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1 Introduction

The possibility to perform “logarithmic translations”

xµ → xµ + Cµ ln r (1.1)

without changing the asymptotic form gµν − ηµν = O
(

1
r

)
of the metric was already pointed

out in the early 1960’s [1]. The physical implications of these coordinate transformations
were shown in [2] not to affect the definition of energy-momentum and angular momentum,
implying that these were somehow pure gauge (see also [3]). Related studies include [4–9].

Besides logarithmic translations, logarithmic supertranslations where the coefficients
Cµ, instead of being constants, depend on the angles, have also been contemplated [4, 7–9].
But because they induce logarithmic terms in the metric and hence conflict with its 1/r
asymptotic decay, they have not been studied much. However, one might wonder whether
this is due to a choice of boundary conditions that is too strict. The logarithmic terms
induced in the metric by logarithmic supertranslations can perhaps be tamed. In other
words, can one extend the formalism so as to accommodate logarithmic supertranslations
as symmetries? Exhibiting all the symmetries of a theory usually sheds useful insight on
its structure.

We show in this paper that it is possible to consistently include logarithmic super-
translations provided the coefficients Cµ(θ, ϕ) are submitted to parity conditions that we
explicitly spell out. These conditions imply that the logarithmic supertranslations that are
incorporated in our formalism are parametrized by a single function of the angles, like the
supertranslations. This function is naturally decomposed into an even and an odd part
(under the antipodal map) in our 3 + 1 presentation, associated with spacelike and normal
logarithmic supertranslations, respectively.

A hint that logarithmic supertranslations could be included, and the way to proceed,
are given by the study of gravity in five dimensions [10, 11]. The “Coulomb part” of the
metric decays in D = 5 as 1/r2, and in order to exhibit the full symmetry, it is necessary to
include a term that decays slowlier (1/r) but takes the explicit form of a diffeomorphism
transformation (“improper gauge transformation” [12]). As we shall show, the procedure for
including logarithmic supertranslations in D = 4 parallels these steps, with the Coulomb
part behaving now as 1/r and the improper gauge part involving the slowlier decaying
logarithmic term log r/r.

The logarithmic supertranslations provide an infinite-dimensional extension of the
standard BMS group exhibited first at null infinity [13–16] (for recent reviews, see [17–19])
and later at spatial infinity [20, 21]. This extension will be called the “logarithmic BMS
algebra”. With the definition of the Lorentz generators that naturally arises, the logarith-
mic supertranslations turn out to transform in the same infinite-dimensional irreducible
representation of the Lorentz group as the supertranslations (quotientized by the four-
dimensional invariant subspace of ordinary spacetime translations), even though they are
characterized by functions with opposite parities under the antipodal map. Logarithmic
and BMS supertranslation charges form furthermore a centrally extended abelian algebra
such that the logarithmic supertranslation charges are canonically conjugate to the pure
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supertranslation charges (corresponding to ` > 1 in the expansion in terms of spherical
harmonics, i.e., beyond the ordinary energy and momentum). One can take advantage
of this property to redefine the homogeneous Lorentz generators so as to eliminate some
features of the BMS algebra that have puzzled the relativity community ever since the
BMS symmetry was discovered. These features arise because pure supertranslations do not
commute with the homogeneous Lorentz transformations.

Three of these intriguing properties are:

• (Angular momentum ambiguity) It follows from the non-vanishing of the bracket of
the pure supertranslations with the homogeneous Lorentz transformations that the
angular momentum transforms under pure supertranslations. This non-invariance
comes on top of the familiar non-invariance of the angular momentum under ordinary
translations, but there one knows how to define an intrinsic angular momentum in
terms of Casimirs of the Poincaré algebra, which amounts to compute the angular
momentum with respect to the center of mass worldline. A similar construction for
supertranslations appears to be more intricate for the full BMS algebra.

• (Soft dressing by boosting) The Poisson brackets of the homogeneous Lorentz gen-
erators with the pure supertranslations involve not only the pure supertranslations,
but also the standard 4-momentum Pµ [15]. Thus if one boosts or rotates a solution
with Pµ 6= 0 one generates in general a solution with non-vanishing value of some
pure supertranslation charges, even if these are zero prior to the action of the Lorentz
transformation. This has raised some discussion in the literature.

• (No invariant Poincaré subalgebra) The fact that the Poisson brackets of the ho-
mogeneous Lorentz generators with the pure supertranslations involve the pure
supertranslations implies that the Poincaré subalgebra is not an ideal. At the same
time, because the pure supertranslations do not form an ideal on account of the
preceding point, they cannot be meaningfully quotientized out to get the Poincaré
algebra as a quotient algebra.

All these features can be eliminated by a nonlinear redefinition of the homogeneous Lorentz
generators that involves the logarithmic supertranslation charges. This is because the
logarithmic supertranslation charges are canonically conjugate to the pure supertransla-
tion charges.

We explicitly perform the construction of these new Lorentz generators in our paper.
Once this is done, the pure supertranslations and the logarithmic supertranslations have
vanishing Poisson brackets with all the Poincaré generators. The decoupling of the pure
supertranslations agrees with the ideas pursued in [22–25] along different quantum lines. In
particular, there are some similarities between the logarithmic supertranslation charges and
the boundary gravitons of [24, 25] which are conjugate to the supertranslations in that work.
Our considerations are, however, purely classical, do not need any form of regularization,
and fulfill automatically all necessary Jacobi identity required by consistency since we work
with a well-defined Poisson bracket. Furthermore, the new Lorentz generators manifestly
reduce on-shell to surface integrals at infinity.
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Our paper is organized as follows. In the next section, we briefly review the standard
treatment of the BMS group at spatial infinity [20] and recall why logarithmic translations
(and a fortiori logarithmic supertranslations) do not appear in that approach. We then
provide in section 3 boundary conditions on the canonical variables that include terms
generated by the logarithmic supertranslations. The boundary conditions involve also a
crucial strengthening of the asymptotic behaviour of the constraints which is worked out
in section 4. The boundary conditions are then shown in section 5 to keep the kinetic
term in the action finite, a key property that enables one to use standard Hamiltonian
methods. The description of the asymptotic symmetries and the derivation through canonical
methods of their charge-generators are then successively achieved in sections 6 and 7. The
algebra of these canonical generators is computed and analyzed in section 8. We show
in particular that the pure supertranslation charges and the logarithmic supertranslation
charges are canonically conjugate. We take advantage of this property in section 9 to redefine
the symmetry generators in such a way that the pure supertranslation and logarithmic
supertranslation charges have vanishing brackets with all the Poincaré generators. We
first give a general algebraic argument to show that this is possible and provide then the
explicit redefinitions. An alternative nonlinear redefinition of the symmetry generators such
that the brackets of the pure supertranslations with the Lorentz boosts remain non-trivial
but do not involve the ordinary translations (“no soft dressing by boosting”) is also given.
The concluding section (section 10) recapitulates our results and suggests various future
developments. Finally, three appendices of a more technical nature complete our paper.

2 The BMS group at spatial infinity [20]

We recall in this section how the BMS group (and not just its Poincaré subgroup or the
bigger Spi group [26]) emerges as symmetry group of the theory (i.e., of the action and the
boundary conditions) at spatial infinity.

In the Hamiltonian description of asymptotically flat spacetimes [27–29], the possibility
to perform logarithmic translations does not appear. This is because a consistent Hamilto-
nian formulation requires additional asymptotic conditions besides the mere requirement
that (i) the metric should deviate at infinity from the flat metric by terms of order 1/r and
(ii) its conjugate momentum should decay as 1/r2,

gij = δij + hij
r

+O(r−2), πij = πij

r2 +O(r−3), (2.1)

where hij and πij depend on the angles only, i.e., hij = hij(n) and πij = πij(n), where
n is the unit normal to the sphere ((ni) = (sin θ cosϕ, sin θ sinϕ, cos θ)). For the action
to be finite1 and the Poincaré transformations to be bona fide canonical transforma-
tions (with well-defined generators), it is necessary to restrict further the metric (and its
conjugate momentum).

1By finiteness of the action, we mean finiteness “on the nose”, without (foliation-dependent) regularization.
This enables one to apply straightforwardly standard theorems of the Hamiltonian formalism, in particular
the connection between symmetries, charges and their algebra.
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The conditions that have been proposed in the literature are either strict parity
conditions on the leading orders of the fields [30],

hij(−n) = hij(n), πij(−n) = −πij(n), (2.2)

or parity conditions twisted by an improper diffeomorphism [20, 21].2 By this, it is meant
that one allows an odd (respectively, even) part in hij (respectively, πij), but it must take
the form of a diffeomorphism at order O(1/r) (respectively O(1/r2)). In polar coordinates
(r, xA), (xA coordinates on the sphere), the diffeomorphism-twisted conditions read explicitly

grr = 1 + 1
r
hrr +O(r−2) , (2.3)

grA = O(r−1) , (2.4)

gAB = r2gAB + rhAB +O(1) , (2.5)

and

πrr = πrr +O(r−1) , (2.6)

πrA = 1
r
πrA +O(r−2) , (2.7)

πAB = 1
r2π

AB +O(r−3) , (2.8)

where the leading orders of the metric and the momenta obey the conditions:3

hrr = (h̄rr)even, (2.9)
hAB = (hAB)even + 2(DADBU + gABU) , (2.10)

and

πrr = (πrr)odd −
√
g4V , (2.11)

πrA = (πrA)even −
√
g D

A
V , (2.12)

πAB = (πAB)odd +
√
g (DA

D
B
V − gAB4V ) . (2.13)

We have imposed the extra condition that the radial-angular components hrA are zero,
which insures that asymptotic Lorentz boosts are canonical transformations [20, 21]. We
have also used the fact that at the leading order relevant to the analysis, the diffeomorphisms
linearize so that their finite form is identical to their infinitesimal one.

The functions U and V , which parametrize the improper diffeomorphisms to be included
in the asymptotic form of the canonical variables, can be assumed to be odd and even,
respectively, since their even/odd parts can be absorbed through redefinitions. In the

2Strict parity conditions stronger than those of [30] have been considered later in [7] from a different
perspective.

3In writing the parity conditions, we assume that the coordinates xA transform as xA → −xA under the
antipodal map. If one uses instead standard polar coordinates for which θ changes orientation (θ → π − θ,
∂
∂θ
→ − ∂

∂θ
) but not ϕ (ϕ→ ϕ+ π, ∂

∂ϕ
→ ∂

∂ϕ
), the necessary adjustements must be made.
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canonical description, shifts of the even (respectively, odd) part of U (respectively, V ) are
proper gauge symmetries with zero charges. Finally gAB is the metric on the round unit
sphere and DA the corresponding covariant derivative. The indices A,B, . . . of the barred
fields are raised and lowered using the metric gAB on the unit 2-sphere at spatial infinity.

The logarithmic translations are eliminated with either the strict parity conditions (2.1)
or the twisted parity conditions (2.3)–(2.13) because they induce terms that violate these
conditions [31].4 The connection between this Hamiltonian result and the insightful work [2]
on logarithmic translations is that the parity conditions imposed in [30] or their weakened
twisted form [20, 21] imply that the Weyl tensor fulfills the strict parity conditions that were
shown in [2] to enable one to eliminate the logarithmic translation ambiguities. Conversely,
the strict parity conditions on the Weyl tensor considered in [2] imply the weakened parity
conditions of [20, 21] on the canonical variables assuming that the metric possesses an
asymptotic expansion in 1/r starting as above at 1/r for the metric and 1/r2 for the
momenta (see appendix of [20] for precise information).

With the twisted boundary conditions (2.3)–(2.13), the asymptotic symmetry group
is the infinite-dimensional BMS group [20, 21]. The twist is essential since without it,
the remaining asymptotic symmetries are just the Poincaré transformations [30]. The
supertranslations generate shifts in U and V , which must be therefore be allowed to take
arbitrary values.

3 Asymptotic conditions

To include the logarithmic supertranslations, one must impose less stringent boundary
conditions on the canonical variables. This enlargement of the asymptotic conditions must
obey two crucial consistency requirements: first, the action must be finite for all allowed
configurations of gij(xk) and πij(xk), even for those which do not obey the original boundary
conditions; second, the BMS transformations and the logarithmic supertranslations must
be canonical transformations with well-defined (finite) charges.

Deriving a set of boundary conditions that fulfill these consistency conditions follows
usually a trial-and-error procedure. Rather then repeating the somewhat zig-zag way in
which the conditions were arrived at, we shall write them first and shall then explain their
various properties as we check that all the consistency conditions are met.

As we indicated, the allowed asymptotic form of the fields must generalize (2.3)–(2.13)
by incorporating, besides the terms involving U and V , terms corresponding to changes
of the fields under logarithmic supertranslations. More precisely, one must twist the
strict parity conditions of (2.1) by a diffeomorphism that involves now also logarithmic
supertranslations.

By following a trial-and-error procedure, we arrived at the following consistent fall-off
of the spatial metric and its conjugate momentum,

grr = 1 + 1
r
hrr + 1

r2

(
ln2 r hlog(2)

rr + ln r hlog(1)
rr + h(2)

rr

)
+ o(r−2) , (3.1)

4This argument also eliminates logarithmic translations for the differently twisted parity conditions
proposed in [32], since the radial-radial component hrr should also be even in that case, while logarithmic
translations induce the odd term ∼ Cini.
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grA = λA + 1
r

(
ln2 r h

log(2)
rA + ln r hlog(1)

rA + h
(2)
rA

)
+ o(r−1) , (3.2)

gAB = r2gAB + r
(
ln r θAB + hAB

)
+ ln2 r θ

(2)
AB + ln r σAB + h

(2)
AB + o(1) , (3.3)

πrr = ln r πrrlog + πrr + 1
r

(
ln2 rπrrlog(2) + ln rπrrlog(1) + πrr(2)

)
+ o(r−1) , (3.4)

πrA = ln r
r
πrAlog + 1

r
πrA + 1

r2

(
ln2 rπrAlog(2) + ln rπrAlog(1) + πrA(2)

)
+ o(r−2) , (3.5)

πAB = ln r
r2 π

AB
log + 1

r2π
AB + 1

r3

(
ln2 rπABlog(2) + ln rπABlog(1) + πAB(2)

)
+ o(r−3) . (3.6)

The twisted parity conditions for the metric coefficients are

hrr = (h̄rr)even + 2Ũ = even , (3.7)
λA = DAU

even +DAŨ − UA = odd , (3.8)
θAB = 2(DADBŨ + gABŨ) = even , (3.9)
hAB = (hAB)even + 2(D(AUB) +DADBU

odd + gABU) , (3.10)

while those for the momentum components read

πrrlog = −
√
g4Ṽ = odd , (3.11)

πrr = (πrr)odd − 2
√
g Ṽ −

√
g4V , (3.12)

πrAlog = −
√
g D

A
Ṽ = even , (3.13)

πrA = (πrA)even +
√
g D

A
Ṽ −

√
g D

A
V , (3.14)

πABlog =
√
g(DA

D
B
Ṽ − gAB4Ṽ ) = odd , (3.15)

πAB = (πAB)odd +
√
g (DA

D
B
V − gAB4V ) , (3.16)

where Ũ is even and Ṽ is odd. The function V is even (its odd part remains pure gauge), but
U has both odd (as before) and even parts, U = U even +Uodd, the even component being non
trivial once the logarithmic terms are included. Finally UA is odd.5 The reasons behind these
parity assignments will be pointed out as we proceed with the various consistency checks.

Since the parity conditions will be used very often in the sequel, we recapitulate them
in the table 1.

We observe that V odd is in fact pure gauge, i.e., one may carry it along and observe
in the end that it can be gauged away by a proper diffeomorphism, exactly as in [20]. To
simplify the computations we set from the outset V odd = 0. The same is actually true for
Ũ , which turns out also to be entirely removable by a proper gauge transformation, so that
only logarithmic supertranslations with Ṽ are improper. We keep Ũ at this stage however,
since proving its triviality is one of the essential results of this paper, which we want to
explicitly establish.

Note that most metric and momentum components have mixed parity properties due
to the twist, except (hrr, θAB, πrAlog) which are even and (λA, πrrlog, π

AB
log ), which are odd.

5We initially allowed also an even part (UA)even 6= 0, but found that this part must be equal to
Ueven
A = DAU

odd, something we already implemented in the equations in the text. The “left-over” UA
appearing in the text have thus Ueven

A = 0.
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Variable Even component? Odd component?
Ũ Yes No
Ṽ No Yes
U Yes Yes
V Yes No
UA No Yes

Table 1. Parity properties of leading coefficients in the asymptotic expansion of the metric and its
conjugate momentum.

A few comments are in order:

• Just as U and V parametrize the standard supertranslations, the functions Ũ and
Ṽ parametrize the logarithmic supertranslations. Why they are only two of them
(where one would expect four) and why they are subject to parity conditions comes
from the requirements of consistency of the formalism, as we shall see below. In fact,
there are two “hidden” extra functions ŨA giving the other two missing logarithmic
supertranslations but consistency with the absence of leading logarithmic term in λA,
which plays a central role in the integrability of the charges, forces them to be equal
to DAŨ , so that they are not independent. This was explicitly taken care of in the
above formulas, which explains why ŨA does not appear.

• The parametrization by the functions Ũ , U , UA, Ṽ and V of the metric and mo-
mentum components hrr, λA, θAB, hAB, πrrlog, πrr, πrAlog, πrA, πABlog and πAB involves
some redundancy.

� Consider first Ũ , which is even. Given θAB (of the required form), the function
Ũ is determined by (3.9) up to a solution of DADBΥ + gABΥ = 0. But the most
general solution of this equation is a linear combination of the ` = 1 spherical
harmonics Y `

m, and so is odd or zero. Since it must be even, we conclude that
Υ = 0 and that Ũ is unique (for given θAB of the required form).

� The same argument shows that Uodd is determined by (hAB)odd from (3.10) up
to ∑m=−1,0,1 cmY

1
m. This ambiguity corresponds to spatial translations, which

are Minkowski isometries and have no effect on hAB (but do act effectively on
some of the other variables).

� The functions U even and UA (which is odd) are determined from (3.8) up to a
solution of DAu

even − uA = 0. But the general solution of this equation fulfills
∆ueven −DA

uA = 0. We show below that such an ambiguity corresponds to a
proper gauge transformation, so that the redundancy in the description of λA
has a clear interpretation.

� The equation (3.7) can then be viewed as defining (hrr)even given hrr, while the
even part of (3.10) defines (hAB)even, once a choice for U even and UA has been
made from (3.8).

– 7 –
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� Similarly, one finds from the momenta relations that Ṽ is potentially determined
up to a constant, but since it is odd, it is unique and carries no redundancy. By
contrast, the function V is even and so is determined up to a constant. This
ambiguity corresponds to time translations, which are Minkowski isometries.
Time translations are redundancies for the asymptotic fields considered here, but
they are not when one takes into account all the other fields.

• The next terms in the expansions ( 1
r2 ln2 r h

log(2)
rr , etc) must be explictly written because

they can potentially contribute to divergences and so one must check that they are
harmless. They are generated when one performs logarithmic supertranslations (so
it would be inconsistent to set them equal to zero), but their explicit expressions
are complicated because the non-abelian character of the diffeomorphisms becomes
relevant below the leading orders, and the finite form of the transformations is intricate.
We shall only need the equations that these lower order terms fulfill as a result of
the Hamiltonian and momentum constraints H ≈ 0, Hi ≈ 0, which in fact determine
some of them completely in terms of the leading order variables.

• We have written in the expansion (3.1) for grr the subleading terms as o(r−2) rather
then O(r−3) because there are contributions such as r−3 ln r, which are o(r−2) but
not O(r−3). The same feature holds for the other expansions.

• We will show below when computing the charges of the asymptotic symmetries that
Ũ can be completely gauged away by a proper diffeomorphism. This justifies the
statement made above that it would not be a limitation to set Ũ = 0, but — as also
announced above — we shall refrain from doing so since we want to establish its pure
gauge character.

• It is interesting to compare the status of λA for the various boundary conditions.

� The strict parity conditions of [30] do not restrict λA, except that it must be odd.
By a coordinate transformation generated by a O(1) odd vector field, which is
an allowed proper gauge transformation in that context, one can set λA equal
to zero.

� With the boundary conditions of [20] that allows for a twist by an O(1) even
vector field, λA is not arbitrary any more since this would conflict with the
integrability of the asymptotic boost charges. It is restricted to obey DAλ

A = 0
(see appendix C of [21] for a detailed discussion). This enables one to set it
equal to zero by a proper gauge transformation [21], a permissible simplification
adopted in [20].

� Finally, with the more general twist involving a logarithmic supertranslation,
λA 6= 0 because it transforms under such transformations (the DAŨ -term in (3.8)).
For that reason, one must carry λA. As we shall verify, this does not conflict with
integrability of the boost charges even though DAλ

A 6= 0 in general, because
of the presence of the additional asymptotic fields and the possibility to make
new compensating diffeomorphisms (logarithmic diffeomorphisms) in order to
preserve integrability.

– 8 –
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4 Asymptotic form of the constraints

In addition to the above asymptotic behaviour of the fields, we must impose that the
Hamiltonian and momentum constraint functions

H = 1
√
g

(
πijπij −

1
2π

2
)
−√gR , (4.1)

Hi = −2∇jπij , (4.2)

go asymptotically to zero faster than what the decay of the fields imply. As we shall see,
this is necessary in order to have finite Lorentz charges and finite kinetic term. This extra
requirement is similar to what was found in [20]. Writing out explicitly the consequences of
this faster decay is the purpose of this section.

The first step is to expand the constraint functions in the limit r →∞. We start with
the Hamiltonian constraint.

4.1 Hamiltonian constraint

In order to compute the asymptotic form of the Hamiltonian constraint (4.1), we need
the asymptotic form of the spatial curvature. Using the useful expressions of the radial
2 + 1 decomposition of the spatial metric given in appendix A, we find the somewhat
involved formulas:

(3)R = 1
r3

(
ln rR(3)

log +R(3)
)

+ 1
r4

(
ln2 rR

(4)
log(2) + ln rR(4)

log(1) +R(4)
)

+ o
(
r−4

)
, (4.3)

where

R
(3)
log = 1

2
(
DADBθ

AB−4θ
)
, (4.4)

R(3) =−4h−4hrr+DADBh
AB+2DAλ

A
, (4.5)

R
(4)
log(2) =−θ(2)+DA

D
B
θ

(2)
AB−4θ

(2)−2hlog(2)
rr −4hlog(2)

rr

+ 1
4
(
3θABθBA−θ2−DA

θDAθ+DCθ
A
BD

C
θB
)
, (4.6)

R
(4)
log(1) = 4θ(2)+4k(2)

log(2)−2hlog(1)
rr −4hlog(1)

rr −σ+DA
D
B
σAB−4σ−

1
2
(
3θABθBA−θ2)

+ 3
2h

A
Bθ

B
A−

1
2hrrθ−

1
2hθ−λAD

A
θ−θDA

λA+ 1
2DAθD

A
hrr−DAh

A
BD

B
θ

+θABDAD
B
h−θABD

B
DCh

C
A+ 1

2DAθD
A
h−θABD

B
λA+θABDAD

B
hrr

−θABDCD
B
h
C
A+θAB4h

B
A+ 1

2DAθ
B
CD

A
h
C
B , (4.7)
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R(4) = 2σ+2k(2)
log(1)−2h(2)

rr −4h(2)
rr −h(2)+DA

DBh
(2)B
A −4h(2)+2h2

rr+hrr4hrr

+ 1
2DAhrrD

A
hrr+ 3

4h
A
Bh

B
A−

1
4h

2+hABD
B
DAh−h

A
BDAD

C
h
B
C−

1
4DAhD

A
h

−DAh
A
BD

C
h
B
C+DA

hDBh
B
A−h

A
BDCD

B
h
C
A+hAB4h

B
A−

1
2DAh

B
CD

C
h
A
B

+ 3
4DCh

B
AD

C
h
A
B−

1
2hrrh−

1
2DAhD

A
hrr+DAhrrD

B
h
A
B+hBAD

A
DBhrr

−hrrDAλ
A−2λAD

A
hrr−λAD

A
h−hDAλ

A−hBAD
A
λB+2λAλ

A−2λADADBλ
A

−DAλ
A
DBλ

B+2λA4λ
A− 1

2DAλ
B
DBλ

A+ 3
2DAλBD

A
λ
B+ 3

4θ
B
Aθ

A
B−

1
4θ

2

− 3
2h

B
Aθ

A
B+ 1

2hθ−hrrθ+λAD
A
θ+θDAλ

A−θBADBλ
A
. (4.8)

In the above formulas, which involve the sub-subleading terms in the asymptotic expansion
of the fields (among which σAB), the variables {k(2)

log(2), k
(2)
log(1), k

(2)} are the sub-subleading
coefficients of the fall-off of the 2-dimensional extrinsic curvature:

KAB = −rgAB −
1
2 ln r θAB + 1

2
(
−hAB + hrrgAB − θAB +DAλB +DBλA

)
(4.9)

+ 1
r

(
ln2 r k

(2)
log(2)AB + ln r k(2)

log(1)AB + k
(2)
AB

)
+ o

(
r−1

)
. (4.10)

A direct computation shows that the square root of the determinant of the spatial
metric reads

√
g =
√
g

[
r2 + r

2
(
ln r θ + hrr + h

)
+ o (r)

]
. (4.11)

Taking into account the fall-off of the conjugate momentum given above, we then get that
the Hamiltonian constraint (4.1) behaves asymptotically as

H = −1
r

(
ln r
√
gR

(3)
log +

√
gR(3)

)
+ 1
r2

(
ln2 rHlog(2) + ln rHlog(1) +H(2)

)
+ o

(
r−2

)
,

(4.12)
where

Hlog(2) = −
√
g
(
R

(4)
log(2) + 1

2θR
(3)
log

)
+ 1√

g

[1
2(πrrlog)2 + 2πrAlogπ

r
logA + πABlog πlogAB − πrrlogπlog − π2

log

]
, (4.13)

Hlog(1) = −
√
g
[
R

(4)
log(1) + 1

2(hrr + h)R(3)
log + 1

2θR
(3)
]

+ 1√
g

(
πrrπrrlog − π πrrlog + 4πrAπrlogA + 2πABπBlogA − πrrπlog − π πlog

)
, (4.14)

H(2) = −
√
g
[
R(4) + 1

2(hrr + h)R(3)
]

+ 1√
g

[1
2(πrr)2 + 2πrAπrA + πABπAB − πrrπ − π2

]
.

(4.15)

It follows from the definition of the field θAB that R(3)
log = 0,

DADBθ
AB −4θAA = 0 . (4.16)
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Thus for generic boundary conditions, H = O
(
r−1). However, we will impose a faster

fall-off, namely H = o
(
r−2). Therefore we add to the asymptotic conditions on the metric

and its momentum given in the previous section the additional requirement:

H = o
(
r−2

)
⇔ R(3) = 0, Hlog(2) = 0, Hlog(1) = 0, H(2) = 0. (4.17)

4.2 Momentum constraint

If one expands the radial component of the momentum constraint asymptotically, one gets

Hr = ln r
r
Hrlog + 1

r
Hr(1) + 1

r2

(
ln2 rHrlog(2) + ln rHrlog(1) +Hr(2)

)
+ o

(
r−2

)
, (4.18)

with

Hrlog =−2
(
DAπ

rA
log−πAlogA

)
, (4.19)

Hr(1) =−2(DAπ
rA−πAA+πrrlog) , (4.20)

Hrlog(2) =−2DAπ
rA
log(2)+2πrrlog(2)+2πAlog(2)A+θABπABlog , (4.21)

Hrlog(1) =−2DAπ
rA
log(1)+2πrrlog(1)−4πrrlog(2)+2πAlog(1)A+hrrπrrlog+θBAπAB+2λAπrAlog+hABπABlog

+θABπABlog −2πrAlogDAhrr−2λADBπ
B
logA−2πABlog DAλB−2hrrDAπ

rA
log , (4.22)

Hr(2) =−2DAπ
rA
(2)+2πrr(2)−2πrrlog(1)+2πA(2)A+hrrπrr−2hrrπrrlog+2λAπrA+hBAπAB+θBAπAB

−2λAπrAlog−2πrADAhrr−2λADBπ
B
A−2πABDAλB−2hrrDAπ

rA . (4.23)

Similarly, the fall-off of the angular components of the momentum constraint is given
by

HA = ln rHlog
A +H(0)

A + 1
r

(
ln2 rHlog(2)

A + ln rHlog(1)
A +H(1)

A

)
+ o

(
r−1

)
, (4.24)

where

Hlog
A = −2(DBπ

B
logA + πrlogA) , (4.25)

H(0)
A = −2(DBπ

B
A + πrA + πrlogA) , (4.26)

Hlog(2)
A = −2DBπ

B
log(2)A − 2θBADCπ

C
logB − πBClog DAθBC , (4.27)

Hlog(1)
A = −4πrAlog(2) − 2DC

(
πBClog h

A
B

)
+ πBClog D

A
hBC − 2DC

(
πBCθAB

)
+ πBCD

A
θBC

− 4θABπrBlog − 2DB

(
πrBlogλ

A
)
− 2DBπ

AB
log(1) + πrrlogD

A
hrr + 2πrBlogD

A
λB , (4.28)

H(1)
A = −2πrAlog(1) − 2πrBlogh

A
B − 2πrBθAB − 2DB(πrBλA) + 2πrBDA

λB

− 2DB(πBChAC) + πrrD
A
hrr + πBCD

A
hBC . (4.29)

It follows from the expressions of the fields πijlog that the logarithmic leading terms indentically
vanish, Hrlog = Hlog

A = 0,

DAπ
rA
log − πAlogA = 0 , DBπ

B
logA + πrlogA = 0 . (4.30)
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Accordingly, the components of the momentum constraint go generically as Hr = O
(
r−1)

and HA = O
(
r0). However, a faster fall-off will be necessary for finiteness of the formalism

and we thus impose
Hr = o

(
r−2

)
, and HA = o

(
r−1

)
. (4.31)

This is equivalent to

Hr(1) = 0, Hrlog(2) = 0, Hrlog(1) = 0, Hr(2) = 0, (4.32)

and
H(0)
A = 0, Hlog(2)

A = 0, Hlog(1)
A = 0, H(1)

A = 0. (4.33)

Imposing that the constraints decay faster than what follows from the asymptotic
conditions on the fields is consistent in that it does not eliminate classical solutions, for
which the constraints hold to all orders. Furthermore, this requirement is compatible
with the asymptotic diffeomorphism symmetries given below because (i) the constraints
transform among themselves under diffeomorphisms (they are first class); and (ii) in each
case we are imposing the same extra condition that the first four non-trivial terms in the
expansion vanish.

5 Action and finiteness of the symplectic structure

The action of General Relativity in four spacetime dimensions in Hamiltonian form reads

IH [gij , πij , N,Nk] =
∫
dtd3x

(
πij ġij −NH−N iHi

)
+ B , (5.1)

where B is the integral over time of a boundary term at spatial infinity, which depends on
the asymptotic form of the lapse and the shift and will be discussed below. We assume that
the metric is fixed at the two time boundaries as appropriate for the “pq̇”-form — here∫
d3x

(
πij ġij

)
— of the kinetic term. This is the form of the action needed for computing,

say, the transition amplitude < g
(2)
ij (x), t2|g(1)

ij (x), t1 >. If instead of fixing the q’s at the
time boundaries, one would fix the p’s, one would need to make an integration by parts in
time to convert pq̇ to −qṗ, i.e., here, −

∫
d3x

(
gij π̇

ij
)
. This is well known and not peculiar

to gravity. Such changes of representations are not the object of our paper, which focuses
instead on the boundary terms at spatial infinity.

The dynamical equations in Hamiltonian form follow from extremizing the action with
respect to the dynamical fields gij and πij . Variation of the Hamiltonian action with
respect to N (lapse function) and N i (shift vector) yields the Hamiltonian and momentum
constraints H ≈ 0, Hi ≈ 0.

We now prove the finiteness of the kinetic term with our boundary conditions, something
which is not manifest since there are for instance terms like

∫
dr log r

r . For definiteness,
we work in spherical coordinates. Recall that the momenta carry a density weight, so
the integration in spherical coordinates is just

∫
drdθdϕπij ġij , without

√
g. We write this

integral as
∫
dr
∮
d2x, where the 2-sphere integral

∮
≡
∮
S2

involves functions depending only
on the angles., i.e., we integrate first over the angles and then over r.
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The ingredients for proving finiteness of the kinetic term are:

• The (strict) parities of Ũ , Ṽ and UA, which are

Ũ = Ũ even, Ṽ = Ṽ odd, UA = Uodd
A . (5.2)

• The faster decrease of the constraints, but for this step, it is sufficient to have
H = o

(
r−1), Hr = o

(
r−1) and HA = o (1), i.e.,

R(3) = −4h−4hrr +DADBh
AB + 2DAλ

A = 0 , (5.3)
Hr(1) = −2(DAπ

rA − πAA + πrrlog) = 0 , (5.4)

H(0)
A = −2(DBπ

B
A + πrA + πrlogA) = 0 , (5.5)

from which one easily derives

DADBπ
AB + πAA = 0 , (5.6)

using the expressions of πrrlog and πrlogA in terms of Ṽ .

Finiteness of the kinetic term is demonstrated as follows. Inserting the asymptotic
expansion of the fields inside the kinetic term of the action, one finds∫

d3xπij ḣij =∫
drd2x

[ ln2 r

r
πABlog θ̇AB + ln r

r

(
πrrlogḣrr + πABlog ḣAB + πAB θ̇AB + 2πrAlogλ̇A

)
(5.7)

+ 1
r

(
πrrḣrr + πABḣAB + 2πrAλ̇A

)
+ o(r−1)

]
. (5.8)

The o(r−1) are harmless since the integral
∫
o(r−1)dr does not diverge at infinity. The other

written terms are potentially harmful and one must verify that they are zero. We examine
in turn the coefficients of ln2 r

r , ln r
r and 1

r .

• For the first term in the r.h.s. of (5.7), we express πABlog in terms of Ṽ using (3.15) and
get that ∮

d2xπABlog θ̇AB = −
∮
d2x
√
g(gAB4Ṽ −DA

D
B
Ṽ )θ̇AB

= −
∮
d2x
√
g(4θ̇AA −D

A
D
B
θ̇AB)Ṽ

≈ 0 . (5.9)

This integral over the sphere vanishes by virtue of (4.16). Hence, the coefficient of
ln2 r
r is zero.
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• For the second term in the r.h.s. of (5.7), we express the “log” momenta in terms of
Ṽ from (3.11) and (3.15) to get∮

d2x
(
πrrlogḣrr + πABlog ḣAB + πAB θ̇AB + 2πrAlogλ̇A

)
=
∮
d2x

[
π̄AB θ̇AB −

√
g(4 ḣ+4 ḣrr −DADBḣ

AB
− 2DAλ̇

A
)Ṽ
]

(5.10)

≈
∮
d2x π̄AB θ̇AB , (5.11)

where the constraint equation (5.3) was used. By expressing now θAB in terms of Ũ ,
one finds that this remaining term becomes∮

d2x π̄AB θ̇AB = 2
∮
d2x
√
g
(
DADBπ

AB + πAA

) ˙̃U ≈ 0 . (5.12)

It vanishes by virtue of (5.6). Hence, the coefficient of ln r
r is also zero.

• Finally, for the 1/r term given in (5.8), we use the expressions (3.12), (3.14) and (3.16)
for the momenta. After some integrations by parts we get:∮

d2x
(
π̄rr ˙̄hrr+π̄AB ˙̄hAB+2π̄rA ˙̄λA

)
=
∮
d2x

{[
(πrr)odd−2

√
gṼ
]
ḣrr+(πAB)oddḣAB+2

[
(πrA)even+

√
gD

A
Ṽ
]
λ̇A
}

−
∮
d2x
√
g
(
4 ḣ+4 ḣrr−DADBḣ

AB
−2DAλ̇

A)
V . (5.13)

The last sphere integral vanishes by virtue of (5.3). Furthermore, since hrr is even
and its coefficient is odd, while λA is odd while its coefficient is even, the only term
that remains in the integral of the first line is (πAB)odd ˙̄hAB . We transform this term
by inserting the expression (3.10) and integrating by part, which yields (recalling that
UA is odd), ∮

d2x
(
πrrḣrr + πABḣAB + 2πrAλ̇A

)
= 2

∮
d2x
√
g
(
DADB(πAB)odd + (πAA)odd

)
U̇odd ≈ 0 . (5.14)

This integral vanishes again by virtue of (5.6). Hence, the coefficient of 1
r is also zero.

The vanishing of the 1
r term, which is necessary for the finiteness of the kinetic term,

actually forces the parity of the functions Ũ , Ṽ and the form of U even
A , if we assume that πrrodd,

πodd and heven
rr are independent fields. Indeed, the 1/r term reads, using the expressions of

the momenta and the constraint (5.3),∮
d2x

{[
(πrr)odd − 2

√
gṼ
]
ḣrr + (πAB)oddḣAB + 2

[
(πrA)even +

√
g D

A
Ṽ
]
λ̇A
}
. (5.15)

Inserting the explicit form of the fields, i.e.,

hrr = (h̄rr)even + 2Ũ , (5.16)
λA = DAU +DAŨ − UA , (5.17)
hAB = (hAB)even + 2(D(AUB) + gABU) , (5.18)
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(where we allow a priori an independent U even
A -term, not necessarily fulfilling U even

A =
DAU

odd), we find that the above integral becomes∮
d2x

{
− 2

[
DA(πAB)odd + (πrB)even]U̇B − 2

[
DA(πrA)even − πodd]U̇ (5.19)

− 2
√
g
(
4 Ṽ + Ṽ

) ˙̃U − 2
√
g DAṼ

(
U̇A −DAU̇

)
(5.20)

+ 2
[
(πrr)odd −DA(πrA)even] ˙̃U − 2

√
g Ṽ (ḣrr)even

}
. (5.21)

The line (5.19) vanishes by virtue of the asymptotic constraints (5.4), (5.5), which imply

DA(πrA)even − πodd = 0 , (5.22)
DA(πAB)odd + (πrB)even = 0 . (5.23)

It follows from line (5.21) that Ũ must be even and Ṽ must be odd. The above integral
reduces then to

−2
∮
d2x
√
g DAṼ

(
U̇A −DAU̇

)
, (5.24)

which vanishes if and only if
U even
A = DAU

odd , (5.25)

as we wanted to prove.
We have thus established the finiteness of the kinetic term in the action and hence of

the symplectic form. Finiteness of the symplectic structure is a cornerstone of our approach
because it enables one to straightforwardly apply standard Hamiltonian theorems and, in
particular, momentum map considerations. Note that finiteness holds exactly, without
having to perform any regularization procedure.

6 Asymptotic symmetries

6.1 Form of vector fields

Since our boundary conditions involve explicitly terms generated by logarithmic supertransla-
tions and ordinary supertranslations, we expect them to be invariant under diffeomorphisms
parametrized by vector fields

(
ξ⊥ ≡ ξ, ξi

)
combining both kind of transformations. Their

exact form will be shown to be

ξ = br + ln r
(
T̃ + T̃(b)

)
+ T + T(b) + o(1) , (6.1)

ξr = ln r W̃ +W + o(1) , (6.2)

ξA = Y A + ln r
r

( 2b√
g
πrAlog + D̄AW̃

)
+ 1
r

( 2b√
g
πrA + D̄A(W )odd

)
+ 1
r
IA + o(r−1) , (6.3)

where

T̃(b) = ∂Abλ
A −

(
4+ 2

)−1 (
DADB + gAB

) [
b

(
D
A
λ
B − 1

2θ
AB
)]

, (6.4)

T(b) = −1
2bh . (6.5)
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Variable Parity Nature of diffeomorphism Proper or improper?
W̃ Even Logarithmic supertranslations Proper
T̃ Odd Logarithmic supertranslations Improper (except ` = 1 component)

W odd Odd Supertranslations Improper
T Even Supertranslations Improper

W even Even New supertranslations Improper if 4W even −DAI
A 6= 0

IA Odd New supertranslations Improper if 4W even −DAI
A 6= 0

Table 2. Properties of the asymptotic diffeomorphisms parameters.

The function T̃(b) is well defined because the operator
(
4+ 2

)−1
acts on a function with

no ` = 1 spherical harmonic component. The ambiguity in T̃(b), spanned by the linear
combinations of the Y `

m with ` = 1, will be shown to be a proper gauge transformation.
The independent parameters in (6.1)–(6.3) are:

• the function b = bin
i, which parametrizes the Lorentz boosts;

• the vector Y A, which parametrizes the spatial rotations;

• the functions T̃ (odd) and W̃ (even), which parametrize logarithmic supertranslations;
however, as we shall see, the transformations generated by W̃ are proper (zero charge);

• the function T (even) and the odd part of W , which parametrize the familiar super-
translations;

• the even part of W and the vector IA (odd), which generate a new type of supertrans-
lations; however, only the combination 4W even −DAI

A is physically relevant in the
sense that if 4W even−DAI

A = 0, these new supertranslations are proper (see below).

We summarize the properties of these independent parameters in the table 2.
The independent piece of (6.1) is thus br+ln rT̃ +T , which can be chosen freely (within

the class of boosts for b, odd functions on the sphere for T̃ and even functions on the sphere
for T ). The extra term

ξ(b) = ln rT̃(b) + T(b) , (6.6)

must be added when b 6= 0 in order to make the boost charges integrable (or, what is the
same, in order for the boosts to leave the action invariant, without surface terms at spatial
infinity). Similarly, the written terms in ξr can be chosen freely, while the independent
piece of (6.3) is ξA = Y A + 1

r I
A. The other terms involving b, W̃ and W are included to

preserve the boundary conditions on λA under boosts (b), logarithmic supertranslations
(W̃ ) and supertranslations (W ).

The need to add extra correcting terms to the “naked” parameters is not a surprise since
it just generalizes to the logarithmic supertranslation case what was found to be already
necessary in the Hamiltonian formulation of the standard BMS symmetry [20]. While the
need for the correcting terms associated with the preservation of the boundary conditions
will be made obvious in the next subsections, the justification for those associated with
integrability will have to wait until section 7.
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6.2 Transformations of the canonical variables

The transformations generated by the diffeomorphisms (6.1)–(6.3) define asymptotic sym-
metries if and only if they preserve the asymptotic conditions and leave the action invariant
(up to possible terms at the time boundaries).

If the asymptotic conditions are preserved, the diffeomorphisms induce well-defined
transformations of the asymptotic fields appearing in the asymptotic expansion of the
canonical variables. We deal with this point in this subsection.

The action of diffeomorphisms
(
ξ, ξi

)
on the canonical variables is given by

δgij = 2ξ
√
g

(
πij −

1
2gijπ

)
+ Lξgij , (6.7)

δπij = −ξ√g
(
Rij − 1

2g
ijR

)
+ ξgij

2√g

(
πmnπmn −

1
2π

2
)

− 2ξ
√
g

(
πimπjm −

1
2π

ijπ

)
+√g

(
∇i∇jξ − gij4ξ

)
+ Lξπij , (6.8)

where the spatial Lie derivatives are given by

Lξgij = 2gk(i∂j)ξ
k + ξk∂kgij , (6.9)

Lξπij = −2∂kξ(iπj)k + ∂k(ξkπij) . (6.10)

One quick way to arrive at these formulas is to observe that they are certainly valid
for diffeomorphisms that decrease sufficiently fast at infinity that their canonical generator
Gξ,ξi

[
gij , π

ij
]

=
∫
d3x(ξH + ξiHi) without surface term is well defined (proper gauge

transformations, Gξ,ξi ≈ 0). The variations of the canonical variables are then just obtained
by taking their brackets with

∫
d3x(ξH+ξiHi), which yields (6.7)–(6.8). Since these formulas

are local in space, however, they hold true independently of the asymptotic behaviour of
(ξ, ξi) and can be used even if a surface term must be added to

∫
d3x(ξH+ ξiHi) to get a

well-defined generator (improper gauge transformation).
There might be extra terms proportional to the constraints in (6.7)–(6.8) when the

parameters
(
ξ⊥ ≡ ξ, ξi

)
involve the fields — as here, through the dependent correcting

terms added to preserve the boundary conditions and make the boost charges integrable
— but since the constraints decrease very fast at infinity, these terms play no role in
our considerations.

6.2.1 Transformations under spatial diffeomorphisms

We first consider diffeomorphisms acting on the equal-time hypersurfaces ((ξ, ξi) = (0, ξi)).
One directly gets from (6.7) and (6.2), (6.3) that the boundary conditions are preserved
and that the successive terms in the asymptotic expansion transform as

• Leading order:

δξiθAB = LY θAB + 2
(
D(ADB)W̃ + gABW̃

)
. (6.11)
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• First subleading order:

δξihrr = Y A∂Ahrr + 2W̃ , (6.12)

δξiλA = LY λA +DAW
even − IA +DAW̃ , (6.13)

δξihAB = LY hAB + 2
(
D(AIB) +DADBW

odd + gABW
)
. (6.14)

Note that the term ln r
r D̄

AW̃ + 1
r D̄

A(W )odd must be included in ξA in order to maintain
the asymptotic form of the mixed component grA. If we had allowed in ξA the term
ln r
r Ĩ

A + 1
r I
A + o(r−1) with arbitrary ĨA and with IA having an arbitrary even piece, we

would have found the extra terms

(δξigrA)extra = ln r
(
DAW̃ − ĨA

)
+DAW

odd − Ieven
A , (6.15)

which violate the asymptotic decay of grA unless ĨA = DAW̃ (to eliminate the ln r-piece)
and Ieven

A = DAW
odd (so that λA is purely odd).

Turn now to the conjugate momentum. Under the action of ξi, the successive terms in
the asymptotic expansion transform as

• Leading order:

δξiπ
rr
log = ∂A

(
Y Aπrrlog

)
, (6.16)

δξiπ
rA
log = LY πrAlog , (6.17)

δξiπ
AB
log = LY πABlog , . (6.18)

• First subleading order:

δξiπ
rr = ∂A

(
Y Aπrr

)
, (6.19)

δξiπ
rA = LY πrA , (6.20)

δξiπ
AB = LY πAB . (6.21)

This follows directly from (6.8) and (6.2), (6.3).

6.2.2 Transformations under normal diffeomorphisms

The action of the “naked” boosts ξ = br on grA violate the boundary conditions. Indeed, it
follows from (6.7) that grA transforms as

δξgrA = ln r 2b√
g
πrlogA + 2b√

g
πrA + o(1) . (6.22)

For this reason, as announced above, one must perform a corrective gauge transformation
Ĩ

(b)
A = 2b√

g
πrlogA in order to maintain the condition grA = O(1). However, the resulting

transformation is non-canonical and even generates divergences in the charge (see section 7.2
below). To cure this problem, the leading corrective transformation Ĩ(b)

A must be accompanied
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by a subleading corrective gauge transformation I(b)
A = 2b√

g
πrA. Similarly, integrability dictate

the need to include the corrective terms ξ(b) = ln rT̃(b) + T(b) (see same section 7.2 below).
The normal diffeomorphisms ξ with all the corrections included,

ξ = br + ln r
(
T̃ + T̃(b)

)
+ T + T(b) , (6.23)

ξr = 0, ξA = ln r
r

2b√
g
πrAlog + 1

r

2b√
g
πrA , (6.24)

preserve the asymptotic decay of the fields and their action on the successive terms in the
asymptotic expansion can be worked out to be:

• Leading order:

δbθAB = 2b√
g

(
πlog
AB − gABπlog

)
+ 4√

g
D(A

[
bπrlogB)

]
. (6.25)

• First subleading order:

δbhrr = b√
g

(πrr − π) , (6.26)

δbλA = 2b√
g
πrlogA , (6.27)

δbhAB = b√
g

[2πAB − gAB (πrr + π)] + 4√
g
D(A

[
bπrB)

]
. (6.28)

These transformations preserve the parity conditions.
For the conjugate momentum, one finds:

• Leading order:

δξπ
rr
log =

√
g

(
−1

2bθ −
1
2∂AbD

A
θ + ∂AbDBθ

AB
)
−
√
g4 T̃ ′ , (6.29)

δξπ
rA
log =

√
g

2
[
b
(
DBθ

AB −DA
θ
)

+ ∂Bbθ
AB
]
−
√
gD

A
T̃ ′ , (6.30)

δξπ
AB
log =

√
g

2
[
b
(
θAB +4θ −DCD

A
θBC

)
+ ∂Cb

(
D
C
θAB − 2DA

θBC + gABD
C
θ
)]

+
√
g
(
D
A
D
B
T̃ ′ − gAB4 T̃ ′

)
. (6.31)

• First subleading order:

δξπ
rr =

√
g

2
[
b
(
6hrr−h−2θ+4DAλ

A+DADBh
AB
)

+∂Ab
(
4λA−DA

h+2DB
h
A
B

)]
−
√
g(4T ′+2T̃ ′) , (6.32)

δξπ
rA =

√
g

2
[
b
(
2λA+DB

h
A
B−D

B
θAB+4λA+DBD

A
λ
B−2DA

hrr−D
A
h

+DA
θ−2DA

DBλ
B)+∂Bb(hAB−θAB+DB

λ
A−DA

λ
B
)]

+
√
g
(
−DA

T ′+DA
T̃ ′
)
, (6.33)
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δξπ
AB =

√
g

2
{
b
[
3hAB−4hAB−2DC

D
(A
h
B)
C −2D(A

λ
B)+DA

D
B
hrr+DA

D
B
h

+gAB
(
−2h+2DAλ

A−4hrr+DA
DBh

B
A

)]
+∂Cb

[
D
C
h
AB−2D(A

hB)C

+gAB
(
−2λC−DC

hrr−D
C
hrr+2DD

h
C
D

)]}
+
√
g
(
D
A
D
B
T ′−gAB4T ′

)
,

(6.34)

with

T̃ ′ = T̃ + T̃(b) , (6.35)
T ′ = T + T(b) . (6.36)

It follows in particular from the above formulas that the transformation laws of the
fields Ũ and Ṽ under diffeomorphisms with both normal and spatial components are

δξ,ξiŨ = LY Ũ − bṼ + W̃ , (6.37)

δξ,ξi Ṽ = LY Ṽ −
1
2bŨ −

1
2∂AbD

A
Ũ + T̃ + T̃(b) . (6.38)

7 Canonical generator

We now turn to the computation of the canonical generator Gξ,ξi
[
gij , π

ij
]
, which takes

the form
Gξ,ξi

[
gij , π

ij] =
∫
d3x

(
ξH+ ξiHi

)
+Qξ,ξi

[
gij , π

ij] , (7.1)

where the surface term must be determined, following standard Hamiltonian methods, in
such a way that ιξ,ξiΩ = −dVG. Here, ιξ,ξiΩ is the internal contraction of the symplectic
form with the phase space vector field Xξ,ξi associated with (ξ, ξi) and dV is the exterior
derivative in phase space. The equation guarantees dV (ιξ,ξiΩ) = 0, i.e, LXξ,ξiΩ = 0, which
expresses the invariance of the symplectic structure under the phase space transformation
(exactly and not up to surface terms at spatial infinity).

Because the symplectic form takes the standard bulk form Ω =
∫
d3x dV π

ij ∧ dV gij
(without surface contribution), this amounts to applying the method of [30] (see [33]
for more information). Namely, one computes dVGξ,ξi

[
gij , π

ij
]
and gets an equation for

dVQξ,ξi
[
gij , π

ij
]
by requesting that the surface terms obtained through the integrations by

parts necessary to bring dVGξ,ξi
[
gij , π

ij
]
to the canonical form

∫
d3x(AijdV gij +BijdV π

ij)
be cancelled by dVQξ,ξi

[
gij , π

ij
]
. Of course, for this to work, one must get a finite and

dV -closed (“integrable”) expression for dVQξ,ξi
[
gij , π

ij
]
. In order to check these properties

and derive the surface term, one can of course use the boundary conditions.
The surface term that one gets from the variation of the bulk part of Gξ,ξi

[
gij , π

ij
]
reads

−
∮
d2x

[
2√gξδK +√ggBCδgCA

(
ξKA

B + 1
λ

(∂rξ − λD∂Dξ)δAB
)

+ 2ξiδπri − ξrδgjkπjk
]
,

where we have made the change of notations dV → δ to follow the tradition in the field. It
follows that the compensation condition that determines Qξ,ξi

[
gij , π

ij
]
is

δQξ,ξi

[
gij ,π

ij
]

=
∮
d2x

[
2√gξδK+√ggBCδgCA

(
ξKA

B+ 1
λ

(
∂rξ−λD∂Dξ

)
δAB

)
+2ξiδπri −ξrδgjkπjk

]
,

(7.2)
where KA

B is the extrinsic curvature of the 2-spheres in a 2+1 decomposition, see appendix A.
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We shall now verify that with the above boundary conditions and improved diffeomor-
phism parameters, not only is the right-hand side of this equation finite but also integrable,
yielding a finite, well-defined Qξ,ξi

[
gij , π

ij
]
.

7.1 Generators of spatial diffeomorphisms

We shall compute in great detail the generators of spatial diffeomorphisms to illustrate
both the importance of the boundary conditions and the inner consistency of the formalism.
Inserting the variations of the fields under spatial diffeomorphisms in (7.2) yields

δQξi = 2r ln r
∮
d2xYAδπ

rA
log

+ 2r
∮
d2xYAδπ

rA

+ 2 ln2 r

∮
d2x

[
YAδ

(
πrAlog(2) + πrBlogθ

A
B

)
+ W̃ δ

(
πrrlog −DAπ

rA
log

)]
+ 2 ln r

∮
d2x

[
YAδ

(
πrAlog(1) + πrrlogλ

A + πrBlogh
A
B + πrBθAB

)
+ W̃ δ

(
πrr −DAπ

rA
)

+Wδπrrlog + IAδπ
rA
log

]
+
∮
d2x

[
2YAδπrA(2) + 2Wδπrr + 2IAδπrA

]
, (7.3)

where
πrA(2) = πrA(2) + πrBh

A
B + πrrλ

A
. (7.4)

As it is manifest from this expression, the variation of the charge is plagued with four
different types of potential divergences, which we must show are actually zero. It is here
that we shall need the faster decay of the constraints.

We examine the potential divergences in turn, starting with the most “dangerous” ones.

• The coefficient of r ln r is zero by parity, since πrAlog is even while YA is odd.

• For the term proportional to r, we use the asymptotic expression πrA = (πrA)even +√
g D

A
Ṽ −
√
g D

A
V . Taking into account the parities of the fields, the integral reduces

then to ∮
d2x
√
g YAD

A
V , (7.5)

which vanishes under integration by parts by using the Killing equation DAY
A = 0.

• For the term proportional to ln2 r, we first observe that the integral that involves W̃
vanishes by parity (W̃ is even). Using also that YAπrBlogθ

A
B is odd, we therefore find

that this term reduces to ∮
d2xYAπ

rA
log(2) . (7.6)

In order to show that this expression is zero, we use the assumption that the angular
component HA of the momentum constraint goes to zero as o(r−1). In particular, from
Hlog(1)
A = 0 (coefficient of r−1 ln r in HA), we can relate the sub-subleading coefficient
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πrAlog(2) with the leading and subleading coefficients in the asymptotic expansion of the
fields. Indeed, the equation Hlog(1)

A = 0 reads

− 4πrAlog(2) − 2DC

(
πBClog h

A
B

)
+ πBClog D

A
hBC − 2DC

(
πBCθAB

)
+ πBCD

A
θBC

− 4θABπrBlog − 2DB

(
πrBlogλ

A
)
− 2DBπ

AB
log(1) + πrrlogD

A
hrr + 2πrBlogD

A
λB = 0 . (7.7)

Now, all the terms in the second line (7.7) are even, thus once they are inserted in the
integrand YAπrAlog(2), they will vanish (under the integral). Hence, the integral (7.6)
becomes

1
4

∮
d2xYA

[
−2DC

(
πBClog h

A
B

)
+ πBClog D

A
hBC

]
+ 1

4

∮
d2xYA

[
−2DC

(
πBCθAB

)
+ πBCD

A
θBC

]
. (7.8)

� Let us focus on the first integral
1
4

∮
d2xYA

[
−2DC

(
πBClog h

A
B

)
+ πBClog D

A
hBC

]
. (7.9)

Using again parity arguments, we see that only the odd part of hAB contributes,
which is “pure gauge”, i.e.,

h
odd
AB = 2

(
DADBUodd + gABUodd

)
. (7.10)

Recall that U even
A = DAUodd. Thus, by using that YA is a Killing vector of the

2-sphere,
D(AYB) = 0 , DADBYC = −gABYC + gACYB , (7.11)

that πABlog = √g(DA
D
B
Ṽ − gAB4Ṽ ), and integrating by parts, we get that the

first integral in (7.9) becomes

1
4

∮
d2xYA

[
−2DC

(
πBClog h

A
B

)]
=
∮
d2x
√
gYA

(
D
A4 Ṽ + 2DA

Ṽ
)
Uodd .

(7.12)
We also used the property that the commutator of two covariant derivatives on
the round 2-sphere implies [DA, DB]DC Ṽ = −gBCDAṼ + gACDBṼ . For the
second integral in (7.9), besides of making use of exactly the same ingredients
as before, we must also use the expression for the commutator of two covariant
derivatives of a (symmetric) tensor field, which reads

[DB, D
A]πBClog = 2πAClog − πlogg

AC . (7.13)

We obtain then the equality
1
4

∮
d2xYAπ

BC
log D

A
hBC = −

∮
d2x
√
g YA

(
D
A4 Ṽ + 2DA

Ṽ
)
Uodd . (7.14)

Adding the two terms in (7.9), we get that the first integral in (7.8) vanishes,

1
4

∮
d2xYA

[
−2DC

(
πBClog h

A
B

)
+ πBClog D

A
hBC

]
= 0 . (7.15)
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� Now, for the second integral in (7.8),

1
4

∮
d2xYA

[
−2DC

(
πBCθAB

)
+ πBCD

A
θBC

]
, (7.16)

the steps are very similar. We first note that (by parity) only the odd part of
πrA and the even part of πAB contribute. These read

πrAodd = −
√
g D

A
Veven , (7.17)

πABeven =
√
g (DA

D
B
Veven − gAB4Veven) . (7.18)

Making use of the identities DCπ
BC
even = −πrBodd and DAθBC = DBθAC , the

integral (7.16) can be re-written as

1
4

∮
d2x

(
2YAπrBoddθ

A
B − YAπBCevenDCθ

A
B

)
. (7.19)

It is easy to see that the first term of the above integral becomes (after integration
by parts and using the Killing equation)

1
4

∮
d2x

(
2YAπrBoddθ

A
B

)
= 1

2

∮
d2x
√
gYADBθ

ABVeven . (7.20)

The second term, on the other hand, can be written as (after integration by
parts)

1
4

∮
d2x

(
−YAπBCevenDCθ

A
B

)
= 1

4

∮
d2x
√
g
[
D
C
D
B
(
YADCθ

A
B

)
+4

(
YAD

A
θ
)]
Veven .

(7.21)
Expanding the derivatives in the above integral, using the identities of the Killing
vector Y A and the commutator of two covariant derivatives, we get that the
above term reduces to

1
4

∮
d2x

(
−YAπBCevenDCθ

A
B

)
= −1

2

∮
d2x
√
g YADBθ

ABVeven . (7.22)

Thus, the integral (7.16) also vanishes

1
4

∮
d2xYA

[
−2DC

(
πBCevenθ

A
B

)
+ πBCevenD

A
θBC

]
= 0 . (7.23)

Consequently, we have proven that∮
d2xYAπ

rA
log(2) = 0 , (7.24)

so that the divergent term involving ln2 r is actually absent.

• For the divergent term proportional to ln r, we proceed along lines that adopt similar
arguments. For the term proportional to W̃ , we use the constraint Hr(1) ≈ 0 in (4.20),
to get ∮

d2xW̃δ
(
πrr −DAπ

rA) =
∮
d2xW̃δ

(
πrr − πAA + πrrlog

)
. (7.25)
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Note that by virtue of the parity conditions of the leading coefficients of the momenta,
the quantity

(
πrr − πAA + πrrlog

)
is strictly odd. Therefore, since W̃ is even, the integral

vanishes. Consider now the terms involving W and IA. These become∮
d2x

(
W oddδπrrlog + Ieven

A δπrAlog

)
=
∮
d2xW oddδ

(
πrrlog −DAπ

rA
log

)
= 0 , (7.26)

where the relation Ieven
A = DAW

odd was used. Thus, the total integral reduces to the
term coming from the spatial rotations∮

d2xYA
(
πrAlog(1) + πrrlogλ

A + πrBlogh
A
B + πrBθAB

)
. (7.27)

Since the second term YA(πrrlogλ
A) is odd, it does not contribute. Thus, our remaining

duty is to show that ∮
d2xYA

(
πrAlog(1) + πrBlogh

A
B + πrBθAB

)
= 0 . (7.28)

As for the divergence proportional to ln2 r, we will make use of the fast fall-off of the
angular components of the momentum constraint. In this case, we need the equation
H(1)
A = 0 expressing that the r−1 term in HA vanishes,

−2πrAlog(1) − 2πrBlogh
A
B − 2πrBθAB − 2DB(πrBλA) + 2πrBDA

λB (7.29)

−2DB(πBChAC) + πrrD
A
hrr + πBCD

A
hBC = 0 . (7.30)

Replacing πrAlog(1) in (7.28), we find that this integral becomes∮
d2xYA

[
−DB(πrBλA) + πrBD

A
λB
]

+ 1
2

∮
d2xYA

[
−2DB(πBChAC) + πrrD

A
hrr + πBCD

A
hBC

]
. (7.31)

In the first integral ∮
d2xYA

[
−DB(πrBλA) + πrBD

A
λB
]
, (7.32)

we see that only the odd part of πrB contributes, which is “pure gauge”: πrAodd =
−
√
g D

A
Veven. Thus using the identities for Y A and integrating by parts, we get that

the above integral becomes∮
d2xYA

[
−DB(πrBλA) + πrBD

A
λB
]

=
∮
d2xYAD

A
D
B
λBVeven . (7.33)

The second integral

1
2

∮
d2xYA

[
−2DB(πBChAC) + πrrD

A
hrr + πBCD

A
hBC

]
, (7.34)
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can be split in two integrals as (by making use of the asymptotic form of the variables)

1
2

∮
d2xYA

[
−2DB(πBCoddh

oddA
C ) + πBCoddD

A
h

odd
BC

]
(7.35)

+ 1
2

∮
d2xYA

[
−2DB(πBCevenh

evenA
C ) + πrrevenD

A
hrr + πBCevenD

A
h

even
BC

]
. (7.36)

For the terms in (7.35), we use the identities for the Killing vector Y A, the relation
DCπ

BC
odd = −πrBeven − πrBlog , as well as

h
odd
AB = 2

(
DADBUodd + gABUodd

)
, (7.37)

to show that
1
2

∮
d2xYA

[
−2DB(πBCoddh

oddA
C ) + πBCoddD

A
h

odd
BC

]
= 0 , (7.38)

after integration by parts and some straightforward algebra.
For the terms in (7.36), we use the asymptotic conditions

πrreven = −
√
g4Veven , (7.39)

πrAodd = −
√
g D

A
Veven , (7.40)

πABeven =
√
g (DA

D
B
Veven − gAB4Veven) , (7.41)

to derive
1
2

∮
d2xYA

[
−2DB(πBCevenh

evenA
C ) + πrrevenD

A
hrr + πBCevenD

A
h

even
BC

]
= 1

2

∮
d2xYAD

A
(
D
B
D
C
h

even
BC −4h

even −4hrr
)
Veven , (7.42)

after some direct algebra and integrations by parts.
Putting together this result and (7.33), we obtain the required result that the integral

1
2

∮
d2xYA

[
−2DB(πBChAC) + πrrD

A
hrr + πBCD

A
hBC

]
= 1

2

∮
d2xYAD

A
(
D
B
D
C
h

even
BC −4h

even −4hrr + 2DB
λB
)
Veven = 0 , (7.43)

vanishes due to the asymptotic form of the Hamiltonian constraint. Thus, we have
established (7.28) and there is no divergence proportional to ln r.

This completes the proof that the surface term in the generator of spatial asymptotic
symmetries is free of divergences. It is manifestly integrable and given by

Qξi =
∮
d2x

(
2YAπrA(2) + 2Wπrr + 2IAπrA

)
. (7.44)

We note that W̃ does not appear in this expression. This indicates that the corresponding
diffeomorphism is a proper gauge transformation. One could use this proper gauge freedom
to set θAB = 0 since Ũ transforms as Ũ → Ũ + W̃ under the logarithmic supertranslations
generated by W̃ .
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7.2 Generators of normal diffeomorphisms

The equation for δQξ reads, in the case of normal diffeomorphisms

δQξ = r ln r
∮
d2x
√
g bδθ (7.45)

+ r

∮
d2x
√
g bδ

(
2hrr + h+ 2DAλ

A − θ
)

(7.46)

+ ln2 r

∮
d2x
√
g bδ

(
2θ(2) + 2k(2)

log(2) + 1
4θ

2 − 3
4θ

B
Aθ

A
B

)
(7.47)

+ ln rδQlog + δQ(0) + δQξi(b)
(7.48)

where

δQlog =
∮
d2x
√
g

[
2T̃ δ

(
hrr+DAλ

A
)

+b
(

2δσ+2δk(2)
log(1)+ 1

2δ
(
−3hBAθAB+hθ

)
−hrrδθ+ 1

4δ
(
3θBAθAB−θ2

)
+θDAδλ

A−2θABD
A
δλ

B−δθABD
A
λ
B
)
−∂Abλ

A
δθ

]
,

(7.49)

and

δQ(0) =
∮
d2x
√
g

[
T̃ δh+2Tδ

(
hrr+DAλ

A− 1
2θ
)

+b
(1

2hδh−
3
2h

B

Aδh
A

B−hrrδh+2δh(2)

+2δk(2)+hBAδθAB−
1
2hδθ+ 1

2θ
B
Aδh

A

B+hDAδλ
A−2hBADBδλ

A−δhBADBλ
A
)
−∂Abλ

A
δh

]
,

(7.50)

and where δQξi(b) is the contribution due to the correcting gauge transformation that
maintains the asymptotic form of grA. Using the formulas of the previous section,with

ξA(b) = ln r
r

2b√
g
πrAlog + 1

r

2b√
g
πrA , (7.51)

one finds
Qξi(b)

= ln r
∮
d2x
√
g
(
4bDAṼ D

A
V
)

+
∮
d2x

2b√
g
πrAπrA . (7.52)

The corrective term ξ(b) = ln rT̃(b) + T(b), necessary for integrability, has not been included
yet since we want to show why it must be added.

The charge of normal diffeomorphisms possesses thus a priori the same different types
of divergences as for spatial ones. However, it is easy to see that the coefficients of r ln r and
r are zero by using the parity of the asymptotic fields and the equation DADBb+ gABb = 0
for the boost parameter.

We show in appendix B that the remaining divergences also cancel. The computation
is very similar to the one which we explicitly carried out in the previous section for the
spatial diffeomorphism charges. Key in establishing the absence of divergences in δQξ is
the faster fall-off of the Hamiltonian constraint, which is part of our boundary conditions.
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Once all dangerous terms have been shown to vanish, one finds that δQξ reduces to
the finite term:

δQξ =
∮
d2x
√
g

[
T̃ δh+2Tδ

(
hrr+DAλ

A− 1
2θ
)

+b
(1

2hδh−
3
2h

B

Aδh
A

B−hrrδh+2δh(2)

+2δk(2)+hBAδθAB−
1
2hδθ+ 1

2θ
B
Aδh

A

B+hDAδλ
A−2hBADBδλ

A−δhBADBλ
A
)
−∂Abλ

A
δh

]
.

(7.53)

While the terms proportional to T̃ and T are integrable, those involving the boosts, which
can be rewitten as

δQb =
∮
d2x
√
g

{
bδ

[
2k(2)+2h(2)−hhrr+ 1

4h
2− 3

4h
B

Ah
A

B−2hAB
(
D
A
λ
B− 1

2θ
AB

)
+ 2
g
πrAπrA

]
+bhδ

(
hrr+DAλ

A− 1
2θ
)
−∂Abλ

A
δh+b

(
DAλB−

1
2θAB

)
δh

AB
}
,

(7.54)

are not integrable due to the second line.
In order to get rid of these non-integrable terms, we perform the correcting diffeomor-

phism ξ(b) = ln rT̃(b) + T(b) announced above, to get that the boost charge is

Qb =
∮
d2x
√
g b

[
2k(2)+2h(2)−hhrr+ 1

4h
2− 3

4h
B
Ah

A
B−2hAB

(
D
A
λ
B− 1

2θ
AB
)

+ 2
g
πrAπrA

]
.

(7.55)
The total surface term for normal diffeomorphisms then reads

Qξ =
∮
d2x
√
g

{
T̃ h+ 2T

(
hrr +DAλ

A − 1
2θ
)

+ b

[
2k(2) + 2h(2) − hhrr

+ 1
4h

2 − 3
4h

B
Ah

A
B − 2hAB

(
D
A
λ
B − 1

2θ
AB
)

+ 2
g
πrAπrA

]}
. (7.56)

Collecting the surface integrals for spatial and normal diffeomorphisms, we conclude
that the total charge to be added to the bulk term

∫
d3x(ξH+ξiHi) when the diffeomorhisms

take the asymptotic form (6.1)–(6.3) is given by

Qξ,ξi =
∮
d2x

{√
g T̃h+ 2

√
g T

(
hrr +DAλ

A − 1
2θ
)

+
√
g b

[
2k(2) + 2h(2) − hhrr

+ 1
4h

2 − 3
4h

B
Ah

A
B − 2hAB

(
D
A
λ
B − 1

2θ
AB
)

+ 2
g
πrAπrA

]
+ 2YAπrA(2) + 2Wπrr + 2IAπrA

}
. (7.57)

We note — also as announced — that the ` = 1 spherical harmonic component of T̃ drops
out from the charge and defines therefore a proper gauge transformation since the odd part
of h annihilates it (under the integral sign).
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8 Logarithmic BMS algebra

8.1 Rewriting of charges

It is useful to rewrite Qξ,ξi in a way that makes manifest the proper gauge transformations.
By direct computation using the asymptotic form of the fields, one finds that the canonical
charge can be recast as

Qξ,ξi =
∮
d2x

{√
g b
[
2k(2)+2h(2)−hhrr+ 1

4h
2− 3

4h
B
Ah

A
B−2hAB

(
D
A
λ
B− 1

2θ
AB
)

+ 2
g
πrAπrA

]
+2YAπrA(2)+2

√
gT even

(
hrr+DAλ

A− 1
2θ
)

+2W odd
(
πrr−π+πrrlog

)
+2
√
gTlogU−2

√
gWlogV

}
, (8.1)

with

k(2) = −1
2σ + h(2)

rr −
3
4h

2
rr + 1

4hrrh− λAλ
A + 1

4hrrθ

+DAh
(2)A
r + 1

2λAD
A
h− 1

2hrrDAλ
A − λADBh

B
A , (8.2)

where Tlog = (4 + 2)T̃ = odd and Wlog = 4W even − DA
Iodd
A = even. Boosts, spatial

rotations and supertranslations parametrized by T even and W odd are all improper, as in the
case where logarithmic supertranslations are not included [20]. The new improper gauge
symmetries arising from the extension of the formalism are the logarithmic supertranslations
in time, parametrized by the odd function Tlog, which has no ` = 1 spherical harmonic
component, and the subleading supertranslations parametrized by the even function Wlog,
which has no ` = 0 spherical harmonic component. These subleading transformations
become improper and can be triggred because the condition λA = 0 is not any more
necessary for integrability when the new asymptotc fields are introduced.

Note also that the ambiguity in U and V mentioned in section 3 is indeed irrelevant
for the charges, as it should.

8.2 Transformations of the parameters

The bracket of any two canonical generators is computed by evaluating the variation of
one generator under the canonical transformation generated by the other. One finds in
this manner

{Gξ1

[
gij , π

ij], Gξ2

[
gij , π

ij]} = Gξ̂ + C{ξ1,ξ2} , (8.3)

where the terms C{ξ1,ξ2} correspond to central terms between the usual and the “logarithmic”
supertranslations, and where

Ŷ A = Y B
1 ∂BY

A
2 + gABb1∂Bb2 − (1↔ 2) , (8.4)

b̂ = Y B
1 ∂Bb2 − (1↔ 2) , (8.5)

T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1D

A
W2 − b14W2 − (1↔ 2) , (8.6)

Ŵ = Y A
1 ∂AW2 − b1T2 − (1↔ 2) , (8.7)
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T̂ log = Y A
1 ∂AT

log
2 − 3b1W

log
2 − ∂Ab1D

A
W log

2 − b14W log
2 − (1↔ 2) , (8.8)

Ŵ log = Y A
1 ∂AW

log
2 − b1T

log
2 − (1↔ 2) , (8.9)

where from now on W ≡W odd.
In order to arrive at these formulas, the following transformation laws were found useful,

δξ.ξi
(
hrr +DAλ

A − 1
2θ

A
A

)
= LY

(
hrr +DAλ

A − 1
2θ

A
A

)
+ b√

g

(
πrr − πAA + πrrlog

)
+Wlog ,

(8.10)

δξ,ξi
(
πrr − πAA + πrrlog

)
= LY

(
πrr − πAA + πrrlog

)
(8.11)

+
√
g
[
b4+ ∂AbD

A + 3b
](
hrr +DAλ

A − 1
2θ

A
A

)
−
√
g Tlog ,

δξ,ξiU = Y A∂AU − bV +W , (8.12)

δξ,ξiV = Y A∂AV − b4U − ∂AbD
A
U − 3bU + T , (8.13)

as well as the transformation rules of the sub-subleading terms given in appendix C.
The relations (8.4) and (8.5) encode the homogeneous Lorentz algebra. The rela-

tions (8.6) and (8.7) indicate how the ordinary supertranslation parameters transform under
the homogeneous Lorentz group, described in 3 + 1 Hamiltonian terms. They match the
relations found previously in [9, 20].

Finally, the relations (8.8) and (8.9) define the Lorentz representation of the logarithmic
supertranslations. As we have indicated, T log is odd and starts in a spherical harmonic
expansion at ` = 3. Similarly, W log is even and starts at ` = 2. It is easy to verify
that (8.8) has no ` = 1 component and that (8.9) has no ` = 0 component, so that these
properties are preserved under Lorentz transformations. Since the minimum spin in the
representation of (T log,W log) is `0 = 2 and since the transformation of T log (respectively,
W log) under boosts does not involve T log (respectively,W log), one can conclude that the other
parameter `1 characterizing the irreducible representation in which (T log,W log) transform
vanishes, `1 = 0 (see [34–36] for more information). Thus, the parameters associated
with logarithmic supertranslations transform according to the irreducible representation
(`0 = 2, `1 = 0) of the homogeneous Lorentz group. This is the “tail” [35] of the finite-
dimensional vector representation (`0 = 0, `1 = 2) of the ordinary translations. As it is
known the supertranslations are in the semi-direct sum (`0 = 0, `1 = 2)⊕σ (`0 = 2, `1 = 0),
the tail being given here by the proper supertranslations (beyond the translations). The tail
appears therefore twice when logarithmic translations are switched on, but it is realized by
functions with different parities under the antipodal map. The ordinary translations appear
only once, because the transformations in the finite-dimensional vector representation (0, 2)
are proper gauge transformations on the logarithmic side and are factored out.

8.3 Central terms

We close the discussion of the algebra by observing that the non-vanishing components of
the central terms appear in the brackets of the usual and “logarithmic” supertranslations.
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Specifically, we have that

C{T,Wlog} = −C{Wlog,T} = 2
∮
d2x
√
g T Wlog , (8.14)

C{W,Tlog} = −C{Tlog,W} = −2
∮
d2x
√
gW Tlog . (8.15)

This is a centrally extended abelian algebra. It is easy (and instructive) to verify that
these relations are compatible with the Jacobi identity. The opposite parities of T (even)
and Tlog (odd) on the one hand, and of W (odd) and Wlog on the other hand, as well as
the fact that these functions transform in (almost) the same representation of the Lorentz
group, are essential for guaranteeing a non-trivial central charge and consistency with the
Jacobi identity.

We note the important fact that the central charges vanish for ordinary translations in
time (zero mode of T ) and space (` = 1 spherical harmonics of W ). This implies that the
transformation rules of the energy and the linear momentum are unaffected by the extension
of the formalism. In particular, the energy and momentum are unchanged if one performs a
logarithmic supertranslation. By contrast, the angular momentum does transform under
logarithmic supertranslations since these are in a non-trivial representation of the Lorentz
group. This is of course the logarithmic analog of the fact that the angular momentum
transforms under supertranslations, or even, for that matter, under ordinary translations.
How to extract an intrinsic angular momentum (analog of the angular momentum “in the
center of mass frame”) will not be studied here because a dramatic simplification of the
algebra which bypasses this question can be achieved.

It is clear that the central charge is invertible in the remaining sector of the pure
supertranslations and the logarithmic supertranslations. The relations (8.14)–(8.15) actually
express that the generators of pure supertranslations are canonically conjugate to those
of logarithmic supertranslations. More precisely, if we respectively denote by S1 the
generators of the pure even T -supertranslations, by S2 the generators of the pure odd
W -supertranslations, by L1 the generators of the logarithmic odd Tlog-supertranslations and
by L2 the generators of the logarithmic even Wlog-supertranslations, the relations (8.14)–
(8.15) read6

{Lα, Sβ} = σαβ , {Sα, Sβ} = 0 , {Lα, Lβ} = 0 (8.16)

with
(σαβ) =

(
0 −2Ieven

2Iodd 0

)
. (8.17)

Here Ieven is the unit operator in the space of even functions on the sphere,

Ieven(x, x′) = 1
2
(
δ(2)(x− x′) + δ(2)(x+ x′)

)
(8.18)

while Iodd is the unit operator in the space of odd functions on the sphere,

Iodd(x, x′) = 1
2
(
δ(2)(x− x′)− δ(2)(x+ x′)

)
. (8.19)

6In Sα, the index α runs not only over the discrete values 1, 2, but involves also the argument (x) ≡ (xA)
of functions on the sphere, e.g, S1 ≈ 2

√
g
(
hrr +DAλ

A − 1
2θ
)
`>0

(x) etc.
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The Jacobi identity involving one Lorentz generator, one Sα and one Lα is equivalent
to the invariance of the bilinear form σαβ under Lorentz transformations.

9 Decoupling of the pure supertranslations from the Poincaré generators
in the logarithmic BMS algebra

In this section, we will show how we can take advantage of the central charge to redefine
the Lorentz generators such that their action on the pure and logarithmic supertranslations
is trivial. This decoupling of the supertranslations from the Poincaré algebra is performed
by exploiting the fact just observed that the pure and logarithmic supertranslations are
canonically conjugate.

First, we prove that it is possible to achieve this goal on general grounds, using general
algebraic considerations. We then proceed to display the explicit computation of the
realization of the decoupling mechanism.

9.1 General algebraic considerations

The logarithmic BMS algebra found in the previous section has the following structure

{Ma,Mb} = f cabMc , (9.1)
{Ma, Ti} = R j

ai Tj , (9.2)
{Ma, Sα} = G i

aα Ti +G β
aα Sβ , (9.3)

{Ma, L
α} = −G α

aβ Lβ , (9.4)
{Lα, Sβ} = δαβ , (9.5)

where Ma, Ti, Sα and Lβ are respectively the generators of the Lorentz transforma-
tions, of the standard translations, of the pure supertranslations and of the logarithmic
supertranslations.

Before proceeding, a word of explanation concerning (9.4) and (9.5). As we have seen,
the generators of logarithmic supertranslations Lα transform in the same representation
as the Sα (modulo the standard translations), i.e., {Ma, Lα} = G β

aα Lβ. They also fulfill
{Lα, Sβ} = σαβ. We define Lα = σαβLβ, where σαβσβγ = δαγ (inverse of σαβ). Then (9.5)
follows immediately from the definitions, while (9.4) is an immediate consequence of the
Lorentz invariance of σαβ ,

δaσαβ ≡ G γ
aα σγβ +G γ

aβ σαγ = 0 . (9.6)

We now redefine the Lorentz generators by adding new terms as follows,

M̃a = Ma −G i
aβ L

βTi −G γ
aβ LβSγ (9.7)

= Ma − Lβ{Ma, Sβ} . (9.8)

The extra terms have been added in order to trivialise the action of the Lorentz algebra on
pure supertranslations by leveraging the non-zero bracket between Lα and Sβ . One easily
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shows that the action of the new Lorentz generators M̃a on both pure and logarithmic
supertranslations vanishes

{M̃a, Sα} = {M̃a, L
α} = 0 , (9.9)

while the bracket {M̃a, Ti} does not suffer any modification. The redefinition (9.8) of
the homogeneous Lorentz generators is bilinear in the generators of the inhomogeneous
logarithmic BMS algebra Ti, Sα, Lα. The corresponding transformations differ from the
original Lorentz transformations by a field-dependent logarithmic supertranslation, a field-
dependent translation and a field-dependent pure supertranslation,

δ̃aF = {F, M̃a}
= δaF + (−G i

aβ Ti −G
γ

aβ Sγ){F,Lβ}+ (−G i
aβ L

β){F, Ti}+ (−G γ
aβ Lβ){F, Sγ}

(9.10)

which, together, constitute by construction a canonical transformation (i.e., have an inte-
grable, well-defined, canonical generator).

One also easily verifies that the Poincaré subalgebra is invariant under this redefinition
of the Lorentz generators

{M̃a, M̃b} = f cabM̃c , {M̃a, Ti} = R j
ai Tj . (9.11)

The modification of Ma given in eq. (9.8) is the most drastic option. There exists a
milder version that also decouples the pure supertranslations from the translations without
trivialising the action of the Lorentz algebra on the former,

Ma = Ma −G i
aβ L

βTi . (9.12)

With this alternative redefinition, only the contribution from the standard translations Ti
is removed from the right hand side of (9.3):

{Ma, Sα} = G β
aα Sβ , (9.13)

while all other Poisson brackets remain invariant. Both pure and logarithmic supertransla-
tions Sα, Lα transform under the non-trivial infinite-dimensional Lorentz representation
characterized by G β

aα (or its dual for Lα). Therefore, with this redefinition, one cannot
induce soft hair by boosting a solution with no soft hair and with Pµ 6= 0, but the angular
momentum “ambiguity” remains.

9.2 Explicit computations

9.2.1 New Lorentz transformations and charges

We now provide the detailed formulas. According to the derivations of the previous sub-
section, the combinations of field-dependent logarithmic supertranslations, field-dependent
translations and field-dependent pure supertranslations that compensate the action of the
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Lorentz transformations on pure supertranslations and logarithmic supertranslations are
explicitly described by vector fields asymptotically given by

W
(b,Y )
log =−

[
b√
g

(
πrr−π+πrrlog

)]
`≥2
−
[
LY
(
hrr+DAλ

A− 1
2θ
)]

`≥2
, (9.14)

T
(b,Y )
log =

[(
3b+∂AbD

A+b4
)(

hrr+DAλ
A− 1

2θ
)]

`≥3
+
[ 1√

g
LY
(
πrr−π+πrrlog

)]
`≥3

, (9.15)

W (b,Y ) = b(V )`≥2−LY (U)`≥3 , (9.16)

T (b,Y ) =
(

3b+∂AbD
A+b4

)
(U)`≥3−LY (V )`≥2 . (9.17)

Here the notation ` ≥ n means that in the spherical harmonic expansion of the functions,
only the modes with ` greater than or equal to n are considered.

The charges associated with these vector fields are integrable and well-defined and read

Qextra
b =

∮
d2x

[
2b(V )`≥2(πrr − π + πrrlog)

+ 2
√
g
(
hrr +DAλ

A − 1
2θ
) (

3b+ ∂AbD
A + b4

)
(U)`≥3

]
, (9.18)

Qextra
Y =

∮
d2x

[
2
√
gLY

(
hrr +DAλ

A − 1
2θ
)
(V )`≥2 + 2LY (πrr − π + πrrlog)(U)`≥3

]
. (9.19)

The new Lorentz generators Q̃b and Q̃Y are obtained by adding these extra terms to the
original generators Qb and QY :

Q̃b = Qb +Qextra
b , (9.20)

Q̃Y = QY +Qextra
Y . (9.21)

These boundary terms must of course be supplemented by weakly vanishing bulk terms
with vector field ξµ(b,Y ) = (ξ⊥(b,Y ), ξ

i
(b,Y )) having the given asymptotic behavior.

9.2.2 Poisson brackets of Lorentz charges with all supertranslations

A direct computation shows that these new Lorentz charges possess indeed the advertised
property of acting non-trivially only on pure translations. The Poisson brackets of Lorentz
boosts with supertranslations take the form

{Q̃b, QT } = 2
∮
d2x

[
− b(T )`=0

]
(πrr − π + πrrlog) = QŴ , (9.22)

{Q̃b, QW } = 2
∮
d2x
√
g
[
−
(
3b+ ∂AbD

A + b4
)

(W )`=1
](
hrr +DAλ

A − 1
2θ
)

= QT̂ ,

(9.23)

while the Poisson brackets of spatial rotations with supertranslations are given by

{Q̃Y , QT } = 0 , (9.24)

{Q̃Y , QW } = 2
∮
d2x

[
Y A∂A(W )`=1

]
(πrr − π + πrrlog) = QŴ . (9.25)
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We can read off the new algebra of the parameters:

Ŵ = Y A∂A(W )`=1 − b(T )`=0, T̂ =
(
3b+ ∂AbD

A + b4
)

(W )`=1 , (9.26)

where we see that only the contributions from the translations are left. Similarly, one can
show that the Poisson brackets of all Lorentz charges with logarithmic supertranslations
identically vanish

{Q̃b, QTlog} = {Q̃b, QWlog} = 0 , (9.27)
{Q̃Y , QTlog} = {Q̃Y , QWlog} = 0 . (9.28)

9.2.3 Poisson brackets of new Lorentz charges

We explicitly verify in this subsection the key property of our construction, namely, that the
redefinitions of the Lorentz charges also leave the homogeneous Lorentz subalgebra invariant.

For this computation it will be useful to have at hand the new action of the Lorentz
transformations on the fields:

δ̃b,Y Π =
[√
g(3bT + ∂AbD

AT + b4T )
]
`=1

+
[
LY Π

]
`=1

, (9.29)

δ̃b,Y T =
[ b√

g
Π
]
`=0

+
[
LY T

]
`=0

, (9.30)

δ̃b,Y U = −b(V )l=0 + Y A∂A(U)`=1 , (9.31)

δ̃b,Y V = −b(U)`=1 − ∂AbD
A(U)`=1 , (9.32)

where, for convenience, we have defined

Π ≡ πrr − π + πrrlog , T ≡ hrr +DAλ
A − 1

2θ . (9.33)

We will compute the Poisson brackets of the new Lorentz generators case by case.

• We start with the computation of the Poisson bracket between two Lorentz boosts:

{Q̃b1 , Q̃b2} = δ̃b2Q̃b1 = δ̃b2Qb1 + δ̃b2Q
extra
b1 . (9.34)

The last term in the above expression can be directly obtained using the new trans-
formation laws of the fields:

δ̃b2Q
extra
b1 =

∮
d2x

{
2
√
g b1(V )`≥2

[
3b2T + ∂Ab2D

AT + b24T
]
`=1

+ 2
(
3b1 + ∂Ab1D

A + b14
)

(U)`≥3
[
b2Π

]
`=0

}
. (9.35)

The first term on the right hand side of (9.34) must be carefully computed taking into
account the field-dependent gauge parameters given at the beginning of this section:

δ̃b2Qb1 = δb2Qb1 + δW (b2)Qb1 + δT (b2)Qb1 + δ
W

(b2)
log

Qb1 + δ
T

(b2)
log

Qb1 . (9.36)
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The second and fifth terms give

δW (b2)Qb1 + δ
T

(b2)
log

Qb1 = 2
∮
d2x
√
g(b2∂Ab1 − b1∂Ab2)DA(V )`≥2T

− 2
∮
d2x
√
g b1(V )`≥2

[
3b2T + ∂Ab2D

AT + b24T
]
`=1

,

(9.37)
while the third and fourth terms reduce to

δT (b2)Qb1 + δ
W

(b2)
log

Qb1 = 2
∮
d2x(b2∂Ab1 − b1∂Ab2)DA(U)`≥3Π

− 2
∮
d2x

(
3b1 + ∂Ab1D

A + b14
)

(U)`≥3
[
b2Π

]
`=0

.

(9.38)
Thus, putting all the terms together we obtain the expected result

{Q̃b1 , Q̃b2} = QŶ +Qextra
Ŷ

= Q̃Ŷ , (9.39)

where we used the bracket of the original generators, δb2Qb1 = QŶ , and

Ŷ A = b1D
A
b2 − b2D

A
b1 . (9.40)

• We continue with the computation of the Poisson bracket between two spatial rotations:

{Q̃Y1 , Q̃Y2} = δ̃Y2Q̃Y1 = δ̃Y2QY1 + δ̃Y2Q
extra
Y1 . (9.41)

The last term can also be directly computed, which gives

δ̃Y2Q
extra
Y1 = 2

∮
d2xLY1(LY2Π)`=1U`≥3 . (9.42)

Decomposing δ̃Y2QY1 as before

δ̃Y2QY1 = δY2QY1 + δW (Y2)QY1 + δT (Y2)QY1 + δ
W

(Y2)
log

QY1 + δ
T

(Y2)
log

QY1 , (9.43)

we can combine the third and fourth terms to get

δT (Y2)QY1 + δ
W

(Y2)
log

QY1 = −2
∮
d2x
√
gLY2LY1T V`≥2 + 2

∮
d2x
√
gLY1(LY2T )l≥2V`≥2

= 2
∮
d2x
√
g [LY1 ,LY2 ]T V`≥2 , (9.44)

while the second and fifth terms reduce to

δW (Y2)QY1 + δ
T

(Y2)
log

QY1 = −2
∮
d2x
√
gLY2LY1ΠU`≥3 + 2

∮
d2xLY1(LY2Π)`≥3U`≥3

= 2
∮
d2x[LY1 ,LY2 ]ΠU`≥3 − 2

∮
LY1(LY2Π)`=1U`≥3 .

(9.45)
Thus, adding all the contributions we have shown that

{Q̃Y1 , Q̃Y2} = QŶ +Qextra
Ŷ

= Q̃Ŷ , (9.46)

where we used the original bracket δY2QY1 = QŶ , with

Ŷ B = Y A
1 ∂AY

B
2 − Y A

2 ∂AY
B

1 . (9.47)
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• A similar strategy allows us to compute the Poisson bracket between a Lorentz boost
and a spatial rotation, obtaining

{Q̃Y , Q̃b} = Q̃b̂ , with b̂ = Y A∂Ab , (9.48)
{Q̃b, Q̃Y } = Q̃b̂ , with b̂ = −Y A∂Ab . (9.49)

We have thus shown that the new contributions to the Lorentz generators do not modify
the homogeneous Lorentz subalgebra. The Poincaré algebra remains therefore untouched.

9.2.4 Alternative redefinition of the Lorentz charges

As mentioned above, there exists an alternative redefinition of the Lorentz generators (9.12),
which decouples the pure BMS supertranslations from the translations, while keeping them
in a non-trivial infinite-dimensional representation of the Lorentz algebra. The canonical
realization for these charges can be obtained by adding a field-dependent improper gauge
transformation with the following parameters

W
(b)
log = −

[ b√
g

(πrr − π + πrrlog)`=1
]
`≥2

W (b) =
[
b(V )`≥2

]
`=1

. (9.50)

This transformation leads to an extra term in the Lorentz boost charge of the form

Qextra
b =

∮
d2x

[
2b(V )`≥2(πrr − π + πrrlog)`=1

]
, (9.51)

while keeping the spatial rotation charge invariant. One can check that the Poisson brackets
of these new Lorentz charges with pure supertranslations involve only pure supertranslations
and keep the brackets with all other charges unchanged.

10 Conclusions

In this paper, we have shown that a special class of logarithmic supertranslations, character-
ized by definite parity properties under the antipodal map, can be consistently included in
the Hamiltonian formulation of asymptotically flat spaces. One can enlarge the boundary
conditions while keeping the action finite in such a way that these logarithmic super-
translations are symmetry transformations with well-defined (integrable, finite) canonical
generators. We have also computed the algebra of the logarithmic supertranslation genera-
tors with the other generators of the BMS algebra (“logarithmic BMS algebra”) and found
non-trivial central terms. Previous instances of central terms appearing in the asymptotic
symmetry algebra occur in AdS3 gravity [37, 38], or in five-dimensional gravity, which
shares a very similar structure [10, 11].

We insisted throughout our approach both on finiteness of the symplectic form and on
exact invariance of the symplectic form under the transformations of the logarithmic BMS
algebra — and not just invariance up to (possibly divergent) surface terms at spatial infinity.
These strong requirements lead to rather lengthy developments, but are worth being pursued
for at least two reasons. (i) First, the very fact that they can be successfully implemented “on
the nose”, making regularizations unnecessary, reveals non-trivial properties of the Einstein
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theory on asymptotically flat spaces. The detailed non-trivial cancellations underlying this
success teaches us a lesson about the theory which might be less apparent in approaches
where these requirements are not put in the forefront. (ii) Second, our approach guarantees
that standard Hamiltionian methods can be used and, in particular, that the symmetry
generators form a true (possibly non-linear) algebra under the Poisson brackets, which
fulfills the Jacobi identity exactly.

Even though the logarithmic translations (1.1) are not contained in it, the class of
logarithmic supertranslations that are consistently included in our approach is rather huge.
Indeed, it involves one function of the angles, as do the supertranslations. The odd part
of this function of the angles is related to the logarithmic supertranslations in time, while
the even part is related to new supertranslations in space, which become improper with
the new boundary conditions and which we also call “logarithmic supertranslations” since
their presence is related to the logarithmic enlargement of the boundary conditions. As we
have also shown, logarithmic supertranslations in space parametrized by the function Ũ are
proper gauge transformations with zero charge.

Furthermore, the logarithmic supertranslation charges are canonically conjugate to
the pure supertranslation charges. This implies that one can generate shifts of the pure
supertranslation charges by performing logarithmic supertranslations. This remarkable
feature enables one to completely decouple in the asymptotic symmetry algebra pure
supertranslations and logarithmic supertranslations from the Poincaré generators, without
having to fix the gauge or truncating the theory.

The new Poincaré generators are invariant under supertranslations. As we have pointed
out, this decoupling is conceptually very similar to the decoupling achieved in [22–25],
but our approach is entirely classical (non-quantum). The decoupling amounts to add
to the Lorentz transformations appropriately chosen supertranslations and logarithmic
supertranslations with coefficients that depend on the charges. These nonlinear redefinitions
evade the obstructions found earlier on the impossibility to extract a natural Poincaré
subalgebra through linear methods. An intermediate decoupling can be achieved, such that
the brackets of the pure supertranslations with the Lorentz generators involve only the pure
supertranslations and not the ordinary translations.

The logarithmic supertranslations are allowed in the formalism by including in the
asymptotic form of the fields terms that take the precise form of logarithmic supertranslation
variations. This is reminiscent of the method of orbits, in which one parametrizes the fields
in terms of an orbit representative (which would in our case be the configuration with no
log-terms) and the symmetry element that brings that reference representative to the given
configuration (here, the improper logarithmic diffeomorphisms). Such a presentation can in
principle always be given for any symmetry.

We conclude this section with six open questions:

• What makes the decoupling possible between the Poincaré algebra and the supertrans-
lations is the invertible central charge appearing in the brackets of the logarithmic
supertranslations with the pure supertranslations. Such a mechanism would thus
be in principle available in any similar situation where such a central charge would
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be present. It would be interesting to investigate this mechanism in the nonlinear
context of the BMS(5) algebra emerging in five spacetime dimensions [10, 11], or in
the case of supersymmetry where a similar central charge also appears [39].

• Also of interest would be to study the analogs of the logarithmic supertranslations
in the Maxwell theory, which would be angle-dependent logarithmic u(1) gauge
transformations [33].

• One might wonder if the procedure followed to include logarithmic supertranslations
(i.e., introducing slowlier decaying terms in the metric that take the form of an
(improper) diffeomorphism) can be pushed further to include superrotations [40–42] or
diffeomorphisms of the sphere [43, 44], which would need O(1) deviations from the flat
metric. The answer to this question is not immediate, precisely because the allowed
new terms would not be proper gauge transformations but would be (if successfully
included) improper gauge ones. In that context, adding new surface degrees of freedom
might perhaps help for finiteness or integrability of the charges [33].

• Since our new boundary conditions allow logarithmic supertranslations, a natural
question is: what are the Ward identities associated with these new symmetries [45–
47]? Furthermore, in view of the decoupling mechanism, one might wonder whether
these Ward identities would provide new insightful information on “hard processes”,
or merely constraint “soft processes”, see [22–25].

• In the same vein, one would like to repeat the complete analysis at null infinity and,
in particular, write down the action of the logarithmic supertranslations there and
study their matching with logarithmic supertranslations at spatial infinity along the
lines of [9, 20].

• Finally we point out that our boundary conditions yield a Weyl tensor which contains
no log-type singularity as one integrates the equations to null infinity [20, 48–51],
since the boundary conditions differ from those of [20] or [30] only by diffeomorphism
terms to which the Weyl tensor is blind.7 In that respect, it would be of interest
to extend the analysis to the alternative BMS-invariant boundary conditions of [32],
which do generically lead to log-type singularities at null infinity. A motivation for
achieving this task is given by [52].

Work along these lines is currently in progress.

Notes added. After our paper was completed, the reference [53] was posted on the
archive. That work studies how to redefine angular momentum flux at null infinity in order
to make it free from supertranslation ambiguities. It would be interesting to study the
connection with our construction.

7In fact, the regularity and parity conditions on the Weyl tensor imply the boundary conditions given in
this paper if one allows log-terms in the asymptotic expansion of the metric. This is an extension of the
results of [20].
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We should also mention the existence of similarities of our symmetry structure with
the direct product structure of the symmetry algebra derived in [54] on null boundaries.
We thank Shahin Sheikh-Jabbari for a discussion on this point.
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A 2 + 1 decomposition of the spatial metric and spatial curvature

This appendix provides useful formulas related to the 2 + 1 slicing of the spatial equal time
hypersurfaces by spheres of constant radius r. The “lapse” is denoted λ while the “shift”
is λA,

γAB ≡ gAB, λA ≡ grA, λ ≡ 1√
grr

. (A.1)

The three-dimensional spatial metric and its inverse take the form

gij =
(
λ2 + λCλ

C λB
λA γAB

)
, gij =

(
1
λ2 −λB

λ2

−λA

λ2 γAB + λAλB

λ2

)
. (A.2)

Here, the 2-dimensional metric γAB and its inverse γAB have been used to raise and lower
the angular indices A,B, . . .. The Christoffel symbols can be written in terms of the extrinsic
curvature of the spheres KAB:

KAB = 1
2λ (−∂rgAB +DAλB +DBλA) , (A.3)

ΓrAB = 1
λ
KAB , (A.4)

ΓABC =γ ΓABC −
λA

λ
KBC , (A.5)

ΓrrA = 1
λ

(
∂Aλ+KABλ

B
)
, (A.6)

Γrrr = 1
λ
∂rλ+ λA

λ

(
∂Aλ+KABλ

B
)
, (A.7)

ΓArB = −λ
A

λ

(
∂Bλ+KBCλ

C
)

+DBλ
A − λKA

B , (A.8)

ΓArr = −λ
(
γAB + λAλB

λ2

)(
∂Bλ+KBCλ

C
)
− λC

(
DAλC − λKA

C

)
− λA

λ
∂rλ+ γAB∂rλB . (A.9)
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DA denotes the covariant derivative associated to γAB . The components of the Ricci tensor
can be obtained from

(3)RAB = 1
λ
∂rKAB + 2KACK

C
B −KKAB −

1
λ
DADBλ

+γ RAB −
1
λ
LλKAB , (A.10)

(3)RrA = λ
(
∂AK −DBK

B
A

)
+ (3)RABλ

B , (A.11)

(3)Rrr = λ(∂rK − λA∂AK)− λ2KA
BK

B
A − λDAD

Aλ

−(3) RABλ
AλB + 2 (3)RrBλ

B , (A.12)

which implies the expression

(3)R = 2
λ

(∂rK − λA∂AK) + γR−KA
BK

B
A −K2 − 2

λ
DAD

Aλ (A.13)

for the Ricci scalar.

B Vanishing of the logarithmic divergences in the boost generator

In this appendix we show that the remaining divergences (proportional to ln2 r and ln r)
in the boost generator vanish. These are, taking into account that many terms obviously
vanish due to parity properties,

δQ
(2)
log = ln2 r

∮
d2x
√
g bδ

(
2θ(2) + 2k(2)

log(2) + 1
4θ

2 − 3
4θ

B
Aθ

A
B

)
, (B.1)

and

δQ
(1)
log = lnr

∮
d2x
√
g
[
b
(
2δσ+2δk(2)

log(1)+ 1
2δ(−3hBAθAB+hθ)+ 1

4δ(3θ
B
Aθ

A
B−θ2)

−hrrδθ+θDAδλ
A−2θABD

A
δλ

B−δθABD
A
λ
B
)
−∂Abλ

A
δθ+4bδ

(
DAṼ D

A
V
)]
,

(B.2)

(the term proportional to T̃ in Qlog in (7.50) is manifestly zero as follows from similar parity
considerations).

The critical tool in establishing the absence of divergences is the fast decay of the
constraints imposed in section 4.

• Let us first focus on the ln2 r-divergent term, which reads∮
d2x
√
g bδ

(
2θ(2) + 2k(2)

log(2) + 1
4θ

2 − 3
4θ

B
Aθ

A
B

)
. (B.3)

We can see that the quadratic terms in θAB vanish under the integral because of
parity (recall that θAB is even). Then, we must only deal with the integral∮

d2x
√
g b
(
θ(2) + k

(2)
log(2)

)
. (B.4)
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We now make use of the condition Hlog(1) = 0 in (4.14), which allows to relate θ(2)

with other coefficients of the fall-off of the fields. Thus, we find that

θ(2) =−1
4
[
4k(2)

log(2)−2hlog(1)
rr −4hlog(1)

rr −σ+DA
D
B
σAB−4σ+ 1

2
(
−3θABθBA+θ2

)
+ 3

2h
A
Bθ

B
A−

1
2hrrθ−

1
2hθ−λAD

A
θ−θDA

λA+ 1
2DAθD

A
hrr−DAh

A
BD

B
θ

+θABDAD
B
h−θABD

B
DCh

C
A+ 1

2DAθD
A
h−θABD

B
λA+θABDAD

B
hrr

−θABDCD
B
h
C
A+θAB4h

B
A+ 1

2DAθ
B
CD

A
h
C
B

]
+ 1

4g
(
πrrπrrlog−ππrrlog+4πrAπrlogA+2πABπBlogA−πrrπlog−ππlog

)
. (B.5)

Then, the integral in (B.4) becomes

1
4

∮
d2x
√
g b

[
2hlog(1)

rr +4hlog(1)
rr + σ −DA

D
B
σAB +4σ + 1

2
(
3θABθBA − θ2

)]
(B.6)

+ 1
4

∮
d2x

b√
g

(
πrrπrrlog − π πrrlog + 4πrAπrlogA + 2πABπBlogA − πrrπlog − π πlog

)
(B.7)

− 1
4

∮
d2x
√
g b
(3

2h
A
Bθ

B
A −

1
2hrrθ −

1
2h θ − λAD

A
θ − θDA

λA + 1
2DAθD

A
hrr

−DAh
A
BD

B
θ + θABDAD

B
h− θABD

B
DCh

C
A + 1

2DAθD
A
h− θABD

B
λA

+ θABDAD
B
hrr − θABDCD

B
h
C
A + θAB4h

B
A + 1

2DAθ
B
CD

A
h
C
B

)
. (B.8)

It is easy to show that the integral in (B.6) is zero by virtue of the equation for the
boost parameter DADBb+ gABb = 0 (after integrating by parts) and the fact that
θAB is even and b is odd.
For the integral in (B.7), we can see that only the “pure gauge part” of the subleading
terms in the asymptotic expansion of the conjugate momentum, i.e.,

πrreven = −
√
g4Veven , (B.9)

πrAodd = −
√
g D

A
Veven , (B.10)

πABeven =
√
g (DA

D
B
Veven − gAB4Veven) , (B.11)

contributes to the surface integral. Thus, (B.7) reduces to∮
d2xb

(
−4DAV π

rA
log + 2DADBV π

AB
log

)
. (B.12)

If we integrate by parts, we get∮
d2x

[
4DAb

(
πrAlog +DBπ

AB
log

)
+ 2b

(
DADBπ

AB
log − πlog + 2DAπ

rA
log

)]
, (B.13)

where the equation for the boost parameter was used. If we now consider the
asymptotic constraint equations DAπ

AB
log + πrAlog = 0 and DADBπ

AB
log + πlog = 0, the

above integral is straightforwardly seen to vanish.
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Accordingly, it only remains to show that (B.8) is zero. Again parity considerations
imply that (B.8) reduces to

− 1
4

∮
d2x
√
g b

(3
2h

A
Bθ

B
A −

1
2h θ −DAh

A
BD

B
θ + θABDAD

B
h− θABD

B
DCh

C
A

+ 1
2DAθD

A
h− θABDCD

B
h
C
A + θAB4h

B
A + 1

2DAθ
B
CD

A
h
C
B

)
,

(B.14)

where only the pure gauge part of hAB (odd) contributes,

h
odd
AB = 2

(
DADBUodd + gABUodd

)
. (B.15)

Integrating by parts we get that (B.14) becomes

−1
4

∮
d2x
√
g Uodd

[
b
(
2DAD

B
θAB −DAD

B4 θAB + 2DA4D
B
θAB − 2DCDAD

C
D
B
θAB

+4DAD
B
θAB

)
+ ∂Ab

(
D
A
θ − 2DA

DBD
C
θBC + 2DBD

A
D
C
θBC

− 3DBD
C
D
A
θBC + 34DA

θ
)]
. (B.16)

Using that DAθBC = DBθAC and the commutators

[4, DB]θAB = 2DA
θ − 3DBθ

AB , (B.17)

[DA
,4]DB

θAB = DADBθ
AB , (B.18)

we conclude that (B.16) vanishes (and thus also (B.8)).

• We will now show that the ln r-divergent term

∮
d2x
√
g
[
b
(
2δσ+2δk(2)

log(1)+ 1
2δ(−3hBAθAB+hθ)−hrrδθ+ 1

4δ(3θ
B
Aθ

A
B−θ2)

+θDAδλ
A−2θABD

A
δλ

B−δθABD
A
λ
B
)
−∂Abλ

A
δθ−4bδ

(
DAṼ D

A
V
)]

(B.19)

is also zero. Parity conditions of the fields imply that the above integral reduces to

∮
d2x
√
g bδ

(
2σ + 2k(2)

log(1) −
3
2h

B
Aθ

A
B + 1

2hθ
)
. (B.20)

The condition H(2) = 0 in (4.15) allows one to obtain an expression for σ in terms of

– 42 –



J
H
E
P
0
2
(
2
0
2
3
)
2
4
8

the other asymptotic coefficients in the decay of the fields

σ = −1
2
(
2k(2)

log(1) − 2h(2)
rr −4h(2)

rr − h(2) +D
A
DBh

(2)B
A −4h(2) + 2h2

rr + hrr4hrr

+ 1
2DAhrrD

A
hrr + 3

4h
A
Bh

B
A −

1
4h

2 + h
A
BD

B
DAh− h

A
BDAD

C
h
B
C −

1
4DAhD

A
h

−DAh
A
BD

C
h
B
C +D

A
hDBh

B
A − h

A
BDCD

B
h
C
A + h

A
B4h

B
A −

1
2DAh

B
CD

C
h
A
B

+ 3
4DCh

B
AD

C
h
A
B −

1
2hrrh−

1
2DAhD

A
hrr +DAhrrD

B
h
A
B + h

B
AD

A
DBhrr

− hrrDAλ
A − 2λAD

A
hrr − λAD

A
h− hDAλ

A − hBAD
A
λB + 2λAλ

A

− 2λADADBλ
A −DAλ

A
DBλ

B + 2λA4λ
A − 1

2DAλ
B
DBλ

A + 3
2DAλBD

A
λ
B

+ 3
4θ

B
Aθ

A
B −

1
4θ

2 − 3
2h

B
Aθ

A
B + 1

2h θ − hrrθ + λAD
A
θ + θDAλ

A − θBADBλ
A
)

+ 1
2g
[1
2(πrr)2 + 2πrAπrA + πABπAB − πrrπ − π2

]
. (B.21)

Using parity conditions and the above relation, we find that (B.20) can be written as

−
∮
d2x
√
g b
(
− 2h(2)

rr −4h(2)
rr − h(2) +D

A
DBh

(2)B
A −4h(2)

)
(B.22)

−
∮
d2x
√
g b
(3

4h
A
Bh

B
A −

1
4h

2 + h
A
BD

B
DAh− h

A
BDAD

C
h
B
C −

1
4DAhD

A
h

−DAh
A
BD

C
h
B
C +D

A
hDBh

B
A − h

A
BDCD

B
h
C
A + h

A
B4h

B
A −

1
2DAh

B
CD

C
h
A
B

+ 3
4DCh

B
AD

C
h
A
B −

1
2hrrh−

1
2DAhD

A
hrr +DAhrrD

B
h
A
B + h

B
AD

A
DBhrr

− λAD
A
h− hDAλ

A − hBAD
A
λB
)

(B.23)

+
∮
d2xb

[ 1√
g

(1
2(πrr)2 + 2πrAπrA + πABπAB − πrrπ − π2

)
− 4
√
g DAṼ D

A
V
]
.

(B.24)

The integral in line (B.22) is zero as it follows from integration by parts and using
the relation DADBb+ gABb = 0 fulfilled by the Lorentz boost parameters.
The computation of the integral (B.23) is bit a more involved, but the idea is again
simple. We make use of the definition of hAB:

hAB = (hAB)even + 2(DADBUodd + gABUodd) . (B.25)

Introducing this expression into (B.23) and integrating by parts, we obtain that (B.23)
reduces to∮

d2x
√
g
{
DA

[
bD

A
(
4h−DAD

B
h
A
B +4hrr − 2DBλ

B
)]

+ 3b
(
4h−DAD

B
h
A
B +4hrr − 2DBλ

B
)}
Uodd , (B.26)

which clearly vanishes by virtue of the subleading order of the Hamiltonian constraint.
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Finally, in the integral (B.24) we make use of the definition of the subleading part of
the conjugate momentum

πrr = (πrr)odd −
√
g4Veven , (B.27)

πrA = (πrA)even −
√
g D

A
Veven , (B.28)

πAB = (πAB)odd +
√
g (DA

D
B
Veven − gAB4Veven) . (B.29)

Replacing these definitions in (B.24) and using the relations coming from the sublead-
ing order of the momentum constraint

DAπ
rA − πAA + πrrlog = 0 , (B.30)

DBπ
B
A + πrA + πrlogA = 0 , (B.31)

we find that∮
d2x

b√
g

(1
2(πrr)2 +2πrAπrA+πABπAB−πrrπ−π2

)
=
∮
d2x
√
g
(
4bDAṼ D

A
Veven

)
.

(B.32)
In consequence, (B.24) vanishes. Thus, we have shown that the ln r-divergence in the
boost charge is zero.

This completes the proof of convergence of δQξ.

C Transformation laws of the subleading terms

In this appendix we list without comment the transformation laws of the subleading terms
in the fall-off of the fields that are useful to compute the algebra.

• Subleading terms of the metric

δξ,ξih
(2)
rr =Y A∂Ah

(2)
rr +IA∂Ahrr−2IAλA+2ĨAλA+2W̃hrr−Whrr−2W (1)

+ T√
g

(πrr−π)+ b

2√g
(
2πrr(2)−2π(2)+3hrrπrr−hrrπ+4λAπrA

−2hABπAB−hπrr+hπ
)
, (C.1)

δξ,ξih
(2)
rA =LY h(2)

rA+LIλA−IBhAB+ĨBhAB+W̃λA+∂AWhrr+∂AW (1)−2I(1)
A

+ 2T√
g
πrA+ b√

g

(
2πr(2)A+hrrπrA−hπrA+2hABπrB+2λBπBA+λAπrr−λAπ

)
,

(C.2)

δξ,ξih
(2)
AB =LY h(2)

AB+LIhAB+2∂(AWλB)+WθAB+WhAB+2
(
D(AI

(1)
B) +gABW (1)

)
+ T√

g
[2πAB−gAB (πrr+π)]+ b√

g

[
2π(2)

AB−hABπrr+4λ(Aπ
r
B)−hrrπAB

−hπAB+4hC(AπB)C−hABπ+gAB
(
−π(2)

rr −π(2)− 1
2hrrπ

rr+ 1
2hπ

rr

−2λAπrA−hABπAB+ 1
2hrrπ+ 1

2hπ
)]
, (C.3)
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δξ,ξiσAB =LY σAB+LIθAB+LĨhAB+2∂(AW̃λB)+W̃θAB+W̃hAB+WθAB

+ 2T̃√
g
πrA+ 2T√

g
πrlogA+ b√

g

(
2πrlog(1)A+λAπrrlog−θπrA+2θABπrB

+hrrπrlogA−hπrlogA+2hABπrBlog +2λBπBlogA−λAπ
)
. (C.4)

• Subleading term of the momentum

δξ,ξiπ
rA
(2) =LY πrA(2)+LIπrA+IAπrr−ĨAπrr−∂BWπAB−WπrA+WπrAlog

+
√
gT

2
(
DBh

AB+4λA+DBD
A
λ
B−2DA

DBλ
B−DA

hrr−D
A
h
)

+
√
g

2 D
A
T
(
hrr−h

)
+
√
g

2 ∂BT
(
3hAB−θAB+DB

λ
A−DA

λ
B
)

+
√
g
(
λ
A4T−λBD

B
D
A
T
)

+
√
g T̃

2
(
4λA+DA

hrr
)

+
√
g

2 D
A
T̃
(
h−hrr

)
−
√
g∂BT̃ h

AB−2
√
gD

A
T (1)+ b√

g

(
−πrrπrA+ππrA−2πrBπAB

)
+
√
g∂Ab

(
h(2)A
r +DBk

AB
(2) −D

A
k(2)−2hABλ

B− 7
2hrrλ

A+hλA− 1
2R(1)λ

A

+θλA+ 3
4h

A
BD

B
h− 1

4θ
A
BD

B
h− 1

2hrrD
B
h
A
B+DB

h
(2)A
B − 1

2h
A
BD

B
θ

−2λADBλ
B+ 1

4h4λ
A− 1

2h
A
BDCD

B
λ
C+ 1

4hDBD
A
λ
B− 1

2h
A
BD

B
hrr

+ 1
4∂BhD

B
λ
A− 1

2λBD
B
D
A
hrr−h

A
BD

C
h
B
C+ 1

2θ
A
BD

C
h
B
C−

1
2DBλ

A
D
C
h
B
C

− 1
2h

B
CD

C
h
A
B+ 1

4hD
B
h
A
B+ 1

2h
A
BD

C
h
B
C+ 1

2h
B
CD

C
θAB−

1
4hD

B
θAB−

1
2h

A
B4λ

B

+hABD
B
DCλ

C− 1
2h

B
CD

C
DBλ

A− 1
2h

B
CD

C
D
A
λB+ 1

2D
A
h(2)
rr −

5
4hrrD

A
hrr

+ 1
2hD

A
hrr+ 3

4h
B
CD

A
h
C
B−

1
4θ

B
CD

A
h
C
B+ 1

2DBλ
C
D
A
h
B
C+ 1

2hrrD
A
h− 1

4hD
A
h

−DA
h(2)− 1

2h
B
CD

A
θCB+ 1

4hD
A
θ−λBD

A
λ
B+ 1

4DBhD
A
λ
B− 1

2D
C
h
B
CD

A
λB

− 1
2hD

A
DBλ

B+ 1
2λBD

A
D
B
hrr+hBCD

A
DBλ

C
)
. (C.5)

Note that

T̃ → T̃ + T̃(b) , (C.6)
T → T + T(b) , (C.7)

ĨA → D
A
W̃ + ĨA(b) , (C.8)

IA → IA + IA(b) , (C.9)

where

T̃(b) = ∂Abλ
A −

(
4+ 2

)−1 (
DADB + gAB

) [
b

(
D
A
λ
B − 1

2θ
AB
)]

, (C.10)

– 45 –



J
H
E
P
0
2
(
2
0
2
3
)
2
4
8

T(b) = −1
2bh , (C.11)

ĨA(b) = 2b√
g
πrAlog , (C.12)

IA(b) = 2b√
g
πrA . (C.13)
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