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ABSTRACT: We present a novel computational approach for extracting localized signals
from smooth background distributions. We focus on datasets that can be naturally pre-
sented as binned integer counts, demonstrating our procedure on the CERN open dataset
with the Higgs boson signature, from the ATLAS collaboration at the Large Hadron Col-
lider. Our approach is based on Gaussian Process (GP) regression — a powerful and
flexible machine learning technique which has allowed us to model the background with-
out specifying its functional form explicitly and separately measure the background and
signal contributions in a robust and reproducible manner. Unlike functional fits, our GP-
regression-based approach does not need to be constantly updated as more data becomes
available. We discuss how to select the GP kernel type, considering trade-offs between ker-
nel complexity and its ability to capture the features of the background distribution. We
show that our GP framework can be used to detect the Higgs boson resonance in the data
with more statistical significance than a polynomial fit specifically tailored to the dataset.
Finally, we use Markov Chain Monte Carlo (MCMC) sampling to confirm the statistical
significance of the extracted Higgs signature.

KEyworDSs: Hadron-Hadron Scattering , Beyond Standard Model, Higgs Physics, Unfold-

ing

ARX1v EPRINT: 2202.05856

OPEN AccCESS, © The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP02(2023)230


mailto:abhijith@fnal.gov
mailto:lath@physics.rutgers.edu
mailto:morozov@physics.rutgers.edu
mailto:sindhum@andrew.cmu.edu
https://arxiv.org/abs/2202.05856
https://doi.org/10.1007/JHEP02(2023)230

Contents

1 Introduction 1
2 Model selection and signal extraction procedure 3
2.1 Gaussian process regression 3
2.2 Model selection 4
2.3 The Poisson likelihood 6
2.4 Gaussian process kernels 6
2.5 Functional fit 7
3 Datasets 7
4 Model selection for background-only fits 8
5 Signal extraction 9
5.1 Synthetic datasets for testing statistical significance of signal extraction 11
5.2 Test for systematic biases in signal extraction 11
5.3 Posterior distributions of signal parameters and significance analysis 14
6 Summary 16

1 Introduction

Analyzing data from physical experiments or observations often involves fitting computa-
tional models with the goal of extracting a signal in the presence of both background effects
and random noise. For example, such a setting appears naturally in the analysis of X-ray
crystalline sample diffraction patterns containing contributions from both from distinc-
tive Bragg peaks and diffuse background scattering [1, 2], inference of transiting exoplanet
parameters in astronomy [3, 4], and the discovery of the Higgs boson and search for the
new physics at the Large Hadron Collider (LHC) at CERN [5]. The data from LHC and
similar experiments usually comes in the form of binned integer counts [6]. Traditionally,
modeling binned integer-valued data is performed under the assumption of the Poisson
distribution, by employing a parametric fit [6]. The fitted models are subsequently used
to estimate the background contributions and extract the signal of interest. However, the
choice of parametric functions is often ad-hoc and the degree of model complexity requires
a delicate balancing act between overfitting and underfitting the data [7-9].

For data analyses of the type performed on the LHC bin counts, the optimal complexity
of the model is usually evaluated by performing likelihood-ratio tests [10, 11]. Most analyses
that employ this technique test it on a fraction of the full dataset, usually 10% or less. This



process is called “blinding” and is meant to reduce biases in the analysis. However, the
model selection process must be repeated periodically as more data becomes available, and
often the functional form employed in the model has to be updated as well [12]. Using non-
parametric methods such as Gaussian Process regression is an effective way of alleviating
these concerns [7, 13-16].

Gaussian Process (GP) regression is a well-established machine learning technique [7,
14] commonly used in diverse fields such as astrophysics, gravitational wave detection, and
high energy physics [17-20]. In particular, in high energy physics GP regression was used
to model the smooth continuum background from quantum chromodynamics (QCD) in
searches for dijet resonances in LHC data [20]. The authors argued that using GP for
background estimation was more robust with respect to increasing luminosity compared to
parametric fitting methods. GP regression’s advantages over more conventional methods,
which employ a linear expansion over a fixed set of basis functions such as polynomials or
Gaussians, are due to its non-parametric flexibility. Instead of explicit basis functions, GP
regression is defined in terms of kernel functions which specify the degree of correlation
between two points in the dataset. The GP approach allows us to perform inference using a
much broader class of functions, including those which would otherwise require an infinite
basis set [7]. GP regression is robust with respect to the size of the dataset [20].

Nevertheless, the flexibility of GP regression can be a double-edged sword. In GP
regression, kernel functions typically depend on several hyperparameters that are varied to
fit the data, typically through non-Bayesian techniques such as maximizing the marginal
likelihood of the observed data [7, 14]. The type of the kernel function and the values of its
hyperparameters determine the success in capturing certain features in the data, such as
periodic oscillations and long-term trends [14]. Thus, the universality and the power of the
GP approach are only fully realized when both the kernel type and kernel hyperparameter
values are chosen judiciously. In other words, a method is required that can constrain the
flexibility of the GP regression in a controlled manner.

Previous work in this area has focused on “kernel learning” to address the issues
of flexibility and robustness, with several techniques proposed that aim at constructing
composite kernels for Support Vector Machines [21], Relevance Vector Machines [22], and
GP regression [23, 24] using libraries of base kernels. Semiparametric regression attempts
to combine interpretability of parametric models with flexibility of non-parametric models
by combining the two approaches in a single framework [25]. However, none of the above
approaches focus specifically on integer count data or on the processes that are naturally
viewed as localized signals superimposed on a smooth background distribution. A previous
application of GP regression to LHC data [20] employed both standard and custom-built
kernels motivated by physical considerations. In contrast, in this work we have developed
both a model selection procedure suitable for GP regression and a principled approach for
estimating the statistical significance of the extracted signal.

New signals in physical observations of particle resonances in LHC data often appear as
localized features (“bumps”) superimposed on a smooth background. Accurate modeling of
the background spectrum is therefore essential to both extracting the signal and assessing
its statistical significance. In this paper, we present a rigorous approach to model selection



in GP regression applied to binned integer data, which we expect to be a superposition of
a localized signal and a smooth background of an unknown functional form. We exploit
the flexibility of the GP regression by determining the kernel hyperparameters through the
fit to background-only data, with the signal window masked out. These parameters are
subsequently used to extrapolate the background contribution across the signal window,
enabling us to separately measure the background and signal contributions.

We describe procedures for kernel type selection based on both Bayesian and Akaike
information criteria. We also propose a method for estimating the statistical significance
of the signal by performing a hypothesis test with the background model as the null hy-
pothesis and the background+signal model as the alternative hypothesis. We illustrate our
procedure by successfully detecting the Higgs boson resonance in the di-photon Higgs sam-
ple from the ATLAS experiment at the LHC [26]. We show that, compared to parametric
fits, GP regression leads to the Higgs boson signature with higher statistical significance.
Our computational pipeline can be applied for background estimation and signal detection
in any dataset where a weak localized signal is superimposed on a smooth background
distribution with an unknown functional form.

2 Model selection and signal extraction procedure

2.1 Gaussian process regression

In regression, the observed data y = (y1...yn) is modeled by z = (2(x1) ... z(zN)):

Yk = 2(Tg) + €, (2.1)

where k =1...N, X = (x1...xy) is a vector of input variables, and ¢ is a random noise
variable independently sampled from a Gaussian distribution A (¢|0, UZZ ) for each data point,
where o2 is the noise variance in bin i. In other words, p(y|z) = N (y|z,Z), where ¥ is a
diagonal N x N matrix with ¥; = o2. Since in our case the observed data y is given by
integer counts in /N bins and X is given by the centers of the bins with the integer counts,
GP model predictions have to be rounded. Alternatively, GP real-valued predictions can
be used as Poisson or multinomial rates to generate integer event counts.

In the GP framework, the model z(x) is not represented as an explicit linear expan-
sion over a set of pre-determined basis functions ¢(x) such as polynomials. Instead, the
dependence of z on X is given probabilistically by a multi-dimensional Gaussian distribu-
tion: p(z|X) = N(z|m, K), where m = (m(x1) ... m(xy)) is a vector of values of the mean
function m(z) for all datapoints and K is the Gram matrix. The elements of the Gram
matrix are values of the kernel function k(z,z’) evaluated for all pairs of input variables:
K;; = k(x;,2;). The marginal likelihood p(y|X), integrated over all possible models, is
then given by [7, 27]:

Pl X) = [ dz plyl2)p(1X) = N (ylm, ©), (22)

where the covariance matrix C = K + 3.



Thus, GP regression is defined by the mean function m(z) and the kernel function
k(x,2') which determines the degree of systematic correlation between any two data-
points [7, 14]. In general, the kernel function depends on a set of n hyperparameters
0 = (01,09,...,0,), whose number and meaning depend on the kernel type. The hyper-
parameters of a given kernel are usually optimized by maximizing the marginal likelihood
in eq. (2.2), a non-Bayesian procedure [7, 14]. Ordinarily, kernel hyperparameters would

also include o2, which represent the amount of experimental noise in each bin. However,

is
since this would introduce too many hyperparameters, we estimate O'i2 directly from the
data using Garwood intervals, which allow us to extract two-sided confidence intervals
from the number of events in each bin, under the assumption that the events are Poisson-
distributed [28, 29]. Note that the Garwood intervals converge to [y; — \/¥i, ¥ + \/¥i]
when y; > 1, yielding o; ~ /y; as expected from the Poisson statistics; in case of slightly
asymmetric intervals, we have chosen the larger value as an estimate of ;. Thus, o2 are
estimated independently and are not treated as hyperparameters in our approach.

The strength of the GP approach stems from the fact that the joint marginal probabil-
ity of observing a set of datapoints is Gaussian (eq. (2.2)). Moreover, the predictive prob-
ability p(7;|y), the conditional probability distribution of observing a real-valued “count”
7; in bin ¢ given a dataset with IV previous observations, is also Gaussian, with the mean

f(z;) and the variance V (z;) given by:
f(z:) = m(z;) + KT C Yy, (2.3)
V(z;) = a—ETCLE,

where k = (k(z1,2i), ..., k(zy,z;)) and a = k(x;, x;) + 02.

1
In this work, we consider two types of GP regression: with m(z;) = 0, Vi for mod-
eling the background-only distribution, and with the Gaussian mean function (the signal
model function) for modeling signal+background datasets, where the signal component is

Ry
m(z;) = \/;mjexp (—W) . (2.4)

Here, A defines the signal strength, while y and o represent signal mean and width, re-

represented by:

spectively. The rounded value of A can be interpreted as the total number of signal events.
Note that when the Gaussian mean function is introduced, the set of model hyperparam-
eters 6 needs to be augmented with {A, u,0}. Throughout this work, we use the words
“prediction” and “predicted” to signify the output of computational models fitted to either
experimentally observed or synthetically generated datasets, rather than ab initio theoreti-
cal predictions made before any data is seen. We hope that this usage, which is widespread
in the machine learning literature, does not create any confusion since we do not discuss
fundamental theoretical predictions (e.g., those based on the Standard Model) here.

2.2 Model selection

A key issue in GP regression is the choice of a kernel and the derivation of the optimal set
of hyperparameters 6 for it. Typically, the optimal set of hyperparameters is obtained by



maximizing the marginal log-likelihood log p(y|X, 0, K;) [7, 14], where p(y| X, 0, K;) is given
by eq. (2.2) and its dependence on the set of hyperparameters 6 and the kernel type K;
are made explicit for clarity. Since this step is non-Bayesian, a question of kernel selection
arises, which needs to take into account kernel complexity, quantified by both the amount
of smoothing provided by a given kernel and the number of kernel hyperparameters. A
standard way for carrying out the model comparison is based on the Bayesian Information
Criterion (BIC) for the marginal log-likelihood, which provides an approximation to the
model evidence used in Bayesian model selection [7, 30]:

—logp(y| X, K;) ~ —logp(y| X, é, K;) + glogN = BIC @ive, (2.5)

where p(y|X, K;) is the model evidence (the product of the marginal likelihood and the
hyperparameter priors integrated over ), n is the number of model parameters, and N
is the number of datapoints. Note that the second term on the right-hand side penalizes
model complexity, such that lower BIC scores are more preferable. The derivation of BIC
relies on a number of approximations whose validity depends on the details of the system
under consideration. Specifically, the derivation employs the Laplace approximation to
estimate the integral over the hyperparameters and assumes that N is so large (or the
Gaussian prior distribution over the hyperparameters is so broad) that the effects of the
hyperparameter priors are negligible, resulting in:

A 1
~ logp(y|X, Ki) = ~log p(yl X, 6, K) + 5 log | H| = BIC, (26)

where H = —6969 log p(y| X, 6, Ki)|é is the Hessian in the model hyperparameter space
evaluated at the hyperparameter values # that maximize the marginal log-likelihood. If
N is large and the Hessian has full rank, the second term on the right-hand side can be
roughly approximated as 3 log |H| ~ %log N, yielding eq. (2.5).

An alternative, non-Bayesian approach to model selection is based on the Akaike Infor-
mation Criterion (AIC), which accounts for the fact that the log-likelihood computed on a
training dataset provides an estimate of the prediction error that is too optimistic, because
the same data is being used to fit the model and assess its error [31, 32]. To account for this
optimism, a correction term is added which is based on the sum of covariances between the
observed datapoint and the newly generated datapoint for each input variable z;. It can
be shown that the sum of covariances is proportional to the number of degrees of freedom
in the N — oo limit, resulting in the following expression for AIC:

AIC = —2log p(y| X, 0, K;) + 2d, (2.7)

where d is the number of degrees of freedom in the model. Thus AIC provides an estimate of
the log-likelihood that would have resulted if another dataset were independently generated
at the same values of input variables (an in-sample estimate). In the case of GP regression,
d is replaced by dg in eq. (2.7), where d.g is the effective number of degrees of freedom
for the GP regression with a given kernel type, which captures the amount of smoothing
induced by the GP fit [14, 33]:

deg () = [ K (O)(K (9) + )7, (2.8)



A

where the dependence of the Gram matrix on the optimal kernel hyperparameters 6 is
made explicit for clarity. Note that similar to BIC, lower AIC values are preferable.

Choosing the appropriate kernel type is crucial to the success of GP regression, since
different kernels emphasize different correlation structures in the data. In practice, kernels
are often handcrafted manually using simple comparison metrics such as BIC**V¢, In some
cases, composite kernels are constructed automatically using kernel engineering techniques
(see e.g. ref. [23]). Here, we propose a kernel selection technique which is based on the
consensus between AIC and BIC measures of model complexity. This framework allows
us to choose a specific kernel type on the basis of the consensus between Bayesian and
non-Bayesian criteria.

2.3 The Poisson likelihood

Since our data consists of integer counts in N bins, we have also employed a Poisson
likelihood model to generate integer predictions in each bin. Specifically, we assume that
the mean of the predictive probability f(z;) (eq. (2.3)) provides the rate for the Poisson

fgﬁ’z))] ' (29)

Note that f(z;) implicitly depends on the kernel type and the optimized hyperparameter

process in each bin [20]:

N

log Lp =) {yi — f(xi) — yilog (

i=1

values 6. Eq. (2.9) can be used both to generate integer counts and compute the log-
likelihood of the observed counts. The Poisson log-likelihood can also be used instead of
the GP marginal log-likelihood to compute BIC (eq. (2.6)), BIC™"¢ (eq. (2.5)), and AIC

(eq. (2.7)).
2.4 Gaussian process kernels

We used the GP package from scikit-learn (https://scikit-learn.org/stable/) to implement
our GP regression procedure. In this paper, we have explored three kernels to model the
background distribution: the Radial Basis Function kernel (RBF), the Matérn kernel with
v = 5/2 (Matern), and the second-order polynomial kernel (Poly2). The three kernel
functions are defined as follows:

N2
krpr(z,2") = opexp [—Ml , (2.10)

where og is the amplitude and [ is the length scale of the covariance function;

V5

EMatern (2, 2') = 09 |1+ ﬁd(x,:v') + 5d(a:,x')2] exp [— d(m,x’)], (2.11)

l 3l l

where og is the covariance amplitude as in krpp, [ is a positive parameter characterizing
the covariance, and d(x,z’) is the Euclidean distance between datapoints z and 2’;

kpoly2(2,2) = (0} + x - 2)?, (2.12)

where oy sets the magnitude of the zeroth-order term in the polynomial expansion. Thus
the RBF, Matern and Poly2 kernels depend on 2, 2 and 1 hyperparameter, respectively.


https://scikit-learn.org/stable/

2.5 Functional fit

For comparison, we also employ a fourth-order parametric polynomial fit with explicit basis
functions, typically used to model the background distribution [26]:

4
flx;) = Z wpr? + m(z;), (2.13)

p=0

where w), are the fitting coefficients and m(x;) is either set to 0 for background-only
fits with the signal window masked out, or given by eq. (2.4) for signal+background
fits on the entire dataset. The fits were carried out using ROOT data analysis soft-
ware [34], by maximizing the Poisson log-likelihood in eq. (2.9). For the background-
only fit, the values of the fitting coefficients are wy = 1.84 x 10° & 1.60 x 10?2, w; =
—4.49 x 103 £1.80 x 10°, wy = 4.22 x 10" £1.00 x 1072, w3 = —1.79 x 10~ £9.00 x 1074,
wy = 2.84 x 107 £4.0 x 10~7. For the background+signal fit, the fitting coefficients are
wo = 1.64 x 10° £6.16 x 10*, wy = —3.87 x 10% 4+ 1.86 x 103, wy = 3.52 x 10! +2.10 x 10",
wg = —1.43 x 1071 £ 1.05 x 107!, wy = 2.19 x 1074 £ 1.94 x 10~%, while the signal con-
tribution is described using {A, u, o} = {443 £199,124.5 £ 0.8,2.3 £ 0.9}. All the param-
eter uncertainties have been estimated via Hessian analysis routines implemented in MI-
NUIT [35] (https://iminuit.readthedocs.io/en/stable/citation.html) and available through
ROOT. The value of A and its uncertainty have been rounded to correspond to the integer
number of events. The datasets on which the fits have been performed are described in
more detail below.

3 Datasets

We use the di-photon sample from the open dataset made available by the ATLAS collab-
oration at LHC [26]. We use the selection criteria as documented in ref. [26] to create a
di-photon invariant mass distribution, m.., that shows the Higgs boson decay. The Higgs
boson decay is a localized bump on top of the smooth background distribution, tradition-
ally modeled by a polynomial [20]. The di-photon distribution consists of integer event
counts y; in N = 30 bins. Since in this work we focus on the datasets in which we expect
to find a localized signal whose location is approximately known, we first mask out the
region containing the signal. We expect the signal to be localized with a characteristic
width that is relatively small compared to the background energy scales [20]. Indeed, in
new resonance searches one typically scans for the signal at multiple windows within the
full range of the dataset, with a prior expectation for the signal width.

To search for a signal in a specific window, we use the entire range of data with the
signal window masked out to determine the optimal parameters for the background-only
GP regression fit. In new resonance searches, this process could be repeated for multiple
masked-out signal windows. Here, we model the signal using a simple Gaussian whose mean
p and width o are approximately known to be 125 GeV and 2.5 GeV, respectively [5, 26].
Thus, in the background-only fits we mask out a signal window +2¢ around the signal mean
w; all data outside of this window are assumed to belong to the background distribution
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and are therefore fit using GP regression with m(z;) = 0. Specifically, we optimize the
parameters 6 of a given kernel by maximizing the marginal log-likelihood (eq. (2.2)), which
yields the optimal set of hyperparameters 6. Given é, the predictive distribution is then
provided by eq. (2.3) with m(z;) = 0. The resulting hyperparameter values are {og,l} =
{5.39 x 107,46.0} for the RBF kernel, {oq,l} = {1.12 x 108,124.0} for the Matern kernel,
and oy = 29.3 for the Poly2 kernel.

4 Model selection for background-only fits

To determine which kernel type best represents our data, we have carried out model selec-
tion using BIC and AIC model comparison measures, summarized in table 1. Our main goal
is to develop a practical, transparent approach to model selection in signal+background
problems. A secondary goal is to investigate how BIC™¥® compares with BIC. The former
involves additional approximations, while the latter is harder to implement numerically
since it requires numerical evaluation of the Hessian.

We find that the marginal log-likelihood is much worse for Poly2 than for either RBF
or Matern. This disadvantage is too substantial to be offset by the fact that Poly2 uses one
less hyperparameter. Furthermore, both BICE"® (eq. (2.5)) and BICqy, (eq. (2.6)) rank the
three kernels in the same way, giving a slight edge to RBF over Matern. Note that this rank
is the same as with the marginal log-likelihood without BIC corrections. However, Matern
is slightly favored over RBF when considering Poisson log-likelihoods with rates provided
by the mean of the GP predictive distribution (eq. (2.9)). This preference for Matern
holds when the Poisson log-likelihoods are augmented with model complexity corrections
to produce BICEI'® scores. Next, we have considered the effect of adding the AIC penalty
to the Poisson log-likelihoods (AICpy, in table 1). The AIC penalty effectively accounts
for the amount of smoothing caused by each kernel type [33, 36]. We observe that RBF is
favored over Matern according to the AICpy, scores.

To summarize these findings in a succinct way, we propose a high-level voting scheme
in which the kernel type is chosen on the basis of 1,2,3 rankings produced by BICréaﬂve,
BIC%EEVG, and AICpy, scores. We exclude BICqy, from the vote because it is perfectly
correlated with BICE® and therefore conveys the same message. The sums of the rankings
are 4 for RBF, 5 for Matern, and 9 for Poly2. Thus, RBF and Matern have nearly the
same scores, while Poly2 is ranked considerably lower. Our ranking scheme is simple and
intuitive but, as with all ranking schemes, it does not take into account the magnitude of
the differences in the model selection scores. Alternative schemes are possible depending
on user preferences and the system under consideration.

Finally, we compare Func4 with the three GP regression models. Using the same
ranking scheme on the table 1 columns for which Func4 scores are available (AICpy, and
BICEY®), we obtain the following ranking sums: 3 for RBF, 4 for Matern, 5 for Func4, and
8 for Poly2. Thus, Func4 is less preferable than RBF or Matern. With BICEY Func4
is strongly disfavored due to its larger number of fitting parameters. With AICpy,, Func4
ranks second, just behind RBF'. This is despite the fact that Poisson log-likelihoods slightly
favor Func4 over RBF or Matern GP fits (table 1). Considering all the evidence together,



Model log|H| n d -log(PL) -log(GL) BICEM BICq, AICp, BICEY®
Poly2 -0.531 1 2.99  38.02 87.52 89.22  87.25 82.02  39.72
RBF 0417 2 468 895 72.15 75.55 7236  27.26 1235
Matern 2.906 2 5.67  8.69 72.30 7570  73.75  28.72  12.09
Func4 — 5 5 8.65 — — — 27.30  17.15

Table 1. Model comparison for background-only fits. |H| is the determinant of the Hessian of
the marginal log-likelihood (eq. (2.2)) evaluated at 0; n is the number of model parameters; d is
the number of model degrees of freedom (d = dg for GP regression, d = n for Func4); log(PL) is
the Poisson likelihood (eq. (2.9)) computed using either f(z;) evaluated at the optimal values of
hyperparameters 6 from GP regression (Poly2, RBF ,Matern) or found by maximum likelihood, with
f(z;) given by eq. (2.13) (Func4); log(GL) is the marginal log-likelihood (eq. (2.2)). BIC (eq. (2.6))
and BIC™"° (eq. (2.5)) were computed using log(GL) for BIC and both log(GL)/log(PL) for
BIC™V¢, AIC values (eq. (2.7)) were computed using log(PL).

we conclude that GP regression with the RBF kernel is the best way to model our data,
although the preference of RBF over Matern is fairly slight.

To better understand AIC and BIC-based model selection, we have carried out visual
comparisons of the four different models, by plotting the mean predictive distribution of
the GP regression with RBF, Matern and Poly2 kernels (f(x;) in eq. (2.3) with m(z;) = 0),
and the maximum-likelihood (ML) Func4 fit (eq. (2.13)) (figure 1). All four models were
fit to the event counts outside of the signal window. It is clear from the upper panel of
figure 1 that RBF, Matern and Func4 produce very similar fits, whereas Poly?2 fits the data
poorly. This is also evident from the residuals (figure 1, lower panel), whose magnitudes
are consistently larger for Poly2 but very similar for the other three models. As expected,
when RBF, Matern and Func4 background-only fits are subtracted from the data, which
contains the Higgs boson signal, the corresponding residuals show a distinct bump within
the signal window; outside of that window, deviations of the residuals from zero are almost
always within the error bars. Thus, visual inspection could be used to rule out Poly2 but
not to differentiate between RBF, Mattern, and Func4, which therefore require BIC/AIC
analysis presented above.

5 Signal extraction

In order to extract the signal superimposed on top of the background distribution, we have
carried out GP regression with the RBF kernel and m(z;) given by eq. (2.4) using the entire
dataset (figure 2). Importantly, the kernel parameters were kept at the values 6 obtained
via the previous fit to the background distribution, with the signal window masked out.
Thus, the kernel hyperparameters are responsible for modeling the background, while the
Gaussian parameters in eq. (2.4) are responsible for describing the signal. The resulting
signal parameters are { ArRpr, URBF, ORBF} = {473 £ 123,124.7 + 0.6,2.4 + 0.4}, with the
uncertainties estimated using Hessian-based error analysis routines implemented in MI-
NUIT [35] (https://iminuit.readthedocs.io/en/stable/citation.html). For comparison, we
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Figure 1. Fits to the background distribution. Upper panel: shown are the mean predictive
distributions produced by GP regression with RBF, Matern and Poly2 kernels, as well as the ML
fit with the fourth-order polynomial (Func4). All models were fit on the background-only data
outside of the 125 £ 5 GeV window where the signal is located. Event counts y; are shown with
error bars constructed using Garwood intervals [28, 29] (black markers: background only, grey
markers: background+signal). Lower panel: residuals y; — f(z;) for each of the four models in the
upper panel, with y; error bars from the upper panel. Residual values are connected by lines of the
same color and type as in the upper panel, to guide the eye. In both panels, vertical dashed lines
indicate the boundaries of the signal window.

~10 -



have also refit the Func4 model (eq. (2.13)) on the entire dataset, by adding a Gaussian
function (eq. (2.4)) to capture the signal contribution. As mentioned above, the Gaussian
fitting parameters are { Apuncd, UFuncd, OFunca } = {443 +199,124.5 + 0.8,2.3 + 0.9} in this
case. We observe that both RBF and Func4 are capable of capturing the approximately
Gaussian signal which remains after subtracting the background distribution. Indeed, the
correspondence between the mean predictive distribution for RBF, the ML Func4 fit, and
the Higgs simulation (described in ref. [26]) is very high (figure 2). However, we note that
the GP approach with the RBF kernel results in Aggp = 473 + 123 (3.850) events above
the background, compared to Apuynca = 443 199 (2.230) events from the Func4 fit. Thus,
the probability of zero signal counts is 6.01 x 107> for RBF and 1.30 x 102 for Func4,
indicating a more significant prediction of the signal presence with the GP RBF fit.

5.1 Synthetic datasets for testing statistical significance of signal extraction

To investigate further the statistical significance of the observed signal and the potential
systematic biases, we have created 5000 toy datasets based on the GP fit with the RBF
kernel and m(z;) = 0 to the background-only data outside the signal window. This fit
has generated an effective integer number of counts due to the background only, Neg =
[S°N | f(x;)], where the square brackets indicate the rounding operation. Next, we sampled
from the GP predictive probability N (g;|f(x;), V(x;)), producing real-valued background
“counts” ¢; in each bin i. Finally, we used g;/ Ef\il 7J; as probabilities in a multinomial
sampling process, generating a synthetic histogram of integer event counts. Each synthetic
histogram was constrained to have Ngg counts. Note that our toy datasets include both
the uncertainty inherent in GP regression and the uncertainty related to generating integer
event counts from the underlying model. In order to create a full background+signal
test set, we have added signal counts from the Higgs simulations [26] to each of the 5000
background datasets. Thus the signal component is fixed, while the background component
varies from dataset to dataset according to the background model uncertainties.

5.2 Test for systematic biases in signal extraction

To test the robustness of the fit, we check for potential biases in our background estimation
procedure. Namely, for each of the 5000 background-+signal toy datasets described above,
we carry out a GP fit with the Gaussian mean function (eq. (2.4)) on the entire dataset,
while keeping the kernel hyperparameter values fixed at 6, values found by the previously
described fit to the background distribution, with the signal window masked out. This
procedure generates a set of 5000 predicted signal strength values, {Ag}, which can be
compared with the corresponding exact value Aie = 450, the sum of the event counts
added to the background-only counts in order to create the combined background+signal
toy datasets. Specifically, we compute a distribution of differences between fitted and exact
signal strengths [37] (figure 3):

AA = Agy — Atrue- (5.1)

We observe that the empirical distribution is well described by a Gaussian with pu =
—30.43 and ¢ = 157.97. Although this value of u is just a fraction of o, it is non-zero
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Figure 2. Eztracting the Higgs boson signal from the data. Upper panel: RBF[Bkg] and Func4[Bkg]
are the background fits with the masked-out signal window (same as figure 1). RBF[Bkg+signal]
and Func4[Bkg+signal] are the fits on the entire dataset, with kernel hyperparameters (RBF)
and polynomial parameters (Func4) kept at their background-only values. Event counts y; are
shown with error bars constructed using Garwood intervals [28, 29] (black markers). Middle panel:
Gaussian signal predicted using Funcd background, residuals y; — f(x;) with respect to the Func4
background-only model, with y; error bars, and the results of the Higgs simulation described in
ref. [26]. Lower panel: same as the middle panel but with RBF instead of Func4. In all panels,
vertical dashed lines indicate the boundaries of the signal window.
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Figure 3. Systematic biases in signal extraction. Shown is a normalized histogram of the differences
between fitted and exact signal strengths (eq. (5.1)) obtained by generating 5000 toy datasets and
carrying out GP regression with the RBF kernel as described in the text (blue bars). Orange curve:
a Gaussian fit to the histogram, which yields y = —30.43, 0 = 157.97.

Signal Width (GeV) | Scale Factor X | (AA) | (AA)/Auue | 0(AA)
2.40 0.5 -28.26 -0.13 108.21
2.40 1.0 -30.43 -0.07 157.97
2.40 2.0 -56.65 -0.06 230.45
2.40 10.0 -129.43 -0.03 503.79

Table 2. Dependence of the systematic bias on the size of the data sample. The scale factor
is denoted by X, AA = Agy — Agrue is the difference between fitted and exact signal strengths,
and (AA) and o(AA) are the mean and the standard deviation of AA over 5000 independently
generated synthetic datasets.

with a high level of statistical significance: u = —30.43 + ¢/4/5000 = —30.43 + 2.23.
Thus, our two-step background+signal reconstruction procedure leads to a relatively slight
but systematic underestimation of the signal counts. Since the average magnitude of the
systematic bias is small, we conclude that the signal contribution can be reliably extracted
from the underlying smooth background distribution.

To explore how our predictions depend on the total size of the data sample, we have
redone the systematic bias analysis in figure 3 with 5000 toy datasets in which both the
total number of background counts and the total injected signal strength A, were rescaled
by a factor X (table 2). We observe that although both the mean value of the bias (AA)
and its standard deviation o(AA) grow with the size of the data sample, the ratio of (AA)
to the true signal strength Ay decreases. Thus, the relative bias of GP RBF regression
becomes smaller as more and more data are collected.
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Signal Width (GeV) | Signal Strength Ague | (AA) | (AA)/Ague | 0(AA)
2.00 450 -25.28 -0.06 126.51
2.40 450 -30.43 -0.07 157.97
3.00 450 -52.30 -0.12 181.92
3.50 450 -59.77 -0.13 225.83
2.40 225 -17.07 -0.08 145.93
2.40 450 -30.43 -0.07 157.97
2.40 675 -31.67 -0.05 159.74
2.40 900 -39.14 -0.04 160.03

Table 3. Dependence of the systematic bias on the signal width and strength. The difference
between fitted and exact signal strengths is denoted by AA = Agy — Agrue; (AA) and o(AA) are
the mean and the standard deviation of AA over 5000 independently generated synthetic datasets.

Next, we have studied how the systematic bias depends on the signal strength and
width (table 3). As in figure 3, we have generated 5000 toy datasets with both background
and signal counts. While the total number of background counts was unaltered, we have
varied the width and the strength of the injected signals. We observe that the relative bias,
quantified as (AA)/Ae in table 3, increases with the signal width. This is not surprising
since wider signals are spread over more bins and therefore it is harder to separate them
from the background. When the signal strength is increased, the relative bias decreases —
it is easier to extract stronger signals from the background.

5.3 Posterior distributions of signal parameters and significance analysis

We have investigated the posterior distributions of signal-characterizing parameters by car-
rying out Markov Chain Monte Carlo (MCMC) sampling [38] of the Poisson log-likelihood
(eq. (2.9)). Routinely employed in Bayesian analysis, MCMC sampling of posterior prob-
abilities is similar to studying model parameter sensitivity and estimating confidence in-
tervals in frequentist statistics [39, 40]. Poisson rates f(z;) depend on the hyperparameter
values 6 obtained via the previously described background-only fit and on the mean func-
tion m(z;), whose parameters {A, u, 0} were sampled from the following priors: the prior
for A is uniform in the [0, +00) range, while the prior for u is Gaussian, with the 124.7 GeV
mean and 0.02 x 124.7 GeV standard deviation. The o prior is also Gaussian, with the
2.4 GeV mean and 0.1 x 2.4 GeV standard deviation. The mean values are consistent with
the Higgs simulation [26] and with the fits presented in figure 2. The 0.02 and 0.1 scaling
factors in the priors are motivated by the ATLAS studies [5]. MCMC was implemented
using the Emcee package [41] (https://emcee.readthedocs.io), with 10* samples in each of
12 independent MC trajectories.

Figure 4 shows MCMC posterior distributions of the three parameters characterizing
the signal: overall signal strength A, the mean position of the signal peak p, and the width
of the signal peak . In figure 4a, MCMC sampling is based on a synthetic dataset without
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Figure 4. Posterior distributions of signal parameters obtained by MCMC sampling. Shown are
posterior probabilities in the corner plot format (https://corner.readthedocs.io/en/latest/) [42]. Di-
agonal entries: marginalized posterior probabilities P(A), P(u), P(o), off-diagonal entries: joint
posterior probabilities P(u, A), P(o, A), P(u, o), with the contours indicating 2D sigma levels. Blue
lines mark the median values in the posterior distributions, yellow lines mark the 95% quantile val-
ues. Panel (a): MCMC analysis of a randomly chosen synthetic dataset (out of 5000 toy datasets
with background counts only). Panel (b): MCMC analysis of the experimentally observed back-
ground+signal counts. In both panels, 10* samples are shown.

any signal added. The dataset was randomly chosen among the 5000 background-only
test sets described above. As expected, P(A), the marginalized posterior probability for
signal strength, is highest when A is close to zero and falls off rapidly as A increases, while
P(u) and P(o) appear Gaussian. Moreover, correlations between pairs of parameters are
weak: r, 4 = 0.065, 75 4 = 0.065, 15, = 0.030, where r, , is a linear correlation coefficient
between = and y. In contrast, when the real data containing both the background counts
and Higgs boson events is analyzed, the maximum posterior probability value of A is
located around 500 counts, consistent with the earlier Hessian-based error analysis of GP
regression with the RBF kernel (figure 4b). Indeed, a Gaussian fit of P(A) in figure 4b
yields 485+121 Higgs boson events, very close to the 4734123 Higgs boson events obtained
earlier using the GP regression framework. Thus there is a clear signature of signal counts
in the real data. Interestingly, sampling of the joint probability P(o, A) reveals a positive
correlation between signal strength A and signal width ¢ model parameters (r, 4 = 0.321),
such that stronger signals tend to have larger widths. The other two correlations remain
weak: 7, 4 = —0.048, r, , = 0.019.

To provide a more quantitative estimate of the statistical significance of the signal
strength observed in real data, we have plotted a histogram of the 95% confidence levels for
A for all 5000 background-only toy datasets (figure 5) [43, 44]. The value observed with the
actual data is 3.156 above the median, where & is the distance between the median and the
84% quantile, and is larger than 99.84% of the values empirically observed in the histogram.
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Figure 5. Distribution of the 95% quantiles of the signal strength A in background-only datasets.
Shown is the histogram of the 95% quantiles (confidence levels (CL) for the upper limit of the
signal strength) for A, inferred from 5000 synthetic datasets with background-only counts using
MCMC sampling. The black dashed line indicates the 50% quantile, or the median, of the 95% CL
distribution (i.e., the median number of Higgs boson events observed above background, reported
at 95% CL for the upper limit of the signal strength). From left to right, the yellow lines show 2.5%
and 97.5% quantiles and the green lines show 16% and 84% quantiles, respectively. The red arrow
indicates the 95% CL value obtained from the background-+signal dataset (cf. figure 4b).

6 Summary

In this work, we have developed a procedure for using Gaussian Process (GP) regression
to extract localized signals with an approximately known position and width from smooth
background distributions. Although this procedure is of interest in many areas of sci-
ence, including astrophysics and crystallography, here we have focused on extracting the
Higgs boson signal strength from an ATLAS open dataset which consists of binned event
counts [26]. This is a challenging task because the signal is masked by the background
whose functional form is unknown. Thus, the inference procedure and the background
model affect the statistical significance of the signal extracted by fitting a computational
model to experimental observations. Traditionally, the background distribution is modeled
using a polynomial fit onto which a Gaussian signal is superimposed (eq. (2.13)) [26]. Here
we propose an alternative framework in which GP regression is used to model the back-
ground+signal data, with the signal added via the mean function of the Gaussian process.
As with the functional fits, the mean function is represented by a Gaussian with three free
parameters (eq. (2.4)), one of which, A, is especially relevant since it represents the total
number of signal events found in the dataset.
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The GP framework is more flexible than standard fitting approaches that employ
a fixed set of basis functions such as polynomials or Gaussians [7, 14]. This flexibility
comes from the focus on the correlations between datapoints, which are modeled using
kernel functions. Although GP methods are not limited by the prior choice of the finite
basis (indeed, some popular kernels formally correspond to infinite basis sets [7]), most
kernel functions depend on one or several hyperparameters, such as the characteristic
length scale in the RBF kernel. A fully Bayesian treatment the dependence of the model
evidence (marginal likelihood) on the hyperparameters is usually impractical; however,
simply maximizing the evidence with respect to the hyperparameters may lead to overfitting
for more complex kernels. In order to provide a more principled approach to the selection
of the kernel type, we have considered two independent methodologies.

One approach, BIC, is based on evaluating the model evidence under the Laplace
approximation and the assumption that the effects of hyperparameter priors are negligible
(eq. (2.6)). With several additional approximations, notably the assumption that the
Hessian matrix has full rank, BIC yields a simple and widely used correction which penalizes
model complexity (eq. (2.5)) [7]. The other approach, AIC, is non-Bayesian. Instead of
concentrating on the model evidence, it focuses on the degree of smoothing that results
from applying a given kernel to the dataset [31, 32]. Thus, the AIC and BIC approaches to
model complexity are complementary to each other and reflect different kernel properties
(the amount of data smoothing vs. the shape of the log-likelihood landscape as a function
of hyperparameters). Using both criteria holistically in a ranking scheme, we have chosen
the RBF kernel for our GP regression models, although the results with the Matern kernel
are of nearly the same quality.

We note that AIC yields approximately equal scores for the GP RBF fit and the
traditional fit, which models the background using a fourth-order polynomial (table 1).
The results of the two fits are also very similar visually, and both approaches are close to
the Higgs simulations predictions (figures 1, 2). However, the total area A under the signal
bump is somewhat higher with the GP RBF fit compared to the functional fit, with 473
and 443 Higgs boson events, respectively. Moreover, Hessian-based error analysis reveals
that the standard deviation is much smaller with the GP prediction, 123 vs. 199 in the
functional fit. Thus, the GP approach is preferable since it leads to a more significant
prediction of the signal strength.

After investigating the relative importance of the bias in our signal extraction proce-
dure (figure 3, tables 2, 3), we have proceeded to explore the posterior probabilities of model
parameters by MCMC sampling (figure 4). The MCMC approach is necessary since it can
be used to investigate the Poisson log-likelihood (eq. (2.9)), which is more appropriate for
modeling integer event counts. The Poisson log-likelihood depends on the kernel hyperpa-
rameters, which were kept fixed to their values 6 obtained by fitting to the background-only
data (figure 1), and on the signal strength, mean and width, which were sampled from prior
distributions. The prior for signal strength A was uninformative, assigning equal weights to
any non-negative value. The priors for the mean and the width were informative, modeled
by Gaussians whose parameters were constrained by Higgs simulations (figure 2) and by the
previous studies of instrumental errors in the ATLAS detector [5]. The resulting posterior
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probability for signal strength shows a clear Higgs boson signature, with 485 + 121 Higgs
boson-related events (figure 4b). These numbers are consistent with the previous estimate
obtained by Hessian-based error analysis of the signal parameters in GP regression, which
yielded 473 + 123 Higgs boson-related events.

When the MCMC sampling procedure is applied to synthetic datasets where no con-
tributions from the signal are expected, the posterior distribution for signal strength is
peaked at zero and the typical predicted values are much smaller (figure 4a). The latter
is clearly seen by combining the data from 5000 independently generated background-only
synthetic datasets into a histogram of 95% confidence levels for signal strength A (figure 5).
The corresponding confidence level obtained from the real dataset is larger than 99.84%
of the histogram values and corresponds to 3.15 &, where G is the distance between the
median and the 84% quantile. Thus our signal strength prediction is also highly significant
within the MCMC framework.

In summary, we have developed a novel GP regression framework for extracting local-
ized signals from smooth background distributions. This problem appears in many areas
of science where a weak signal of interest is masked by background events due to light scat-
tering, extraneous emission sources, and other interfering processes. The location and the
width of the signal can sometimes be guessed based on physical considerations; in other
cases, scanning over multiple putative signal windows is necessary, as in LHC anomaly
detection searches [45-50]. In both scenarios, only rough estimates of the position and the
width of the signal window are required. Data outside of the signal window is assumed to
belong to the background and a GP model without the signal contribution is fitted to it.
With multiple windows, a key consideration is the “look elsewhere effect” — an enhance-
ment of the fake signal rate and the resulting decrease of the statistical significance of the
true signal due to multiple testing [51]. The interplay between the fake signal rate and our
procedure for modeling the background distribution will be discussed in a future study.

We carry out model selection using both BIC and AIC considerations, including an
in-depth analysis of the BIC assumptions. The extrapolation of the model across the
signal window then provides an estimate of the background, from which the signal can
now be separated in a second GP fit where only the signal parameters are allowed to vary,
while all the background parameters remain fixed. This two-step procedure allows us to
measure the signal and background parameters in a robust and reproducible manner. An
application of our approach to the open Higgs boson dataset from the ATLAS detector
(known as the ATLAS open dataset) yields a highly significant prediction of the Higgs
boson signature, outperforming the traditional approach based on fitting a polynomial
function to the background distribution.
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