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1 Introduction

Chiral gauge theories play a key role in the description of fundamental interactions. For
example, the Standard Model (SM) of strong and electroweak interactions exhibits a chiral
fermion content with respect to the gauge group SU(3)xSU(2)xU(1). While there are good
reasons to believe that the SM is incomplete in several respects, the absence of confirmed
signals of new physics suggests charting possible SM extensions in terms of effective chiral
gauge theories, such as the SM effective field theory (SMEFT).

Quantization and renormalization of chiral gauge theories, defined by their symmetry
and field content, are well-understood today. In particular, the framework of algebraic renor-
malization [1-13], relying on general properties of perturbative quantum field theories such
as the Power Counting Theorem [14, 15] and the Quantum Action Principle [16-19], allows to
show how symmetries (local or rigid) are preserved! in perturbation theory. The great advan-
tage of algebraic renormalization is its independence from the particular regularization used.

A regularization scheme should nonetheless be specified for practical computational
purposes. The most convenient choice is provided by schemes preserving as many symmetries
as possible of the underlying theory. However, the very existence of gauge anomalies prevents
adopting a scheme where chiral gauge symmetries are maintained. Even when the field
content is anomaly-free, any consistent regulator leads to a breaking of gauge invariance,
which manifests itself in the amplitudes evaluated in perturbation theory.?

Such amplitudes are required to satisfy the Ward Identities (WI) arising from the gauge
symmetry of the theory. However, these identities are spoiled by contributions introduced
by the regularization procedure. To remove the unwanted terms, different approaches are
possible. The most elementary one is to disregard the undesired contributions, thus enforcing
the WI by hand. This procedure has the disadvantage of requiring the identification of
the correct set of WI amplitude by amplitude. Moreover, since the resulting subtraction is
defined up to gauge-invariant contributions, independently for each process, ambiguities
may arise when comparing different processes.

In a more comprehensive approach we can analyze (and repair) the breaking of gauge
invariance induced by the regularization procedure directly at the level of the effective
action, the generating functional of the one-particle irreducible (1PI) Green’s functions, thus
effectively handling all possible amplitudes at once [4, 10, 13, 23-27]. Owing to symmetries,
the effective action is bound to satisfy WI in the form of functional identities.® These identi-
ties are violated in perturbation theory by terms that are severely constrained. In particular,
the Quantum Action Principle requires such terms to be finite local polynomials in the fields
and their derivatives, of bounded dimensionality, order by order in perturbation theory.
Moreover, if the theory is anomaly free, they are trivial solutions to the Wess-Zumino (WZ)
consistency conditions [28]. As a consequence, they can be expressed as gauge (or BRST)
variations of integrated local polynomials that provide viable counterterms to recover the WI.

1Or violated by anomalies [21, 22].

2In a path-integral formulation, the breaking of gauge invariance can come from the non-invariance of
either the classical action or the integration measure or both.

3These are the non-linear Slavnov-Taylor (ST) identities associated to the rigid BRST symmetry of the
quantized theory, or else WI related to ordinary gauge invariance if the Background Field Method and the
Background Field Gauge are adopted.



Each regularization scheme, combined with a subtraction procedure to remove diver-
gences, requires its own set of Wl-restoring finite counterterms. In fact, the above strategy
has already been pursued in the context of dimensionally regularized (DR) [29, 30] chiral
gauge theories. In the specific cases that have been analyzed so far only a single chirality of
a given Dirac fermion is charged [24-27], with the remaining one being sterile. Such studies
are therefore not convenient for an application to the SM, where the natural basis involves
Dirac fermions with both chiralities charged under the gauge group. In addition, to the best
of our knowledge, a concrete derivation of the whole set of counterterms, independently
from the adopted regularization scheme and for arbitrary chiral fermion charges and general
(non-simple) gauge group, has not yet been presented. In this work we discuss this general
problem and show how it can be solved in the one-loop approximation. Explicit general
expressions for Wl-restoring counterterms, adaptable to a wide class of chosen regularization
schemes, can be of great utility for automated computations, such as those carried out
today within the SMEFT [31-33]. As described in section 2, in this paper we deal with a
renormalizable chiral gauge theory depending on gauge bosons and fermions only, though
there is no obstacle in extending our method to theories involving scalars, such as the SM,
or to nonrenormalizable theories, such as the SMEFT. Indeed we consider this work as
the first step of an approach meant to cover a wider range of applications. We assume an
arbitrary regularization scheme, required to satisfy a few very general requirements, such
as the Quantum Action Principle, Lorentz invariance, and gauge invariance in the limit
where the theory is vector-like. Our treatment of fermions is completely general: we include
fermions of both chiralities, which can transform under arbitrary representations of the
gauge group, the latter being associated with a general (non-simple) compact Lie algebra.
Only physical fields (apart from ghosts) are present. In this sense our approach is minimal.

We find it useful to quantize the theory within the background field method and to
adopt the background field gauge fixing [34-38|. The latter preserves gauge invariance at
the level of background fields, up to anomalies and regularization effects. The effective
action is therefore bound to be a gauge-invariant functional of the background fields. As a
consequence of the Quantum Action Principle, the gauge variation of the one-loop effective
action (evaluated in perturbation theory within a given regularization) is a four-dimensional,
Lorentz-invariant, finite local polynomial in the fields and their derivatives, that vanishes
when the theory is vector-like. Moreover, by treating CP and P as spurious symmetries,*

the gauge variation of the one-loop effective action turns out to be P-even and CP-odd.

It is then straightforward to expand such gauge variation in a basis of local operators
with the desired symmetry properties. This expansion is characterized by a redundant set
of coeflicients. We can lift this redundancy by requiring the gauge variation of the one-loop
effective action to satisfy the WZ consistency conditions, which hold for any gauge theory,
whether anomalous or not. This request translates into a set of linear equations relating
the coefficients of the expansion and reduces the initial set of coefficients to an irreducible
one. As shown in section 3, these first steps allow to parametrize in the most general

4Formal invariance under CP and P is achieved if the generators of the group behave as spurions with
well-defined transformation properties, as described below.



and non-redundant way the gauge variation of the effective action at the one-loop order,
independently from the adopted regularization. Similarly, we can build the most general
parametrization of the one-loop finite counterterm necessary to restore the WI as a linear
combination of integrated local operators with the correct symmetry properties. We finally
require that, up to gauge anomalies, the gauge variation of the finite counterterm reproduces
the gauge variation of the effective action. This allows to uniquely determine the parameters
describing the counterterm in terms of those entering the variation of the effective action. As
expected, we find that restoring the WI by means of a finite counterterm is always possible
as long as the fermion field content is non-anomalous. We stress that, for non-anomalous
theories, our result unambiguously determines the counterterm that reestablishes gauge
invariance, for the entire class of regularizations satisfying the properties outlined above.

Nowadays the most widely used regularization in practical calculations is dimensional
regularization. Within DR, only the Breitenlohner-Maison/’t Hooft-Veltman (BMHV)
scheme [39] has been shown to provide a consistent treatment of 75 at all orders in
perturbation theory. In section 4 we derive explicit expressions for the gauge variation of
the effective action and the necessary counterterm at one loop, using DR and the BMHV
scheme, which has already been implemented in tools for automated computations, such
as FeynCalc or Tracer. Our formalism allows to determine the full set of counterterms
needed to cast one-loop results in a fully gauge-invariant form in the background field gauge.
The calculation is performed via path integral techniques and checked diagrammatically.
The outcome is of course consistent with the general results of section 3.

A paradigmatic example of chiral gauge theory is the Standard Model. Indeed, to
illustrate our results, in section 5 we work out the counterterms needed at one loop using
DR and the BHMYV scheme, in the limit of vanishing Yukawa couplings.

This paper is structured as follows. In section 2 we recall the classical and effective action
for a chiral gauge theory and discuss three important ingredients of algebraic renormalization,
namely the Ward Identities, the Wess-Zumino conditions, and the Quantum Action principle.
In section 3 we put these to use to determine the gauge variation of the effective action
and the Wl-restoring counterterm at the one-loop order for any regularization scheme
respecting the Quantum Action Principle, Lorentz invariance, hermiticity of the action,
vectorial gauge symmetry, and P and CP. Section 4 is dedicated to deriving the gauge
variation of the effective action and the WI-restoring counterterm at one loop for the
specific case of Dimensional Regularization. Finally, in section 5 we apply our results
to the SM. In the appendices, we provide some auxiliary expressions used in sections 3
and 4. Appendix A contains results relevant to the general solution of the WZ conditions
of section 3. Appendix B provides details about the computation in section 4.

2 The theory

We consider a theory based on a compact gauge group G, with gauge fields Af (a =
1...dim(G)), and fully antisymmetric structure constants fu.. In general the gauge group
is the direct product of Ng simple groups G = [[;Gg (with G = 1,..., Ng), possibly
including U(1) factors. In this case the index a runs over the adjoint representation of each



simple group, and similarly fup. is the direct sum of the structure constants f(%c of each Gg.
Throughout sections 1, 2 and 3, Lorentz indices run from 0 to 3 and are denoted by Greek
letters pu, v, etc. In section 4, when using DR to exemplify our results, this notation will be
slightly modified.

The matter content consists of two sets of massless chiral fermions, fr and fg, transform-
ing under G according to representations characterized by hermitian generators 17 and T:

[T%,T%) = ifweT%, X=0L,R. (2.1)

We are interested in chiral gauge theories, where T} and T describe inequivalent represen-
tations. An example is provided by theories where Tg( R) = 0 and TE( L) is nontrivial, as in
the case of the SU(2) component of the Standard Model gauge group. Yet, our formalism
encompasses all possible (chiral as well as vector-like) gauge theories with fermions.

In general, the representations described by T} and T are reducible and their de-
composition in irreducible representations contains trivial components. We exploit this
possibility to describe the generators T} and T using matrices of the same dimension. As
a concrete example, consider hypercharge in the Standard Model. Its action on left-handed
fermions can be described via a single generator acting on eight left-handed spinors per
generation (six in the quark sector and two in the lepton sector). Its right-handed analogous
instead acts non-trivially only on seven right-handed spinors per generation (six quarks and
one lepton). Nevertheless, we can formally extend the matrix describing the right-handed
generator by one trivial row and column per generation, to match the dimensionality of the
left-handed one. Similarly, the multiplet fr may be extended to include a dummy degree of
freedom, a right-handed neutrino, which however does not play any role in our discussion
and can be safely set to zero.

While our focus is on theories with matter and gauge fields, fundamental scalars can
be discussed along similar lines. This extension is left for future work.

2.1 Classical action before regularization

The most general renormalizable bare action describing the dynamics of a set of fermionic
fields f charged under the gauge group G is:

S[A, va fX] - /d4$ (EYM + [:FermiOHS) ) (2'2)

where X = L, R, Ly is the usual Yang-Mills Lagrangian, and Lpermions includes kinetic
terms and gauge interactions of the fermions. Since we allow the gauge group to be the
direct product of simple groups G = [[; Gg, the kinetic term of the gauge fields is controlled
by a diagonal matrix 1/Ga = Y 6% /g2, where gg and % are the gauge coupling and
the identity in the adjoint representation of G, respectively. Explicitly, we write:

1
— Fe Fb,uu 2.
Lym 1G, ; (2.3)
EFermions = szwa + fTRZleR ) (24)



where the left- and right-handed fermions are defined as

fr=Prf, fr = Prf, (2.5)

with P;, = %(1 — ;) and Pr = %(1 + v5) the hermitian chirality projectors, satisfying
Pz( R) = Prry and P + Pr = 1. The field strength of the gauge fields and the fermion
covariant derivatives are defined for X = L, R as

Ff, = 0,A% — 0,A% — facALAS
Dufx = (0u +iA3T%) [x (2.6)

and P = ’y“Du.E’ The bare action is left invariant by the continuous local gauge transfor-
mations:

5QACL,LL = a,uaa + fabcabAc,u )
dafx = —iOéanéfXa (27)

a, being an infinitesimal gauge parameter. Given an arbitrary functional F[A, fx, fx] of
the fermions and the gauge fields, we can write its gauge variation as

5o F[A, fx, fx] = / Az 0o () La(2)FIA, fx, fx], (2.8)

where the differential operator L, is

o o

La(CU) = —8um + fabcAbM(ﬂf) (SACM(J‘) (29)
% ; 5
——T% T 7 )% ———.
b2 i ) I T G

With this notation, the gauge invariance of the action, and similarly of any gauge-invariant
functional, reads 6,S[A, fx, fx] = 0. Because this holds for any value of the gauge
parameters, it is equivalent to writing the local relation

Lo(x)S[A, fx, [x] = 0. (2.10)

In the following, we will refer to the identity Lq(z)F[A, fx, fx] = 0 as to the Ward Identity
for the functional F[A, fx, fx].

From the algebra (2.1) of the gauge group, it follows that any functional F[A, fx, fx]|
of the fields and their derivatives satisfies the Wess-Zumino consistency conditions [28]:

[La(y), Lo(@)] FA, fx, fx] = =6 (z = y) faveLe(2) FIA, fx, fx]- (2.11)

If F[A, fx, fX] is gauge invariant, these equations are trivially satisfied, since both sides
vanish identically. If instead F[A, fx, fx] is not gauge invariant, eq. (2.11) becomes a
non-trivial constraint, which will play an important role in our analysis.

5Note the conventional sign of the vector field in the covariant derivative.



A chiral gauge theory featuring only gauge bosons and fermions is always invariant
under CP, provided CP transformations are conveniently defined [43]. On the other hand,
P is not a symmetry unless the theory is vector-like. Nevertheless, we can always define a
generalized, spurious P symmetry that leaves the bare action invariant. Such a generalized
P formally acts on the fields as ordinary P and on the generators, viewed as spurions, in an
appropriate way. The resulting combined action reproduces ordinary P in any P-invariant
theory, but is formally conserved even in theories that do not respect P, like chiral theories.
Actually, in order to fully exploit the selection rules associated to both discrete symmetries
we find it convenient to define both CP and P as spurious transformations, acting on the
gauge and fermion fields as

ﬁ‘—C—P—)xu, x“gx’lé:xu,
9, < o Oy 2> 0", .12)
Ag(a) Ly —AB(zp),  Agu(w) D> Al(ap), '

frr(z) < Cfir(zp), frr(z) B frr(zp),

where C denotes the well-known charge conjugation matrix, and on the generators as
CPpP T P
We emphasize that the latter relation implies that the structure constants transform as

CP P
fabc — _fabca fabc — fabc- (214)

The transformations in eqgs. (2.12)—(2.13) are formally symmetries of any theory defined
by a classical action of the type (2.2). This restricts the structure of the counterterms
needed to enforce the WI of the theory, provided one adopts a regularization respecting
these symmetries. As a final remark, we note that the operator L, is CP-odd and P-even.
Indeed, the CP and P transformations of eq. (2.7), together with eq. (2.13), demand that
oy be formally treated as a CP-odd and P-even spurion. Thus, eq. (2.8) implies that L, is
CP-odd and P-even.

2.2 Regularization: the need of local counterterms

Going beyond the tree level, a regularization is needed. It is well known that in chiral
gauge theories there is no consistent regularization procedure capable of preserving gauge
invariance at the quantum level. This fact is at the origin of physical anomalies [21, 22].
The absence of gauge anomalies is guaranteed if the fermion content of the theory satisfies
the well-known condition [44]:

D™ = te(TH{TH. TF)) — tr(TR{TH. Th}) = 0. (2.15)

Yet, even if this condition holds, amplitudes computed in perturbation theory do not
generally satisfy the WI. This is because the regularization procedure introduces scheme-
dependent contributions to amplitudes beyond those removed by eq. (2.15). Such sources
of spurious, unphysical breaking of gauge invariance can always be removed by adding
appropriate local counterterms to the classical action in eq. (2.2).% Our analysis provides a

5No counterterm can repair the breaking of gauge invariance induced by a violation of eq. (2.15).



general characterization of the counterterms required at the one-loop level in a chiral gauge
theory, which applies to a large class of regularization schemes. Explicit expressions for
such counterterms are then derived using dimensional regularization (DR).

Let us explain our plan in some detail. The quantization of a gauge theory requires the in-
troduction of a gauge-fixing term and a Faddeev-Popov term. Independently from the chosen
regularization, these terms necessarily break the original gauge invariance, leaving the classi-
cal action invariant under BRST transformations. As a result, the effective 1PI action, as well
as all Green’s functions of the theory, no more obey linear Ward Identities of the type shown
in eq. (2.10), but rather non-linear Slavnov-Taylor identities. Whenever a non-symmetric
regulator is adopted, the identification of the counterterm that must be added to the bare
action in order to restore the ST identities is unavoidably complicated by the non-linearity
of such identities, as well as by the involved structure of the BRST symmetry [24, 26].

Here we follow a different path and quantize the theory with the background field
method [34-38]. Concretely, within the background field method the 1PT effective action is
obtained by re-writing any field, including ghosts, as the sum of a classical background ¢
plus a quantum fluctuation ¢, and then integrating over the quantum fluctuations including
only one-particle irreducible diagrams. In particular, the regularized 1PI effective action
can be written as

T8l _ D ¢Shunl#+9] (2.16)
1PI
where Spf = S8 + Sg’? + Sglgost is the sum of the regularized action, an appropriate

gauge-fixing term, and the associated ghost action. The gauge-fixing Lagrangian is chosen
to be

Lotld+ 9] = —21€fafa , (217)
where
Jo = auAsz - fabcAbuAg . (218)

The gauge-fixing action S;g' serves its standard purpose of breaking gauge invariance. In
particular, it is not invariant under gauge transformations of the quantum field. Yet ng
(and, as a consequence, S;i%st) is manifestly invariant under background gauge transforma-
tions. The latter act as a standard gauge transformation on the background A¥, and as a
linear re-definition of the integration variable flg‘ For all fields transforming linearly under
the original gauge symmetry, both the quantum fluctuation and the classical background
transform exactly as the original field, and the distinction between standard and background
transformations is not relevant.

As mentioned above, the invariance of the gauge-fixed action under background gauge
transformations is the main advantage of the background field method. If one introduces
sources for the quantum fields only, all generating functionals are also manifestly background-
gauge invariant and satisfy linear Ward Identities as in eq. (2.10), up to the regularization-
dependent effects mentioned earlier. In particular, the background gauge symmetry, along
with (2.15), guarantees that the unique source of violation of the WI is the regularization
procedure. The linearity of such relations significantly simplifies the search for the WI-



restoring counterterms because, as opposed to the non-linear Slavnov-Taylor equations, the
linear WI relate only Green’s functions of the same order in perturbation theory [10, 11].7

In our treatment we adopt a regularization scheme preserving the vectorial gauge
transformations, four-dimensional Lorentz invariance, the generalized P and CP symmetries
defined in egs. (2.12) and (2.13) and the Quantum Action Principle [5, 16, 17, 20]. As
a starting point, we assume that a consistent subtraction procedure is defined, making
it possible to evaluate the renormalized functional I'[¢] from I'"*8[¢]. At this stage we
do not need to specify either how this subtraction is performed or which renormalization
conditions are imposed; we will do so in section 4, when performing explicit calculations
within DR. Here we simply assume that this subtraction renders I'[¢] finite order by order
in perturbation theory. As we now show, the proof that finite counterterms can be added
such that I'[¢] satisfies the WI proceeds by induction. Suppose that we have successfully
identified an action I'[¢] that satisfies the WI of the theory up to loop order n—1 (included):

La(z)L[¢]| () =0 k<n-1, (2.19)

where F[¢]\(k) stands for the k-order in the loop expansion of I'[¢]. Although in general the
WI will be broken at order n, the Quantum Action Principle guarantees that

La(@)T[0]] () = (Aa - T)(x) = Aq(@)](y + O(R"). (2.20)

Here A, - T is the generating functional of the amputated 1PI Green’s functions with one
insertion of a local polynomial in the fields, Ay|(,), formally of order h™.® In the rest of
the paper, the expressions L, (z)['|(,,) and Agl(,y will be used interchangeably. By power
counting follows that Ag|(,) is a dimension-four polynomial. According to our assumptions,
it should be CP-odd and P-invariant as well as invariant under the four-dimensional Lorentz
symmetry and should vanish when T} = T%.

Moreover Ag|(,) must satisfy the WZ consistency conditions (2.11):

La(y) Ap(@)|(ny = In(@) D)l () = =0 (@ = 9) fate Ae(@)] () - (2:21)

Theories complying with the criterion (2.15) have no anomalies, and the most general
solution of eq. (2.21) at order n is:

Aa(@)] () = ~La() Set[@ll ) (2.22)

where Sc[¢]](,) = [ d*y Let(y)|(n) is an integrated local polynomial of order ™ in the fields
and their derivatives invariant under the four-dimensional Lorentz group, CP and P, and

"In the background field method the full set of identities satisfied by the generating functional T'[¢] involves
also non-linear Slavnov-Taylor relations associated with the invariance under BRST (see e.g. ref. [11]). How-
ever, if one is solely interested in the correlation functions of the background fields, as we are here, the subset of
linear Ward identities associated with background gauge invariance is necessary and sufficient to find all gauge-
restoring counterterms at one loop. The extension of our results to n-loop order would instead require imposing
Slavnov-Taylor identities on correlators involving ghosts and quantum fluctuations at loop order n — 1.

8In the last step of eq. (2.20) we used the fact that at tree-level the only non-vanishing correlator functions
involving A.|(,) are those that contain precisely the fields appearing in Agl(,), and the corresponding
contribution to the one-particle irreducible action reads A,, where by a slight abuse of notation the latter is
now interpreted as being a functional of the background fields.



the vectorial gauge symmetry. We can next define:

Liny [B]](n) = L8]l (n) + Sctl@]|(n) 5 (2.23)

obtaining:
La(x)rinv[¢]|(n) = O(hn+1) . (2.24)

The spurious noninvariant contributions induced by the regularization procedure are now
removed, and gauge invariance is restored at order O(h™). After adding the n + 1-loop
contributions and implementing the subtraction procedure, we get a new functional I'[¢]] (;,41)
and we can repeat the above steps to enforce the WI at O(A"*1).

One of our main results is the determination of the counterterm within the DR scheme
at the one-loop order. We will see that DR can be made to comply with our symmetry
requirements; in particular, it satisfies the Quantum Action Principle [39]. It is important
to stress that the explicit form of the gauge variation of the effective action, as well as the
countertem, does depend on the regularization scheme. Yet, as we show in the following
section, several important features can be deduced solely from the general considerations
presented in the previous paragraph and apply to all regularization schemes that preserve
Lorentz invariance, hermiticity of the action, vectorial gauge transformations as well as
generalized P and CP. Explicit results for DR will be presented in section 4.

3 One-loop analysis for generic regularization schemes

As discussed above, whenever the theory is anomaly free the WI identities can be restored
order by order by adding a counterterm to the classical action. The goal of this section is to
determine the structure of the gauge variation of the effective action and the counterterm
at the one-loop order, i.e. Ag|(1) and Sct[#]|(1), for any regularization scheme respecting:

i) the Quantum Action Principle,
i) four-dimensional Lorentz-invariance,
ii) hermiticity of the action,
iii) vectorial gauge symmetry,
iv) the generalized P and CP symmetries of egs. (2.12), (2.13).

As we show in the following, these rather general hypotheses significantly constrain the
form of Ay|(1y and Set[9]](1).-
3.1 A basis for the gauge variation and the counterterm

We start by providing a convenient representation for both A,y and Sct[¢]|(1). As discussed
above, the former is a finite local polynomial of dimension four in the gauge and fermionic



monomial explicit expression Cp

10 D0" Ay, - +

I, % (Do Aap) (95 Ab) - -

I3, A (010" — Ogh) Ay, + +

I3 A,,04Y + +

I (O Aap) (2" A) + +

I3, (OyAay) (0" Af) + +

Ig, (3“Aau)(5”Abu) + +
Iopa (0 AL) Ap, A - +
Iong (auAZ)AbuAZ — +
Iohg B (05 Aap) Aby Ader + —
Lapae Aap Ay Aay A + +
I abde P Ay Apy AdpAeo - -
1Y sz‘ngj —fngin f)zz-gfx—j
I3, JFXi(ngj —J?ngfm f_jggij
I Fxidafx; +ixjdafxi | Fridalfs;

Table 1. Basis of local, dimension-four operators depending on gauge bosons, fermions and their
derivatives entering the decomposition of A,|(;). Lorentz indices p, v,... run from 0 to 3. Also
shown are the transformation properties under CP and P. For the fermion bilinears I53;, 153, and

I)lfmj, i, 7 being flavour indices, we explicitly display their CP- and P-transformed versions, with

L(R) = R(L).

fields, and their derivatives.” We can thus expand it in a basis of monomials involving only
gauge and fermion fields:

14
=Y Caali(2), (3.1)
k=0

where a sum over X = L, R is understood. The monomials I ff‘, where the label A collectively

denotes the relevant set of indices, are collected in table 1, along with their CP and P prop-

erties. The resulting basis coincides with the one already identified in ref. [24]. Observable

quantities are basis-independent, thus any other choice of basis would be equally good.
The symmetry properties of the I fl imply:

C;bc = C;(bc) ’ Cq

abc

=Caveys Care=Cutvyr  Cone=Coeys  Capea= Cap(eay»

Covea=Covjeas  Cabede = Cafbe)(de) = Calae) (ve) Cabede = Cafbede] » (3.2)

9We neglect a possible dependence of Aql(1) on ghosts. As will be discussed in section 4, these do not
contribute to A, at the one-loop level.
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monomial | explicit expression coefficient | CP P
Lo (0" AG) Ay Al ghi - +
12, Ay, OAY o + +
73, Agu0d” Ap, oh + ]+
Ty eP? Agy Any(0pAis) fﬁ;h]l + -

Ighzm P Agu Any AlpAmo 5[5ghlm} - -
Zonim Agu Ay A Ay, Eomyam) + +
T%i fTXingj 3% i f;;vij
TR 0ij Fxidafx; X aij X aji ?zaij

Table 2. Basis of local, dimension-four operators, depending on gauge bosons, fermions and their
derivatives relevant to build the counterterm Sg;. Lorentz indices p, v,... run from 0 to 3. Also
shown are the corresponding coefficients and their transformation properties under CP and P. For
the fermion bilinears we explicitly display their CP- and P-transformed, with L(R) = R(L).

where (a; ...ay) and [a; ...a,] denote symmetrization and antisymmetrization over the
indices inside the parenthesis. For example, C’;(bc) = (CL.+CL,)/2, Cgb[cd] = (Cq —
C%..)/2, whereas C;[lb cde] involves the anti-symmetrization of the four indices bede. The
decomposition of eq. (3.1) is general, and applies to any regularization scheme satisfying
the properties i)-iv). We can further constrain this parametrization by observing that
the effective action must fulfill the WZ conditions, hence its variation A,|;) must satisfy
eq. (2.21). Plugging the decomposition (3.1) in (2.21), a set of relations among the

coefficients C¥, is obtained. We collectively denote them as
WZ[Caa] = 0, (33)

and provide their explicit expressions in appendix A.l. It is worth stressing that the
mutual dependence among the coefficients implied by eq. (3.3) is not related to the linear
dependence among the elements of the chosen basis, but is rather a consequence of the Lie
algebra satisfied by the group generators.

Also the polynomial L. defining the counterterm Sc¢[¢](1) can be expanded in a basis.
At variance with the elements I ffl, which always occur unintegrated, L. is integrated over
spacetime. Since monomials related by integration by parts do not produce independent
terms in Sct[@](1), we can expand L in a basis consisting in a subset of the one introduced
above:

8 . .
Setl@ll 1) = / dy Lely) = / 'y ELTL(Y) (3.4)
=1

where the label B collectively denotes the relevant set of indices and a sum over X = L, R
is understood. The monomials 73 and their CP and P properties are displayed in table 2.
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Exchanging the gauge indices we deduce the following constraints on the coefficients:

Egnt = gt » Eontm = Elyhim] » Eonyam) = EQm) (o) - (3.5)
By computing the gauge variation of Sct[¢]|(1), we find:
La(2)Set 6]l (1) = —(&a + €2 + & + €ab) 10(2) + 26 el ()
+ (ﬁébc + Eacb — Eava + (Ea + 52c)fdab> Le()
+ [(Eave T Each — Ecba — eap) + (&2 + Ede + €4+ Eie) faar] Lo ()
— Eeanloe () + (Sape — Eopa) I ()
+ Eapelie ()
— (facebina + 4 Q) eay) Toea(®)

+ (fadegl}ce - fadeg;cb + facegl}ed -8 E?ac)(bd))lgcd(:E)

+ 4 fabgg?gc) (de) Iblt?de

+ (12 Enped) + 2face (Efuegp — ff?;d]e)) Ljeq()
+4 fabgf[i;cde} Lycqe()

Fi(TREY +i€%0)i I ()

+Hi(E5 TS +i€xa)ig X5 (@)

+i(TRE s — &% — i fabe€e)ig Ixij () -

14
= > ChAOTh(@). (3.6)
k=0

Again, a sum over X = L, R is understood. Explicit expressions for the coefficients CA’CIf A
as a function of the coeflicients 5% appearing in the counterterm are provided in table 3.
Note that, since eq. (3.6) describes a gauge variation, the C’f 4 automatically satisfy the
WZ conditions.
Using (3.6) and (3.1), the gauge variation of the sum of the 1-loop effective action and
the counterterm can be written as
14

Aa(@)]1)y + La(@) Setldlly = D [Cha + Cha(©)] Th(@) (37)
k=0

In an anomaly-free theory, the WI can be enforced by requiring the right-hand side of
this equation to vanish. If instead the fermion content of the theory is anomalous, we can
generalize this requirement by splitting the gauge variation of the effective action into two
contributions, only one of which can be removed by a counterterm. The remaining piece
represents the anomaly. Since the anomaly of a gauge theory is an equivalence class, where
two elements related by adding an integrated local polynomial of the fields and derivatives
are equivalent, such a separation is ambiguous unless we pick up a specific representative
element A, in the class. When this choice is made, we can write:

14

S [Cha+ CEA©)] I () = Au(w). (3.8)
k=0
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coefficient explicit expression Cp P
Co — (& + o + S+ E0) + +
C’;(bc) ‘fﬁzb e t gflac]b + -
C2 (e + Eaep — Eova) + (€07 + E3) faan - +
Coye (Eave + Each — Elpa — Eeap) + (€20 + &G + €01+ E3) faad - +
CA';l(bc) —5 (&b + Eac) - +
CA'Z:)(bc) 3 Eane = €+ Eaep — Ebea) - +
éS(bc) 3 (Eape +Eap) - +
égb(cd) — 5 (face€lpa + fade€lhe) =4 €y ca +
Clhea fade€hee = fade€icy + face€pea — 8 56ac (bd) +
égb[cd} 12 ffabcd] + face(fﬁje]b - f[AZd]e) fade(§ [ce]b f[bc]e) - -
Catvorae) | JaboS{oeyae) T JacoSlyny ey + Fads&{yeroe) + Faealyayoe) | = +
C’;[lbcde] Fabg€yeae) = Jaco€lpae) t Tada€ipbee) = Faca€ippea + -
Cok i(TYEx +ik,) e’ 0%
i (ET + k) cr T
Cly i(T4ESy — X T — ifavelie) —Q{;‘X r éal?j(

Table 3. Coeflicients appearing in the gauge variation of the general counterterm L,I'¢y once it is
decomposed in the basis of table 1. Also shown are the transformation properties under CP and P.
For the fermionic coefficients C'%, C13, and Cliy, we display their CP- and P-transformed, with
L(R) = R(L).

This defines our master equation. In practice, it is a set of linear equations that determine
the counterterm coefficients 5% as a function of the coefficients C’f ', describing the breaking
of gauge invariance induced by the regularization. If the theory is anomaly free, eq. (3.8)
simplifies to:

Chy+Chy(€) =0, (3.9)

Even in an anomalous theory, eq. (3.9) can be enforced for a convenient subset of coefficients
by appropriately choosing the representative element A,. For instance, one can always
choose A, to be a combination of P-violating operators. Here we show how this well-known
fact can be deduced in full generality from the WZ conditions.

3.2 Solution to the master equation

We now wish to simultaneously solve the WZ conditions (3.3) and the master equation (3.8).
To this end, we first determine the most general form of the C*, satisfying (3.3), and then
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find the counterterm coefficients f{; such that (3.8) is fulfilled. We do not need to specify
the regularization scheme, which is only required to satisfy the general assumptions spelled
out at the beginning of section 3. An explicit determination of the coefficients CZj 4 and of
the corresponding counterterms fg is performed in section 4.3 using DR.

Our task is considerably facilitated by the observation that both Zf 4 and fg have definite
transformation properties under CP and P. For the C’C]f 4 these properties can be deduced
from eq. (3.1), recalling that A, is CP-odd and P-even and that the operators I% transform
as shown in table 1. Similarly, the transformations of §1j3 under CP and P, displayed in
table 2, can be deduced from eq. (3.4), wWWhere each side is invariant under both CP and P.
For consistency the coefficients CA'ZL“ 4 and CF, must transform in the same way (see table 3).

Since gauge transformations do not mix operators with fermions with those containing
only bosons, we can treat them independently. We start by solving the set of equations (3.3)
and (3.8) involving purely bosonic operators and then discuss the fermionic sector.

3.2.1 Bosonic sector

The coefficients associated to the bosonic operators are C:ZO_H and {%:1_6. In this sector
the Wess-Zumino conditions (3.3) and the master equation (3.8) split into two decoupled
sets of equations, according to the parity of the operators involved. The P-even and P-odd
sets are defined by k£ = 0,2 — 8,10 (in short: k € P-even) and k£ = 1,9,11 (in short:
k € P-odd), respectively. The WZ conditions in the P-even and P-odd sectors are given
in eq. (A.1) and (A.2). The master equation (3.8) involves the counterterm coefficients
%:1’2’3’6 in the P-even sector, and 573:4’5 in the P-odd sector.
At the one-loop order the coefficients Cf 4 and {fé can be written as linear combinations

of single traces of the generators:!'"

Cal...an = Zch...XnT;ll..g(n (3 10)
£(j11...an - ZXXL..XnT)a(ll..g(n ’

where
Ty %, =Ty, ... TY"), (3.11)

and c’)“(lm x, and XI;(l,.. x, are numerical coefficients. Given the assumptions iii) and iv)
stated at the beginning of the section and the decompositions in (3.1) and (3.4), the
coeflicients C'(f ', and &% must have the following properties:

1. They transform under CP and P as indicated in tables 2 and 3.
2. Under exchange ay . ..a, they behave as indicated in table 3.
3. Ck, and C% (€) vanish for vector-like theories, i.e. if T¢ = T4,

This strongly restricts the form of C(’j ', and 5%. In particular, the first requirement implies
that the traces of eq. (3.10) can only appear in the combinations with definite transformation
properties under CP and P listed in table 4. Once the remaining conditions are imposed,

10 At higher loops also products of traces can appear.
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trace combination Cp | P
(%, + T ) + (@ + 1) [+ [+
(TR25%, + T ) — (% +T7) |+ | -
(T, TR+ TR % T | |+
T, —Toos) - 03— T | - [ -

Table 4. Combinations of single traces eigenstates of CP and P.

we are left with a general, regularization-independent parametrization of the C’(’f 4 and fé at
the one-loop order. For example, for elements 77 linear or quadratic in the gauge fields,
the coefficients Cf 4 read:
0 0 (rrab b b b
Can=c (TLr+Trr—TLr—TkL),

1 1 abe ach abc acb
Catbe) =CLLL (TLLL +T12L—Trrr—TRRR)

teppn (TREL+TRT, —Ti%R— Tg%R)
+Ciir (TE%CR T — TRk, — TR R+ T+ T R — TR R — T]%%)L) ;o (3.12)
05122’3 =G (T — T + T — TR R —Ti% + Tir — Thrr+ T
L r(TH =T+ T — T r—Tib + Tir— T+ THRL)
(TR~ TR L+ TR — Tin—Tiy + i — TR + THEL)
Cotvey =M (T —TEio + T~ Thin—Tii + T ThEn+ Titfin) -

The parametrization for the remaining ij 4 can be found in appendix A.2.
Analogously, the &, can be parametrized as:

1 _ .1 abc acb abc ach 1 abc acb abc ach
gabc =XLLL (TLLL —LLLL + TRRR - TRRR) +XLLR (TLLR —41LRL + TRRL - RLR)
1 abc ach abc ach 1 abc ach abc ach
+XLre(TirL—Tirrt TR —TrErL) T Xror Thir—Thi +1irr—TiRR)
7=23 _ _k ab ab k ab ab
En =X+ Trr) +X1r(Tir—TR)

4 _ .4 abc abc abc abc bac bac bac bac
§lable =X (TLRL +Trr—Trir—Trir—Tr R —TrRR+TRLL +TRLR) )

5 ) abed abdc acbd bacd bead beda
Sabed = XLRLR (_TRLRL +Trire Y TR RL Y TRERL —TRLRL T TRLRL
__rcabd chad __mcbda  rdbac Tdbca __rdceba
RLRLTLRLRL — L RLRL —LRLRLTLRLRL L RLRL

5 abed abed abed abed abdc abdc abdc
+XLLLR (TLLLR —Trrrr—TrirrYTRRLRTILLRL T TRILL T TRLRR
__mabdc _ rpacbd + Tacbd + Tacbd __rmacbd  rpacdb  rpadbc
RRLR LLLR RLLL RLRR RRLR RLRR RLRR

adcb bacd bead beda cabd cabd cadb
+Trrrr T TR —TreLe Y roor — TR —TrRLRR T TRLRR

cbad cbad cbda cbda cdab cdba dabc
+Trier—Trrir—Trire YRR —TRIRR YT RIRR—TILILR

dabc dacb dacb dbac dbac dbac dbac
+Trirrt IR —Trirrt iR —Torrr —TRiLL —TRLRR

dbac dbca dbca dbca dbca dbca dcab
+Trrir—Torirt I orre Y TRt Y T rirr —TRRIR—TLLLR

dcab dcba dcba dcba dcba dcba
+Trrrr+ orir— TR —TRoLL — RLRR+TRRLR> )
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6 _ .6 abed cabd cbad dbac cabd cbad dabe dbac
Sabed = XLLLL (TLLLL +Irreetirn Y 1o Y Trrre Y TRRRR T T RRRR +TRRRR>

6 abed abdc bacd bacd badc badc beda bdca
+XRLLL (TRLLL +TrrretTrit Y TRrLR Y TR T TRRIRY T RLRR T TRLRR
cabd cabd cabd cabd cbad cbad cbad cbad
+1rr iRt Trerr Y TRirr Y TRRLR Y T LLr Y T RELL Y TR RR T TRRLR
cdab cdba dabe dabe dabe dabc dabe dbac
+Irirr Y TRLRR T I LLLR T 1o LRL T TR L T TR RR T TRRLR T I LI LR

dbac dbac dbac dbac dcab dcab dcba dcba
L p Y TR Y TRERR Y TRRIR YT LI LR YT RIRR T T LL LR T TR RR)

6 abed cdba dcba cdab dcab abdc badc bacd
+XLLRR (TLLRR +1r R Y IR Y oL RRR YL L RR Y L L L RR Y I T LRR T TLLRR)
6 abed beda bdca dbac cbad dcab dcba cdba
+XLRLR (TLRLR +1Trrr Y I0rir Y LRI TLRLR T TLRLR T T LRI T TLRLR)

6 abed abdc bacd badc cdab cdba dcab dcba
+XRLLR (TRLLR +Trrrr TR Y TRLLR T TRLLR T TRLLR T TRLLR T TRLLR)

XPLLL (TE%%L +TH L+ TR+ Tg‘fzczbm)

+XBLLL (TJ%GI%L AT R+ TR L+ TR L+ Th e+ ThE i+ TR+ THEL R
TR R+ T r TE R+ TR L+ TR+ TR R+ TE e R+ T RR)

+XRLLR <T]C%aLdLbR + TR R+ TRL R+ TREL R+ TR R+ TRILR+ THITR+ Tz%lffR)

+XPRLR (TEC}L%dLbR T R+ TR R+ Tg?il’)g}%) .

Given the length of these expressions, we also provide the parametrizations of all C’fl and 5%
coefficients in a Mathematica notebook attached to this article as supplementary material,
and publicly available on Zenodo at this link.

With our parametrization, Cﬁjo_ll automatically vanish for T} = T%. For the same to
hold for their hatted counterparts, the counterterm coefficients must obey four additional

conditions:

XiL+Xir+XiL +Xir=0,
1 1 1 1 92 2
XLoL + Xeor + Xoor + Xro — 26(x2r + X1r) =0,
2 2 6 6 6 6 6
XL+ Xir +4(Xooor + 4XRoor + XLorr + XLRLR + XRLLR) =0,

2 2 6 6 6 6
Xir + Xir — 20XTrrr + 4XRrorr + 2Xkror + Xtror) = 0.

(3.13)

These allow us to express four coefficients, e.g. X} pr, X3 gy X% and XYk 1 g, as a function
of the others. We, therefore, conclude that the ij 4 are described by a total of 61 real
parameters in the P-even sector and 27 in the P-odd one, while the fg (hence the C%,(¢))
depend on 13 real parameters in the P-even sector and 4 in the P-odd one. Note that at this
stage the parameters describing C’C]f 4 are still redundant, because — as mentioned above —
the various C*, are related by the WZ conditions WZ[C¥,] = 0. In contrast to this, the
C’f 4 (€) automatically satisfy WZ[C’fA] = 0, hence there are no further restrictions on the
{fg. In order to remove the redundancy in the above parametrization of CZ; 4, We proceed to
solve the constraints WZ[C¥,] = 0.

P-even sector. We start from the P-even sector. Plugging the parametrizations for
C’C]L"’jp_e"en into eq. (A.1), we obtain 49 independent conditions on the coefficients entering
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the parametrizations (see appendix A.3.1 for the full expressions). This leaves us with
61 — 49 = 12 free parameters, which we choose to be:

0 2 2 4 6 7 7 7 7 71 71 71
CHCrrry CRLLs €5 CHCLLLRy CLRLR) CLLRR> CLRRL> CLLLR> CLRLR> CLLRR - (3-14)

From the conditions in A.3.1 we can also conclude that, independently from the choice
of free parameters, the conditions WZ[CfA] = 0 fully determine C;gc
of other coefficients in the P-even sector. Making use of the expressions for

terms of the parameters in (3.14), we can solve the homogeneous master equation (3.9).

4 as a combination

keP—even .
Cia in

The solution

1 _ .0 2 ) 1 _ 9 1 o4 2
XLrL =1 —Crrr — 20XLL XLLR = —CRLL> XRLL = 2€" — CRLL »
1 7 31
2 0, :4,:86 2 2
XLr = —5C +ic +uc” — ¢, — 5 CRLL
2 2 2
1
3 _ 10 2
XLL = 50 — XLL>
1 1 1
6 _ L7 6 _ L7 6 _ L7
XRLLL = ZCLLLRJ XLLRR = ZCLLRRv XLRLR = ZCLRLR7 (3.15)

1
6 _ 0 L6, 2 .9 7 7 7 7 2
XLLLL = g(c —2ic” +icpy, + 2ickrr, — 8¢LrLr — 2¢LLrRR — 2CLRLR — 2CLRRL — 2XLL) ;

1
6/ _ 0 .6 .2 71 7 71 2
XLLLL = Z(—C + 2ic” —ictr, —4crir — 2¢LLrR — CLRLR T 2X1L) s

1 i 1 i
6/ _ 7! 2 6/ _ - 4 2 7!
XRLLL = (CLLLR - 2¢RLL> ) XRLLR = § (lc T 9CRLL + CLLRR) )
determines the P-even counterterms 5}3’2’3’6 and explicitly shows the absence of anomalies

in this sector.!’ In other words, in the P-even sector the gauge variation of the effective
action can always be compensated by a counterterm.

The conditions (3.15) fix only 12 out of the 13 available counterterm coefficients. The
residual freedom amounts to the possibility of adding to L4 the gauge-invariant counterterm:

1
Lt D Xir (Igb — T3 — 2feer Lo + §f dgaf ecbISgcd) (TEY + TR)
(3.16)

2
= —ALL g, (T + Tgh)

This term is manifestly gauge invariant because Tg% and T}%l}% can be written as the direct
sum of identifies in the adjoint representations of the gauge group, each multiplied by a
representation-dependent Casimir.

P-odd sector. We now repeat the same procedure in the P-odd sector. Plugging the

parametrizations for C*$"7°4 into eq. (A.2) we obtain 23 conditions, which we list in
appendix A.3.2. Hence, only 27 — 23 = 4 out of the 27 coefficients appearing in Cng_Odd

are truly independent. We choose:!'?

1 1 9 9
CrLLLs CLLRy CLRLR» CLLLR - (3.17)

"1n particular, all counterterms are fixed by using the master equation for k € P —even \ {10}. CL0 , +
CL .(€) = 0 is automatically satisfied.

12Note that, as in the P-even sector, the WZ conditions fully determine C!} , as a combination of the

. . 1,9
coefficients entering C;" ;.
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Figure 1. Diagrams contributing to C!% 132 + C!3 133, The chirality X is determined by the
external fields fx and fx. A dot indicates the action of the operator L, of eq. (2.9).

On the other hand, the P-odd counterterms depend only on three parameters: X4, x% LR
and X%RLR' We can use them to remove clLLR, C%RLR and C%LLR by choosing:'?

9 9
4 1 5 CLLLR 5 CLRLR
X" = —CLLR; XLLLR = — 74 XLRLR = — 75 - (3.18)
12 12
The extra coefficient, clL 11, is related to the anomaly. In fact, by combining the parametriza-
tions for C*§P7°44  the constraints from the WZ conditions in eq. (A.2) and the counterterm
choice in (3.18), we get

> [Ch+ CEi©)] ()
keP—odd (3.19)
b . bled bld balcd 9
=cliL [2TZ§:}? Lipey — i (TEL[EII + T + TL%[ZI],) Tyjeq) — (L = R)} ;
where the vertical bars indicate that indices inbetween them do not get antisymmatrized.
Since C*SP =" satisfy the homogeneous equation (3.9), the right-hand side of (3.19) can
be identified with A,. Using the explicit expressions for [ ?bc) and IE[C 4> We can write it as

Ay = —chy 70, (A’;(?pAf, ~ AL AS AL fcde>) o ([rz {1h.15)] - [T {2 78)]) -

(3.20)
Because there is no freedom left in choosing the counterterms, the condition A, = 0 can
only be satisfied by imposing eq. (2.15).

3.2.2 Fermionic sector

We now turn to the fermionic sector, where it is convenient to first focus on the coefficients
C13% and C!3.. Both are matrices in flavor space that can be parametrized in terms of
strings of generators. At the one-loop order such strings are not completely generic, since
the relevant diagrams are the ones depicted in figure 1, from which we infer the patterns:

CY2 = a TETSTY + asT8 TS TS + a3 fape T TS + aay TYTETY |

(3.21)
CY = i TSTYTY 4 boTYTY TS + b fure TR TS + bay TYTETY

where a sum over Y = L, R is understood. The Lie algebra guarantees that the combination
TLTE satisfies [TETE, T%] = 0 for any T%, while f,.T%T% is proportional to 7%. Without

13As in the previous section, all counterterms are fixed by using the master equation for k = 1,9.
CH i+ CLL.(€) = 0 is automatically satisfied.
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losing generality, we can thus write:

Cox = d\xT% + asy TYTETY

O = b T% + by TG TETY | (3.22)
where the matrices af y and by commute with all generators 7. We can further refine

the parametrization of C% and Cl% by imposing invariance under CP. On the one side

we have
iz P ol _ g 7o 4 by T T T (3.23)

On the other side we recall that under CP T'% <P, T¢" and we obtain
12 S8 of T 4 ayy T T T (3.24)
The two ways lead to the same result provided a}y = b}y and a4y = byy, resulting in

ch

13 / b b
ux = Cox = aixTx + asy Tx Ty Tx

holding at least at one-loop order. Moreover, by making use of C1% = C!3 from the WZ
consistency conditions (see appendix A), we can express C’le in terms of C

Corx = H(CixT% — TSCpx + i fancCex) - (3.25)

Therefore the independent coefficients relevant for the one-loop parametrization of the
gauge variation in the fermionic sector are provided by the matrix C’g’( We now show that,
for any choice of Ccl?’ , the homogeneous equation (3.9) can always be solved, thus proving
the absence of anomalies in this sector of the theory. When k = 12,13, 14, eq. (3.9) gives:

T4&% +ilxq = iCox
TS +ilkq = iCo% (3.26)
T%&%y — ET% — i farclxe = —(CoxT% — T%Chy + i fapcCox) -

By combining the first two equations we see that 53( should commute with all generators 7%
LTy —Teeh =0. (3.27)

The third equation is automatically satisfied once we eliminate §§(a in favour of ¢% and
C13.. As a consequence, (3.26) only determines one combination of £% and &%

o= ik T% + ko = Cax - (3.28)
By expressing the searched-for counterterm in terms of &% T and ¥ o We get:
FxE (@ +iTE A fx + Fx€ax Aafx (3:29)

Since the matrix £% commutes with all generators, and thus with all gauge transformations,
in the above expression the first term is gauge invariant and can be safely dropped because
it does not affect (2.22). We end up with

Fx&xAufx (3.30)

as the unique non-trivial counterterm, where £ is given in eq. (3.28).
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4 One-loop analysis in dimensional regularization

In this section we present explicit one-loop results for the variation of the effective action
and the Wl-restoring counterterms in DR, using the BMHV prescription for ~5. First,
we introduce the conventional dimensionally regularized action, and then we perform the
explicit one-loop computation.

4.1 Classical action in DR

In DR Lorentz indices are analytically continued from d = 4 to d = 4 — 2¢ complex
dimensions. In this respect it is necessary to slightly modify the notation we used so far. In
the present section (only), vector Lorentz indices like p, v run from 0 to d, and split into a
four-dimensional set denoted by fi, 7 and a d — 4-dimensional (evanescent) one labeled fi, .
As we will discuss more extensively in section 4.2, the gauge transformation is however taken
to be purely four-dimensional in nature: the gauge parameter is o, = aq(2#). Explicitly,
the operators Lo (z) in DR is defined as:

g 5
Lo(x) = —&zm + fabcAbﬁ(x)m (4.1)
5 ) 5
+ XEL;R —zmefX(x) + zfX(x)TXm '

Note that the four-dimensional limit of this quantity coincides with the operator introduced
in section 2. The operators {I%(z)} and {Ié(y)} of tables 1 and 2 are strictly four-
dimensional.

The spurious breaking of gauge invariance in DR arises because chiral fermions cannot
be defined for arbitrary d. Indeed, as is well known, it is impossible to define a d-dimensional
Clifford algebra

{7} =29, (4.2)
and a chirality matrix 5 that commutes with all d-dimensional Lorentz generators. More
specifically, there is no d-dimensional definition of 5 obeying all the familiar four-dimensional
properties, namely i) {v*,75} = 0, ii) tr(y#y"vPy%75) = 4ie"’P?, and iii) cyclicity of the
trace. Several treatments of 5 retaining i) have been put forward, see for example
refs. [47, 51-53]. Unfortunately, none of them has been proven to be consistent to all
orders. Here we adhere to the BMHV prescription, which has been rigorously established
to all orders in perturbation theory [39-42]. An algebraically consistent scheme is obtained
as follows: the condition iii) is preserved; the Levi-Civita tensor is an intrinsically four-
dimensional object so ii) is to be interpreted with all indices being “barred” while i) is
necessarily relaxed. The matrix ;5 is also taken to be a four-dimensional object defined as

i s
Vs = —i€amap? 1 1Y (4.3)

whereas the other v, matrices are split into a four- and a (d —4)- dimensional part, denoted
by vz and v;, respectively:
Yo =Ya+ V- (4.4)
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From these definitions one finds

{7577/1} = 07 [7577;1] =0. (45)

Eq. (4.5) makes it impossible for 75 to commute with all the d-dimensional Lorentz generators.
Hence the notion of chirality is lost and, as we will see, a spurious violation of gauge invariance
is bound to emerge.

We now proceed to introduce the dimensionally regularized version of the classical
action in eq. (2.2). While the regularization of Feynman diagrams via DR requires an
extension of the kinetic terms to d dimensions, the treatment of the interaction terms
is, to a large extent, arbitrary: the only requirement is that they must reduce to those
in (2.2) for d — 4. This leaves open the possibility of defining a large class of regularization
schemes. For the bosonic Lagrangian Lyy, a natural choice is to promote it entirely to
d dimensions replacing all four-dimensional indices with p, i.e. replacing Lyym — 5%2/1-
While this choice is obviously not unique, it is by far the most convenient, because it
preserves all the symmetries of the unregularized theory. For this reason, it will be adopted
in the following. Also the fermionic contribution Lgermions allows for several independent
analytic continuations. There is however a fundamental distinction with respect to the
bosonic action: because of the absence of d-dimensional chirality, there is no way to define
a regularized fermionic action that respects chiral gauge invariance. Here we choose the
following regularized fermion Lagrangian:

d 7 -
‘C%e)rmions = Zf’yuaﬂf - AZ f (PR’}/”PLTE + PLrVuPRTl%) f
= ify"Ouf — A% F(Pry" PLTE + Py PRTR) f

with Pr, g being the d-dimensional versions of the operators introduced around eq. (2.5)

(4.6)

for the (unregularized) four-dimensional theory. Even for arbitrary d, P r represent
hermitian projectors that can be employed to define what we may loosely call d-dimensional
left- and right-handed fermions, precisely as in (2.5). The crucial difference is that the
fermionic kinetic term (which, consistently with DR, is d-dimensional) introduces symmetry-
breaking fr <> fr transitions, whereas with our choice (4.6) the interaction is purely
four-dimensional and does not mediate such regularization-dependent transitions. In
conclusion, the d-dimensional action that replaces (2.2) is taken to be:

S(d) [A7 fXa fX] = /dd:B (E%?K/[ + ‘C%C(?rmions) : (47)

Because this definition of S@ is effectively part of the regularization scheme, all scheme-
dependent quantities (including the counterterms derived below) depend on it, and will
generally differ if another S is adopted (see also ref. [26]). Since the regularized Yang-
Mills Lagrangian defined above is widely used in the literature, most of the scheme-
dependence (within DR) stems from the fermionic Lagrangian. We will further comment
on such scheme-dependence in section 4.3.1. For now let us just stress that any alterna-
tive interaction scheme, such as those defined by —Aj f (W*PLT} +~+"PrTg) f + he or

—Ajf (Ppry"T + Pry*T3R) f + he, differs from ours because of the addition of evanescent
terms.
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The choice in eq. (4.6) is motivated by minimality of the resulting gauge variation
which, as we will see below, is the central quantity in computing the variation of the 1PI
effective action, A,(1). In practice, (4.6) minimizes the number of diagrams to be computed
in order to identify the WIl-restoring counterterms. Perhaps even more importantly, (4.6)
preserves P, CP, the vectorial gauge group (see below) and hermiticity of the action, which
allow us to perform intermediate checks during the calculations. We also emphasize that our
treatment is more economical than the one proposed in [24, 26], in the sense that it requires
the addition of a sterile chiral component only for the fields that do not have a charged
chirality-flipped counterpart. The fermion content of our theory is thus only minimally
extended with respect to the one in the four-dimensional theory. This makes our results
directly applicable to theories of interest, like the SM.

4.2 Breaking of gauge invariance in DR: general considerations

Having introduced the regularized action the general results of section 2.2 can be invoked
to identify the Wl-restoring counterterm Sc;|(1). To make contact with the notation of
section 2.2 we observe that the quantity (4.7) represents the tree-level regularized action,
S = ['"8](g), whereas more generally I'"8|,) = F(d)|(n).

At a given perturbative order, the gauge variation of I'(4)[¢] |(ny contains both purely
4-dimensional as well as evanescent terms. The evanescent terms are defined as those
contributions that are proportional to d — 4 components of the fields, or contain space-time
derivatives in the (d — 4)-dimensional coordinates. Such contributions to the effective
action cannot describe physical processes because the latter are genuinely 4-dimensional.
Physical processes are obtained by differentiating the effective action with respect to the
4-dimensional components of the background fields, assumed to carry purely 4-dimensional
external momenta. For this reason evanescent contributions to I') do not have any physical
significance.

To avoid any confusion we emphasize that this statement refers to the 1PI effective
action, as opposed to the classical action. Evanescent terms actually appear in the classical
action, are essential to the regularization procedure and in fact are at the origin of anomalies.
Explicitly, performing 4-dimensional transformations of the fermionic and bosonic fields
one finds that 4-dimensional gauge invariance is indeed explicitly broken by the regularized
action (4.7):

Lo(z)S@ = Ly(x)SY (4.8)
— [P TE D) + TRV T D) + Duf )V Thfr + (D )V TE fi] ()
F(Th — TP)vsy"Opf — Oplfv"(TE P+ T Pr) f]

O(Eva),

where O(Eva) indicates that this is an evanescent quantity because it is controlled by terms
of the type fx~* fy+x which do not exist in d = 4. As already anticipated earlier, the
fundamental reason why 6,5@[A, fx, fx| is not exactly zero is that the d-dimensional
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kinetic term characterizing DR necessarily mediates f7, <+ fg transitions.'* More specifically,
the mixed terms fz fr, fztz fr are not gauge invariant unless the gauge transformation is
vector-like, i.e. our regularization (4.7) explicitly violates gauge invariance unless Tf = T§.
When T} = T4 the gauge variation in eq. (4.8) reduces to a total derivative with respect
to the d — 4 coordinates, which vanishes under our assumption o, = a,(z*). Only in this
case our DR scheme does not break the physical, four-dimensional gauge invariance. Note
that our choice S’}(fgmions

the interaction conserves chirality: any other interaction scheme would feature additional
terms on the right-hand side of eq. (4.8).

In DR the gauge invariance is explicitly lost already at tree-level whenever T} # T§, i.e.

(d)

Fermions

minimizes the breaking because the four-dimensional nature of

whenever the theory is chiral. Any choice of £ would suffer from the same drawback.
The dimensionally regularized classical action (4.7) is nevertheless invariant under the
spurious P and CP transformation laws of egs. (2.12) and (2.13), as its four-dimensional
sibling.!> The associated selection rules will be heavily exploited in the calculations of the
following sections. There is another sacred principle that appears to be violated by (4.7):
the fermion interaction does not respect d-dimensional Lorentz transformations. However,
this violation does not have tangible consequences, because the symmetry principle of
physical relevance is the four-dimensional Lorentz group, not its d-dimensional extension.
Indeed, eq. (4.7) preserves four-dimensional Lorentz (as well as rotations in the d — 4 space),
with all the d — 4 indices, e.g. 7", viewed as scalars of SO(1,3). As a result, DR does not
require the introduction of counterterms to enforce the Ward Identities associated with
physical Lorentz invariance. With this in mind, by an abuse of terminology, we will keep
referring to (4.7) as to the regularized “d-dimensional action”. The reader should note that
the situation is radically different when considering the breaking of chiral gauge invariance,
since eq. (4.8) reveals that in such a case (4.7) does not respect even the (physically relevant)
four-dimensional version of (2.7), where the gauge parameters o, are assumed to depend
only on the coordinates x#. The very existence of WIs associated to four-dimensional gauge
invariance demands the addition of local counterterms to (4.7).

As anticipated earlier, evanescent contributions to the 1PI effective action are unphysical.
In particular, the breaking (4.8) has no effect in the tree approximation, since this is an
evanescent quantity that does not exist when ¢ — 0; said differently, the operatorial version
of (4.8) does not have any tree matrix element with (four-dimensional) physical states.
For example, tree matrix elements of fL'y“c?u fr = vaﬂaﬂ fr depend on the unphysical
momentum along the d—4 directions, and similarly for all other terms. However, when going
beyond the tree level in the perturbative expansion, the evanescent terms in the classical
action may get multiplied by singular integrals, resulting in non-evanescent contributions
to the 1PI action that spoil the Ward Identities. This is the origin of the spurious breaking
terms that force us to introduce counterterms.

1At the root of these transitions is that the projectors Pr r do not commute with the J;; generators
of the d-dimensional Lorentz group, which is respected by the kinetic term (see eq. (4.5)). Hence, Lorentz
transformations mix fr,, fr, as opposed to what happens in d = 4.

15This is a consequence of the properties of the charge conjugation matrix C'in d-dimensions (see egs. (2.15)
and (2.16) of ref. [26]).
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An explicit expression for A, in DR can be derived order by order in perturbation
theory. As anticipated in eq. (2.16), the regularized 1PI effective action in the background
field method can be written as:

T Plel _ Do St +] (4.9)
1PI
(d) — q(d) (d) (@ . T . . . .
where Sp ) = S + .5, + S0 18 the sum of the d-dimensional action (4.7), an invariant
gauge-fixing term: '
1

2%

and the associated ghost action. It is a remarkable property of DR that the non-invariance

Sclo+d) = [da |=5onut] | (4.10)

of the d-dimensional action S(¥, see eq. (4.8), represents the only source of gauge-symmetry
breaking. In particular, under a gauge transformation the measure of the dimensionally-
regularized path integral remains invariant because any local transformation of the field is
associated to a Jacobian J of the form IndetJ = 6(9(0) [ d%x f(x), with some function
f(z) that depends on the transformation parameters, and in DR 6(¥)(0) identically vanishes,
implying that J = 1. Any potential anomaly in local field transformations in DR must
therefore come from the non-invariance of the classical action. In particular, the gauge
variation of the 1PI effective action reads

_ Jipi D @Sl 1,580 16+ g]

ermions

f 1PI Déf; eiSf(jl)l[M(ﬂ

L D 9[¢] , (4.11)

where L, has formally the same functional form on the left-hand side and the right-hand
side of this equation, but in the former case it acts only on the background fields ¢ while in
the latter on ¢+ ¢. This represents a proof of the regularized version of the Quantum Action
Principle invoked in (2.20) and first proved in [39]. Thus, the spurious gauge symmetry
breaking terms arise from the one-particle irreducible vacuum correlation functions of the
gauge variation of the classical fermionic action.

According to eq. (2.22), the Wl-restoring counterterm Sc¢|(;) is determined by the
variation of renormalized 1PI effective action. We should therefore discuss how this is
connected to the variation of the regularized 1PI action in (4.11). To appreciate this it is
necessary to introduce a renormalization scheme.

In general, there are two types of contributions to the regularized 1PI N-point functions:
(finite as well as divergent) evanescent terms and (finite as well as divergent) non-evanescent
terms. In formulas, we may write

d —fin 1 —div ~fin 14 iv
1ﬂ§\/)|(1) =Tyl + Iy Iy + T ) + EF(]iV (1) (4.12)

where a bar/hat identifies the non-evanescent /evanescent contributions. In this paper we
adopt a popular (minimal) subtraction scheme according to which the renormalized 1PI
N-point functions are defined by subtracting all divergent terms, both the evanescent and

16 . is the d-dimensional version of the expression in eq. (2.18).
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non-evanescent ones, so that the effective action reduces to the sum of a finite evanescent
and a finite non-evanescent term analogously to the tree-level expression S(@ = L (0):

. —fin Sfin
Pl = lim {T™|y + T%r)} (4.13)

The formal 4-dimensional limit is carried out by discarding fﬁn|(1) and sending all fields

and momenta in fﬁn|(1) to d = 4. The gauge variation (2.20) of the renormalized effective
action hence coincides with

—=fin
Aty = Lally = Ll 1)- (4.14)

This is the quantity that determines Scq /().

Similarly to I'(@) (1), the gauge variation L@ (1) of the regularized action is in general
the sum of evanescent terms and non-evanescent terms. In evaluating (4.11) we find two
contributions: .

LTy = 84"y + Al ) + EASI (1) (4.15)

namely a (finite) 4-dimensional one and an (finite plus divergent) evanescent one. Crucially,
the action of L, on any finite term remains finite, and similarly the action of L, on a
divergent term remains divergent. Furthermore, L, cannot turn an evanescent term into a

non-evanescent one. These considerations imply that!'”

—fin
Adly =Aq |y - (4.16)

This represents an important simplifying result for us: in a 1-loop calculation, and with
the subtraction scheme illustrated above, the variation of the renormalized 1PI action is
fully determined by the finite 4-dimensional part of (4.11). This is the only contribution
necessary to identify the corresponding counterterm Sct‘(l).

In the next subsection, we will present an explicit one-loop calculation of (4.11). Because
the focus of our paper is Set|(1), the result summarized in eq. (4.16) ensures that in that
calculation we can safely neglect the divergent evanescent terms in LqI'(9) |(1). Yet, were we
interested in carrying out a 2-loop computation of S, an explicit expression of the 1-loop
counterterms necessary to subtract the divergences from I'(9) ](1) would also be needed.

4.3 Breaking of gauge invariance in DR: one-loop calculation

There are several important simplifications that occur in the computation of (4.11) at the
one-loop order. First, we only need the expansion of Sf(jl)l[gb + (E] up to quadratic order in
the quantum fluctuations ¢. Second, since by definition the effective action (2.16) includes
only one-particle irreducible diagrams, terms linear in the quantum fluctuations do not
contribute and can be discarded. Furthermore, as we will see shortly, ghosts do not play
any role at the order of interest. In particular, we can safely switch off both their classical
backgrounds and their quantum fluctuations. As a consequence, the only relevant degrees

"Tncidentally, (4.15) also implies that the divergent 4-dimensional terms fdiv\(l) are gauge-invariant.
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of freedom in our analysis are the gauge and the fermionic fields, along with their quantum
fluctuations.

The central player in our calculation is the fermionic action. Upon performing the
shift AZ — AZ + AZ, the covariant derivative becomes i) — ilp — fy‘_‘flf—L(PLTg + PRTH).
Expanding up to quadratic order we obtain

Shrmions & + @ = / d'z fil) f (4.17)
+ [ dla finf + 510
+0(¢,¢%),
where we defined
s = / dx [—A%f V(PLTE + PRT) f — A4 fA™(PLTE + PrTg)f] (4.18)

and, as promised, we neglected terms linear and cubic in the fluctuations. The first term
in (4.17) represents the classical fermionic action, and can be factored out of the path
integral (4.11) because it involves no quantum fluctuations. The second line of eq. (4.17)
consists of the sum of two terms: a non-gauge-invariant one, filf, which represents the
original fermionic Lagrangian with the fermionic field replaced by its quantum fluctuation
and the covariant derivative containing only the background gauge field, plus a genuinely

)

four-dimensional gauge-invariant piece we called Slgd . At one-loop accuracy it is sufficient

i g(d)
to expand €' up to quadratic order, because (4.18) is linear in the background fermionic
fields, and L,T(9[4] is a dimension-four local operator that contains at most two powers

- o(d)
of such fields. Furthermore, the linear term in ¢iSE =14 iSéd) — %[Séd)]Q + -+ does not
contribute, because no 1PI diagram can be built out of it. We then conclude that the
one-loop approximation of (4.11) reads

ST DA, fy, fX]\(l) — 5,8 (4.19)
+ (@ ( [ e FiF) 19
—sr{[s)" & ([ ate finF) } i),

where the time-ordered Green-functions are vacuum to vacuum correlators in the background
a.
gauge Aj:

fip1 D ¢ e FPTHSEIAA 0(1)0 ()
Jip1 D bé [ dda filp f+iS{tgelA+A]

QT{O@)O()} 12)a = , (4.20)

and we introduced the compact notation Sgguge = ngil\)/[ + Sglf)_ + Séﬁ)ost.
The quantity 6,5@ in (4.19) describes the classical effect (4.8) and can be ignored

because finite evanescent. The second and third terms instead induce contributions that
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do not vanish for € — 0, because divergent 1/e one-loop effects turn them into finite
non-evanescent. In four dimensions the one-loop gauge variation reads

+ 6,1

5.00| = 5,0
Gauge

(1)

where we introduced the notation

(4.21)

. 3
Fermions

5T Cotuge 0y = (U (/ d’z filZ)f) )4, (4.22)
8ol mions o= —%@!T { [Séd)r da (/ dlx fz‘lDf)} Q4. (4.23)

The term (4.22) arises from a single f loop and only depends on the background gauge fields.
At one loop the gauge bosons in these diagrams are necessarily non-dynamical, i.e. the
gauge field is a purely classical background. The term (4.23) instead receives contributions
from diagrams with both virtual fermions and gauge bosons, and its explicit form depends
on the fermionic background.

It is easy to see that at one loop ghosts can be neglected. Indeed, one-loop diagrams
contributing to either (4.22) or (4.23) cannot simultaneously involve virtual ghosts and the
necessary virtual fermions. We can therefore safely neglect ghosts, keeping in mind that they
should not be ignored when performing calculations beyond the one-loop approximation.

4.3.1 Bosonic sector

The gauge variations in egs. (4.22) and (4.23) become significantly more compact when
expressed in terms of vector and axial combinations of the gauge fields. These are defined,
along with the associated generators, as

1

Va=TpAL T =S(Th+TE), (4.24)
1

A =THAL TS = S(Th—T).

We therefore prefer to temporarily switch notation from Ty g to Ty, 4. To avoid confusion
we restrict this change of notation to this section.
Another useful quantity is

T = T‘(} —+ Tg’)@ = PLTE + PRT]%. (4.25)

For clarity, we stress that the matrices 17, Tr do not live in orthogonal spaces and therefore
do not commute in general. As a result neither 77} nor 7% usually form an algebra. Yet,
orthogonality of the chirality projectors always implies [T%, T%] = 4 f,p.1¢.'8

8More explicitly, the reader might want to verify that

1. 1 1
(1%, TV] = if*"“T% + ; [Tk, Te] + (T2, Tr],
a 1 - padc C 1 a 1 a
[TA7TIZ} = §Zf ’ TV - E[TR7T£] - Z[TL7T1’%]7

a 1. abcc 1 a 1 a
[T%, T3] = §Zf T — Z[TRaTLb} + Z[TL,TIZL

_97 —



To familiarize with the new notation let us begin by re-writing the first term in (4.19):
5aS@ = 5., { / dz Fil) f} (4.26)
= [ @' [0uf T3 (D15} £ + Dpaa FTO9 ]

= Eva.

It is easy to see that this expression correctly reproduces eq. (4.8) after integration by
parts.’® A similar quantity, with the replacement f — f, is needed to compute the two
remaining contributions. We find

5.1

at Gauge

1) - /ddx“)’ [aa]?Tﬁ {E775}f+ (%aa ]?Ta’yﬂf} ‘Q>A (4.27)

=~ [0 T (P75} 5| = T [BpaT™> 2]
D D

where the minus sign in the second line arises due to Fermi statistics. The trace “Tr” differs
from the Dirac trace “tr” because it acts on the Dirac indices as well as space-time, i.e.
Tr[O] = [ d%z (z|tr[O]|z).

As a non-trivial consistency check of (4.27), we note that this quantity arises from
a single fermion loop with gauge bosons evaluated on their classical backgrounds. In
this approximation the 1PI effective action reads —idet[I)] and its variation may alterna-
tively be given by —iTr[lﬁfléalD]. An explicit computation gives 6, (i)) = — [, a,T%] —
(D, . TS]ys + (3,;ozaTa7ﬂ, so that

1
D

1 1 -1
=Tr {aaT{} — Eaan}lD + agThvs — EaaTng% — 8ﬂaaTa'y“lD}

1 A1
@aTX {w7 75} ﬁ + aﬂaaTa7u¢:| )

1 1

—iTr[zp‘ldazz)]:Tr[ P, auT¢]+ 5P wﬁﬂaaTa'yﬂ] (4.28)

= —Tr

where we used Tr{o,T'%75] = 0 and the cyclicity of the trace. The above expression exactly
agrees with (4.27), as it should. Incidentally, this consistency check also provides an indirect
proof of the gauge invariance of the dimensionally-regularized path integral measure (see
discussion above eq. (4.11)).

The trace in eq. (4.27) may be computed diagrammatically or via other methods. Any
of these would lead to the same result because the expression has been already regularized
and is unambiguous. In the following, we employ the heat kernel method. The following
result was first obtained in refs. [49, 50] via this same method. We think that a re-derivation
makes our work more complete and self-contained, and at the same time might help clarify
a few non-trivial steps of the computation.

Now, the second term in the second line of eq. (4.27) is evanescent and can be safely
discarded as argued around (4.16). The first term in eq. (4.27) is however not entirely

19The second term identically vanishes because according to our definition of gauge symmetry Opag = 0.
In the following we prefer to keep this term anyway so that the discussion remains more general.
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negligible. In appendix B we show that the first trace in the second line of eq. (4.27) may
be expressed in terms of the heat kernel coefficient as plus divergent evanescent terms.
Neglecting all evanescent terms, using (B.5) and explicitly evaluating as(z, z) via (B.9),
after a tedious but straightforward computation we arrive at?’

d i a _ a/ €
W0 Lol Guge] ) = gz 07 [T4s02(, )] = —tr [Th (a5 (2) + af ()] (4.29)
with
prap
ag = 616 2 [vaab’"‘ A Acg— 3 (-A AV + AoV Ag+ Vi AaAp) — -A#-AVAQA/B} )
of = 1617T [;*Dypymﬁimu,pm] —z'[AW,vW]} (4.30)
1 Vv v v v
b 2[ 8.4, (DY A"V A, —f{DAJrD A A A} + {DA AA}]

In the above expression we introduced the covariant vector derivative as well as the field
strengths of the vector and axial components of the four-dimensional gauge fields:

Dzi-AV = aMAl/ + i[Vu’ AV] )
Vi = 0V — 0V, + iV, V| +i[A,, AL, (4.31)
Ay = 0 A, — 0 A, + iV, A+ i[Au, Vo]

Our result (4.29) agrees with ref. [49], where a different convention for the gauge vectors
was adopted. Interestingly, note that the one-loop variation d, INS ]Gauge is completely
independent from the definition of the interaction in the regularized fermionic action (4.6).
Any alternative regularization of the interaction would differ by evanescent terms involving
fi-components of the vector fields, and these would not affect the four-dimensional limit
of (4.27). The mixed fermion-boson loops appearing in (4.23) are instead sensitive to such
definitions and below will be evaluated for our choice (4.6).

The gauge variation in equations (4.29) and (4.30) satisfies all the desired properties.
First, since in our convention the generators Ty, 4 are hermitian, the factors of ¢ in (4.30)
guarantee that d,I'(*) is hermitian. Second, the vector-like component of the gauge symmetry,
defined by T4 = 0 (or, equivalently, by T} = T}), is manifestly conserved, consistently with
what is anticipated below eq. (4.8). Third, expressions (4.29) and (4.30) are consistent with
LoI'™® being CP-odd and P-even, see below eq. (2.13). In particular, aé is P-odd because it
contains an odd number of axial vectors, whereas a§ is P-odd because it contains an even
number of axial vectors contracted with the Levi-Civita tensor. Finally, the expression (4.29)
satisfies the WZ conditions, as we will discuss below.

The operators in a5, ag form a complete set of P-odd, Lorentz-singlet, dimension-four
local functions of the vectors and their derivatives compatible with vector gauge invariance.
As expected, this operator basis is in one-to-one correspondence with the one presented in
table 1. We can therefore equally decompose eq. (4.29) as we did in section 3 (see eq. (3.1)
and text around it). The corresponding coefficients C% are collected in section 4.3.3.

2ONote that the first trace includes both gauge and Lorentz indices, whereas the second only the gauge
indices are summed over.
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4.3.2 Fermionic sector
The mixed fermion-gauge contribution to 6,I'*) may be calculated directly from its defini-
tion (4.23) (Séd) is given in (4.18)):

.79

¢+ Fermions

(4.32)

1)
=20 { [ at [Afrred] | [Frioieond], [t [771] b+ B,

Y1 Y2

where we used the variation (4.26), where {,v5} = 27/v50;, as well as the definition (4.25).
The numerical factor in front is a multiplicity factor due to the presence of two possible
contractions with Séd) 2.

The full result of our computation will be presented below. Here, for brevity, we discuss
explicitly only the derivation of terms containing two background fermions and a derivative.
The remaining ones are of the form fAf, involving background fermions and a background
gauge field, and can be obtained analogously.

In the evaluation of terms containing no gauge fields the average in (4.32) can be
interpreted as a vacuum to vacuum transition. We find

Lcré‘?rmions (1) (433)
d'ky d'ky i(k1—ko)x ddq
- 2/ (%)d/ (2m) © / (2r)1 N
co e R oo (AR oo 97 — (1= §)LE
X f(ki)y"T (qurkll)gTA(ﬁ + /9/2)75(qg+k22)27 T°f(k2) Gaa ( Z .

QGaa e ddk ddk i(k1—k2)z ¢ . arca
T 16m2 <1 * : 6 ) / (27T)1d / (27r)2d ORI f (k) ysi (Wi — Ho) T*TSTf (k2)

=M (S0 s (F 49 e,

where we made use of the shorthand notation in eq. (4.25). The couplings G, arise from the
gauge propagator because the kinetic term in (2.3) is non-canonical. This contribution can
be expressed as in eq. (3.1). The resulting coefficients C1>!3, along with those associated
with the fAf terms, are collected in the next section, together with those of the purely
bosonic operators.

4.3.3 Collecting the results

The one-loop results derived in section 4.3.2 and 4.3.1 can all be written in the form (3.1).
The corresponding coefficients C’If ) are:

1 4
Coo= o7 tr 77 {—3 Tg} (4.34)

1 1
Coap = WtrTﬁ {4 (T‘C;T{}JFBTXTQ) }

1 8
2 . b b
Cpab = 1672 U"Tz {_32 ([TgvTV]+[T\(}7TA])}
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Cpab

c}

iab —

Cpab =

pa

(oM

pab —

or

pabc —

08

pabc —

C9

pabe —

cl
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pRij = CpRij
i [(5+E .
Cotais =+ 103 (" AT T TRTE ~ihun TR TRTT'
i [(5+E .
Cobuis =153 (- ) {Th TRTETR) ~ihyun TRTETR),,.

where tr T4 {- - - } is short for tr[T? { - }].2* Note that these C% do not automatically satisfy
the symmetry properties of eq. (3.2) and need to be (anti)symmetrized accordingly. We
nevertheless prefer to report the results without (anti)symmetrization to avoid complicating
these already unwieldy expressions.

The results collected in eq. (4.34) pass a number of highly non-trivial consistency
checks. To start, the coefficients 02(6 and 03’13’14 have been independently computed
diagrammatically for £ = 1. The Feynman diagrams exactly reproduce the coefficients in
eq. (4.34). Furthermore, we explicitly verified that the C% in eq. (4.34), after being properly
(anti)symmetrized, satisfy the WZ conditions in A.1. We also computed the corresponding
values of the coefficients c* introduced in eq. (3.10) (see table 5) and checked that these
satisfy the constraints in A.3, as they should.

4.3.4 Counterterms

The explicit form of the gauge variation of the effective action induced by DR at one loop,
for the specific renormalization scheme of section 4.2, is given by the sum of (4.29) and
the fermionic operators discussed in section 4.3.2, see (4.21). Its 4-dimensional limit is
unambiguous, and so does the counterterm Set|(1) = [d*z Let|y in (2.22).

We can now write explicitly the counterterm necessary to restore gauge invariance
in our renormalization scheme, under the hypothesis that (2.15) is satisfied. Using the
definitions in eqs. (4.25) and (4.24), we find, up to gauge-invariant contributions:

pvaf 4 9
1 4 . 4 4
T {—?)(D#AV)2 + 2(DY A = A AP + S (A + Afw}

2 £E—1 P uma “
- 1672 <1+ 6 )Gaaf757 T A,uT f

We emphasize that in our notation (see eq. (2.3)) a further rescaling A, — ggé(%AZ is
needed to canonically normalize the kinetic term for the gauge bosons.

The counterterm is non-gauge-invariant by definition, see (2.22), but respects the
spurious P, CP, as well as Lorentz invariance.?? In addition, being proportional to the axial
vector component, it manifestly vanishes for 7' = 0, namely for T} = T, consistently with
the fact that our regularization does not break vector-like gauge symmetries.

21The coefficients C'%1314 of the fermionic operators are written in terms of the 77 r generators because
they only carry gauge indices. On the contrary, Tv,a also involve Lorentz indices, which are fully contracted
in the definitions of 7121314,
22Possible gauge-invariant operators may be added to Se;. However, these would have no role in restoring

the WIs. Rather, they would correspond to renormalizations of the couplings of the theory.
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CO CO — 7%
c! Chir = _%’ CLLR = _%’ ChLL = %
c? trr = —%, cirr =0, chrp = %
c? C%LL:_%7C%LR:% ac?z’zLng
04 C4 :%
05 05 — _%’
Ct b = é

7 _ 7 _ _ 7 _ _ 1
Crrrr = ¢LLRL = ¢ LRRR = CLLRR = CLRRL = CLRLR — §

7 7 _ _ 7 _ 7 _ 7 _ _ 1
c Crrrr = ¢LLLR = ¢LLLR — ¢ LRRR = ¢LRLR =~ CLLRL = %

7 7 _
CLrrL = CLorr =0

8/ _ 81 8 _ .8 _8n _ 81 _ .8 8
Crorr = CLnnn = CLLRL = CLLLR = CLLLR = CLLRL = CLRLR = CLLRR — 3

c® Lree = €iire = CLRLL = CLRRL = CLhLR = CLRLR = CLRRL = —%
C%HLRR = _C%NRLL =1, C%RLL = C%LRR =0, C%ILLR = _C%/RRL = _%
Ao =Cirr = Cliir = CLrRR = CLRLR = CLRRL = ¢
P ¢trir = Ciirr =0
¢Prir = CLRRR = CIRLR = CLLRL = —CLLLR = —CLLRR = —é
co C%?273,4,5,6,15,17 =0, 0515?9,11 = _6%910,12,13,14,16 = —ﬁ7 C%g = ﬁ
ct C%,l2,3,7,8,9,10 =0, 0111,16 = —Cél = —%

Table 5. Explicit results at one loop in DR for the coefficients c* entering the C% parametrization
introduced in section 3.1, in units of 1/(1672).

The first, second, and third lines of (4.35) can be found independently from each other
because they do not mix under gauge transformations. The counterterm in the second line,
which does not contain the Levi-Civita tensor, can be identified starting from the most
general Lagrangian constructed with dimension-four vector operators invariant under the
spurious P and covariant under the vector transformations. This requirement identifies
all operators in the second line of (4.35) plus of course, Vfw + Aﬁy, which is irrelevant to
our analysis because invariant under the full gauge symmetry group and is in one to one
correspondence to the term in eq. (3.16). The coefficients of the operators selected via this

procedure are finally derived by requiring the gauge variation cancels the part of Aa|(1)

controlled by a§.23 This fixes all coefficients but the one of Vﬁ,, + Afw, coherently to what
was found in section 3.
There are only two independent dimension-four operators with Levi-Civita that are

invariant under the spurious P and built out of combinations that are manifestly singlet

23In deriving the variation it is useful to note that D)f satisfies the Leibniz rule.
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% X,)C(YZ
¢ XLrL = % — 2iX7 p,; XLLR = —%, XRLL = %
£ X%R = %
& Xir = _% ~Xir
54 X4 — %
£ Xirrr = Xbrir = 72
2
¢ XGLLLL = le - %, X%{LLL = X%RLR = _X%LLL = _i
X6LLRR = X%LLR =0, XGL’LLL = _% + XQ%

Table 6. Explicit results at one loop in DR for the coefficients x* entering the fg parametrization
introduced in section 3.1, in units of 1/(1672).

of the vector transformations; these are e? A, Vo and ehvep Ay AgAg. However, using
the Bianchi identity one finds that both of them are total derivatives. To arrive at (4.35) we
have to relax the assumption that the building blocks be manifestly invariant, and instead
simply demand that the gauge variation vanishes for 79 = 0 (plus as usual invariance
under the truly conserved symmetries P and CP as well as hermiticity). This less stringent
request leaves us with the three independent operators shown in the first line of (4.35) (the
complex i follows from hermiticity and invariance under CP). The numerical coefficients
may then be obtained demanding that their variation exactly cancel the part of the anomaly
controlled by a§ whenever (2.15) holds.

Finally, the last line of (4.35) is determined requiring its variation exactly compensates
the fermion-dependent part of A,. The most general set of 2-fermion operators would also
include a gauge-invariant combination, but that cannot play any role in restoring the Wls
and has not been included in (4.35).

The result in eq. (4.35) is a particular case of the general counterterm derived in
section 3, obtained for the choice x2; = —1/(9672). To verify this one may use the explicit
values of the ¢* in table 5 and plug them in (3.15), (3.18), obtaining the x* in table 6.
Substituting these in (3.4) one reproduces exactly the bosonic terms in (4.35). Analogously,
plugging the expressions of C'% = C'3 shown in (4.34) into (3.28) and (3.30), we arrive at
the last line of (4.35). This is a strong cross check of the validity or our results.

It is interesting to compare our result to those of the previous literature, specifically
eq. (69) of [24] and (the vanishing Yukawa limit of) eq. (6.46) in [26]. Both references
consider scenarios in which each Dirac fermion has a single chirality charged under the
gauge symmetry, with the other one being neutral. In [26] only the right-handed component
is charged; in our notation this corresponds to taking the limit 77, = 0 in (4.35). Ref. [24]
instead considers a theory involving a Dirac fermion with 77, = 0 plus another one with
Tr = 0. This implies that 77, and Tg live in orthogonal spaces. Because these two models
can be obtained as specific limits of our theory, then it is reasonable to ask whether the
results of refs. [24, 26] can be recovered as special cases of (4.35). The answer is in general
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negative because of the different gauge-fixing procedure. Nevertheless, non-trivial checks
can be made.

At 1-loop order the contribution of the fermions to the spurious anomaly is completely
insensitive to the gauge-fixing. Therefore the bosonic part of our result should reduce to
the one of [26] in the limit 77, — 0 and the one of [24] when 77, Tk are assumed to live in
orthogonal spaces. This is indeed what we find, up to a gauge-invariant term. Importantly,
though, the terms in (4.35) proportional to the Levi-Civita tensor identically vanish if either
Tr, =0 or Tg = 0, and this explains why they were not found in refs. [24, 26].

The fermionic part of the gauge-restoring counterterms do depend on the gauge-fixing
even at 1-loop order in general, and there is no reason to expect our result should reduce to
earlier ones. Yet, in the special case of an abelian gauge symmetry the background field
gauge-fixing exactly coincides with the R gauge adopted by refs. [24, 26] and a comparison
becomes possible. To facilitate it, we observe that the group theory structure found in the
last line of (4.35) can be re-written as

1
GuaT" AT = Gaa AT (zh - 12) " (4.36)
1

= LGl { Py [17 (1}~ 1) 7¢] + Py 13 (h - 78) TH] )

Suppose now that we consider a theory with 7T = 0 and a simple gauge group, so that a
single coupling is present, as in [26]. In such a case we obtain

2
GaaT"A, T — %GA‘;PR (TaTh TR (4.37)

2
g 1
— %A, Puth (-5Ca(6) + Ca(B) )

where Cy(G)§% = — famn fonm and Cy(R)d;; = (TETg),; are the Casimirs of the adjoint
and the fermion representations. For an abelian gauge theory C2(G) = 0 and our fermionic
counterterm agrees with the one found in [26] up to an irrelevant gauge-invariant piece, as ex-
pected. In the scenario considered in [24] P, [T§ (Th — T}) T¢| + Pr [T (Th - T}) | —
Pr [—T ngTg} + Pr {T I%T]IZ2 }%} and we again find perfect agreement, up to a gauge-invariant
counterterm. Our result however differs from those of these references when the gauge
group is non-abelian for the reason discussed above.

5 An explicit example: counterterms in the SM

As an application of the formalism developed in this paper, we derive the Wl-restoring
counterterms for the SM gauge group SU(3), x SU(2);, x U(1)y, using DR and the BMHV
scheme for +5. Since our calculations do not include scalar loops, the results of this section
apply to the SM in the limit of vanishing Yukawa couplings. We postpone to future work
the derivation of the additional counterterms such couplings would require.
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Before regularization, the SM gauge bosons and their interactions with the SM fermions
are described by the classical action in eq. (2.2). The gluon and electroweak gauge fields
may be collected in a 12-dimensional tensor

GZ for a=1,...,8
Ag =S We for a=9,10,11 (5.1)
B, for a=12

and their gauge couplings in a 12-dimensional tensor given by Go, = g2 (for a = 1,---8),
Guoa = g* (for a = 9,10,11), and G4 = ¢ (for a = 12). For each fermion family,
fr and fr can be written as vectors with eight components, f;, = (ur,dr,vr,er) and
fr = (uR,dg,0,er), with the quarks carrying color index. The generators 1T R are eight-
dimensional matrices. For example, the hypercharge generators explicitly read

t13 213
113 B _113

T}? = 6 , 0 , (5.2)

DO —
N[

where 13 is the 3 x 3 identity matrix in color space. Analogous expressions may be derived
for all other generators.

Having specified these conventions, we can compute the counterterm Lagrangian in
eq. (4.35). Before presenting the result it is useful to anticipate a few features. The vector
component of the SM group contains color, which forms an algebra on its own. Invariance
under SU(3),
strength and covariant derivatives. Yet, it is straightforward to verify that the fully bosonic

implies that the counterterm can only depend on gluons via their field

part of (4.35) cannot involve gluons, the reason being that all color-invariant dimension-4
operators are automatically fully gauge-invariant. Similarly, the gluons cannot appear in
the fermionic part of the counterterm, since they live in the vectorial components V,,.

We have thus established that eq. (4.35) can only depend on the electroweak gauge
bosons. We can then proceed by presenting its explicit form. To make the invariance under
the vector U(1),,, manifest it is convenient to express (4.35) in terms of W/f, Z,, and the
photon A,,, defined as usual (in the canonically normalized basis) by:

1 — 1172
Wi:Wuxlwu

2
P NG , Z, = —suB, +c,W

2. Au=cuBu+ s W

1 )

(5.3)

with ¢,, and s,, cosine and sine of the weak angle, i.e. ¢, = g/v/¢'2 + 92, sw = ¢/ 92 + g2
The complete result, after an integration by parts and having canonically normalized the
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gauge fields, reads

2 - 2

g7 [2 - 4o, 1 y] igZe
Lo =15 [BD#WV DFW T 4 %auzyaﬂz } -~
4872¢y,

+(=4+252) D W, Z, W, — e

FHWiW, (5.4)

{(4 + 652, ) D'WW,FZY + (8 — 6s5,) D W, W Z,

g4

1672
(=5 +8s2)
3c2,

+

5
{(WJW_“F - EWJW“W;W_” + (Z,21)?

24¢t
(11 — 1652, + 4s2)
6¢2,

+ Wrw, zZhZ" + Wiw=rz,z"

1672 | 3612
9 —t2
T2¢qy
Lt B+ er MV~

- Ve {Vm Wrer +ey'W, VL}
-t Iz &AM

+ oy i Z, v, — ey Zyer

w

2t2 -

+ Wi [UR’Y W, dr + dry*'W, UR}
tgv TRL 7

_ T8e. [4uRfy Zyur — dRy Z#dR}

2
+ ﬁueRwZ“eR}.

Pof9-1t -
g { w [ﬂL’y“W;dL + dL’y‘LLW;uL}

[’ZLL’}/#ZMUL — JL’}/PLZMdL]

In this expression D, W = (9, £ ieA,)W; denotes the QED-covariant derivative and

tw = Sw/cw. As required by invariance under U(1),_ , the dependence of the counterterm on

em?’
the photon field occurs only via the field strength and the covariant derivative. Interestingly,
the bosonic counterterm involving the Levi-Civita tensor, shown in the first line of eq. (4.35),
exactly vanishes. This turns out to be a special property of the electroweak gauge group

and can be traced back to the peculiarity of the SU(2) algebra.

6 Outlook

Any consistent regularization scheme induces an apparent violation of gauge invariance in
non-anomalous chiral gauge theories. This violation shows up in amplitudes evaluated in
perturbation theory and can be removed by the inclusion of finite counterterms. In this
context, renormalization is more sophisticated than in a vector-like gauge theory. Two
steps can be distinguished in the subtraction procedure. A first one is required to remove
infinities. At a given order in perturbation theory, this can be done by adding a set of
local divergent counterterms. At this stage, the theory delivers finite results, but the
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corresponding amplitudes do not preserve gauge invariance in general. Indeed, the latter is
broken by finite terms that can be systematically deleted by adding local finite counterterms.

The two steps can be reiterated at each order of perturbation theory and can be
implemented directly at the level of the generating functional of the 1PI Green’s functions of
the theory. Starting from the regularized functional I'**8[¢], divergencies are canceled by the
local counterterm I's;[¢], such that I'[¢] = I'"°8[¢] 4+ T'et[¢] produces finite results. By further
adding the local finite counterterm Sc¢[¢], we finally get the functional I'iny[¢] = I'[¢] 4+ Sct[¢]
that satisfies the WI of the theory. Of course, such a separation of the subtraction procedure
into two moves is purely conventional. What matters is the overall combination I'ct[¢]+Sct[¢],
which can be split into the sum of a divergent term and a finite one in infinitely many ways.
In practical computation, however, the two above steps appear to be very convenient and
have been adopted in our approach.

The main result of this work is a general analytic expression of the finite one-loop coun-
terterm Sci[¢] for a renormalizable chiral gauge theory including gauge bosons and fermions
transforming in arbitrary representations of the gauge group, given in terms of the symmetry
breaking terms in the respective regularization. A very appealing feature of this result is that
the counterterm S¢[¢] is determined for any possible consistent regulator belonging to a wide
class. We only require that the chosen regularization scheme obeys the Quantum Action Prin-
ciple, preserves Lorentz invariance in four dimensions, and gauge invariance when the theory
is vector-like. The physical information is entirely encoded in the gauge variation L,I'[¢].?*
This can be expressed as a linear combination of local operators of dimension four, whose co-
efficients can be determined by a one-loop computation for each given regularization scheme.
The counterterm Sci[¢] automatically follows from the knowledge of these coefficients.

We started by quantizing the theory with the Background Field Method and by choosing
the Background Field Gauge, which guarantees the gauge invariance of the functional I,y [¢]
at the level of background fields. In this respect, we differ from previous approaches, where
the theory is quantized with the help of a traditional gauge fixing that breaks the gauge
symmetry down to the rigid BRST invariance. The WI of the functional I'iyy[¢] resulting
from the Background Field Gauge are easier to deal with compared to the non-linear Slavnov-
Taylor identities consequences of the BRST invariance: they simply read LqI'iny[¢] = 0.

A key ingredient of our derivation is the non-redundant parametrization of the gauge
variation L,I'[¢] at the one-loop order, which has been established independently from the
adopted regularization by exploiting several properties of the theory. The Quantum Action
Principle guarantees that, order by order in perturbation theory, L,I'[¢] is a finite local
polynomial in the fields and their derivatives preserving the symmetries of the regulator.
Last but not least, the WZ consistency conditions greatly reduce the number of independent
coefficients needed to describe L,I'[¢]. Similar considerations restrict the form of the
sought-after counterterm Sc¢[¢]. Its analytic expression can be fully determined in complete
generality — up to gauge-invariant contributions — from the equality L,(T'[¢] 4+ Sc¢[¢]) = 0.

One of the most widely used regularization in practical computation is DR and an
important part of our work has been devoted to specifying our general results to such a

?4The dependence of Sct[¢] on the subtraction procedure is specified by LoT'[¢] = La(T™8[¢] + et [6)]).
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scheme. Within a path-integral formalism, we have computed the gauge variation of the
whole one-loop renormalized functional I'[¢] in the BMHV scheme. The result was also
reproduced in several parts via a diagrammatic computation. The full set of one-loop finite
counterterms in DR for the class of theories under investigation has been obtained and is
compactly summarized in eq. (4.35).

To exemplify our result, we have computed the one-loop finite counterterm for the SM
in the limit of vanishing Yukawa couplings, when DR and the BMHYV scheme for 5 are
chosen. This can be seen as a first step toward the automation of one-loop computations
in an even more general class of theories such as chiral gauge theories including a scalar
sector, like the SM, or non-renormalizable ones, such as the SMEFT. The need for local
counterterms restoring gauge invariance in SMEFT one-loop computations have already
been emphasized [31-33] and we are confident that our approach, suitably generalized, can
represent a useful tool in this context.
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A General solution of the Wess-Zumino conditions

A.1 Wess-Zumino consistency conditions in terms of the Cfx
A.1.1 Bosonic sector

P-even sector.

0, =0
(Cobp+Je5eChe) | . 1 e =
<C;§bc+fpbecg )+(Ca b+Ccpb) (C;jcb 05 b) =
2(Cipe+ fobeCoe) + (Cop+ Coo) —2(Chy Cpcb) ACh, =
pbc+fpbe 0) = (CLp+Coy)+Coy+Cry—2(C cb+cpcb) 0
et LobeCoe) + (Cop+ fpeeCh) — 2(Crop+ Chgy) — 2C8, =0

(
(@
( cbe fpde pde fcbe - Cc2be fpde + nge fcbe)
(<2

_ 7
= 2Cq) (ba)

symm. in bd

cbe f pde — 3{16 f Cb@) = QCEJC] (bd)

symm. in bd

Cove fode = Cpae febe +2C2(cdy Fobe +2C cay feve + 20 apjpy — 2C pean) = 0

2(chbe - Cgbe)fpde - 2(03516 pde)fcbe +2C;, c(ed) Jfpbe + 20, p(ed) Jeve
~4C7(an) + 20 eyappyy = 0
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Cohefpde = Craefebe +2C8 ey Fobe +2C5 ey Febe +2C iy +2C;qcy = 2Ceiany = (A1)
Ceafove + Ce Fode = 2C ey febe +2C cay Febe +2C p(eay febe
+2C ey = 2Ce(an) + Cpave = — foeeCana
(Coca— Cea) fove + (Cobe — Cite) fode — 2(Copeay = Copeay) febe
+2C iy febe = 2Coan) + Cpacr = —(Cona— Copa) fce

2€, c( eb)fpde C c(bd )+C de> symm. in bd - _Ce(bd)fpce
2C, c eb) fpde dbc - Cgcbd) symm. in bd - *Cg(bd) fpce
_ 6
symm. in bd o _Ce(bd) fpce

symm. in bd

(2 c(eb) fpde +2C d(bc) — C[ibd)
(fphe ce(bd) T JeneC pe (bd) T [pbe Cona+ febeCoong +4C) hbd+4q;ghbd)

7
fpde ce(bh) +2fph6 cd(be) 2fche pd(be) +4C, cdbh+fche pedb)‘ _fpceCed(bh)

symm. in bh
2fche Cpe(bd) + pdeCc8ehb + fphe C?deb + nghe Jpbe + Cgehdf cbe

8 8
— JeneCpaeb — febeCpane +8C chbd — fpeeC, kb

4 fonaClihag — A enaC by ) = — freeC10
( FonaCaba =4 fchaCrpavay symm. in hb, df, hb < df TpeeCenbas

P-odd sector.

fpde c(eb) + fcde eb) + Cgb[cd] + C?b[pd] =0
(2fpd€ ceb T 2C b[cd])

(4Cy (podf] T acy plebdf) T JpaeCl. bf] T feaeC} elbf])

f pce db)

symm. in bd

antisymm. in bdf (A 2)

(2fpfe cbled) — fcfe pe[bd] fcde pe[fb] — 2fcfe03b[ed])

antisymm. in df

+12C epap) + FobeCoefra) = fpcecgb[ £d]
(4f phb [badf 4f cth;[lbadﬂ)

antisymm. in adfh _fpce 6[afdh]

A.1.2 Fermionic sector

—iCpax —Cox TR + TR Cok —TX Cpx + T3 Cpk —ifpanCox =0

—iCpex — Cox T +T§C§§’<+Cl§<T§< —Cx Tk — i fpeCox =0

— i fpapConx +ifeqpCopx + Coax TR —=TR Clax + Cpax T% —T% Cpgxc —i fpetCgx =0
—iC iy —iCpax —Cox TR +T% C —C T +TSCo% =

(A.3)
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A.2 Parametrizations for the remaining Cffl

abdc Ta.bdc Tabdc

RLLL ™+ RRRR

acdb acdb acdb adcb adcb adcb adcb
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— T+ Tisr  + TasRr —Tanrr—Ti i+ Ti g L+ Tai e —ThEar)+
Tt +Tintr v Thrin—Thnar—TiorL +TineL +Thirr—ThRRR
T L+ T R+ TR L — TRt e — TEL L+ TE R R+ ThELL — ThEnr)+

abcd abcd abed abdc abdc abdc abdc
Tt +Ti L +Thnin—Thnar—Tior +Ti 1w +Thntr—Thi kR
acdb acdb acdb acdb adcb adcb adcb
— TP+ TR+ Thiitr—Thnnr—Tii e +Tiims +Tatir —ThiRr)+
abdc

abed abed abed abed abdc abdc abdc
Toror+1Tirer+TriRrR—TRRRR—TLrir +TLRLL Y TRLRR—TRRRR

acdb acdb acdb acdb adcb adcb adcb adcb
~TL10e+TirLr+TRrRL —TRRRR —TLLLL +TLL LR+ TRRRL —TRRRR)

acbd acbd acbd acbd acbd adbc

7! acbd
CLLRR(72TLLLL +TLLRR TLRRL TRLLR TRRLL 21—1RRRR 21—1LLLL

7!
CLLLR(

'
CLRRR(

7
cLror(— TEitL+

7
croro(— TEitL+

C;Md‘*CLLRR

CLRLR

rir(Titin—

CLRRL
CLLRL
CLRLL
CLLLL

CLRRL

CLRLL
CLLRR
CLLRL
CLLLR
CLLLL
C%ﬁRL
CLRLR

811
CLRLL

(T
(T
(
(T
(T
(T
(T
(T
CLRLR(
(T
(T
(T
(T
(T
(
(T
(T

adbc adbc adbc adbc adbc
+TL L RR VYT RRLVYTRLLR VT RRLL — 2T RRRR) T+

acbd acbd acbd acbd acbd acbd adbc
2T+ TR+ LR+ TRLRR Y TRRRL — 2T RRRR—2TLILL

+

adbce adbe adbe adbc adbc
Tiiir+TirLL +TRLRR+TRREL —2TRRRR)+

acbd acbd acbd acbd adbc adbc adbc adbc
T+ Terre+ TR —Therr— 1L+ TLrrR+TRLLL —TRERR)+
acbd acbd acbd adbc adbc adbc adbc
Tirir+TRiRL —TRRRR—TLLLL +TLRLR+TRLRL —TRERR)+
acbd acbd acbd adbc adbc adbc adbc
Tirrr+TRrir—TRRRR—TLLLL +TL1RL +TRRLER—TRERR)

Tiir—Tirrr—ThRiiL+Thkir +Tiknr —Tifar—TRiTL +TRIZR)+
Tinin—Tinunr—Thrir+Thrne +Tintr—Tiner— Tt +That L)+
Tikar—Thiir+Thrre+ T — Tikrr—TRI L+ TRIRR)+
Tinar—Tinur—Tario+Tarir+ Tt —Tikar— Tt +ThALL)+
T —Tisar—TRrtr+Tantr+Titor —Tiunr—That oL +Thurr)+
it —Tiwar—Thitr +Thiar+Tiitr—Tiunr— TRt + Thins)+
T —Tiaar—Tarir +Tanar+Ti it —Tiaar—Taite +Thkar)+
T %r—Tiaar—Tarir+Tanio +Tians —Tiasr—Taitr +TR1TR)+
abdc abdc abdc abdc acdb acdb acdb acdb
trir—TLrrR—TRLLL+TRirL Y TLRLr—TiRrR—TRILL+TRLRL)+
T r—Trousr—Thisr +Thner + i —Trinr— T%%L+;§%M+
abdc abdc abdc abdc acdb acdb acdb acdb
TRer—TiRrr—TRiLe+TeiLr+TriRr—TrLerr—TRiLL+TRRLL)+
Trer—Tinsr—Thrrr +Thnir+Trins —Tiinr—Thits + E%%R)+
Tinir—Tinsr—Thrir +Thrsr+Tiitr—Tifnr—Thits+ E%gL}*
T, —Tiner—Thrir +Thnar+ Tt —Tinnr—Thitr +ThiRR)+
Tiiar—Tinnr—Thaiir+TaRt L +Tiwir —Tiwar—Tatr L +TALR)+
Tiain—Tinar—Thaiir+Taiae +Tiwin—Tiwar—Tatr L +ThTRL)+
Tiir—Tiwar—ThiiL+Tanmr +Timi —Tiwnr—Tatrr +TaisR)+
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81/ a cbd acbd acbd acbd adbc adbc adbc adbc
cLrrr(TirrL —TrrrRR—TRiLL +TRLLR+TLLRR—TrLRRR—TRLLL +TRRLL)+
81/ acbd acbd acbd acbd adbc Tadbc Tadbc adbc
crore(Tiire —TiRrRrR—TRiL +TRRLR+TLiRe —TiRRR—TRLLL+TRRLR)+
811 acbd acbd acbd acbd adbc adbc adbc adbc
crrer(Tirir —Tirrr—TRiLL TR RR+1LLLR —TiRRR—TRLLL +TRRRL)+
811 acbd acbd acbd acbd adbc Tadbc Tadbc adbc
crrr(TLite —Tirre—TRiLL +TRRRR+TLLLL —TLRRR—TRLLL Y TRERR)
9 acbd acbd adbc adbc
Cabed = CLRRR( TiRrr+TRiLL+ Tl rrR—TRLLL)+
acbd acbd adbc adbc
A rr(~Tinir+Tainar+Timir—ThikL)+
acbd adbc adbe adbe adbc
rrr(~Tithr—TiwaL +Thiir+Tani o +Titrr+ Tt —Thtrr—Thnin)+
acbd acbd adbc adbc
Trre(~Tii L+ TRt r+ Tt 5L —Thkir)+
acbd acbd acbd acbd adbc adbc adbc adbc
Arir(~Tiitr—TiRi L+ Ta AR+ Tanmr +Ti 1t r+Titi —Tatir—Thiho )+
acbd adbc adbc
o (~Tiit+Tawar+Titr L —Ththar)+
abcd abcd abdc abdc acdb acdb adcb adcb
T rrr(Tigar—Thitr—Tinar+Tarie+Tiaer—Tarrr —Tiger+TRT L)+
abcd abcd abdc abdc acdb acdb adcb adcb
rrr(Tiiar—Thntr —Tirsr+Tanir +Tidn, —Thitr—Titnr + TRILR)+
abcd abcd abdc abdc acdb acdb adcb adcb
A rir(Tiair—ThinrL —Tiain+Thrsr +Tidtr—Thihe —Ti ki r+ TrIRL)+
abcd abcd abdc abdc acdb Tacdb adcb adcb
rrr(Tiitr—Thrtr — Tt r+Thnar + 160 —Tainr— T8t + TrirRR)+
abcd abcd abdc abdc acdb acdb adcb ad(‘b
CLRRL( TRer—Teiir—TriRre+TRiLr+TLiRr—TrrLL —TLiRR+TRRLL)+
a bed abcd abdc abd ac db acdb adcb adcb
CLLRL( tirL—Thrir—Trire Y Thrir+TiirL —Thrrr—Tiire Y TRELR)+
abcd abcd abdc abdc acdb acdb adcb adcb
CLRLL( trir—Trirr—TrLrLL+TRirr+TriLr—TReERL —TLLLR+TRERL)F
abcd abcd abdc abdc acdb acdb adcb adcb
ron(Tit —Thnar—Tii L+ Tanrr+TiitL —Thnrr—TiiTL +THERR) »
abdec abedc adbce adbce adbce
Cabede = (TRRLRR Tareir+Taniar—Thrrir—Titrar +Tit st + Thki ar—ThiaLr—
adcbe adcbe adcbe adcbe becdae cbdae cdeba cedba
Trrore 1L rLL Y TRRLRR—TRRRLR YT RLLLL T TRLLLL Y TRLRRR T TRLRRRT
dbace dbace dcabe dcabe debac ebacd ebacd ebcda
Trrrrr—Trirro+Trrrir—Triror —TrirrrT TR~ TR —TrLRLL+
ebcda ebcda ecabd ecabd ecbda ecbda ecbda edbac
Trirrr—TrRRLRRYTLLLLR—TRiLLL —TiTRLL +TRLRRR—TRRLRR —TRLERR) T
abdce abdce abdce abdce abecd abecd abecd acdbe
e (T —Tii R —Tariar+Tansir—Tithir —Tanirr+Tarerr+ it ar —
acdbe acdbe acdbe acebd acebd acebd bdace bdcae
Tirrir —TrRrLRRTTRRRLR—TLLrRIL —TRRLRRTTRRRLETTRLLLL —TRLLLLT
cdabe cdbae dbeca dbeca dbeca dceba dceba dceba
Tririr—Tririr+Trirrr —TrirrRRYTRRLRRYTILLRLL —TRLRRR+TRRLRR—
ebadc Ebdca ebdca ebdca ecadb ecdba ecdba ecdba
Trriir+Tirrir —Trirrr+TRrLRR—TLL1 LR+ T RLL —TRLRRR+TRELRR)T
abdce abdce abecd acdbe acdbe acebd badce baecd
(TRLLRL_ RLRLL—IRLRLL T TRLLRL —TRLRLL —TRLRLL —TRLRLR—TRLRLRT
bdace bdcae dcae becad cadbe caebd cdabe cdbae
Trrsir—Tariar +Taratr+Thintr—TRrpir—Thirtr+Thipi L —THi L RL+
cdbae cebad dabec daceb beac dbeca dceab dceba
Tt r+Thinir—Thirir—Tarmrr+Thinir+Tieatr+ToinLr+ 1L AL R—
eabdc eacdb ebadc ebdac ebdca ecadb ecdab ecdba
Tririr—TrRirLr—TLLRLRYTRLRLRTTLLRLR—TLLRLR Y TRLRLR FTLLRLR) T
adbce adbce adcbe adcbe bacde baced bedae bedae
e (Tl e +Tatrer —Tat e +Tat e +TRiRL R+ TR 5L R+ TR T 2L — TREALR—
bcead cabd cabed cbdae cbdae cbead daebc daecb
Tririr T TRLRLR Y TRLRLR Y TRI LR —TRERLR —TRLBLR Y TRIRLR+TRIRLR
dbace dbace dcabe dcabe debac decab eadbc eadcb
Torrer—Trorrr+TrLrRir—TRLRLL —TRLRLR—TRLRLR+TTRLRLRTTRLRLRT
ebacd ebacd ebcda ecabd ecabd ecbda edbac edcab
Trrrir—Tririe —Tririr+TrirRiR—TRLRLL — T RLR—TRLRLE—TRLRLR)+
abcde abcde abced acbde acbde acbed badec baedc
s (TRr i —TRrar e+ TRrtre + Taiiar —Taiarr + Tt i ke — TR et r—TRE AL+
becade bdeac bedac cadeb caedb cbade cdeab cedab
Trirrr+TrLrRLRTTRLRLR—TRLRLR—TRLRLRTTRLRLL Y TRLRLRTTRLRLR—
Tdabce dacbe dbcae dbcae Tdcbae dcbae eabed Teacbd
RLRLR—IRLRLR—TRLLRL Y TRLRLR—TRLLRL +TRLRLR—TRLRLR—TRLRLR—
ebcad Ebcad ecbad ecbad edabc edacb edb(‘a edcba
Tritre TR AR —TRiLRL+TRLRLER—TILLRLR—TLLRLRYTLLRLR+TLLRLR)+

abced Tabced Tacbde

abcde abcde abced
T T T RRRLR—ALLLRLF

abcde abcde
( Trrire 1R+ TrRRLRR—TRRRLR—TLLLRL +TRRLRR —
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Tacbde Tacbde acbde acbed Tacbed acbed bcade cbade
LLRLLYIRRLRR—IRRRLR—ILLLRL+1RRLRR—1IRRRLR—1IRLLLL —1RLLLLT

dbcae dcbae debca decba ebcad ebcad ecbad ecbad
Trrrrr+TReLrr +TRLRRRTTRLRRRTTRLLLL —TRLRRR+TRLLLL —TRLRRRT

edabc edacb edbca edbca edbca edcba edcba edcba
TLLLLR+TLLLLR_TLLRLL +TRLRRR_ RRLRR ™~ 4+ LLRLL +TRLRRR_ RRLRR)+

10 abcde abcde abced abced acbde acbde acbed acbed
cr (Tiiiir—Terrrr+Tiiiir—TrirrRRFTLLLLR—TRURRRTTLILLR—TRLRRRT

TS~ T e+ T et TS e THE R TEE TS L~ TS~

Tinwir—Tinmr—Thiter +Tasncr—Taritr +Thnarr+Tarerr—TALLLL—

TRt L+ TRRt R+ TER I R+ TR par — Thit i+ ThRA LR —TRI TS+ TRERLR)
(TR e TEYES = TEE  TEEE n— TEPEE i+ T i~ TEEEE 4 T B

Tt R+ T err—TE T R+ TR RRR+ TR L+ TR L+ TRE L+ TR L —
ThySrr+Thrrir+Thrttr —Thrrer —Thirer+TRrAL R+ TRELLL — ThEALR—
TRrerr+Tanmin+Taritr —Tannir—Trinkr+Tanarr+Taiier —ThAnLR )+
AP (—TESE% 4 TES S — TENEE o+ TS — TS ot TSRS — TESH 4 THS B
TEPES b T~ TEEE e TESES ot TR e~ TESE L+ THEES L + T
TerRar+Tarss . —Thishr+Thiitr +Tansen—Thnian+Tarter —Tonbsrt

dceba dceba ebadc ebdac ebdca ebdca ecdba ecdba
TRLLLL ~“ 41 RRRLR +TRRRLR —“41RRLRR +TRLLLL “41RRRLR +TRLLLL - RRRLR)+

acbde

10 abcde abcde abced abced acbde acbed acbed
C10 (TLLRLR - TRLRLR +TLLRLR - TRLRLR +TLLRLR - TRLRLR +TLLRLR =T,

RLRLRT

adebc adebc adecb adecb aedbc aedbc aedcb aedch
TLLRLR - TRLRLR +TLLRLR - TRLRLR +TLLRLR - TRLRLR +TLLRLR - TRLRLR_

bedea bedea bceda bceda cbdea cbdea cbeda cbeda
TrerLL+TRLRLR—TRLRLL Y TRLRLR—TRLRLL Y TRLRLR —TRLRLL Y TRLRLR—
debca debca decba decba edbca edbca edcba edcba
Trrrer YTRLRLR—TRLRLL Y TR RLR—TRLRLL YTRURLR —TRLRLL +TRLRLR)+
10 abdce abecd acdbe acebd adbec adceb aebdc aecdb
en(TLLRLRYTLLRLRYTLLRLRYTLLRLR YT LLRLR T TLLRLR VT LLRLRTTLLRLR—
decea becda cdbea cebda dbeca dceba ebdca ecdba
RLRLL 4+ RLRLL™ 4+ RLRLL ™ 4+RLRLL™ +RLRLL™ +fRLRLL ™ 4+RLRLL ™ 4RLRLL ™
Tabdce abecd acdbe acebd adbec adceb aebdc aecdb
RLRLR™ *RLRLR™ +*RLRLR™ +RLRLR™ 41RLRLR™ +*RLRLR™ +*RLRLR ™ RLRLR+
bdcea becda cdbea cebda dbeca dceba ebdca ecdba
TRLRLRTTRLRLRTTRLRLRTTRLRLR+TRLRLRTTRLRLR+TRLRLR+TRLRLR)+
10 abdce abecd acdbe acebd adbec adceb aebdc aecdb
ci2(Tritir+tTriLLr+TRILLRTTRILLRYTRILLRTTRLLLRTTRILIRTTRILLR—
decea becda cadbe caebd Tcdabe cdbea Tceabd cebda
RLLLR™ +1RLLLR™ 1RLLRR™ RLLRR+ RLLRR ™ RLLLR+ RLLRR™ 4+RLLLR™
dabec daceb dbaec dbaec dbeac dbeca dcaeb dceba
TRLLRR_ RLLRR+TRLLRR_ RRLLR+TRRLLR_ RLLLR+TRLLRR_ RLLLR™

eabdc eacdb ebadc ebadc ebdac ebdca ecadb ecdba
Triirr—TrRiLRR+TRILRR—TRELLRYTRERLLR—TRILLR+TRILRR—TRLLLR)+
10 abdec abedc acdeb acedb adbce adcbe aebed aecbd
c13(—Tririr—Triiir—Tririr—Tririr—TRrLir—TRiLirR—TRiLIR—TRILLRT
bdeca bedca cbdae cbead cdaeb cdeba ceadb cedba
TririrtTrrLLr—TrRRLIR—TRRLLR—TRLLRRTTRLLLR—TRLLRR+TRLLLRT

daebc daecb dbace dbace dbcea dcabe dcabe dcbea
TritrRRTYTIRLLRR—TRLLRRTTRRLLRTTIRLLLR—TRLLRR Y TRRLLRTTRLLLRT

eadbc eadcb ebacd ebacd ebcda ecabd ecabd ecbda
Trrrarr+TrRiLRrR—TRLLRRVTRRLLEYTRILLR—TRLLRR+TRRLLE+TRLLLR)
10 abdec abdec abedc abedc acdeb acdeb acedb acedb
Ad(TLirir—TrRiRLRYTLLRLR—TRLRLRTTLLRLR—TRLELR T TLLRLR—TRLRLRT
adbce adbce adcbe adcbe aebcd aebcd aecbd aecbd
TrLrRLR—TRLRLRYTLLRLR—TRLRLRTTLLRLR—TRLRLRTTLLRLR—TRLRLR—
bdeca bdeca bedca bedca cdeba cdeba cedba cedba
Trrrrr T TRLRLR—TRLRLLYTRLRLR—TRLRLL Y TRLRLR—TRLRLL+TRLRLR—
dbcea dbcea dcbea dcbea ebeda ebeda ecbda ecbda
Trriree +TrirLr —TRLRLL Y TRLRLR—TRLRLL Y TRIRLR —TRIRLL +TRLRLR)+
10 abdce abecd acdbe acebd adbec adceb aebdc aecdb
c1s(TRrLrRRHYIRILRRTYIRILRRTYIRILRRTTRILRR T TRILRR T TRLLRR T TRILRR—
badce baecd bdcae becad cadbe caebd cdbae cebad
Trrrrr—TRrLLRTTRLLLRTTRLLLR—TRLLLR—TRLLLR+TRLLLR+TRLLLR—
Tdabec Tdaceb Tdbeac dbeac dbeca Tdceab dceab dceba
RLLLR ™ RLLLR+ RLLLR™ +1RLLRR ™ RRLLR+ RLLLR—™ +RLLRR™ +RRLLR™
eabdc eacdb ebdac ebdac ebdca ecdab ecdab ecdba
TRLLLR_ RLLLR+TRLLLR_TRLLRR_ RRLLR+TRLLLR_ RLLRR_TRRLLR)+
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10 abcde abced acbde acbed adebc adecb aedbc aedcb
CIG(_ RLLLR™ +RLLLR™ +tRLLLR™ +RLLLR™ +RLLLR™ +tRLLLR™ +tRLLLR™ RLLLR+

bedea beceda cadeb caedb cbade cbaed cbdea cbeda
Tririr+tTrriLr+TreLRRYTRLLRRTTRRLLR T TRRLLR T TRLLLR+TRLLLRT

dabce dacbe dbcae dcbae deabc deach debca decba
TRrLRR+YIRLLRR—TRRLLR—TRRLLR—TRLLRR—TRLLRR+TRLLLR+TRLLLRT

eabcd eacbd ebcad ecbad edabc edacbh edbca edcba
TRLLRR+TRLLRR_ RRLLR™ +RRLLR™ +1RLLRR ™ RLLRR+TRLLLR+TRLLLR)+

10 abcde abced acbde acbed adebc adecb aedbc aedcb
c17(TriLrr+TRILRRTTRLLRRYTRLLRRTTRILRR Y TRLLRR+TRLLRRTTRILRR—
badec baedc bdeac bedac cadeb caedb cbdea cbeda
Tritir—Trrrir+TreLr Y TRLLLR—TRLLLR—TRLLLR—TRRLLR—TRRLLRT
cdeab cdeab cedab cedab dabce dacbe dbcae dcbae
Tririr—TrrLrRRTTRiLLR—TRLLRR—TRLLLR—TRLLLRYTRLLLR+TRLLLR—

eabed eacbd ebcad ebcad ecbad ecbad edbca edcba
Trittr—TrRiTLrFYTRILLR—TRLLRRTTRLLLR—TRILRR—TRRLLR—TRRLLR)T

10 abdec abedc acdeb acedb adbce adcbe aebcd aecbd
C18 (7 RLLRR—ARLLRR—1RLLRR—1RLLRR—1RLLRR—1RLLRR—1RLLRR—1RLLRRT
TUAHS ot THAT S THES n— THEE ot TR ot THE S — TR n— TR TS et
TRITi R+ TRitLr+Thrirr+TariLr—Thitn+TRLLRR —TRLLLR+TRILRRT
TR R+ TREE LR+ TRRL LR+ TRRL LR —TRLE LR+ ThLLRr— TR L LR+ TRILRR)
wbede = 1 (“TLiL 1L+ TRRRR+Ti10 1L —Thnnn+Tirrie —Thinn—Tiriis +ThikR—
T T TEE T T TR T TR
Ty, —Tibess, —Titece {Tibace _Tgtcoe | 4 rgen L rihess _ribenc

dcabe dcabe dcbae dcbae eabed eabed eabdc eabdc
Trrrrr+TrrrR+T10rr —TrRRRR+11er —TRRRR—TLLLLL +TRRRR—

eacbd eacbd eadbc eadbc ebacd ebacd ebadc ebadc
Trror+TrrrR+110rrr —TRRRR—TTrLLr +TrRRRR+Y 1L —TRRRRT

ebcad ebcad ebdac ebdac ecabd ecabd ecbad ecbad
Tirrrr—Trrrr—Trriie+Trerr+TiTror —TRRRR—TiLLLL +TRRRR)
11 bacde baced badce badec baecd baedc bcade bcaed
C2 (TRLLLLf RLLLL —41RLLLL +TRLLLL +TRLLLL7 RLLLL +TRLLLL7 RLLLL ™

bedae bedae bcead bcead bdace bdcae bdcae bdeac
Treror+TrirrrR Y TR —TRLRRR—TRLLLL T TRLLLL —TRLRRRTTRLRRRT

becad bedac cabde cabed cadbe cadbe cadeb caebd
Trirrr—TrLrrRR—TrRrLLr+TrRirir —Trrir+ TR —Trinin +10LLLR—

caebd caedb cbade cbaed cbdae cbdae cbead cbead
Trivio+Triri—Trrror TR TR —TrirRRR—TRLLLL +TRLRRRT

cdabe cdbae cdbae cdeab cebad cedab dabce dabce
Trizrr—Trrrir+TrirRRR—TRLRRR—TRLRRR+TRLRRR—TLILLR+TRLLLL T

Tdabec dabec Tdacbe dacbe Tdaceb daebc Tdaebc Tdaecb

LR —Irrroo+1orir—1TRoLoe 1R —1Loir+ IR 1L LR—
daecb dbace dbace dbaec dbcae dbcae dbeac dbeac
Tririo+Trrrir+Trerer —Tririr —Tririe +TrirrRrR Y TR —TRLRRR—
dcabe dcabe dcbae dcbae dceab debac decab eabed
Trrrrr—Trirre+Trerrr —TrLrRrRRYIRLRRRYTRLRRR—TRLRRRTITLLLRT
Teabcd eabed eabdc eabdc Teabdc eacbd eacbd Teacbd
LLLRL—ARLrrr —1rrLir =1L LR Y R —1ooLir—1 LR Y RLLLL+
eacdb eacdb eadbc eadbc eadcb eadcb ebacd ebacd
Trrirr—Tricio+Toirir—Trirrr —Tirror+Trio —Troirir—Trooin+

ebadc ebadc ebcad ebcad ebdac ebdac ecabd ecabd
Trriir+Tririe+Trerrr —TrirrRR—TRLLLL Y TRLRRRYTLLLLR T TRLLLL —
ecadb ecbad ecbad ecdab edabc edacb edbac edcab
T T Trirrr—Trr iRV TLLLLr—TRLERR+TRLERR)

LLLLR—dRrLLL Y1 RLRRR—
11 abcde abced abdce abecd acbde acbed acdbe acebd
s (—Tritio+Triron+Tritie —Triron+ TR —Triror —Trinie +TRLLLL—

adbce adcbe cadbe caebd cbdae cbead dabce dabec
Trrrro+Trier —TrLrRRRYTRLRRRTTRRRLR—TRRRLR—TRLRRRTTRLRRRT

dacbe daebc dbace dbace dbaec dbcae dbeac dbeca
TrrrrRR—TRLRRR—TLLRLL Y TRRLRR—TRRLRR—TRRRLRtTRRRLRYTLLLLRT

dcabe dcabe dcbae dceba eabed eabdc eacbd eadbc
Torrer —TrrLRRYTrRRRLR—TLLLLR Y TRLRRR—TRLRRR —TRLRRRTTRLRRRT

ebacd ebacd ebadc ebcad ebcad ebcda ebdac ebdca
Trrrir —TrriRRTTRRLRR—TrLrLRL Y TRRRLETT LR~ TRRRLR—TTLLLLR—

ecabd ecabd ecbad ecbad ecbda ecdba edbca edcba
TR+ TRRLRRTTT LR —TRRRLE—TT LR+ 1T LR+ 1L R—TLLLLR)
11 bacde baced badce baecd cabde cabed cadbe cadbe
cs (—Trrioo+T +T T +T

RLLLL Y1l Roror —1Rrirrr Y reper —1Rroror —1rLL R —1TRLLLL+
cadbe cadeb caebd caebd caebd caedb cbade cbaed
Trrirr—TrRrLRRYTILLRLLYTRLLLL —TRRLRRTTRRLRRTTRRRLR—TRRRLRT
cbdae cbdae cbdae cbead cbead cbead cdabe cdaeb
Trrirr+ TR —TrrRLRR—TrriLr—TrLLRLL Y TRRIRR—TRLRRR+TRLRRRT
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ceabd ceadb dabce dabce dabce dabec dabec dacbe
Trirrr—TrLrrRR—TrLLRLL —TrRiLLL +TRRLRRTTRILLL —TRRLRRTTLIRLLT

Tdacbe dacbe Tdaceb daebc daebc Tdaebc daech dbace
RLLLL — RRLRR+ RRLRR™ - LLRLL ™ RLLLL+ RRLRR™ *RRLRR™ 1RLRRR™

dbace dbaec dbaec dbaec dbcae dbcae dbcae dbeac
Trrrir—TrrLrr +TrRLRRRTTRRRLR—TLrLir—TrLrRiL +TRRLRRTTILLLLRT

dbeac dbeac dcabe dcabe dcaeb dcbae dcbae dcbae
Tirrir —TrRrLRRTTRLRRRTTRRRIR—TRLRRRYILLLLRTTLLRLL —TRRLRR—

dceab deabc deacbh eabed eabed eabed eabdc eabdc
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A.3 Solution of Wess-Zumino conditions in the bosonic sector

A.3.1 P-even

3 . 0 3
Crrr — ¢ —crp =20

C%LL =i

C%LR — 4%+ cZLLL + QC%LL =0
C%LR = —ic® 4+ 268
C+ct—28=0

(A.9)
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cLrrr = —ic® + %C%%LL +CLRLL

ChirL = — % chrr + LR

chrrr = 2ic® = ichp, + IRy

Frrp =4ic® —ichr, — Grr+ gy + LR

CSL”LLL = CBLILLL

g — 2ic* +2ic® +ichr, — 2¢iprr + CErrn — ChrLL

Frop — 2ic® +4ch g+ 2¢LLpr T ACLrLr + 2¢LRLR + 2CLRRL
C%RRL = —4ic® + QZ.C%%LL - 4CE,LRL - 68LLLL - CSLLLR - CiLRR - C%RLL - CSLRLR
hrpp +4ic® = 2ick + 4l g + Al + 4¢ Lrr + 2¢1 RLR =0
Frrr — 2ic* + 2Ickh, —Acirir + LR

i+ 2ict —4chppp + Frrr =0

Srrr —4¢irrr+ Frr, =0

S rir = 2¢LRLR

811 7 8/ _
¢Lrrr —4¢rirr + CLLrr =0

S ror = —2ic* +4cf i r — g

Frir —Ahrir + Frir =0

2} 1r = —2ichr, +4¢ LR

Frrp = —8ic® +4chpp + 2¢L L rr + 2¢L L + 2¢LR1R + 2¢LRRL + ¢ LR

- 2CSLLRL - CSL/LLR - 2C%LRL - CSL/LRR - C%IRLR
4CE/LRL = —8ic% + 2ic%LL + 4CE/LLR
2t prr, = 2ic® —ickry, +2¢ R
g = 2ic* —ichp, +2¢i R
Frrr, +4ic® —2¢Lp — 2¢] LR+ LR
rir = 2CLRLR
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S rrr = —4ic® +ich + 2] rn
¢t rrr = 2ic" —ickp +2¢] LR
et —iciprp =0

4.0%0 +iCELLR =0

10 _ 10 __ 10
7 =C13 = €8
eV =l = céo =c) = céo = Céo =0

10 _ 2 o
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10 _ 410 _ .7 _
deyg =4eyy = —icpprr =0
0 .7 _
deig —icrr =0

1 .
4619 + ZCELRR =0
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1
10 2 7 _
deys + 5CRLL +icrr =0

1
10 _ 4 2 .7
dejg=c — 5CRLL + 1CLRRL

10 _ 4 2 i
dejg =c — §CRLL —YCLLRR

A.3.2 P-odd

¢rrrp =i — oL (A.10)
C%/RRR = CQLLLR

¢Irir = iChrr + CLRRR

C%RRR = _ic}%LL - C%LRL

¢YLrL = iCLLR — CLRLL

C%RRL = iclLLR

YLrR = —iCLLR

C%,RLR = C%RLR

2C%LLL - iCILLL =0

¢rrrr T ickrr +Clrir =0

¢lror +icLir — Clir =0

¢ +2¢pr =0

C%LRR =0

al=gl=c'=cii=q ="' =c¢ =0
12¢; +icl ;p =0

12¢t +icl pr =0

1 - 9 _
1205 —CLLLR = 0

B Heat kernel

The heat kernel method was pioneered by Schwinger and then developed by De Witt and
Seeley. For a lucid review, we refer the reader to ref. [54].
This method allows us to write the matrix element of 1272 in position space as

(el sz lo) =i [t (@ie ) = [ ey, (B.1)

The solution H (z,y;t), which is referred to as the heat kernel, can be calculated pertur-
batively in the limit ¢ — 0. We write the ansatz H(z,y;t) = Ho(z,y;t)U(x,y;t), with the
“free” solution Hy being the solution of (B.1) with lD2 replaced by 9%, namely

{ i z=v)?
(4mit)ir2©

HO(xvyvt) = 7€t7 (B2)

48 —



and

Ulz,y;t) = an(z, y)(it)". (B.3)

n=0,1,2,-
The heat kernel coefficients ay(z,y) are smooth in the limit y — z, and satisfy the boundary
condition ag(z,y) = 1, i.e. H(z,y;0) = 69 (z —y). The parameter ¢ > 0 follows from the
ie prescription in the Feynman propagator and should not be confused with € = (4 — d)/2.

Employing the above expansion we get

Tr

T4 { D7) zlﬁ] (B.4)
T [aaTz {m,%}zpwﬂ]

—z/ddl‘ a( l1m/ dt tr T ({D,ys} ), Holy,x )U(x,y)]

=i / d' a,(a) lim . Tt tr [TA (29957") B3y (D Ho) U+ Ho Dy U]

—z/dd:z: (T hm

—(d—4) /d T ag(r) lim d—Hg(x,y) tr[T4vsU (z,y)]+Eva.

i Tt tr 75 (2v"957" ) (95400 Ho)U | + Eva

In the second equality of (B.4) we merely used the definition of heat kernel, and in the third
applied the derivatives. In the fourth step we took advantage of the fact that all terms with
a single derivative of Hy vanish in the limit y — z. The non-vanishing contributions come
from the second derivative limy_,, 0,0, Hy = +ig,Ho/(2t) as well as evanescent terms
proportional to D;U. These latter can be neglected, as explained around eq. (4.16). The
last equality follows from the identity 7%y, = (d — 4). Finally, the integral in d¢ can be
performed explicitly for any order n of the perturbative expansion of U, and is proportional
to I'(d/2 —n).?> There is a unique contribution that survives the d — 4 limit. This emerges
from an UV divergence ¢ — 0 that results in a factor I'(d/2 —n) ~ 1/(d/2 — n). The latter
can exactly compensate the (d — 4) in front of the integral, and thus lead to a non-trivial
result, only at the n = 2 order of the expansion (B.3). The existence of a compensation
between the evanescent (d — 4) factor and UV divergent Feynman integrals is typical of
quantum anomalies. The result is [50]

: a 1 i a
clll—ﬁ Tr | TS {D, 75} E] =52 /ddx ag(z) tr [Tiysaz(z, x)], (B.5)

where the 4-dimensional limit is formally defined by removing all (finite and singular)
evanescent operators, see discussion around (4.16).

The 4-dimensional limit of the heat-kernel coefficients a,(x,z) can be obtained recur-
sively. We first observe that lDQ = D, D* + X, with D, = 9, +iP,, and where P,, X

ZIR-divergences at large t are cutoff by the factor e™*" in Ho(z,y).
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explicitly read

1
PH = VH 4 5[’#‘,7”]75.4” (B.6)

i v . v .
X = Zhua Y ] (Vw/ + '75-Auu) + 275’7%7 (au-Au + Z[Vua A,u]) — 2A,A%.
The field strengths of the vector and axial components were previously introduced in (4.31).
Now, the heat kernel, defined in (B.1), satisfies i 4 H(z,y;t) = ]ﬁiH(x, y;t). Inserting the
ansatz H = HoU this becomes idU/dt = —i(x — y),D*U/t + [D* + X]U. Equating order
by order in t" gives the recursive relations

(z — y)uDhao(z,y) =0, (B.7)
[+ 1+ (z = y)uDilapsi(z,y) = =[D7 + X]ag(z,y)  (n>0).

The first definition, along with lim,_,; ag(x,y) = 1 defines ap(z,y). We are interested in
as(z,z) = —3limy_,;[D% 4+ X]a1(z,y), but to find its explicit expression we need ai(z,y)
and its second derivative:

lim ay(z,y) = — yh_rg[Dg + Xlao(z,y) (B.8)

Yy—T

. 1.,
1}1% Diai(z,y) = ~3 glg}v D;[D + X]ao(z, y)
The first relation follows directly from the second equation in (B.7). Differentiating twice
the same relation with n = 0 with respect to D we obtain the other one. Similarly, differ-
entiating the first relation in (B.7) we derive limy_,; Dyao(z,y) = lim,_, D2ag(z,y) = 0.
This leads us to
1
6
1 [D,.,D,][D*, D"] + Lpey Ly
120 6 2
1 1 1

=—-—P,P" 4+ -D’X +-X?

19" + 5 + DR

1 1
as(z,x) = lim gpgpgao(x, y) + -D?X + 5X2 (B.9)

where P, = 0, P, —0,P,+i[P,, P,]. In evaluating as we used the linearity of the derivative,
namely D,,[Xao] = [D,X]ao + X[Dyao]. The relation D2D2ag(x,y) = 1[D,, D,|[D*, D]
ap(z,y) is proven differentiating four times the first equation in (B.7), and contracting with
the metric tensor. Because [D,,, D, ] is not a differential operator, the limit y — = can be
performed trivially and (B.9) follows.
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