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1 Introduction

Chiral gauge theories play a key role in the description of fundamental interactions. For
example, the Standard Model (SM) of strong and electroweak interactions exhibits a chiral
fermion content with respect to the gauge group SU(3)×SU(2)×U(1). While there are good
reasons to believe that the SM is incomplete in several respects, the absence of confirmed
signals of new physics suggests charting possible SM extensions in terms of effective chiral
gauge theories, such as the SM effective field theory (SMEFT).

Quantization and renormalization of chiral gauge theories, defined by their symmetry
and field content, are well-understood today. In particular, the framework of algebraic renor-
malization [1–13], relying on general properties of perturbative quantum field theories such
as the Power Counting Theorem [14, 15] and the Quantum Action Principle [16–19], allows to
show how symmetries (local or rigid) are preserved1 in perturbation theory. The great advan-
tage of algebraic renormalization is its independence from the particular regularization used.

A regularization scheme should nonetheless be specified for practical computational
purposes. The most convenient choice is provided by schemes preserving as many symmetries
as possible of the underlying theory. However, the very existence of gauge anomalies prevents
adopting a scheme where chiral gauge symmetries are maintained. Even when the field
content is anomaly-free, any consistent regulator leads to a breaking of gauge invariance,
which manifests itself in the amplitudes evaluated in perturbation theory.2

Such amplitudes are required to satisfy the Ward Identities (WI) arising from the gauge
symmetry of the theory. However, these identities are spoiled by contributions introduced
by the regularization procedure. To remove the unwanted terms, different approaches are
possible. The most elementary one is to disregard the undesired contributions, thus enforcing
the WI by hand. This procedure has the disadvantage of requiring the identification of
the correct set of WI amplitude by amplitude. Moreover, since the resulting subtraction is
defined up to gauge-invariant contributions, independently for each process, ambiguities
may arise when comparing different processes.

In a more comprehensive approach we can analyze (and repair) the breaking of gauge
invariance induced by the regularization procedure directly at the level of the effective
action, the generating functional of the one-particle irreducible (1PI) Green’s functions, thus
effectively handling all possible amplitudes at once [4, 10, 13, 23–27]. Owing to symmetries,
the effective action is bound to satisfy WI in the form of functional identities.3 These identi-
ties are violated in perturbation theory by terms that are severely constrained. In particular,
the Quantum Action Principle requires such terms to be finite local polynomials in the fields
and their derivatives, of bounded dimensionality, order by order in perturbation theory.
Moreover, if the theory is anomaly free, they are trivial solutions to the Wess-Zumino (WZ)
consistency conditions [28]. As a consequence, they can be expressed as gauge (or BRST)
variations of integrated local polynomials that provide viable counterterms to recover the WI.

1Or violated by anomalies [21, 22].
2In a path-integral formulation, the breaking of gauge invariance can come from the non-invariance of

either the classical action or the integration measure or both.
3These are the non-linear Slavnov-Taylor (ST) identities associated to the rigid BRST symmetry of the

quantized theory, or else WI related to ordinary gauge invariance if the Background Field Method and the
Background Field Gauge are adopted.
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Each regularization scheme, combined with a subtraction procedure to remove diver-
gences, requires its own set of WI-restoring finite counterterms. In fact, the above strategy
has already been pursued in the context of dimensionally regularized (DR) [29, 30] chiral
gauge theories. In the specific cases that have been analyzed so far only a single chirality of
a given Dirac fermion is charged [24–27], with the remaining one being sterile. Such studies
are therefore not convenient for an application to the SM, where the natural basis involves
Dirac fermions with both chiralities charged under the gauge group. In addition, to the best
of our knowledge, a concrete derivation of the whole set of counterterms, independently
from the adopted regularization scheme and for arbitrary chiral fermion charges and general
(non-simple) gauge group, has not yet been presented. In this work we discuss this general
problem and show how it can be solved in the one-loop approximation. Explicit general
expressions for WI-restoring counterterms, adaptable to a wide class of chosen regularization
schemes, can be of great utility for automated computations, such as those carried out
today within the SMEFT [31–33]. As described in section 2, in this paper we deal with a
renormalizable chiral gauge theory depending on gauge bosons and fermions only, though
there is no obstacle in extending our method to theories involving scalars, such as the SM,
or to nonrenormalizable theories, such as the SMEFT. Indeed we consider this work as
the first step of an approach meant to cover a wider range of applications. We assume an
arbitrary regularization scheme, required to satisfy a few very general requirements, such
as the Quantum Action Principle, Lorentz invariance, and gauge invariance in the limit
where the theory is vector-like. Our treatment of fermions is completely general: we include
fermions of both chiralities, which can transform under arbitrary representations of the
gauge group, the latter being associated with a general (non-simple) compact Lie algebra.
Only physical fields (apart from ghosts) are present. In this sense our approach is minimal.

We find it useful to quantize the theory within the background field method and to
adopt the background field gauge fixing [34–38]. The latter preserves gauge invariance at
the level of background fields, up to anomalies and regularization effects. The effective
action is therefore bound to be a gauge-invariant functional of the background fields. As a
consequence of the Quantum Action Principle, the gauge variation of the one-loop effective
action (evaluated in perturbation theory within a given regularization) is a four-dimensional,
Lorentz-invariant, finite local polynomial in the fields and their derivatives, that vanishes
when the theory is vector-like. Moreover, by treating CP and P as spurious symmetries,4

the gauge variation of the one-loop effective action turns out to be P-even and CP-odd.
It is then straightforward to expand such gauge variation in a basis of local operators

with the desired symmetry properties. This expansion is characterized by a redundant set
of coefficients. We can lift this redundancy by requiring the gauge variation of the one-loop
effective action to satisfy the WZ consistency conditions, which hold for any gauge theory,
whether anomalous or not. This request translates into a set of linear equations relating
the coefficients of the expansion and reduces the initial set of coefficients to an irreducible
one. As shown in section 3, these first steps allow to parametrize in the most general

4Formal invariance under CP and P is achieved if the generators of the group behave as spurions with
well-defined transformation properties, as described below.
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and non-redundant way the gauge variation of the effective action at the one-loop order,
independently from the adopted regularization. Similarly, we can build the most general
parametrization of the one-loop finite counterterm necessary to restore the WI as a linear
combination of integrated local operators with the correct symmetry properties. We finally
require that, up to gauge anomalies, the gauge variation of the finite counterterm reproduces
the gauge variation of the effective action. This allows to uniquely determine the parameters
describing the counterterm in terms of those entering the variation of the effective action. As
expected, we find that restoring the WI by means of a finite counterterm is always possible
as long as the fermion field content is non-anomalous. We stress that, for non-anomalous
theories, our result unambiguously determines the counterterm that reestablishes gauge
invariance, for the entire class of regularizations satisfying the properties outlined above.

Nowadays the most widely used regularization in practical calculations is dimensional
regularization. Within DR, only the Breitenlohner-Maison/’t Hooft-Veltman (BMHV)
scheme [39] has been shown to provide a consistent treatment of γ5 at all orders in
perturbation theory. In section 4 we derive explicit expressions for the gauge variation of
the effective action and the necessary counterterm at one loop, using DR and the BMHV
scheme, which has already been implemented in tools for automated computations, such
as FeynCalc or Tracer. Our formalism allows to determine the full set of counterterms
needed to cast one-loop results in a fully gauge-invariant form in the background field gauge.
The calculation is performed via path integral techniques and checked diagrammatically.
The outcome is of course consistent with the general results of section 3.

A paradigmatic example of chiral gauge theory is the Standard Model. Indeed, to
illustrate our results, in section 5 we work out the counterterms needed at one loop using
DR and the BHMV scheme, in the limit of vanishing Yukawa couplings.

This paper is structured as follows. In section 2 we recall the classical and effective action
for a chiral gauge theory and discuss three important ingredients of algebraic renormalization,
namely the Ward Identities, the Wess-Zumino conditions, and the Quantum Action principle.
In section 3 we put these to use to determine the gauge variation of the effective action
and the WI-restoring counterterm at the one-loop order for any regularization scheme
respecting the Quantum Action Principle, Lorentz invariance, hermiticity of the action,
vectorial gauge symmetry, and P and CP. Section 4 is dedicated to deriving the gauge
variation of the effective action and the WI-restoring counterterm at one loop for the
specific case of Dimensional Regularization. Finally, in section 5 we apply our results
to the SM. In the appendices, we provide some auxiliary expressions used in sections 3
and 4. Appendix A contains results relevant to the general solution of the WZ conditions
of section 3. Appendix B provides details about the computation in section 4.

2 The theory

We consider a theory based on a compact gauge group G, with gauge fields Aaµ (a =
1 . . . dim(G)), and fully antisymmetric structure constants fabc. In general the gauge group
is the direct product of NG simple groups G =

∏
G GG (with G = 1, . . . , NG), possibly

including U(1) factors. In this case the index a runs over the adjoint representation of each
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simple group, and similarly fabc is the direct sum of the structure constants fGabc of each GG.
Throughout sections 1, 2 and 3, Lorentz indices run from 0 to 3 and are denoted by Greek
letters µ, ν, etc. In section 4, when using DR to exemplify our results, this notation will be
slightly modified.

The matter content consists of two sets of massless chiral fermions, fL and fR, transform-
ing under G according to representations characterized by hermitian generators T aL and T aR:

[T aX , T bX ] = ifabcT
c
X , X = L,R . (2.1)

We are interested in chiral gauge theories, where T aL and T aR describe inequivalent represen-
tations. An example is provided by theories where T aL(R) = 0 and T aR(L) is nontrivial, as in
the case of the SU(2) component of the Standard Model gauge group. Yet, our formalism
encompasses all possible (chiral as well as vector-like) gauge theories with fermions.

In general, the representations described by T aL and T aR are reducible and their de-
composition in irreducible representations contains trivial components. We exploit this
possibility to describe the generators T aL and T aR using matrices of the same dimension. As
a concrete example, consider hypercharge in the Standard Model. Its action on left-handed
fermions can be described via a single generator acting on eight left-handed spinors per
generation (six in the quark sector and two in the lepton sector). Its right-handed analogous
instead acts non-trivially only on seven right-handed spinors per generation (six quarks and
one lepton). Nevertheless, we can formally extend the matrix describing the right-handed
generator by one trivial row and column per generation, to match the dimensionality of the
left-handed one. Similarly, the multiplet fR may be extended to include a dummy degree of
freedom, a right-handed neutrino, which however does not play any role in our discussion
and can be safely set to zero.

While our focus is on theories with matter and gauge fields, fundamental scalars can
be discussed along similar lines. This extension is left for future work.

2.1 Classical action before regularization

The most general renormalizable bare action describing the dynamics of a set of fermionic
fields f charged under the gauge group G is:

S[A, fX , f̄X ] =
∫
d4x (LYM + LFermions) , (2.2)

where X = L,R, LYM is the usual Yang-Mills Lagrangian, and LFermions includes kinetic
terms and gauge interactions of the fermions. Since we allow the gauge group to be the
direct product of simple groups G =

∏
G GG, the kinetic term of the gauge fields is controlled

by a diagonal matrix 1/Gab =
∑
G δ

ab
G /g

2
G, where gG and δabG are the gauge coupling and

the identity in the adjoint representation of GG, respectively. Explicitly, we write:

LYM = − 1
4Gab

F aµνF
bµν , (2.3)

LFermions = f̄Li /DfL + f̄Ri /DfR , (2.4)
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where the left- and right-handed fermions are defined as

fL = PLf, fR = PRf, (2.5)

with PL = 1
2(1 − γ5) and PR = 1

2(1 + γ5) the hermitian chirality projectors, satisfying
P 2
L(R) = PL(R) and PL + PR = 1. The field strength of the gauge fields and the fermion

covariant derivatives are defined for X = L,R as

F aµν = ∂µA
a
ν − ∂νAaµ − fabcAbµAcν ,

DµfX = (∂µ + iAaµT
a
X)fX , (2.6)

and /D = γµDµ.5 The bare action is left invariant by the continuous local gauge transfor-
mations:

δαAaµ = ∂µαa + fabcαbAcµ ,

δαfX = −iαaT aXfX , (2.7)

αa being an infinitesimal gauge parameter. Given an arbitrary functional F [A, fX , f̄X ] of
the fermions and the gauge fields, we can write its gauge variation as

δαF [A, fX , f̄X ] ≡
∫
d4xαa(x)La(x)F [A, fX , f̄X ] , (2.8)

where the differential operator La is

La(x) = −∂µ
δ

δAaµ(x) + fabcAbµ(x) δ

δAcµ(x) (2.9)

+
∑

X=L,R
−i

←−
δ

δfX(x)T
a
XfX(x) + if̄X(x)T aX

δ

δf̄X(x)
.

With this notation, the gauge invariance of the action, and similarly of any gauge-invariant
functional, reads δαS[A, fX , f̄X ] = 0. Because this holds for any value of the gauge
parameters, it is equivalent to writing the local relation

La(x)S[A, fX , f̄X ] = 0 . (2.10)

In the following, we will refer to the identity La(x)F [A, fX , f̄X ] = 0 as to the Ward Identity
for the functional F [A, fX , f̄X ].

From the algebra (2.1) of the gauge group, it follows that any functional F [A, fX , f̄X ]
of the fields and their derivatives satisfies the Wess-Zumino consistency conditions [28]:

[La(y), Lb(x)]F [A, fX , f̄X ] = −δ(4)(x− y)fabcLc(x)F [A, fX , f̄X ] . (2.11)

If F [A, fX , f̄X ] is gauge invariant, these equations are trivially satisfied, since both sides
vanish identically. If instead F [A, fX , f̄X ] is not gauge invariant, eq. (2.11) becomes a
non-trivial constraint, which will play an important role in our analysis.

5Note the conventional sign of the vector field in the covariant derivative.
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A chiral gauge theory featuring only gauge bosons and fermions is always invariant
under CP, provided CP transformations are conveniently defined [43]. On the other hand,
P is not a symmetry unless the theory is vector-like. Nevertheless, we can always define a
generalized, spurious P symmetry that leaves the bare action invariant. Such a generalized
P formally acts on the fields as ordinary P and on the generators, viewed as spurions, in an
appropriate way. The resulting combined action reproduces ordinary P in any P-invariant
theory, but is formally conserved even in theories that do not respect P, like chiral theories.
Actually, in order to fully exploit the selection rules associated to both discrete symmetries
we find it convenient to define both CP and P as spurious transformations, acting on the
gauge and fermion fields as

xµ
CP−−→ xµ , xµ

P−→ xµP = xµ ,

∂µ
CP−−→ ∂µ , ∂µ

P−→ ∂µ ,

Aaµ(x) CP−−→ −Aµa(xP ) , Aaµ(x) P−→ Aµa(xP ) ,

fL,R(x) CP−−→ Cf∗L,R(xP ) , fL,R(x) P−→ γ0fR,L(xP ) ,

(2.12)

where C denotes the well-known charge conjugation matrix, and on the generators as

T aL(R)
CP−−→ T aTL(R) , T aL(R)

P−−→ T aR(L) . (2.13)

We emphasize that the latter relation implies that the structure constants transform as

fabc
CP−−→ −fabc , fabc

P−−→ fabc . (2.14)

The transformations in eqs. (2.12)–(2.13) are formally symmetries of any theory defined
by a classical action of the type (2.2). This restricts the structure of the counterterms
needed to enforce the WI of the theory, provided one adopts a regularization respecting
these symmetries. As a final remark, we note that the operator La is CP-odd and P-even.
Indeed, the CP and P transformations of eq. (2.7), together with eq. (2.13), demand that
αa be formally treated as a CP-odd and P-even spurion. Thus, eq. (2.8) implies that La is
CP-odd and P-even.

2.2 Regularization: the need of local counterterms

Going beyond the tree level, a regularization is needed. It is well known that in chiral
gauge theories there is no consistent regularization procedure capable of preserving gauge
invariance at the quantum level. This fact is at the origin of physical anomalies [21, 22].
The absence of gauge anomalies is guaranteed if the fermion content of the theory satisfies
the well-known condition [44]:

Dabc = tr(T aL{T bL, T cL})− tr(T aR{T bR, T cR}) = 0 . (2.15)

Yet, even if this condition holds, amplitudes computed in perturbation theory do not
generally satisfy the WI. This is because the regularization procedure introduces scheme-
dependent contributions to amplitudes beyond those removed by eq. (2.15). Such sources
of spurious, unphysical breaking of gauge invariance can always be removed by adding
appropriate local counterterms to the classical action in eq. (2.2).6 Our analysis provides a

6No counterterm can repair the breaking of gauge invariance induced by a violation of eq. (2.15).
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general characterization of the counterterms required at the one-loop level in a chiral gauge
theory, which applies to a large class of regularization schemes. Explicit expressions for
such counterterms are then derived using dimensional regularization (DR).

Let us explain our plan in some detail. The quantization of a gauge theory requires the in-
troduction of a gauge-fixing term and a Faddeev-Popov term. Independently from the chosen
regularization, these terms necessarily break the original gauge invariance, leaving the classi-
cal action invariant under BRST transformations. As a result, the effective 1PI action, as well
as all Green’s functions of the theory, no more obey linear Ward Identities of the type shown
in eq. (2.10), but rather non-linear Slavnov-Taylor identities. Whenever a non-symmetric
regulator is adopted, the identification of the counterterm that must be added to the bare
action in order to restore the ST identities is unavoidably complicated by the non-linearity
of such identities, as well as by the involved structure of the BRST symmetry [24, 26].

Here we follow a different path and quantize the theory with the background field
method [34–38]. Concretely, within the background field method the 1PI effective action is
obtained by re-writing any field, including ghosts, as the sum of a classical background φ
plus a quantum fluctuation φ̃, and then integrating over the quantum fluctuations including
only one-particle irreducible diagrams. In particular, the regularized 1PI effective action
can be written as

eiΓ
reg[φ] =

∫
1PI
Dφ̃ eiS

reg
full[φ+φ̃] , (2.16)

where Sreg
full ≡ Sreg + Sreg

g.f. + Sreg
ghost is the sum of the regularized action, an appropriate

gauge-fixing term, and the associated ghost action. The gauge-fixing Lagrangian is chosen
to be

Lg.f.[φ+ φ̃] = − 1
2ξ fafa , (2.17)

where
fa = ∂µÃ

µ
a − fabcAbµÃµc . (2.18)

The gauge-fixing action Sreg
g.f. serves its standard purpose of breaking gauge invariance. In

particular, it is not invariant under gauge transformations of the quantum field. Yet Sreg
g.f.

(and, as a consequence, Sreg
ghost) is manifestly invariant under background gauge transforma-

tions. The latter act as a standard gauge transformation on the background Aµa , and as a
linear re-definition of the integration variable Ãµa . For all fields transforming linearly under
the original gauge symmetry, both the quantum fluctuation and the classical background
transform exactly as the original field, and the distinction between standard and background
transformations is not relevant.

As mentioned above, the invariance of the gauge-fixed action under background gauge
transformations is the main advantage of the background field method. If one introduces
sources for the quantum fields only, all generating functionals are also manifestly background-
gauge invariant and satisfy linear Ward Identities as in eq. (2.10), up to the regularization-
dependent effects mentioned earlier. In particular, the background gauge symmetry, along
with (2.15), guarantees that the unique source of violation of the WI is the regularization
procedure. The linearity of such relations significantly simplifies the search for the WI-
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restoring counterterms because, as opposed to the non-linear Slavnov-Taylor equations, the
linear WI relate only Green’s functions of the same order in perturbation theory [10, 11].7

In our treatment we adopt a regularization scheme preserving the vectorial gauge
transformations, four-dimensional Lorentz invariance, the generalized P and CP symmetries
defined in eqs. (2.12) and (2.13) and the Quantum Action Principle [5, 16, 17, 20]. As
a starting point, we assume that a consistent subtraction procedure is defined, making
it possible to evaluate the renormalized functional Γ[φ] from Γreg[φ]. At this stage we
do not need to specify either how this subtraction is performed or which renormalization
conditions are imposed; we will do so in section 4, when performing explicit calculations
within DR. Here we simply assume that this subtraction renders Γ[φ] finite order by order
in perturbation theory. As we now show, the proof that finite counterterms can be added
such that Γ[φ] satisfies the WI proceeds by induction. Suppose that we have successfully
identified an action Γ[φ] that satisfies the WI of the theory up to loop order n−1 (included):

La(x)Γ[φ]|(k) = 0 k ≤ n− 1 , (2.19)

where Γ[φ]|(k) stands for the k-order in the loop expansion of Γ[φ]. Although in general the
WI will be broken at order n, the Quantum Action Principle guarantees that

La(x)Γ[φ]|(n) = (∆a · Γ)(x) = ∆a(x)|(n) +O(~n+1) . (2.20)

Here ∆a · Γ is the generating functional of the amputated 1PI Green’s functions with one
insertion of a local polynomial in the fields, ∆a|(n), formally of order ~n.8 In the rest of
the paper, the expressions La(x)Γ|(n) and ∆a|(n) will be used interchangeably. By power
counting follows that ∆a|(n) is a dimension-four polynomial. According to our assumptions,
it should be CP-odd and P-invariant as well as invariant under the four-dimensional Lorentz
symmetry and should vanish when T aL = T aR.

Moreover ∆a|(n) must satisfy the WZ consistency conditions (2.11):

La(y) ∆b(x)|(n) − Lb(x) ∆a(y)|(n) = −δ(4)(x− y)fabc ∆c(x)|(n) . (2.21)

Theories complying with the criterion (2.15) have no anomalies, and the most general
solution of eq. (2.21) at order n is:

∆a(x)|(n) = −La(x) Sct[φ]|(n) , (2.22)

where Sct[φ]|(n) =
∫
d4y Lct(y)|(n) is an integrated local polynomial of order ~n in the fields

and their derivatives invariant under the four-dimensional Lorentz group, CP and P, and
7In the background field method the full set of identities satisfied by the generating functional Γ[φ] involves

also non-linear Slavnov-Taylor relations associated with the invariance under BRST (see e.g. ref. [11]). How-
ever, if one is solely interested in the correlation functions of the background fields, as we are here, the subset of
linear Ward identities associated with background gauge invariance is necessary and sufficient to find all gauge-
restoring counterterms at one loop. The extension of our results to n-loop order would instead require imposing
Slavnov-Taylor identities on correlators involving ghosts and quantum fluctuations at loop order n− 1.

8In the last step of eq. (2.20) we used the fact that at tree-level the only non-vanishing correlator functions
involving ∆a|(n) are those that contain precisely the fields appearing in ∆a|(n), and the corresponding
contribution to the one-particle irreducible action reads ∆a, where by a slight abuse of notation the latter is
now interpreted as being a functional of the background fields.
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the vectorial gauge symmetry. We can next define:

Γinv[φ]|(n) = Γ[φ]|(n) + Sct[φ]|(n) , (2.23)

obtaining:

La(x)Γinv[φ]|(n) = O(~n+1) . (2.24)

The spurious noninvariant contributions induced by the regularization procedure are now
removed, and gauge invariance is restored at order O(~n). After adding the n + 1-loop
contributions and implementing the subtraction procedure, we get a new functional Γ[φ]|(n+1)
and we can repeat the above steps to enforce the WI at O(~n+1).

One of our main results is the determination of the counterterm within the DR scheme
at the one-loop order. We will see that DR can be made to comply with our symmetry
requirements; in particular, it satisfies the Quantum Action Principle [39]. It is important
to stress that the explicit form of the gauge variation of the effective action, as well as the
countertem, does depend on the regularization scheme. Yet, as we show in the following
section, several important features can be deduced solely from the general considerations
presented in the previous paragraph and apply to all regularization schemes that preserve
Lorentz invariance, hermiticity of the action, vectorial gauge transformations as well as
generalized P and CP. Explicit results for DR will be presented in section 4.

3 One-loop analysis for generic regularization schemes

As discussed above, whenever the theory is anomaly free the WI identities can be restored
order by order by adding a counterterm to the classical action. The goal of this section is to
determine the structure of the gauge variation of the effective action and the counterterm
at the one-loop order, i.e. ∆a|(1) and Sct[φ]|(1), for any regularization scheme respecting:

i) the Quantum Action Principle,

i) four-dimensional Lorentz-invariance,

ii) hermiticity of the action,

iii) vectorial gauge symmetry,

iv) the generalized P and CP symmetries of eqs. (2.12), (2.13).

As we show in the following, these rather general hypotheses significantly constrain the
form of ∆a|(1) and Sct[φ]|(1).

3.1 A basis for the gauge variation and the counterterm

We start by providing a convenient representation for both ∆a|(1) and Sct[φ]|(1). As discussed
above, the former is a finite local polynomial of dimension four in the gauge and fermionic
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monomial explicit expression CP P

I0
a �∂µAaµ − +

I1
ab εµναβ(∂αAaµ)(∂βAbν) − −

I2
ab Aaµ(∂µ∂ν −�gµν)Abν + +

I3
ab Aaµ�A

µ
b + +

I4
ab (∂νAaµ)(∂νAµb ) + +

I5
ab (∂νAaµ)(∂µAνb ) + +

I6
ab (∂µAaµ)(∂νAbν) + +

I7
abd (∂µAµa)AbνAνd − +

I8
abd (∂µAνa)AbµAνd − +

I9
abd εµναβ(∂βAaµ)AbνAdα + −

I10
abde AaµA

µ
bAdνA

ν
e + +

I11
abde εµνρσAaµAbνAdρAeσ − −

I12
Xij f̄Xi

−→
/∂ fXj −f̄Xj

←−
/∂ fXi f̄X̃i

−→
/∂ fX̃j

I13
Xij f̄Xi

←−
/∂ fXj −f̄Xj

−→
/∂ fXi f̄X̃i

←−
/∂ fX̃j

I14
Xaij f̄Xi /AafXj +f̄Xj /AafXi f̄X̃i /AafX̃j

Table 1. Basis of local, dimension-four operators depending on gauge bosons, fermions and their
derivatives entering the decomposition of ∆a|(1). Lorentz indices µ, ν,. . . run from 0 to 3. Also
shown are the transformation properties under CP and P. For the fermion bilinears I12

Xij , I13
Xij , and

I14
Xaij , i, j being flavour indices, we explicitly display their CP- and P-transformed versions, with
L̃(R̃) = R(L).

fields, and their derivatives.9 We can thus expand it in a basis of monomials involving only
gauge and fermion fields:

∆a(x)|(1) =
14∑
k=0

CkaAI
k
A(x) , (3.1)

where a sum over X = L,R is understood. The monomials IkA, where the label A collectively
denotes the relevant set of indices, are collected in table 1, along with their CP and P prop-
erties. The resulting basis coincides with the one already identified in ref. [24]. Observable
quantities are basis-independent, thus any other choice of basis would be equally good.

The symmetry properties of the IkA imply:

C1
abc =C1

a(bc) , C4
abc =C4

a(bc) , C5
abc =C5

a(bc) , C6
abc =C6

a(bc) , C7
abcd =C7

ab(cd) ,

C9
abcd =C9

ab[cd] , C10
abcde =C10

a(bc)(de) =C10
a(de)(bc) , C11

abcde =C11
a[bcde] , (3.2)

9We neglect a possible dependence of ∆a|(1) on ghosts. As will be discussed in section 4, these do not
contribute to ∆a at the one-loop level.
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monomial explicit expression coefficient CP P

I1
ghl (∂νAµg )AhνAlµ ξ1

ghl − +

I2
gh Agµ�A

µ
h ξ2

gh + +

I3
gh Agµ∂

µ∂νAhν ξ3
gh + +

I4
ghl εµνρσAgµAhν(∂ρAlσ) ξ4

[gh]l + −

I5
ghlm εµνρσAgµAhν AlρAmσ ξ5

[ghlm] − −

I6
ghlm AgµA

µ
h AlνA

ν
m ξ6

(gh)(lm) + +

I7
Xij f̄Xi

−→
/∂ fXj ξ7

Xij ξ7
Xji ξ7

X̃ij

I8
Xaij f̄Xi /AafXj ξ8

Xaij ξ8
Xaji ξ8

X̃aij

Table 2. Basis of local, dimension-four operators, depending on gauge bosons, fermions and their
derivatives relevant to build the counterterm Sct. Lorentz indices µ, ν,. . . run from 0 to 3. Also
shown are the corresponding coefficients and their transformation properties under CP and P. For
the fermion bilinears we explicitly display their CP- and P-transformed, with L̃(R̃) = R(L).

where (a1 . . . an) and [a1 . . . an] denote symmetrization and antisymmetrization over the
indices inside the parenthesis. For example, C1

a(bc) = (C1
abc + C1

acb)/2, C9
ab[cd] = (C9

abcd −
C9
abdc)/2, whereas C11

a[bcde] involves the anti-symmetrization of the four indices bcde. The
decomposition of eq. (3.1) is general, and applies to any regularization scheme satisfying
the properties i)–iv). We can further constrain this parametrization by observing that
the effective action must fulfill the WZ conditions, hence its variation ∆a|(1) must satisfy
eq. (2.21). Plugging the decomposition (3.1) in (2.21), a set of relations among the
coefficients CkaA is obtained. We collectively denote them as

WZ[CkaA] = 0 , (3.3)

and provide their explicit expressions in appendix A.1. It is worth stressing that the
mutual dependence among the coefficients implied by eq. (3.3) is not related to the linear
dependence among the elements of the chosen basis, but is rather a consequence of the Lie
algebra satisfied by the group generators.

Also the polynomial Lct defining the counterterm Sct[φ]|(1) can be expanded in a basis.
At variance with the elements IkA, which always occur unintegrated, Lct is integrated over
spacetime. Since monomials related by integration by parts do not produce independent
terms in Sct[φ]|(1), we can expand Lct in a basis consisting in a subset of the one introduced
above:

Sct[φ]|(1) =
∫
d4y Lct(y) =

∫
d4y

8∑
j=1

ξjBI
j
B(y) , (3.4)

where the label B collectively denotes the relevant set of indices and a sum over X = L,R

is understood. The monomials IjB and their CP and P properties are displayed in table 2.
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Exchanging the gauge indices we deduce the following constraints on the coefficients:

ξ4
ghl = ξ4

[gh]l , ξ5
ghlm = ξ5

[ghlm] , ξ6
(gh)(lm) = ξ6

(lm)(gh) . (3.5)

By computing the gauge variation of Sct[φ]|(1), we find:

La(x)Sct[φ]|(1) = −(ξ2
ba + ξ2

ab + ξ3
ba + ξ3

ab) I0
a(x) + 2ξ4

[ab]cI
1
bc(x)

+
(
ξ1
abc + ξ1

acb − ξ1
cba + (ξ3

cd + ξ3
dc)fdab

)
I2
bc(x)

+ [(ξ1
abc + ξ1

acb − ξ1
cba − ξ1

cab) + (ξ2
cd + ξ2

dc + ξ3
cd + ξ3

dc)fdab] I3
bc(x)

− ξ1
cabI

4
bc(x) + (ξ1

abc − ξ1
cba)I5

bc(x)
+ ξ1

abcI
6
bc(x)

− (faceξ1
ebd + 4 ξ6

(ab)(cd))I
7
bcd(x)

+ (fadeξ1
bce − fadeξ1

ecb + faceξ
1
bed − 8 ξ6

(ac)(bd))I
8
bcd(x)

+ 4 fabgξ6
(gc)(de)I

10
bcde

+
(
12 ξ5

[abcd] + 2face(ξ4
[de]b − ξ

4
[bd]e)

)
I9
bcd(x)

+ 4 fabgξ5
[gcde] I

11
bcde(x)

+ i(T aXξ7
X + iξ8

Xa)ijI12
Xij(x)

+ i(ξ7
XT

a
X + iξ8

Xa)ijI13
Xij(x)

+ i(TAXξ8
Xb − ξ8

XbT
a
X − ifabcξ8

Xc)ijI14
Xbij(x) .

=
14∑
k=0

ĈkaA(ξ)IkA(x) . (3.6)

Again, a sum over X = L,R is understood. Explicit expressions for the coefficients ĈkaA
as a function of the coefficients ξiB appearing in the counterterm are provided in table 3.
Note that, since eq. (3.6) describes a gauge variation, the ĈkaA automatically satisfy the
WZ conditions.

Using (3.6) and (3.1), the gauge variation of the sum of the 1-loop effective action and
the counterterm can be written as

∆a(x)|(1) + La(x) Sct[φ]|(1) =
14∑
k=0

[
CkaA + ĈkaA(ξ)

]
IkA(x) . (3.7)

In an anomaly-free theory, the WI can be enforced by requiring the right-hand side of
this equation to vanish. If instead the fermion content of the theory is anomalous, we can
generalize this requirement by splitting the gauge variation of the effective action into two
contributions, only one of which can be removed by a counterterm. The remaining piece
represents the anomaly. Since the anomaly of a gauge theory is an equivalence class, where
two elements related by adding an integrated local polynomial of the fields and derivatives
are equivalent, such a separation is ambiguous unless we pick up a specific representative
element Aa in the class. When this choice is made, we can write:

14∑
k=0

[
CkaA + ĈkaA(ξ)

]
IkA(x) = Aa(x) . (3.8)
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coefficient explicit expression CP P

Ĉ0
ab −(ξ2

ba + ξ2
ab + ξ3

ba + ξ3
ab) + +

Ĉ1
a(bc) ξ4

[ab]c + ξ4
[ac]b + −

Ĉ2
abc (ξ1

abc + ξ1
acb − ξ1

cba) + (ξ3
cd + ξ3

dc)fdab − +

Ĉ3
abc (ξ1

abc + ξ1
acb − ξ1

cba − ξ1
cab) + (ξ2

cd + ξ2
dc + ξ3

cd + ξ3
dc)fdab − +

Ĉ4
a(bc) −1

2(ξ1
cab + ξ1

bac) − +

Ĉ5
a(bc)

1
2(ξ1

abc − ξ1
cba + ξ1

acb − ξ1
bca) − +

Ĉ6
a(bc)

1
2(ξ1

abc + ξ1
acb) − +

Ĉ7
ab(cd) −1

2(faceξ1
ebd + fadeξ

1
ebc)− 4 ξ6

(ab)(cd) + +

Ĉ8
abcd fadeξ

1
bce − fadeξ1

ecb + faceξ
1
bed − 8 ξ6

(ac)(bd) + +

Ĉ9
ab[cd] 12 ξ5

[abcd] + face(ξ4
[de]b − ξ

4
[bd]e)− fade(ξ

4
[ce]b − ξ

4
[bc]e) − −

Ĉ10
a(bc)(de) fabgξ

6
(gc)(de) + facgξ

6
(gb)(de) + fadgξ

6
(ge)(bc) + faegξ

6
(gd)(bc) − +

Ĉ11
a[bcde] fabgξ

5
[gcde] − facgξ

5
[gbde] + fadgξ

5
[gbce] − faegξ

5
[gbcd] + −

Ĉ12
aX i(T aXξ7

X + iξ8
Xa) Ĉ13

aX
T Ĉ12

aX̃

Ĉ13
aX i(ξ7

XT
a
X + iξ8

Xa) Ĉ12
aX

T Ĉ13
aX̃

Ĉ14
abX i(T aXξ8

Xb − ξ8
XbT

a
X − ifabcξ8

Xc) −Ĉ14
abX

T Ĉ14
abX̃

Table 3. Coefficients appearing in the gauge variation of the general counterterm LaΓct once it is
decomposed in the basis of table 1. Also shown are the transformation properties under CP and P.
For the fermionic coefficients Ĉ12

aX , Ĉ13
aX and Ĉ14

abX , we display their CP- and P-transformed, with
L̃(R̃) = R(L).

This defines our master equation. In practice, it is a set of linear equations that determine
the counterterm coefficients ξjB as a function of the coefficients CkaA describing the breaking
of gauge invariance induced by the regularization. If the theory is anomaly free, eq. (3.8)
simplifies to:

CkaA + ĈkaA(ξ) = 0 . (3.9)

Even in an anomalous theory, eq. (3.9) can be enforced for a convenient subset of coefficients
by appropriately choosing the representative element Aa. For instance, one can always
choose Aa to be a combination of P-violating operators. Here we show how this well-known
fact can be deduced in full generality from the WZ conditions.

3.2 Solution to the master equation

We now wish to simultaneously solve the WZ conditions (3.3) and the master equation (3.8).
To this end, we first determine the most general form of the CkaA satisfying (3.3), and then
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find the counterterm coefficients ξjB such that (3.8) is fulfilled. We do not need to specify
the regularization scheme, which is only required to satisfy the general assumptions spelled
out at the beginning of section 3. An explicit determination of the coefficients CkaA and of
the corresponding counterterms ξjB is performed in section 4.3 using DR.

Our task is considerably facilitated by the observation that both CkaA and ξjB have definite
transformation properties under CP and P. For the CkaA these properties can be deduced
from eq. (3.1), recalling that ∆a is CP-odd and P-even and that the operators IkA transform
as shown in table 1. Similarly, the transformations of ξjB under CP and P, displayed in
table 2, can be deduced from eq. (3.4), wWWhere each side is invariant under both CP and P.
For consistency the coefficients ĈkaA and CkaA must transform in the same way (see table 3).

Since gauge transformations do not mix operators with fermions with those containing
only bosons, we can treat them independently. We start by solving the set of equations (3.3)
and (3.8) involving purely bosonic operators and then discuss the fermionic sector.

3.2.1 Bosonic sector

The coefficients associated to the bosonic operators are Ck=0−11
aA and ξj=1−6

B . In this sector
the Wess-Zumino conditions (3.3) and the master equation (3.8) split into two decoupled
sets of equations, according to the parity of the operators involved. The P-even and P-odd
sets are defined by k = 0, 2 − 8, 10 (in short: k ∈ P-even) and k = 1, 9, 11 (in short:
k ∈ P-odd), respectively. The WZ conditions in the P-even and P-odd sectors are given
in eq. (A.1) and (A.2). The master equation (3.8) involves the counterterm coefficients
ξj=1,2,3,6
B in the P-even sector, and ξj=4,5

B in the P-odd sector.
At the one-loop order the coefficients CkaA and ξjB can be written as linear combinations

of single traces of the generators:10

Cka1...an =
∑

ckX1...XnT
a1...an
X1...Xn

ξja1...an =
∑

χjX1...Xn
T a1...an
X1...Xn

,
(3.10)

where
T a1...an
X1...Xn

= tr(T a1
X1
. . . T anXn) , (3.11)

and ckX1...Xn
and χkX1...Xn

are numerical coefficients. Given the assumptions iii) and iv)
stated at the beginning of the section and the decompositions in (3.1) and (3.4), the
coefficients CkaA and ξjB must have the following properties:

1. They transform under CP and P as indicated in tables 2 and 3.

2. Under exchange a1 . . . an they behave as indicated in table 3.

3. CkAa and ĈkAa(ξ) vanish for vector-like theories, i.e. if T aL = T aR.

This strongly restricts the form of CkaA and ξjB. In particular, the first requirement implies
that the traces of eq. (3.10) can only appear in the combinations with definite transformation
properties under CP and P listed in table 4. Once the remaining conditions are imposed,

10At higher loops also products of traces can appear.
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trace combination CP P

(T a1...an
X1...Xn

+ T an...a1
Xn...X1

) + (T a1...an
X̃1...X̃n

+ T an...a1
X̃n...X̃1

) + +

(T a1...an
X1...Xn

+ T an...a1
Xn...X1

)− (T a1...an
X̃1...X̃n

+ T an...a1
X̃n...X̃1

) + −

(T a1...an
X1...Xn

− T an...a1
Xn...X1

) + (T a1...an
X̃1...X̃n

− T an...a1
X̃n...X̃1

) − +

(T a1...an
X1...Xn

− T an...a1
Xn...X1

)− (T a1...an
X̃1...X̃n

− T an...a1
X̃n...X̃1

) − −

Table 4. Combinations of single traces eigenstates of CP and P.

we are left with a general, regularization-independent parametrization of the CkaA and ξjB at
the one-loop order. For example, for elements IjA linear or quadratic in the gauge fields,
the coefficients CkaA read:

C0
ab = c0(T abLL+T abRR−T abLR−T abRL) ,

C1
a(bc) = c1

LLL

(
T abcLLL+T acbLLL−T abcRRR−T acbRRR)

+c1
RLL (T abcRLL+T acbRLL−T abcLRR−T acbLRR

)
+c1

LLR

(
T abcLLR+T acbLRL−T abcRRL−T acbRLR+T abcLRL+T acbLLR−T abcRLR−T acbRRL

)
, (3.12)

Ck=2,3
abc = ckLLL(T abcLLL−T acbLLL+T abcRRR−T acbRRR−T abcLRL+T acbLLR−T abcRLR+T acbRRL)

+ckLLR(T abcLLR−T acbLRL+T abcRRL−T acbRLR−T abcLRL+T acbLLR−T abcRLR+T acbRRL)
+ckRLL(T abcRLL−T acbRLL+T abcLRR−T acbLRR−T abcLRL+T acbLLR−T abcRLR+T acbRRL) ,

Ck=4,5,6
a(bc) = ck(T abcLLR−T abcLRL+T abcRRL−T abcRLR−T abcLRL+T abcLLR−T abcRLR+T abcRRL) .

The parametrization for the remaining CkaA can be found in appendix A.2.
Analogously, the ξjB can be parametrized as:

ξ1
abc =χ1

LLL(T abcLLL−T acbLLL+T abcRRR−T acbRRR)+χ1
LLR(T abcLLR−T acbLRL+T abcRRL−T acbRLR)

+χ1
LRL(T abcLRL−T acbLLR+T abcRLR−T acbRRL)+χ1

RLL(T abcRLL−T acbRLL+T abcLRR−T acbLRR) ,

ξj=2,3
ab =χkLL(T abLL+T abRR)+χkLR(T abLR−T abRL) ,

ξ4
[ab]c =χ4

(
T abcLRL+T abcLRR−T abcRLL−T abcRLR−T bacLRL−T bacLRR+T bacRLL+T bacRLR

)
,

ξ5
abcd =χ5

LRLR

(
−T abcdRLRL+T abdcRLRL+T acbdRLRL+T bacdRLRL−T bcadRLRL+T bcdaRLRL

−T cabdRLRL+T cbadRLRL−T cbdaRLRL−T dbacRLRL+T dbcaRLRL−T dcbaRLRL

)
+χ5

LLLR

(
T abcdLLLR−T abcdRLLL−T abcdRLRR+T abcdRRLR+T abdcLLRL+T abdcRLLL+T abdcRLRR

−T abdcRRLR−T acbdLLLR+T acbdRLLL+T acbdRLRR−T acbdRRLR−T acdbRLRR−T adbcRLRR

+T adcbRLRR+T bacdRLLL−T bcadRLLL+T bcdaRLLL−T cabdRLLL−T cabdRLRR+T cadbRLRR

+T cbadRLLL−T cbadRRLR−T cbdaRLLL+T cbdaRRLR−T cdabRLRR+T cdbaRLRR−T dabcLLLR

+T dabcRLRR+T dacbLLLR−T dacbRLRR+T dbacLLLR−T dbacLLRL−T dbacRLLL−T dbacRLRR

+T dbacRRLR−T dbcaLLLR+T dbcaLLRL+T dbcaRLLL+T dbcaRLRR−T dbcaRRLR−T dcabLLLR

+T dcabRLRR+T dcbaLLLR−T dcbaLLRL−T dcbaRLLL−T dcbaRLRR+T dcbaRRLR

)
,

– 15 –



J
H
E
P
0
2
(
2
0
2
3
)
2
4
4

ξ6
abcd =χ6

LLLL

(
T abcdLLLL+T cabdLLLL+T cbadLLLL+T dbacLLLL+T cabdRRRR+T cbadRRRR+T dabcRRRR+T dbacRRRR

)
+χ6

RLLL

(
T abcdRLLL+T abdcRLLL+T bacdRLLL+T bacdRRLR+T badcRLLL+T badcRRLR+T bcdaRLRR+T bdcaRLRR

+T cabdLLLR+T cabdRLLL+T cabdRLRR+T cabdRRLR+T cbadLLLR+T cbadRLLL+T cbadRLRR+T cbadRRLR

+T cdabRLRR+T cdbaRLRR+T dabcLLLR+T dabcLLRL+T dabcRLLL+T dabcRLRR+T dabcRRLR+T dbacLLLR

+T dbacLLRL+T dbacRLLL+T dbacRLRR+T dbacRRLR+T dcabLLLR+T dcabRLRR+T dcbaLLLR+T dcbaRLRR )

+χ6
LLRR

(
T abcdLLRR+T cdbaLLRR+T dcbaLLRR+T cdabLLRRR+T dcabLLRR+T abdcLLRR+T badcLLRR+T bacdLLRR

)
+χ6

LRLR

(
T abcdLRLR+T bcdaLRLR+T bdcaLRLR+T dbacLRLR+T cbadLRLR+T dcabLRLR+T dcbaLRLR+T cdbaLRLR

)
+χ6

RLLR

(
T abcdRLLR+T abdcRLLR+T bacdRLLR+T badcRLLR+T cdabRLLR+T cdbaRLLR+T dcabRLLR+T dcbaRLLR

)
+χ6′

LLLL

(
T cadbLLLL+T dacbLLLL+T cadbRRRR+T dacbRRRR

)
+χ6′

RLLL

(
T cadbRLLL+T cadbLLRL+T acbdRLLL+T bcadRLLL+T bcadRLRR+T bdacRLRR+T cadbRLRR+T cadbRRLR

+T cbdaRLRR+T dacbLLLR+T dacbLLRL+T dacbRLLL+T dacbRLRR+T dacbRRLR+T dbcaLLLR+T dbcaRLRR

)
+χ6′

RLLR

(
T cadbRLLR+T acbdRLLR+T adbcRLLR+T bcadRLLR+T bdacRLLR+T cbdaRLLR+T dacbRLLR+T dbcaRLLR

)
+χ6′

LRLR

(
T cadbLRLR+T cbdaLRLR+T adbcLRLR+T acbdLRLR

)
.

Given the length of these expressions, we also provide the parametrizations of all CkA and ξjB
coefficients in a Mathematica notebook attached to this article as supplementary material,
and publicly available on Zenodo at this link.

With our parametrization, Ck=0−11
Aa automatically vanish for T aL = T aR. For the same to

hold for their hatted counterparts, the counterterm coefficients must obey four additional
conditions:

χ2
LL + χ2

LR + χ3
LL + χ3

LR = 0 ,
χ1
LLL + χ1

RLL + χ1
LLR + χ1

LRL − 2i(χ2
LL + χ2

LR) = 0 ,
χ2
LL + χ2

LR + 4(χ6
LLLL + 4χ6

RLLL + χ6
LLRR + χ6

LRLR + χ6
RLLR) = 0 ,

χ2
LL + χ2

LR − 2(χ6′
LLLL + 4χ6′

RLLL + 2χ6′
RLLR + χ6′

LRLR) = 0 .

(3.13)

These allow us to express four coefficients, e.g. χ1
LRL, χ3

LR, χ6
RLLR and χ6′

LRLR, as a function
of the others. We, therefore, conclude that the CkaA are described by a total of 61 real
parameters in the P-even sector and 27 in the P-odd one, while the ξjB (hence the ĈkaA(ξ))
depend on 13 real parameters in the P-even sector and 4 in the P-odd one. Note that at this
stage the parameters describing CkaA are still redundant, because — as mentioned above —
the various CkaA are related by the WZ conditions WZ[CkcA] = 0. In contrast to this, the
ĈkaA(ξ) automatically satisfy WZ[ĈkcA] = 0, hence there are no further restrictions on the
ξjB . In order to remove the redundancy in the above parametrization of CkaA, we proceed to
solve the constraints WZ[CkcA] = 0.

P-even sector. We start from the P-even sector. Plugging the parametrizations for
Ck∈P−even
aA into eq. (A.1), we obtain 49 independent conditions on the coefficients entering
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the parametrizations (see appendix A.3.1 for the full expressions). This leaves us with
61− 49 = 12 free parameters, which we choose to be:

c0, c2
LLL, c

2
RLL, c

4, c6, c7
LLLR, c

7
LRLR, c

7
LLRR, c

7
LRRL, c

7′
LLLR, c

7′
LRLR, c

7′
LLRR . (3.14)

From the conditions in A.3.1 we can also conclude that, independently from the choice
of free parameters, the conditions WZ[CkcA] = 0 fully determine C10

abcd as a combination
of other coefficients in the P-even sector. Making use of the expressions for Ck∈P−even

aA in
terms of the parameters in (3.14), we can solve the homogeneous master equation (3.9).
The solution

χ1
LLL = ic0 − c2

LLL − 2iχ2
LL , χ1

LLR = −c2
RLL , χ1

RLL = 2c4 − c2
RLL ,

χ2
LR = −1

2c
0 + ic4 + ic6 − i

2c
2
LLL −

3i
2 c

2
RLL ,

χ3
LL = 1

2c
0 − χ2

LL ,

χ6
RLLL = 1

4c
7
LLLR , χ6

LLRR = 1
4c

7
LLRR , χ6

LRLR = 1
4c

7
LRLR , (3.15)

χ6
LLLL = 1

8(c0 − 2ic6 + ic2
LLL + 2ic2

RLL − 8c7
LLLR − 2c7

LLRR − 2c7
LRLR − 2c7

LRRL − 2χ2
LL) ,

χ6′
LLLL = 1

4(−c0 + 2ic6 − ic2
LLL − 4c7′

LLLR − 2c7′
LLRR − c7′

LRLR + 2χ2
LL) ,

χ6′
RLLL = 1

4

(
c7′
LLLR −

i

2c
2
RLL

)
, χ6′

RLLR = 1
4

(
ic4 − i

2c
2
RLL + c7′

LLRR

)
,

determines the P-even counterterms ξ1,2,3,6
B and explicitly shows the absence of anomalies

in this sector.11 In other words, in the P-even sector the gauge variation of the effective
action can always be compensated by a counterterm.

The conditions (3.15) fix only 12 out of the 13 available counterterm coefficients. The
residual freedom amounts to the possibility of adding to Lct the gauge-invariant counterterm:

Lct ⊃ χ2
LL

(
I2
ab − I3

ab − 2fcebI1
eca + 1

2fdgafecbI
6
egcd

)
(T abLL + T abRR)

= −χ
2
LL

2 F aµνF
bµν(T abLL + T abRR) .

(3.16)

This term is manifestly gauge invariant because T abLL and T abRR can be written as the direct
sum of identifies in the adjoint representations of the gauge group, each multiplied by a
representation-dependent Casimir.

P-odd sector. We now repeat the same procedure in the P-odd sector. Plugging the
parametrizations for Ck∈P−odd

aA into eq. (A.2) we obtain 23 conditions, which we list in
appendix A.3.2. Hence, only 27− 23 = 4 out of the 27 coefficients appearing in Ck∈P−odd

aA

are truly independent. We choose:12

c1
LLL, c

1
LLR, c

9
LRLR, c

9
LLLR . (3.17)

11In particular, all counterterms are fixed by using the master equation for k ∈ P− even \ {10}. C10
abcd +

Ĉ10
abcd(ξ) = 0 is automatically satisfied.
12Note that, as in the P-even sector, the WZ conditions fully determine C11

abcd as a combination of the
coefficients entering C1,9

abcd.
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Figure 1. Diagrams contributing to C12
aXI

12
X + C13

aXI
13
X . The chirality X is determined by the

external fields f̄X and fX . A dot indicates the action of the operator La of eq. (2.9).

On the other hand, the P-odd counterterms depend only on three parameters: χ4, χ5
LLLR

and χ5
LRLR. We can use them to remove c1

LLR, c9
LRLR and c9

LLLR by choosing:13

χ4 = −c1
LLR , χ5

LLLR = −c
9
LLLR

12 , χ5
LRLR = −c

9
LRLR

12 . (3.18)

The extra coefficient, c1
LLL is related to the anomaly. In fact, by combining the parametriza-

tions for Ck∈P−odd
aA , the constraints from the WZ conditions in eq. (A.2) and the counterterm

choice in (3.18), we get∑
k∈P−odd

[
CkaA + ĈkaA(ξ)

]
IkA(x)

= c1
LLL

[
2T a(bc)

LLL I1
(bc) − i

(
T
ab[cd]
LLLL + T

a[c|b|d]
LLLL + T

ba[cd]
LLLL

)
I9
b[cd] − (L→ R)

]
,

(3.19)

where the vertical bars indicate that indices inbetween them do not get antisymmatrized.
Since Ck∈P−even

aA satisfy the homogeneous equation (3.9), the right-hand side of (3.19) can
be identified with Aa. Using the explicit expressions for I9

(bc) and I6
b[cd], we can write it as

Aa = −c1
LLLε

µνρσ∂µ

(
Abν∂ρA

e
σ −

i

4A
b
νA

c
ρA

d
σ(if cde)

)
tr
([
T aL

{
T bL, T

e
L

}]
−
[
T aR

{
T bR, T

e
R

}])
.

(3.20)
Because there is no freedom left in choosing the counterterms, the condition Aa = 0 can
only be satisfied by imposing eq. (2.15).

3.2.2 Fermionic sector

We now turn to the fermionic sector, where it is convenient to first focus on the coefficients
C12
aX and C13

aX . Both are matrices in flavor space that can be parametrized in terms of
strings of generators. At the one-loop order such strings are not completely generic, since
the relevant diagrams are the ones depicted in figure 1, from which we infer the patterns:

C12
aX = a1T

a
XT

b
XT

b
X + a2T

b
XT

b
XT

a
X + a3fabcT

b
XT

c
X + a4Y T

b
XT

a
Y T

b
X ,

C13
aX = b1T

a
XT

b
XT

b
X + b2T

b
XT

b
XT

a
X + b3fabcT

b
XT

c
X + b4Y T

b
XT

a
Y T

b
X ,

(3.21)

where a sum over Y = L,R is understood. The Lie algebra guarantees that the combination
T aXT

a
X satisfies [T aXT aX , T bX ] = 0 for any T bX , while fabcT bXT cX is proportional to T aX . Without

13As in the previous section, all counterterms are fixed by using the master equation for k = 1, 9.
C11
abcd + Ĉ11

abcd(ξ) = 0 is automatically satisfied.
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losing generality, we can thus write:

C12
aX = a′1XT

a
X + a4Y T

b
XT

a
Y T

b
X

C13
aX = b′1XT

a
X + b4Y T

b
XT

a
Y T

b
X , (3.22)

where the matrices a′1X and b′1X commute with all generators T aX . We can further refine
the parametrization of C12

aX and C13
aX by imposing invariance under CP. On the one side

we have
C12
aX

CP−−→ C13T
aX = b′1XT

aT
X + b4Y T

bT
X T aTY T bTX . (3.23)

On the other side we recall that under CP T aX
CP−−→ T aTX and we obtain

C12
aX

CP−−→ a′1XT
aT
X + a4Y T

bT
X T aTY T bTX . (3.24)

The two ways lead to the same result provided a′1X = b′1X and a4Y = b4Y , resulting in

C12
aX = C13

aX = a′1XT
a
X + a4Y T

b
XT

a
Y T

b
X ,

holding at least at one-loop order. Moreover, by making use of C12
cX = C13

cX , from the WZ
consistency conditions (see appendix A), we can express C14

abX in terms of C13
cX :

C14
abX = i(C13

bXT
a
X − T aXC13

bX + ifabcC
13
cX) . (3.25)

Therefore the independent coefficients relevant for the one-loop parametrization of the
gauge variation in the fermionic sector are provided by the matrix C13

cX . We now show that,
for any choice of C13

cX , the homogeneous equation (3.9) can always be solved, thus proving
the absence of anomalies in this sector of the theory. When k = 12, 13, 14, eq. (3.9) gives:

T aXξ
7
X + iξ8

Xa = iC13
aX ,

ξ7
XT

a
X + iξ8

Xa = iC13
aX ,

T aXξ
8
Xb − ξ8

XbT
a
X − ifabcξ8

Xc = −(C13
bXT

a
X − T aXC13

bX + ifabcC
13
cX) .

(3.26)

By combining the first two equations we see that ξ7
X should commute with all generators T aX :

ξ7
XT

a
X − T aXξ7

X = 0 . (3.27)

The third equation is automatically satisfied once we eliminate ξ8
Xa in favour of ξ7

X and
C13
aX . As a consequence, (3.26) only determines one combination of ξ7

X and ξ8
Xa:

ξ8′
Xa = −iξ7

XT
a
X + ξ8

Xa = C13
aX . (3.28)

By expressing the searched-for counterterm in terms of ξ7
X and ξ8′

Xa, we get:

f̄Xξ
7
X(/∂ + iT aX /Aa)fX + f̄Xξ

8′
aX /AafX . (3.29)

Since the matrix ξ7
X commutes with all generators, and thus with all gauge transformations,

in the above expression the first term is gauge invariant and can be safely dropped because
it does not affect (2.22). We end up with

f̄Xξ
8′
aX /AafX , (3.30)

as the unique non-trivial counterterm, where ξ8′
aX is given in eq. (3.28).
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4 One-loop analysis in dimensional regularization

In this section we present explicit one-loop results for the variation of the effective action
and the WI-restoring counterterms in DR, using the BMHV prescription for γ5. First,
we introduce the conventional dimensionally regularized action, and then we perform the
explicit one-loop computation.

4.1 Classical action in DR

In DR Lorentz indices are analytically continued from d = 4 to d = 4 − 2ε complex
dimensions. In this respect it is necessary to slightly modify the notation we used so far. In
the present section (only), vector Lorentz indices like µ, ν run from 0 to d, and split into a
four-dimensional set denoted by µ̄, ν̄ and a d− 4-dimensional (evanescent) one labeled µ̂, ν̂.
As we will discuss more extensively in section 4.2, the gauge transformation is however taken
to be purely four-dimensional in nature: the gauge parameter is αa = αa(xµ̄). Explicitly,
the operators La(x) in DR is defined as:

La(x) = −∂µ̄
δ

δAaµ̄(x) + fabcAbµ̄(x) δ

δAcµ̄(x) (4.1)

+
∑

X=L,R
−i

←−
δ

δfX(x)T
a
XfX(x) + if̄X(x)T aX

δ

δf̄X(x)
.

Note that the four-dimensional limit of this quantity coincides with the operator introduced
in section 2. The operators {IkA(x)} and {IjB(y)} of tables 1 and 2 are strictly four-
dimensional.

The spurious breaking of gauge invariance in DR arises because chiral fermions cannot
be defined for arbitrary d. Indeed, as is well known, it is impossible to define a d-dimensional
Clifford algebra

{γµ, γν} = 2gµν , (4.2)

and a chirality matrix γ5 that commutes with all d-dimensional Lorentz generators. More
specifically, there is no d-dimensional definition of γ5 obeying all the familiar four-dimensional
properties, namely i) {γµ, γ5} = 0, ii) tr(γµγνγργσγ5) = 4iεµνρσ, and iii) cyclicity of the
trace. Several treatments of γ5 retaining i) have been put forward, see for example
refs. [47, 51–53]. Unfortunately, none of them has been proven to be consistent to all
orders. Here we adhere to the BMHV prescription, which has been rigorously established
to all orders in perturbation theory [39–42]. An algebraically consistent scheme is obtained
as follows: the condition iii) is preserved; the Levi-Civita tensor is an intrinsically four-
dimensional object so ii) is to be interpreted with all indices being “barred” while i) is
necessarily relaxed. The matrix γ5 is also taken to be a four-dimensional object defined as

γ5 = − i

4!εµ̄ν̄ᾱβ̄γ
µ̄γν̄γᾱγβ̄ , (4.3)

whereas the other γµ matrices are split into a four- and a (d− 4)- dimensional part, denoted
by γµ̄ and γµ̂, respectively:

γµ = γµ̄ + γµ̂ . (4.4)
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From these definitions one finds

{γ5, γµ̄} = 0 , [γ5, γµ̂] = 0 . (4.5)

Eq. (4.5) makes it impossible for γ5 to commute with all the d-dimensional Lorentz generators.
Hence the notion of chirality is lost and, as we will see, a spurious violation of gauge invariance
is bound to emerge.

We now proceed to introduce the dimensionally regularized version of the classical
action in eq. (2.2). While the regularization of Feynman diagrams via DR requires an
extension of the kinetic terms to d dimensions, the treatment of the interaction terms
is, to a large extent, arbitrary: the only requirement is that they must reduce to those
in (2.2) for d→ 4. This leaves open the possibility of defining a large class of regularization
schemes. For the bosonic Lagrangian LYM, a natural choice is to promote it entirely to
d dimensions replacing all four-dimensional indices with µ, i.e. replacing LYM → L

(d)
YM.

While this choice is obviously not unique, it is by far the most convenient, because it
preserves all the symmetries of the unregularized theory. For this reason, it will be adopted
in the following. Also the fermionic contribution LFermions allows for several independent
analytic continuations. There is however a fundamental distinction with respect to the
bosonic action: because of the absence of d-dimensional chirality, there is no way to define
a regularized fermionic action that respects chiral gauge invariance. Here we choose the
following regularized fermion Lagrangian:

L(d)
Fermions = if̄γµ∂µf −Aaµ f̄ (PRγµPLT aL + PLγ

µPRT
a
R) f

= if̄γµ∂µf −Aaµ̄ f̄
(
PRγ

µ̄PLT
a
L + PLγ

µ̄PRT
a
R

)
f ,

(4.6)

with PL,R being the d-dimensional versions of the operators introduced around eq. (2.5)
for the (unregularized) four-dimensional theory. Even for arbitrary d, PL,R represent
hermitian projectors that can be employed to define what we may loosely call d-dimensional
left- and right-handed fermions, precisely as in (2.5). The crucial difference is that the
fermionic kinetic term (which, consistently with DR, is d-dimensional) introduces symmetry-
breaking fL ↔ fR transitions, whereas with our choice (4.6) the interaction is purely
four-dimensional and does not mediate such regularization-dependent transitions. In
conclusion, the d-dimensional action that replaces (2.2) is taken to be:

S(d)[A, fX , f̄X ] =
∫
ddx (L(d)

YM + L(d)
Fermions) . (4.7)

Because this definition of S(d) is effectively part of the regularization scheme, all scheme-
dependent quantities (including the counterterms derived below) depend on it, and will
generally differ if another S(d) is adopted (see also ref. [26]). Since the regularized Yang-
Mills Lagrangian defined above is widely used in the literature, most of the scheme-
dependence (within DR) stems from the fermionic Lagrangian. We will further comment
on such scheme-dependence in section 4.3.1. For now let us just stress that any alterna-
tive interaction scheme, such as those defined by −Aaµ f̄ (γµPLT aL + γµPRT

a
R) f + hc or

−Aaµ f̄ (PRγµT aL + PLγ
µT aR) f + hc, differs from ours because of the addition of evanescent

terms.
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The choice in eq. (4.6) is motivated by minimality of the resulting gauge variation
which, as we will see below, is the central quantity in computing the variation of the 1PI
effective action, ∆a|(1). In practice, (4.6) minimizes the number of diagrams to be computed
in order to identify the WI-restoring counterterms. Perhaps even more importantly, (4.6)
preserves P, CP, the vectorial gauge group (see below) and hermiticity of the action, which
allow us to perform intermediate checks during the calculations. We also emphasize that our
treatment is more economical than the one proposed in [24, 26], in the sense that it requires
the addition of a sterile chiral component only for the fields that do not have a charged
chirality-flipped counterpart. The fermion content of our theory is thus only minimally
extended with respect to the one in the four-dimensional theory. This makes our results
directly applicable to theories of interest, like the SM.

4.2 Breaking of gauge invariance in DR: general considerations

Having introduced the regularized action the general results of section 2.2 can be invoked
to identify the WI-restoring counterterm Sct|(1). To make contact with the notation of
section 2.2 we observe that the quantity (4.7) represents the tree-level regularized action,
S(d) ≡ Γreg|(0), whereas more generally Γreg|(n) = Γ(d)|(n).

At a given perturbative order, the gauge variation of Γ(d)[φ]|(n) contains both purely
4-dimensional as well as evanescent terms. The evanescent terms are defined as those
contributions that are proportional to d− 4 components of the fields, or contain space-time
derivatives in the (d − 4)-dimensional coordinates. Such contributions to the effective
action cannot describe physical processes because the latter are genuinely 4-dimensional.
Physical processes are obtained by differentiating the effective action with respect to the
4-dimensional components of the background fields, assumed to carry purely 4-dimensional
external momenta. For this reason evanescent contributions to Γ(d) do not have any physical
significance.

To avoid any confusion we emphasize that this statement refers to the 1PI effective
action, as opposed to the classical action. Evanescent terms actually appear in the classical
action, are essential to the regularization procedure and in fact are at the origin of anomalies.
Explicitly, performing 4-dimensional transformations of the fermionic and bosonic fields
one finds that 4-dimensional gauge invariance is indeed explicitly broken by the regularized
action (4.7):

La(x)S(d) = La(x)S(d)
Fermions (4.8)

= −
[
f̄Lγ

µT aL(∂µfR) + f̄Rγ
µT aR(∂µfL) + (∂µf̄L)γµT aRfR + (∂µf̄R)γµT aLfL

]
(x)

= f(T aR − T aL)γ5γ
µ̂∂µ̂f − ∂µ̂[fγµ̂(T aLPL + T aRPR)f ]

= O(Eva),

where O(Eva) indicates that this is an evanescent quantity because it is controlled by terms
of the type f̄XγµfY 6=X which do not exist in d = 4. As already anticipated earlier, the
fundamental reason why δαS

(d)[A, fX , f̄X ] is not exactly zero is that the d-dimensional
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kinetic term characterizing DR necessarily mediates fL ↔ fR transitions.14 More specifically,
the mixed terms f †LfR, f

†
RfL are not gauge invariant unless the gauge transformation is

vector-like, i.e. our regularization (4.7) explicitly violates gauge invariance unless T aL = T aR.
When T aL = T aR the gauge variation in eq. (4.8) reduces to a total derivative with respect
to the d− 4 coordinates, which vanishes under our assumption αa = αa(xµ̄). Only in this
case our DR scheme does not break the physical, four-dimensional gauge invariance. Note
that our choice S(d)

Fermions minimizes the breaking because the four-dimensional nature of
the interaction conserves chirality: any other interaction scheme would feature additional
terms on the right-hand side of eq. (4.8).

In DR the gauge invariance is explicitly lost already at tree-level whenever T aL 6= T aR, i.e.
whenever the theory is chiral. Any choice of L(d)

Fermions would suffer from the same drawback.
The dimensionally regularized classical action (4.7) is nevertheless invariant under the
spurious P and CP transformation laws of eqs. (2.12) and (2.13), as its four-dimensional
sibling.15 The associated selection rules will be heavily exploited in the calculations of the
following sections. There is another sacred principle that appears to be violated by (4.7):
the fermion interaction does not respect d-dimensional Lorentz transformations. However,
this violation does not have tangible consequences, because the symmetry principle of
physical relevance is the four-dimensional Lorentz group, not its d-dimensional extension.
Indeed, eq. (4.7) preserves four-dimensional Lorentz (as well as rotations in the d− 4 space),
with all the d− 4 indices, e.g. γµ̂, viewed as scalars of SO(1, 3). As a result, DR does not
require the introduction of counterterms to enforce the Ward Identities associated with
physical Lorentz invariance. With this in mind, by an abuse of terminology, we will keep
referring to (4.7) as to the regularized “d-dimensional action”. The reader should note that
the situation is radically different when considering the breaking of chiral gauge invariance,
since eq. (4.8) reveals that in such a case (4.7) does not respect even the (physically relevant)
four-dimensional version of (2.7), where the gauge parameters αa are assumed to depend
only on the coordinates xµ̄. The very existence of WIs associated to four-dimensional gauge
invariance demands the addition of local counterterms to (4.7).

As anticipated earlier, evanescent contributions to the 1PI effective action are unphysical.
In particular, the breaking (4.8) has no effect in the tree approximation, since this is an
evanescent quantity that does not exist when ε→ 0; said differently, the operatorial version
of (4.8) does not have any tree matrix element with (four-dimensional) physical states.
For example, tree matrix elements of f̄Lγµ∂µfR = f̄Lγ

µ̂∂µ̂fR depend on the unphysical
momentum along the d−4 directions, and similarly for all other terms. However, when going
beyond the tree level in the perturbative expansion, the evanescent terms in the classical
action may get multiplied by singular integrals, resulting in non-evanescent contributions
to the 1PI action that spoil the Ward Identities. This is the origin of the spurious breaking
terms that force us to introduce counterterms.

14At the root of these transitions is that the projectors PL,R do not commute with the Jµ̄µ̂ generators
of the d-dimensional Lorentz group, which is respected by the kinetic term (see eq. (4.5)). Hence, Lorentz
transformations mix fL, fR, as opposed to what happens in d = 4.

15This is a consequence of the properties of the charge conjugation matrix C in d-dimensions (see eqs. (2.15)
and (2.16) of ref. [26]).
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An explicit expression for ∆a in DR can be derived order by order in perturbation
theory. As anticipated in eq. (2.16), the regularized 1PI effective action in the background
field method can be written as:

eiΓ
(d)[φ] =

∫
1PI
Dφ̃ eiS

(d)
full[φ+φ̃] (4.9)

where S(d)
full ≡ S(d) + S

(d)
g.f. + S

(d)
ghost is the sum of the d-dimensional action (4.7), an invariant

gauge-fixing term:16

Sg.f.[φ+ φ̃] =
∫
ddx

[
− 1

2ξ fafa
]
, (4.10)

and the associated ghost action. It is a remarkable property of DR that the non-invariance
of the d-dimensional action S(d), see eq. (4.8), represents the only source of gauge-symmetry
breaking. In particular, under a gauge transformation the measure of the dimensionally-
regularized path integral remains invariant because any local transformation of the field is
associated to a Jacobian J of the form ln detJ = δ(d)(0)

∫
ddx f(x), with some function

f(x) that depends on the transformation parameters, and in DR δ(d)(0) identically vanishes,
implying that J = 1. Any potential anomaly in local field transformations in DR must
therefore come from the non-invariance of the classical action. In particular, the gauge
variation of the 1PI effective action reads

LaΓ(d)[φ] =
∫

1PIDφ̃ eiS
(d)
full[φ+φ̃] LaS

(d)
Fermions[φ+ φ̃]∫

1PIDφ̃ eiS
(d)
full[φ+φ̃]

, (4.11)

where La has formally the same functional form on the left-hand side and the right-hand
side of this equation, but in the former case it acts only on the background fields φ while in
the latter on φ+ φ̃. This represents a proof of the regularized version of the Quantum Action
Principle invoked in (2.20) and first proved in [39]. Thus, the spurious gauge symmetry
breaking terms arise from the one-particle irreducible vacuum correlation functions of the
gauge variation of the classical fermionic action.

According to eq. (2.22), the WI-restoring counterterm Sct|(1) is determined by the
variation of renormalized 1PI effective action. We should therefore discuss how this is
connected to the variation of the regularized 1PI action in (4.11). To appreciate this it is
necessary to introduce a renormalization scheme.

In general, there are two types of contributions to the regularized 1PI N-point functions:
(finite as well as divergent) evanescent terms and (finite as well as divergent) non-evanescent
terms. In formulas, we may write

Γ(d)
N |(1) = Γfin

N |(1) + 1
ε

Γdiv
N |(1) + Γ̂fin

N |(1) + 1
ε

Γ̂div
N |(1), (4.12)

where a bar/hat identifies the non-evanescent/evanescent contributions. In this paper we
adopt a popular (minimal) subtraction scheme according to which the renormalized 1PI
N-point functions are defined by subtracting all divergent terms, both the evanescent and

16fa is the d-dimensional version of the expression in eq. (2.18).
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non-evanescent ones, so that the effective action reduces to the sum of a finite evanescent
and a finite non-evanescent term analogously to the tree-level expression S(d) = Γ|(0):

Γ|(1) ≡ lim
d→4

{
Γfin|(1) + Γ̂fin|(1)

}
. (4.13)

The formal 4-dimensional limit is carried out by discarding Γ̂fin|(1) and sending all fields
and momenta in Γfin|(1) to d = 4. The gauge variation (2.20) of the renormalized effective
action hence coincides with

∆a|(1) = LaΓ|(1) = LaΓ
fin|(1). (4.14)

This is the quantity that determines Sct|(1).
Similarly to Γ(d)|(1), the gauge variation LaΓ(d)|(1) of the regularized action is in general

the sum of evanescent terms and non-evanescent terms. In evaluating (4.11) we find two
contributions:

LaΓ(d)|(1) = ∆fin
a |(1) + ∆̂fin

a |(1) + 1
ε

∆̂div
a |(1), (4.15)

namely a (finite) 4-dimensional one and an (finite plus divergent) evanescent one. Crucially,
the action of La on any finite term remains finite, and similarly the action of La on a
divergent term remains divergent. Furthermore, La cannot turn an evanescent term into a
non-evanescent one. These considerations imply that17

∆a|(1) = ∆fin
a |(1) . (4.16)

This represents an important simplifying result for us: in a 1-loop calculation, and with
the subtraction scheme illustrated above, the variation of the renormalized 1PI action is
fully determined by the finite 4-dimensional part of (4.11). This is the only contribution
necessary to identify the corresponding counterterm Sct|(1).

In the next subsection, we will present an explicit one-loop calculation of (4.11). Because
the focus of our paper is Sct|(1), the result summarized in eq. (4.16) ensures that in that
calculation we can safely neglect the divergent evanescent terms in LaΓ(d)|(1). Yet, were we
interested in carrying out a 2-loop computation of Sct, an explicit expression of the 1-loop
counterterms necessary to subtract the divergences from Γ(d)|(1) would also be needed.

4.3 Breaking of gauge invariance in DR: one-loop calculation

There are several important simplifications that occur in the computation of (4.11) at the
one-loop order. First, we only need the expansion of S(d)

full[φ+ φ̃] up to quadratic order in
the quantum fluctuations φ̃. Second, since by definition the effective action (2.16) includes
only one-particle irreducible diagrams, terms linear in the quantum fluctuations do not
contribute and can be discarded. Furthermore, as we will see shortly, ghosts do not play
any role at the order of interest. In particular, we can safely switch off both their classical
backgrounds and their quantum fluctuations. As a consequence, the only relevant degrees

17Incidentally, (4.15) also implies that the divergent 4-dimensional terms Γdiv|(1) are gauge-invariant.

– 25 –



J
H
E
P
0
2
(
2
0
2
3
)
2
4
4

of freedom in our analysis are the gauge and the fermionic fields, along with their quantum
fluctuations.

The central player in our calculation is the fermionic action. Upon performing the
shift Aaµ → Aaµ + Ãaµ, the covariant derivative becomes i /D → i /D − γµ̄Ãaµ̄(PLT aL + PRT

a
R).

Expanding up to quadratic order we obtain

S
(d)
Fermions[φ+ φ̃] =

∫
ddx f̄i /Df (4.17)

+
∫
ddx ¯̃fi /Df̃ + S(d)

F

+O(φ̃, φ̃3),

where we defined

S(d)
F ≡

∫
ddx

[
−Ãaµ̄

¯̃fγµ̄(PLT aL + PRT
a
R)f − Ãaµ̄f̄γµ̄(PLT aL + PRT

a
R)f̃

]
, (4.18)

and, as promised, we neglected terms linear and cubic in the fluctuations. The first term
in (4.17) represents the classical fermionic action, and can be factored out of the path
integral (4.11) because it involves no quantum fluctuations. The second line of eq. (4.17)
consists of the sum of two terms: a non-gauge-invariant one, ¯̃fi /Df̃ , which represents the
original fermionic Lagrangian with the fermionic field replaced by its quantum fluctuation
and the covariant derivative containing only the background gauge field, plus a genuinely
four-dimensional gauge-invariant piece we called S(d)

F . At one-loop accuracy it is sufficient
to expand eiS

(d)
F up to quadratic order, because (4.18) is linear in the background fermionic

fields, and LaΓ(d)[φ] is a dimension-four local operator that contains at most two powers
of such fields. Furthermore, the linear term in eiS

(d)
F = 1 + iS(d)

F − 1
2 [S(d)

F ]2 + · · · does not
contribute, because no 1PI diagram can be built out of it. We then conclude that the
one-loop approximation of (4.11) reads

δαΓ(d)[A, fX , f̄X ]
∣∣∣
(1)

= δαS
(d) (4.19)

+ 〈Ω|δα
(∫

ddx ¯̃fi /Df̃
)
|Ω〉A

− 1
2〈Ω|T

{[
S(d)

F

]2
δα

(∫
ddx ¯̃fi /Df̃

)}
|Ω〉A ,

where the time-ordered Green-functions are vacuum to vacuum correlators in the background
gauge Aaµ:

〈Ω|T {O(x)O(y)} |Ω〉A ≡
∫

1PIDφ̃ e
i
∫
ddx ¯̃fi /Df̃+iS(d)

gauge[A+Ã] O(x)O(y)∫
1PIDφ̃ e

i
∫
ddx ¯̃fi /Df̃+iS(d)

gauge[A+Ã]
, (4.20)

and we introduced the compact notation S(d)
Gauge ≡ S

(d)
YM + S

(d)
g.f. + S

(d)
ghost.

The quantity δαS(d) in (4.19) describes the classical effect (4.8) and can be ignored
because finite evanescent. The second and third terms instead induce contributions that
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do not vanish for ε → 0, because divergent 1/ε one-loop effects turn them into finite
non-evanescent. In four dimensions the one-loop gauge variation reads

δαΓ(4)
∣∣∣
(1)

= δαΓ(4)
∣∣∣
Gauge

+ δαΓ(4)
∣∣∣
Fermions

, (4.21)

where we introduced the notation

δαΓ(d)
Gauge

∣∣∣
(1)

= 〈Ω|δα
(∫

ddx ¯̃fi /Df̃
)
|Ω〉A , (4.22)

δαΓ(d)
Fermions

∣∣∣
(1)

= −1
2〈Ω|T

{[
S(d)

F

]2
δα

(∫
ddx ¯̃fi /Df̃

)}
|Ω〉A . (4.23)

The term (4.22) arises from a single f̃ loop and only depends on the background gauge fields.
At one loop the gauge bosons in these diagrams are necessarily non-dynamical, i.e. the
gauge field is a purely classical background. The term (4.23) instead receives contributions
from diagrams with both virtual fermions and gauge bosons, and its explicit form depends
on the fermionic background.

It is easy to see that at one loop ghosts can be neglected. Indeed, one-loop diagrams
contributing to either (4.22) or (4.23) cannot simultaneously involve virtual ghosts and the
necessary virtual fermions. We can therefore safely neglect ghosts, keeping in mind that they
should not be ignored when performing calculations beyond the one-loop approximation.

4.3.1 Bosonic sector

The gauge variations in eqs. (4.22) and (4.23) become significantly more compact when
expressed in terms of vector and axial combinations of the gauge fields. These are defined,
along with the associated generators, as

Vµ = T aVA
a
µ, T aV = 1

2(T aR + T aL) , (4.24)

Aµ = T aAA
a
µ, T aA = 1

2(T aR − T aL).

We therefore prefer to temporarily switch notation from TL,R to TV,A. To avoid confusion
we restrict this change of notation to this section.

Another useful quantity is

T a = T aV + T aAγ5 = PLT
a
L + PRT

a
R. (4.25)

For clarity, we stress that the matrices TL, TR do not live in orthogonal spaces and therefore
do not commute in general. As a result neither T aV nor T aA usually form an algebra. Yet,
orthogonality of the chirality projectors always implies [T a, T b] = ifabcT

c.18

18More explicitly, the reader might want to verify that

[T aV , T bV ] = 1
2 if

abcT cV + 1
4 [T aR, T bL] + 1

4 [T aL, T bR] ,

[T aA, T bA] = 1
2 if

abcT cV −
1
4 [T aR, T bL]− 1

4 [T aL, T bR] ,

[T aV , T bA] = 1
2 if

abcT cA −
1
4 [T aR, T bL] + 1

4 [T aL, T bR].
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To familiarize with the new notation let us begin by re-writing the first term in (4.19):

δαS
(d) = δα

{∫
dx f̄i /Df

}
(4.26)

=
∫
ddx

[
αaf̄T

a
A

{
/D, γ5

}
f + ∂µ̂αa f̄T

aγµ̂f
]

= Eva.

It is easy to see that this expression correctly reproduces eq. (4.8) after integration by
parts.19 A similar quantity, with the replacement f → f̃ , is needed to compute the two
remaining contributions. We find

δαΓ(d)
Gauge

∣∣∣
(1)

=
∫
ddx〈Ω|

[
αa

¯̃fT aA
{
/D, γ5

}
f̃ + ∂µ̂αa

¯̃fT aγµ̂f̃
]
|Ω〉A (4.27)

= −Tr
[
αaT

a
A

{
/D, γ5

} 1
/D

]
− Tr

[
∂µ̂αaT

aγµ̂
1
/D

]
,

where the minus sign in the second line arises due to Fermi statistics. The trace “Tr” differs
from the Dirac trace “tr” because it acts on the Dirac indices as well as space-time, i.e.
Tr[O] =

∫
ddx 〈x|tr[O]|x〉.

As a non-trivial consistency check of (4.27), we note that this quantity arises from
a single fermion loop with gauge bosons evaluated on their classical backgrounds. In
this approximation the 1PI effective action reads −idet[ /D] and its variation may alterna-
tively be given by −iTr[ /D−1

δα /D]. An explicit computation gives δα(i /D) = −[ /D,αaT aV ]−
[ /D,αaT aA]γ5 + ∂µ̂αaT

aγµ̂, so that

−iTr[ /D−1
δα /D] = Tr

[ 1
/D

[ /D,αaT aV ] + 1
/D

[ /D,αaT aA]γ5 −
1
/D
∂µ̂αaT

aγµ̂
]

(4.28)

= Tr
[
αaT

a
V −

1
/D
αaT

a
V /D + αaT

a
Aγ5 −

1
/D
αaT

a
A /Dγ5 − ∂µ̂αaT aγµ̂

1
/D

]
= −Tr

[
αaT

a
A

{
/D, γ5

} 1
/D

+ ∂µ̂αaT
aγµ̂

1
/D

]
,

where we used Tr[αaT aAγ5] = 0 and the cyclicity of the trace. The above expression exactly
agrees with (4.27), as it should. Incidentally, this consistency check also provides an indirect
proof of the gauge invariance of the dimensionally-regularized path integral measure (see
discussion above eq. (4.11)).

The trace in eq. (4.27) may be computed diagrammatically or via other methods. Any
of these would lead to the same result because the expression has been already regularized
and is unambiguous. In the following, we employ the heat kernel method. The following
result was first obtained in refs. [49, 50] via this same method. We think that a re-derivation
makes our work more complete and self-contained, and at the same time might help clarify
a few non-trivial steps of the computation.

Now, the second term in the second line of eq. (4.27) is evanescent and can be safely
discarded as argued around (4.16). The first term in eq. (4.27) is however not entirely

19The second term identically vanishes because according to our definition of gauge symmetry ∂µ̂αa = 0.
In the following we prefer to keep this term anyway so that the discussion remains more general.
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negligible. In appendix B we show that the first trace in the second line of eq. (4.27) may
be expressed in terms of the heat kernel coefficient a2 plus divergent evanescent terms.
Neglecting all evanescent terms, using (B.5) and explicitly evaluating a2(x, x) via (B.9),
after a tedious but straightforward computation we arrive at20

lim
d→4

LaΓ(d)
Gauge

∣∣∣
(1)

= i

8π2 tr [T aAγ5a2(x, x)] ≡ −tr
[
T aA(aε2(x) + a

/ε
2(x))

]
, (4.29)

with

aε2 = εµναβ

16π2

[
VµνVαβ+ 1

3AµνAαβ−
8
3 i(AαAβVµν+AαVµνAβ+VµνAαAβ)− 32

3 AµAνAαAβ
]
,

a
/ε
2 = 1

16π2

[4
3D
V
νD
V
νD
V
µAµ+ 8

3 i[Aµ,D
V
ν Vµν ]− 2

3 i[Aµν ,Vµν ]
]

(4.30)

+ 1
16π2

[
−8Aµ(DVνAν)Aµ−

8
3
{
DVµAν+DVνAµ,AµAν

}
+ 4

3
{
DVµAµ,AνAν

}]
.

In the above expression we introduced the covariant vector derivative as well as the field
strengths of the vector and axial components of the four-dimensional gauge fields:

DVµAν = ∂µAν + i[Vµ,Aν ] ,
Vµν = ∂µVν − ∂νVµ + i[Vµ,Vν ] + i[Aµ,Aν ] ,
Aµν = ∂µAν − ∂νAµ + i[Vµ,Aν ] + i[Aµ,Vν ].

(4.31)

Our result (4.29) agrees with ref. [49], where a different convention for the gauge vectors
was adopted. Interestingly, note that the one-loop variation δαΓ(4)|Gauge is completely
independent from the definition of the interaction in the regularized fermionic action (4.6).
Any alternative regularization of the interaction would differ by evanescent terms involving
µ̂-components of the vector fields, and these would not affect the four-dimensional limit
of (4.27). The mixed fermion-boson loops appearing in (4.23) are instead sensitive to such
definitions and below will be evaluated for our choice (4.6).

The gauge variation in equations (4.29) and (4.30) satisfies all the desired properties.
First, since in our convention the generators T aV,A are hermitian, the factors of i in (4.30)
guarantee that δαΓ(4) is hermitian. Second, the vector-like component of the gauge symmetry,
defined by T aA = 0 (or, equivalently, by T aL = T aR), is manifestly conserved, consistently with
what is anticipated below eq. (4.8). Third, expressions (4.29) and (4.30) are consistent with
LaΓ(4) being CP-odd and P-even, see below eq. (2.13). In particular, a/ε2 is P-odd because it
contains an odd number of axial vectors, whereas aε2 is P-odd because it contains an even
number of axial vectors contracted with the Levi-Civita tensor. Finally, the expression (4.29)
satisfies the WZ conditions, as we will discuss below.

The operators in aε2, a
/ε
2 form a complete set of P-odd, Lorentz-singlet, dimension-four

local functions of the vectors and their derivatives compatible with vector gauge invariance.
As expected, this operator basis is in one-to-one correspondence with the one presented in
table 1. We can therefore equally decompose eq. (4.29) as we did in section 3 (see eq. (3.1)
and text around it). The corresponding coefficients CkA are collected in section 4.3.3.

20Note that the first trace includes both gauge and Lorentz indices, whereas the second only the gauge
indices are summed over.
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4.3.2 Fermionic sector

The mixed fermion-gauge contribution to δαΓ(4) may be calculated directly from its defini-
tion (4.23) (S(d)

F is given in (4.18)):

LcΓ(d)
Fermions

∣∣∣
(1)

(4.32)

= −2〈Ω|T
{∫

ddy1
[
Ãaρ̄f̄γ

ρ̄T af̃
]
y1

[ ¯̃fT cAγµ̂γ5∂µ̂f̃
]
x

∫
ddy2

[
Ãbσ̄

¯̃fγσ̄T bf
]
y2

}
|Ω〉A + Eva ,

where we used the variation (4.26), where
{
/D, γ5

}
= 2γµ̂γ5∂µ̂, as well as the definition (4.25).

The numerical factor in front is a multiplicity factor due to the presence of two possible
contractions with

[
S(d)

F

]2
.

The full result of our computation will be presented below. Here, for brevity, we discuss
explicitly only the derivation of terms containing two background fermions and a derivative.
The remaining ones are of the form f̄ /Af , involving background fermions and a background
gauge field, and can be obtained analogously.

In the evaluation of terms containing no gauge fields the average in (4.32) can be
interpreted as a vacuum to vacuum transition. We find

LcΓ(d)
Fermions

∣∣∣
(1)

(4.33)

⊃ 2
∫

ddk1
(2π)d

∫
ddk2
(2π)d e

i(k1−k2)x
∫

ddq

(2π)d

× f̄(k1)γρ̄T a
(/q + /k1)
(q + k1)2T

c
A(/̂q + /̂k2)γ5

(/q + /k2)
(q + k2)2 γ

σ̄T af(k2) Gaa

gρ̄σ̄ − (1− ξ) q
ρ̄qσ̄

q2

q2


= −2Gaa

16π2

(
1 + ξ − 1

6

)∫
ddk1
(2π)d

∫
ddk2
(2π)d e

i(k1−k2)x f̄(k1)γ5i ( /k1 − /k2)T aT cAT af(k2)

= −2Gaa
16π2

(
1 + ξ − 1

6

)
f̄γ5

(−→
/∂ +
←−
/∂

)
T aT cAT

af,

where we made use of the shorthand notation in eq. (4.25). The couplings Gaa arise from the
gauge propagator because the kinetic term in (2.3) is non-canonical. This contribution can
be expressed as in eq. (3.1). The resulting coefficients C12,13, along with those associated
with the f̄ /Af terms, are collected in the next section, together with those of the purely
bosonic operators.

4.3.3 Collecting the results

The one-loop results derived in section 4.3.2 and 4.3.1 can all be written in the form (3.1).
The corresponding coefficients CkpA are:

C0
pa = 1

16π2 trT pA
{
−4

3 T
a
A

}
(4.34)

C1
pab = 1

16π2 trT pA
{

4
(
T aV T

b
V + 1

3T
a
AT

b
A

)}
C2
pab = 1

16π2 trT pA
{
−8

3 i
(
[T aA,T bV ]+[T aV ,T bA]

)}
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C3
pab = 1

16π2 trT pA
{4

3 i [T
a
A,T

b
V ]−4i [T aV ,T bA]

}
C4
iab = 1

16π2 trT pA
{
−4i [T aV ,T bA]

}
C5
pab =−1

3C
4
pab

C6
pab = 1

3C
4
pab

C7
pabc = 1

16π2 trT pA
{8

3 [T bA, [T cA,T aA]]+8T bAT aAT cA−
4
3
{
T aA,T

b
AT

c
A

}
+ 4

3 [T aV , [T bV ,T cA]]+ 4
3 [T bV , [T cV ,T aA]]+ 8

3 [T bA, [T cV ,T aV ]]
}

C8
pabc = 1

16π2 trT pA
{8

3 [T bV , [T aV ,T cA]]+ 8
3 [T bV , [T cV ,T aA]]

+ 8
3 [T cA, [T aA,T bA]]+ 8

3
{
T aA,

{
T bA,T

c
A

}}
+ 16

3 [T cA, [T aV ,T bV ]]+ 8
3 [T bA, [T cV ,T aV ]]

− 4
3 [T aA, [T bA,T cA]]+ 4

3 [T aV , [T bV ,T cA]]+ 4
3 [T aV , [T bA,T cV ]]− 4

3 [T aA, [T bV ,T cV ]]
}

C9
pabc = 1

16π2 trT pA
{

+4i
{
T aV ,T

b
V T

c
V +T bAT cA

}
+ 2

3 i
{
T aA, [T bV ,T cA]+[T bA,T cV ]

}
− 16

3 i
(
T bAT

c
AT

a
V +T bAT aV T cA+T aV T bAT cA

)}
C10
pabcd = 1

16π2 trT pA
{

+8
3 i [T

a
A, [T cV , [T bA,T dA]]]−2

3 i [[T
a
V ,T

c
A], [T bA,T dA]]−2

3 i [[T
a
A,T

c
V ], [T bA,T dA]]

+8iT aA[T cV ,T dA]T bA+8
3 i
{

[T aV ,T cA],
{
T bA,T

d
A

}}
−4

3 i
{

[T aV ,T bA],T cAT dA
}

+4
3 i [T

a
V , [T bV , [T cV ,T dA]]]+8

3 i [T
a
A, [T cV , [T bV ,T dV ]]]

− 2
3 i [[T

a
V ,T

c
A], [T bV ,T dV ]]−2

3 i [[T
a
A,T

c
V ], [T bV ,T dV ]]

}
C11
pabcd = 1

16π2 trT pA
{

4
(
T aV T

b
V +T aAT bA

)(
T cV T

d
V +T cAT dA

)
+1

3
(
[T aV ,T bA]+[T aA,T bV ]

)(
[T cV ,T dA]+[T cA,T dV ]

)
−16

3
[
T cAT

d
A(T aV T bV +T aAT bA)+T cA(T aV T bV +T aAT bA)T dA+(T aV T bV +T aAT bA)T cAT dA

]
+ 32

3 T
a
AT

b
AT

c
AT

d
A

}
,

C12
pLij =− 1

16π2

(5+ξ
6

)
[T aL(T pR−T

p
L)T aL]ij

C12
pRij = + 1

16π2

(5+ξ
6

)
[T aR(T pR−T

p
L)T aR]ij

C13
pLij =C12

pLij
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C13
pRij =C12

pRij

C14
pLaij = + i

16π2

(5+ξ
6

)
{[T pL,T

m
L T

a
RT

m
L ]−ifpanTmL TnRTmL }ij

C14
pRaij =− i

16π2

(5+ξ
6

)
{[T pR,T

m
R T

a
LT

m
R ]−ifpanTmR TnLTmR }ij ,

where trT pA {· · · } is short for tr[T pA {· · · }].21 Note that these CkA do not automatically satisfy
the symmetry properties of eq. (3.2) and need to be (anti)symmetrized accordingly. We
nevertheless prefer to report the results without (anti)symmetrization to avoid complicating
these already unwieldy expressions.

The results collected in eq. (4.34) pass a number of highly non-trivial consistency
checks. To start, the coefficients C0−6

A and C12,13,14
A have been independently computed

diagrammatically for ξ = 1. The Feynman diagrams exactly reproduce the coefficients in
eq. (4.34). Furthermore, we explicitly verified that the CkA in eq. (4.34), after being properly
(anti)symmetrized, satisfy the WZ conditions in A.1. We also computed the corresponding
values of the coefficients ck introduced in eq. (3.10) (see table 5) and checked that these
satisfy the constraints in A.3, as they should.

4.3.4 Counterterms

The explicit form of the gauge variation of the effective action induced by DR at one loop,
for the specific renormalization scheme of section 4.2, is given by the sum of (4.29) and
the fermionic operators discussed in section 4.3.2, see (4.21). Its 4-dimensional limit is
unambiguous, and so does the counterterm Sct|(1) =

∫
d4xLct|(1) in (2.22).

We can now write explicitly the counterterm necessary to restore gauge invariance
in our renormalization scheme, under the hypothesis that (2.15) is satisfied. Using the
definitions in eqs. (4.25) and (4.24), we find, up to gauge-invariant contributions:

Lct|(1) = εµναβ

16π2 Tr
{4

3∂µVν {Vα,Aβ}+ 2iVµVνVαAβ + 2
3 iVµAνAαAβ

}
(4.35)

+ 1
16π2 Tr

{
−4

3(DVµAν)2 + 2(DVµAµ)2 − 4
3[Aµ,Aν ]2 + 4

3(AµAν)2 +A2
µν

}
− 2

16π2

(
1 + ξ − 1

6

)
Gaaf̄γ5γ

µT aAµT af.

We emphasize that in our notation (see eq. (2.3)) a further rescaling Aaµ → gGδ
G
abA

b
µ is

needed to canonically normalize the kinetic term for the gauge bosons.
The counterterm is non-gauge-invariant by definition, see (2.22), but respects the

spurious P, CP, as well as Lorentz invariance.22 In addition, being proportional to the axial
vector component, it manifestly vanishes for T aA = 0, namely for T aL = T aR, consistently with
the fact that our regularization does not break vector-like gauge symmetries.

21The coefficients C12,13,14 of the fermionic operators are written in terms of the TL,R generators because
they only carry gauge indices. On the contrary, TV,A also involve Lorentz indices, which are fully contracted
in the definitions of I12,13,14.

22Possible gauge-invariant operators may be added to Sct. However, these would have no role in restoring
the WIs. Rather, they would correspond to renormalizations of the couplings of the theory.
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CkA ckXY Z

C0 c0 = −1
3

C1 c1
LLL = −1

3 , c
1
LLR = −1

6 , c
1
RLL = 1

3

C2 c2
LLL = −2i

3 , c
2
LLR = 0, c2

RLL = 2i
3

C3 c3
LLL = − i

3 , c
3
LLR = 2i

3 , c3
RLL = i

3

C4 c4 = i
2

C5 c5 = − i
6

C6 c6 = i
6

C7

c7
LLLL = c7

LLRL = c7′
LRRR = c7′

LLRR = c7
LRRL = c7′

LRLR = 1
6

c7′
LLLL = c7′

LLLR = c7
LLLR = c7

LRRR = c7
LRLR = c7′

LLRL = −1
6

c7
LRLL = c7

LLRR = 0

C8

c8′
LLLL = c8′′

LLLL = c8′
LLRL = c8

LLLR = c8′′
LLLR = c8′′

LLRL = c8
LRLR = c8′

LLRR = 1
3

c8
LLLL = c8

LLRL = c8′
LRLL = c8

LRRL = c8′′
LRLR = c8′

LRLR = c8′′
LRRL = −1

3

c8′′
LLRR = −c8′′

LRLL = 1, c8
LRLL = c8

LLRR = 0, c8′
LLLR = −c8′

LRRL = −2
3

C9

c9
LLLL = c9

LLRL = c9
LLLR = c9

LRRR = c9
LRLR = c9

LRRL = − i
6

c9
LRLL = c9

LLRR = 0
c9′
LLLL = c9′

LRRR = c9′
LRLR = c9′

LLRL = −c9′
LLLR = −c9′

LLRR = − i
6

C10 c10
1,2,3,4,5,6,15,17 = 0, c10

8,9,11 = −c10
7,10,12,13,14,16 = − i

24 , c
10
18 = i

12

C11 c11
1,2,3,7,8,9,10 = 0, c11

4,6 = −c11
5 = − 1

72

Table 5. Explicit results at one loop in DR for the coefficients ck entering the Ck
A parametrization

introduced in section 3.1, in units of 1/(16π2).

The first, second, and third lines of (4.35) can be found independently from each other
because they do not mix under gauge transformations. The counterterm in the second line,
which does not contain the Levi-Civita tensor, can be identified starting from the most
general Lagrangian constructed with dimension-four vector operators invariant under the
spurious P and covariant under the vector transformations. This requirement identifies
all operators in the second line of (4.35) plus of course, V2

µν +A2
µν , which is irrelevant to

our analysis because invariant under the full gauge symmetry group and is in one to one
correspondence to the term in eq. (3.16). The coefficients of the operators selected via this
procedure are finally derived by requiring the gauge variation cancels the part of ∆a|(1)

controlled by a/ε2.23 This fixes all coefficients but the one of V2
µν +A2

µν , coherently to what
was found in section 3.

There are only two independent dimension-four operators with Levi-Civita that are
invariant under the spurious P and built out of combinations that are manifestly singlet

23In deriving the variation it is useful to note that DVµ satisfies the Leibniz rule.
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ξkB χkXY Z

ξ1 χ1
LLL = i

3 − 2iχ2
LL, χ1

LLR = −2i
3 , χ

1
RLL = i

3

ξ2 χ2
LR = 1

6

ξ3 χ3
LL = −1

6 − χ
2
LL

ξ4 χ4 = 1
6

ξ5 χ5
LLLR = χ5

LRLR = i
72

ξ6
χ6
LLLL = 1

12 −
χ2
LL
4 , χ6

RLLL = χ6
LRLR = −χ6′

RLLL = − 1
24

χ6
LLRR = χ6′

RLLR = 0, χ6′
LLLL = −1

8 + χ2
LL
2

Table 6. Explicit results at one loop in DR for the coefficients χk entering the ξj
B parametrization

introduced in section 3.1, in units of 1/(16π2).

of the vector transformations; these are εµναβAµνVαβ and εµναβAµνAαAβ . However, using
the Bianchi identity one finds that both of them are total derivatives. To arrive at (4.35) we
have to relax the assumption that the building blocks be manifestly invariant, and instead
simply demand that the gauge variation vanishes for T aA = 0 (plus as usual invariance
under the truly conserved symmetries P and CP as well as hermiticity). This less stringent
request leaves us with the three independent operators shown in the first line of (4.35) (the
complex i follows from hermiticity and invariance under CP). The numerical coefficients
may then be obtained demanding that their variation exactly cancel the part of the anomaly
controlled by aε2 whenever (2.15) holds.

Finally, the last line of (4.35) is determined requiring its variation exactly compensates
the fermion-dependent part of ∆a. The most general set of 2-fermion operators would also
include a gauge-invariant combination, but that cannot play any role in restoring the WIs
and has not been included in (4.35).

The result in eq. (4.35) is a particular case of the general counterterm derived in
section 3, obtained for the choice χ2

LL = −1/(96π2). To verify this one may use the explicit
values of the ck in table 5 and plug them in (3.15), (3.18), obtaining the χk in table 6.
Substituting these in (3.4) one reproduces exactly the bosonic terms in (4.35). Analogously,
plugging the expressions of C12

cX = C13
cX shown in (4.34) into (3.28) and (3.30), we arrive at

the last line of (4.35). This is a strong cross check of the validity or our results.
It is interesting to compare our result to those of the previous literature, specifically

eq. (69) of [24] and (the vanishing Yukawa limit of) eq. (6.46) in [26]. Both references
consider scenarios in which each Dirac fermion has a single chirality charged under the
gauge symmetry, with the other one being neutral. In [26] only the right-handed component
is charged; in our notation this corresponds to taking the limit TL = 0 in (4.35). Ref. [24]
instead considers a theory involving a Dirac fermion with TL = 0 plus another one with
TR = 0. This implies that TL and TR live in orthogonal spaces. Because these two models
can be obtained as specific limits of our theory, then it is reasonable to ask whether the
results of refs. [24, 26] can be recovered as special cases of (4.35). The answer is in general
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negative because of the different gauge-fixing procedure. Nevertheless, non-trivial checks
can be made.

At 1-loop order the contribution of the fermions to the spurious anomaly is completely
insensitive to the gauge-fixing. Therefore the bosonic part of our result should reduce to
the one of [26] in the limit TL → 0 and the one of [24] when TL, TR are assumed to live in
orthogonal spaces. This is indeed what we find, up to a gauge-invariant term. Importantly,
though, the terms in (4.35) proportional to the Levi-Civita tensor identically vanish if either
TL = 0 or TR = 0, and this explains why they were not found in refs. [24, 26].

The fermionic part of the gauge-restoring counterterms do depend on the gauge-fixing
even at 1-loop order in general, and there is no reason to expect our result should reduce to
earlier ones. Yet, in the special case of an abelian gauge symmetry the background field
gauge-fixing exactly coincides with the Rξ gauge adopted by refs. [24, 26] and a comparison
becomes possible. To facilitate it, we observe that the group theory structure found in the
last line of (4.35) can be re-written as

GaaT
aAµT a = 1

2GaaA
b
µT

a
(
T bR − T bL

)
T a (4.36)

= 1
2GaaA

b
µ

{
PL
[
T aL

(
T bR − T bL

)
T aL

]
+ PR

[
T aR

(
T bR − T bL

)
T aR

]}
Suppose now that we consider a theory with TL = 0 and a simple gauge group, so that a
single coupling is present, as in [26]. In such a case we obtain

GaaT
aAµT a →

g2
G

2 AbµPR
[
T aRT

b
RT

a
R

]
(4.37)

= g2
G

2 AbµPRT
b
R

(
−1

2C2(G) + C2(R)
)
,

where C2(G)δab = −famnf bnm and C2(R)δij = (T aRT aR)ij are the Casimirs of the adjoint
and the fermion representations. For an abelian gauge theory C2(G) = 0 and our fermionic
counterterm agrees with the one found in [26] up to an irrelevant gauge-invariant piece, as ex-
pected. In the scenario considered in [24] PL

[
T aL

(
T bR − T bL

)
T aL

]
+PR

[
T aR

(
T bR − T bL

)
T aR

]
→

PL
[
−T aLT bLT aL

]
+PR

[
T aRT

b
RT

a
R

]
and we again find perfect agreement, up to a gauge-invariant

counterterm. Our result however differs from those of these references when the gauge
group is non-abelian for the reason discussed above.

5 An explicit example: counterterms in the SM

As an application of the formalism developed in this paper, we derive the WI-restoring
counterterms for the SM gauge group SU(3)c × SU(2)L ×U(1)Y, using DR and the BMHV
scheme for γ5. Since our calculations do not include scalar loops, the results of this section
apply to the SM in the limit of vanishing Yukawa couplings. We postpone to future work
the derivation of the additional counterterms such couplings would require.
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Before regularization, the SM gauge bosons and their interactions with the SM fermions
are described by the classical action in eq. (2.2). The gluon and electroweak gauge fields
may be collected in a 12-dimensional tensor

Aaµ =


Gaµ for a = 1, . . . , 8
W a
µ for a = 9, 10, 11

Bµ for a = 12
(5.1)

and their gauge couplings in a 12-dimensional tensor given by Gaa = g2
c (for a = 1, · · · 8),

Gaa = g2 (for a = 9, 10, 11), and Gaa = g′2 (for a = 12). For each fermion family,
fL and fR can be written as vectors with eight components, fL = (uL, dL, νL, eL) and
fR = (uR, dR, 0, eR), with the quarks carrying color index. The generators T aL,R are eight-
dimensional matrices. For example, the hypercharge generators explicitly read

T 12
L =


1
613

1
613
−1

2
−1

2

 , T 12
R =


2
313
−1

313
0
−1

 , (5.2)

where 13 is the 3× 3 identity matrix in color space. Analogous expressions may be derived
for all other generators.

Having specified these conventions, we can compute the counterterm Lagrangian in
eq. (4.35). Before presenting the result it is useful to anticipate a few features. The vector
component of the SM group contains color, which forms an algebra on its own. Invariance
under SU(3)c implies that the counterterm can only depend on gluons via their field
strength and covariant derivatives. Yet, it is straightforward to verify that the fully bosonic
part of (4.35) cannot involve gluons, the reason being that all color-invariant dimension-4
operators are automatically fully gauge-invariant. Similarly, the gluons cannot appear in
the fermionic part of the counterterm, since they live in the vectorial components Vµ.

We have thus established that eq. (4.35) can only depend on the electroweak gauge
bosons. We can then proceed by presenting its explicit form. To make the invariance under
the vector U(1)em manifest it is convenient to express (4.35) in terms of W±µ , Zµ and the
photon Aµ, defined as usual (in the canonically normalized basis) by:

W±µ =
W 1
µ ∓ iW 2

µ√
2

, Zµ = −swBµ + cwW
2
µ , Aµ = cwBµ + swW

2
µ , (5.3)

with cw and sw cosine and sine of the weak angle, i.e. cw = g/
√
g′ 2 + g2, sw = g′/

√
g′ 2 + g2.

The complete result, after an integration by parts and having canonically normalized the
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gauge fields, reads

Lct = g2

16π2

[2
3DµW

−
ν D

µW+ν + 1
3c2
w

∂µZν∂
µZν

]
− ig2e

8π2 F
µνW+

µ W
−
ν (5.4)

− ig3

48π2cw

[
(−4 + 6s2

w)DµW−µ W
+
ν Z

ν + (8− 6s2
w)DµW

−
ν W

+
µ Zν

+(−4 + 2s2
w)DµW

−
ν ZµW

+
ν − h.c.

]
+ g4

16π2

[
(W+

µ W
−µ)2 − 5

6W
+
µ W

+µW−ν W
−ν + 1

24c4
w

(ZµZµ)2

+(−5 + 8s2
w)

3c2
w

W+
µ W

−
ν Z

µZν + (11− 16s2
w + 4s4

w)
6c2
w

W+
µ W

−µZνZ
ν

]

− g3

16π2

{
9− t2w
36
√

2

[
ūLγ

µW+
µ dL + d̄Lγ

µW−µ uL
]

+ 9− t2w
72cw

[
ūLγ

µZµuL − d̄LγµZµdL
]

+ 1− t2w
4
√

2

[
ν̄Lγ

µW+
µ eL + ēLγ

µW−µ νL
]

+ 1− t2w
8cw

[ν̄LγµZµνL − ēLγµZµeL]

+ 2t2w
9
√

2

[
ūRγ

µW+
µ dR + d̄Rγ

µW−µ uR
]

− t2w
18cw

[
4ūRγµZµuR − d̄RγµZµdR

]
+ t2w

2cw
ēRγ

µZµeR

}
.

In this expression DµW
±
ν = (∂µ ± ieAµ)W±ν denotes the QED-covariant derivative and

tw = sw/cw. As required by invariance under U(1)em, the dependence of the counterterm on
the photon field occurs only via the field strength and the covariant derivative. Interestingly,
the bosonic counterterm involving the Levi-Civita tensor, shown in the first line of eq. (4.35),
exactly vanishes. This turns out to be a special property of the electroweak gauge group
and can be traced back to the peculiarity of the SU(2) algebra.

6 Outlook

Any consistent regularization scheme induces an apparent violation of gauge invariance in
non-anomalous chiral gauge theories. This violation shows up in amplitudes evaluated in
perturbation theory and can be removed by the inclusion of finite counterterms. In this
context, renormalization is more sophisticated than in a vector-like gauge theory. Two
steps can be distinguished in the subtraction procedure. A first one is required to remove
infinities. At a given order in perturbation theory, this can be done by adding a set of
local divergent counterterms. At this stage, the theory delivers finite results, but the
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corresponding amplitudes do not preserve gauge invariance in general. Indeed, the latter is
broken by finite terms that can be systematically deleted by adding local finite counterterms.

The two steps can be reiterated at each order of perturbation theory and can be
implemented directly at the level of the generating functional of the 1PI Green’s functions of
the theory. Starting from the regularized functional Γreg[φ], divergencies are canceled by the
local counterterm Γct[φ], such that Γ[φ] = Γreg[φ] + Γct[φ] produces finite results. By further
adding the local finite counterterm Sct[φ], we finally get the functional Γinv[φ] = Γ[φ]+Sct[φ]
that satisfies the WI of the theory. Of course, such a separation of the subtraction procedure
into two moves is purely conventional. What matters is the overall combination Γct[φ]+Sct[φ],
which can be split into the sum of a divergent term and a finite one in infinitely many ways.
In practical computation, however, the two above steps appear to be very convenient and
have been adopted in our approach.

The main result of this work is a general analytic expression of the finite one-loop coun-
terterm Sct[φ] for a renormalizable chiral gauge theory including gauge bosons and fermions
transforming in arbitrary representations of the gauge group, given in terms of the symmetry
breaking terms in the respective regularization. A very appealing feature of this result is that
the counterterm Sct[φ] is determined for any possible consistent regulator belonging to a wide
class. We only require that the chosen regularization scheme obeys the Quantum Action Prin-
ciple, preserves Lorentz invariance in four dimensions, and gauge invariance when the theory
is vector-like. The physical information is entirely encoded in the gauge variation LaΓ[φ].24

This can be expressed as a linear combination of local operators of dimension four, whose co-
efficients can be determined by a one-loop computation for each given regularization scheme.
The counterterm Sct[φ] automatically follows from the knowledge of these coefficients.

We started by quantizing the theory with the Background Field Method and by choosing
the Background Field Gauge, which guarantees the gauge invariance of the functional Γinv[φ]
at the level of background fields. In this respect, we differ from previous approaches, where
the theory is quantized with the help of a traditional gauge fixing that breaks the gauge
symmetry down to the rigid BRST invariance. The WI of the functional Γinv[φ] resulting
from the Background Field Gauge are easier to deal with compared to the non-linear Slavnov-
Taylor identities consequences of the BRST invariance: they simply read LaΓinv[φ] = 0.

A key ingredient of our derivation is the non-redundant parametrization of the gauge
variation LaΓ[φ] at the one-loop order, which has been established independently from the
adopted regularization by exploiting several properties of the theory. The Quantum Action
Principle guarantees that, order by order in perturbation theory, LaΓ[φ] is a finite local
polynomial in the fields and their derivatives preserving the symmetries of the regulator.
Last but not least, the WZ consistency conditions greatly reduce the number of independent
coefficients needed to describe LaΓ[φ]. Similar considerations restrict the form of the
sought-after counterterm Sct[φ]. Its analytic expression can be fully determined in complete
generality — up to gauge-invariant contributions — from the equality La(Γ[φ] +Sct[φ]) = 0.

One of the most widely used regularization in practical computation is DR and an
important part of our work has been devoted to specifying our general results to such a

24The dependence of Sct[φ] on the subtraction procedure is specified by LaΓ[φ] = La(Γreg[φ] + Γct[φ]).
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scheme. Within a path-integral formalism, we have computed the gauge variation of the
whole one-loop renormalized functional Γ[φ] in the BMHV scheme. The result was also
reproduced in several parts via a diagrammatic computation. The full set of one-loop finite
counterterms in DR for the class of theories under investigation has been obtained and is
compactly summarized in eq. (4.35).

To exemplify our result, we have computed the one-loop finite counterterm for the SM
in the limit of vanishing Yukawa couplings, when DR and the BMHV scheme for γ5 are
chosen. This can be seen as a first step toward the automation of one-loop computations
in an even more general class of theories such as chiral gauge theories including a scalar
sector, like the SM, or non-renormalizable ones, such as the SMEFT. The need for local
counterterms restoring gauge invariance in SMEFT one-loop computations have already
been emphasized [31–33] and we are confident that our approach, suitably generalized, can
represent a useful tool in this context.
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A General solution of the Wess-Zumino conditions

A.1 Wess-Zumino consistency conditions in terms of the Ck
A

A.1.1 Bosonic sector

P-even sector.

C0
[pc] = 0(
C3
cbp+fcbeC

0
pe

)∣∣∣
symm. in pc

= 0

(C3
pbc+fpbeC

0
ce)+(C4

cpb+C5
cpb)−(C4

pcb+C5
pcb) = 0

2(C3
pbc+fpbeC

0
ce)+(C2

cpb+C2
pcb)−2(C4

pcb+C5
pcb)−4C6

pcb = 0

(C3
pbc+fpbeC

0
ce)−(C2

cpb+C2
pcb)+C3

cpb+C3
pcb−2(C4

pcb+C5
pcb) = 0

(C3
pbc+fpbeC

0
ce)+(C3

pcb+fpceC
0
eb)−2(C4

pcb+C5
pcb)−2C6

pcb = 0(
C3
cbefpde−C3

pdefcbe−C2
cbefpde+C2

pdefcbe
)∣∣∣

symm. in bd
= 2C7

[pc](bd)(
C2
cbefpde−C2

pdefcbe
)∣∣∣

symm. in bd
= 2C8

[pc](bd)

C2
cbefpde−C2

pdefcbe+2C5
c(ed)fpbe+2C5

p(ed)fcbe+2C8
(c|db|p)−2C8

pc(db) = 0

2(C3
cbe−C2

cbe)fpde−2(C3
pde−C2

pde)fcbe+2C4
c(ed)fpbe+2C4

p(ed)fcbe

−4C7
pc(db) +2C8

(c|d|p)b = 0
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C2
cbefpde−C2

pdefcbe+2C6
c(ed)fpbe+2C6

p(ed)fcbe+2C7
cd(pb) +2C7

pd(cb)−2C8
pc(db) = 0 (A.1)

C2
cedfpbe+C2

cbefpde−2C2
p(ed)fcbe+2C5

p(ed)fcbe+2C6
p(ed)fcbe

+2C7
pd(cb)−2C8

pc(db) +C8
pdbc =−fpceC2

ebd

(C3
ced−C2

ced)fpbe+(C3
cbe−C2

cbe)fpde−2(C3
p(ed)−C

2
p(ed))fcbe

+2C4
p(ed)fcbe−2C7

pc(db) +C8
pdcb =−(C3

ebd−C2
ebd)fpce(

2C4
c(eb)fpde−2C7

pc(bd) +C8
pbcd

)∣∣∣
symm. in bd

=−C4
e(bd)fpce(

2C5
c(eb)fpde+C8

pdbc−C8
pcbd

)∣∣∣
symm. in bd

=−C5
e(bd)fpce(

2C6
c(eb)fpde+2C7

pd(bc)−C
8
pcbd

)∣∣∣
symm. in bd

=−C6
e(bd)fpce(

fpheC
7
ce(bd) +fcheC

7
pe(bd) +fpbeC

8
cehd+fcbeC

8
pehd+4C10

cphbd+4C10
pchbd

)∣∣∣
symm. in bd

= 0(
fpdeC

7
ce(bh) +2fpheC7

cd(be)−2fcheC7
pd(be) +4C10

pcdbh+fcheC
8
pedb

)∣∣∣
symm. in bh

=−fpceC7
ed(bh)

2fcheC7
pe(bd) +fpdeC

8
cehb+fpheC

8
cdeb+C8

cdhefpbe+C8
pehdfcbe

−fcheC8
pdeb−fcbeC8

pdhe+8C10
pchbd =−fpceC8

edhb(
4fphaC10

cabdf −4fchaC10
pabdf

)∣∣∣
symm. in hb, df, hb ↔ df

=−fpceC10
ehbdf

P-odd sector.

fpdeC
1
c(eb) + fcdeC

1
p(eb) + C9

pb[cd] + C9
cb[pd] = 0

(2fpdeC1
ceb + 2C9

pb[cd])
∣∣∣
symm. in bd

= −fpceC1
e(db)

(4C11
c[pbdf ] + 4C11

p[cbdf ] + fpdeC
9
ce[bf ] + fcdeC

9
pe[bf ])

∣∣∣
antisymm. in bdf

= 0(
2fpfeC9

cb[ed] − fcfeC
9
pe[bd] − fcdeC

9
pe[fb] − 2fcfeC9

pb[ed]

)∣∣∣
antisymm. in df

+ 12C11
p[cbdf ] + fpbeC

9
ce[fd] = −fpceC9

eb[fd](
4fphbC11

c[badf ] − 4fchbC11
p[badf ]

)∣∣∣
antisymm. in adfh

= −fpceC11
e[afdh]

(A.2)

A.1.2 Fermionic sector

−iC14
pcX−C12

cXT
p
X+T pXC

12
cX−T cXC12

pX+T cXC13
pX−ifpcbC12

bX = 0
−iC14

pcX−C13
cXT

p
X+T pXC

13
cX+C13

pXT
c
X−C12

pXT
c
X−ifpcbC13

bX = 0
−ifpqbC14

cbX+ifcqbC14
pbX+C14

cqXT
p
X−T

p
XC

14
cqX+C14

pqXT
c
X−T cXC14

pqX−ifpcbC14
bqX = 0

−iC14
cpX−iC14

pcX−C12
cXT

p
X+T pXC

13
cX−C12

pXT
c
X+T cXC13

pX = 0

(A.3)
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A.2 Parametrizations for the remaining Ck
A

C7
abcd = c7LRRR(−T abcdLLLL+T abcdLRRR+T abcdRLLL−T abcdRRRR−T abdcLLLL+T abdcLRRR+T abdcRLLL−T abdcRRRR (A.4)

−T acdbLLLL+T acdbLRRR+T acdbRLLL−T acdbRRRR−T adcbLLLL+T adcbLRRR+T adcbRLLL−T adcbRRRR)+

c7LLRR(−T abcdLLLL+T abcdLLRR+T abcdRRLL−T abcdRRRR−T abdcLLLL+T abdcLLRR+T abdcRRLL−T abdcRRRR

−T acdbLLLL+T acdbLRRL+T acdbRLLR−T acdbRRRR−T adcbLLLL+T adcbLRRL+T adcbRLLR−T adcbRRRR)+

c7LRLR(−T abcdLLLL+T abcdLRLR+T abcdRLRL−T abcdRRRR−T abdcLLLL+T abdcLRLR+T abdcRLRL−T abdcRRRR

−T acdbLLLL+T acdbLRLR+T acdbRLRL−T acdbRRRR−T adcbLLLL+T adcbLRLR+T adcbRLRL−T adcbRRRR)+

c7LLLR(−T abcdLLLL+T abcdLLLR+T abcdRRRL−T abcdRRRR−T abdcLLLL+T abdcLLLR+T abdcRRRL−T abdcRRRR

−T acdbLLLL+T acdbLRLL+T acdbRLRR−T acdbRRRR−T adcbLLLL+T adcbLRLL+T adcbRLRR−T adcbRRRR)+

c7LRRL(−T abcdLLLL+T abcdLRRL+T abcdRLLR−T abcdRRRR−T abdcLLLL+T abdcLRRL+T abdcRLLR−T abdcRRRR

−T acdbLLLL+T acdbLLRR+T acdbRRLL−T acdbRRRR−T adcbLLLL+T adcbLLRR+T adcbRRLL−T adcbRRRR)+

c7LLRL(−T abcdLLLL+T abcdLLRL+T abcdRRLR−T abcdRRRR−T abdcLLLL+T abdcLLRL+T abdcRRLR−T abdcRRRR

−T acdbLLLL+T acdbLLRL+T acdbRRLR−T acdbRRRR−T adcbLLLL+T adcbLLRL+T adcbRRLR−T adcbRRRR)+

c7LRLL(−T abcdLLLL+T abcdLRLL+T abcdRLRR−T abcdRRRR−T abdcLLLL+T abdcLRLL+T abdcRLRR−T abdcRRRR

−T acdbLLLL+T acdbLLLR+T acdbRRRL−T acdbRRRR−T adcbLLLL+T adcbLLLR+T adcbRRRL−T adcbRRRR)

c7′LLRR(−2T acbdLLLL+T acbdLLRR+T acbdLRRL+T acbdRLLR+T acbdRRLL−2T acbdRRRR−2T adbcLLLL

+T adbcLLRR+T adbcLRRL+T adbcRLLR+T adbcRRLL−2T adbcRRRR)+

c7′LLLR(−2T acbdLLLL+T acbdLLLR+T acbdLRLL+T acbdRLRR+T acbdRRRL−2T acbdRRRR−2T adbcLLLL

+T adbcLLLR+T adbcLRLL+T adbcRLRR+T adbcRRRL−2T adbcRRRR)+

c7′LRRR(−T acbdLLLL+T acbdLRRR+T acbdRLLL−T acbdRRRR−T adbcLLLL+T adbcLRRR+T adbcRLLL−T adbcRRRR)+

c7′LRLR(−T acbdLLLL+T acbdLRLR+T acbdRLRL−T acbdRRRR−T adbcLLLL+T adbcLRLR+T adbcRLRL−T adbcRRRR)+

c7′LLRL(−T acbdLLLL+T acbdLLRL+T acbdRRLR−T acbdRRRR−T adbcLLLL+T adbcLLRL+T adbcRRLR−T adbcRRRR) ,

C8
abcd = c8LLRR(T abcdLLRR−T abcdLRRR−T abcdRLLL+T abcdRRLL+T adcbLRRL−T adcbLRRR−T adcbRLLL+T adcbRLLR)+ (A.5)

c8LRLR(T abcdLRLR−T abcdLRRR−T abcdRLLL+T abcdRLRL+T adcbLRLR−T adcbLRRR−T adcbRLLL+T adcbRLRL)+

c8LLLR(T abcdLLLR−T abcdLRRR−T abcdRLLL+T abcdRRRL+T adcbLRLL−T adcbLRRR−T adcbRLLL+T adcbRLRR)+

c8LRRL(T abcdLRRL−T abcdLRRR−T abcdRLLL+T abcdRLLR+T adcbLLRR−T adcbLRRR−T adcbRLLL+T adcbRRLL)+

c8LLRL(T abcdLLRL−T abcdLRRR−T abcdRLLL+T abcdRRLR+T adcbLLRL−T adcbLRRR−T adcbRLLL+T adcbRRLR)+

c8LRLL(T abcdLRLL−T abcdLRRR−T abcdRLLL+T abcdRLRR+T adcbLLLR−T adcbLRRR−T adcbRLLL+T adcbRRRL)+

c8LLLL(T abcdLLLL−T abcdLRRR−T abcdRLLL+T abcdRRRR+T adcbLLLL−T adcbLRRR−T adcbRLLL+T adcbRRRR)+

c8′LRRL(T abdcLLRR−T abdcLRRR−T abdcRLLL+T abdcRRLL+T acdbLRRL−T acdbLRRR−T acdbRLLL+T acdbRLLR)+

c8′LRLR(T abdcLRLR−T abdcLRRR−T abdcRLLL+T abdcRLRL+T acdbLRLR−T acdbLRRR−T acdbRLLL+T acdbRLRL)+

c8′LRLL(T abdcLLLR−T abdcLRRR−T abdcRLLL+T abdcRRRL+T acdbLRLL−T acdbLRRR−T acdbRLLL+T acdbRLRR)+

c8′LLRR(T abdcLRRL−T abdcLRRR−T abdcRLLL+T abdcRLLR+T acdbLLRR−T acdbLRRR−T acdbRLLL+T acdbRRLL)+

c8′LLRL(T abdcLLRL−T abdcLRRR−T abdcRLLL+T abdcRRLR+T acdbLLRL−T acdbLRRR−T acdbRLLL+T acdbRRLR)+

c8′LLLR(T abdcLRLL−T abdcLRRR−T abdcRLLL+T abdcRLRR+T acdbLLLR−T acdbLRRR−T acdbRLLL+T acdbRRRL)+

c8′LLLL(T abdcLLLL−T abdcLRRR−T abdcRLLL+T abdcRRRR+T acdbLLLL−T acdbLRRR−T acdbRLLL+T acdbRRRR)+

c8′′LRRL(T acbdLLRR−T acbdLRRR−T acbdRLLL+T acbdRRLL+T adbcLRRL−T adbcLRRR−T adbcRLLL+T adbcRLLR)+

c8′′LRLR(T acbdLRLR−T acbdLRRR−T acbdRLLL+T acbdRLRL+T adbcLRLR−T adbcLRRR−T adbcRLLL+T adbcRLRL)+

c8′′LRLL(T acbdLLLR−T acbdLRRR−T acbdRLLL+T acbdRRRL+T adbcLRLL−T adbcLRRR−T adbcRLLL+T adbcRLRR)+
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c8′′LLRR(T acbdLRRL−T acbdLRRR−T acbdRLLL+T acbdRLLR+T adbcLLRR−T adbcLRRR−T adbcRLLL+T adbcRRLL)+

c8′′LLRL(T acbdLLRL−T acbdLRRR−T acbdRLLL+T acbdRRLR+T adbcLLRL−T adbcLRRR−T adbcRLLL+T adbcRRLR)+

c8′′LLLR(T acbdLRLL−T acbdLRRR−T acbdRLLL+T acbdRLRR+T adbcLLLR−T adbcLRRR−T adbcRLLL+T adbcRRRL)+

c8′′LLLL(T acbdLLLL−T acbdLRRR−T acbdRLLL+T acbdRRRR+T adbcLLLL−T adbcLRRR−T adbcRLLL+T adbcRRRR) ,

C9
abcd = c9′LRRR(−T acbdLRRR+T acbdRLLL+T adbcLRRR−T adbcRLLL)+ (A.6)

c9′LRLR(−T acbdLRLR+T acbdRLRL+T adbcLRLR−T adbcRLRL)+

c9′LLRR(−T acbdLLRR−T acbdLRRL+T acbdRLLR+T acbdRRLL+T adbcLLRR+T adbcLRRL−T adbcRLLR−T adbcRRLL)+

c9′LLRL(−T acbdLLRL+T acbdRRLR+T adbcLLRL−T adbcRRLR)+

c9′LLLR(−T acbdLLLR−T acbdLRLL+T acbdRLRR+T acbdRRRL+T adbcLLLR+T adbcLRLL−T adbcRLRR−T adbcRRRL)+

c9′LLLL(−T acbdLLLL+T acbdRRRR+T adbcLLLL−T adbcRRRR)+

c9′LRRR(T abcdLRRR−T abcdRLLL−T abdcLRRR+T abdcRLLL+T acdbLRRR−T acdbRLLL−T adcbLRRR+T adcbRLLL)+

c9LLRR(T abcdLLRR−T abcdRRLL−T abdcLLRR+T abdcRRLL+T acdbLRRL−T acdbRLLR−T adcbLRRL+T adcbRLLR)+

c9LRLR(T abcdLRLR−T abcdRLRL−T abdcLRLR+T abdcRLRL+T acdbLRLR−T acdbRLRL−T adcbLRLR+T adcbRLRL)+

c9LLLR(T abcdLLLR−T abcdRRRL−T abdcLLLR+T abdcRRRL+T acdbLRLL−T acdbRLRR−T adcbLRLL+T adcbRLRR)+

c9LRRL(T abcdLRRL−T abcdRLLR−T abdcLRRL+T abdcRLLR+T acdbLLRR−T acdbRRLL−T adcbLLRR+T adcbRRLL)+

c9LLRL(T abcdLLRL−T abcdRRLR−T abdcLLRL+T abdcRRLR+T acdbLLRL−T acdbRRLR−T adcbLLRL+T adcbRRLR)+

c9LRLL(T abcdLRLL−T abcdRLRR−T abdcLRLL+T abdcRLRR+T acdbLLLR−T acdbRRRL−T adcbLLLR+T adcbRRRL)+

c9LLLL(T abcdLLLL−T abcdRRRR−T abdcLLLL+T abdcRRRR+T acdbLLLL−T acdbRRRR−T adcbLLLL+T adcbRRRR) ,

C10
abcde = c10

1 (T abdecRRLRR−T abdecRRRLR+T abedcRRLRR−T abedcRRRLR−T adbceLLLRL+T adbceLLRLL+T adbceRRLRR−T adbceRRRLR− (A.7)
T adcbeLLLRL+T adcbeLLRLL+T adcbeRRLRR−T adcbeRRRLR+T bcdaeRLLLL+T cbdaeRLLLL+T cdebaRLRRR+T cedbaRLRRR+

T dbaceLLLLR−T dbaceRLLLL+T dcabeLLLLR−T dcabeRLLLL−T debacRLRRR+T ebacdLLLLR−T ebacdRLLLL−T ebcdaLLRLL+

T ebcdaRLRRR−T ebcdaRRLRR+T ecabdLLLLR−T ecabdRLLLL−T ecbdaLLRLL+T ecbdaRLRRR−T ecbdaRRLRR−T edbacRLRRR)+

c10
2 (T abdceLLLRL−T abdceLLRLL−T abdceRRLRR+T abdceRRRLR−T abecdLLRLL−T abecdRRLRR+T abecdRRRLR+T acdbeLLLRL−

T acdbeLLRLL−T acdbeRRLRR+T acdbeRRRLR−T acebdLLRLL−T acebdRRLRR+T acebdRRRLR+T bdaceRLLLL−T bdcaeRLLLL+

T cdabeRLLLL−T cdbaeRLLLL+T dbecaLLRLL−T dbecaRLRRR+T dbecaRRLRR+T dcebaLLRLL−T dcebaRLRRR+T dcebaRRLRR−

T ebadcLLLLR+T ebdcaLLRLL−T ebdcaRLRRR+T ebdcaRRLRR−T ecadbLLLLR+T ecdbaLLRLL−T ecdbaRLRRR+T ecdbaRRLRR)+

c10
3 (T abdceRLLRL−T abdceRLRLL−T abecdRLRLL+T acdbeRLLRL−T acdbeRLRLL−T acebdRLRLL−T badceRLRLR−T baecdRLRLR+

T bdaceRLRLL−T bdcaeRLLRL+T bdcaeRLRLR+T becadRLRLR−T cadbeRLRLR−T caebdRLRLR+T cdabeRLRLL−T cdbaeRLLRL+

T cdbaeRLRLR+T cebadRLRLR−T dabecRLRLR−T dacebRLRLR+T dbeacRLRLR+T dbecaLLRLR+T dceabRLRLR+T dcebaLLRLR−

T eabdcRLRLR−T eacdbRLRLR−T ebadcLLRLR+T ebdacRLRLR+T ebdcaLLRLR−T ecadbLLRLR+T ecdabRLRLR+T ecdbaLLRLR)+

c10
4 (−T adbceRLLRL+T adbceRLRLL−T adcbeRLLRL+T adcbeRLRLL+T bacdeRLRLR+T bacedRLRLR+T bcdaeRLLRL−T bcdaeRLRLR−

T bceadRLRLR+T cabdeRLRLR+T cabedRLRLR+T cbdaeRLLRL−T cbdaeRLRLR−T cbeadRLRLR+T daebcRLRLR+T daecbRLRLR+

T dbaceLLRLR−T dbaceRLRLL+T dcabeLLRLR−T dcabeRLRLL−T debacRLRLR−T decabRLRLR+T eadbcRLRLR+T eadcbRLRLR+

T ebacdLLRLR−T ebacdRLRLL−T ebcdaLLRLR+T ecabdLLRLR−T ecabdRLRLL−T ecbdaLLRLR−T edbacRLRLR−T edcabRLRLR)+

c10
5 (T abcdeRLLRL−T abcdeRLRLL+T abcedRLLRL+T acbdeRLLRL−T acbdeRLRLL+T acbedRLLRL−T badecRLRLR−T baedcRLRLR+

T bcadeRLRLL+T bdeacRLRLR+T bedacRLRLR−T cadebRLRLR−T caedbRLRLR+T cbadeRLRLL+T cdeabRLRLR+T cedabRLRLR−

T dabceRLRLR−T dacbeRLRLR−T dbcaeRLLRL+T dbcaeRLRLR−T dcbaeRLLRL+T dcbaeRLRLR−T eabcdRLRLR−T eacbdRLRLR−

T ebcadRLLRL+T ebcadRLRLR−T ecbadRLLRL+T ecbadRLRLR−T edabcLLRLR−T edacbLLRLR+T edbcaLLRLR+T edcbaLLRLR)+

c10
6 (−T abcdeLLLRL+T abcdeLLRLL+T abcdeRRLRR−T abcdeRRRLR−T abcedLLLRL+T abcedRRLRR−T abcedRRRLR−T acbdeLLLRL+
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T acbdeLLRLL+T acbdeRRLRR−T acbdeRRRLR−T acbedLLLRL+T acbedRRLRR−T acbedRRRLR−T bcadeRLLLL−T cbadeRLLLL+

T dbcaeRLLLL+T dcbaeRLLLL+T debcaRLRRR+T decbaRLRRR+T ebcadRLLLL−T ebcadRLRRR+T ecbadRLLLL−T ecbadRLRRR+

T edabcLLLLR+T edacbLLLLR−T edbcaLLRLL+T edbcaRLRRR−T edbcaRRLRR−T edcbaLLRLL+T edcbaRLRRR−T edcbaRRLRR)+

c10
7 (T abcdeLLLLR−T abcdeRLRRR+T abcedLLLLR−T abcedRLRRR+T acbdeLLLLR−T acbdeRLRRR+T acbedLLLLR−T acbedRLRRR+

T adebcLLLLR−T adebcRLRRR+T adecbLLLLR+T aedbcLLLLR−T aedbcRLRRR+T aedcbLLLLR−T bcdeaRLLLL−T bcedaRLLLL−

T cbadeRRRLR−T cbaedRRRLR−T cbdeaRLLLL+T cbdeaRRRLR−T cbedaRLLLL+T cbedaRRRLR+T deabcRLRRR−T debcaRLLLL−

T decbaRLLLL+T ebcadRRLRR+T ecbadRRLRR+T edabcRLRRR−T edbcaRLLLL+T edbcaRRRLR−T edcbaRLLLL+T edcbaRRRLR)

c10
8 (−T abdecLLLLR−T abedcLLLLR−T acdebLLLLR−T acedbLLLLR−T adbceLLLLR+T adbceRLRRR−T adcbeLLLLR+T adcbeRLRRR−

T aebcdLLLLR+T aebcdRLRRR−T aecbdLLLLR+T aecbdRLRRR+T bdecaRLLLL+T bedcaRLLLL+T cdebaRLLLL+T cedbaRLLLL−

T dbaceRLRRR+T dbaceRRRLR+T dbceaRLLLL−T dbceaRRRLR−T dcabeRLRRR+T dcabeRRRLR+T dcbeaRLLLL−T dcbeaRRRLR−

T ebacdRLRRR+T ebacdRRRLR+T ebcdaRLLLL−T ebcdaRRRLR−T ecabdRLRRR+T ecabdRRRLR+T ecbdaRLLLL−T ecbdaRRRLR)+

c10
9 (−T abdceLLLLR+T abdceRLRRR−T abecdLLLLR+T abecdRLRRR−T acdbeLLLLR+T acdbeRLRRR−T acebdLLLLR+T acebdRLRRR−

T adbecLLLLR+T adbecRLRRR−T adcebLLLLR−T aebdcLLLLR+T aebdcRLRRR−T aecdbLLLLR+T bdceaRLLLL+T becdaRLLLL−

T cdabeRLRRR+T cdbeaRLLLL−T ceabdRLRRR+T cebdaRLLLL+T dbaecRRRLR−T dbeacRRLRR+T dbecaRLLLL−T dbecaRRRLR+

T dcebaRLLLL−T dcebaRRRLR+T ebadcRRRLR−T ebdacRRLRR+T ebdcaRLLLL−T ebdcaRRRLR+T ecdbaRLLLL−T ecdbaRRRLR)+

c10
10(T abcdeLLRLR−T abcdeRLRLR+T abcedLLRLR−T abcedRLRLR+T acbdeLLRLR−T acbdeRLRLR+T acbedLLRLR−T acbedRLRLR+

T adebcLLRLR−T adebcRLRLR+T adecbLLRLR−T adecbRLRLR+T aedbcLLRLR−T aedbcRLRLR+T aedcbLLRLR−T aedcbRLRLR−

T bcdeaRLRLL+T bcdeaRLRLR−T bcedaRLRLL+T bcedaRLRLR−T cbdeaRLRLL+T cbdeaRLRLR−T cbedaRLRLL+T cbedaRLRLR−

T debcaRLRLL+T debcaRLRLR−T decbaRLRLL+T decbaRLRLR−T edbcaRLRLL+T edbcaRLRLR−T edcbaRLRLL+T edcbaRLRLR)+

c10
11(T abdceLLRLR+T abecdLLRLR+T acdbeLLRLR+T acebdLLRLR+T adbecLLRLR+T adcebLLRLR+T aebdcLLRLR+T aecdbLLRLR−

T bdceaRLRLL−T becdaRLRLL−T cdbeaRLRLL−T cebdaRLRLL−T dbecaRLRLL−T dcebaRLRLL−T ebdcaRLRLL−T ecdbaRLRLL−

T abdceRLRLR−T abecdRLRLR−T acdbeRLRLR−T acebdRLRLR−T adbecRLRLR−T adcebRLRLR−T aebdcRLRLR−T aecdbRLRLR+

T bdceaRLRLR+T becdaRLRLR+T cdbeaRLRLR+T cebdaRLRLR+T dbecaRLRLR+T dcebaRLRLR+T ebdcaRLRLR+T ecdbaRLRLR)+

c10
12(T abdceRLLLR+T abecdRLLLR+T acdbeRLLLR+T acebdRLLLR+T adbecRLLLR+T adcebRLLLR+T aebdcRLLLR+T aecdbRLLLR−

T bdceaRLLLR−T becdaRLLLR−T cadbeRLLRR−T caebdRLLRR+T cdabeRLLRR−T cdbeaRLLLR+T ceabdRLLRR−T cebdaRLLLR−

T dabecRLLRR−T dacebRLLRR+T dbaecRLLRR−T dbaecRRLLR+T dbeacRRLLR−T dbecaRLLLR+T dcaebRLLRR−T dcebaRLLLR−

T eabdcRLLRR−T eacdbRLLRR+T ebadcRLLRR−T ebadcRRLLR+T ebdacRRLLR−T ebdcaRLLLR+T ecadbRLLRR−T ecdbaRLLLR)+

c10
13(−T abdecRLLLR−T abedcRLLLR−T acdebRLLLR−T acedbRLLLR−T adbceRLLLR−T adcbeRLLLR−T aebcdRLLLR−T aecbdRLLLR+

T bdecaRLLLR+T bedcaRLLLR−T cbdaeRRLLR−T cbeadRRLLR−T cdaebRLLRR+T cdebaRLLLR−T ceadbRLLRR+T cedbaRLLLR+

T daebcRLLRR+T daecbRLLRR−T dbaceRLLRR+T dbaceRRLLR+T dbceaRLLLR−T dcabeRLLRR+T dcabeRRLLR+T dcbeaRLLLR+

T eadbcRLLRR+T eadcbRLLRR−T ebacdRLLRR+T ebacdRRLLR+T ebcdaRLLLR−T ecabdRLLRR+T ecabdRRLLR+T ecbdaRLLLR)

c10
14(T abdecLLRLR−T abdecRLRLR+T abedcLLRLR−T abedcRLRLR+T acdebLLRLR−T acdebRLRLR+T acedbLLRLR−T acedbRLRLR+

T adbceLLRLR−T adbceRLRLR+T adcbeLLRLR−T adcbeRLRLR+T aebcdLLRLR−T aebcdRLRLR+T aecbdLLRLR−T aecbdRLRLR−

T bdecaRLRLL+T bdecaRLRLR−T bedcaRLRLL+T bedcaRLRLR−T cdebaRLRLL+T cdebaRLRLR−T cedbaRLRLL+T cedbaRLRLR−

T dbceaRLRLL+T dbceaRLRLR−T dcbeaRLRLL+T dcbeaRLRLR−T ebcdaRLRLL+T ebcdaRLRLR−T ecbdaRLRLL+T ecbdaRLRLR)+

c10
15(T abdceRLLRR+T abecdRLLRR+T acdbeRLLRR+T acebdRLLRR+T adbecRLLRR+T adcebRLLRR+T aebdcRLLRR+T aecdbRLLRR−

T badceRLLLR−T baecdRLLLR+T bdcaeRLLLR+T becadRLLLR−T cadbeRLLLR−T caebdRLLLR+T cdbaeRLLLR+T cebadRLLLR−

T dabecRLLLR−T dacebRLLLR+T dbeacRLLLR−T dbeacRLLRR−T dbecaRRLLR+T dceabRLLLR−T dceabRLLRR−T dcebaRRLLR−

T eabdcRLLLR−T eacdbRLLLR+T ebdacRLLLR−T ebdacRLLRR−T ebdcaRRLLR+T ecdabRLLLR−T ecdabRLLRR−T ecdbaRRLLR)+
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c10
16(−T abcdeRLLLR−T abcedRLLLR−T acbdeRLLLR−T acbedRLLLR−T adebcRLLLR−T adecbRLLLR−T aedbcRLLLR−T aedcbRLLLR+

T bcdeaRLLLR+T bcedaRLLLR+T cadebRLLRR+T caedbRLLRR+T cbadeRRLLR+T cbaedRRLLR+T cbdeaRLLLR+T cbedaRLLLR+

T dabceRLLRR+T dacbeRLLRR−T dbcaeRRLLR−T dcbaeRRLLR−T deabcRLLRR−T deacbRLLRR+T debcaRLLLR+T decbaRLLLR+

T eabcdRLLRR+T eacbdRLLRR−T ebcadRRLLR−T ecbadRRLLR−T edabcRLLRR−T edacbRLLRR+T edbcaRLLLR+T edcbaRLLLR)+

c10
17(T abcdeRLLRR+T abcedRLLRR+T acbdeRLLRR+T acbedRLLRR+T adebcRLLRR+T adecbRLLRR+T aedbcRLLRR+T aedcbRLLRR−

T badecRLLLR−T baedcRLLLR+T bdeacRLLLR+T bedacRLLLR−T cadebRLLLR−T caedbRLLLR−T cbdeaRRLLR−T cbedaRRLLR+

T cdeabRLLLR−T cdeabRLLRR+T cedabRLLLR−T cedabRLLRR−T dabceRLLLR−T dacbeRLLLR+T dbcaeRLLLR+T dcbaeRLLLR−

T eabcdRLLLR−T eacbdRLLLR+T ebcadRLLLR−T ebcadRLLRR+T ecbadRLLLR−T ecbadRLLRR−T edbcaRRLLR−T edcbaRRLLR)+

c10
18(−T abdecRLLRR−T abedcRLLRR−T acdebRLLRR−T acedbRLLRR−T adbceRLLRR−T adcbeRLLRR−T aebcdRLLRR−T aecbdRLLRR+

T bacdeRLLLR+T bacedRLLLR−T bcdaeRLLLR−T bceadRLLLR+T cabdeRLLLR+T cabedRLLLR−T cbdaeRLLLR−T cbeadRLLLR+

T daebcRLLLR+T daecbRLLLR+T dbceaRRLLR+T dcbeaRRLLR−T debacRLLLR+T debacRLLRR−T decabRLLLR+T decabRLLRR+

T eadbcRLLLR+T eadcbRLLLR+T ebcdaRRLLR+T ecbdaRRLLR−T edbacRLLLR+T edbacRLLRR−T edcabRLLLR+T edcabRLLRR) ,

C11
abcde = c11

1 (−T cadbeLLLLL+T cadbeRRRR+T caebdLLLLL−T caebdRRRR+T cbdaeLLLLL−T cbdaeRRRR−T cbeadLLLLL+T cbeadRRRR− (A.8)
T dabceLLLLL+T dabceRRRR+T dabecLLLLL−T dabecRRRR+T dacbeLLLLL−T dacbeRRRR−T daebcLLLLL+T daebcRRRR+

T dbaceLLLLL−T dbaceRRRR−T dbaecLLLLL+T dbaecRRRR−T dbcaeLLLLL+T dbcaeRRRR+T dbeacLLLLL−T dbeacRRRR−

T dcabeLLLLL+T dcabeRRRR+T dcbaeLLLLL−T dcbaeRRRR+T eabcdLLLLL−T eabcdRRRR−T eabdcLLLLL+T eabdcRRRR−

T eacbdLLLLL+T eacbdRRRR+T eadbcLLLLL−T eadbcRRRR−T ebacdLLLLL+T ebacdRRRR+T ebadcLLLLL−T ebadcRRRR+

T ebcadLLLLL−T ebcadRRRR−T ebdacLLLLL+T ebdacRRRR+T ecabdLLLLL−T ecabdRRRR−T ecbadLLLLL+T ecbadRRRR)

c11
2 (T bacdeRLLLL−T bacedRLLLL−T badceRLLLL+T badecRLLLL+T baecdRLLLL−T baedcRLLLL+T bcadeRLLLL−T bcaedRLLLL−

T bcdaeRLLLL+T bcdaeRLRRR+T bceadRLLLL−T bceadRLRRR−T bdaceRLLLL+T bdcaeRLLLL−T bdcaeRLRRR+T bdeacRLRRR+

T becadRLRRR−T bedacRLRRR−T cabdeRLLLL+T cabedRLLLL−T cadbeLLLLR+T cadbeRLLLL−T cadebRLLLL+T caebdLLLLR−

T caebdRLLLL+T caedbRLLLL−T cbadeRLLLL+T cbaedRLLLL+T cbdaeRLLLL−T cbdaeRLRRR−T cbeadRLLLL+T cbeadRLRRR+

T cdabeRLLLL−T cdbaeRLLLL+T cdbaeRLRRR−T cdeabRLRRR−T cebadRLRRR+T cedabRLRRR−T dabceLLLLR+T dabceRLLLL+

T dabecLLLRL−T dabecRLLLL+T dacbeLLLLR−T dacbeRLLLL+T dacebRLLLL−T daebcLLLLR+T daebcRLLLL+T daecbLLLLR−

T daecbRLLLL+T dbaceLLLLR+T dbaceRLLLL−T dbaecRLLLL−T dbcaeRLLLL+T dbcaeRLRRR+T dbeacRLLLL−T dbeacRLRRR−

T dcabeLLLLR−T dcabeRLLLL+T dcbaeRLLLL−T dcbaeRLRRR+T dceabRLRRR+T debacRLRRR−T decabRLRRR+T eabcdLLLLR+

T eabcdLLLRL−T eabcdRLLLL−T eabdcLLLLR−T eabdcLLLRL+T eabdcRLLLL−T eacbdLLLLR−T eacbdLLLRL+T eacbdRLLLL+

T eacdbLLLLR−T eacdbRLLLL+T eadbcLLLLR−T eadbcRLLLL−T eadcbLLLLR+T eadcbRLLLL−T ebacdLLLLR−T ebacdRLLLL+

T ebadcLLLLR+T ebadcRLLLL+T ebcadRLLLL−T ebcadRLRRR−T ebdacRLLLL+T ebdacRLRRR+T ecabdLLLLR+T ecabdRLLLL−

T ecadbLLLLR−T ecbadRLLLL+T ecbadRLRRR−T ecdabRLRRR−T edabcLLLLR+T edacbLLLLR−T edbacRLRRR+T edcabRLRRR)

c11
3 (−T abcdeRLLLL+T abcedRLLLL+T abdceRLLLL−T abecdRLLLL+T acbdeRLLLL−T acbedRLLLL−T acdbeRLLLL+T acebdRLLLL−

T adbceRLLLL+T adcbeRLLLL−T cadbeRLRRR+T caebdRLRRR+T cbdaeRRRLR−T cbeadRRRLR−T dabceRLRRR+T dabecRLRRR+

T dacbeRLRRR−T daebcRLRRR−T dbaceLLRLL+T dbaceRRLRR−T dbaecRRLRR−T dbcaeRRRLR+T dbeacRRRLR+T dbecaLLLLR+

T dcabeLLRLL−T dcabeRRLRR+T dcbaeRRRLR−T dcebaLLLLR+T eabcdRLRRR−T eabdcRLRRR−T eacbdRLRRR+T eadbcRLRRR+

T ebacdLLRLL−T ebacdRRLRR+T ebadcRRLRR−T ebcadLLLRL+T ebcadRRRLR+T ebcdaLLLLR−T ebdacRRRLR−T ebdcaLLLLR−

T ecabdLLRLL+T ecabdRRLRR+T ecbadLLLRL−T ecbadRRRLR−T ecbdaLLLLR+T ecdbaLLLLR+T edbcaLLLLR−T edcbaLLLLR)

c11
4 (−T bacdeRLLLL+T bacedRLLLL+T badceRLLLL−T baecdRLLLL+T cabdeRLLLL−T cabedRLLLL−T cadbeLLRLL−T cadbeRLLLL+

T cadbeRRLRR−T cadebRRLRR+T caebdLLRLL+T caebdRLLLL−T caebdRRLRR+T caedbRRLRR+T cbadeRRRLR−T cbaedRRRLR+

T cbdaeLLLLR+T cbdaeLLRLL−T cbdaeRRLRR−T cbeadLLLLR−T cbeadLLRLL+T cbeadRRLRR−T cdabeRLRRR+T cdaebRLRRR+
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T ceabdRLRRR−T ceadbRLRRR−T dabceLLRLL−T dabceRLLLL+T dabceRRLRR+T dabecRLLLL−T dabecRRLRR+T dacbeLLRLL+

T dacbeRLLLL−T dacbeRRLRR+T dacebRRLRR−T daebcLLRLL−T daebcRLLLL+T daebcRRLRR−T daecbRRLRR−T dbaceRLRRR−

T dbaceRRRLR−T dbaecLLLRL+T dbaecRLRRR+T dbaecRRRLR−T dbcaeLLLLR−T dbcaeLLRLL+T dbcaeRRLRR+T dbeacLLLLR+

T dbeacLLRLL−T dbeacRRLRR+T dcabeRLRRR+T dcabeRRRLR−T dcaebRLRRR+T dcbaeLLLLR+T dcbaeLLRLL−T dcbaeRRLRR−

T dceabLLLLR−T deabcRLRRR+T deacbRLRRR+T eabcdLLRLL+T eabcdRLLLL−T eabcdRRLRR−T eabdcRLLLL+T eabdcRRLRR−

T eacbdLLRLL−T eacbdRLLLL+T eacbdRRLRR−T eacdbRRLRR+T eadbcLLRLL+T eadbcRLLLL−T eadbcRRLRR+T eadcbRRLRR−

T ebacdLLLRL+T ebacdRLRRR+T ebacdRRRLR+T ebadcLLLRL−T ebadcRLRRR−T ebadcRRRLR+T ebcadLLLLR+T ebcadLLRLL−

T ebcadRRLRR−T ebdacLLLLR−T ebdacLLRLL+T ebdacRRLRR+T ecabdLLLRL−T ecabdRLRRR−T ecabdRRRLR+T ecadbRLRRR−

T ecbadLLLLR−T ecbadLLRLL+T ecbadRRLRR+T ecdabLLLLR+T edabcRLRRR−T edacbRLRRR+T edbacLLLLR−T edcabLLLLR)+

c11
5 (T abcdeRLLLR−T abcedRLLLR−T abdceRLLLR+T abdecRLLLR+T abecdRLLLR−T abedcRLLLR−T acbdeRLLLR+T acbedRLLLR+

T acdbeRLLLR−T acdebRLLLR−T acebdRLLLR+T acedbRLLLR+T adbceRLLLR−T adbecRLLLR−T adcbeRLLLR+T adcebRLLLR+

T adebcRLLLR−T adecbRLLLR−T aebcdRLLLR+T aebdcRLLLR+T aecbdRLLLR−T aecdbRLLLR−T aedbcRLLLR+T aedcbRLLLR+

T bcdeaRLLLR−T bcedaRLLLR−T bdceaRLLLR+T bdecaRLLLR+T becdaRLLLR−T bedcaRLLLR+T cadbeRLLRR−T cadebRLLRR−

T caebdRLLRR+T caedbRLLRR+T cbadeRRLLR−T cbaedRRLLR−T cbdaeRRLLR−T cbdeaRLLLR+T cbeadRRLLR+T cbedaRLLLR−

T cdabeRLLRR+T cdaebRLLRR+T cdbeaRLLLR−T cdebaRLLLR+T ceabdRLLRR−T ceadbRLLRR−T cebdaRLLLR+T cedbaRLLLR+

T dabceRLLRR−T dabecRLLRR−T dacbeRLLRR+T dacebRLLRR+T daebcRLLRR−T daecbRLLRR−T dbaceRLLRR−T dbaceRRLLR+

T dbaecRLLRR+T dbaecRRLLR+T dbcaeRRLLR+T dbceaRLLLR−T dbeacRRLLR−T dbecaRLLLR+T dcabeRLLRR+T dcabeRRLLR−

T dcaebRLLRR−T dcbaeRRLLR−T dcbeaRLLLR+T dcebaRLLLR−T deabcRLLRR+T deacbRLLRR+T debcaRLLLR−T decbaRLLLR−

T eabcdRLLRR+T eabdcRLLRR+T eacbdRLLRR−T eacdbRLLRR−T eadbcRLLRR+T eadcbRLLRR+T ebacdRLLRR+T ebacdRRLLR−

T ebadcRLLRR−T ebadcRRLLR−T ebcadRRLLR−T ebcdaRLLLR+T ebdacRRLLR+T ebdcaRLLLR−T ecabdRLLRR−T ecabdRRLLR+

T ecadbRLLRR+T ecbadRRLLR+T ecbdaRLLLR−T ecdbaRLLLR+T edabcRLLRR−T edacbRLLRR−T edbcaRLLLR+T edcbaRLLLR)

c11
6 (−T abcdeRLRLR+T abcedRLRLR+T abdceRLRLR−T abdecRLRLR−T abecdRLRLR+T abedcRLRLR+T acbdeRLRLR−T acbedRLRLR−

T acdbeRLRLR+T acdebRLRLR+T acebdRLRLR−T acedbRLRLR−T adbceRLRLR+T adbecRLRLR+T adcbeRLRLR−T adcebRLRLR−

T adebcRLRLR+T adecbRLRLR+T aebcdRLRLR−T aebdcRLRLR−T aecbdRLRLR+T aecdbRLRLR+T aedbcRLRLR−T aedcbRLRLR−

T bacdeRLLRL+T bacedRLLRL+T badceRLLRL+T bcadeRLLRL−T bcaedRLLRL−T bcdaeRLRLL−T bcdeaRLRLR+T bceadRLRLL+

T bcedaRLRLR−T bdaceRLLRL+T bdcaeRLRLL+T bdceaRLRLR−T bdecaRLRLR−T becdaRLRLR+T bedcaRLRLR+T cabdeRLLRL−

T cabedRLLRL−T cadbeLLRLR−T cadbeRLLRL+T caebdLLRLR−T cbadeRLLRL+T cbaedRLLRL+T cbdaeRLRLL+T cbdeaRLRLR−

T cbeadRLRLL−T cbedaRLRLR+T cdabeRLLRL−T cdbaeRLRLL−T cdbeaRLRLR+T cdebaRLRLR+T cebdaRLRLR−T cedbaRLRLR−

T dabceLLRLR−T dabceRLLRL+T dabecRLLRL+T dacbeLLRLR+T dacbeRLLRL−T daebcLLRLR+T daecbLLRLR+T dbaceRLLRL−

T dbaecRLLRL−T dbcaeRLRLL−T dbceaRLRLR+T dbeacRLRLL+T dbecaRLRLR−T dcabeRLLRL+T dcbaeRLRLL+T dcbeaRLRLR−

T dcebaRLRLR−T debcaRLRLR+T decbaRLRLR+T eabcdLLRLR+T eabcdRLLRL−T eabdcLLRLR−T eabdcRLLRL−T eacbdLLRLR−

T eacbdRLLRL+T eacdbLLRLR+T eadbcLLRLR−T eadcbLLRLR−T ebacdRLLRL+T ebadcRLLRL+T ebcadRLRLL+T ebcdaRLRLR−

T ebdacRLRLL−T ebdcaRLRLR+T ecabdRLLRL−T ecbadRLRLL−T ecbdaRLRLR+T ecdbaRLRLR+T edbcaRLRLR−T edcbaRLRLR)

c11
7 (T bacdeRLRLL−T badceRLRLL+T baecdRLRLL+T bcadeRLRLR−T bcaedRLRLR−T bdaceRLRLR+T bdaecRLRLR+T beacdRLRLR−

T beadcRLRLR−T cabdeRLRLL+T cadbeRLRLL−T caebdRLRLL−T cbadeRLRLR+T cbaedRLRLR−T cbdaeLLRLR+T cbeadLLRLR+

T cdabeRLRLR−T cdaebRLRLR−T ceabdRLRLR+T ceadbRLRLR+T dabceRLRLL−T dacbeRLRLL+T daebcRLRLL+T dbaceRLRLR−

T dbaecRLRLR+T dbcaeLLRLR−T dbeacLLRLR−T dcabeRLRLR+T dcaebRLRLR−T dcbaeLLRLR+T dceabLLRLR+T deabcRLRLR−

T deacbRLRLR−T eabcdRLRLL+T eacbdRLRLL−T eadbcRLRLL−T ebacdRLRLR+T ebadcRLRLR−T ebcadLLRLR+T ebdacLLRLR+

T ecabdRLRLR−T ecadbRLRLR+T ecbadLLRLR−T ecdabLLRLR−T edabcRLRLR+T edacbRLRLR−T edbacLLRLR+T edcabLLRLR)
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c11
8 (−T abcdeRLLRL−T abcdeRLRLL+T abcedRLLRL+T abdceRLLRL+T abdceRLRLL−T abecdRLRLL+T acbdeRLLRL+T acbdeRLRLL−

T acbedRLLRL−T acdbeRLLRL−T acdbeRLRLL+T acebdRLRLL−T adbceRLLRL−T adbceRLRLL+T adcbeRLLRL+T adcbeRLRLL−

T bacdeRLRLR+T bacedRLRLR+T badceRLRLR−T badecRLRLR−T baecdRLRLR+T baedcRLRLR−T bcadeRLRLL+T bcdaeRLLRL−

T bcdaeRLRLR+T bceadRLRLR+T bdaceRLRLL−T bdcaeRLLRL+T bdcaeRLRLR−T bdeacRLRLR−T becadRLRLR+T bedacRLRLR+

T cabdeRLRLR−T cabedRLRLR−T cadbeRLRLR+T cadebRLRLR+T caebdRLRLR−T caedbRLRLR+T cbadeRLRLL−T cbdaeRLLRL+

T cbdaeRLRLR−T cbeadRLRLR−T cdabeRLRLL+T cdbaeRLLRL−T cdbaeRLRLR+T cdeabRLRLR+T cebadRLRLR−T cedabRLRLR−

T dabceRLRLR+T dabecRLRLR+T dacbeRLRLR−T dacebRLRLR−T daebcRLRLR+T daecbRLRLR−T dbaceLLRLR−T dbaceRLRLL+

T dbcaeRLLRL−T dbcaeRLRLR+T dbeacRLRLR+T dbecaLLRLR+T dcabeLLRLR+T dcabeRLRLL−T dcbaeRLLRL+T dcbaeRLRLR−

T dceabRLRLR−T dcebaLLRLR−T debacRLRLR+T decabRLRLR+T eabcdRLRLR−T eabdcRLRLR−T eacbdRLRLR+T eacdbRLRLR+

T eadbcRLRLR−T eadcbRLRLR+T ebacdLLRLR+T ebacdRLRLL−T ebadcLLRLR−T ebcadRLLRL+T ebcadRLRLR+T ebcdaLLRLR−

T ebdacRLRLR−T ebdcaLLRLR−T ecabdLLRLR−T ecabdRLRLL+T ecadbLLRLR+T ecbadRLLRL−T ecbadRLRLR−T ecbdaLLRLR+

T ecdabRLRLR+T ecdbaLLRLR+T edabcLLRLR−T edacbLLRLR+T edbacRLRLR+T edbcaLLRLR−T edcabRLRLR−T edcbaLLRLR)

c11
9 (−T bacdeRLLLR+T bacdeRRLLR+T bacedRLLLR−T bacedRRLLR+T badceRLLLR−T badceRRLLR−T badecRLLLR+T badecRRLLR−

T baecdRLLLR+T baecdRRLLR+T baedcRLLLR−T baedcRRLLR−T bcdaeRLLLR+T bcdaeRLLRR+T bceadRLLLR−T bceadRLLRR+

T bdcaeRLLLR−T bdcaeRLLRR−T bdeacRLLLR+T bdeacRLLRR−T becadRLLLR+T becadRLLRR+T bedacRLLLR−T bedacRLLRR+

T cabdeRLLLR−T cabdeRRLLR−T cabedRLLLR+T cabedRRLLR−T cadbeRLLLR+T cadbeRRLLR+T cadebRLLLR−T cadebRRLLR+

T caebdRLLLR−T caebdRRLLR−T caedbRLLLR+T caedbRRLLR+T cbdaeRLLLR−T cbdaeRLLRR−T cbeadRLLLR+T cbeadRLLRR−

T cdbaeRLLLR+T cdbaeRLLRR+T cdeabRLLLR−T cdeabRLLRR+T cebadRLLLR−T cebadRLLRR−T cedabRLLLR+T cedabRLLRR−

T dabceRLLLR+T dabceRRLLR+T dabecRLLLR−T dabecRRLLR+T dacbeRLLLR−T dacbeRRLLR−T dacebRLLLR+T dacebRRLLR−

T daebcRLLLR+T daebcRRLLR+T daecbRLLLR−T daecbRRLLR−T dbcaeRLLLR+T dbcaeRLLRR+T dbeacRLLLR−T dbeacRLLRR+

T dcbaeRLLLR−T dcbaeRLLRR−T dceabRLLLR+T dceabRLLRR−T debacRLLLR+T debacRLLRR+T decabRLLLR−T decabRLLRR+

T eabcdRLLLR−T eabcdRRLLR−T eabdcRLLLR+T eabdcRRLLR−T eacbdRLLLR+T eacbdRRLLR+T eacdbRLLLR−T eacdbRRLLR+

T eadbcRLLLR−T eadbcRRLLR−T eadcbRLLLR+T eadcbRRLLR+T ebcadRLLLR−T ebcadRLLRR−T ebdacRLLLR+T ebdacRLLRR−

T ecbadRLLLR+T ecbadRLLRR+T ecdabRLLLR−T ecdabRLLRR+T edbacRLLLR−T edbacRLLRR−T edcabRLLLR+T edcabRLLRR)

c11
10(T bcadeRLLLR−T bcaedRLLLR−T bcdeaRLLRR+T bcedaRLLRR−T bdaceRLLLR+T bdaecRLLLR+T bdceaRLLRR−T bdecaRLLRR+

T beacdRLLLR−T beadcRLLLR−T becdaRLLRR+T bedcaRLLRR−T cbadeRLLLR+T cbaedRLLLR+T cbdeaRLLRR−T cbedaRLLRR+

T cdabeRLLLR−T cdaebRLLLR−T cdbeaRLLRR+T cdebaRLLRR−T ceabdRLLLR+T ceadbRLLLR+T cebdaRLLRR−T cedbaRLLRR+

T dbaceRLLLR−T dbaecRLLLR−T dbceaRLLRR+T dbecaRLLRR−T dcabeRLLLR+T dcaebRLLLR+T dcbeaRLLRR−T dcebaRLLRR+

T deabcRLLLR−T deacbRLLLR−T debcaRLLRR+T decbaRLLRR−T ebacdRLLLR+T ebadcRLLLR+T ebcdaRLLRR−T ebdcaRLLRR+

T ecabdRLLLR−T ecadbRLLLR−T ecbdaRLLRR+T ecdbaRLLRR−T edabcRLLLR+T edacbRLLLR+T edbcaRLLRR−T edcbaRLLRR) .

A.3 Solution of Wess-Zumino conditions in the bosonic sector

A.3.1 P-even

c3
RLL − ic0 − c3

LLR = 0 (A.9)
c3
LLL = ic0

c2
LLR − 4c6 + c2

LLL + 2c2
RLL = 0

c3
LLR = −ic0 + 2c6

c5 + c4 − 2c6 = 0
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c7
LRRR = −ic6 + i

2c
2
RLL + c7

LRLL

c7
LLRL = − i2c

2
RLL + c7

LLLR

c7
LRRR = 2ic6 − ic2

RLL + c7′
LLRL

c8′
LRLL = 4ic6 − ic2

RLL − c8
LLLR + c8

LLRL + c8′
LLRL,

c8′′
LLLL = c8′

LLLL

c8′′
LLLR − 2ic4 + 2ic6 + ic2

RLL − 2c7
LRLL + c8

LLRL − c8
LRLL

c8′
LLLL − 2ic6 + 4c7

LLLR + 2c7
LLRR + 4c7

LRLL + 2c7
LRLR + 2c7

LRRL

c8
LRRL = −4ic6 + 2ic2

RLL − 4c7′
LLRL − c8

LLLL − c8
LLLR − c8

LLRR − c8
LRLL − c8

LRLR

c8
LLLL + 4ic6 − 2ic2

RLL + 4c7′
LLLR + 4c7′

LLRL + 4c7′
LLRR + 2c7′

LRLR = 0
c8′′
LLRL − 2ic4 + 2Ic2

RLL − 4c7
LLLR + c8′

LLLR

c8′′
LLRR + 2ic4 − 4c7

LRRL + c8′
LRRL = 0

c8′′
LRLL − 4c7

LLLR + c8′
LLRL = 0

c8
LRLR = 2c7′

LRLR

c8′′
LRRL − 4c7

LLRR + c8′
LLRR = 0

c8
LRLL = −2ic4 + 4c7′

LLLR − c8
LLLR

c8′′
LRLR − 4c7

LRLR + c8′
LRLR = 0

2c8
LLLR = −2ic2

RLL + 4c7′
LLLR

c8′
LRRL = −8ic6 + 4c7

LLLR + 2c7
LLRR + 2c7

LRLL + 2c7
LRLR + 2c7

LRRL + 4c7′
LLLR

− 2c8
LLRL − c8′

LLLR − 2c8′
LLRL − c8′

LLRR − c8′
LRLR

4c7′
LLRL = −8ic6 + 2ic2

RLL + 4c7′
LLLR

2c7
LRLL = 2ic6 − ic2

RLL + 2c7
LLLR

c8′
LLLR = 2ic4 − ic2

RLL + 2c7
LLLR

c8′
LLRL + 4ic6 − 2c7

LLLR − 2c7′
LLLR + c8

LLRL

c8′
LRLR = 2c7

LRLR

c8′
LLRR = −2ic4 + 2Ic6 + 2c7

LLRR − 2c7′
LLRR + c8

LLRR

c8
LLRL = −4ic6 + ic2

RLL + 2c7′
LLLR

c8
LLRR = 2ic4 − ic2

RLL + 2c7′
LLRR

4c10
11 − ic7′

LRLR = 0
4c10

8 + ic7
LLLR = 0

c10
7 = c10

13 = −c10
8

c10
1 = c10

2 = c10
3 = c10

4 = c10
5 = c10

6 = 0
8c10

9 = c2
RLL + 2ic7′

LLLR = 0
4c10

10 = 4c10
14 = −ic7

LRLR = 0
4c10

16 − ic7
LLLR = 0

4c10
17 + ic7

LLRR = 0
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4c10
12 + 1

2c
2
RLL + ic7′

LLLR = 0

4c10
18 = c4 − 1

2c
2
RLL + ic7

LRRL

4c10
15 = c4 − 1

2c
2
RLL − ic7′

LLRR

A.3.2 P-odd

c9′
LLLL = ic1

LLL − c9
LLLL (A.10)

c9′
LRRR = c9

LLLR

c9′
LLLR = ic1

RLL + c9
LRRR

c9
LRRR = −ic1

RLL − c9
LLRL

c9′
LLRL = ic1

LLR − c9
LRLL

c9
LRRL = ic1

LLR

c9′
LLRR = −ic1

LLR

c9′
LRLR = c9

LRLR

2c9
LLLL − ic1

LLL = 0
c9
LLRL + ic1

RLL + c9
LLLR = 0

c9
LRLL + ic1

LLR − c9
LLLR = 0

c1
RLL + 2c1

LLR = 0
c9
LLRR = 0
c11

1 = c11
3 = c11

7 = c11
10 = c11

8 = c11
2 = c11

9 = 0
12c1

4 + ic9
LLLR = 0

12c1
6 + ic9

LRLR = 0
12c1

5 − ic9
LLLR = 0

B Heat kernel

The heat kernel method was pioneered by Schwinger and then developed by De Witt and
Seeley. For a lucid review, we refer the reader to ref. [54].

This method allows us to write the matrix element of /D−2 in position space as

〈x| 1
/D

2 |y〉 = i

∫
dt 〈x|e−i /D

2
t|y〉 = i

∫ ∞
0

dt H(x, y; t). (B.1)

The solution H(x, y; t), which is referred to as the heat kernel, can be calculated pertur-
batively in the limit t→ 0. We write the ansatz H(x, y; t) = H0(x, y; t)U(x, y; t), with the
“free” solution H0 being the solution of (B.1) with /D

2 replaced by ∂2, namely

H0(x, y; t) = i

(4πit)d/2
ei

(x−y)2
4t −εt, (B.2)
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and

U(x, y; t) =
∑

n=0,1,2,···
an(x, y)(it)n. (B.3)

The heat kernel coefficients an(x, y) are smooth in the limit y → x, and satisfy the boundary
condition a0(x, y) = 1, i.e. H(x, y; 0) = δ(d)(x− y). The parameter ε > 0 follows from the
iε prescription in the Feynman propagator and should not be confused with ε = (4− d)/2.

Employing the above expansion we get

Tr
[
αaT

a
A

{
/D,γ5

} 1
/D

]
(B.4)

= Tr
[
αaT

a
A

{
/D,γ5

}
/D

1
/D

2

]

= i

∫
ddx αa(x) lim

y→x

∫ ∞
0

dt tr
[
T aA
({
/D,γ5

}
/D
)
yH0(y,x)U(x,y)

]
= i

∫
ddx αa(x) lim

y→x

∫ ∞
0

dt tr
[
T aA

(
2γµ̂γ5γ

ν
)
∂µ̂,y[(∂ν,yH0)U+H0Dν,yU ]

]
= i

∫
ddx αa(x) lim

y→x

∫ ∞
0

dt tr
[
T aA

(
2γµ̂γ5γ

ν
)

(∂µ̂,y∂ν,yH0)U
]
+Eva

=−(d−4)
∫
ddx αa(x) lim

y→x

∫ ∞
0

dt

t
H0(x,y) tr [T aAγ5U(x,y)]+Eva.

In the second equality of (B.4) we merely used the definition of heat kernel, and in the third
applied the derivatives. In the fourth step we took advantage of the fact that all terms with
a single derivative of H0 vanish in the limit y → x. The non-vanishing contributions come
from the second derivative limy→x ∂µ∂νH0 = +igµνH0/(2t) as well as evanescent terms
proportional to Dν̂U . These latter can be neglected, as explained around eq. (4.16). The
last equality follows from the identity γµ̂γµ̂ = (d − 4). Finally, the integral in dt can be
performed explicitly for any order n of the perturbative expansion of U , and is proportional
to Γ(d/2−n).25 There is a unique contribution that survives the d→ 4 limit. This emerges
from an UV divergence t→ 0 that results in a factor Γ(d/2− n) ∼ 1/(d/2− n). The latter
can exactly compensate the (d− 4) in front of the integral, and thus lead to a non-trivial
result, only at the n = 2 order of the expansion (B.3). The existence of a compensation
between the evanescent (d − 4) factor and UV divergent Feynman integrals is typical of
quantum anomalies. The result is [50]

lim
d→4

Tr
[
αaT

a
A

{
/D, γ5

} 1
/D

]
= − i

8π2

∫
ddx αa(x) tr [T aAγ5a2(x, x)] , (B.5)

where the 4-dimensional limit is formally defined by removing all (finite and singular)
evanescent operators, see discussion around (4.16).

The 4-dimensional limit of the heat-kernel coefficients an(x, x) can be obtained recur-
sively. We first observe that /D

2 = DµDµ + X, with Dµ = ∂µ + iPµ, and where Pµ, X

25IR-divergences at large t are cutoff by the factor e−εt in H0(x, y).
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explicitly read

Pµ = Vµ + 1
2[γµ, γν ]γ5Aν (B.6)

X = i

4[γµ, γν ] (Vµν + γ5Aµν) + iγ5γ
µγν (∂νAµ + i[Vν ,Aµ])− 2AαAα.

The field strengths of the vector and axial components were previously introduced in (4.31).
Now, the heat kernel, defined in (B.1), satisfies i ddtH(x, y; t) = /D

2
xH(x, y; t). Inserting the

ansatz H = H0U this becomes idU/dt = −i(x− y)µDµU/t+ [D2 +X]U . Equating order
by order in tn gives the recursive relations

(x− y)µDµxa0(x, y) = 0, (B.7)
[n+ 1 + (x− y)µDµx ]an+1(x, y) = −[D2

x +X]an(x, y) (n > 0).

The first definition, along with limy→x a0(x, y) = 1 defines a0(x, y). We are interested in
a2(x, x) = −1

2 limy→x[D2
x +X]a1(x, y), but to find its explicit expression we need a1(x, y)

and its second derivative:

lim
y→x

a1(x, y) = − lim
y→x

[D2
x +X]a0(x, y) (B.8)

lim
y→x
D2
xa1(x, y) = −1

3 lim
y→x
D2
x[D2

x +X]a0(x, y)

The first relation follows directly from the second equation in (B.7). Differentiating twice
the same relation with n = 0 with respect to D we obtain the other one. Similarly, differ-
entiating the first relation in (B.7) we derive limy→xDαa0(x, y) = limy→xD2a0(x, y) = 0.
This leads us to

a2(x, x) = lim
y→x

1
6D

2
xD2

xa0(x, y) + 1
6D

2X + 1
2X

2 (B.9)

= 1
12[Dµ,Dν ][Dµ,Dν ] + 1

6D
2X + 1

2X
2

= − 1
12PµνP

µν + 1
6D

2X + 1
2X

2,

where Pµν = ∂µPν−∂νPµ+i[Pµ, Pν ]. In evaluating a2 we used the linearity of the derivative,
namely Dµ[Xa0] = [DµX]a0 + X[Dµa0]. The relation D2

xD2
xa0(x, y) = 1

2 [Dµ,Dν ][Dµ,Dν ]
a0(x, y) is proven differentiating four times the first equation in (B.7), and contracting with
the metric tensor. Because [Dµ,Dν ] is not a differential operator, the limit y → x can be
performed trivially and (B.9) follows.
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