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1 Introduction

Multi-loop Feynman integrals are a cornerstone of perturbative Quantum Field Theory
(QFT) and of many modern methods to make precise predictions for collider and gravita-
tional wave experiments. Consequently, developing efficient techniques for their evaluation
and a solid understanding of the mathematics underlying them, including the special func-
tions they evaluate to, has been a major area of research since the early days of QFT.
Unitarity implies that scattering amplitudes and Feynman integrals must have non-trivial
discontinuities, and so it is generically expected that multivalued special functions show up
in this context. Having a well-defined class of special functions allows one to study their
properties in an independent fashion. This is often useful in applications, as it allows one,
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e.g., to make sure that the results have no ‘hidden zero’, i.e., no subset of terms evaluates to
zero. Already several decades ago, it became clear that the logarithm and the dilogarithm
prominently show up in one-loop computations in four space-time dimensions [1]. It was
quickly realised that these functions are insufficient at higher loops, and also multiple poly-
logarithms (MPLs) appear [2–9], defined as iterated integrals involving rational kernels [10].
This class of functions is mathematically well understood (cf., e.g., refs. [11–26]).

It was noted as early as 1964 that not every Feynman integral can be expressed in
terms of MPLs, but starting from two loops in four dimensions also elliptic integrals arise
in the computation of the two-loop two-point function with three massive propagators (the
so-called two-loop banana integral) [27]. While over the following decades evidence was
mounting that functions associated to elliptic curves play an important role in QFT [28–35],
it took nearly half a century to identify [36] the relevant class of special functions as elliptic
multiple polylogarithms (eMPLs) [37–40] and iterated integrals of modular forms [41, 42].1

These functions have by now seen many applications in the context of Feynman integrals
(see ref. [48] for a recent review of these functions and their applications in physics). In
particular, the two-loop banana integral can be expressed in terms of eMPLs [36, 49–51].
When the masses are equal, the integral can also be written in terms of iterated integrals of
modular forms, which are the natural iterated integrals associated with the moduli space
of this family of elliptic curves [52, 53].

While special functions associated with families of elliptic curves and their moduli
spaces cover large ranges of interesting Feynman integrals, it is known that at higher loops
also special functions associated to Calabi-Yau varieties arise [54–61]. The simplest repre-
sentatives are higher-loop banana integrals, and the geometry attached to an l-loop banana
integral is a Calabi-Yau (l − 1)-fold [55, 56, 62, 63]. The associated special functions are
solutions to inhomogeneous extensions of Picard-Fuchs differential systems. The corre-
sponding homogeneous solutions describe the periods of the family of Calabi-Yau varieties,
and a lot is known about them in the mathematics and string theory literature. It is then
possible to use standard techniques to obtain series representations for the inhomogeneous
solutions [62, 63]. In the special case of equal-mass banana integrals in d = 2 dimensions,
one can write the result in terms of an integral involving the periods of the Calabi-Yau va-
riety [64]. Specialising to the three-loop case, the underlying geometry is a one-parameter
family of K3 surfaces, and it is possible to express the result in terms of iterated integrals of
(meromorphic) modular forms [65–67].2 It was recently shown that at four loops a similar
representation exists at higher orders in the dimensional regulator ε, and this naturally
leads one to consider iterated integrals involving the canonical coordinate on the moduli
space of a one-parameter family of Calabi-Yau three-folds [72]. These solutions and special
functions, however, are not nearly as well studied as in the elliptic case, and a general un-
derstanding of the class of special functions that arise from Feynman integrals associated
with Calabi-Yau geometries is currently still lacking, mostly due to a lack of explicit results
for Feynman integrals.

1See also refs. [43–47] for closely related classes of special functions.
2See also refs. [68–70] for other classes of iterated integrals that arise in the case of the three-loop

equal-mass banana integrals, and ref. [71] for first steps towards understanding the different mass case.
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The main goal of this paper is to present another example of an infinite family of multi-
loop Feynman integrals associated to Calabi-Yau varieties, and to write down fully analytic
results for them. More precisely, we consider the so-called l-loop ice cone graphs in d = 2
dimensions, obtained by inserting a (l−1)-loop banana integral into a one-loop three-point
function with one massive external leg. All propagators are considered massive, and we
assume that all propagator masses are equal. Remarkably, we find that the maximal cuts of
the l-loop ice cone graph in d = 2 dimensions organise into two copies of the same Calabi-
Yau periods associated with the (l− 1)-loop banana integrals. By analysing the system of
differential equations for the ice cone family at low loop orders, we obtain a conjectural form
of the differential equations at any number of loops. We find that this system is solved by
the same class of special functions as in the case of the banana integrals, namely integrals
involving the periods of the Calabi-Yau variety. This shows that the representation for the
banana integrals obtained in ref. [64] defines an interesting class of iterated integrals that
may describe a larger variety of multi-loop Feynman integrals.

In the second part of this paper, we analyse how to write the banana and ice cone
integrals as iterated integrals in the canonical coordinate on the moduli space. Using as
a starting point the known mathematical literature on Calabi-Yau operators [73–75], we
find that at any number of loops the resulting iterated integrals are very similar to those
obtained at four loops in ref. [72], with the caveat that one needs to take into account more
Y -invariants starting from six loops. Along the way, we show how it is possible to express
the logarithmically-divergent periods themselves as iterated integrals of the same type, and
how this representation allows one to interpret the quadratic relations among periods from
Griffiths transversality as simple shuffle relations among iterated integrals.

This paper is organised as follows: in section 2 we define the ice cone family. In
section 3 we study the generalised leading singularities of the ice cone integrals, and we
give a conjectural basis of master integrals at any number of loops. Our basis has the
property that we can easily write down the system of differential equations satisfied by
the master integrals for arbitrary loops. In section 4 we apply the technique of ref. [64]
to obtain solutions of the differential equations in terms of iterated integrals involving the
periods of the Calabi-Yau variety. By studying the analytic structure of the solutions, we
can fix the initial condition, and we conjecture a generating function for the integration
constants. Finally, in section 5 we show how one can change variables to the canonical
coordinate on the moduli space, and we present fully analytic results in this form for both
the banana and ice cone integrals. In section 6 we draw our conclusions. We include
appendices where we collect known results for sub-topologies of the ice cone family, and
where we present some technical proofs omitted in the main text.

2 The family of ice cone Feynman integrals

We consider the family of l-loop Feynman graphs obtained by inserting an (l − 1)-loop
banana graph into a one-loop three-point function, see figure 1. We will refer to this family
as the ice cone graphs. The external momenta are such that q = p1 + p2 with p2

1 = p2
2 = 0,
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k1
k2

p2
1 = 0 p2

2 = 0

s = (p1 + p2)2

...

kl−1

kl∑
i
ki − p1

∑
i
ki + p2

Figure 1. The l-loop equal-mass ice cone graph build up from a (l − 1)-loop banana graph and a
one-loop triangle.

and the graph only depends on q2 = (p1 + p2)2 = s and on the propagator masses, which
are all chosen to be equal to m.

At l loops the graph contains l + 2 propagators, which we parametrise as follows

Da = k2
a −m2 , 1 ≤ a ≤ l ,

Dl+1 =
(∑

i

ki − p1

)2
−m2 , Dl+2 =

(∑
i

ki + p2

)2
−m2 ,

(2.1)

where the first l propagators define the (l− 1)-loop banana graph, while the last two come
from the one-loop triangle. We can form l(l+5)/2 independent scalar products between the
l loop momenta and the two independent external ones, and so we need to supplement the
propagators with n = (l − 1)(l + 4)/2 extra propagators, or equivalently irreducible scalar
products. While the choice made here is in principle arbitrary, a good choice of numerators
can help to simplify the computation. Here it is convenient to choose the numerators Nr

(r = 1, . . . , n) as follows:

N1 =
(∑

i

ki

)2
,

Nr =


ki · kj for i = 1, . . . , j − 1, j = 3, . . . , l ,
ki · p1 for i = 2, . . . , l ,
ki · p2 for i = 2, . . . , l ,

for 2 ≤ r ≤ n . (2.2)

A generic integral in the ice cone family then takes the form

Iν(s; d) =
∫  l∏

j=1

ddki
iπd/2

 N
−νl+3
1 N

−νl+4
2 · · ·N−νl(l+5)/2

n

Dν1
1 · · ·D

νl+2
l+2

, (2.3)

where ν = (ν1, . . . , νl+2; νl+3, . . . , νl(l+5)/2). In what follows, we will be particularly inter-
ested in integrals where only the first two scalar products appear with powers greater than
zero. We will therefore use a shorthand notation where we drop trailing zero entries:

ν = (ν1, . . . , νl+2; νl+3, νl+4, 0, . . . , 0) = (ν1, . . . , νl+2; νl+3, νl+4) , (2.4)
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and we just write

Iν(s; d) =
∫  l∏

j=1

ddki
iπd/2

 N
−νl+3
1 N

−νl+4
2

Dν1
1 · · ·D

νl+2
l+2

. (2.5)

As it will become clear below, at any number of loops, the first two numerators are sufficient
to define a basis of master integrals for which the symmetries of the problem become
manifest. Notice that we are of course always free to set m = 1, such that all integrals are
only functions of the single variable s. We will do this later during the explicit computation
of the master integrals. For now, we keep exact dependence on m, as it makes the structure
of some formulas clearer.

3 Differential equations for the ice cone family

In this section we study the system of differential equations satisfied by the master inte-
grals of the ice cone family at an arbitrary number of loops. Following the mathematical
literature on the subject, we will refer to this system as the Gauss-Manin (GM) system
of differential equations. By studying what we call the generalised leading singularities
(GLS) associated to the ice cone graph at l-loops in d = 2 space-time dimensions, we will
show that the master integrals can be organised into two disjoint sets, corresponding to
two equivalent replicas of the (l − 1)-loop banana graph, plus one extra master integral,
that can always be chosen to be equal to zero in strictly d = 2 dimensions.

3.1 A basis of generalised leading singularities for the ice cone graph

We consider the master integrals for the l-loop ice cone family in d = 2 − 2ε space-time
dimensions, knowing that the corresponding results in d = 4−2ε can be obtained from our
calculation by a dimensional shift [76, 77]. Let us consider the so-called corner integral in
the top sector of the ice cone family, which in our notation reads:

I1,...,1;0,0(s; d) =
∫  l∏

j=1

ddki
iπd/2

 1
D1 · · ·Dl+2

. (3.1)

By studying the residues and the branch cuts of the integrand above, we can infer infor-
mation about the number of master integrals appearing in this problem and the type of
functions required for their calculation [68, 78–85]. To this end, it is convenient to write
the integral in a way that separates the integration over the two triangle propagators from
the ones over the internal (l−1)-loop banana sub-graph. By changing integration variables
to
∑l
i=1 ki = k, we write the ice cone integral as

I1,...,1;0,0(s; d) =
∫ ddk
iπd/2

Ban(l−1)(k2)
((k − p1)2 −m2)((k + p2)2 −m2) , (3.2)

where Ban(l−1)(k2) is the (l − 1)-loop banana sub-graph evaluated at the external mo-
mentum squared k2 = N1. To study cuts and residues of the integral, it is convenient to
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parametrise the integrand using Baikov’s change of variables [81, 86–88], which promotes
the propagators to integration variables. We define:

z1 = ((k − p1)2 −m2) , z2 = (k + p2)2 −m2 , z3 = k2 . (3.3)

The integral then becomes, up to an irrelevant overall function of d,

I1,...,1,0,0(s; d) ∝
∫
C
dz1dz2dz3

P (s,m2, z1, z2, z3)(d−4)/2

z1z2
Ban(l−1)(z3) , (3.4)

where the Baikov polynomial reads

P (s,m2, z1, z2, z3) = m4 +m2(z1 + z2 − 2z3) + z1(z2 − z3) + z3(s− z2 + z3) , (3.5)

and the details of the integration contour C will be irrelevant in what follows.
We start by fixing d = 2 in eq. (3.4).3 Moreover, we consider the integrand associated

to the so-called maximal cut, which is obtained by cutting the two triangle propagators and
the banana graph, i.e., by putting them on shell. This means that our analysis will not be
sensitive to the sub-graphs obtained by pinching any propagators of the ice cone graph. We
deform the integration contour to encircle the two poles at z1 = 0 and z2 = 0, and we obtain

Cut [I1,...,1;0,0(s; 2)] ∝
∮ dz3
z2

3 + (s− 2m2)z3 +m4 Cut
[
Ban(l−1)(z3)

]
. (3.6)

The analytic structure of the integrand becomes manifest when reparametrising s through
the so-called Landau variable

s = −m2 (1− x)2

x
, (3.7)

such that the maximal cut integral becomes

Cut [I1,...,1;0,0(s; 2)] ∝
∮ dz3

(z3 −m2x)
(
z3 − m2

x

)Cut
[
Ban(l−1)(z3)

]
. (3.8)

The next step is to analyse this integrand to determine its generalised leading singularities
(GLS), defined as the integrals associated to the different integration contours (or cycles)
that provide independent results. This is a natural generalisation of the concept of leading
singularities of Feynman integrals, defined as an algebraic function obtained by taking a
maximal codimension residue of the integrand [90]. Various extensions of this concept to
include cases where it is not possible to localise the integrand by taking residues have ap-
peared in the literature, cf., e.g., refs. [64, 68, 80, 82, 91–93], and ours seamlessly fits into
these definitions. The GLS will furnish a basis of solutions for the homogeneous differential
equations satisfied by the ice cone graph [68, 80]. Moreover, as we will see, their analy-
sis will provide a way to determine a good basis of master integrals, whose Gauss-Manin
differential equation assumes a particularly convenient block-diagonal form.

We start by noticing that the integrand in eq. (3.8) has two simple poles at z3 = m2x

and z3 = m2/x. The two residues associated with these poles define the GLS. From
3It is possible that using methods based on twisted cohomology theory, this could be generalised to

d = 2− 2ε dimensions, see for example ref. [89]. For our scopes, an analysis in d = 2 is sufficient.
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eq. (3.8), we notice that they can be evocatively written in terms of the corresponding
maximal cuts of the (l− 1)-loop banana graph computed at special values of its argument

Cut
[
Ban(l−1)(m2x)

]
, Cut

[
Ban(l−1)(m2/x)

]
. (3.9)

It is known that each maximal cut of the (l − 1)-loop banana graph has in turn (l − 1)
independent GLS, which can be expressed in terms of the independent periods of a (l− 2)-
dimensional Calabi-Yau manifold [55, 56, 63, 64, 94–96]. We get in this way 2(l − 1)
independent GLS in d = 2 space-time dimensions, organised into two copies of the periods
of the same (l − 2)-dimensional Calabi-Yau manifold appearing in the computation of the
banana graphs. From this, and remembering that z3 = N1 in eq. (2.2), we can easily choose
master integrals with numerators that ‘disentangle’ these two copies of the banana graph
in d = 2. In this way, we are lead to choose the master integrals as follows

Ĩ±l,k(x; 2) = −m2x±1 I2,...,2︸︷︷︸
k

,1,...,1;0,0(s; 2) + I2,...,2︸︷︷︸
k

,1,...,1;−1,0(s; 2) , 1 ≤ k < l . (3.10)

This analysis has been performed in d = 2 dimensions. We will see below that, once we
consider Integration-By-Parts (IBP) relations [97, 98] in d dimensions, the maximal cuts
of the ice cone graph turn out to have one more master integral compared to the naive
analysis above, i.e., there are in total 2l − 1 independent master integrals. The fact that
we do not see this extra master integral in our analysis suggests that it must be possible to
choose it to be identically zero in d = 2. In other words, only 2(l − 1) masters integrals in
the top sector can be linearly independent in d = 2 dimensions. To find this extra master
integral, we use the construction proposed in ref. [99]4 and consider the following integral
in d space-time dimensions

Ĩl,l(x; d) =
∫ ddk
iπd/2

G(k, p1, p2)
((k − p1)2 −m2)((k + p2)2 −m2) Ban(l−1)(k2) , (3.11)

where G(k, p1, p2) is the Gram determinant of the three momenta, also referred to as
Schouten polynomial in ref. [99],

G(k, p1, p2) = s2

4 k
2 − s(k · p1)(k · p2) . (3.12)

There is nothing special about eq. (3.11) in d dimensions, and nothing forbids us from
choosing it as an element of our basis of master integrals for the ice cone family. On
the other hand, it is easy to see that in d = 2 dimensions this integral does not have
any IR divergences and, despite the numerator, it remains UV convergent. Since the
Gram determinant of three momenta in two dimensions is zero, the integral must itself be
identically zero in d = 2:

Il,l(x, d) = O(d− 2) . (3.13)

Let us conclude this section by illustrating our choice of basis of master integrals in
d = 2− 2ε at low loop order. We start with the case of the two-loop ice cone graph. Using

4For similar considerations in the context of massless integrals, see also ref. [100].
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the fact that the maximal cut of the one-loop bubble of momentum p2 in d = 2 can be
written as

Cut
[
Ban(1)(p2; 2)

]
∝ 1√

p2(p2 − 4m2)
, (3.14)

we see that eq. (3.8) simplifies to

Cut [I1,1,1,1;0,0(s; 2)] ∝
∮ dz3

(z3 −m2x)
(
z3 − m2

x

) 1√
z3(z3 − 4m2)

, (3.15)

and the two GLS read

− x

m4(1− x2)
√
x(x− 4)

,
x2

m4(1− x2)
√

1− 4x
, (3.16)

such that at two loops we expect two master integrals in d = 2 dimensions in the top sector.
A reduction to master integrals using, for example, Reduze2 [101, 102] instead reveals three
master integrals in d dimensions in the top sector, plus three simpler master integrals for
the sub-topologies. First of all, the integrals in the subtopologies are trivial tadpoles and
bubbles and, for convenience, we choose finite candidates for them in two dimensions. We
therefore define the remaining master integrals as follows:5

I0,0(x; d) = I2,2,0,0;0,0(s; d) ,
I0,1(x; d) = I1,1,1,0;0,0(s; d) ,
I0(x; d) = I2,0,1,1;0,0(s; d) ,
I+

2,1(x; d) = −xI1,1,1,1;0,0(s; d) + I1,1,1,1;−1,0(s; d) ,

I−2,1(x; d) = −1
x
I1,1,1,1;−1,0(s; d) + I1,1,1,1;−1,0(s; d) ,

I2,2(x; d) = 1
4I1,1,1,0;0,0(s; d) + 1

4I1,1,1,1;0,0(s; d)− 1− x+ x2

4x I1,1,1,1;−1,0(s; d)

+ I1,1,1,1;−1,−1(s; d) ,

(3.17)

where I0,0(x; d), I0,1(x; d) and I0(x; d) are sub-topologies, while the linear combination that
defines I2,2(x; d), is obtained by starting from eq. (3.11), and reducing it to the standard
master integrals for the problem. By a similar reasoning, we find the following basis of

5Here we set m = 1 for simplicity, and since basis changes like (3.24) are trivial for Ĩ±l,1 for all l we do
not to distinguish between I±l,1 and Ĩ±l,1 below.
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master integrals at three loops:

I0,0(x; d) = I2,2,2,0,0;0,0(s; d) ,
I0,1(x; d) = I1,1,1,1,0;0,0(s; d) ,
I0(x; d) = I2,2,0,1,1;0,0(s; d) , (3.18)
Ĩ+

3,1(x; d) = −xI1,1,1,1,1;0,0(s; d) + I1,1,1,1,1;−1,0(s; d) ,

Ĩ+
3,2(x; d) = −xI2,1,1,1,1;0,0(s; d) + I2,1,1,1,1;−1,0(s; d) ,

Ĩ−3,1(x; d) = −1
x
I1,1,1,1,1;0,0(s; d) + I1,1,1,1,1;−1,0(s; d) ,

Ĩ−3,2(x; d) = −1
x
I2,1,1,1,1;0,0(s; d) + I2,1,1,1,1;−1,0(s; d) ,

I3,3(x; d) = 1
6I1,1,1,1,0;0,0(s; d) + 1

6I1,1,1,1,1;0,0(s; d)− 1− x+ x2

6x I1,1,1,1,1;−1,0(s; d)

+ I1,1,1,1,1;−1,−1(s; d) .

From these two- and three-loop examples we see a pattern emerging, and we claim
that this pattern continues to higher loops. We conjecture that for the general l-loop ice
cone family the following integrals form a suitable basis of master integrals (cf. eq. (3.10)):

I0,0 = I2,...,2,0,0;0,0,

I0,k = I 2,...,2︸︷︷︸
2(k−1)

,1,...,1,0;0,0 , 1≤ k≤bl/2c ,

I0 = I2,...,2,0,1,1;0,0,

Ĩ+
l,k =−m2xI2,...,2︸︷︷︸

k

,1,...,1;0,0 +I2,...,2︸︷︷︸
k

,1,...,1;−1,0 , 0≤ k < l−1 , (3.19)

Ĩ−l,k =−m
2

x
I2,...,2︸︷︷︸

k

,1,...,1;0,0 +I2,...,2︸︷︷︸
k

,1,...,1;−1,0 , 0≤ k < l−1 ,

Il,l =
1
2l I1,...,1,0;0,0 + 1

2l I1,...,1;0,0−
1−x+x2

2lx I1,...,1;−1,0 +I1,...,1;−1,−1 .

Besides the master integrals I±l,k and Il,l from the top sector, there are bl/2c + 2 master
integrals from the sub-sectors (see figure 2). We have explicitly checked that this is true up
to five loops, using both Reduze2 [101, 102] and Kira2 [103, 104]. For the six-loop family
we have also verified that there are three masters I0,1, I0,2, I0,3 for the banana sub-topology
at zero momentum (middle graph in figure 2).6 We stress that, while the analysis of the
cuts was performed in d = 2 dimensions, the basis in eq. (3.19) is valid in d dimensions.

We conclude this section by mentioning that the corner integral I1,...,1;0,0(s; d) is to all
loop orders given by the simple linear combination

I1,...,1;0,0(s; d) = x

1− x2

[
Ĩ+
l,1(x; d)− Ĩ−l,1(x; d)

]
. (3.20)

6We could not verify this patter to higher loops due to the intrinsic limitation in both reduction programs
to a maximum of 32 propagators in an integral family.
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...
p2 = 0

Tadpole Banana at zero
momentum

Bubble times
tadpole

Figure 2. Sub-topologies of the ice cone graph with corresponding master integrals I0,0 (left),
I0,1,, . . . , I0,bl/2c (middle) and I0 (right).

At this point we make an observation that will be important later on. The definition
of the Landau variable in eq. (3.7) is invariant under x → 1/x. The Feynman inte-
gral I1,...,1;0,0(s; d) is then also invariant: it is parity-even. Since the rational prefactor
in eq. (3.20) is parity-odd, we see that we the following relation must be satisfied

Ĩ−l,1(x; d) = Ĩ+
l,1(1/x; d) . (3.21)

3.2 Gauss-Manin differential system for the ice cone family

It is well known that the vector of master integrals satisfies a homogenous first-order
differential equation [105–109], which we will refer to as the Gauss-Manin (GM) system in
the following. In this section we will focus on its properties in strictly d = 2 dimensions.
Our aim is to argue that, just like for the basis of master integrals, we can conjecturally
write down the GM system for arbitrary loop order.

Before we discuss the general l-loop case, let us focus on l = 2, 3. Our basis of master
integrals was presented at the end of the previous section. For l = 2, we consider the
vector of master integrals I(2) = (I0,0, I0,1, I0, I+

2,1, I
−
2,1, I2,2). We also shorten our notation

by leaving the dependence of our master integrals on x and d implicit, where x is the
Landau variable introduced in eq. (3.7). With this, one finds by direct calculation that the
GM system takes the following form:

d
dxI

(2) =



0 0 0 0 0 0
0 0 0 0 0 0

− 2
(1−x)(1+x) 0 1+x2

x(1−x)(1+x) 0 0 0
0 0 (1−x)(1+x)

x(1−4x)
1−2x

x(1−4x) 0 0
0 0 − (1−x)(1+x)

x2(4−x) 0 − 2−x
x(4−x) 0

0 0 0 0 0 0


I(2) +O(d− 2) . (3.22)

Equation (3.22) has the desired block-triangular form in d = 2, with only three non-trivial
blocks on the diagonal. Moreover, the master integral I2,2 is completely decoupled from
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the system of differential equations for d = 2, in agreement with eq. (3.13). Focusing on
the master integrals from the top sector, we can write eq. (3.22) in the equivalent form of
a system of inhomogeneous equations:

d
dxI

+
2,1 = 1− 2x

x(1− 4x) I
+
2,1 + (1− x)(1 + x)

x(1− 4x) I0 +O(d− 2) ,

d
dxI

−
2,1 = − 2− x

x(4− x) I
−
2,1 −

(1− x)(1 + x)
x2(4− x) I0 +O(d− 2) ,

d
dxI2,2 = O(d− 2) .

(3.23)

We see that the equations in the top sector completely decouple, and we can easily solve
for I+

2,1, I
−
2,1 and I2,2.

For l = 3, we derive the GM system for the master integrals in eq. (3.18). The GM
system has a simple form in two dimensions, where the two two-loop banana blocks are
visible on the diagonal. We put the equations in a more convenient form by performing
an additional rotation only on these two blocks, such that the resulting equations have as
solutions exactly the maximal cuts of the two-loop banana integral and its derivative in x.
This means that we choose as basis elements exactly linear combinations of integrals that
correspond to the various derivatives with respect to x of the banana graph inserted into
the ice cone graph. While at this point there is no physical reason to prefer this basis over
any other, our choice makes it easier in practice to compute all master integrals from the
corner integral with unit propagator powers. The explicit form of this rotation is given by

I+
3,1

I+
3,2

I−3,1
I−3,2

 =


1 0 0 0
1
x

3
x 0 0

0 0 1 0
0 0 − 1

x −
3
x




Ĩ+

3,1

Ĩ+
3,2

Ĩ−3,1
Ĩ−3,2

 . (3.24)

Our final basis of master integrals is then I(3) = (I0,0, I0,1, I0, I+
3,1, I

+
3,2, I

−
3,1, I

−
3,2, I3,3). The

GM system then takes the form:

d
dxI

(3) (3.25)

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

− 2
(1−x)(1+x) 0 1+x2

x(1−x)(1+x) 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 3(1+x)

x2(1−9x) − 1−3x
x2(1−x)(1−9x)

(1−3x)(1+3x)
x(1−x)(1−9x) 0 0 0

0 0 0 0 0 0 1 0
0 0 − 3(1+x)

x2(9−x) 0 0 3−x
x(1−x)(9−x) −

9−20x+3x2

x(1−x)(9−x) 0
0 0 0 0 0 0 0 0



I(3)

+O(d−2).
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We can again focus on the top sector and look at the corresponding inhomogeneous equa-
tions:

d
dx I

+
3 = GM(2)

ban(x) I+
3 +N+

3 I0 +O(d− 2) ,

d
dx I

−
3 = GM(2)

ban(1/x) I−3 +N−3 I0 +O(d− 2) ,

d
dx I3 = 0 ,

(3.26)

where we defined I±3 = (I±3,1, I
±
3,2)T and

N+
3 =

(
0, 3(1 + x)
x2(1− 9x)

)T
, N−3 =

(
0,− 3(1 + x)

x2(9− x)

)T
. (3.27)

At this point we make an important observation. The entries of the matrix GM(2)
ban can

easily be read off from eq. (3.25). It is precisely the matrix that describes the GM system
satisfied by the maximal cuts of the two-loop banana integral! We can write with our basis
choice:

I±3,2 = d
dxI

±
3,1 . (3.28)

Moreover, we see that, just like at two loops, the GM system for the top sector splits into
three independent blocks that can be solved independently, and the inhomogeneities only
involve the integral I0, but not I0,k.

We conjecture that such a simple structure for the GM system persists through all loop
orders. One again has to include an additional rotation such that the two diagonal blocks
associated to I±l are solved by the maximal cuts of the (l− 1)-loop banana integral and its
derivatives. A general form of this transformation is hard to write down, because there is
no known closed form for the GM system for banana integrals at l loops. Nevertheless, as
explained in refs. [94, 95], a simple algorithm to produce them exists. Note that at all loop
orders l the integrals Ĩ±l,1 are not modified by the additional rotation displayed for l = 3
in (3.24). We have again checked that our claim holds to at least five loops using Reduze2
and Kira2.

In the remainder of this section we describe our conjectural form for the GM system
to all loop orders. In the rotated basis I(l) = (I0,0, I0,1, . . . , I0,bl/2c, I0, I+

l , I
−
l , Il,l)T , the

Gauss-Manin system has just three non-trivial blocks. The master integrals Il,l and I0,k,
0 ≤ k ≤ bl/2c, satisfy trivial differential equations, i.e., they are just constants in d = 2
dimensions. We know from eq. (3.13) that Il,l vanishes in d = 2 dimensions. Results in
closed analytic form are easy to obtain for the master integrals I0,0 and I0 at an arbitrary
number of loops. In particular, the integral I0,0 is a product of (convergent) one-loop
tadpole integrals, and it evaluates to unity in d = 2 dimensions (see appendix A). The re-
maining integrals I0,k, 1 ≤ k ≤ bl/2c, are l-loop banana integrals evaluated at zero external
momentum. Their numerical values cannot be expressed in terms of known transcenden-
tal numbers for loop orders l > 3. Nevertheless, there exist numerically fast convergent
integral representations for them in terms of Bessel functions [64, 94, 110–112]. As we will
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see below, these constants are not required to solve the differential equation for the corner
integral in d = 2 dimensions, so we do not discuss the values of these integrals further.

The first non-trivial differential equation is the one satisfied by I0:

d
dxI0 = 1 + x2

(1− x)(1 + x)xI0 −
2

(1− x)(1 + x)I0,0 +O(d− 2) , (3.29)

which determines the integral corresponding to a one-loop bubble times (l − 1) one-loop
tadpoles. The value of this integral is of course known, and we evaluate it explicitly
(without recourse to the differential equation (3.29)) in appendix A. The result is:

I0 = − 2x
1− x2 log x+O(d− 2) . (3.30)

The remaining master integrals can be organised into two sets I±l , where the maximal
cuts of the first and second set satisfy the homogeneous differential equation of the (l− 1)-
loop banana graph evaluated at x±1 respectively. The non-trivial master integrals in the
top sector in d = 2 dimensions satisfy the equations:

d
dxI

+
l = GM(l−1)

ban (x)I+
l +N+

l I0 +O(d− 2) ,

d
dxI

−
l = GM(l−1)

ban (1/x)I−l +N−l I0 +O(d− 2) ,
(3.31)

with

N+
l =

(
0 , . . . , 0︸ ︷︷ ︸

l−2

, l!2
(1−x)(1+x)

xl−1
∏

p∈∆(l−1) (1−px)

)T
,

N−l =
(

0 , . . . , 0︸ ︷︷ ︸
l−2

, (−1)l l!2
(1−x)(1+x)

xbl/2c+1
∏

p∈∆(l−1) (p−x)

)T
.

(3.32)

Here ∆(l) is the set of singularities of the differential equation of the l-loop banana integral.
It is given by ∆(l) =

⋃d l−1
2 e

j=0
{
(l + 1− 2j)2}. A detailed and convenient discussion of the

banana integrals, including an analysis of their differential equations, can be found in
refs. [64, 94]. As a consequence of our basis choice, we find (cf. eq. (3.28)):

I±l,k = dk−1

dxk−1I
±
l,1 , k = 2, . . . , l − 1 . (3.33)

Combined with eq. (3.21), we see that all master integrals are determined by I+
l,1. The latter

integral can be obtained as a solution to an inhomogeneous (l− 1)th-order inhomogeneous
Picard-Fuchs equation by decoupling the Gauss-Manin system.7 One finds for the l-loop
case that8

Lban,l−1I+
l,1 = −(−1)l l!/2 (1− x2) I0 +O(d− 2) . (3.34)

The differential operators Lban,l−1 annihilate the maximal cuts of the (l − 1)-loop banana
integral with unit numerator and propagator powers. It is hard to write down an all-loop

7The factorisation of our differential equation compared to [113] is due to the usage of the Landau
variable.

8We can write down the same equation for I−l,1 under the exchange x→ 1/x.
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form for Lban,l−1, but there are efficient algorithms to generate the operators to high loop
orders [94, 95]. As an example, for low loop orders we have:

Lban,1 = 1− 2x− (1− 4x)θ ,
Lban,2 = 1− 3x− (2− 10x)θ + (1− x)(1− 9x)θ2 ,

Lban,3 = 1− 4x− (3− 18x)θ + (3− 30x)θ2 − (1− 4x)(1− 16x)θ3 , (3.35)

Lban,4 = 1− 5x− (4− 28x)θ +
(
6− 63x+ 26x2 − 225x3

)
θ2 −

(
4− 70x+ 450x3

)
θ3

+ (1− x)(1− 9x)(1− 25x)θ4 ,

with θ = x d
dx .

4 Solving the Gauss-Manin equation for ice cone integrals

In this section we show how we can explicitly solve the GM equation (3.31) for I+
l in d = 2

dimensions. We follow closely the strategy of ref. [64], which we briefly recall here for
convenience. Let us define the following fundamental solution matrix:

W+
l−1(x) =


Πl−1,1(x) . . . Πl−1,l−1(x)
∂xΠl−1,1(x) . . . ∂xΠl−1,l−1(x)

... . . .
...

∂l−2
x Πl−1,1(x) . . . ∂l−2

x Πl−1,l−1(x)

 , (4.1)

which satisfies the homogeneous version of eq. (3.31):

d
dxW+

l−1(x) = GM(l−1)
ban (x)W+

l−1(x) . (4.2)

Since GM(l−1)
ban (x) describes the GM equation satisfied by the (l−1)-loop banana integrals,

the fundamental solution matrix W+
l−1(x) coincides with the one for the latter integrals.

Consequently, the entries of W+
l−1(x) describe the periods Πl,k(x) of the one-parameter fam-

ily of Calabi-Yau (l−2)-folds attached to the (l−1)-loop banana integrals (cf., e.g., ref. [64]
for a precise definition of these functions). In particular, they are algebraic for l = 2, and
they can be expressed in terms fo elliptic integrals of the first kind for l = 3 and l = 4. Start-
ing from five loops, it is not known how to express the periods in terms of known functions,
and it is expected that this is not possible. Nevertheless, periods of Calabi-Yau (l − 2)-
folds have properties which allow to evaluate them efficiently, cf. ref. [94].9 In particular,
it is known that the GM system has a point of maximal unipotent monodromy (MUM) at
x = 0. We choose the periods to form a Frobenius basis close to this MUM point, such that

Πl−1,k(x) ∼ x

(k − 1)! logk−1 x+O(x2) as x→ 0 . (4.3)

9The code is available from http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php and in the
supplementary material of ref. [94].
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We also define the l × l skew-diagonal matrix:

Σl =

 1
−1

1
. .
.

 , (4.4)

which is symmetric for l odd and symplectic for l even. From Griffiths transversality condi-
tions of the Calabi-Yau manifold associated to the banana graph, one can derive quadratic
relations between the Frobenius basis elements, and so also for the maximal cuts of the ba-
nana graph [64]. These quadratic relations can conveniently be written as a matrix relation

Z+
l = W+

l Σl

(
W+

l

)T
, (4.5)

where Z+
l is an explicitly computable matrix of rational functions [64]. From this equation

we can extract an explicit representation for the inverse of the fundamental solution matrix:(
W+

l

)−1
= Σl

(
W+

l

)T (
Z+
l

)−1
. (4.6)

For more details about these quadratic relations and the following considerations we refer
to ref. [64].

With this setup, we can now easily solve the GM equation (3.31) for I+
l following the

recipe of ref. [64]. We find:

I+
l (x; 2) = W+

l−1(x)Σl−1

∫ x

~10
W+T

l−1(x′)Z+
l−1(x′)−1N

(l−1)
B (x′) I0(x′) dx′ + W+

l−1(x)c+
l

= −(−1)ll!W+
l−1(x)Σl−1

∫ x

~10

Πl−1(x′)
x′2

log(x′)dx′ + W+
l−1(x)c+

l ,

(4.7)

where c+
l = (c+

l,1, . . . , c
+
l,l−1) is a constant vector and we introduced the notation Πl =

(Πl,1, . . . ,Πl,l)T . The lower integration boundary chosen as ~10 indicates that we use tan-
gential base point regularization with base point ~10 to deal with the divergent integrals in
eq. (4.7). For more details we refer to refs. [42, 64]. We can extract the following expression
for the master integral I+

l,1:

I+
l,1(x; 2) =

l−1∑
k=1

Πl−1,l−k(x)
[
c+
l,l−k + l! (−1)kI(fl−1,k, f0;x)

]
, (4.8)

where we introduced the iterated integral [10]:

I(f1, . . . , fn;x) =
∫ x

~10
dx′ f1(x′) I(f2, . . . , fn;x′) , I(;x) = 1 . (4.9)

The integration kernels appearing in our result are

f0(x) = 1
x

and fl,k(x) = 1
x2 Πl,k(x) = 1

x (k − 1)! logk−1 x+O(x0) . (4.10)

Equation (4.8) is one of the main results of this paper, and it expresses I+
l,1(x; 2) as a linear

combination of double iterated integrals involving the periods of the Calabi-Yau variety of
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the (l − 1)-loop banana integral (the integration constants c+
l will be fixed shortly). The

result is strikingly similar to the corresponding result for the (l − 1)-loop banana integral
in d = 2 dimensions with unit numerator and propagator powers of ref. [64], which we
reproduce here for convenience:

Banl−1,1(x; 2) = −(−1)ll!
l−1∑
k=1

Πl−1,l−k(x) (−1)k
[

λ
(k)
0

(k + 1)! + I(fl−1,k;x)
]
. (4.11)

We see that the results for l = (l− 1)-loop banana and l-loop ice cone integrals are almost
identical, but the ice cone integrals involve double iterated integrals. In the case of the
banana integrals, it is possible to obtain the integration constants λ(k)

0 /(k + 1)!, which
are related to the contribution of the unique holomorphic period in the Feynman integral
(called λ(l)

0 in ref. [94]), from a generating series:

∞∑
l=0

λ
(l)
0

(l + 1)! t
l = −Γ(1− t)

Γ(1 + t) e
−2γt−iπt , γ = −Γ′(1) . (4.12)

For the case of the Banana integral one gets in addition the contributions of periods with
leading behaviour ∼ log(x)k in the Feynman integral by

λ
(l)
k = (−1)k

(
l + 1
k

)
λ

(l−k)
0 . (4.13)

Both informations in eqs. (4.12) and (4.13) were conjectured in ref. [94] to arise from a novel
Γ̂-class evaluated in (P1)l+1. This allows one to evaluate the corresponding values also in the
non-equal mass case [94], and the claim was later proven in ref. [114].10 In the next section
we argue that the integration constants c+

l can be obtained from a very similar structure.

4.1 Boundary conditions and analytic structure for ice cone graphs

The goal of this section is to fix all the boundary conditions c+
l in eq. (4.8) needed to obtain

the final result for I+
l,1. We do this by studying the structure of the differential equation

satisfied by I+
l,1 to infer how it behaves close to singular points. This is most conveniently

done by understanding l-loop ice cone integrals as a double extension of the maximal cut
of l − 1 banana integral. Due to the special form of the master integral I0, it turns out
that we can homogenize the differential equation (3.34) simply by acting with (θ−1)2 from
the left. This means that the ice cone integral I+

l,1 in two dimensions satisfies the double
extended differential equation of the maximal cuts of the (l − 1)-loop banana integral, i.e.

Lice,lI+
l,1 = (θ − 1)2Lban,l−1I+

l,1 = O(d− 2) . (4.14)

In refs. [63, 94] it was shown that the full (l− 1)-loop banana integral is annihilated by the
first extension, i.e., by (θ − 1)Lban,l−1. The operator Lice,l has a MUM point at x = 0, so
that all l + 1 indicials at that point are equal to one.

10It can be extended to the ε deformed case using a Barnes integral representation for the banana graph
integral [64]. Such extensions of the formalism of Γ̂-classes over the dimensions are called motivic Γ̂-class
formalisms in mathematics.

– 16 –



J
H
E
P
0
2
(
2
0
2
3
)
2
2
8

x-plane

Re(x)
Im(x)

x = −∞

sing. point

sing. point

x = 0

MUM point

MUM point

x = 1
l2

sing. point

reg. point

x = 1
(l−2)2

sing. point

reg. point

· · ·

diff. eq.:

I+
l,1:

Figure 3. Global analytic structure of the master integral I+
l,1 compared to the singularities of the

differential operator Lice,l. I+
l,1 has a branch cut from x = 0 to x = −∞.

l c+
l,1 c+

l,2 c+
l,3 c+

l,4

2 −2ζ(2)

3 4ζ(3) −6ζ(2)

4 −42ζ(4) 16ζ(3) −24ζ(2)

5 48ζ(5) + 80ζ(2)ζ(3) −210ζ(4) 80ζ(3) −120ζ(2)

Table 1. Numerically determined coefficients c+
l,k for the master integral I+

l,1 for 2 ≤ l ≤ 5.

Therefore, it makes sense to consider a Frobenius basis around the MUM point which
is, of course, related to the basis in eq. (4.7) given in terms of iterated integrals of Calabi-
Yau periods. The coefficients c+

l in eq. (4.8) can be determined from regularity properties
of the integral I+

l,1. The integral I+
l,1 has a branch cut starting at x = 0 and ending at

x = −∞. Around all the other singular points of the differential equation (4.14) the integral
is regular, see figure 3. In other words, the only non-trivial monodromies of the integral I+

l,1
are at x = 0,−∞. This determines the coefficients c+

l for loop orders l = 2, 3 completely.
For l = 4, 5 we also used numerical evaluations of the integral to fix all coefficients. For
this we numerically integrated the Feynman parameter representation for various values of
the Landau variable x. Here we used the first l − 1 values of x to fix the parameters c+

l

in eq. (4.8) and further values of x to check agreement with our result in eq. (4.8). Our
findings are listed in table 1. From these data we found some interesting patterns: first, we
observe that the c+

l,k are polynomials in zeta values of uniform weight l−k+1. Second, the
coefficients c+

l+1,k+1 are obtained from c+
l,k for 1 ≤ k ≤ l − 1 by multiplication with l + 1:

c+
l+1,k+1 = (l + 1) c+

l,k . (4.15)

Finally, one can write down a generating series for the coefficients c+
l,1 for different loop

orders:

1 +
∞∑
l=2

(−1)l+1c+
l,1
tl

l! = Γ(1− t)2e−2γt . (4.16)
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With both relations we can conjecturally11 determine for arbitrary loop order l the co-
efficients c+

l in eq. (4.8). Note that eqs. (4.16) and (4.15) are analogous to eqs. (4.13)
and (4.12) for the banana integral, which can be viewed as a single extension of its max-
imal cut integral. Moreover the dependence of the transcendentality of the coefficients on
the corresponding loop order l and l is the same. We expect that a Γ̂, or even a motivic Γ̂,
formalism exists for the ice cone graph as well. However, the notion of ‘geometry’ in which
these Γ̂-classes have to be evaluated has probably to be considerably generalised.

The word extension for studying a differential operator L(2)L(1) and its solution space
in comparison with the differential operator L(1) and its solution space seems very high
browsed. However, clearly the solution space of the latter is a subspace of the former, and
since both of them are representations of the Galois group, the word extension is used here
exactly in the same way as in the context of groups and their representations. So our simple
observation that ice cone integrals are double extentions of maximal cut banana integrals,
with the full banana integral in between, yields a very interesting mathematical structure
that could lead to a proof of eqs. (4.16), (4.15) from eqs. (4.13), (4.12). The structure of
the extension for the ice cone graph will be further discussed in section 5.2.2.

5 A canonical choice of coordinate

5.1 The structure series and the mirror map

In the previous section we have shown that it is possible to write the ice cone integrals
to arbitrary loop order as iterated integrals involving the periods of a Calabi-Yau variety,
similarly to the result obtained for the banana integrals in ref. [64]. The integration variable
x parametrises the moduli space of the family of Calabi-Yau n-folds associated to the
banana integrals (where n = l − 1 or l − 2 for banana and ice cone integrals respectively).
This choice of coordinate is not canonical. A canonical choice of the coordinate on the
moduli space in a neighbourhood of the MUM point x = 0 is

t(x) = 1
2πi

Πn+1,2(x)
Πn+1,1(x) = 1

2πi log x+ . . . , (5.1)

where the dots indicate terms that are analytic in a neighbourhood of x = 0. The inverse
to eq. (5.1) is the mirror map:

x(q) = q +O(q2) , q = e2πit . (5.2)

Using this canonical coordinate, the homogeneous Picard-Fuchs operator of a one-
parameter family of Calabi-Yau n-folds has a characteristic form. To see this, we start
with the operator Ln =

∑n+1
k=0 Ak(x)θk and write it in the following form [73, 74]:

Ln = β(x) θαn(x)θαn−1(x)θ · · · θα1(x)θα0(x) , (5.3)

where β(x) fixes the normalisation and the sequence α0(x), . . . , αn(x) is called the structure
series of the family of Calabi-Yau n-folds. The αm(x) are holomorphic in a neighbourhood

11For l = 6, 7 we have also numerically checked our result in eq. (4.8) with the coefficients c+l from
eqs. (4.15) and (4.16) and found good agreement.
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of the MUM point x = 0. They can be computed as αm(x) = um,m(x)−1, where the um,k(x)
are determined recursively:

um,k(x) = θ

[
um−1,k(x)
um−1,m−1(x)

]
and u0,k(x) = Πn+1,k+1(x) . (5.4)

They satisfy the symmetry property αk(x) = c αn−k+1(x) for some non-zero c ∈ C. In
particular, we have α0(x) = Πn+1,1(x)−1 and α1(x) = [2πi θt(x)]−1. It follows that Ln can
be written as a differential operator in q:

Ln = C β(x) α̂1(q)−1 L̂n,q Π̂n+1,1(q)−1 , (5.5)

where C is a complex constant, α̂m(q) = αm(x(q)) and Π̂n+1,k(q) = Πn+1,k(x(q)). L̂n,q is
the normalised operator [73, 74]:

L̂n,q = θ2
q

1
Yn,1(q)θq

1
Yn,2(q)θq · · · θq

1
Yn,2(q)θq

1
Yn,1(q)θ

2
q , θq = q

d
dq . (5.6)

The functions
Yn,k(q) = α̂1(q)

α̂k+1(q) , for 1 ≤ k ≤ n− 2 , (5.7)

are holomorphic in a neighbourhood of q = 0 and are called the Y -invariants of the
differential operator Ln [73].

For small values of n we list these differential operators here:

L̂1,q = θ2
q ,

L̂2,q = θ3
q ,

L̂3,q = θ2
q

1
Y3,1

θ2
q ,

L̂4,q = θ2
q

1
Y4,1

θq
1
Y4,1

θ2
q ,

L̂5,q = θ2
q

1
Y5,1

θq
1
Y5,2

θq
1
Y5,1

θ2
q .

(5.8)

Through n = 4, this agrees with the Picard-Fuchs operators for the banana graphs given
in refs. [72, 115]. Starting from n = 5, we see that we need two different Y -invariants.

We see that the differential operators are entirely determined by the Y -invariants. For
later convenience, we define Yn,0(q) = Yn,n−1(q) = 1. Since these quantities play such an
important role, we list here some of their properties [73, 116]. First of all, the Y -invariants
satisfy the reflection identity

Yn,k(q) = Yn,n−1−k(q) . (5.9)

Second, the Y -invariants are not independent, but they are related by the identity:

n−2∏
k=1

Yn,k(q) =
(

x(q)
Π̂n+1,1(q)

)2
α̂1(q)n∏

p∈∆(n+1)(1− px(q)) . (5.10)

This was also noticed for Calabi-Yau three-folds in refs. [72].
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5.1.1 The string theory and algebraic geometry perspective

Let us connect the discussion of the previous section to the information available from the
mathematical string theory literature on the structure of Picard-Fuchs ideals, or equiva-
lently of the Gauss-Manin connections, for Calabi-Yau n-folds X in inhomogeneous flat
coordinates, such as in eq. (5.1). The Yn,k have been introduced in ref. [116] (there called
Y 1
k ), together with a general algorithm to calculate them from the Gauss-Manin system.

They were explicitly evaluated for the one-parameter mirrors of Calabi-Yau n-folds for
n = 4, . . . , 10, defined as degree n+ 2 hypersurfaces in Pn+1 with a hypergeometric Picard-
Fuchs operator of the form Ln = θn+1−(n+2)x

∏n+1
k=1 [(n+2)θ+k]. Their general properties

in eqs. (5.9) and (5.10) and the number of independent Yn,k have also been pointed out in
ref. [116] in a formalism that generalises to the multi-moduli case.

To understand the latter, let us recall (see refs. [64, 117] for reviews), that Griffiths
duality in eq. (5.31) implies in the Calabi-Yau three-fold case the existence of a prepotential
F (x) = 1

2(XIFI), where ωT = (FI , XI), I = 0, . . . , hn−1,1(X) is the period vector in any
symplectic basis. Griffiths transversality also implies that F is homogeneous of degree two
in the local homogenoeus coordinates XI , and FI = ∂F/∂XI is homogeneous of degree one
in XI . Moreover in inhomogeneous flat coordinates ti = Xi/X0, i = 1, . . . , hn−1,1(X), that
can be chosen at any point in the moduli space with X0(x) 6= 0, it implies that we can
introduce an inhomogeneous prepotential F(t) = F (t)/(X0(t))2 so that the multiparameter
generalisation12 of Y3,1, called Cijk, is given by Cijk = ∂ti∂tj∂tkF(t). We can conclude
from the above facts immediatley that the period vector can be written as ω = X0(2F −
ti∂F , ∂iF , 1, ti)T . By change of the dependent variable,13 one defines a vector V = (2F −
tc∂cF , ∂j(2F − tc∂cF), tj , 1)T , and with Vj := Vb3(X)/2+j , V0 := Vb3(X) one gets

∂ti


V0

Vj
Vj

V0

 =


0 δik 0 0
0 0 Cijk 0
0 0 0 δji

0 0 0 0




V0

Vk
Vk

V0

 . (5.11)

This is the Gauss-Manin connection in projective flat coordinates and qi
d

dqi
= ∂ti . Hence

writing eq. (5.11) in the fourth-order form in the one-parameter specialisation yields the
third equation in eq. (5.8). Note, however, that eq. (5.11) holds in any flat inhomogeneous
coordinates.

The generalisation of eq. (5.11) to multiparameter n-folds appeared for the first time in
ref. [118] (see the review in ref. [117]). It has also been pointed out there (see also refs. [119,
120] for the Calabi-Yau four-fold multi-parameter cases) that the three-point functions
Cijk, as well as their generalisations to the three-point functions of multiparameter Calabi-
Yau n-folds, can be identified with three-point functions in the topological sector of a (2, 2)
superconformal 2d field theory, and as such fulfill a graded Frobenius algebra. Geometrically,
the latter can likewise be derived as a consequence of Griffiths transversality, and for

12So that Y3,1 = C111.
13Which is referred to as weight zero Kähler gauge in algebraic geometry.
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example eq. (5.10) is a consequence of the well-known factorisation of the n-point function
into three-point functions in a 2d CFT. The grading comes from the U(1) charges under
the two U(1) symmetries in the two copies of the N = 2 superconformal algebras [121].
There are two twists to obtain topological sectors: the A-twist projects to the diagonal
U(1) and all fields in this topological sector have charges (q, q). The B-twist projects to
the anti-diagonal U(1) and all fields in this topological sector have charges (q,−q). Mirror
symmetry exchanges these topological theories. At the MUM point this charge grading can
be identified with the logarithmic degenerations of the periods, but it is globally defined
in the deformation space. Specialising the generalisations of eq. (5.11) in refs. [117, 118] to
the (n+ 1)th-order form in the one-parameter case yields all equations in eq. (5.8).

At the MUM point and expanded in the q-coordinates, the coefficients of the three-
point functions count Gromov-Witten invariants of holomorphic maps to the mirror X̌ to
X. The mirror X̌ is given for the particular case of the banana integrals in refs. [64, 94]. The
Gromov-Witten invariants have multi-covering formulas relating them to integer geometric
invariants of holomorphic curves embedded into X̌. These multi-covering formulas and the
definition of the corresponding invariants have been found in ref. [122] for the three-fold
case, in ref. [123] for the four-fold case and in ref. [124] for the five-fold case.

5.1.2 Calabi-Yau operators for banana and ice cone integrals

Before we continue, let us give some explicit results for the family of Calabi-Yau varieties
which appear as the maximal cut geometries in the banana and ice cone graphs. Let us
start with the elliptic case, which is relevant for the two-loop banana integral as well as
three-loop ice cone integral. The mirror map is given by

x(q) =
(
η(t)η(6t)2

η(2t)2η(3t)

)4

= q − 4q2 + 10q3 − 20q4 + 39q5 +O(q6) , (5.12)

where η(t) is the Dedekind eta function. Note that the mirror map in eq. (5.12) is simply
a Hauptmodul for Γ1(6) [36, 125]. The holomorphic period is given by

Π̂2,1(q) = η(t)η(6t)6

η(2t)2η(3t)3 = q − q2 + q3 + q4 +O(q6) , (5.13)

which is also related by eq. (5.10) to the structure series

α1(x) = (1− x)(1− 9x)
(Π2,1(x)

x

)2
= 1− 4x− 12x2 − 60x3 − 348x4 +O(x5) . (5.14)

For the K3 case we have the following mirror map

x(q) =
(
η(t)η(3t)η(4t)η(12t)

η(2t)2η(6t)2

)6
= q − 6q2 + 21q3 − 68q4 + 198q5 +O(q6) , (5.15)

which is a Hauptmodul for Γ0(6)+3 [126]. The holomorphic period is given by:

Π̂3,1(q) =
(
η(t)η(3t)η(4t)η(12t)

η(2t)η(6t)

)2
= q − 2q2 + q3 − 4q4 +O(q6) , (5.16)
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which is again related by eq. (5.10) to the structure series

α1(x) = α2(x) =
√

(1− 4x)(1− 16x) Π3,1(x)
x

= 1− 6x− 30x2 − 276x3 − 3030x4 +O(x5) .
(5.17)

For the Calabi-Yau three-fold, the mirror map is

x(q) = q − 8q2 + 36q3 − 168q4 + 514q5 +O(q6) . (5.18)

The only remaining independent invariants can be chosen as the holomorphic period Π̂4,1(q)
and the Y -invariant

Π̂4,1(q) = q − 3q2 + q3 − 23q4 − 101q5 +O(q6) ,
Y3,1(q) = 1 + q + 17q2 + 253q3 + 3345q4 +O(q5) .

(5.19)

The structure series follow then from the properties given above.
The Calabi-Yau four-fold case has the same number of independent invariants as the

three-fold:
x(q) = q − 10q2 + 55q3 − 340q4 + 955q5 +O(q6) ,

Π̂5,1(q) = q − 4q2 + q3 − 64q4 − 569q5 +O(q6) ,
Y4,1(q) = 1 + 2q + 46q2 + 1010q3 + 21550q4 +O(q5) .

(5.20)

For the case of the Calabi-Yau five-fold, we get for the first time two independent
Y -invariants:

x(q) = q − 12q2 + 78q3 − 604q4 + 1425q5 +O(q6) ,
Π̂6,1(q) = q − 5q2 + q3 − 135q4 − 1774q5 +O(q6) ,
Y5,1(q) = 1 + 3q + 87q2 + 2523q3 + 74247q4 +O(q5) ,
Y5,2(q) = 1 + 4q + 124q2 + 3892q3 + 123564q4 +O(q5) .

(5.21)

We note that in all cases the coefficients appearing in the q-expansions of the mirror
map x(q), the holomorphic period Π̂n+1,1(q) and the Y -invariants Yn,m(q) are integers.
This is a general feature of Calabi-Yau operators, cf., e.g., refs. [73–75].

5.2 Y -invariants and iterated integrals

5.2.1 Calabi-Yau periods as iterated integrals

We now show that we can use the Y -invariants to write the periods of a Calabi-Yau n-fold
Πn+1,k(x) for k = 2, . . . , n+ 1 (which are not holomorphic at the MUM-point) as iterated
integrals involving the Y -invariants. To start, let us define the normalised periods

ω̂n+1,k(q) = Π̂n+1,k(q)
Π̂n+1,1(q)

= 1
(k − 1)! logk−1 q +O(q) for k = 1, . . . , n+ 1 , (5.22)
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where the second equality follows from our normalisation of the periods, cf. eq. (4.3). We
define the differential operators

L̃0,q = θq ,

L̃k,q = θq
1

Yn,k−1
L̃k−1,q

= θq
1

Yn,k−1
θq

1
Yn,k−2

θq · · · θq
1
Yn,1

θq
1
Yn,0

θq for k = 1, . . . , n .

(5.23)

Note that eq. (5.9) implies that for k = n, we recover the differential operator in eq. (5.6),
i.e., L̃n,q = L̂n,q. Moreover, an easy computation shows that the recursion in eq. (5.4) is
equivalent to

L̃k−2,q ω̂n+1,k = Yn,k−2 , for k = 2, . . . , n+ 1 . (5.24)

This implies that we can obtain the (normalised) periods as solutions to the inhomogeneous
differential equation (5.24). By direct computation, we see that the most general solution
is given by (k = 2, . . . , n+ 1)

ω̂n+1,k(q) = I(Yn,0, Yn,1, . . . , Yn,k−2; q) +
k−3∑
i=0

ai I(Yn,0, Yn,1, . . . , Yn,i; q) , (5.25)

where ai are integration constants, and we introduced the iterated integrals (cf. eq. (4.9)):

I(f1, . . . , fn; q) =
∫ q

~10

dq′

q′
f1(q′) I(f2, . . . , fn; q′) . (5.26)

Note the appearance of the 1/q′ factor in the integrand, which was not present in the
definition given in eq. (4.9). This factor is included to account for the change of variables
from t to q = e2πit. It is easy to check that

I(Yn,0, Yn,1, . . . , Yn,k−1; q) = 1
k! logk q +O(q) . (5.27)

Our normalisation of the ω̂n,k in eq. (5.22) then implies that we must have

ω̂n+1,k = I(Yn,0, Yn,1, . . . , Yn,k−2; q) = I(1, Yn,1, . . . , Yn,k−2; q) , for k = 2, . . . , n+ 1.
(5.28)

We see that we can write the periods as iterated integrals involving the Y -invariants. These
iterated integrals are similar to those that have appeared in the context of the four-loop
banana integral in ref. [72]. We have explicitly through n = 5:

ω̂2,2(q) = I(1; q) ,
ω̂3,2(q) = I(1; q) , ω̂3,3(q) = I(1, 1; q)
ω̂4,2(q) = I(1; q) , ω̂4,3(q) = I(1, Y3,1; q) , ω̂4,4(q) = I(1, Y3,1, 1; q) , (5.29)
ω̂5,2(q) = I(1; q) , ω̂5,3(q) = I(1, Y4,1; q) , ω̂5,4(q) = I(1, Y4,1, Y4,1; q) ,

ω̂5,5(q) = I(1, Y4,1, Y4,1, 1; q) ,
ω̂6,2(q) = I(1; q) , ω̂6,3(q) = I(1, Y5,1; q) , ω̂6,4(q) = I(1, Y5,1, Y5,2; q) ,

ω̂6,5(q) = I(1, Y5,1, Y5,2, Y5,1; q) , ω̂6,6(q) = I(1, Y5,1, Y5,2, Y5,1, 1; q) .
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It is well known (cf., e.g., ref. [10]) that iterated integrals form a shuffle algebra, i.e.,
we have

I(f1, . . . , fm; q)I(fm+1, . . . , fn; q) =
∑

σ∈Σ(m,n)
I(fσ1 , . . . , fσn ; q) , (5.30)

where Σ(m,n) is the set of all shuffles of m and n − m elements, i.e., the subset of the
permutations of (1, . . . , n) that leave the relative order of (1, . . . ,m) and (m + 1, . . . , n)
invariant. In appendix B we recall some basic facts about shuffle algebras, and we show that
the shuffle product on iterated integrals, together with the reflection identity in eq. (5.9),
implies the following relations among the normalised periods:

ω̂Tn+1 Σn+1 θ
m
q ω̂n+1 =

 0 , m < n ,∏n−2
k=1 Yn,k , m = n ,

(5.31)

where we defined ω̂n+1 = (ω̂n+1,1, . . . , ω̂n+1,n+1)T . Note that the product on the right-
hand side can be expressed through eq. (5.10). It is easy to check that these relations
are equivalent to the well-known quadratic relations between periods that follow from
Griffiths transversality (cf. eq. (4.5)). In other words, when the periods are expressed
as iterated integrals, the quadratic relations from Griffiths transversality become simple
shuffle identities among iterated integrals! It is then possible to pick a basis for the shuffle
algebra (e.g., in terms of Lyndon words), and to eliminate in this way interrelations among
periods due to Griffiths transversality.

5.2.2 Extensions of Calabi-Yau operators

In the previous section we have seen that we can write the periods, which are solutions
to the homogeneous Picard-Fuchs equation LnΠ(x) = 0, as iterated integrals involving Y -
invariants. In this section we consider extensions of Calabi-Yau Picard-Fuchs differential
equations of the form

LnΠ(x) = F (x) , (5.32)

where F is some function. Since eq. (5.32) is an inhomogeneous linear differential equation,
its general solution is obtained by adding a particular solution to the general homogeneous
solution. A basis for the homogeneous solutions are the periods. Hence, it is enough to
find a particular solution. This is in general a monumental task. Here we argue that the
special form of Calabi-Yau operators makes it possible to write down a particular solution
in a systematic manner.

We start by changing variables to the canonical coordinate q on the moduli space.
Equation (5.32) then becomes

L̂n,q ω̂(q) = f̂(q) , (5.33)

where L̂n,q is given in eq. (5.6), and moreover we defined:

ω̂(q) = Π(x(q))
Π̂n+1,1(q)

and f̂(q) = α̂1(q)
C β(x(q)) F (x(q)) . (5.34)

It is easy to see that a particular solution to eq. (5.33) is given by

ω̂part.(q) = I(1, Yn,1, Yn,2, . . . , Yn,2, Yn,1, 1, f̂ ; t) . (5.35)
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Equation (5.35) suggest that it should be possible to write the solution for the ice
cone and banana integrals in eqs. (4.8) and (4.11) in terms of the iterated integrals that
represent the periods and the inhomogeneous solution, cf. eqs. (5.28) and (5.35). In the
following we show that this is indeed the case.

As a starting point, we mention the following identity:
n+1∑
k=1

(−1)n−k+1Πn+1,n−k+2(x)
∫ x

~10
dx′G(x′) Πn+1,k(x′)

= (−1)n Π̂n+1,1(q) I(1, Yn,1, Yn,2, . . . , Yn,2, Yn,1, 1, ĝ; q) ,
(5.36)

with
ĝ(q) = x(q)α̂1(q) Π̂n+1,1(q)G(x(q)) . (5.37)

A proof of eq. (5.36) is given in appendix B.
Next, we combine eq. (5.36) with our results for the banana and ice cone integrals from

section 4. We start with the banana integral given in eq. (4.11):

Banl−1,1(x; 2) = l!
l−1∑
k=1

[
(−1)l−k+1 λ

(k)
0

(k + 1)! Π̂l−1,1(q) I(1, Yl−2,1, . . . , Yl−2,l−k−2; q)

+ (−1)l−k+1Πl−1,l−k(x)I(fl−1,k;x)
]

(5.38)

= (−1)ll! Π̂l−1,1(q)
[
l−1∑
k=1

(−1)k+1 λ
(k)
0

(k + 1)! I(1, Yl−2,1, . . . , Yl−2,l−k−2; q)

+ I(1, Yl−2,1, . . . , Yl−2,1, 1, ĝban,l−1; q)
]
,

where we defined
ĝban,l−1(q) = α̂1(q)Π̂l−1,1(q)/x(q) . (5.39)

Let us give here some explicit results:

ĝban,2(q) = 1− 1q − 5q2 − 1q3 + 11q4 +O(q5) ,
ĝban,3(q) = 1− 2q − 14q2 − 38q3 − 142q4 +O(q5) ,
ĝban,4(q) = 1− 3q − 27q2 − 147q3 − 1467q4 +O(q5) .

(5.40)

Similarly, we have:

I+
l,1(x; 2) =

l−1∑
k=1

[
c+
l,l−k Π̂l−1,1(q) I(1, Yl−2,1, . . . , Yl−2,l−k−2; q)

+l! (−1)k Πl−1,l−k(x)I(fl−1,k, f0;x)
]

= Π̂l−1,1(q)
[
l−1∑
k=1

c+
l,l−k I(1, Yl−2,1, . . . , Yl−2,l−k−2; q)

− l!I(1, Yl−2,1, . . . , Yl−2,1, 1, ĝice,l; q)
]
,

(5.41)
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where we defined similarly

ĝice,l(q) = α̂1(q)Π̂l−1,1(q) log(x(q))/x(q) . (5.42)

Again some explicit results are:

ĝice,2(q) = (1− 1q − 5q2) log q − 4q + 6q2 +O(q3) ,
ĝice,3(q) = (1− 2q − 14q2) log q − 6q + 15q2 +O(q3) ,
ĝice,4(q) = (1− 3q − 27q2) log q − 8q + 28q2 +O(q3) .

(5.43)

Notice that since eq. (5.42) contains itself a logarithm, we can write:

I(1, Yl−2,1, . . . , Yl−2,1, 1, ĝice,l; q) = I(1, Yl−2,1, . . . , Yl−2,1, 1, ĝban,l−2, α̂1(q); q) , (5.44)

which explicitly shows that the particular solution of the l-loop ice cone graph is obtained
from the particular solution of the banana at (l − 1)-loops, augmented by an additional
integration.

Equations (5.38) and (5.41) are main results of this paper. They express the banana
and ice cone integrals in terms of iterated integrals in the canonical variable q. These
iterated integrals are the natural generalisation of the iterated integrals of Eisenstein series
that appear in the results for the two and three-loop banana integrals in d = 2 dimen-
sions [52, 53, 55, 56, 65]. It is remarkable that the letters of the iterated integrals are
entirely constructed out of geometrical invariants for the Calabi-Yau (l− 1)-folds attached
to the (l− 1)-loop banana integral, namely the period Π̂l−1,1(q) that is holomorphic at the
MUM point q = 0, the mirror map x(q) and the Y -invariants Yl−2,m(q). We also emphasise
the following point: it is easy to see that all the iterated integrals appearing in eqs. (5.38)
and (5.41) diverge logarithmically at the MUM point:

I(f1, . . . , fm; q) = 1
m! logm q +O(q) . (5.45)

It is thus natural to assign transcendental weight m to these iterated integrals. This means
that the (l − 1)-loop banana integral in eq. (5.38) has transcendental weight l − 1 and the
l-loop ice cone integral in eq. (5.41) has weight l. More precisely, they are pure functions
of weight l − 1 and l [127, 128]. Since the coefficients λ(k)

0 and c+
l,k have uniform weight k

and l − k, we see that, after normalising eqs. (5.38) and (5.41) by the holomorphic period
Π̂l−1,1(q) (which has transcendental weight 0 and computes a maximal cut of the integral),
they are pure functions of uniform weight. This generalises the property observed for the
two- and three-loop banana integrals in refs. [53, 65] to an arbitrary number of loops.

6 Conclusion

In this paper we have presented for the first time analytic results for the ice cone graphs
with equal propagator masses. By analysing their generalised leading singularities in d = 2
dimensions, we could identify a set of master integrals such that, at any number of loops
l, the Gauss-Manin system takes a particularly convenient form. Remarkably, in this basis
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the homogeneous equations in the top sector organise into two copies of the periods of the
Calabi-Yau varieties associated with the (l−1)-fold banana integrals. As a consequence, by
applying the strategy developed in ref. [64] in the context of equal-mass banana integrals,
we can solve the Gauss-Manin system for the ice cone graphs in terms of the same class of
iterated integrals. The initial condition is then obtained by studying the analytic structure
of the ice cone integrals, and we could identify a generating function for the integration
constants. While both the basis of master integrals and the form of the generating function
remains conjectural, we have tested the basis of master integrals through five loops and
the generating function up to seven loops using public available tools, and we are confident
that our results are valid to any number of loops.

Our representation for the solutions involves an integration over the coordinate x on the
moduli space of the family of Calabi-Yau varieties. This choice of coordinates is by no means
canonical. In a second part of this paper we have therefore studied how we can express
the iterated integrals in terms of the canonical coordinate q on the moduli space defined
by the mirror map. We find that, both for the banana and ice cone integrals, the results
can be written in terms of iterated integrals whose kernels involve the geometric invariants
one can attach to a one-parameter family of Calabi-Yau n-folds. These are its mirror map
x(q), the period Π̂n+1,1(q) that is holomorphic at the MUM point and, for n ≥ 3, the Y -
invariants Yn,m(q). This is similar to the representation of the four- and five-loop banana
integrals (which correspond to n = 3, 4) presented in refs. [72, 115], but we observe that
one needs to include a second independent Y -invariant starting for n ≥ 5, consistent with
the known literature on Calabi-Yau operators [73, 74]. As a byproduct, we obtain a novel
representation of the logarithmically-divergent periods as iterated integrals involving the Y -
invariants, and we observe that in this representation the well-known quadratic relations
among periods from Griffith transversality reduce to simple shuffle relations among the
iterated integrals. To the best of our knowledge, this representation of the periods is new
and has not yet been considered in the literature on Calabi-Yau varieties.

Our results also open new possibilities for further research. First, it would be inter-
esting to see if one can extend the results of ref. [72] on canonical ε-forms beyond n = 3
and/or to ice cone integrals. An interesting direction to find an ε-form in this context could
be the extension of the algorithm of ref. [129] to higher-dimensional Calabi-Yau varieties.
This would allow us to obtain analytic results for the higher orders in the dimensional
regulator ε for ice cone integrals. Second, it would be interesting if one could interpret our
generating functional for the initial conditions in eq. (4.16) as a generalised Γ̂-class, similar
to the conjecture of ref. [64] for equal-mass banana integrals. This could then possibly
open the way to prove our conjectured eq. (4.16) using the techniques of ref. [114]. Finally,
it would be interesting if one can extend our results on the iterated integrals in q, as well
as the results of ref. [72] to families of Calabi-Yau varieties depending on more than one
modulus. For example, we expect that from eq. (5.11) it should be possible to obtain a
representation of the periods as iterated integrals also in the multi-parameter case. We
leave these topics for future work.
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A Derivation of the master integrals I0,0 and I0

We first write down some useful integrals. These identities are valid for suitable ranges of
parameters. They are:∫ ∞

0
(x1 . . . xl−1)a(1 + x1 + . . .+ xl−1)−b dx1 . . . dxl−1 (A.1)

= Γ(1 + a)l−1Γ(b− (l − 1)(1 + a))
Γ(b) ,∫ ∞

0
(1 + x1)a(x2 . . . xl)b(1 + x1 + . . .+ xl)cxd1 dx1 . . . dxl−1 (A.2)

= Γ(1 + b)l−1Γ(1 + d)Γ(−(l − 1)(b+ 1) + c)Γ(−l − a− (l − 1)b− c− d)
Γ(−(l − 1)(1 + b) + a+ c)Γ(−c) ,∫ ∞

0
(1 + x1)a(x2 . . . xl)b((1 + x1)(1 + x1 + . . .+ xl)− p2x1)cxd1 dx1 . . . dxl−1 (A.3)

= Γ(1 + b)l−1Γ(1 + d)Γ(1 + b− c− l − lb)Γ(−a+ b− 2c− d− l − lb)
Γ(1− a+ b− 2c− l − lb)Γ(−c)

× 3F2

(
1 + d, 1− l − (l − 1)b− c,−l − a− (l − 1)b− 2c− d;

1
2 −

l

2 −
a

2 − (l − 1) b2 − c, 1−
l

2 − (l − 1) b2 − c;
p2

4

)
,

where the last can be derived using the second and the Gauss-hypergeometric function 2F1.
Using these three integral identities we can derive the following expressions for the

subtopologies. The first subtopology is the tadpole with squared propagators

I0,0 =
∫ ddk1
iπd/2

. . .
ddkl
iπd/2

1
(k2

1 − 1)2 . . .
1

(k2
l − 1)2 = Γ(2− d/2)l , (A.4)

which is finite in d = 2 dimensions as can easily be seen. Next we need the subtopology
which is a one-loop bubble times (l − 1) tadpoles. To get a finite expression, we again
square the propagators belonging to the (l − 1) tadpoles. We find, with p the momenta
flowing into the graph,

I0 =
∫ ddk1
iπd/2

. . .
ddkl
iπd/2

1
(p− k1)2 − 1

1
k2

1 − 1
1

(k2
2 − 1)2 . . .

1
(k2
l − 1)2

= Γ(2− d/2)l 2F1(1, 2− d/2, 3/2; p2/4) .
(A.5)
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The last subtopology is given by the l-loop banana at zero ingoing momentum. For high
loop orders there is no analytic form known neither for propagator powers equal to unity
nor other non-negative values. But all of them are finite constants at p2 = 0. It turns out
that for the leading contribution in d = 2 of the ice cone graphs, the banana subtopologies
are not needed, as explained in section 3.2.

B Quadratic relations from shuffle algebras

In this section we give the proofs of eqs. (5.31) and (5.36). We show that eq. (5.31) follows
only from the shuffle algebra structure of iterated integrals, combined with the reflection
identity of the Y -invariants in eq. (5.9). We start with an extra section on basic facts about
shuffle algebras.

B.1 The shuffle Hopf algebra

We consider a set of letters ai, from which we can form words by concatenating letters.
The length of the word w, denoted by |w|, is the number of letters it is composed of. The
empty word, i.e., the unique word of length 0, is denoted by 1.

The shuffle algebra generated by these letters is the algebra A consisting of all Q-linear
combinations of words, together with the shuffle product:

(a1 · · · ak)� (ak+1 · · · a`) =
∑

σ∈Σ(k,`)
aσ1 · · · aσ`

, (B.1)

where Σ(k, `) is the set of all shuffles of k and `− k elements, i.e., the subset of the permu-
tations of (1, . . . , `) that leave the relative order of (1, . . . , k) and (k + 1, . . . , `) invariant.
The shuffle algebra is graded by the length of the words,

A =
∞⊕
`=0

A` , (B.2)

where A` is the vector space generated by all words of length `.
Every shuffle algebra is a Hopf algebra, whose coproduct is the deconcatenation of

words and the antipode is the reversal of words (up to a sign):

∆(a1 · · · a`) =
`+1∑
k=0

(a1 · · · ak)⊗ (ak+1 · · · a`) ,

S(a1 · · · a`) = (−1)` a` · · · a1 .

(B.3)

The counit is the projection onto words of length zero, i.e., if w is a word:

ε(w) =

 0 , |w| > 0 ,
1 , |w| = 0 .

(B.4)

It is one of the defining axioms of a Hopf algebra that the multiplication m, the
coproduct ∆, the antipode S and the counit ε are related by

m(id⊗ S)∆ = ε . (B.5)
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This implies that the following identity holds in every shuffle algebra (` > 0):

`+1∑
k=0

(a1 · · · ak)� S(ak+1 · · · a`) =
`+1∑
k=0

(−1)`−k(a1 · · · ak)� (a` · · · ak+1) = 0 . (B.6)

Since iterated integrals form a shuffle algebra, this implies that we have the following
relation among iterated integrals:

`+1∑
k=0

I(f1, . . . , fk; q) IS(fk+1, . . . , f`; q)

=
`+1∑
k=0

(−1)`−kI(f1, . . . , fk; q) I(f`, . . . , fk+1; q) = 0 ,
(B.7)

where we defined

IS(f1, . . . , fm; q) = (−1)m I(fm, . . . , f1; q) . (B.8)

B.2 Proof of eq. (5.31)

In this appendix we prove eq. (5.31). While eq. (5.31) is equivalent to the well-known
quadratic relations among periods following from Griffiths transversality, we show here
that it is possible to prove eq. (5.31) only using the shuffle algebra structure of iterated
integrals, without using Griffiths transversality as an input.

We start by defining, for m ≥ 0,

Ω[m]
n =

(
0, . . . , 0︸ ︷︷ ︸

m

, 1, I(Yn,m; q), . . . , I(Yn,m, . . . , Yn,n−1; q)
)T

. (B.9)

Note that for m = 0, 1, 2 we have the relations:

ω̂n+1 = Ω[0]
n , θq ω̂n+1 = Ω[1]

n and θ2
q ω̂n+1 = Yn,1 Ω[2]

n . (B.10)

For m > 2, the relation between Ω[m]
n and the derivatives of ω̂n is more complicated, and

involves linear combinations:

θmq ω̂n+1 =

m−1∏
p=0

Yn,p

 Ω[m]
n +

m−1∑
r=1

Cr Ω[r]
n , (B.11)

where Cr are sums of products of Y -invariants and their derivatives. Their explicit form is
irrelevant here. The important point is that it is easy to see from eq. (B.11) that eq. (5.31)
is equivalent to

Ω[0]T
n Σn+1 Ω[m]

n = δmn . (B.12)
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This is manifest for m = n. For m < n, we have

Ω[0]T
n Σn+1 Ω[m]

n =
n+1∑
k=1

(−1)n−k+1Ω[0]
n,n−k+2 Ω[m]

n,k

= (−1)n−mΩ[0]
n,n−m+1 + Ω[m]

n,n+1 +
n∑

k=m+2
(−1)n−k+1Ω[0]

n,n+2−k Ω[m]
n,k

= (−1)n−mI(Yn,0, . . . , Yn,n−m−1; q) + I(Yn,m, . . . , Yn,n−1; q)+

+
n∑

k=m+2
(−1)n−k+1I(Yn,0, . . . , Yn,n−k; q) I(Yn,m, . . . , Yn,k−2; q)

= (−1)n−mI(Yn,n−1, . . . , Yn,m; q) + I(Yn,m, . . . , Yn,n−1; q)+

+
n∑

k=m+2
(−1)n−k+1I(Yn,n−1, . . . , Yn,k−1; q) I(Yn,m, . . . , Yn,k−2; q)

= IS(Yn,m, . . . , Yn,n−1; q) + I(Yn,m, . . . , Yn,n−1; q)+

+
n∑

k=m+2
I(Yn,m, . . . , Yn,k−2; q) IS(Yn,k−1, . . . , Yn,n−1; q)

= 0 ,

(B.13)

where in the fourth equality we have used the reflection identity (5.9) for the Y -invariants,
and the last step follows immediately from eq. (B.7).

B.3 Proof of eq. (5.36)

We use the notations and conventions of section 5.2.2. The proof follows exactly the same
argument as for the proof of eq. (B.12). We have:

Πn+1(x)TΣn+1

∫ x

~10
dx′G(x′) Πn+1(x′)

=
n+1∑
k=1

(−1)n−k+1Πn+1,n−k+2(x)
∫ x

~10
dx′G(x′) Πn+1,k(x′)

= Π̂n+1,1(q)
n+1∑
k=1

(−1)n−k+1ω̂n+1,n−k+2(q)
∫ q

~10

dq′

q′
ĝ(q′) ω̂n+1,k(q′)

= Π̂n+1,1(q)
n+1∑
k=1

(−1)n−k+1I(Yn,0, Yn,1, . . . , Yn,n−k; q)
∫ q

~10

dq′

q′
ĝ(q′)I(Yn,0, Yn,1, . . . , Yn,k−2; q′)

= Π̂n+1,1(q)
n+1∑
k=1

(−1)n−k+1I(Yn,0, Yn,1, . . . , Yn,n−k; q) I(ĝ, Yn,0, Yn,1, . . . , Yn,k−2; q)

= Π̂n+1,1(q)
n+1∑
k=1

(−1)n−k+1I(Yn,n−1, Yn,n−2, . . . , Yn,k−1; q) I(ĝ, Yn,0, Yn,1, . . . , Yn,k−2; q)

= Π̂n+1,1(q)
n+1∑
k=1

I(ĝ, Yn,0, Yn,1, . . . , Yn,k−2; q)IS(Yn,k−1, . . . , Yn,n−2, Yn,n−1; q)

= −Π̂n+1,1(q)IS(ĝ, Yn,0, Yn,1, . . . , Yn,n−1; q)
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= (−1)nΠ̂n+1,1(q)I(Yn,n−1, . . . , Yn,1, Yn,0, ĝ; q)
= (−1)nΠ̂n+1,1(q)I(1, Yn,1, Yn,2, . . . , Yn,2, Yn,1, 1, ĝ; q) , (B.14)

where we used the reflection property of the Y -invariants in eq. (5.9) and the last step
follows immediately from eq. (B.7).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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