’s like the previous cases, but now
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additionally we can also fill a site with the local zero mode, z. This drastically enlarges
the number of product zero modes for this system. Nevertheless these states continue to
support the Fibonacci braid group. The local zero modes can be accommodated anywhere
in a zero sequence. Adjacent to these local zero modes we fill up the sites with a Fibonacci
sequence out of the f ’s and b’s. Then we can classify the product zero modes of the S3

1 sys-
tem according to the number of local zero modes and their respective positions in the zero
sequences. Thus a general zero sequence with a fixed number of local zero modes looks like

∣∣∣∣ · · ·︸︷︷︸
Fib sequence

zi1 · · ·︸︷︷︸
Fib sequence

zi2 · · ·︸︷︷︸
group of 0’s

zik · · ·︸︷︷︸
Fib sequence

〉
.

This state includes an isolated local zero mode at site i1 and a group of local zero modes
at sites i2 to ik. Fibonacci sequences made out of f ’s and b’s fill up the remaining sites.
The dimension of this subspace is precisely F (d1)F (d2)F (d3), where d1, d2 and d3 are
the number of sites with Fibonacci sequences. We can realize the direct product group
Bd1+1 × Bd2+1 × Bd3+1 on this subspace. In a similar manner, we can construct a direct
product of Fibonacci braid groups on other such subspaces, which are determined by the
number and precise location of the local zero modes. Thus in general we can construct
the Bd1 × Bd2 × · · · × Bdp on the product zero modes of the S3

1 system.
More generally, a Sp1 system on a single site is supported on Cp. The supercharges are,

q = 1√
p− 1


0 1 · · · 1
0 0 · · · 0
...
...

...
0 0 · · · 0

 , q† = 1√
p− 1


0 0 · · · 0
1 0 · · · 0
...
...

...
1 0 · · · 0

 . (6.21)

The system has a single local boson given by
(

1 0 · · · 0
)T and a single local fermion given

by
(

0 1 · · · 1
)T . The remaining p − 2 states are local zero modes. The system built out

of the global supercharge has product zero modes which are very similar to the S3
1 system

with the difference that now we have p − 2 choices for the local zero modes instead of
just a single choice. Thus the Sp1 system also realizes a direct product of the Fibonacci
braid group.

We can go further and consider the local supersymmetric system built on C5, using
S5

2 . In this case the supercharges are

q ∝


0 0 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , q† ∝


0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 . (6.22)

There are three zero modes for this supercharge, plus a boson and a fermion. These are
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given by
|z1〉 =


0
0
1
ω

ω2

 , |z2〉 =


0
0
1
ω2

ω

 , |z3〉 =


1
−1
0
0
0

 , |f〉 =


0
0
1
1
1

 , |b〉 =


1
1
0
0
0




,

with ω being a cube root of unity. Clearly, the structure of the product zero states of a
global supersymmetric system built out of the above supercharge is similar to the Sp1 case
and hence we can realize a direct product of the Fibonacci braid groups on these product
zero modes.

We can now conclude that this property continues to hold for an arbitrary super-
symmetric system built out of the inverse semigroup Snr with r < n. In this case the
supercharge is given by,

q ∝
n∑

j=r+1

r∑
k=1

ekj , q† ∝
n∑

j=r+1

r∑
k=1

ejk, (6.23)

where the ejk denote matrices with the only non-zero entry at the (j, k)-th location. These
systems are supported on Cn which is spanned by n − 2 zero modes plus a fermion and
a boson. The global supersymmetric systems built out of these supercharges continue to
host a direct product of the Fibonacci braid groups as in the previous examples. We also
note that when n is divisible by r there are no local zero modes. In such a case we have
more number of bosons/fermions to fill each site on the chain. The resulting product states
continue to host the Fibonacci braid group.

7 Outlook

Supersymmetric spin chains, like the ones we have considered in this paper, are interesting
arenas with an underlying rich structure of ground states which can be mapped to the fusion
space of different anyonic systems, like the Fibonacci anyons, Jones-Kauffman anyons and
the Ising anyons. We have limited our attention to just a few choices of supercharges. Of
course there are many more possible choices, also to accommodate systems more general
than qubits, as we have seen in section 6.3.

Exploring more possibilities is then a very natural development of this analysis. For
example, one could consider a supercharge built out of the local term(

θ 0
0 0

)
j

(
θ 0
0 0

)
j+1

(
θ 0
0 0

)
j+2

+
(

0 0
0 θ

)
j

(
0 0
0 θ

)
j+1

(
0 0
0 θ

)
j+2

, (7.1)

with θ being the anticommuting variable constructed out of the local supercharge q. This
model has local states in C4 which are spanned by states similar to the one found for the
Jones-Kauffman or Ising case. If these states are placed in correspondence with the Jones-
Kauffman labels, {1, µ, τ} as in section 4.2, then we see that the sequences µµ, 1µ and µ1,
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see table 5, are no longer forbidden. It would be interesting to find a representation of the
braid group on such spaces as well. We suspect that such a system can be mapped to the
Fibonacci anyons by a linear transformation among the anyon labels. The resulting model
may have a different multiplicity for the fusion channels when compared to the original
Fibonacci model, which has multiplicity 1 for the different fusion channels.

Also looking for other supersymmetric spin chains corresponding to other anyonic mod-
els would be a worthwhile attempt. Finding more examples could be a basis for establishing
a larger and deeper connection between anyons and supersymmetric spin chains.

Quantum information is stored in long range entangled states in error correcting codes
exhibiting topological order, like Kitaev’s toric code. These are fault-tolerant ways of
realizing topological quantum computation. On the other hand, it is worth noting that here
the logical qubits need to be encoded in product zero modes of supersymmetric systems.
This could imply a lower cost in encoding quantum information.

It is well-known that the Fibonacci model provides universal quantum computing
through braiding alone [11, 13, 14, 29]. This is not true for the level k = 4 systems,
where one needs to introduce non-topological gates to achieve universality [16, 17]. While
we constructed the braid group corresponding to the Fibonacci model on the supersym-
metric zero mode space, it is possible to construct the braid groups corresponding to the
level k = 4 and k = 2 systems as well. We then need to consider the non-topological
gates in the supersymmetric Hilbert space. This would be an important check to see if the
supersymmetric system continues to support quantum computation in these cases.

On a more technical note, it is well known that the diagrammatics of the Temperley-
Lieb recoupling theory and the Jones representation lead to the bracket polynomials. We
could adapt these computations to the supersymmetric Hilbert space, find the associated
topological invariants and see if they are related to the Witten index of these theories.

Finally, the supersymmetric systems considered here include both product and entan-
gled zero modes. While the product zero modes support the appropriate braid group, it is
natural to check if a similar representation is possible on the space of entangled zero modes
as well. We hope to come back to this question in the future.
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A Entangled ground states

In section 3.1 we have counted the number of product zero modes of our Nicolai-like
supersymmetric spin chain with the choice of supercharges (3.7). For completeness, we
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#b = 1 2 3 4 5 6 7 8 9 10 fE(N)
N = 3 0
N = 4 1 1 2
N = 5 2 2 4
N = 6 3 4 3 10
N = 7 2 9 9 2 22
N = 8 12 20 12 44
N = 9 9 36 36 9 90
N = 10 3 45 78 45 3 174
N = 11 37 131 131 37 336

Table 10. Counting of the entangled ground states.

report here also the counting of the entangled ground states. Before counting them we
look at their structure. This can be contrasted with that of the product zero modes which
are made of sequences of f ’s and b’s such that three consecutive f ’s or b’s do not appear.
The entangled states are superpositions of sequences containing at least one set of three
consecutive f ’s or three consecutive b’s. For example when N = 4, the supercharge in (3.4)
and its conjugate annihilate the states,

1√
2

[|b1b2b3f4〉+ |f1b2b3b4〉] ,
1√
2

[|f1f2f3b4〉 − |b1f2f3f4〉] , (A.1)

and when N = 6 they annihilate,

1√
6

[|b1b2b3f4f5f6〉+ 2|f1b2b3b4f5f6〉 − |f1f2f3b4b5b6〉] . (A.2)

The general structure of the entangled ground states for arbitrary N is a harder problem.
Nevertheless we can count the number of such states for each N as shown below.

The action of the Hamiltonian preserves the number of |b〉’s, and so we can decompose
the whole space (having dimension 2N ) into eigen subspaces with the number of |b〉’s being
kept fixed. Therefore one may analyze the other states of the Hamiltonian on each of
those subspaces. Let fE(N) be the number of entangled ground states on N sites. From
numerical calculations, fE(N) on each subspace are as in table 10. Combining fE(N) with
fP (N) in (3.15), the total number of ground states fG(N) is as in table 11, namely

fE(N) = 2(fE(N − 2) + fE(N − 3)) + fP (N − 3). (A.3)

From this table, one may predict that fG(N) satisfies the recursive relation

fG(N) = 2(fG(N − 2) + fG(N − 3)). (A.4)

Moreover, we may find the generating function of fE(N) as follows. Let us define
e(t) =

∑∞
N=1 fE(N)tN , g(t) =

∑∞
N=1 fG(t)tN . Since fG(N) = 2(fG(N − 2) + fG(N − 3)),

using the same technique as in (B.2) along with the initial conditions fG(1) = 2, fG(2) =
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N fE(N) fP (N) fG(N)
3 0 6 6
4 2 10 12
5 4 16 20
6 10 26 36
7 22 42 64
8 44 68 112
9 90 110 200
10 174 178 352
11 336 288 624

Table 11. Counting of all the ground states. This table coincides with table II of [46].

4, fG(3) = 6, we may obtain that

2t2g(t) + 2t3g(t) = 2fG(1)t3 + g(t)− fG(1)t− fG(2)t2 − fG(3)t3

= g(t)− 2t− 4t2 − 2t3.

Consequently,

g(t) = 2t+ 4t2 + 2t3

1− 2t2 − 2t3 .

Now using the expression of gF (t) and the fact that g(t) = e(t) + gF (t), we obtain

e(t) = 2t+ 4t2 + 2t3

1− 2t2 − 2t3 −
2(t+ t2)
1− t− t2 .

B Generating functions

Here we discuss the generating functions for the counting formulas appearing in the main
text. Let h : N→ N be a function satisfying

h(N) = a[h(N − 1) + bh(N − 2)], (B.1)

where a, b ∈ N. Define the formal power series (generating function)

z(t) =
∞∑
N=1

h(N)tN .

Using (B.1), one sees that

atz(t) + abt2z(t) = z(t)− h(1)t− (h(2)− ah(1))t2,

which solved for z(t) yields

z(t) = h(1)t+ (h(2)− ah(1))t2

1− at− abt2 (B.2)

Using the above formula, we calculate the generating functions of (3.15), (2.16), (3.17)
and (2.18), as follows.
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B.1 Fibonacci case

Let us define gF (t) =
∑∞
N=1 fP (N)tN , aF (t) =

∑∞
N=1 f(N)tN , where fP and f are same as

in (3.15) and (2.16), respectively. Using the initial conditions fP (1) = 2, fP (2) = 4, f(1) =
1, f(2) = 1, we obtain

gF (t) = 2(t+ t2)
1− t− t2 , aF (t) = t

1− t− t2 . (B.3)

The above expressions are obtained from (B.2) by using a = 1 = b.

B.2 Jones-Kauffman case

Let us define gJK(t) =
∑∞
N=1 jP (N)tN , aJK(t) =

∑∞
N=1 j(N)tN , where jP and j are same

as in (3.17) and (2.18), respectively. We observe that by using a = 2 = b in (B.1) we
obtain (3.17), and using a = 1, b = 2 we obtain (2.18). Therefore applying (B.2) along
with the initial conditions jP (1) = 4, jP (2) = 16, j(1) = 1, j(2) = 1 we obtain

gJK(t) = 4t+ 8t2

1− 2t− 4t2 aJK(t) = t

1− t− 2t2 . (B.4)
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