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1 Introduction

Quantum computing is a promising tool for a variety of problems because an exponentially
large Hilbert space can be described by polynomially many qubits. In high energy physics,
there is particular promise for simulations of quantum field theories, where every spacetime
point has quantum degrees of freedom, but polynomial algorithms exist for state preparation
and time evolution [1, 2]. However, not all classically hard algorithms are more efficient on
a quantum computer.

One particular class of algorithms that has received significant attention in high energy
physics (HEP) is Quantum Machine Learning (QML). In this paper, QML refers to machine
learning tasks that are executed on quantum computing hardware. While QML is not
known to be more efficient than classical machine learning (CML), there have been many
empirical studies to explore the potential of QML for HEP [3–19] (see also ref. [20] for a
recent review).

A common theme that has emerged from these studies is that QML seems to out-
perform CML with small training datasets.1 While there is no rigorous explanation for
this observation, it could be that QML provides a superior inductive bias and/or more
expresivity with a smaller number of parameters. In nearly all studies, CML outperforms
QML when there are more than O(100) examples. There are almost no problems in collider
HEP that have such small numbers of events for training. The goal of this paper is to
explore a realistic use case for near-term QML for collider physics. See also ref. [21] for the
broader context of QML versus CML.

1There may be other advantages as well, such as the prospect for more global optimization instead of
local optimization. We leave this exploration for future studies.
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Most analyses at the Large Hadron Collider (LHC) make use of simulation for training
classifiers. Since these simulations can be used to generate more events independent of
collider operations, they are not in a regime where QML is expected to outperform CML
with near-term quantum hardware. Therefore, analyses that have the potential for QML to
outperform CML should require data for training. Since we do not know the origin of any
particular data event, such methods are called less than supervised [22].

One particularly promising class of less-than-supervised methods is signal model-
independent anomaly detection. Such approaches are characterized by the comparison of
data in a particular region of phase space (signal region) with a reference sample. There
have been many proposals for doing this comparison using machine learning (for overviews,
see e.g. refs. [22–24]). A highly sensitive approach is to train a classifier to distinguish data
from a precise prediction of the background (semi-supervised learning). If the background
is well-understood theoretically, then the reference sample could be simulation. This has
the advantage that the background prediction does not need to be learned, but has the
disadvantage of being strongly background-model dependent.

There are few final states at the LHC for which the background is known precisely
enough to be used directly for background estimation. One exception is the final state with
four charged leptons. Both ATLAS [25–27] and CMS [28–30] directly use Monte Carlo (MC)
simulations to estimate the background and ATLAS even uses machine learning to isolate
particular signals [25]. While powerful, this approach is signal model-specific and does
not readily extend to models with multidimensional parameters. Reference [31] recently
proposed to use machine learning as an alternative approach. It was shown that training
classifiers to distinguish data from background-only simulation provides a complementary
approach to direct searches and has broad signal sensitivity. As the four lepton final state
also has a small cross section, this is a natural target for studying QML.

The prospect of QML for anomaly detection was first studied in ref. [16] in the context
of autoencoders. These unsupervised tools can be trained without any simulation, but
are not as effective as semi-supervised methods when there is a good background model
and/or when the new physics is not the lowest density events [32, 33]. For this reason, our
focus is on semi-supervised learning. We also assume an idealized situation where there
are no systematic uncertainties. Nuisance parameters will likely not change the qualitative
conclusions of the QML versus CML comparison and have been discussed in ref. [34] for
anomaly detection.

This paper is organized as follows. Section 2 briefly introduces various QML approaches.
The simulated samples to be used for the machine learning are described in section 3.
Numerical results are presented in section 5 and the paper ends with conclusions and
outlook in section 6.

2 Quantum Machine Learning

There are a number of ways quantum computers can be used for machine learning. One
of the first applications of quantum machine learning to a high energy physics problem
explored quantum annealing for identifying Higgs-boson events [3]. Another possibility
is that quantum algorithms can reduce the computational complexity of linear algebra
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operations core to a number of ML approaches (see e.g. refs. [35–37]). The approach we
focus on involves using quantum circuits as flexible function approximators similar to neural
networks and other classical ML techniques. Quantum-classical variational methods used to
optimize parameteric circuits are the analog of tuning the weights and biases of a classical
neural network. These circuits have been applied identifying SUSY events [6], tt̄H and
H → µ+µ− analyses [8], and Z ′ resonance searches [5].

There have been a number of claims in the literature that QML methods of this kind
outperform CML for limited training data. While there is no formal proof of this claim, it
could be justified intuitively as a result of the improved inductive bias of quantum circuits.
In other words, the class of functions that QML represent with a limited set of parameters
are more relevant / tailored to HEP problems. We aim to explore this claim in the context
of two variational algorithms in the four lepton anomaly detection search.2

The two QML methods we study are called Variational Quantum Circuits (VQC)
and Quantum Circuit Learning (QCL). These are both implementations of parameterized
quantum circuits where the various rotation angles are optimized via classical methods.
Each algorithm is composed of multiple components: state preparation, which encode
classical data into quantum states, the model circuit, which contains the parameters that
are optimized during the training process, and the measurement and output, which are
used to evaluate performance of the circuit. VQC and QCL differ only in the structure of
the parameterized circuit, as detailed in section 4. As the examples we study in this paper
are relatively small in terms of quantum resources, all circuits are simulated on classical
computers.

Note that we also studied Quantum Support Vector Machines (QSVMs) [36], but initial
tests suggested that they are strictly less effective than other methods so they were not
included in the final tests. See also ref. [38] for a broader perspective on QVSMs. We have
also explored the quantum gradient descent studied in ref. [5]. We tested the setup using
Pennylane [39] and found that the learning rates were unreliable for Gaussian classification
as well as our HEP application, so this was not pursued further.

3 Simulation

The simulated datasets are the same as in ref. [31] and are briefly summarized in the
following. All events are generated with MadGraph5_aMC@NLO 2.8.0 [40]. Both
signal and background events are generated using the Higgs Boson Effective Field Theory
(heft) [41] in which the heavy top quark limit is used for the gluon-gluon-Higgs vertex. We
focus on the e+e−µ+µ− final state to avoid combinatoric ambiguity (see figure 1). After the
matrix element calculations, the outgoing particles are processed with Pythia 8.244 [42–44]
with its default settings for parton showering and hadronization. Pythia also handles
the decay of the anomalies, which are Higgs-like scalar particles with a mass of 125GeV
decaying asymmetrically into two lighter-mass bosons, one of which decays to electrons and
the other which decays into muons. This is accomplished technically by generating Higgs

2As a cross-check, we also explored the Supersymmetry example of ref. [6]. We were unable to reproduce
the QML superior performance at low sample size and the CML was also significantly improved by adding
more parameters.
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Figure 1. Left: an example background leading order Feynman diagram and Right: an example
signal Feynman diagram. One of the outgoing Z bosons decays to muons and the other decays
to electrons.

bosons and then replacing the PDGID [45] of 25 (SM Higgs) with 35 (2HDM heavier Higgs)
in the Les Houches Event (LHE) files [46] and then setting the decay of this particle into
particles with PDGIDs 23 (Z boson) and 36 (2HDM pseudoscalar). Subsequently, the Z
boson (pseudoscalar) is forced to decay into electrons (muons). All three BSM particles are
set to a narrow width. The detector response is emulated with Delphes 3.4.2 [47–49] using
the default CMS card. We will make the simplifying assumption that there is no systematic
uncertainty in the background estimation and so the ‘data’ and ‘simulation’ are statistically
identical when no signal events are injected. Recent studies exploring the integration of
systematic uncertainties in this setup can be found in ref. [34]. The number of events in
background corresponds to the LHC Run 2 dataset (about 150 fb−1, which corresponds to
thousands of events that pass our event selection).

In this work we focus only on the leptoninc final states. Other event properties
could also be useful, however, information about the hadronic final state is known with
less precision and thus may introduce the need to go beyond a pure simulation-based
background estimation. Each event is characterized four three-momenta (12 numbers in
total). For our target models, pp → A → B(→ e+e−)C(→ µ+µ−), the three masses
me+e−µ+µ− ,me+e− ,mµ+µ− are nearly sufficient3 statistics for characterizing the new physics.
In this paper, we consider signals of this form, where A is a non-SM Higgs boson that
decays to two different mass bosons. The model is specified by three parameters: mA,mB,
and mC . There is also an overall cross section set by the coupling of the A particle to the
rest of the Standard Model. This cross section will be varied in the subsequent analysis
by considering different numbers of signal events. Given the three-dimensional parameter
space, we focus on the three-dimensional problem in this paper. Non-resonant signals and
signals with non-trivial spin structures could benefit from using more of the phase space
in the future. While there are currently LHC searches for the case that B = C (or B is
a BSM particle and C is a Z boson), there is currently no search where all three masses
could be different (although not for a lack of physics motivation [50]).

The spectra of the three invariant masses (me+e−µ+µ− ,me+e− ,mµ+µ−) for the back-
ground and our representative signal are presented in figure 2. As expected, the di-electron

3In Statistics, a sufficient statistic is an observable that contains all of the relevant information for inference.
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Figure 2. The three dimensions used for machine learning: me+e− (left), mµ+µ− (right) and
m4` (bottom).

and di-muon invariant masses peak near the Z boson mass of 90GeV [45] and there are
peaks in the four-lepton invariant mass at the Z peak and the Higgs boson mass of about
125GeV [45]. The signal is resonant in all three observables with peaks at the masses of
the particles. The parent particle (125GeV mass) decays to two children, with masses of
25 and 15GeV for electrons and muons, respectively. Note that these parameters are not
known to the neural network.

4 (Quantum) Machine Learning Setup

As stated earlier, our QML approaches are both variational circuits that are analogous
to classical neural networks with a large number of tunable parameters. We consider two
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4 (Quantum) Machine Learning Setup

As stated earlier, our QML approaches are both variational circuits that are analogous

to classical neural networks with a large number of tunable parameters. We consider two

flavors: VQC and QCL. These two approaches are described in more detail below and only

di↵er in how the classical data are encoded and what parameterized circuits are used in

the learning. VQC uses a simpler encoding with a multi-qubit rotation followed by a series

of CNOT gates for the variational part. Instead, QCL uses a more complex encoding and

then time evolution of a certain Hamiltonian for the variational component.

4.1 VQC

Figure 2 shows the VQC circuits used in this study. The input features (xi) are min-max

scaled so that the argument of the initial Ry gates are valid angles. The rotational gate

R(✓) is given by RZ(↵)RY (!)RZ(�), where ↵, !, and � are the trainable weights of the

circuit. These angles are unique for each qubit, leading to a total of 18 parameters for

the one-dimensional setup and 27 for the three-dimensional setup. The expectation value

zi of the Pauli Z operator for the first two qubits is measured and the loss function is

cross-entropy:

�
X

log

✓
ez0

ez0 + ez1

◆
+ log

✓
ez1

ez0 + ez1

◆�
, (4.1)

where the exponential terms represent the soft-max activation function.

|0i Ry(x1)
R(✓)

•

|0i Ry(x1) •

– repeat 3 times –

|0i Ry(x1)

R(✓)

• •

|0i Ry(x2) •

|0i Ry(x3)

– repeat 3 times –

Figure 2. VQC circuit for the one-dimensional (left) and three-dimensional (right) datasets.

There are a number of hyperparameters that must be selected and the ones described

above were chosen after a detailed study. By varying the number of qubits, we observed

that two qubits resulted in an optimal accuracy for the one-dimensional classification task.

Using more than six qubits caused issues related to overfitting of the data while also

increasing runtime. As such we chose three qubits for the three-dimensional case. We

observed that we needed a minimum of three rotation gates in order to achieve an e↵ective

level of expressivity of the circuit. Between three and five rotation gates, we did not see

a significant increase in accuracy, and beyond five rotation gates, the time to run the

simulation became prohibitive while also not resulting in an increase in performance. The

default encoding gate included a Y and Z rotation but testing di↵erent combinations of

input encoding gates showed no performance di↵erence so the final circuit just included a Y
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Figure 3. VQC circuit for the one-dimensional (left) and three-dimensional (right) datasets.

flavors: VQC and QCL. These two approaches are described in more detail below and only
differ in how the classical data are encoded and what parameterized circuits are used in
the learning. VQC uses a simpler encoding with a multi-qubit rotation followed by a series
of CNOT gates for the variational part. Instead, QCL uses a more complex encoding and
then time evolution of a certain Hamiltonian for the variational component.

4.1 VQC

Figure 3 shows the VQC circuits used in this study. The input features (xi) are min-max
scaled so that the argument of the initial Ry gates are valid angles. The rotational gate
R(θ) is given by RZ(α)RY (ω)RZ(φ), where α, ω, and φ are the trainable weights of the
circuit. These angles are unique for each qubit, leading to a total of 18 parameters for the
one-dimensional setup and 27 for the three-dimensional setup. The output is the expectation
value of Z, which is achieved by taking several shots of each qubits.

There are a number of hyperparameters that must be selected and the ones described
above were chosen after a detailed study. By varying the number of qubits, we observed that
two qubits resulted in an optimal accuracy for the one-dimensional classification task. Using
more than six qubits caused issues related to overfitting of the data while also increasing
runtime. As such we chose three qubits for the three-dimensional case. We observed that we
needed a minimum of three rotation gates in order to achieve an effective level of expressivity
of the circuit. Between three and five rotation gates, we did not see a significant increase in
accuracy, and beyond five rotation gates, the time to run the simulation became prohibitive
while also not resulting in an increase in performance. The default encoding gate included
a Y and Z rotation but testing different combinations of input encoding gates showed no
performance difference so the final circuit just included a Y rotation gate. Batch learning
was also implemented for the three-dimensional dataset tests, which greatly improved
performance. The circuit was optimized using vanilla gradient descent, which is equivalent
to classical stochastic gradient descent with the gradient of the quantum circuit calculated
using Pennylane’s [39] implementation of the parameter shift rules for quantum circuits.

4.2 QCL

The circuit’s parameterized gates follow [6] in a way that allows for access of the entire
Bloch sphere given an arbitrary input state. The gate that introduces entanglement involves
a time evolution operation following the Ising model Hamiltonian H as in figure 4. We did
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rotation gate. Batch learning was also implemented for the three-dimensional dataset tests,

which greatly improved performance. The circuit was optimized using vanilla gradient

descent, with the quantum gradient calculated using Pennylane’s [95] implementation of

the parameter shift rules for quantum circuits.

4.2 QCL

The circuit’s parameterized gates follow [6] in a way that allows for access of the entire

Bloch sphere given an arbitrary input state. The gate that introduces entanglement involves

a time evolution operation following the Ising model Hamiltonian H as in Figure 3. We

did not experiment with di↵erent Hamiltonians as their work remarks that changing this

did not achieve a di↵erent result. As with VQC, the output is the expectation value of

Z. The number of qubits to encode parameters in the 1D case was chosen after a brief

exploration to be two. Each input value was duplicated and stored in two separate qubits

which were transformed by the same circuit. For 3D testing we used six qubits. For all

tests the circuits had three layers, which are outlined in Figure 3. The optimization was

completed using the COBYLA method [106] with the parameter shift rule as defined in [6]

and binary cross-entropy loss.

The ✓i are the trainable weights of the circuit. The three-dimensional case follows the

same structure as Figure 2 and the alternative Uin in Figure 10 from [6], except the three

inputs are duplicated so that six qubits can be used. There were 18 trainable parameters

for the one-dimensional setup and 54 trainable parameters for the three-dimensional setup.

|0i H Ry(sin
�1 (x1)) Rz(cos

�1 (x2
1)) • • · · ·

|0i H Ry(sin
�1 (x1)) Rz(cos

�1 (x2
1)) Rz(cos

�1(x2
1)) · · ·

· · ·
e�iHt

Rx(✓1) Rz(✓3) Rx(✓5)

· · · Rx(✓2) Rz(✓4) Rx(✓6)

– repeat 3 times –

Figure 3. QCL circuit for 1 dimensional datasets.

4.3 CML

The performance of the quantum machine learning setups are compared against two neural

networks implemented in TensorFlow [107]. The first network (‘NN Low’) has one layer

with 32 nodes and the second network (‘NN High’) had two 32 node layers, which corre-

sponds to 97 and 1,217 trainable parameters, respectively. The output was passed through

a sigmoid activation and the NN High model used rectified linear activation (ReLU) func-

tions for the intermediate layer.

The networks were optimized using the binary cross entropy with Adam [108]. Each

network was run for a fixed number of epochs, determined by the convergence of the loss

curves: 50 epochs for the one-dimensional example and 100 for three-dimensional example.
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Figure 4. QCL circuit for 1 dimensional datasets.

not experiment with different Hamiltonians as their work remarks that changing this did
not achieve a different result. The expectation value zi of the Pauli Z operator for the first
two qubits is measured and the loss function is cross-entropy:

−
∑[

log
(

ez0

ez0 + ez1

)
+ log

(
ez1

ez0 + ez1

)]
, (4.1)

where the exponential terms represent the soft-max activation function. The number of
qubits to encode parameters in the 1D case was chosen after a brief exploration to be two.
Each input value was duplicated and stored in two separate qubits which were transformed
by the same circuit. For 3D testing we used six qubits. For all tests the circuits had three
layers, which are outlined in figure 4. The optimization was completed using the COBYLA
method [51] with the parameter shift rule as defined in [6] and binary cross-entropy loss.

The θi are the trainable weights of the circuit. The three-dimensional case follows the
same structure as figure 2 and the alternative Uin in figure 10 from [6], except the three
inputs are duplicated so that six qubits can be used. There were 18 trainable parameters
for the one-dimensional setup and 54 trainable parameters for the three-dimensional setup.

4.3 CML

The performance of the quantum machine learning setups are compared against two neural
networks implemented in TensorFlow [52]. The first network (‘NN Low’) has one layer with
32 nodes and the second network (‘NN High’) had two 32 node layers, which corresponds to
97 and 1,217 trainable parameters, respectively. The output was passed through a sigmoid
activation and the NN High model used rectified linear activation (ReLU) functions for the
intermediate layer.

The networks were optimized using the binary cross entropy with Adam [53]. Each
network was run for a fixed number of epochs, determined by the convergence of the loss
curves: 50 epochs for the one-dimensional example and 100 for three-dimensional example.
A summary of the various ML models is presented in table 1.

5 Results

We perform a weakly/semi-supervised search where a classifier is trained to distinguish
a background sample from another, statistically independent and identical sample, that
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1D Model Parameters Time (h:mm:ss) Optimization Method Optimization Steps
VQC 18 0:56:42 Vanilla GD 50
QCL 18 0:00:45 COBYLA 30

NN Low 97 0:03:25 Adam 50
NN High 1217 0:03:40 Adam 50

3D
VQC 27 1:57:35 Vanilla GD 50
QCL 54 0:01:07 COBYLA 20

NN Low 97 0:06:40 Adam 50
NN High 1217 0:03:35 Adam 100

Table 1. A summary of the hyperparameters chosen for each classifier and average running (training
and testing) time. The times were evaluated using the Perlmutter computer at NERSC, which has
nodes consisting of A100 NVIDIA GPUs (used for NNs) and Milan AMD CPUs.

has some number of signal events added to it. Due to the small number of injected signal
events, it is important to study the sensitivity to different random sets of signal events.
The results presented below are averaged over 80 different random selections of signal
and background (with error bars representing the standard deviation). The performance
is quantified in terms of the number of standard deviations4 achieved after applying the
optimal (maximum significance improvement) threshold on the network.5 The maximum
significance improvement is model dependent, but it is chosen here to bound the achievable
performance. In practice, the challenge of selecting the threshold is the same for both QML
and CML methods. Two relevant benchmark significance are 2σ and 5σ which approximately
correspond to the community standards for excluding and discovering a model, respectively.

Numerical results are presented in figure 5. As a first test, we fix the background at
1000 events and scan the number of signal events. For reference, the naive significance
with 30 signal events is about unity. All of the methods are better than doing nothing and
surpass 2σ by 40 events. The QML models do not outperform the classical approaches and
in fact appear to be systematically worse except perhaps for the lowest number of signal
events where the significances themselves are below unity (and thus irrelevant). Similar
trends hold for the three-dimensional data, except that the QCL performs relatively worse
and the NN High performs relatively better. We note that the error bars on the plots are
not small, which illustrates the importance of ensembling over the random parts of the
training as well as over the random injetion of signal (and background) events.

As a second test, we fix the signal fraction and vary the number of signal events (which
also changes the number of background events). At 1% fraction, for reference, 10 signal
events would then correspond to the 1000 background events in the lefthand plots of figure 5.

4This is approximated by the number of signal events divided by the square root of the number of
background events. We do not expect that more precise calculations/approximations will qualitatively
change the results.

5Other papers have used the Area Under the Receiver Operator Characteristic Curve (ROC AUC). While
the AUC is a standard metric in machine learning, it is not representative for HEP applications where
typically one working point (threshold) on the classifier is used instead of integrating across the entire
ROC curve.
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Figure 5. Results plotted against increasing signal events. The horizontal grey lines indicate
thresholds for exclusion (2σ) and discovery (5σ). The starting significance (i.e. significance before
making any cuts) for each graph is: Top Left: { 0.3, 0.6, 0.9, 1.3 } Top Right: { 0.6, 0.9, 1.1, 1.3 }
Bottom Left: { 0.06, 0.2, 0.3, 0.4 } Bottom Right: { 0.3, 0.4, 0.5 }.

The trends for the fixed signal fraction are similar to the fixed background fraction, with
slightly worse performance due to the larger number of background events beyond 10 signal
events. Additional performance metrics including the Area Under the ROC curve (figure 6)
and the relative significance improvement can be found in appendix A. These additional
statistics corroborate the story presented in figure 5. The AUC is difficult to interpret as it
integrates across the entire ROC curve when in practice, we typically operate at a fixed
working point. Small changes in the AUC could correspond to regions of the ROC curve
that are physically useful, so the maximum significance improvement is instead chosen as
the default statistic.
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Figure 6. AUC plotted against increasing signal events.

6 Conclusions

Motivated by promising numerical studies from the HEP literature on quantum machine
learning for low-event count applications, we have explored where these techniques could
be practically useful for collider physics. Given that most machine learning methods are
trained using simulation (which are not limited in statistics), we concluded that a task
relying directly on data should be the target application. An important topic in this area is
anomaly detection, where machine learning methods are used to reduce model dependence.
One strategy that reduces signal model dependence is to train a classifier to distinguish
data from background-only simulation. This will be fundamentally limited by the number
of events in data and thus may be a good target for exploring an advantage of quantum
machine learning over its classical counterpart.
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There are not many final states that are modeled precisely enough for the data versus
simulation strategy to be effective at finding small signals. Following ref. [31], we consider
anomaly detection in the four-lepton final state, where the Standard Model is well-known,
yet there is plenty of phase space for new physics. We consider a low-dimensional version
of the problem within a model framework that has three free parameters (masses), which
already extends beyond the current searches at the LHC that focus on one and sometimes
two-dimensional versions of the problem. We do not find any advantage of quantum machine
learning over classical machine learning.

It could be that this particular problem is not well-suited for quantum machine learning
or that we have not picked exactly the right quantum machine learning architecture or
training process. We do not claim that our results are general for all of QML and all of
HEP, but we hope that our process and numerical results will be useful to put existing and
future studies of QML for HEP in context.
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Figure 7. The maximum significance improvement as a function of the number of signal events.

A Max(SIC) plots

Figure 7 quantifies the performance of the same studies as in section 4, using maximum
significance improvement.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

– 12 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
2
(
2
0
2
3
)
2
2
0

References

[1] S.P. Jordan, K.S.M. Lee and J. Preskill, Quantum Algorithms for Quantum Field Theories,
Science 336 (2012) 1130 [arXiv:1111.3633] [INSPIRE].

[2] C.W. Bauer et al., Quantum Simulation for High Energy Physics, UMD-PP-022-04 (2022)
[arXiv:2204.03381] [INSPIRE].

[3] A. Mott, J. Job, J.R. Vlimant, D. Lidar and M. Spiropulu, Solving a Higgs optimization
problem with quantum annealing for machine learning, Nature 550 (2017) 375 [INSPIRE].

[4] A. Zlokapa, A. Mott, J. Job, J.-R. Vlimant, D. Lidar and M. Spiropulu, Quantum adiabatic
machine learning by zooming into a region of the energy surface, Phys. Rev. A 102 (2020)
062405 [arXiv:1908.04480] [INSPIRE].

[5] A. Blance and M. Spannowsky, Quantum Machine Learning for Particle Physics using a
Variational Quantum Classifier, JHEP 02 (2021) 212 [arXiv:2010.07335] [INSPIRE].

[6] K. Terashi, M. Kaneda, T. Kishimoto, M. Saito, R. Sawada and J. Tanaka, Event
Classification with Quantum Machine Learning in High-Energy Physics, Comput. Softw. Big
Sci. 5 (2021) 2 [arXiv:2002.09935] [INSPIRE].

[7] S.Y.-C. Chen, T.-C. Wei, C. Zhang, H. Yu and S. Yoo, Quantum convolutional neural networks
for high energy physics data analysis, Phys. Rev. Res. 4 (2022) 013231 [arXiv:2012.12177]
[INSPIRE].

[8] S.L. Wu et al., Application of quantum machine learning using the quantum variational
classifier method to high energy physics analysis at the LHC on IBM quantum computer
simulator and hardware with 10 qubits, J. Phys. G 48 (2021) 125003 [arXiv:2012.11560]
[INSPIRE].

[9] S.Y.-C. Chen, T.-C. Wei, C. Zhang, H. Yu and S. Yoo, Hybrid Quantum-Classical Graph
Convolutional Network, arXiv:2101.06189 [INSPIRE].

[10] J. Heredge, C. Hill, L. Hollenberg and M. Sevior, Quantum Support Vector Machines for
Continuum Suppression in B Meson Decays, Comput. Softw. Big Sci. 5 (2021) 27
[arXiv:2103.12257] [INSPIRE].

[11] S.L. Wu et al., Application of quantum machine learning using the quantum kernel algorithm
on high energy physics analysis at the LHC, Phys. Rev. Res. 3 (2021) 033221
[arXiv:2104.05059] [INSPIRE].

[12] V. Belis et al., Higgs analysis with quantum classifiers, EPJ Web Conf. 251 (2021) 03070
[arXiv:2104.07692] [INSPIRE].

[13] J.Y. Araz and M. Spannowsky, Quantum-inspired event reconstruction with Tensor Networks:
Matrix Product States, JHEP 08 (2021) 112 [arXiv:2106.08334] [INSPIRE].

[14] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D.M. Grabowska and S. Carrazza, Style-based
quantum generative adversarial networks for Monte Carlo events, Quantum 6 (2022) 777
[arXiv:2110.06933] [INSPIRE].

[15] A. Blance and M. Spannowsky, Unsupervised event classification with graphs on classical and
photonic quantum computers, JHEP 21 (2020) 170 [arXiv:2103.03897] [INSPIRE].

[16] V.S. Ngairangbam, M. Spannowsky and M. Takeuchi, Anomaly detection in high-energy
physics using a quantum autoencoder, Phys. Rev. D 105 (2022) 095004 [arXiv:2112.04958]
[INSPIRE].

– 13 –

https://doi.org/10.1126/science.1217069
https://arxiv.org/abs/1111.3633
https://inspirehep.net/literature/945972
https://arxiv.org/abs/2204.03381
https://inspirehep.net/literature/2064292
https://doi.org/10.1038/nature24047
https://inspirehep.net/literature/1631446
https://doi.org/10.1103/PhysRevA.102.062405
https://doi.org/10.1103/PhysRevA.102.062405
https://arxiv.org/abs/1908.04480
https://inspirehep.net/literature/1749714
https://doi.org/10.1007/JHEP02(2021)212
https://arxiv.org/abs/2010.07335
https://inspirehep.net/literature/1822903
https://doi.org/10.1007/s41781-020-00047-7
https://doi.org/10.1007/s41781-020-00047-7
https://arxiv.org/abs/2002.09935
https://inspirehep.net/literature/1781933
https://doi.org/10.1103/PhysRevResearch.4.013231
https://arxiv.org/abs/2012.12177
https://inspirehep.net/literature/1837821
https://doi.org/10.1088/1361-6471/ac1391
https://arxiv.org/abs/2012.11560
https://inspirehep.net/literature/1837723
https://arxiv.org/abs/2101.06189
https://inspirehep.net/literature/1841358
https://doi.org/10.1007/s41781-021-00075-x
https://arxiv.org/abs/2103.12257
https://inspirehep.net/literature/1853006
https://doi.org/10.1103/PhysRevResearch.3.033221
https://arxiv.org/abs/2104.05059
https://inspirehep.net/literature/1857931
https://doi.org/10.1051/epjconf/202125103070
https://arxiv.org/abs/2104.07692
https://inspirehep.net/literature/1858884
https://doi.org/10.1007/JHEP08(2021)112
https://arxiv.org/abs/2106.08334
https://inspirehep.net/literature/1868807
https://doi.org/10.22331/q-2022-08-17-777
https://arxiv.org/abs/2110.06933
https://inspirehep.net/literature/1944902
https://doi.org/10.1007/JHEP08(2021)170
https://arxiv.org/abs/2103.03897
https://inspirehep.net/literature/1850530
https://doi.org/10.1103/PhysRevD.105.095004
https://arxiv.org/abs/2112.04958
https://inspirehep.net/literature/1986866


J
H
E
P
0
2
(
2
0
2
3
)
2
2
0

[17] J.Y. Araz and M. Spannowsky, Classical versus quantum: Comparing tensor-network-based
quantum circuits on Large Hadron Collider data, Phys. Rev. A 106 (2022) 062423
[arXiv:2202.10471] [INSPIRE].

[18] A. Gianelle et al., Quantum Machine Learning for b-jet charge identification, JHEP 08 (2022)
014 [arXiv:2202.13943] [INSPIRE].

[19] T.S. Humble et al., Snowmass White Paper: Quantum Computing Systems and Software for
High-energy Physics Research, in 2022 Snowmass Summer Study, Seattle U.S.A., July 17–26
2022 [arXiv:2203.07091] [INSPIRE].

[20] W. Guan et al., Quantum Machine Learning in High Energy Physics, Mach. Learn. Sci. Tech.
2 (2021) 011003 [arXiv:2005.08582] [INSPIRE].

[21] M. Schuld and N. Killoran, Is Quantum Advantage the Right Goal for Quantum Machine
Learning?, PRX Quantum 3 (2022) 030101 [arXiv:2203.01340] [INSPIRE].

[22] G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman and D. Shih, Machine Learning in the
Search for New Fundamental Physics, arXiv:2112.03769 [INSPIRE].

[23] G. Kasieczka et al., The LHC Olympics 2020 a community challenge for anomaly detection in
high energy physics, Rept. Prog. Phys. 84 (2021) 124201 [arXiv:2101.08320] [INSPIRE].

[24] T. Aarrestad et al., The Dark Machines Anomaly Score Challenge: Benchmark Data and
Model Independent Event Classification for the Large Hadron Collider, SciPost Phys. 12 (2022)
043 [arXiv:2105.14027] [INSPIRE].

[25] ATLAS collaboration, Search for heavy resonances decaying into a pair of Z bosons in the
`+`−`′+`′− and `+`−νν̄ final states using 139 fb−1 of proton-proton collisions at

√
s = 13TeV

with the ATLAS detector, Eur. Phys. J. C 81 (2021) 332 [arXiv:2009.14791] [INSPIRE].

[26] ATLAS collaboration, Search for Higgs boson decays to beyond-the-Standard-Model light
bosons in four-lepton events with the ATLAS detector at

√
s = 13TeV, JHEP 06 (2018) 166

[arXiv:1802.03388] [INSPIRE].

[27] ATLAS collaboration, Measurements of the Higgs boson inclusive and differential fiducial
cross sections in the 4` decay channel at

√
s = 13TeV, Eur. Phys. J. C 80 (2020) 942

[arXiv:2004.03969] [INSPIRE].

[28] CMS collaboration, Measurements of the Higgs boson width and anomalous HV V couplings
from on-shell and off-shell production in the four-lepton final state, Phys. Rev. D 99 (2019)
112003 [arXiv:1901.00174] [INSPIRE].

[29] CMS collaboration, Search for low-mass dilepton resonances in Higgs boson decays to
four-lepton final states in proton-proton collisions at

√
s = 13TeV, Eur. Phys. J. C 82 (2022)

290 [arXiv:2111.01299] [INSPIRE].

[30] CMS collaboration, Constraints on anomalous Higgs boson couplings to vector bosons and
fermions in its production and decay using the four-lepton final state, Phys. Rev. D 104 (2021)
052004 [arXiv:2104.12152] [INSPIRE].

[31] K. Krzyżańska and B. Nachman, Simulation-based anomaly detection for multileptons at the
LHC, JHEP 01 (2023) 061 [arXiv:2203.09601] [INSPIRE].

[32] J.H. Collins, P. Martín-Ramiro, B. Nachman and D. Shih, Comparing weak- and unsupervised
methods for resonant anomaly detection, Eur. Phys. J. C 81 (2021) 617 [arXiv:2104.02092]
[INSPIRE].

– 14 –

https://doi.org/10.1103/PhysRevA.106.062423
https://arxiv.org/abs/2202.10471
https://inspirehep.net/literature/2036371
https://doi.org/10.1007/JHEP08(2022)014
https://doi.org/10.1007/JHEP08(2022)014
https://arxiv.org/abs/2202.13943
https://inspirehep.net/literature/2039391
https://arxiv.org/abs/2203.07091
https://inspirehep.net/literature/2051498
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/2632-2153/abc17d
https://arxiv.org/abs/2005.08582
https://inspirehep.net/literature/1796743
https://doi.org/10.1103/PRXQuantum.3.030101
https://arxiv.org/abs/2203.01340
https://inspirehep.net/literature/2045073
https://arxiv.org/abs/2112.03769
https://inspirehep.net/literature/1985633
https://doi.org/10.1088/1361-6633/ac36b9
https://arxiv.org/abs/2101.08320
https://inspirehep.net/literature/1842125
https://doi.org/10.21468/SciPostPhys.12.1.043
https://doi.org/10.21468/SciPostPhys.12.1.043
https://arxiv.org/abs/2105.14027
https://inspirehep.net/literature/1866115
https://doi.org/10.1140/epjc/s10052-021-09013-y
https://arxiv.org/abs/2009.14791
https://inspirehep.net/literature/1820316
https://doi.org/10.1007/JHEP06(2018)166
https://arxiv.org/abs/1802.03388
https://inspirehep.net/literature/1654372
https://doi.org/10.1140/epjc/s10052-020-8223-0
https://arxiv.org/abs/2004.03969
https://inspirehep.net/literature/1790439
https://doi.org/10.1103/PhysRevD.99.112003
https://doi.org/10.1103/PhysRevD.99.112003
https://arxiv.org/abs/1901.00174
https://inspirehep.net/literature/1712708
https://doi.org/10.1140/epjc/s10052-022-10127-0
https://doi.org/10.1140/epjc/s10052-022-10127-0
https://arxiv.org/abs/2111.01299
https://inspirehep.net/literature/1961934
https://doi.org/10.1103/PhysRevD.104.052004
https://doi.org/10.1103/PhysRevD.104.052004
https://arxiv.org/abs/2104.12152
https://inspirehep.net/literature/1860903
https://doi.org/10.1007/JHEP01(2023)061
https://arxiv.org/abs/2203.09601
https://inspirehep.net/literature/2054719
https://doi.org/10.1140/epjc/s10052-021-09389-x
https://arxiv.org/abs/2104.02092
https://inspirehep.net/literature/1856335


J
H
E
P
0
2
(
2
0
2
3
)
2
2
0

[33] K. Fraser, S. Homiller, R.K. Mishra, B. Ostdiek and M.D. Schwartz, Challenges for
unsupervised anomaly detection in particle physics, JHEP 03 (2022) 066 [arXiv:2110.06948]
[INSPIRE].

[34] R.T. d’Agnolo, G. Grosso, M. Pierini, A. Wulzer and M. Zanetti, Learning new physics from
an imperfect machine, Eur. Phys. J. C 82 (2022) 275 [arXiv:2111.13633] [INSPIRE].

[35] P. Rebentrost, M. Mohseni and S. Lloyd, Quantum support vector machine for big data
classification, Physical Review Letters 113 (2014) .

[36] A.W. Harrow, A. Hassidim and S. Lloyd, Quantum algorithm for linear systems of equations,
Physical Review Letters 103 (2009) .

[37] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd, Quantum
machine learning, Nature 549 (2017) 195.

[38] P.-A. McRae and M. Hilke, Quantum-Enhanced Machine Learning for Covid-19 and Anderson
Insulator Predictions, [arXiv:2012.03472].

[39] V. Bergholm et al., PennyLane: Automatic differentiation of hybrid quantum-classical
computations, arXiv:1811.04968 [INSPIRE].

[40] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079
[arXiv:1405.0301] [INSPIRE].

[41] Higgs effective couplings to gluons (and photons), (2013)
[https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Models/HiggsEffective].

[42] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006)
026 [hep-ph/0603175] [INSPIRE].

[43] T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput.
Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

[44] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159
[arXiv:1410.3012] [INSPIRE].

[45] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020)
083C01 [INSPIRE].

[46] J. Alwall et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176
(2007) 300 [hep-ph/0609017] [INSPIRE].

[47] DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a
generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

[48] A. Mertens, New features in Delphes 3, J. Phys. Conf. Ser. 608 (2015) 012045 [INSPIRE].

[49] M. Selvaggi, DELPHES 3: A modular framework for fast-simulation of generic collider
experiments, J. Phys. Conf. Ser. 523 (2014) 012033 [INSPIRE].

[50] T. Robens, T. Stefaniak and J. Wittbrodt, Two-real-scalar-singlet extension of the SM: LHC
phenomenology and benchmark scenarios, Eur. Phys. J. C 80 (2020) 151 [arXiv:1908.08554]
[INSPIRE].

[51] M.J.D. Powell, A direct search optimization method that models the objective and constraint
functions by linear interpolation, in Advances in Optimization and Numerical Analysis,
S. Gomez and J.-P. Hennart eds., Springer Netherlands, Dordrecht (1994), pp. 51–67 [DOI].

– 15 –

https://doi.org/10.1007/JHEP03(2022)066
https://arxiv.org/abs/2110.06948
https://inspirehep.net/literature/1944896
https://doi.org/10.1140/epjc/s10052-022-10226-y
https://arxiv.org/abs/2111.13633
https://inspirehep.net/literature/1977309
https://doi.org/10.1103/physrevlett.113.130503
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1038/nature23474
https://arxiv.org/abs/2012.03472
https://arxiv.org/abs/1811.04968
https://inspirehep.net/literature/2129225
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://inspirehep.net/literature/1293923
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Models/HiggsEffective
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175
https://inspirehep.net/literature/712925
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://arxiv.org/abs/0710.3820
https://inspirehep.net/literature/764903
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/literature/1321709
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://inspirehep.net/literature/1812251
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.1016/j.cpc.2006.11.010
https://arxiv.org/abs/hep-ph/0609017
https://inspirehep.net/literature/725284
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://inspirehep.net/literature/1244313
https://doi.org/10.1088/1742-6596/608/1/012045
https://inspirehep.net/literature/1372992
https://doi.org/10.1088/1742-6596/523/1/012033
https://inspirehep.net/literature/1299908
https://doi.org/10.1140/epjc/s10052-020-7655-x
https://arxiv.org/abs/1908.08554
https://inspirehep.net/literature/1750770
https://doi.org/10.1007/978-94-015-8330-5_4


J
H
E
P
0
2
(
2
0
2
3
)
2
2
0

[52] M. Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems, [arXiv:1603.04467].

[53] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980
[INSPIRE].

– 16 –

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1412.6980
https://inspirehep.net/literature/1670744

	Introduction
	Quantum Machine Learning
	Simulation
	(Quantum) Machine Learning Setup
	VQC
	QCL
	CML

	Results
	Conclusions
	Max(SIC) plots

