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1 Introduction

Three-dimensional “tomographic” imaging of the proton is stated as a major scientific goal
of the planned Electron-Ion collider (EIC) [1]. An important part of this project are the
generalized parton distributions (GPDs), which encode information about the transverse
spatial probability distribution of a given parton, carrying a given momentum fraction of
the proton. The most prominent process giving access to GPDs is deeply virtual Compton
scattering (DVCS)

γ∗(q) +N(p)→ γ(q′) +N(p′), (1.1)

where a hard virtual photon collides with a proton, which remains intact, and additionally,
an outgoing photon is measured in the final state. We denote Q2 = −q2, t = (p−p′)2, m2 =
p2 = p′2.

In this work we consider the quark contribution to the Compton form factor Hq, q =
u, d, s. It is related to the quark GPD Hq, by the usual collinear factorization formula [2–4]

Hq(ξ,Q, t) =
∫ 1

−1

dx

ξ
C(x/ξ,Q, µ)Hq(x, ξ, t, µ). (1.2)

The coefficient function (CF) C(x/ξ,Q, µ) has been calculated recently to two-loop accu-
racy using two different approaches: based on conformal symmetry in [5], and later by
diagrammatic calculation in [6]. The integration region of the convolution integral in this
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factorization formula includes the simple poles of C at x = ±ξ. These singularities are poles
(with protruding branch cuts) in the partonic Mandelstam variables ŝ = −1

2(1 − x/ξ)Q2

and û = −1
2(1 + x/ξ)Q2 corresponding to the hard parton-photon process. Beyond the

simple poles C exhibits logarithmic divergences when x→ ±ξ. The physical origin of this
logarithmic enhancement is that the ratio of scales, Q2/ŝ for x→ ξ and Q2/û for x→ −ξ,
becomes large when ŝ or û become small.

The poles of C in eq. (1.2) are formally avoided by deforming the integration contour
into the complex plane according to the ξ → ξ − i0 prescription [3, 4]. This fails however
at first sight, since the GPD Hq has a discontinuous derivative at the points x = ±ξ. Thus
Hq should be written as a sum of functions that are either analytic or have a simple zero at
x = ±ξ. For the analytic terms we can perform the contour deformation away from x = ±ξ.
However for the other terms the pole is at the endpoint of the integration contour. This issue
seemingly invalidates the use of the collinear approximation used to derive the factorization
theorem. More precisely, if |x± ξ| is comparable or smaller than −t

Q2 ,
m2

Q2 ,
|p2
⊥|
Q2 , where p⊥ is

the transverse momentum of the parton, i.e. when one of the momenta of the parton legs
connecting the hard and collinear subgraph is in the soft (or Glauber) region, the collinear
approximation fails. But, as was argued by Collins and Freund [3], the corresponding
error made by applying the collinear approximation is power suppressed, so the leading
twist factorization theorem remains valid. For these reasons, large logarithms of the form
log(x± ξ) are formally avoided in eq. (1.2), so a resummation is not necessary to get good
predictions. However, if one desires high precision, say at the low single digit percent level,
it is necessary to check whether contributions from threshold resummation are sizable.

An earlier attempt [7] to resum threshold logarithms log(x± ξ) in C claimed that the
logarithms resum to a hyperbolic cosine. The explicit calculation [5, 6] disagreed with this
statement and it was suggested that the leading (double) logarithms of C in the x → ±ξ
limit exponentiate.

In this work we argue that exponentiation suggested in [5] holds to all orders and
that in fact also higher order logarithms can be resummed. This procedure relies on the
statement that the leading contribution to C in the limit x→ ±ξ factorizes into a product
of two functions that separate the large scale Q2 = −q2 and the center of mass energy of
partonic process, i.e. ŝ and û. Given this factorization, renormalization group equations
can be used to resum the logarithms. The result is a formula of the form

C(x/ξ,Q,µ=Q) =∓ 1
2w±

exp
{

1
2

∫ Q2

Q2w±

dµ2

µ2

[
−Γcusp(αs(µ)) log

(
w±Q

2

µ2

)
+ γ̄f (αs(µ))

]}

× h̄
(
αs(Q)

)
f̄
(
αs(
√
w±Q)

)
+O(w0

±× logs), (1.3)

where w± = 1
2(1 ± x/ξ), Γcusp is the well-known cusp anomalous dimension and f̄ and

h̄ are functions that can be expanded in αs with constant coefficients. We will show
that this ansatz is in agreement with explicit calculation in [5, 6] to α2

s accuracy and
the comparison allows one to extract the leading α2

s contribution to γ̄f . The available
ingredients allow for resummation up to the next-to-next-to-leading logarithmic (NNLL)
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Figure 1. Tree level diagrams for the DVCS CF. Left: s-channel, Right: u-channel.

accuracy, which is defined in table 1. The corresponding expressions for h̄, f̄ and γ̄f are
collected in appendix A.

We argue further that the same formula applies to the axial vector case of DVCS or
equivalently, to the CF of the pion-photon transition form factor.

The threshold resummation in DVCS is closely related to usual cases of threshold
resummation. In particular this applies to treatments in momentum space, such as the
analysis of the endpoint xB → 1 region of DIS in [8], where xB is conventional Bjorken
variable xB = Q2

2p·q , which is usually defined in the same way for DVCS, since these processes
have the same initial state configuration. The crucial difference is that in the present treat-
ment the kinematic limit where the CF factorizes is with respect to the partonic variable
x, which is not fixed by external kinematics. In contrast, in the DIS case, the integration
region is, by the external kinematical condition xB ≈ 1, restricted to a region where the
parton momentum fraction is close to 1. Thus, the hard scattering kernel factorizes when
an external kinematical variable approaches some limit, contrary to DVCS, where the limit
is with respect to a partonic variable. In this sense the present case is more similar to
the well-known case of threshold resummation of Drell-Yan-like inclusive processes, see
e.g. [9, 10], where the hard scattering kernel factorizes when the partonic center of mass
energy is close to some large final state mass scale. Consequently one encounters various
difficulties related to the integration over a running scale in the resummed hard scattering
kernel, when evaluating the convolution with the non-perturbative function. The same
issue occurs in the present case, but if one has an analytic formula for the GPD, one can
deform the contour of the x-integration into the complex plane, avoiding the Landau pole.

The presentation is organized as follows. In section 2 we introduce basic definitions.
In section 3 we derive a factorization theorem for the CF in eq. (3.1). In section 4, we
illustrate the general statement on the example of the one-loop calculation and confirm
the corresponding prediction for the two highest power of logarithms at two-loops. In
section 5 we briefly discuss the application to the axial case or equivalently the pion-
photon transition form factor with the result that the same resummation formula applies.
Finally, in section 6 we discuss how the NNLL resummation can be done and present the
results of a preliminary numerical study.

2 Preliminaries

Throughout this work, we will treat mainly the vector case for DVCS, however the treat-
ment for the axial-vector case is analogous and this is commented on in section 5. We
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consider the vector quark contribution to the Compton form factor Hq, which factorizes
into the CF and quark GPD Hq [2–4]

Hq(ξ,Q, t) =
∫ 1

−1

dx

ξ
C(x/ξ,Q, µ)Hq(x, ξ, t, µ). (2.1)

The skewness parameter ξ to leading twist accuracy can be chosen as [11]

ξ = xB
2− xB

+O(−t/Q2), (2.2)

where xB = Q2

2p·q is the Bjorken variable.
The tree-level diagrams contributing to C are shown in figure 1. It follows from crossing

symmetry that C is anti-symmetric in the x/ξ variable C(x/ξ) = −C(−x/ξ). Indeed, each
diagram has symmetric partner obtained by crossing the photon legs, i.e. the s- and u-
channel. This crossing corresponds to the replacement x/ξ → −x/ξ and, in the vector
case, to a relative minus sign. Hence it is enough to consider only one of the two channels
and anti-symmetrize everything in the end. We will choose the s-channel, which is shown
at tree level on the left in figure 1.

It is convenient to introduce the variable z = 1
2(1− x/ξ). In terms of this variable the

crossing symmetry becomes C(z) = −C(1−z). We can view C(z) as a function of complex
z variable. It is analytic on z ∈ C\((−∞, 0] ∪ [1,∞)) and has simple poles at z = 0 and
z = 1 with protruding branch cuts on the real axis on z 6∈ [0, 1].

From the conventional frame, where the in- and out-going parton momentum are given
by p = (x+ξ)P and p′ = (x−ξ)P , where P = p+p′

2 , we make a Lorentz-boost P+ → P+/2ξ.
At leading twist kinematics we can neglect t and the nucleon mass m2 = p2 = p′2. Then
P = P+n̄ and

p = (1− z)P+n̄, p′ = −zP+n̄, q′ = Q2

2P+n, q = −P+n̄+ Q2

2P+n, (2.3)

where we use two light-like vectors with n · n̄ = 1 and v+ ≡ n · v, v− ≡ n̄ · v, v⊥ ≡
v − v+n̄− v−n for any four-vector vµ.

As a consequence of the crossing symmetry, the coefficients of the simple poles at
z → 0 and z → 1, or equivalently x→ ξ and x→ −ξ, are the same up to a minus sign. As
mentioned before, for the rest of this work we will consider only the s-channel diagrams,
which contain the leading singularities in the limit z → 0.

We further introduce the momentum

k ≡ p+ q = p′ + q′ = −zP+n̄+ Q2

2P+n,

such that k2 = ŝ = −zQ2 is the invariant mass of the partons in the intermediate state.
For z → 0 we are considering the region where k is close to being n-collinear, i.e. close to
q′. The discussion for z → 0 or x → −ξ is completely analogous and is obtained by the
replacement z → 1− z or ŝ↔ û. Throughout this work we are using Feynman gauge.
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H B Ĥ B×

Figure 2. Graphical representation of the factorization theorem in eq. (3.1). Left: Reduced graph
for the leading region in the z → 0 limit. Right: graphical representation of the left-hand-side of
eq. (3.1). Shown is the product of the hard function h, defined in eq. (3.13), on the left and the
n-collinear function f , defined in eq. (3.12), on the right. The double lines denotes the Wilson line
Wn. Note that there are also diagrams with crossed gluons connecting to the Wilson line and a
sum over hard subgraphs is implied.

3 Factorization of the coefficient function

We argue that in the z → 0 limit the CF can be written in a factorized form

C(Q2,−k2, µ2) = − Q
2

2k2

[
h(Q2, µ2)f(−k2, µ2) +O(k2/Q2)

]
. (3.1)

We will denote by C twice the coefficient of the 1
z pole of C, i.e. C = 1

2zC + O(z0). Then
the factorization formula takes the form C = hf . The bare quark vector CF of DVCS can
be written as

Cbare(Q2,−k2,µ2)=− igµν⊥
4(d−2)

∫
ddx1 e

iq′x1 lim
p→(1−z)P

lim
p′→−zP

∫
ddx2 e

ip′x2

∫
ddx3e

−ipx3

× 1
Nc

tr
[
/P (−i/p′)〈0|T{ψ(x2)jν(x1)jµ(0)ψ̄(x3)}|0〉connected(−i/p)

]
, (3.2)

where jµ = ψ̄γµψ and the trace goes over color and Dirac indices and Nc = 3 is the
number of colors. The external parton lines are considered to be inside the GPD and
should be removed when calculating C. The amputation procedure is made explicit by
writing limp→(1−z)P limp′→−zP (−i/p′) . . . (−i/p). Note that the corrections on external legs
are irrelevant, since the parton legs are on-shell.

The renormalized CF, as is appears in eq. (2.1), is obtained from eq. (3.2) by a sub-
traction of divergences corresponding to the renormalization of the GPD. Schematically
C = Cbare ⊗ Z, where ⊗ denotes convolution.

We start by appealing to the well-known Libby-Sterman analysis [12], of which a
review can be found in [13]. We must first identify the leading regions and associated
reduced graphs corresponding pinch-singular-surfaces, which are determined by the Landau
criterion. In such reduced graphs one may have subgraphs with its lines being formally
considered of the types hard, collinear to n or n̄, or soft. The major statement on which our
treatment relies is that the n̄-collinear and soft regions do not contribute. As is shown later,
they are eliminated by setting the external quark momenta on-shell (then the contribution
from those regions gives scaleless integrals), as is necessary for calculating hard coefficient
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functions. In DVCS the separation of the hard scale Q2 from the small scales −t,m2

has been performed in the factorization formula (2.1). C itself corresponds to the hard
subgraph from this perspective, but in the limit in region z → 0, which is a region of the
convolution integral in (2.1), we find a further hierarchy of scales, namely −k2 � Q2.

The argument that we do not have to consider any n̄-collinear or soft subgraphs goes
as follows. Firstly, any n̄-collinear subgraph can depend only on the invariants p2, p′2, p ·p′,
which are all zero in the on-shell limit. To demonstrate this, consider the following loop
integral with loop momentum in the n̄-collinear region∫

l∼P

ddl

(l2)n1 [(l + P )2]n2 [(l + q′)]n3
∼
∫

ddl

(l2)n1 [(l + P )2]n1(2l · q′)n3
∝
∫ ∞

0

dα

αn1+n2+1−d/2 .

(3.3)
The α integral gives zero in dimensional regularization. It is easy to see the same situation
occurs for any n̄-collinear loop momentum integration after all other integrations have been
performed. Note that we do not have to consider a numerator since it can be written as
a sum of the same factors that appear in the denominator, so we get merely a sum of
integrals of the same form. Thus any such non-tree-level subgraph gives a scaleless integral
and hence vanishes in dimensional regularization. A possible soft subgraph might attach
to the n-collinear subgraph B which must be at the outgoing photon vertex (soft lines
connecting the hard subgraph give a power-suppression). However, by the same arguments
as for example in DIS or DVCS [3] the soft subgraph is not present. Correspondingly, the
soft region for a generic loop integral gives scaleless integrals by a similar argument as for
the n̄-collinear region.

We proceed by using the standard Libby-Sterman power-counting formulas [13] to
determine the leading regions. In our case, where only a collinear and hard subgraph are
present, the contribution from a given region R is proportional to

(
Q2

−k2

)p(R)
, where

p(R) = 4−#(external lines)−#(lines B to H)+#(scalar pol. gluon lines B to H). (3.4)

This implies that the leading regions correspond to the reduced diagram shown on the
left in figure 2, where the arbitrary number of collinear gluons connecting the H and B

subgraph are scalar-polarized, i.e. the gµν in the gluon propagator is replaced by nµn̄ν .
Let us write the amplitude of the generic graph Γ on the left in figure 2 schematically

as follows

Γ(H,B) = g⊥,µν

∫ N∏
j=1

ddlj
1
Nc

tr
[
/PBνν1...νN

a1...aN (p′, k, l1, . . . , lN )
i(/k +∑

j /l j)
(k +∑

j lj)2 + i0

×
(∏

j

gµjνj

)
Hµµ1...µN
a1...aN (p, k, l1, . . . , lN )

]
, (3.5)

where we routed the N loop momenta lj of the gluon lines as entering the hard subgraph
and going back through the single fermion line connecting H to B. Conventional notation
would absorb the intermediate fermion line into the B subgraph, but we choose to make it
explicit here. To obtain the leading term we need to apply the region approximator TR(H,B),
which, when applied to a given graph, corresponds to making the following replacements:
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• In the H subgraph, replace lj → l̂j = l−j n and z → 0, i.e. k → q′, p→ P ,

• On the fermion line between the H and B subgraph we insert the projector 1
2 /̄n/n,

• Replace gµjνj →
l̂j,µj n̄νj

l̂j ·n̄+i0 .

Note that the expression for Γ(H,B) in eq. (3.5) has been written in such a way that
it corresponds to a region R(H,B) (of loop-momentum space) where the lines in the B
subgraph are n-collinear and the lines in the H subgraph are hard. We obtain

TR(H,B)Γ(H,B) = g⊥,µν

∫ N∏
j=1

ddlj
1
Nc

tr
[
/PBνν1...νN

a1...aN (p′,k, l1, . . . , lN )
i(/k+∑j /l j)

(k+∑j lj)2 + i0

× 1
2
/̄n/n

(∏
j

l̂j,µj n̄νj

l̂j · n̄+ i0

)
Hµµ1...µN
a1...aN (P,q′, l̂1, . . . , l̂N )

]
. (3.6)

The next step is to use graphical Ward identities by taking into account the sum of
diagrams with all possible connections of the N gluons to H, in order to show that the
collinear gluons decouple from H. This is relatively simple in the case of QED and some-
what more involved in the case of QCD. However the arguments have become standard, so
we do not repeat them here. Note that this step requires to sum over all hard subgraphs
of the same order in αs. This results in the expression

∑
H

TR(H,B)Γ(H,B) = g⊥,µν

∫ N∏
j=1

ddlj
1
Nc

tr
{
/̄nBνν1...νN

a1...aN (p′, k, l1, . . . , lN )/n
iQ2

2k2 (3.7)

×
[ ∑
permutations
of {1,...,N}

(−g)N n̄ν1ta1 . . . n̄νN taN
(l−1 + i0) . . . (∑N

j=1 l
−
j + i0)

]∑
Ĥ

Ĥµ(P, q′)
}
,

where the ta are color matrices. The remaining sum goes over all possible subgraphs
Ĥµ(p, k), of the given order in αs, without collinear gluon insertions. The expression in the
square brackets can be identified to be a momentum-space Wilson line. In position space
and in terms of gluon fields it reads

Wn(x) = P exp
[
ig

∫ 0

−∞
ds A−(x+ sn̄)

]
. (3.8)

Note that Ĥ is a function of momenta which have zero transverse components. Thus

/nĤµ(P, q′)/̄n = cĤ(Q2)/nγµ⊥ /̄n, (3.9)

where cĤ is the contribution to the hard function h. Finally we arrive at the factorized
form of Γ summed over all possible hard subgraphs. It reads

∑
H

TR(H,B)Γ(H,B) = − Q
2

2k2

∑
Ĥ

cĤ(Q2)cB(−k2), (3.10)
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where

cB(−k2) = −ig⊥,µν
∫ N∏

j=1
ddlj

1
Nc

tr
{
/nγµ /̄nBνν1...νN

a1...aN (p′, k, l1, . . . , lN )[. . .]
}
. (3.11)

is the contribution to the function, which is denoted by f in eq. (3.1). The above discussion
implies that the bare f can be written as a correlation function

fbare(−k2) = 2k2

Q2
igµν⊥

4(d− 2)

∫
ddx1 e

iq′x1 lim
p′→−zP

∫
ddx2 e

ip′x2

× 1
Nc

tr
[
/Pγµ(−i/p′) 〈0|T{ψ(x2)jν(x1)ψ̄(0)Wn(0)} |0〉connected

]
. (3.12)

A diagrammatic representation of f is shown in figure 2. Since f describes momentum
modes that are collinear to the outgoing photon it is appropriate to call f the n-collinear
function in this context. For threshold resummation in the endpoint region of DIS the
analogue of f is the jet function, which is matrix element of a single quark field and
a Wilson line ψ̄Wn. f differs markedly from the jet function, since there appears an
additional n-collinear electromagnetic current in the correlator.

The hard function h, on the other hand, can be identified as the Sudakov form factor
with on-shell massless external legs

〈q′| ψ̄(0)γµψ(0) |P 〉connected, amputated = γµ⊥h
bare(Q2). (3.13)

or equivalently, the hard matching coefficient of the Sudakov form factor in momentum
space, denoted by C̃V in [8].

We have shown the factorization of the sum of a set of subgraphs, for a given region.
When summing over all graphs Γ and regions R one has to take into account the resulting
double counting. On the graphical level one can define a subtraction procedure defined
recursively over from smaller to larger regions in the sense of set inclusion. We refer to the
standard literature on collinear factorization proofs. In the case presented here it is assumed
that the double-counting subtractions can alternatively be formulated by “renormalizing”
the corresponding “bare” functions, which is a standard procedure when using factorization
theorems. In terms of bare quantities we have the factorization formula

Cbare(Q2,−k2) = hbare(Q2)fbare(−k2), (3.14)

where Cbare = 1
2zC

bare +O(z0). Note that renormalization of the z−1 coefficient of the CF
becomes multiplicative, i.e.

C = Cbare ⊗ Z = 1
2zC

bareZ +O(z0). (3.15)

Note that we can ignore mixing with the gluon CF, since the pure-singlet quark contribution
that generates this mixing is suppressed by an additional power of z. This is because
such contributions must correspond to reduced graphs that have an additional quark line
connecting the hard and collinear subgraph, leading to a suppression according to eq. (3.4).
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D1,n D2,n D3,n D4,n

D4D2 D3D1

Figure 3. Upper row: one-loop diagrams contributing to Cq, Lower row: one-loop diagrams
contributing to f .

On the other hand, h and f can also be renormalized multiplicatively, i.e. hbare = hZ−1
h

and fbare = fZf . Note however that Zh 6= Zf . In fact

Cbare = CZ−1 = hbarefbare = hZ−1
h Zff. (3.16)

The renormalized quantities are (by definition) finite, so we must have ZZ−1
h Zf = 1 in

minimal subtraction schemes, i.e. the Z factors cancel, leading to the factorization theorem
in terms of the renormalized quantities C = hf , as stated in eq. (3.1). The µ-independence
of Cbare implies

0 = d

dµ
C(Q2,−k2, µ2)Z−1(Q2,−k2, µ2)

= d

dµ
h(Q2, µ2)Z−1(Q2,−k2, µ2)f(−k2, µ2). (3.17)

Thus we are free to set the scale µ = Q and obtain

C(Q2,−k2, Q2) = h(Q2, Q2)f(−k2, Q2)
2z . (3.18)

We remark that a different approach to proving eq. (3.1) is to treat the complete
DVCS amplitude instead of just the CF itself. For this one must consider the virtuality
−k2 as an intermediate scale between the hard scale Q2 and the small scales −t,m2, i.e.
−t,m2 � −k2 � Q2. A proof could proceed in close analogy to [8] using soft-collinear
effective theory (SCET), where, in addition to usual hard, collinear and soft degrees of
freedom, k would be classified as “semi-hard” and p′ as “soft-collinear”. In the approach of
this work, we essentially considered only the separation of the semi-hard scale −k2 from the
hard scale Q2, and used that the regions corresponding to the other momentum scalings
give scaleless integrals for on-shell partons.

4 One-loop calculation

In this section we verify the general statements above at one-loop accuracy. The diagrams
are shown in the upper row of figure 3. The expressions for the one-loop diagrams are

– 9 –
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well-known [4]. We quote the result when expanded in powers of z.

D1'
αsCF

4π

[
− 1
ε

(
1+2log −k

2

µ2

)
− log2 Q

2

µ2 +3log Q
2

µ2 +log2 −k2

µ2 −2log −k
2

µ2 −4
]
, (4.1)

D2'
αsCF

4π

[
− 1
ε

+log −k
2

µ2 −4
]
, (4.2)

D3' 0, (4.3)

D4'
αsCF

4π

[
− 1
ε

+log −k
2

µ2 −1
]
, (4.4)

where ' means that we only keep terms of order z0 times logarithms and we pulled out
the tree-level amplitude 1

2z = − Q2

2k2 .
The two relevant regions are Rh and Rn, where the loop momentum is hard and n-

collinear respectively. The corresponding region approximator was defined in section 3. We
define Dj,h = TRhDj and Dj,n = TRnDj . As D2,n and D4,n do not couple to the Wilson
line, they are the same as D2 and D4, so the corresponding contribution from the hard
region is zero. In particular they only depend on −k2 and not on Q2, as it should be.
Diagram D3 is suppressed by an additional power of z and correspondingly D3,n vanishes
since the Wilson line connects to the external leg, leading to a factor of n̄2 = 0.

The only one-loop diagram with a non-trivial matching is therefore D1. We have

D1,n = 2k2

Q2
igµν⊥

4(d− 2)(ig2CF )
(
µ2eγE

4π

)ε ∫ ddl

(2π)d
tr
[
/Pγν/k/̄n(/k + /l)γν

]
l2k2(l + k)2l−

= −ig2CF

(
µ2eγE

4π

)ε ∫ ddl

(2π)d
2P · (k + l)

l2(l + k)2(2P · l) (4.5)

= αsCF
4π

[
2
ε2
− 1
ε

(
2 log −k

2

µ2 − 2
)

+ log2 −k2

µ2 − 2 log −k
2

µ2 + 4− π2

6

]
.

The contribution from the hard region, which is obtained by setting z = 0 in the integrand
of D1, can be found to be

D1,h = αsCF
4π

[
− 2
ε2
− 3
ε

+ 2
ε

log Q
2

µ2 − log2 Q
2

µ2 + 3 log Q
2

µ2 − 8 + π2

6

]
. (4.6)

As expected, the sum D1,n +D1,h reproduces the original result in eq. (4.1).
Eq. (3.1) allows us to resum the logarithms of z. As a simple illustration, I demonstrate

how eq. (3.18) and the one-loop calculation can predict terms αns log2n−k for k = 0, 1 in C
to arbitrary orders. We have shown that

fbare(−k2, µ2) = 1 + αsCF
4π

[
2
ε2
− 2
ε

log −k
2

µ2 + log2 −k2

µ2 − 1− π2

6

]
+O(α2

s), (4.7)

which implies that

d

d logµf(−k2, µ2) =
[
− αsCF

π
log −k

2

µ2 +O(α2
s)
]
f(−k2, µ2). (4.8)
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Solving this differential equation gives

f(−k2, Q2) = exp
[
αs(Q)CF

4π log2 z +
(
αs(Q)

4π

)2(
− 1

3β0CF log3 z

)]
f(−k2,−k2) + . . . ,

(4.9)
where the ellipsis denote term that do not contribute to the two highest powers of loga-
rithms. Inserting this expression into eq. (3.18) gives

C(z, µ = Q) = 1
2z exp

[
αs(Q)CF

4π log2 z +
(
αs(Q)

4π

)2(
− 1

3β0CF log3 z

)]
+ . . . (4.10)

This result predicts the α2
s log4 z and α2

s log3 z terms in the two-loop CF and the prediction
indeed agrees with the explicit two-loop calculation of C [5, 6]. Of course we can resum
more logarithms than presented in eq. (4.10). This is discussed in section 6.

5 Application to the axial-vector case and the pion-photon transition
form factor

The axial vector CF of DVCS in four dimensions is given by the same expression as eq. (3.2)
but with an additional γ5 in the trace and projected onto the anti-symmetric part in µ↔ ν.
In d = 4

C̃bare(Q2,−k2,µ2) = iεµν⊥
8

∫
ddx1 e

−iq′x1 lim
p→(1−z)P

lim
p′→−zP

∫
d4x2 e

−ip′x2

∫
d4x3e

ipx3 (5.1)

× 1
Nc

tr
[
γ5 /P (−i/p)〈0|T{ψ(x3)jµ(0)jν(x1)ψ̄(x2)}|0〉connected (−i/p′)

]
,

where εµν⊥ = εµνρσnρn̄σ. Note that C̃ is the same coefficient function that appears for the
pion transition form factor, with the only difference being the region of integration of the
convolution being restricted to the range 0 < z < 1. It is well-known that there is ambiguity
in defining γ5 in dimensional regularization. In the two-loop calculation of C̃ [14, 15] Larin’s
scheme [16] was used and the result is then converted by a finite renormalization to the
conventional MS-scheme, which is defined by demanding that the evolution equation agrees
with the vector case [17]. Larin’s scheme can be implemented by making the exchange

γ5 /P −→ −
i

3!εµν1ν2ν3P
µγν1γν2γν3 (5.2)

It is clear that this does not influence the arguments given in section 3, so the same
factorization theorem applies

C̃(Q2,−k2, µ2) = − Q
2

2k2

[
h̃(Q2, µ2)f̃(−k2, µ2) +O(k2/Q2)

]
. (5.3)

In fact it can be found that for the result in [14, 15] we get f = f̃ , h = h̃ up to two-loops (and
possibly to higher orders). Hence the same formulas as in eq. (4.10) and (6.8) apply to C̃.
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6 Resummation at NNLL accuracy

By replacing log z = log −k2

µ2 − log Q2

µ2 in the two-loop result for C [5, 6] we can observe
the separation of logarithms verifying eq. (3.1) at two loops. This also gives the two-
loop expressions for f and h up to constants. The one-loop and two-loop expressions are
collected in appendix A.

In order to carry out the resummation we need the anomalous dimensions.
df

d logµ = γff,
dh

d logµ = γhh,
dC

d logµ = γCC. (6.1)

We have shown in section 3 that h is the hard matching coefficient of the Sudakov form
factor. It is well-known that its anomalous dimension has the all-order structure

γh = Γcusp log Q
2

µ2 + γ̄h, (6.2)

where the coefficient of the logarithm is the cusp anomalous dimension [18]

Γcusp = αs
4π4CF +

(
αs
4π

)2[4
3(4− π2)CFCA + 20

3 β0CF

]
+O(α3

s). (6.3)

Note that γh + γf = γC can not depend on µ, since the log Q2

µ2 logarithms in C are single
logarithms. Hence the dependence on µ has to cancel in γC , which implies the all-order
structure

γf = −Γcusp log −k
2

µ2 + γ̄f , (6.4)

γC = −Γcusp log z + γ̄C , (6.5)

where γ̄C = γ̄h + γ̄f . The one- and two-loop expressions for γ̄f , γ̄h are collected in ap-
pendix A.

Let us turn to the evolution equation for the n-collinear function f , eq. (6.1), whose
solution can be written as

f(−k2, Q2) = U(z)f(−k2,−k2), (6.6)

where

U(z) = exp
{

1
2

∫ logQ2

log−k2
d logµ2

[
− Γcusp(αs(µ)) log −k

2

µ2 + γ̄f (αs(µ))
]}
. (6.7)

Inserting eq. (6.6) into eq. (3.18) gives

C(z, µ = Q) = 1
2z h̄(αs(Q))U(z)f̄(αs(

√
zQ)), (6.8)

where h̄(αs(µ)) = h(µ2, µ2), f̄(αs(µ)) = f(µ2, µ2). This implies that the result for the
two-loop CF can be organized in the following way

C(2)(z,µ=Q) = 1
2!

(Γ(1)
cusp
4 log2 z

)2
− Γ(1)

cusp
12 β0 log3 z+ 1

4
(
Γ(1)
cuspf̄

(1) +Γ(1)
cusph̄

(1) +Γ(2)
cusp

)
log2 z

−
( γ̄(2)

f

2 +β0f̄
(1)
)

logz+const. (6.9)
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RG-impr. PT Log. approx. ∼ αns logk z in log C Γcusp γ̄f h̄, f̄ β

— LL n+ 1 ≤ k ≤ 2n 1-loop — — 1-loop
LO NLL n ≤ k ≤ 2n 2-loop 1-loop — 2-loop
NLO NNLL n− 1 ≤ k ≤ 2n 3-loop 2-loop 1-loop 3-loop
NNLO NNNLL n− 2 ≤ k ≤ 2n 4-loop 3-loop 2-loop 4-loop

Table 1. Different approximation schemes. The logarithmic counting agrees with the one from [8].

For applications it can be convenient to rewrite the exponent in eq. (6.7) using
∫ logµ

log ν
d logµ′ =

∫ αs(µ)

αs(ν)

dα

β(α) . (6.10)

This gives

log C = 2S −Aγ̄f + log h̄+ log f̄

=
(
αs(Q)

4π

)−1
gLL(z) + gNLL(z) + αs(Q)

4π gNNLL(z) +O(αs(Q)2) (6.11)

where

S(z) =
∫ αs(

√
zQ)

αs(Q)
dα

Γcusp(α)
β(α)

∫ αs(
√
zQ)

α

dα′

β(α′) , (6.12)

Aγ̄f (z) =
∫ αs(

√
zQ)

αs(Q)
dα

γ̄f (α)
β(α) . (6.13)

Explicit expressions for gLL, gNLL, gNNLL are collected in appendix B. The subscripts of
the g-functions correspond to the logarithms that are resummed in it. The corresponding
logarithmic counting scheme is defined in table 1. Note that for the NNLL accuracy Γ(3)

cusp
is required. Though it can not be obtained by methods used in the section, it is readily
available in the literature. Hence, at this point in time, the highest accuracy that can be
achieved is NNLL. Since Γ(4)

cusp and h̄(2), f̄ (2), see eqs. (A.9) and (A.10), are also known, the
only missing ingredient for NNNLL is γ̄(3)

f .
Let us consider how the result can be used in practice. A naive way to implement the

resummation corrections is to make the substitution

C(fixed order)(z)→ C(fixed order)(z) + 1
2z
(
C(resummed)(z)− C(fixed order)(z)

)
− 1

2(1− z)
(
C(resummed)(1− z)− C(fixed order)(1− z)

)
, (6.14)

where C(fixed order) is the CF to fixed order in perturbation theory and

C(resummed)(z) = exp
[(

αs(Q)
4π

)−1
gLL(z) + gNLL(z) + αs(Q)

4π gNNLL(z)
]
. (6.15)

– 13 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
7

0.001 0.005 0.010 0.050 0.100

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

ξ

ξ Re ℋq

0.001 0.005 0.010 0.050 0.100 0.500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ξ

ξ Im ℋq

Figure 4. Real and imaginary part of the quark CFF Hq, calculated using the model in eq. (3.331)
of [11] for n = 1/2. The solid lines correspond to the CF at fixed order, gray being LO (fixed order
LO and NLL resummation) and blue being NLO (fixed order NLO and NNLL resummation) while
the dashed lines include the resummation, with the CF modified according to eq. (6.14). For
reference, the plot of Hq calculated with the fixed order NNLO non-singlet CF is shown in brown.
The resummed NNLO result would require NNNLL resummation and not all the ingredients are
known at this point. I have set µ = Q, nf = 3 and used αs(Q)

4π = 0.025.

The function C(fixed order) is defined in such a way to subtract the double-counting of the
terms of C(resummed) that are already contained in C(fixed order). It can be obtained by
expanding C(resummed) in αs to the desired accuracy.

The integration in eq. (2.1), when using the resummed CF, can be performed naively
by deforming the contour into the complex plane, the same way as was done in [5, 6], when
using the simple model quark GPD given in eq. (3.331) of [11] for n = 1/2, see figure 4.

For this I used for the analytic form of the running coupling

αs(
√
zQ) = αs(Q)

r

{
1− αs(Q)

4πr
β1
β0

log r (6.16)

+
(
αs(Q)
4πr

)2[β2
1
β2

0

(
log2 r − log r − 1 + r

)
+ β2
β0

(1− r)
]}

+O(αs(Q)4)

where r = 1 + αs(Q)
4π β0 log z. This form of the running coupling organizes the perturbative

expansion in terms of the leading log solution α(LL)
s (

√
zQ) = αs(Q)

r . Thus the Landau pole
is fixed at the point r = 0, or equivalently z = e

− 4π
αs(Q)β0 . It is clear that the points z = 0

and z = 1 never coincide with r = 0, so the contour can be deformed away from the Landau
pole, making the numerical evaluation stable. Note that the ξ → ξ−i0 prescription implies
a natural direction of the contour deformation that should be performed in order to avoid
the Landau pole.

As seen in figure 4 the correction due to the NNLL resummation appears to be small.
This is because, as was mentioned in the introduction, the integration regions where the
contour can not be deformed away from z = 0 or z = 1, i.e. where threshold logarithms are
large, are suppressed by powers of z. This is coherent with the discussion in [3] which states
that there is no leading power contribution from the region where |x± ξ| . −t

Q2 ,
m2

Q2 ,
|p2
⊥|
Q2 .
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It should be mentioned that the estimates in figure 4 depend on the GPD model and
the prescription of how to implement the resummation, in this case given by eq. (6.14).
Furthermore there is dependence on the expression for the running coupling, in this case
eq. (6.16), and on how to deal with the Landau pole singularity. Therefore one can not
conclude that the corrections from the threshold resummation are definitely small. A more
dedicated analysis should be performed in the future.

7 Conclusion and outlook

We have proposed a resummation formula eq. (6.8) for the quark CF in DVCS and the
pion-photon transition form factor. The derivation relies on the factorization formula (3.1),
which allows one to resum threshold logarithms using RG equations. The factorization
theorem could be derived using standard arguments and it turns out to be a very simple case
of factorization. The general all-order arguments are backed by the two-loop calculation,
where factorization was observed explicitly at two-loop accuracy.

I mention that a SCET based proof, e.g. using the formalism in [8] of (3.1) would be
an interesting alternative to the approach in section 3.

Although corrections due to the resummation to the quark Compton form factor appear
to be small, see figure 4, a dedicated analysis with a more realistic GPD model and a
more careful investigation regarding how to treat αs(

√
zQ) as an analytic function in z

will be performed in future work. A study of the impact of resummation for the pion
photon transition form factor is interesting. Furthermore, employing the standard method
of performing the resummation in moment space and comparing to the momentum space
treatment considered in this work is also interesting.

Finally, a natural extension is to see whether a similar resummation can be done for
the gluon contribution to H and H̃. The corresponding two-loop expression for H has been
calculated in [6].
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A Expressions for f and h functions

We collect the results for the functions f and h, defined in their bare form in eqs. (3.12)

and (3.13). We define f = 1 + αsCF
4π f (1) +

(
αsCF

4π

)2
f (2) + O(α3

s) and h = 1 + αsCF
4π h(1) +
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(
αsCF

4π

)2
h(2) +O(α3

s). The one- and two-loop expressions are

f (1)(−k2, µ2) = CF log2 −k2

µ2 + f̄ (1), (A.1)

f (2)(−k2, µ2) = 1
2C

2
F log4 −k2

µ2 −
1
3β0CF log3 −k2

µ2

+
[
−
(

1 + π2

6

)
C2
F +

(4
3 −

π2

3

)
CFCA + 5

3β0CF

]
log2 −k2

µ2 (A.2)

+
[
C2
F (π2 + 4ζ3)− CFCA

(32
9 − 14ζ3

)
− 19

9 β0CF

]
log −k

2

µ2 + f̄ (2),

h(1)(Q2, µ2) = −CF log2 Q
2

µ2 + 3CF log Q
2

µ2 + h̄(1), (A.3)

h(2)(Q2, µ2) = 1
2C

2
F log4 Q

2

µ2 +
(
− 3C2

F + 1
3β0CF

)
log3 Q

2

µ2

+
[(25

2 −
π2

6

)
C2
F −

(4
3 −

π2

6

)
CFCA −

19
6 β0CF

]
log2 Q

2

µ2

+
[
−
(45

2 + 3π2

2 − 24ζ3

)
C2
F +

(41
9 − 26ζ3

)
CFCA (A.4)

+
(209

18 + π2

3

)
β0CF

]
log Q

2

µ2 + h̄(2),

where f̄ (1) = −CF (1 + π2/6) and h̄(1) = −CF (8 − π2/6). The on-shell massless Sudakov
form factor h is known, see e.g. eq. (50) and (51) in [8], and I checked that the coefficients
of the logarithms in h(2) obtained indirectly from C(2) agrees with those expressions. This
is an important check of the formalism developed in section 3.

Although h̄(2) and f̄ (2) do not contribute at NNLL, we give the results for completeness.
Note that they can not be determined by the methods in section 6. However f̄ (2) can be
obtained from the result for h̄(2), given in [8], and the constant term of C(2), i.e. C̄(2) =
h̄(2) + f̄ (2) + h̄(1)f̄ (1), which can be obtained from the result in [5]. I find that

f̄ (2) = C2
F

(3
2 −

π2

3 + 119π4

360 − 39ζ3

)
+ CFCA

(95
27 −

4π2

9 − 43π4

180 + 18ζ3

)
+ β0CF

(
− 7

54 −
5π2

36 −
2
3ζ3

)
, (A.5)

h̄(2) = C2
F

(255
8 + 7π2

2 − 83π4

360 − 30ζ3

)
+ CFCA

(
− 1037

108 −
7π2

9 + 11π4

45 + 36ζ3

)
+ β0CF

(
− 4085

216 −
23π2

36 − 1
3ζ3

)
. (A.6)

We present the expressions for the anomalous dimensions defined in eq. (6.1)

γf = αs
4πγ

(1)
f +

(
αs
4π

)2
γ

(2)
f +O(α3

s), γh = αs
4πγ

(1)
h +

(
αs
4π

)2
γ

(2)
h +O(α3

s). (A.7)
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As explained in section 6 we have

γ
(j)
f = −Γ(j)

cusp log −k
2

µ2 + γ̄
(j)
f , γ

(j)
h = Γ(j)

cusp log Q
2

µ2 + γ̄
(j)
h . (A.8)

The expressions for the constant terms are γ̄(1)
f = 0, γ̄(1)

h = −6CF and

γ̄
(2)
f = −2(π2 + 4ζ3)C2

F +
(64

9 − 28ζ3

)
CFCA +

(56
9 + 1

3π
2
)
β0CF , (A.9)

γ̄
(2)
h = −

(
3− 4π2 + 48ζ3

)
C2
F −

(82
9 − 52ζ3

)
CFCA −

(65
9 + π2

)
β0CF . (A.10)

B Expressions for g functions

We give expression for the g functions appearing in eq. (6.11).

gLL = Γ(1)
cusp

2β2
0

(1− r + r log r) (B.1)

gNLL = Γ(1)
cusp

4β2
0

β1
β0

(
2− 2r + 2 log r + log2 r

)
− Γ(2)

cusp
2β2

0

(
1− r + log r

)
, (B.2)

gNNLL = 1
r

{
f̄1 + h̄1r +

γ̄
(2)
f

2β0
(1− r) + Γ(1)

cusp
4β2

0

[
β2

1
β2

0

(
1− r + log r

)2
+ β2
β0

(
1− r2 + 2r log r

)]

+ Γ(2)
cusp

4β2
0

β1
β0

(
3− 4r + r2 + 2 log r

)
+ Γ(3)

cusp
4β2

0
(1− r)2

}
, (B.3)

where r = 1 + αs(Q)
4π β0 log z.
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