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1 Introduction

A central theme in physics is unraveling the low energy phenomena that emerges from a
physical system described by a collection of microscopic degrees of freedom and interactions.
The long distance behavior of the system crucially depends on whether the spectrum of
the Hamiltonian is gapped or gapless, but determining which phase is realized is often a
nonperturbative problem.
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Figure 1. Diagram describing infrared dynamics of QCD with massless quarks in a representation R
of the gauge group G. The theory without quarks is expected to be gapped, and is gapless for large
enough R. The intermediate regime where the representation R is small remains an open problem.

In broad terms, a gapped system is described at low energies by a topological quantum
field theory (TQFT), while the asymptotic low energy dynamics of a gapless one is captured
by a conformal field theory (CFT).! Ascertaining whether a system flows to a TQFT or a
CFT, and to which one, can be out of reach because of large quantum fluctuations, which
are responsible for a wealth of low energy phenomena.

QCD theories are an important class of strongly coupled systems in which it is nontrivial
to postulate the infrared dynamics. Determining whether Yang-Mills theory with gauge
group G coupled to massless quarks in a representation R of G in d < 4 spacetime dimensions
is gapped or gapless remains an open problem. We henceforth refer to such theories of
massless quarks and gluons as QCD theories. The following qualitative picture is expected:

e QCD theories without quarks, that is, pure Yang-Mills theory, are believed to be
gapped. For simply connected gauge group G, the infrared is described by the trivial
TQFT.2

¢ QCD theories with a large number of quarks — more precisely, with a large Dynkin
index® — are gapless. In 4d, this is by virtue of the beta function [2, 3] being positive
for a sufficiently large number of quarks, which implies that the infrared is described
by a CFT of free massless particles. In 3d, the fact that QCD theories flow to a
weakly coupled CFT can be established in the limit of large Dynkin index [4, 5].

While gapped QCD theories in 4d have been known for some time [6, 7], it is only recently
that examples of gapped QCD theories in 3d, together with their infrared TQFTs, have
been put forward [8] (see also [9-14]). Little is otherwise known about whether a given QCD
theory is gapped or not, and which TQFT/CFT describes its infrared limit (see figure 1).

In this paper we determine all the QCD theories in 2d that are gapped, and therefore
those that are gapless. The full classification of gapped QCD theories is summarized in
tables 1 and 2.

In 2d QCD, the quark content is specified by a pair of representations (Ry, R,) of
the gauge group G acting on the left and right chiral quarks. We denote such a QCD

The CFT can be either a symmetry preserving nontrivial fixed point of the renormalization group, the
extreme infrared limit of the nonlinear theory of Goldstone bosons when the vacuum spontaneously breaks a
continuous symmetry, or free massless particles in a symmetric vacuum (e.g. infrared free gauge theories).

2In 4d the theory has a unique vacuum for § # 7 while for § = 7 the time-reversal symmetry is
spontaneously broken and there are two trivially gapped vacua [1]. Yang-Mills theory in 3d can be enriched
by a Chern-Simons term and then the theory in the infrared is gapped and described by a nontrivial TQFT.

3N fermions in a representation R of G has Dynkin index Nr x I(R), where tr(tht%) = I(R)§.



theory by (G; Ry, R,.).* We derive the necessary and sufficient conditions for a QCD theory
(G5 Ry, R,) to be gapped by analyzing the explicit lighcone and temporal Hamiltonians of
QCD. Lightcone quantization, where 2™ and x~ are time, and the canonical Hamiltonian
formalism, where 20 is time, yield exactly the same conditions.

From our Hamiltonian analysis, the following criterion is derived: a QCD theory is
gapless if and only if there exists a canonical, chiral, dimension 2 primary operator of
the quark current algebra constructed from either the left chiral quarks or right chiral
quarks. A QCD theory is gapped if and only if both these left and right chiral operators
vanish identically. These operator equations, derived by studying the Hamiltonian(s) in the
ultraviolet, can be completely solved, yielding the classification of gapped theories.? The
exhaustive list of gauge groups G and quark contents (Ry, R,.) of all the QCD theories that
are gapped appears in tables 1 and 2, corresponding to vector-like and chiral QCD theories
respectively. Any other QCD theory not in the tables is gapless.

Remarkably, there exist chiral QCD theories that are gapped. The complete classifica-
tion of chiral gapped QCD theories is given in table 2. From the classification of vector-like
gapped theories in table 1, we can construct chiral gapped theories in two ways:

o A chiral QCD theory (G; Ry, R,) is gapped if and only if (Ry, R,) = (o - R, 0, -
R) and the vector-like theory (G; R, R) appears in table 1, where oy, 0, are outer
automorphisms of g. Here o - R denotes the action of ¢ on R.° An example of such a
chiral gapped theory is

(Spin(8); 8y, 8.), (1.1)

corresponding to the triality automorphism acting on the vector-like gapped theory
(Spin(8); 8,, 8,) that appears in table 1.

e A chiral gapped QCD theory can be constructed by taking arbitrary tensor products
of the basic gapped theories with quarks in a complex representation (there are seven
such entries in table 1). The theories are coupled via the integral matrices ¢, and
¢r that specify the charges under the u(1) gauge group factors for the left and right
chiral quarks. In order for theory to be gapped these matrices must be non-singular.

4See section 2 for the role of the topology of the gauge group G in defining topological sectors, discrete
theta angles, gauge anomalies, etc.
5The operator equations that are the necessary and sufficient conditions for a QCD theory to be gapped

Tso(dim Re) — TGI(Rz> =0
Tso(dim Ry)1 — TGI(R'I‘> =0

correspond to all the conformal embeddings into the so(dim R¢): and so(dim R,)1 current algebras, and are
in one-to-one correspondence with Cartan’s classification of symmetric spaces. Tso(dim Ry): /Tso(dim Ry)y 18
the canonical energy-momentum tensor of the left /right chiral quarks in the ultraviolet, and T'c, (Rp) /Ta (R
is the left /right moving Sugawara energy-momentum tensor of the current algebra Gy(g) at level I(R). See
section 4 for details.

6See table 3 for a list of the automorphisms of simple Lie algebras. If G contains a U(1) factor then o
can also be chosen to act on the U(1) charge by reversing its sign.



g R g R
Vg adjoint su(2) 5
s0(N) O 50(9) 16
u(N) m Fy 26
s0(N) | sp(4) 42
sp(N) H su(8) 70
u(N) H, 50(16) 128
u(N) [, 50(10) 4+ u(1) 16,
su(M) 4+ su(N) 4+ u(1) (O,0)4 Eg 4 u(1) 27,
so(M) + so(N) (0,0) su(2) + su(2) (2,4)
sp(M) + sp(N) (O,0) su(2) + sp(3) (2,14)
su(2) 4 su(6) (2,20)
su(2) + s0(12) (2,32)
su(2) + E; (2,56)

@igi ‘ @i(l,...,Ri,...,l)q‘i

Table 1. Classification of vector-like gapped QCD theories (G; R, R). g denotes the Lie algebra
of the gauge group and R the representation of the quarks (given in terms of a Young diagram or
dimension of the representation). The global form of the gauge group G is arbitrary, as long as
it admits R as a representation. ¢ € Z is the charge under the u(1) gauge group factor. The left
columns include adjoint QCD for arbitrary gauge group and families of theories for the classical
groups, while the right columns contain isolated theories. Gapped QCD theories with classical
gauge groups must have quarks transforming in rank-one or rank-two representations, any other
representation leading to a gapless theory. The bottom entry indicates an arbitrary tensor product
of gapped theories (g;, R;) constructed from the entries in the table that have a U(1) gauge group
factor. These theories are coupled together via the u(1) matrix of charges {g;}, which must be
non-singular (see section 4.3 for details).

A concrete example of such a chiral gapped theory is
HU(nl) with quarks R = @(1,. P R D R (1.2)
i i

corresponding to the tensor product of the vector-like gapped theories (U(n;);0y,0,),
coupled via their U(1) gauge subgroups.

Having established which QCD theories are gapped and which are gapless, our next
goal is to put forward the explicit low energy description of all QCD theories. In the gapped
case this means finding the specific topological degrees of freedom carried by the vacua, the
infrared TQFT, and in the gapless case finding the specific massless degrees of freedom of
the infrared CFT.

Determining the long distance description of a given QCD theory is nontrivial. Unlike
the question of whether a QCD theory is gapped or gapless, which can be answered rigorously,



g (Rva'r)
g (O-f . R7 Op - R)
EBi gi @i(l, SRR (Uf,i - Ry, Oryg * Ri)? R 1)@'{,1',6},1‘

Table 2. Classification of chiral gapped QCD theories. Here g and R label the vector-like gapped
theories from table 1. oy, 0, ; denote outer automorphisms of g; (such as complex conjugation
for simply-laced groups, or triality for so(8)). @, qr: are tuples of charges for u(1) factors. These
charge matrices must have trivial kernel and cancel gauge anomalies, but are otherwise arbitrary
(see section 4.3 for details).

the task of finding the specific infrared degrees of freedom requires some guesswork. The
most natural and straightforward conjecture is that the infrared description of (G; Ry, R;) is
given by the g> — oo limit of the QCD Lagrangian, since ¢ has mass dimension. This limit
yields the gauged WZW description of a CF'T with the following left and right chiral algebras

SO(dim(Re) _ SO(dim(R,)):
G1(Ry) Grr,y

(1.3)

This coset can be shown to be a TQFT — and hence to correspond to a gapped QCD
theory — if and only if (G; Ry, R,) is in table 1 or 2. In this sense, our results derived from
the Hamiltonian analysis are perfectly consistent with the conjectured infrared description.
One can study many interesting aspects of QCD beyond the existence of a gap using the
infrared coset description (1.3). For example, many well-known CFTs, such as minimal
models, emerge in the infrared of QCD, which allows us to map non-trivial questions
about the dynamics of QCD theories into questions about these CF'Ts, which can then be
answered explicitly.

If a QCD theory has continuous chiral symmetries, then the infrared CFT necessarily
contains a Wess-Zumino-Witten (WZW) factor for these symmetries; this sector carries
the corresponding perturbative 't Hooft anomalies for the continuous symmetries. Even in
the absence of continuous chiral symmetries, the infrared CFT is nontrivial when the QCD
theory is gapless, and is based on a chiral algebra without spin one currents.” Interestingly,
't Hooft anomaly matching predicts the existence of some hitherto unknown 't Hooft
anomalies for discrete global symmetries in these CFTs, such as nonperturbative anomalies
for time-reversal symmetry and discrete chiral symmetries.

As an example, the proposal implies that QCD with a classical gauge group and with
fundamental quarks flows in the infrared to a WZW CFT:

SU(N) + Npo  —2reds U(Np)y WZW
SO(N) + Npo —2reds SO(Np)y WZW (1.4)
Sp(N) + Npo —2ereds o (Np)y WZW.

"For example, the QCD theories with G = SU(2) with a single quark in a spin j € Z representation, that
is (SU(2), 4, 7), has an infrared chiral algebra given by the W-algebra W(2,4,...,2j5). For j = 1,2 the theory
is gapped and flows to a TQFT, while for j = 3 the spin 4 and 6 currents become null and the chiral algebra
is the Virasoro algebra, and the theory flows to the fermionic tricritical Ising model.



These theories indeed carry the 't Hooft anomalies for the continuous flavor symmetries.
Moreover, using that the 't Hooft anomalies must match predicts that these WZW models
are endowed with several non-trivial global anomalies, which can be exhibited by general
arguments or by brute-force computation in specific examples. For instance, the renormal-
ization group flow predicts that the SO(Np)ny WZW model has a global anomaly associated
with time-reversal symmetry, with T2 = (—1)¥, which takes the value NNr mod 2. Many
other such examples can be constructed, leading to a wealth of CFTs in the infrared and ’t
Hooft anomalies thereof.

The plan for the rest of the paper is as follows. In section 2 we set the stage by carefully
analyzing the microscopic description of QCD, its free parameters, topological sectors, and
gauge anomalies. In section 3 we begin our investigations of the mass gap problem; in
particular, we exploit the symmetries and 't Hooft anomalies of 2d theories to constrain
as much as possible the theories that can potentially be gapped. We find several simple
criteria that automatically force the theory to be gapless, thus considerably reducing the
landscape of gapped theories. These criteria alone are not enough to actually prove that
a given theory is gapped, so in section 4 we turn our attention to an explicit analysis of
the Hamiltonian of QCD. We recover the necessary conditions laid out in the previous
section, and also find sufficient conditions as well, culminating in a concrete list of gapped
theories. In section 5 we reconsider our results, this time in light of the conjecture (1.3)
which proposes a concrete description of QCD at low energies. We give further evidence for
the correctness of this conjecture, and subsequently apply it to many explicit examples.

We also include several appendices. Appendix A can be used as a reference for our
conventions, and it contains some technical computations that supplement the main text.
Appendix B reviews some relevant facts about 2d CFTs and, in particular, cosets of the
form (1.3) that conjecturally encapsulate the low-energy degrees of freedom of QCD. We
also work out a few examples in some detail. Finally, appendix C contains a separate
discussion of QCD theories where the gauge group is abelian, i.e., where G consists of factors
of U(1) only. While this type of theories is covered by our general discussion from other
sections, when studied in isolation one can be more explicit in some of our claims. Also,
they illustrate some general features of other non-abelian QCD theories that contain U(1)
factors, such as the breaking of some U(1) flavor symmetries as the result of flavor-gauge
mixed anomalies.

2 2d QCD theories

The field content of a 2d QCD theory is specified by a choice of gauge group G and a pair
of representations Ry and R, of G acting on left and right chiral quarks.® We label such
a QCD theory by the triple (G; Ry, R,). G is an arbitrary compact, connected Lie group
with Lie algebra g = @797 ®m u(1),, a direct sum of simple Lie algebras g; and abelian Lie
algebras u(1),,. The Lagrangian of a QCD theory with massless quarks is

1 _ . ,
Locn = =5 tr(g ™ Fuw ™) + i Dty + i Dty (21)

8In 2d, complex conjugation does not reverse the chirality of a fermion since the chirality matrix vz = 7°~?

1.2.3

does not include an i, unlike in 4d where v3 = i7°y'v2~® and conjugation does flip chirality. This implies

that the most general 2d QCD theory cannot be written using just left chiral fermions, in contrast to 4d.

-6 —



Gsc |SU(N)|Sp(N)|Spin(2N + 1) |Spin(4N)|Spin(4N + 2)|Es|E7| Es| F4|Ga
h N |N+1 2N -1 AN —2 AN 121181309 | 4
Oout(e)| Z» | - - Z Zs Za) -
Z(Gse)| Zn Zo Zo Zo X Lo Zy Zs | 2o

Table 3. Lie data for the simply-connected simple Lie groups Gg.. Here h denotes the dual Coxeter
number (defined as the Dynkin index of the adjoint representation). Out(g) is the group of outer
automorphisms of g, which corresponds to charge conjugation symmetry of QCD. Z(Gy.) is the
center of the gauge group, which contains the one-form center symmetry of QCD. For SU(2), Out(g)
is trivial, and for Spin(8), it is enhanced to Out(g) = S (triality).

where
D_thy = (0 — i A%t} )1y, Diipy = (04 — AL )hr (2:2)

t§ (t¢) are the generators of the Lie algebra g in the representation R, (R,) and we
have introduced lightcone coordinates 2+ = %(mo +21), and A% = 1(A§ + A}). Each
gauge group factor has a gauge coupling, which is captured by ¢~2 inside the trace. See
appendix A for details and conventions. See also table 3 for a summary of simple Lie groups

and relevant properties.

Global issues, flux tubes and theta terms. A QCD theory requires specifying a

global choice of a gauge group G with Lie algebra g. We consider first QCD with the
simply-connected form of the gauge group Gsc, which we denote by (Gyc; Ry, Ry). Such a
QCD theory may have a one-form symmetry I' [15], where I' C Z(Gyc) is a subgroup of the
center (cf. table 3).

2d QFTs with a one-form symmetry I' have topological sectors labeled by a repre-
sentation p € I'V of I', where I'V is the Pontryagin dual group. Physically, a topological
sector labeled by p € I'V describes the theory in the presence of a flux tube created by a
quark-antiquark pair of charge p at £-infinity [16, 17], a background that preserves Poincaré
invariance in 2d.

We now consider the theory with gauge group G = G /T'.Y Since G-bundles are
classified by H?(M,71(G)) £ T, the sum over gauge fields in the functional integral can be
weighted by a discrete theta term labeled by p € I'V, which takes the form of a generalized
Stiefel-Whitney class

i /M w,(G). (2.3)

We label such a QCD theory by (G; Ry, R;),.
We proceed to prove that:

o (Gsc; Ry, Ry) with a p-flux tube is the same as (G; Ry, R;),

9The discussion can be easily extended to the case Gsc/K, where K C T



The one-form global symmetry I' of (Gg; Ry, R,) implies that there is a topological
local operator Uy, with g € I', which acts on line operators.'? Diagonalizing the topological
local operators Uy on the Hilbert space leads to the decomposition

H=EP H,, (2.4)

peTv

where p is an irreducible representation of I' and

W) ety = Ugly) =x0(9)[¥) - (2.5)

The Hilbert space #H, corresponds to (Gsc; Ry, R,) in the presence of a p-flux tube.

The QCD theory (G; Ry, R,), can be constructed by gauging the one-form symmetry
of (Ggc; Ry, R,) tensored with an SPT phase for the one-form symmetry I'; such SPTs are
labeled by an element p of the reduced cobordism group Q%pin(BQI‘) =~ 'V, where B’T'
denotes the second Eilenberg-MacLane space of I'. A nontrivial SPT, weights the sum over
g € I that defines (G; Ry, Ry), by gauging I' with the phase

Xp(9) (2.6)

where p € TV is a representation of ' and x,(g) is a character of T in the representation p.
This is an alternative way to think about the discrete theta term (2.3).

Consider a theory T in the presence of a fixed two-form gauge field By for the one-form
symmetry I', which takes values in H2(M,T') = I'. The partition function of the theory in
such a background is given by

Zrlgl = Y Zr(p)xe(9) . (2.7)
perv

where the sum over p is due to the Hilbert space structure (2.4) and g € I' labels the choice
of background gauge field By. Zp(p) is the partition function of the theory in the presence
of a p-flux tube.

The theory T'/T obtained by gauging I' has a dual (—1)-form symmetry T'V [18-20],
and T'/T" can be coupled to a background zero-form gauge field for this symmetry, which
corresponds to an element p of I'V. The partition of the gauged theory in the presence of
this background gauge field is

Zyyrlp) = |13| S Zrlglxs(9). (2.8)
gel

"The charge of a line operator £ under T is measured by U, as
Uy LU; " = xo(9)L,

where p € TV is an irreducible representation of I' and x,(g) is a character of I" in the representation p.
This means that the spectrum of line operators in the theory can be organized according to their charges

£l = EPle,

peTV

under I as

where line operators in [L], carry charge p.



where X;;(g) encodes the coupling of the background two-form gauge field for I" with the
zero-form gauge field for T'V. This describes the theory T'/T with a discrete theta term
labeled by p € T'V. Using equation (2.7) we arrive at

1 . .
] > D Zr(p) xp(9)x5(9) = Zr (), (2.9)

g€l perv

Zrrlp) =

where we have used that >> cr x,(9)x;(9) = [['[0,5. Therefore, the partition function of

the theory T/T" with a theta term p € T'V is the same as the partition function of the

original theory 7' in the sector with a with a p-flux tube, thus completing the proof that

(Gse; Ry, Ry) with a p-flux tube is the same as (G; Ry, R,),. This implies that it is sufficient

to study QCD theories with a simply connected gauge group, which we will do henceforth.
We now turn to the next result

o (Ggc; Ry, Ry) is gapless if and only if it is gapless in the p = 0 fluz tube sector.

This implies that for the purposes of classifying gapped QCD theories it suffices to consider
QCD theories with simply connected gauge group and in the trivial flux tube sector.

This conclusion is a consequence of the fact that the (massless) QCD theory (Gge; Ry, Ry)
admits topological line operators £ that carry any charge under the one-form symmetry
[ [21].1 Since £ carries one-form symmetry charge p, it defines a map between the Hilbert
spaces H,—o and H,: acting with £ on H,—q creates states in H,. Physically, acting with
a topological line £ inserts static probe charges p at +-infinity. Such a topological line
operator L interpolates between the Hamiltonian of the theory in distinct flux tube sectors

LH,—o = H,L, (2.10)

where H,—o and H, are the Hamiltonians of the theory in the trivial and p-flux tube
sector respectively. Note that in general £ is a non-invertible topological operator and
therefore (2.10) cannot be written as a similarity transformation. Since £ is topological it
carries vanishing energy density (zero tension). Therefore it cannot lower the energy and
the sector with a p-flux tube is gapless if and only it is gapless in the sector with no string
(that is with p = 0).12 We note that this conclusion relies on the existence of topological
line operators, and these are not present generically in the theory with massive quarks,
where indeed a massless particle can appear in the theory with a flux tube (see e.g. [23]).

In summary, for the purposes of classifying all gapped QCD theories we can, without
loss of generality, consider the theory with simply connected gauge group in the trivial
topological sector, without a string. Henceforth, we will use G to refer to the simply
connected gauge group or use instead the Lie algebra g.

Gauge anomaly cancellation. In order to define a consistent QCD theory, the global

symmetry G acting on the free fermions in the deep ultraviolet must have no obstructions
to being gauged. Therefore all anomalies for G gauge transformations, perturbative and

HThe global symmetries of the QCD Lagrangian (2.1) together with these topological lines make it
technically natural to study the theory without four-fermi terms, cf. [21, 22].
121f |Q) is the ground state of H,—o, the ground state of H, is £|().



nonperturbative, must cancel. Perturbative anomalies, that is, anomalies associated to G
gauge transformations connected to the identity, are classified by the first summand in the
free part of the spin cobordism group

Free(Q2 .. (BG)) = g +slml(mi+1) ¢ 7. (2.11)

spin

where |I| and |m| is the number of simple and abelian factors in g respectively. These
anomalies are determined by a one-loop diagram and encoded in the first line of the
anomaly polynomial
- Fa N F?
(trp, /%™ — trp, €F/2ﬂ)A(R)|4 = Z[tr(t}%t@) — tr(t22)] R
a,b (2.12)

PR i () — dim(,)].

where F® is the two-form field strength and p;(R) the first Pontryagin class for the
background metric. Gauge anomaly cancelation requires that the representations R, and
R, of the left and right chiral quarks obey

tr(t3t%) = tr(t2t?) Ya,b. (2.13)

The nontrivial anomaly constraints in (2.13) are:!3

1. gr-gr anomaly: tj . are generators of the simple Lie algebra g;. The anomaly cancela-
tion condition requires that
I(Re) = I(R;) =0, (2.14)

where I(R) is the Dynkin index of the representation R, defined by tr(tt*) = I(R)5.
The index of a reducible representation follows from I(R; & Ra) = I(R1) + I(R2).

2. u(1)p-u(1),, anomaly: t7, are generators of an abelian Lie algebra. The anomaly
cancelation condition is

Z QZ,mQZ,n - Z Qr,mQr,n = 07 (215)
YA T

where Qg and @, are the left and right U(1),, charges of the quarks.

A global symmetry GG may have a more subtle obstruction to being gauged associated
to a background G gauge transformation not connected to the identity, like the celebrated
SU(2) global anomaly in 4d [24]. If the symmetry group G is gauged, like in QCD, global
anomalies for G must also cancel for the gauge theory to be consistent. Topologically

13This is to be contrasted with the 4d anomaly cancelation equation tr(tg{t%,¢5}) = 0 when the theory is
written using left chiral fermions, which is nontrivial for the gr-gr-gr, gr-gr-u(1)m and u(1)m-u(1)n-u(1),
anomalies. In 2d a chiral fermion in any irreducible representation of any g contributes to the gr-gr anomaly,
while in 4d only chiral fermions transforming in a complex representation of SU(N) contribute to the pure
gr-g7-g7 anomaly, because the rest of the simple Lie algebras have no cubic Casimir. Since a chiral fermion
cannot be given a mass in 2d, unlike for a 4d chiral fermion in a real representation, any 2d chiral fermion
can potentially contribute to the anomaly and, indeed, it does.

~10 -



nontrivial gauge transformations in (compactified) 2d flat spacetime are classified by m2(G),
which vanishes for any continuous Lie group G, and 2d gauge theories do not have this
type of global anomalies. From the cobordism point of view of anomalies, the vanishing
of the anomalies is seen through the fact that Qg’pin(BG) =0 (see e.g. [25]).!* Therefore
the anomaly cancelation conditions (2.13) are necessary and sufficient for a QCD theory to
be consistent.

Since gravity couples to QCD as a nondynamical background field, it can be afflicted
by gravitational anomalies without rendering the theory inconsistent. These anomalies
are captured by the second Z summand in (2.11) and by the second line of the anomaly

15 We discuss in the next section the implications that 't Hooft

polynomial in (2.12).
anomalies, including gravitational anomalies, have for the infrared dynamics of QCD theories.

Of course, vector-like theories (G; R, R), with Ry = R,., are manifestly free of gauge
anomalies. But in 2d, gauge-anomaly-free chiral QCD theories are abundant. Most of these
chiral theories, however, have gravitational anomalies. There are, nonetheless, chiral gauge

theories with neither gauge nor gravitational anomalies, i.e., simultaneous solutions to'

tr(t3t%) = tr(t%t2) Y a,b

(2.16)
dim(R,) = dim(R, ).

Unlike in 4d, where the beta-function for the gauge coupling constrains the quark content
of 4d QCD theories that are strongly coupled in the infrared, any 2d QCD flows to strong
coupling at low energies. Our first goal is to determine which 2d QCD theories are gapped,
and which are gapless.

3 Symmetries, 't Hooft anomalies and gaplessness

In this section we use symmetry and 't Hooft anomaly considerations to derive necessary
conditions for a 2d QFT theory to be gapped. We start with a discussion of symmetries
and 't Hooft anomalies and then use them to constraint the phases of 2d QFTs.

Symmetries provide a powerful organizing principle parametrizing the most general
solution of a QFT consistent with the symmetries. But without further input, either
perturbative or nonperturbative, symmetries do not inform the actual dynamics of a
physical system.

An 't Hooft anomaly for a global symmetry, diagnosed by violations of Ward identities
in the presence of nondynamical background gauge fields for global symmetries, instead,
does inform the dynamics of the system. Since 't Hooft anomalies are quantized, they are
invariant under symmetric deformations, and define invariants in the space of symmetric

14 Global anomalies for a discrete symmetry group can be nontrivial. For example Qg’pin(BZg) =17s.

15 A mixed u(1)-gravity anomaly governed by V,J* = aR can be written down, where J* is the u(1)
current. But @ = 0 in a unitary theory. It can be nonvanishing in a nonunitary theory, like in the string
theory bc ghost system. Thus there are no mixed gauge-gravity anomalies in 2d QCD.

16 A simple example of a chiral theory with no gravitational anomalies is (Spin(5); 35,5 + 30). As a
matter of fact, this theory has no continuous flavor symmetries, so it does not have any perturbative 't
Hooft anomalies whatsoever.
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QFTs. In particular they are invariant under renormalization group transformations. While
't Hooft anomalies alone cannot determine the dynamics of a system, they rule out any
dynamical scenario that does not match the microscopic 't Hooft anomalies. As such, 't
Hooft anomalies provide nonperturbative guidance about the dynamics of QFTs.

A system defined at short distances with an 't Hooft anomaly for a symmetry cannot
flow in the deep infrared to a trivially gapped theory, as this has vanishing 't Hooft anomalies.
A system with an 't Hooft anomaly can flow either to a symmetry-preserving gapless phase
or a symmetry breaking phase, which is gapless if the broken symmetry is continuous'” and
a TQFT if the broken symmetry is discrete.'® If the anomalous symmetry is discrete, the
system may also flow to a symmetry preserving gapped phase described by a TQFT with
topological order, which can saturate anomalies that are torsion classes.

A system with an 't Hooft anomaly for a continuous symmetry cannot flow to a TQFT
because an 't Hooft anomaly for a continuous symmetry implies a nonvanishing correlation
function for conserved currents at separated points, and a TQFT, being topological, does
not have such correlation functions. This implies that a system with perturbative anomalies,
corresponding to anomalies for continuous symmetry transformations connected to the
identity, can only flow to a symmetry preserving gapless phase or a symmetry breaking
gapless phase.

In 2d, the fate of a system with an 't Hooft anomaly is further constrained by impor-
tant theorems. These theorems, once combined with the discussion above, leads to the
following implications:

1. Coleman-Mermin-Wagner theorem [26, 27]: a continuous global symmetry cannot be
spontaneously broken in 2d.

A 2d system with an 't Hooft anomaly for a continuous symmetry must flow to a
symmetry preserving gapless phase.

2. A 2d TQFT does not have intrinsic topological order [28]: in 2d a symmetry preserving
gapped phase cannot saturate 't Hooft anomalies.

A 2d system with an 't Hooft anomaly for a discrete symmetry must flow to a
symmetry preserving gapless phase or a symmetry breaking gapped phase described
by a TQFT.

We are now ready to state the following far-reaching result for the dynamics of 2d QFTs:

Lemma 1. A 2d QFT with a continuous chiral global symmetry is symmetry preserving
and gapless.

Consider a QFT with a U(1) global symmetry. The one-form current for the U(1)
global symmetry is J = J, dz* = Jyde™ + J_dz~, with J4 = %(Jo + J1). This obeys the
conservation equation (see appendix A for conventions)

O_J+0.J_=0. (3.1)

"More precisely, the anomaly is not torsion.
¥More precisely, the anomaly is torsion.
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This is an operator equation that holds inside any correlation function as long as the
location of the current J does not coincide with any operator insertions (conservation
may fail at coincident points). Poincaré’s lemma implies that locally the current takes the
following form

Jy = €u0'¢p = Jp = £0,¢(x,27), (3.2)

where ¢(z+,x7) is a scalar operator in the theory.
Consider now a chiral symmetry. A right-moving U(1), symmetry is implemented by a
conserved current that is antiselfdual

U),: J=—+J<=J, =0<=0yJ_=0. (3.3)

By virtue of (3.2), a theory with a U(1), symmetry contains a scalar operator ¢ that is
right-moving
Jr=0= ¢ =0¢(z). (3.4)

Likewise, a left-moving U(1), symmetry is generated by a conserved current that is selfdual
Ul)y: J=4*J <= J_=0«<=0_J;4 =0, (3.5)

and a U(1), symmetry implies the existence of a left-moving scalar operator
J_=0= ¢=¢("). (3.6)

This implies that a QFT with either a left or a right moving U(1) symmetry is necessarily
gapless: the theory has a chiral scalar operator that creates chiral massless states when
acting on the vacuum.

This lemma may seem at odds with our discussion above since, typically, symmetries
alone cannot determine the infrared phase of a system. The reason that it does in this
case is that a chiral U(1) symmetry automatically leads to an 't Hooft anomaly for that
symmetry, as we show below. And as we mentioned above, an 't Hooft anomaly for a
continuous global symmetry in 2d necessarily leads to a symmetry preserving gapless phase.

Consider the renormalization group flow out of a CFT with a U(1), symmetry that
is triggered by a U(1)s-invariant relevant operator.'? Since the flow preserves the U(1),
symmetry, the most general two-point function for the U(1), current consistent with
dimensional analysis and Poincaré invariance is

NE—

(o (o) 0)) = KAL), (3.7
where 1 is a scale generated along the renormalization group flow. In a unitary theory
K; >0, with K, = 0 if and only if J; = 0. Demanding conservation law of U(1), symmetry
current at separated points _J, = 0 implies that K, is a renormalization group invariant

0

19Tn QCD, the CFT in the ultraviolet is the CFT of free fermions, and the renormalization group flow is
triggered by the gauge coupling.
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where we have introduced Rindler coordinates % = pe®?, so that

(T4 (0) = (3.9)

In the deep ultraviolet, KV = k¢ € Z is the level of the U(1), current algebra of the
ultraviolet CFT. Therefore, k is the 't Hooft anomaly coefficient for the U(1), symmetry.2°
Since ky # 0 implies that correlators have support at separated points (3.9), and U(1),
cannot be spontaneously broken, the infrared of a system with a U(1), symmetry must be
symmetry preserving and gapless.

This argument admits an interesting generalization. Consider now the renormalization
group flow of a U(1)-symmetric CFT triggered by a U(1)-invariant relevant operator. In
a unitary CFT with a normalizable vacuum, the conservation law for the U(1) current
J = Jydat + J_dz~ implies a separate conservation law for chiral U(1), and U(1),
symmetries, generated by J_ and Jy respectively [29]. The most general current two-point
functions consistent with dimensional analysis and Poincaré invariance are

Ko (ota /)

(s (o) = KL
(- ) - (o)) = ) (3.10)
G (wto /i)

(s (2) - (0)) =

ztzx

In a parity invariant system K, = K,. Conservation of the U(1) current 0_J; + 01J_ =0
at separated points implies that

5 0

0
(K — 2~ (K, =G. 11
p 8,02( 1 +G) =G, p 6)[)2( +G)=G (3.11)

Therefore, the quantity K, — K, is a renormalization group invariant

p2aap2(Kg - K,)=0. (3.12)
In the deep ultraviolet, KV =k, € Z and K"V = k, € Z are the levels of the U(1), and
U(1), current algebras of the ultraviolet CFT. K, — K, = ky — k, is the 't Hooft anomaly
coefficient for the U(1) symmetry and is constant everywhere in the flow.?! This must be
reproduced by be infrared phase, and it can only be realized by a symmetry preserving
gapless phase.

Lemma 2. A 2d QFT with a gravitational anomaly is gapless.

20The contact term implied by (3.9) leads to a violation of the conservation equation d_j4 = %8+A_
upon coupling system to a background gauge field for U(1), via f d’zA_Jy. In QCD, k; = Zl q2_2727 where
gi,¢ are the U(1), charges of chiral fermions.

2'In QCD k¢ — ky = triermions (WSQtQ), where @ is the U(1) charge of the fermions.
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An almost identical reasoning applies to the conservation law of the energy-momentum
tensor T}, along a renormalization group flow out of a CF'T, for which we have

87T+i + 8+T,i =0. (313)

In a unitary CFT with a normalizable vacuum, 7y~ = 0 and T4 and 7__ are chiral, that

is 0_T44 = 04T—_ = 0, so that in the ultraviolet CF'T, the correlators with support at
separated points are

CEJV UV
. —_ _ T
UV CFT: (T @)Tel0) = 5y (Te@)T—(O) = 5o (314
where CEV and cUV are the central charges of the left and right-moving Virasoro algebras.

V= cUV. The quantity ¢V — cUV detects a gravitational 't

In a parity invariant theory CE
Hooft anomaly, and must be matched by the infrared phase.?? While the c-theorem [30]
says that ¢y and ¢, decrease along a renormalization group flow, the difference ¢, — ¢, must
remain constant. In a theory with a gravitational ’t Hooft anomaly the energy-momentum
tensor is a nontrivial operator, with separated point correlation functions. Since such
correlation functions cannot be realized by a TQFT, a 2d theory with a gravitational 't
Hooft anomaly is necessarily gapless.

Comparing with the anomaly polynomial (2.12), we have that the gravitational 't Hooft

anomaly of the QCD theory (G; Ry, R,) is

T

1
eV —clV = B (dim(Ry) — dim(R;)) . (3.15)
(G; Ry, R,) with a gravitational 't Hooft anomaly in the ultraviolet is gapless.

3.1 Towards gapped QCD theories

In the previous section we established that a 2d theory with a continuous chiral symmetry
is automatically gapless. Therefore, if we wish to classify QCD theories that are gapped,
the first step is to determine which QCD theories have no such symmetries. These can be

expressed as conditions on the quark content of the QCD theory as follows:.??

Lemma 3. A necessary condition for (G; Ry, R,) with semisimple G to be gapped is that the
representations Ry and R, of G are the direct sum of distinct, real irreducible representations
of G. A QCD theory with a quark content that is not of this type is necessarily gapless.

(G; Ry, R,) is obtained by gauging a diagonal subgroup G of the global symmetry acting
on the left and right chiral quarks, and giving the gauge fields a kinetic term. For the
purpose of identifying the continuous global symmetries of a QCD theory it suffices to
discuss the Lie algebra of symmetries. The continuous global symmetry algebra acting on
the quarks in the ultraviolet is

so(dim(Ry)) @ so(dim(R,)), (3.16)

*2This can be derived by imposing energy-momentum conservation law (3.13) on the most general two-point
functions of T4+, T—_ and Ty _ at separated points.
We discuss QCD with a reductive gauge group, that is with abelian gauge group factors, below.
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where dim(Ry/,) is the real dimension of the representation R/, of g. Our immediate task
is to answer for what choices of Ry and R, does a QCD theory admit a continuous chiral
global symmetry, and is therefore gapless (cf. lemma 1.).

In order to answer this question it suffices to consider the left chiral fermions, as an
identical discussion holds for the right chiral ones. Consider left chiral fermions transforming
in an irreducible representation R of a semisimple Lie algebra g. A QCD theory with this
quark content has a left chiral flavor symmetry if and only if the embedding

so(dim(R)) D g (3.17)

has a nontrivial commutant, that is, there exists an algebra h C so(dim(R)) such that
[g,h] = 0. This depends on the nature of the representation R, which for now we take to
be irreducible:

e A chiral quark in a complex representation has a chiral U(1) global symmetry.

A complex representation R of a semisimple Lie algebra g is described by traceless,
antihermitian (dim(R)/2) x (dim(R)/2) matrices t. Therefore the pair (g, R) defines the
following Lie algebra embedding and branching

su(dim(R)/2) D g

(3.18)
fundamental — R.

Since R is irreducible, the commutant of g in su(dim(R)/2) is trivial by Schur’s lemma.

Let us now determine whether there is a commutant of g in so(dim(R)), the symmetry
algebra acting on the quarks. The Lie algebra su(dim(R)/2) embeds into the so(dim(R))
symmetry algebra of the quarks as

~ [ re(t) im(t) .
t= <—im(t) re(t)) C so(dim(R)), (3.19)

where re(t)? = —re(t), im(t)? = im(t), with T denoting the transpose, and tr(t) = 0.
Since

U= (_01 3) C so(dim(R)) (3.20)

commutes with £ and U ¢ su(dim(R)/2), a chiral quark in a complex representation has a
chiral U(1) global symmetry. This also follows from the following sequence of embeddings:

s0(dim(R)) D su(dim(R)/2) du(l) D gdu(l). (3.21)

o A chiral quark in a pseudoreal representation has a chiral Sp(1) ~ SU(2) global symmetry.

A pseudoreal representation R of a Lie algebra g is described by traceless, antihermitian
(dim(R)/2) x (dim(R)/2) matrices t obeying

—t'=JtJ !, (3.22)
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where J is the canonical antisymmetric matrix

01
J = (_1 0) : (3.23)

These are precisely the generators of the sp(dim(R)/4) Lie algebra in the fundamental
representation. Therefore the pair (g, R) defines the following Lie algebra embedding
and branching

sp(dim(R)/4) O g

(3.24)
fundamental — R.
Since R is irreducible, the commutant of g in sp(dim(R)/4) is trivial by Schur’s lemma.

Let us now determine whether there is a commutant of g in so(dim(R)), the symmetry
algebra acting on the quarks. Since J = ioy ® 1, the sp(dim(R)/4) matrices ¢, which
obey (3.22), can be written as

4
t= Z ta @qnr, (3.25)
M=1

where t); are real matrices obeying t1 = t, for a = 1,2,3 and t] = —¢,.2* Here we denote
gy = (i, 1), with & the Pauli matrices, a two-dimensional complex-valued representation
of the quaternions.

The embedding of sp(dim(R)/4) into the so(dim(R)) symmetry algebra of the quarks is
4
t= > ty®d6y Cso(dim(R)), (3.26)
M=1
where 637 = (01 ® 109,102 ® 1,03 ®io2,1 ® 1) is a four-dimensional real-valued represen-
tation of the quaternions. Since the matrices U, C so(dim(R))

U =1®i02 ® 0y
U =101®1i09 (3.27)
Us=1®i0a @03

commute with , generate an sp(1) algebra (namely, [74, 7] = i€qpeTe With 7, = %Ua)
and U, ¢ sp(dim(R)/4), a chiral quark in a pseudoreal representation has a chiral sp(1)
global symmetry. This also follows from the following sequence of embeddings:

s0(dim(R)) D sp(dim(R)/4) sp(1) D gD sp(1). (3.28)

e A chiral quark in a real representation has no continuous global symmetry.

24There are three symmetric matrices and one antisymmetric, each being n x n with n = dim(R)/4. Thus,
there are 3n(n + 1) + in(n — 1) = n(2n + 1) degrees of freedom, which is precisely the dimension of the

algebra sp(n) = sp(dim(R)/4).
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A real irreducible representation R of a Lie algebra g is described by traceless, antihermi-
tian (dim(R)) x (dim(R)) matrices ¢ obeying

—tT =t. (3.29)

These are precisely the generators of the so(dim(R)) Lie algebra in the fundamental
representation. Therefore the pair (g, R) defines the following Lie algebra embedding
and branching

so(dim(R)) D g

(3.30)
fundamental — R.

Since R is irreducible, the commutant of g in so(dim(R)) is trivial by Schur’s lemma.
Therefore, a chiral quark in a real representation has no continuous global symmetry.

Let us now consider the case where the representation R is reducible. Since we are
seeking QCD theories that are gapped, which means that they cannot have any continuous
flavor symmetries, we take R to be the direct sum of irreducible, real representations R,
with multiplicity M,

R= M, R,, with M, €{0,1,2,...}. (3.31)

If M, > 1, then there is an so(M,) chiral flavor symmetry acting on the quarks. Indeed,
the representation matrix for the reducible representation M, - R, can be written as

t=1Rtq, (3.32)
where t,, is a representation of R,. The matrix U C so(M, - dim(R,))
U=0®1 with 0OT=-0 (3.33)

is a representation of so(M,) and commutes with ¢. It therefore generates an so(M,) flavor
symmetry. This is also a consequence of the sequence of embeddings:

s50(M,, - dim(R,,)) D so(dim(R,,)) @ so(My) D g ® so(My) . (3.34)

Finally, by virtue of Schur’s lemma, the direct sum of distinct irreducible real representations
®q R, does not have a continuous flavor symmetry, as the commutant of so(3", dim(R,)) D g
is trivial.

Let us now consider QCD with a reductive gauge group G = K x U(1)", where K is
semisimple. It suffices to consider the left chiral fermions, as an identical discussion holds
for the right chiral ones. When the gauge group has U(1) factors, a classical U(1)p chiral
flavor symmetry may be broken by the Adler-Bell-Jackiw (ABJ) anomaly, that is, by a
mixed a U(1)-U(1)r anomaly. A classical semisimple symmetry always remains unbroken.
Therefore, for the purposes of classifying QCD theories with K x U(1)™ gauge group and
no flavor symmetries, consider QCD with chiral quarks transforming under K x U(1)" as

Np

PR, @), (3.35)

I=1
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where Ry is an irreducible representation of K, q; is an integral n-component charge vector
under U(1)" and all pairs (R, ¢) are distinct (any other quark content leads to a flavor
symmetry). The classical chiral flavor symmetry is

Np

bclassical = @u<1)l . (336)

I=1

We want to determine under what conditions this symmetry is completely broken by the
ABJ anomaly. Upon defining the integral matrix ) whose columns are

Q = (dim(Rl)Q_i, dim(RQ)(fg, e ,dim(RNF)(TNF) (337)
we arrive at the following result

Lemma 4. A necessary condition for (G; Ry, R,) with G = K x U(1)" to be gapped is
that the representations Ry and R, of G are of the irreducible form (3.35) and the charge
matrices Qg, Q, have trivial kernel. A QCD theory with a quark content that is not of this
type is necessarily gapless.

The proof is straightforward. An arbitrary chiral u(1) C Hejassical flavor symmetry is
specified by an integer vector 7 = (n1,ng,...,ny,) such that, given an angle o € u(1), the
I-th quark is rotated by an angle any. The mixed ABJ anomaly between this u(1) flavor
symmetry and the U(1)™ gauge group is Q7. Therefore, no flavor symmetries remain if and
only if @ has empty kernel (so that there are no nontrivial solutions to Q7 = 0). See also
appendix C for a more in-depth discussion of QCD theories with U(1)" gauge group.

Our findings thus far are summarized in the two lemmas of this subsection. This is as
far as one can get using 't Hooft anomaly considerations. Answering whether a QCD theory
(G; Ry, R,) obeying the conditions in the lemmas is gapped or gapless requires studying the
dynamics. The analysis thus far does not say, for example, whether the vector-like QCD
theory with G = SU(2) and quarks in the isospin j € Z representation (which is real) is
gapped or gapless. We will provide a complete answer to these questions in the rest of
the paper.

Before closing this section let us make one final remark. In this section we have
capitalized on the symmetries of 2d QFTs as much as we could. In a nutshell, we showed
that, if h denotes the chiral symmetry algebra of a 2d system, then the system is automatically
gapless as soon as f is non-trivial. There is a nice physical interpretation of this result.
In a unitary CFT, a chiral symmetry b is always enhanced to b affine algebra, for a
suitable level k. Therefore, if h is non-zero, the system contains b massless currents
which automatically make the system gapless: the infrared contains, at the very least, an
b WZW CFT subsector. Therefore, a necessary condition for being gapped is that the
chiral symmetry is trivial, h = 0. We will see the h; currents reappear explicitly in the
Hamiltonian of QCD in the following section, and we will study them in more detail when
we look at the infrared of QCD in section 5.
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4 Mass spectrum and QCD Hamiltonians

In this section we analyze the mass spectrum of QCD by studying the quantization of
the QCD Hamiltonians. The main result is a derivation of the necessary and sufficient
conditions for a QCD theory to be gapped. Along the way, we prove that a QCD theory
with a continuous global symmetry has massless particles in the spectrum, reproducing
the result derived in section 3 by symmetry and 't Hooft anomaly arguments. We analyze
the lightcone and temporal Hamiltonians, both yielding the same conditions for QCD to
be gapped.

4.1 Lightcone Hamiltonian

Our aim in this section is to study the mass spectrum of QCD by quantizing the theory
in the lightcone frame [31-33]. We review here the most salient features and formulas
(see [34, 35] for reviews and recent work). The basic idea is to use the a lightcone coordinate,
say 2T = %(azo + z1), as the time variable. This quantization defines the Hilbert space
and the Cauchy data of the theory on a constant x™ surface, and the conjugate lightcone
Hamiltonian P~ evolves states in 7. When we choose T to play the role of time, the
lightcone coordinate ™ plays the role of a spatial coordinate. The momentum P conjugate
to £~ commutes with the lightcone Hamiltonian P, i.e., [P*, P~] = 0. Therefore, the
mass spectrum of QCD can be obtained by simultaneously diagonalizing the operators P™
and P~ since

M? =2PTP~. (4.1)

Positive semidefiniteness of M? and of the lightcone Hamiltonian P~ implies that all states
in the Hilbert space have P > 0. This combined with the fact that interactions preserve
PT implies that the vacuum state in lightcone quantization is trivial, that is, the vacuum
has no particles in it, and the nonperturbative vacuum coincides with the Fock vacuum.
This makes lightcone quantization well adapted to study the meson and hadron spectrum
of QCD.

Since P~ evolves states along ™, left-moving massless particles are not visible in
the P~ Hamiltonian. This implies that the spectrum of the Hamiltonian P~ correctly
accounts for all massive and right-moving massless particles, but does not detect left-moving

massless particles. This shortcoming can be overcome by quantizing QCD using instead

— _ 1¢..0
v = e
PT and its spectrum contains all the massive and left-moving massless particles. Therefore,

— z!) as the lightcone time. In this frame, the lightcone Hamiltonian is instead

by diagonalizing the QCD lightcone Hamiltonians P~ and P+ in the quantizations where
" and 2~ is time respectively, all the massless particles of QCD are accounted for.

Let us proceed with the lightcone quantization of QCD with left and right chiral quarks
in representations Ry, and R, of the gauge group G. We start with the QCD Lagrangian

1 . S AaQ a : - pa 4a
Lacp = ?Fi—Fi— i (0- — 1A% t§) Wy + il (D — iALL )Y, . (4.2)

We fix the gauge A% = 0, in which all states have positive norm and there are no ghosts. In
the lightcone gauge with 21 being time, the left-chiral quarks 1, and A9 are not dynamical.
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They can be integrated out to yield
Locp = ih]0t, — Qﬂyﬂ (4.3)
where

5 = Sttt (4)

generates the right-moving quark current for g, the Lie algebra of G, which obeys 0_J! = 0.
The Noether charges for the lightcone Hamiltonian and momentum are

= /dx ”"82

(4.5)
+= i/daf plO_1p,: .

Choosing =~ as lightcone time instead results in the associated lightcone Hamiltonian
and momentum 1
Pt =g /dx+ :Jgajjgz
+ (4.6)
P = i/dx+ :1/1;8+@Z)g: ,
where now 1
Tt = Sl (4.7)
generates the left-moving quark current for G, with 0, J¢ = 0.
We are interested in determining when a QCD theory is gapped, and when it is

gapless. This requires determining when the lightcone Hamiltonians (4.5) and (4.6) have
zero eigenvalues. We will answer this question by studying the eigenvalues of the operators

H=—yg / dx: J“ J“
(4.8)
pP= i/daj :wTam:,
where z = 2~ or x = 27 and J% = J® or J* = J{ depending on whether z or 2~ is the
lightcone time. Canonical quantization yields the following equal-time commutation relations

{wl@)., 0 W)} = —y), (4.9)

where the Latin indices are the representation labels for the representation R of g of the
relevant chiral quarks. The quark field expansion in Fourier modes is

Vi (z) i(k)e ke 4 bl (k)e™r) (4.10)

“h

where k = k_ or k = k, depending on whether 2 or 2™ is taken as the lightcone time. Note
that in the lightcone frame the Fourier modes carry nonnegative longitudinal momentum.
Using (4.9) we get the anticommutation relations

{a'(k),af(®)} = otk — k'), {b'(R),BIK)} = dl6(k — ), (4.11)
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with a;r(k:) = b;r(k:) if the quark field is a Majorana fermion. These operators define the Fock
vacuum, and in fact the nonperturbative vacuum |0) of lightcone QCD

a'(k)j0y =0,  b(k)0)=0 Vk. (4.12)
Normal ordering in (4.8) implies that the vacuum has zero lightcone energy and momentum
H|0) =0, P|0) =0. (4.13)

The goal is to diagonalize the lightcone Hamiltonian(s) H on the Hilbert space H
created by the quarks

|piriz-in) = aj-l (k:l)a;;(b) e GIL (kL)|0) . (4.14)

The physical states of QCD must be gauge invariant, which implies that all physical states
must be invariant under the action of g

/ d J* ()| W21y — . (4.15)

While H mixes states in the Hilbert space H, the longitudinal momentum operator P is
diagonal, it is the sum of the longitudinal momentum of each parton.

QCD has massless particles if and only if there exist states |¥%%2-L) € H  other than
the vacuum state, that are gauge invariant and have zero lightcone energy,

a 1 a 1112...1
/dm:J T WL =0, (4.16)

The currents J* = %:dﬁt“d}: constructed out of the chiral quarks 1 transforming in a
representation R of g generate an affine chiral current algebra g;(g)

R(sab 'abJCO
)2 _|_ch ()

()b (0) ~ 1 , (4.17)

T xT

where the level is the Dynkin index I(R) of the representation R. The OPE (4.17) implies,
upon putting the longitudinal coordinate on the circle, that the Fourier modes obey

(T8, T2 =i f T+ T(R)6™npmin - (4.18)

n»“m n

The zero energy state condition (4.16) takes the form

© 1 L
> ﬁJEnJg]\I/“”'"ZL) =0. (4.19)
n=1

Since the Hamiltonian H in (4.8) is a positive semidefinite operator, the necessary and
sufficient conditions for a state |[Wi1%2L) to have zero energy are:

1. |@47%2-7L) s a primary state of the current algebra gy gy, that is Jg|Wh%2-L) = 0
Vn>1.

2. |Whiz-iL) transforms in the trivial representation of g.

We now proceed to study under what conditions these states exist.
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The quark Hilbert space H decomposes into modules of the so(dim(R)); current algebra
at level one [36] (see also [37]), labeled by representations of so(dim(R)). These are labeled
by (0,v,s,c) when dim(R) is even and by (0,v,s) when it is odd, where 0,v,s,c are
the trivial, the vector and spinor representation(s) of so(dim(R)). The precise relation
between the modules of so(dim(R)); current algebra and fermion Hilbert space is (e.g. for
dim(R) even)

HNS = HO % Hv

(4.20)
Hr = Hs © He,

where Hx denotes the fermion Hilbert space with fermions obeying X € {NS,R} (Neveu-
Schwarz and Ramond) boundary conditions on the circle.

Since QCD is obtained by gauging the subalgebra g C so(dim(R)), the current algebra
embeds as gy(g) C so(dim(R)); into the fermion current algebra. That means that any
state in H fits inside a module of the grg) current algebra. An elegant way to describe
how states embed is through the branching functions by, which encode how the characters
of the so(dim(R)); current algebra decompose into gy(g) characters:

xala) =D bax(@)xalq) - (4.21)
A

Here A € {0,v,s,c} or {0,v,s} and A is a highest weight vector labeling the integrable
representations of gr(g), which obeys

rank(g)
> af/\ <I(R), (4.22)

=1

where a) are the comarks of g. The function by, (¢) counts how many primary states of
g7(r) With highest weight A appear in the decomposition of the module of so(dim(R)); with
highest weight A. They also capture at which level the primaries of g;(r) appear in the
s0(dim(R)); modules.

The branching function by (¢) has a module interpretation. bpy(g) is a character of
the chiral algebra A, where A is the commutant chiral algebra of g(p) inside so(dim(R));.
A necessarily contains the Virasoro algebra with central charge the difference of the central
charges of the two current algebras c4 = c(so(dim R)1) — c(g7(r)) = $dim R — %,
where h is the dual Coxeter number of g (see table 3). Also, if h is the commutant of
g inside so(dim R), then A contains a current algebra hi. This current algebra has the
interpretation as the flavor symmetry current algebra in QCD.

We have established that a QCD theory is gapless if and only if the fermion Hilbert space
contains a nontrivial primary state of gr(g) labeled by the trivial representation of g. We
are therefore interested in the functions b,4(q), where we denote the trivial representation
of g by 0. In order to determine whether a QCD theory has a massless state it will suffice
to look at the branching function for the integrable representation of so(dim(R)); labeled
by the trivial representation of so(dim(R)) into the trivial representation of g;(gy. Whether
the theory has massless states or not is encoded in the properties of the function by4(q).
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Given that byg(q) is the vacuum character of the chiral algebra A, this branching

function takes the following general form?’

boo(a) = a~“4/* (1 + a1q + azg® + ...) . (4.23)

The theory has massless particles if a; # 0 for any .

We explain now the physical meaning of the coefficients a;. The coefficient of the ¢"
term being ag = 1 corresponds to the vacuum state |0), which is unique. The coefficient
a; = dim(h) is the dimension of the commutant of g in so(dim(R)). If h is nontrivial, we
can build the primary, singlet states of g;(g) at level one by acting on the vacuum with the
flavor symmetry currents

Jo = %wfw, a=1,...,dim(p). (4.24)

The currents J generate an by current algebra, the level k being determined by the
embedding so(dim R) D b @ g. Indeed, these states are annihilated by J¢ since [J%, J%] = 0,
by virtue of h commuting with g. If such an operator J® exists, then the theory is gapless.
This reproduces the result we proved in section 3 stating that any theory with a continuous,
chiral global symmetry — which means § is nontrivial — is necessarily gapless. Therefore, a
necessary condition for the QCD theory to be gapped is that the theory has no continuous,
chiral flavor symmetries and therefore that a; = 0.

We turn our attention to the physics of the coefficient as. Recall that given a current
algebra gr(g), one can construct the chiral energy momentum tensor [38, 39]

1
Towm = gm0 4.25
% = R(I(R) + h) (4.25)
i _ I(R)dim(G)
The operator T, arn) Senerates a Virasoro algebra of central charge c(g 1( R)) = TR
The canonical level 2 state in the Hilbert space H
(Tﬁo(dim(R))l - TQI(R))‘O> (4.26)

is a singlet, primary state of the gy current algebra, where T, (qim(r)), is the energy

1
momentum tensor of the so(dim(R)); current algebra generated by the quarks in the

ultraviolet. This is a consequence of the OPEs

Ty, (ry(2)J%(0)

M), 9°0)

2 x
(4.27)
o J%(0 o0J%(0
Tso(dim(r)), (%)J4(0) ~ m(Q ) + x( ) ,
so that
[‘]a’ Tso(dim(R))1 - Tg](R)] =0. (428)

n+1/2

ZThere are no ¢ terms in the expansion since Ho contains states created with an even number

of fermions.
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This proves that the state (4.26) is a gauge invariant, primary state of g 1(r)- Therefore
as long as Tio(dim(R)); — Ty, n) # 0, so that ao # 0, the theory has massless states and the
spectrum is gapless.?6

This implies that a necessary (and as we will show also sufficient) condition for a QCD

theory to be gapped is that the following operator equation holds

Teotdim(R)r — Tormy = 0- (4.29)

This equation is very constraining, it implies that a; = 0 for all I. Indeed, when (4.29)
is obeyed then by (q) is as a character of the Virasoro algebra with ¢4 = 0, which has a
unique, trivial unitary representation. Therefore, when equation (4.29) holds then?”

br6(2) = dn0, (4.30)

and the only singlet primary state of gr(g) is the vacuum state: the theory has no mass-
less particles.

By demanding that there are no left-moving or right-moving massless particles, we
arrive at the following lemma:

Lemma 5. QCD theory (G; Ry, R,) is gapped if and only if both operator equations hold

Tsa(dimRe)l - TgI(RZ) = 0, (4 31)

TEO(dimRr)l - TGI(RT) = 0 .
This was derived by looking at the lightcone Hamiltonians with + and 2~ being time.
We will come back to these equations momentarily. Before we do that we shall also
derive these equations in a different quantization scheme in order to gain more insight into
the mechanism behind the gap.

4.2 Temporal gauge Hamiltonian

In this section we rederive the necessary and sufficient conditions (4.31) for a QCD theory
(G; Ry, R,) to be gapped by studying the canonical Hamiltonian where time is the time-like
coordinate z° = t. The lightcone coordinates are well-suited to algebraic considerations
because the two chiralities are mostly decoupled. By contrast, a time-like coordinate requires
more work but it also leads to a more transparent understanding of the spectrum, because
the Hamiltonian takes the traditional form, which evolves states in physical time. For
previous work on the temporal Hamiltonian of QCD see [40-42].

We follow the same conventions as in section 2, which we present here for convenience

1 1
$i:—(0:|:a:1), Al = —

V2 V2

26In the presence of a global symmetry § there are additional level 2 primary, singlet states of g I(R)

Jol0y,  JJR o).

(A% + A9). (4.32)

Generically, there are dim(h)(dim(h) +3)/2 such states constructed using the flavor affine algebra b currents
(for very small values of k one may need to subtract some null states).
2TThis follows by comparing the scaling dimensions of operators.
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We start with the Lagrangian

. . 1
L= itp] 0 g + i) Dy, + AT TG + AL T — ngtr(Fm,F“”) : (4.33)
where Ji, = %wjmt;‘jzpj ¢,r- Canonical quantization leads to the following equal-time

commutation relations

{0l @), 000) ) = 8330 — ).
{d’;‘rr(if), ¢jr(l/)} = 0;;0(x —y), (4.34)
[11%(x), AY (y)] = i6%6 (2 — y) ,

where TI* = (;;ﬂﬁa = Q%F{ZO = g%Ea(x). Consequently, classically the currents obey the
0
commutation relations

[TE (@), op(y)] = i TE p (2)8(a — ). (4.35)

The Hamiltonian density is

S = PE2)? + AIG + —— A8 (x)(JE — J%)(z)
1 */15 (4.36)
+7¢@wmw—ﬁwwwmm
and
Gx) = J{(z) + JH(x) — (9,11% + i f2*e ALTI°) () (4.37)

is the Gauss’ law operator, which obeys the following commutation relation with the currents

(G (@), T ()] = 0T, (2)d(z — y) - (4.38)

The Gauss law operator commutes with the Hamiltonian, that is [G*(z), H] = 0, where
H = [dx.

The phase space of QCD has a primary constraint, namely the momentum conjugate
to Ag vanishes

oL
II“ = — =0. (4.39)
dAG
Demanding stability of this constraint leads to the secondary constraint
d11®
=[HIY=G*=0. (4.40)
dt
Since % = [H,G% = 0 on the constraint surface, there are no further constraints.

Hamilton’s equations derived from (4.36) reproduce the equations of motion obtained by
varying the Lagrangian (4.33). We work in the gauge with A§ = 0 so that A7 = A = A%

In the quantum theory, fields are promoted to operators and composites need to be
renormalized due to quantum fluctuations at arbitrary short distances. The quark currents
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in the quantum theory must be normal ordered jzfl,r = %:1/125 Aij¥jert. In the quantum

theory, the commutation relations become

(g (@), I0, (y)] = i f TG () (2 — y) £ il (R)5™0,8(x — y)

(), A(y)] = i6™5(x — y), (4.41)

where I(R) = I(Ry) = I(R,) by virtue of gauge anomaly cancellation, and + corresponds to
¢ and r respectively. The operators jg’r generate the current algebra gy Re,)- Quantization
leads to the Schwinger term in the current commutators (4.41) (cf. with (4.35)), which will
have important implications.

In order to determine the conditions for the spectrum of Hamiltonian to be gapped, we
first define the fermion operators in (4.36) in normal ordered form

xgwjgaxwas) = jizwjgaxwim): - j§ lim (] (z + ) dothie(z — )
(4.42)
it 0utir (&) = =it Orter )+ i T, (@ + 0@ = ).

b, r
tensor for so(dim Ry, ); via

where <1/1T (@)je,r(y)) ~ ;5—_”11 We then express i%:iwg Ozt in terms of the Sugawara

1 _ i LTa AN, 1 il T . .

§T50(ding)1 - 8(I(R) + h)‘]f JE (l‘) - ﬁ'z¢iéax¢z€(x)' (4 43)
1 i P 1 '
=T o (di - J0J(g) = ———inh] Wi ().

9 so(dim Ry )1 8(I(R) + h) J?" Jr (iL‘) \/i “pzra (U (.%')

The crucial insight (see also [41, 42]) is that we can split the energy momentum tensor into
a piece that couples to the gauge fields and a piece that is decoupled

Tﬁo(dile)l = T91<Re) + (Tﬁﬂ(dimRe)l - TGI(RZ)) (4.44)
TﬁU(dimRrh = TQI(RT) + (Tﬁﬂ(dimRr)l - TgI(RT)) :

The quantized Hamiltonian must commute with the quantum Gauss’ law operator
Go(z) = J¢(x) + Jo () — (8,11% + i fobe A TI%) (z) . (4.45)
It is given by (see appendix A.2 for details)

-1 1 1a Ta Ta 1 no 2 2 ha 2
H =5 (Toyguyy + Ty ) + A @) (T = J2) () + 5! () A @)+ g° B (2)

L.
+ il (W 0+ ) Outiie (= ) = (W, (0 + ) Outhir (v = )

+ % (Tsa(dimRZ)1 - TgI(Re)) + % (Tso(dimRr)l - TQI(RT)) .
(4.46)
Let us discuss some of the most salient features of this Hamiltonian. Expressing the
Hamiltonian in terms of the energy momentum tensor and splitting it as in (4.44) shows

that there is a decoupled CFT with energy momentum tensors T'so(qim r,), — L'g 1(Ry) and
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T'so(dim &,)1 — Ly (ryy- Thelast line in (4.46) describes a gapless sector. The term [ (R)A%(z)?
in (4.46), which is present due to the Schwinger term in (4.41), gaps out the gauge fields,
and strongly suggests that the first two lines in (4.46) describe a gapped Hamiltonian.?®
This analysis makes manifest that the massless degrees of freedom decouple in the ultraviolet
and go along for the ride during the renormalization group flow (see [41]). In conclusion,

the QCD theory (G; Ry, R,) is gapped if and only if the decoupled CFT is trivial, that is if

Tso(dim Ry — Larer,) =0 (4.47)

Tso(dimRT)l - TGI(R,«) =0

We have thus recovered the conditions (4.31) we had derived in the previous section using
the lightcone Hamiltonians.

4.3 Classification of gapped theories

We now return to our main task: deducing whether a given QCD theory is gapped or not.
We showed, both looking at lightcone quantization and standard canonical quantization,
that a theory labelled by (G; Ry, R,) is gapped if and only if the two operator equations hold:

Tsu(dim Re)l - TEI(R@) = 0’ (4 48)

Tso(dimRr)l - TgI(Rr) =0.

The key point is that the equations (4.48) can in fact be solved. It suffices to consider one
chirality first, and then combine solutions that merge left and right chiral sectors. In [43, 44]
it was shown that the energy-momentum tensor of the affine algebra g g) coincides with
that of a free fermion theory so(dim(R)); if and only if the matrices t; that generate the
representation R satisfy the Jacobi-like identity (see appendix A.1 for derivation)

tijthe + titd; + gl = 0. (4.49)

In turn, this identity is satisfied if and only if there exists some Lie algebra g that contains
g such that the homogeneous space?’ G /G is symmetric, and the fermions transform with
respect to g in the same way as the generators of G /G. The condition it ttity; +tits, =0
is nothing but the Bianchi identity for the Riemann tensor of G /G. The symmetric spaces
have been fully classified [45], and we can read off the list of gapped QCD theories from
this classification: for each symmetric space of the form G /G where the symmetric space
generators transform according to a representation R of G, there is a gapped QCD theory
with gauge group G and quarks in the representation R, and vice versa.

A different perspective yields the same answer. The equality of the energy-momentum
tensors of so(dim(R)); and g;(r) implies, by definition, that the affine algebra g;(ry embeds
conformally into the affine algebra so(dim(R));. Conformal embeddings have been fully

classified [46-48], and we can read off the list of gapped QCD theories from this classification:

28It would be interesting to give a rigorous proof that it is gapped.

29The global structure of G, G is arbitrary, the condition t3the + tite; + ity = 0 is purely algebraic and
insensitive to the choice of G, G for a given g, g. At the algebraic level, the condition can be recast as the
existence of an algebra § = g + p such that [p*, p’] € g for p*,p’ € p, and [p’, g°] = t?jpj for g% € g.
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g R IR TQFT g
g Adj SO(dim G)1/Gp g+g
so(N) ™ @(N +2)(N = 1)1/Spin(N)nse | su(N)
sp(N) B | SO(@N+1)(N = 1)1/Sp(N)n_1 | su(2N)
s(u(M) +u(N)) | (@0 UMN)1/S(UM)n x UN)um) su(M + N)
so(M) + so(N) (0,0) | SO(MN), /(Spln(M)N X Spin(N)ys) | so(M + N)
u(N) H, U(GN(N —1))1/U(N)n_22(v-1)¢2 50(2N)
u(N) Ty U(3N(N +1))1/U(N) Nt2,2(N+1)g2 sp(N)
sp(M) +sp(N) | (O,0) SO(4MN)1/(Sp(M)N x Sp(N)ar) | sp(M + N)
sp(4) 42 SO(42)1/Sp(4)7 Eg
su(2) + su(6) (2,20) SO(40)1/(SU(2)10 x SU(6)g) Es
50(10) + u(1) 16, U(16)1/(Spin(10)4 x U(1)1642) Eg
Fy 26 SO(26)1/Fu3 Eg
511(8) 70 SO(70)1/SU(8)10 E7
su(2) +s0(12) | (2,32) SO(64)1/(SU(2)16 x Spin(12)s) E;
Ees +u(1) 27, U(27)1/(Es,6 x U(1)a742) Er
50(16) 128 SO(128)1/Spin(16)16 Eg
511(2) + E7 (2, 56) 80(112)1/(SU(2)28 X E7712) FEg
su(2) + sp(3) (2,14) SO(28)1/(SU(2)7 x Sp(3)s) Fy
50(9) 16 SO(16)1/Spin(9)2 F4
50(4) (2,4) SO(8)1/Spin(4)1072 GQ

Table 4. List of irreducible gapped theories. The first column denotes the gauge algebra. Any global
choice of G for a given g leads to a gapped theory. The second column denotes the representation of
the quarks, either in the Young diagram notation or directly in terms of its dimension. 0, [17,H denote
the fundamental, symmetric, and anti-symmetric representations, respectively (with appropriate
reality conditions, e.g. Majorana if real, and with traces removed, if possible). ¢ denotes the charge
of the fermions under u(1) factors, if any; this charge can be chosen arbitrarily. The third column
denotes the TQFT that describes the space of vacua of these gapped theories (see section 5); here we
choose the simply-connected form G, for concreteness. The fourth column denotes the Lie algebra
g that makes G /G a symmetric spaces.

for each conformal embedding of an algebra gj into so(n); via a representation R of g,
there is a gapped QCD theory with gauge group G and quarks in the representation R, and
vice versa.

Either point of view yields table 4. This table contains the list of “minimal” gapped
QCD theories. Naturally, one can also take the tensor product of two gapped theories to
obtain another gapped theory. This operation corresponds to reducible symmetric spaces,
or non-maximal conformal embeddings; the most general symmetric space is a product of
irreducible ones, and the most general conformal embedding is a sequence of maximal ones.

In QCD, this stacking operation gives rise to theories with decoupled gapped sectors so
they are also gapped in a trivial way — and so they are of little interest by themselves. The
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exception is when the different theories contain abelian u(1) factors in their gauge group,
in which case we can couple the minimal theories through these factors, which generates
another gapped theory which is not just the product of decoupled theories. With this in
mind, the most general gapped QCD theory is either a theory in table 4, or a product of
such theories provided they contain a u(1) gauge group, in which case the matrix of charges
for these u(1) factors must be non-singular. Any other gapped theory is a trivial product of
these two options.

For illustration purposes, consider the gapped theory u(N) + O,, where 0O, denotes the
fundamental representation and g € Z is an arbitrary integer that specifies the charge of the
quark under the trace part u(1) C u(N). Stacking a family of these gapped theories, and
coupling the abelian factors via an arbitrary matrix of charges, one obtains the gapped theory

ITu@v), R=P@Q,...,1.01,...,1);, (4.50)

where ¢; is a vector of charges that specifies how the i-th fermion couples to u(1)™. The
special case where N; = 1 for all ¢ corresponds to abelian QCD, i.e., QED with m photons
and m fermions, which we analyze in more detail in appendix C.

The theories in table 4 are written in terms of non-chiral data. As a matter of fact,
one can also modify these theories to obtain gapped theories that are chiral. The idea is
that, if the theory with vector-like matter (Ry, R,) = (R, R) is gapped, then the theory
with chiral matter (Ry, R,) = (0¢ - R,0, - R) is also gapped, where o4, 0, denote outer
automorphisms of g (see table 3). For example, for simply-laced groups o - R may denote
the conjugate representation R, while for g = 50(8), o - R may denote any representation
related by triality. As dim(o - R) = dim(R) and I(o - R) = I(R), the chiral theory with
(Ry, R,) = (00 R,0, - R) is also gapped. In the case of theories that contain abelian gauge
groups, the statement becomes that one can use different charges for the two chiralities,
(qe, qr), provided they satisfy the gauge anomaly cancellation condition (2.15).

For example, given the gapped theory in (4.50), one can generate other gapped theories
by replacing some of the fundamentals by anti-fundamentals (for one chirality only, or
for both), and also by assigning generically different U(1) charges to the two chiralities
Gi = (Qei> Gri)-

Table 4, together with the two operations we just described (stacking gapped theories
and coupling them together via their abelian factors, and acting with outer automorphisms
on the representations), give the extensive list of gapped QCD theories. See tables 1 and 2
for summary of gapped vector-like and chiral theories respectively. Any other theory is
either a trivial product of gapped theories, or is gapless.

5 Infrared dynamics of 2d QCD

Having classified all QCD theories that are gapped, and consequently, those that are gapless,
it remains an interesting open question to determine the effective field theory describing the
low energy dynamics. The most natural proposal is that the low energy theory is a gauged
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WZW coset model with chiral algebra (see [41] and more recently [21, 49])

SO(dlm Rg)l SO(dlm Rr)l
X .
G1(Ry) Gi(r,)

(5.1)

In order to simplify notation we will focus on the chiral half, with the understanding that
the full theory is constructed by putting together the left and right sectors.

The idea behind (5.1) is that QCD can be thought of as dim(R) free fermions, which
can be described as the fermionic WZW theory SO(dim(R));, where a symmetry G C
SO(dim(R)) has been gauged, and one has added a kinetic term for the gluons. The coupling
constant g is dimensionful so it grows in the infrared and it is self-consistent to assume
that ¢ — co as £ — 0, which means that we can drop the gluon kinetic term for very low
energies. All in all, it is expected that the deep infrared of QCD theories is described by
the CFT coset (5.1), namely an SO(dim(R))1 WZW model with gauged G(py symmetry.
The level of the gauge current algebra is determined by the Dynkin embedding index of
SO(dim(R)) D G; this embedding is defined by the branching rule 0~ R, and hence the
embedding index is I(R).

This proposal is also suggested by our canonical analysis of section 4, where we
highlighted the presence of so(dim(R))1,87(g) current algebras in the Hamiltonian of QCD,

and the fact that the operator Tyo(dim(r)), — Ty naturally appears in this Hamiltonian,

I(R)
playing the role of the energy-momentum of a low-energy CFT that is decoupled from

massive modes, which disappear in the deep infrared.

Gapped spectrum. One nice aspect of (5.1) is that it is perfectly consistent with our
classification from the previous section, because the coset (5.1) is a full-fledged CFT if
its central charge is non-zero, but describes a TQFT when its central charge vanishes.
In other words, the chiral energy-momentum tensor of the coset is Tyo(dim(R)): /g, & =
Tso(dim(R)); — Loy (r)» and this is a non-trivial operator if and only if the theory is gapless. In
any case, it is important to stress that the criterion for masslessness Tio(qim(R)), /g, (R) #0
was obtained in previous sections independently of the conjecture (5.1), but the two are

perfectly consistent with each other, a fact that gives more evidence for the latter.

Continuous symmetries. In 2d, continuous chiral symmetries cannot appear nor dis-
appear along a symmetric renormalization group flow. Therefore, the effective low energy
description of QCD must have the exact same symmetries as the original ultraviolet theory.
This is nicely reproduced by the coset, because the symmetries of both theories have the
same definition: the flavor symmetry group is the commutant of G inside SO(dim(R)), i.e.,
the rotations of the chiral quarks that commute with gauge transformations.

’t Hooft anomalies. Another nice property of the conjecture (5.1) is that it automatically
matches all the 't Hooft anomalies of the original QCD theory. Indeed, while the argument
above does not strictly speaking prove that this coset is the low energy limit of the ultraviolet
theory, it does prove that they are in the same deformation class. In other words, even
though in principle the limits £ — 0 and g> — oo need not be equivalent, it is still true that
they are connected by a path in parameter space. Therefore, these two theories will carry
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the same 't Hooft anomalies for all the symmetries that are preserved along the path. This
provides a strong consistency check on the proposal that the coset really is the low-energy
limit of QCD.

The case of perturbative anomalies can be exhibited explicitly. The chiral flavor
symmetry H in the ultraviolet is generated by the free fermion currents that commute with
the gauge group, that is, commutant of G inside SO(dim(R)). If R is given by N copies of
a given irreducible representation Ry, that is R = Np - Ry, the flavor symmetry is H(Np),
with H = O, Sp, U for real, pseudo-real, and complex representations, respectively (in the
complex case, the symmetry may be either U(Ng) or SU(NF), depending on whether the
diagonal U(1) is broken by the ABJ anomaly or not, see section 3.1).

The ’t Hooft anomaly for H is the Dynkin index of the representation under the
flavor group (2.12), in this case the fundamental representation. This means that the
flavor symmetry carries dim(Rp) units of anomaly. This is reproduced by the coset in a
straightforward manner, because one can write

SO(dim(R));
Gi(r)

SO(dim(R))1
Gr(ry X Haim(Ry)

= Hgim(r,) X (5:2)

The factor Hgjy(r,) matches the ultraviolet 't Hooft anomaly, and the factor %
m 0

has no continuous global symmetries (no commutant). We point out that this latter coset is
actually well-defined, which might not be entirely obvious. One way to see this is that one
could imagine gauging the diagonal symmetry H in the ultraviolet (which is anomaly-free),

to yield the gauge theory G x H + (Rp,0). The infrared coset for this theory is precisely
SO(dim(R))1

G1(r)*Hdim(Rg)

The case of nonperturbative global anomalies is more subtle, and requires a case-by-case

analysis. That being said, the argument above proves that the coset CFT will automatically
match all the anomalies, perturbative and global. This has a nice bonus consequence, namely
that it predicts that many well-known CFTs actually carry nonperturbative anomalies, a
fact that may not have been fully appreciated in the past. For example, below we will
describe many gauge theories that flow in the infrared to common CFTs such as minimal
models or WZW models. These theories necessarily carry the same nonperturbative
anomalies of the ultraviolet theory, and the latter are often easy to determine (because
one can flow to the deep ultraviolet, where the fermions and gluons are essentially free
and semiclassical considerations often suffice). Among others, this predicts global 't Hooft
anomalies for discrete symmetries such time-reversal, whose presence is seldom discussed in
the CFT literature.

While there is not much one can say about global anomalies in full generality, there is
one feature that is actually rather universal. There are several discrete symmetries, such as
discrete chiral symmetries or antiunitary time-reversal symmetry, whose anomalies have
the following effect on the Hilbert space: when the number fermions in ultraviolet is odd,
the Ramond Hilbert space is automatically supersymmetric [50]. This is a nonperturbative
statement that affects the whole spectrum of the theory and, in particular, the low-energy
spectrum. Therefore, the effective infrared description must satisfy this property as well.
This is indeed reproduced by the coset (5.1), because the states in the Ramond sector come
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from branchings from the spinor representation(s) of SO(dim(R));; and, famously, when
dim(R) is odd there is a single spinor whose Ramond-Ramond character is identically zero,
a property that is inherited to the full coset. (Another diagnosis of this anomaly is that the
twisted Hilbert space becomes ill-defined, which is also reproduced by the coset because
the spinor character of SO(dim(R)); carries a factor of v/2 for odd dim(R), and hence the
twisted partition function does not have an integral expansion; see (B.20) for the characters
of SO(n)1).

One-form symmetry. QCD theories can have one-form symmetry associated to a sub-
group center of the gauge group (see table 3). This symmetry is discrete,?’ and hence
by the generalized Coleman-Mermin-Wagner theorem [15], it cannot break spontaneously.
Therefore, the infrared effective description must realize all the one-form symmetries of the
ultraviolet theory.

In two dimensions, the effect of a one-form symmetry is to break up the theory into
distinct sectors, or universes [51]. The full Hilbert space of the theory is the direct sum of
the Hilbert spaces of the different universes (see section 2). The total theory suffers from
a mild violation of cluster decomposition, but the theory projected to a given universe is
perfectly well-defined by itself, and satisfies decomposition.

Given a QFT with one-form symmetry, the emergent infrared CFT inherits it. Hence,
in these CFTs the vacuum is not unique (the coefficient of the vacuum character in the
torus partition function is an integer larger than 1). Instead, the infrared CFT is a direct
sum (not a direct product) of “conventional” CFTs with a unique vacuum each.

In QCD, the one-form symmetry is the subgroup of the center that is not screened by
the fermions, namely the kernel of the representation R under which the quarks transform,
I' = ker(R) C Z(G). This is a symmetry for all g> and in particular it remains a symmetry
in the g> — oo limit, and therefore the coset CFT also has a I' one-form symmetry. As T’
does not act on the fermions, it does not embed into SO(dim(R)), and hence in the quotient
SO(dim(R))1/G(ry we are trying to gauge a group I' that does not act on anything — this
is an orbifold by a symmetry that does not act faithfully (cf. with [20, 52, 53]). This indeed
leads to |I'| different universes, labelled by elements p € 'V (see section 2).

The CFT on a given universe labelled by p corresponds to the coset SO(dim(R))1/(G/T)(r)
with a theta term labelled by p € T'V. The functional integral of the coset sums over G /T’
bundles, which are labeled by I'. The sum over bundles is weighted by the theta term.
It is interesting to compare this perspective with the algebraic approach to cosets in the
literature [39, 54, 55]. In the algebraic approach to cosets one organizes representations
of the coset into long and short(er) orbits under the action of I, as I permutes the coset
representations. When the action of I" has only long orbits, the algebraic prescription is to
divide the partition function by I', so that the vacuum character appears with multiplicity
one, and only the trivial bundles contribute. This yields the partition function in one
universe which, when there are no fixed points, is the same in all universes. When the model

3%Tf the gauge group is reductive, then the one-form symmetry may include U(1) factors associated to
the photons. These U(1) groups exist only when the photons are free; otherwise the screening by quarks
explicitly breaks U(1) down to a discrete subgroup.
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has shorter orbits, one has to deal with “fixed point resolution”, and correct by a series
of prescriptions and ansétze for the fact that characters enter with fractional multiplicity.
These prescriptions have a rather clear interpretation from our perspective. When the
coset has no fixed points, the CFT in each universe is the same and only trivial bundles
contribute. Instead, when the coset has fixed points, the CFT in each universe is generically
different. In order to identify the partition function in a given universe when there are
fixed points, one must sum over nontrivial bundles, weighted by a discrete theta term,
which gives a non-vanishing constant partition function [56]. These contributions combine
with those of the long orbits to produce a partition function that is modular invariant in
each universe. In a sense, the algebraic approach to cosets in the literature constructs
the partition function in one universe, while from our perspective one can construct more
modular invariant partition functions by weighing the sum over nontrivial bundles (which
are constant) by distinct discrete theta terms.

Central charge. The central charge of the CFT in the deep ultraviolet is %dim(Rz /)
and in the deep infrared is 1 dim(R, /) —c(Gr(r, /T)). Note that ¢ decreases and the dynamics
are compatible with the c-theorem. Note also that both ¢, and ¢, decrease by the same
amount (because I(R;) = I(R,), by gauge anomaly cancellation, cf. (2.14)), which is a
consequence of the conservation of the gravitational anomaly ¢, — ¢,. It might be interesting
to note that gapped theories “erase information maximally” in the sense that they decrease
the ¢ function as much as possible.

It should be pointed out that the infrared theory described by the coset (5.1) is not
expected to be robust under deformations in the ultraviolet. If we add mass terms or
four-fermi terms, in general one would find that the infrared theory is deformed as well,
and the coset (5.1) flows to a different theory. This new theory has smaller (or equal)
central charge. In the case of TQFTs, the central charge is already zero so deformations in
the ultraviolet will map the infrared theory to a different TQFT, with generically fewer
vacua. This is to be contrasted with the similar situation in 3d: here, infrared TQFTs are
actually robust under small ultraviolet deformations. The reason is that 2d TQFTs have
local operators, while 3d TQFTs do not; therefore, local deformations in the ultraviolet
map to non-trivial infrared operators in 2d, but to the trivial operator in 3d.

Some simple examples. While we will work out plenty of examples in the next few
subsections, we can list a couple of simple examples here, which will hopefully illustrate
some of the main features.

Take the QCD theory (SU(2);7,7). The infrared dynamics is conjecturally described
by the coset SO(7)1/SU(2)2s. This CFT has central charge ¢ = 7/10, which agrees with
the central charge of the tricritical Ising model. There are only two fermionic CFTs with
this central charge: the tricritical Ising model itself (thought of as a fermionic CFT that
does not in fact depend on the spin structure), or its fermionization. In other words, it is
either a bosonic minimal model, promoted to fermionic in a trivial way, or it is a fermionic
minimal model [57-59].

Here it is easy to determine which of these options is correct. In the deep ultraviolet
there are 7 free fermions, so the system carries —1 mod 8 units of 't Hooft anomaly under
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the chiral Zs symmetry. A bosonic theory cannot match this, so the second option is correct:
this QCD system flows in the infrared to the fermionized tricritical Ising model.?! Note that
this theory precisely matches the ’t Hooft anomaly for the discrete chiral symmetry [60].

Once the correct low-energy degrees of freedom have been identified, one can ask
several interesting questions. For example, one could try to determine the mapping between
relevant operators in the ultraviolet to operators in the infrared. The spectrum of infrared
operators, together with their quantum numbers, is well understood. The most relevant
operator in the ultraviolet is the mass term, and the most relevant operator in the infrared
is the (1/10,1/10) operator, so it is a very natural guess that these operators are identified.
Moreover, both are odd under the chiral Zy symmetry. A similar analysis can be performed
for the rest of operators. When the mapping is complete, one can study the deformed
theory, where one adds suitable scalar operators to the Lagrangian; this gives us a window
to the infrared of the massive QCD theory, by turning on the deformation (1/10,1/10) to
the infrared CFT.

Finally, this scenario predicts that the fermionic tricritical Ising model is invariant
under time-reversal, with T? = (—1)f, and that this symmetry has a nonperturbative 't
Hooft anomaly. This symmetry, and anomaly, are manifest in the ultraviolet, where it acts
as 1 (t) — %y (—t), with 't Hooft anomaly measured by the number of fermions mod 2, in
this case 7=1 mod 2. It would be interesting to understand how this symmetry acts on
the infrared CFT, and to determine its anomaly directly.

A very similar story holds for the QCD theory (Spin(7);8,8). The infrared dynamics is
conjecturally described by the coset SO(8);/Spin(7);. This CFT has central charge ¢ = 1/2,
so it is either the bosonic Ising model (promoted to a fermionic theory in a trivial way), or
the fermionized Ising model, i.e., a free Majorana fermion. As before, it is easy to determine
which of these options is actually realized: there are 8 fermions in the deep ultraviolet, so
the Zs chiral symmetry has no 't Hooft anomalies. This is only matched by the first option,
namely the bosonic Ising model; hence, this is what QCD flows to in the infrared.3?

Much like above, one can try to determine how the ultraviolet operators are mapped to
the infrared ones, and what happens when we deform the theory by these operators.

In these two examples we extracted the physics of the coset directly from its central
charge. This was possible thanks to the fact that they are both smaller than unity: ¢ < 1.
For generic QCD theories, the central charge is ¢ > 1 and its knowledge alone does not
uniquely determine the CF'T. In this situation, the properties of the infrared are to be
extracted from the CFT SO(n)/Gj by the standard coset construction. We review this
construction in appendix B. Here we also revisit the ¢ = 7/10 and ¢ = 1/2 examples again,
and confirm that they correspond to the fermionic tricritical Ising model and the bosonic
Ising mode, respectively, by explicitly working out the branching functions of the coset.

From now on we will assume that the conjecture (5.1) is correct. We can use it
to propose explicit descriptions of the strongly coupled infrared dynamics of interesting
QCD theories.

31We also show this directly in appendix B.2.
32We also show this directly in appendix B.2.
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5.1 Gapped theories

Let us make a few remarks about QCD theories on table 4; these theories are gapped, so
their infrared involves a certain TQFT that describes their vacua.

Adjoint QCD. The first interesting example is adjoint QCD, namely the gauge theory
with gauge group G and a fermion in the adjoint representation. This theory has received a
lot of attention in the past, see [21-23, 61-65] for a sample of papers.

The vacua of these theories are described by the topological coset

SO(dim(g))1

an , (5.3)

where h is the dual Coxeter number of g (cf. table 3). The branching functions of this coset
are well understood [66]:

dNs-Ns = ) Xa
AER

dxsr = Y (1) xa
AER

drons = 27x,

drr =0, (5.4)
where r = rank(g), p denotes the Weyl vector and
R ={X | 3 € W such that A = hdy + (& — 1)p} . (5.5)

From these equations it immediately follows that Hp is always supersymmetric and
has 2" states. The space Hng also has these many states and it is purely bosonic. In other
words,

Hng = C2NI0

NN N:=2""1, (5.6)

infrared of adjoint QCD:
Hr

Furthermore, by explicitly constructing R for the different simple algebras, one observes
that half the states in Hyg are charged under (—1)*Z, and the other half is not. In other
words, half the representations in R have integral spin hy € Z, and the other half have
half-integral spin hy € Z + 5. The only exception is SU(2n + 1), which has 2"71(2" + 1)
states with integral spin and 2"71(2" — 1) states with half-integral spin.

QCD with bifundamentals. The next few interesting examples correspond to theories
with gauge group G x G and fermions in the bifundamental representation, namely

S(U(N) x U(M)) + (@,0)

SO(N) x SO(M) + (O,0) (5.7)
Sp(N) x Sp(M) + (B,0),



whose space of vacua are described by the following cosets:

U(NM), SO(N M), SO(4N M),
S(U(N)MXU(M)N)’ S()(]V)]M><SO(]\4')N7 Sp(N)MXSp(M)N

(5.8)

The branching rules of these cosets are well-known [67-70]: they describe the level-
rank dualities g(N); <> g(k)n. The decomposition of numerator characters d+ 1 into
denominator characters y takes the following general form:

dxs-x (¢, 91,92) = Y (£1)*M x5 (g, 91) X (4, 92)

A
(5.9)
drx (g, 91, 92) = (£ (g, 91)x0e (0, 92)
A

where A denotes a primary of g(IN)x, and A the primary of g(k)y obtained from X by
transposing the Young diagram. Moreover, hy denotes the conformal dimension of A\, and
v € Z(Gg) a suitable simple current. Finally, g1, g2 denote flavor symmetry elements of
g(N), g(k), respectively.

These branching functions imply that there are as many vacua as there are primaries
in g, i.e., the number of vacua is (see e.g. [71])

S(U(N)x U(M)): (N +]f\j_l>
() 4 (LY (N, M) = (2n,2m+1)
SO(N) xSO(M) 3+ (I (R (TR (N M) = (20,2m)
X :
RO + 30 (. 00) = (2n1, 2
(v4m) (N, M) = (2n+1,2m+1)
Sp(N) x Sp(M): (N;\}M)-

(5.10)

QCD with rank-2. Another interesting example is the theories with rank-2 quarks. Here
we discuss the two theories

Spin(N) +J (5.11)
Sp(N) +
whose vacua are described by the cosets
SO((N +2)(N —1)/2); SO((2N + 1)(N — 1)), (5.12)

Spin(N)n+2 ’ SP(N)N-1

We are not aware of an explicit discussion of the branchings of these cosets in the literature.
That being said, the Ramond sector turns out to be particularly simple, and is reminiscent
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of the adjoint case (5.4):

dpr =0,
Spin(N), N odd:  drons = 2N 111+ 2 g g
Spin(N), N even: dR-NS = 2(N*2)/4X[37171,,“,1,1,3] + 2(N72)/4X[1,3,1,1,...,1,1,3} +c.c.
Sp(N): dr-Ns = 2(N71)/2X[0,1,...,1,o] :

(5.13)

2V=1 vacua, respectively.

From this we automatically conclude that there are 21V/2+1 and
In the Ramond sector these vacua are split half-and-half into bosons and fermions, while in
the Neveu-Schwartz sector they are all bosonic. In this latter sector, half the states are
charged under (—1)Z and the other half is neutral (i.e., half the primaries have integral
spin and the other half have half-integral spin).

The branching rules for the other gapped theories with rank-2 quarks, namely U(N)
plus a symmetric or anti-symmetric quark, are analyzed in [72].

Exceptionals. We close this section with an example involving an exceptional Lie group,
to wit
Fy+26. (5.14)

The vacua of this theory are described by the coset

SO(26),
) 5.15
Fis (5.15)
whose branching functions are
dNs-x = X1 % X26 + X273 £ X1274
dr-Ns = 2X4096 (5.16)

dr.r =0.
Hence, this theory has Hng = C*9 and Hy = C2I2.

5.2 QCD with fundamental matter

Here we describe the infrared dynamics of QCD with quarks in the fundamental representa-
tion. More precisely, we shall discuss the following theories

e SU(N)+ NpOl.
. SO(N)+NFD.
. Sp(N)+NFD.

These describe the celebrated 't Hooft model [31].
The coset CFTs that describe the low energy limit of these theories are

U(NNg),  SO(NNg)i  SOM4NNg)
SU(N)ng SO(N)np Sp(N) Ny

(5.17)

— 38 —



We now claim that these CFTs are in fact the well-known WZW theories
U(NF)N, SO(NF)N, Sp(NF)N. (5.18)

Indeed, the characters of the coset SO(---)1/g(IN)n, are given by the coefficients of the
characters of g(IV)y, in the decomposition of SO(---);; but, as in (5.9), these coefficients
are precisely the characters of g(Np)y. In other words, the equality SO(---)1/g(N)n, =
g(Np)n is tantamount to the level-rank duality g(N)n, <> g9(Nr)n.

Let us make a few remarks:

e Note that the infrared CF'T is just the WZW model for the flavor symmetry. This
CFT manifestly matches the perturbative 't Hooft anomalies for the flavor symmetry
in the ultraviolet. So this is the simplest scenario for the infrared dynamics, and could
have been guessed independently of the general conjecture (5.1). These WZW models
also match the nonperturbative anomalies, although in a less obvious way (see below
for an explicit example).

o The equality SO(---)1/g(N)n, = 9(Np)n can also be understood as the consequence
of the triviality of the coset SO(---)1/(g(N)n, X 9(NF)nN), i.e., of the fact that the
gauge theory obtained from G + NgO by gauging the flavor symmetry is gapped.

o Similar considerations hold for other gauge groups; for example, if we use Spin(N)
instead of SO(V), the flavor symmetry is O(N) instead of SO(Nr), and the infrared
CFT is a WZW model with target space O(Np). This is again a consequence of the
level-rank duality Spin(N)n, <> O(Np)y [9]. Similarly, one could use U(N) instead
of SU(N), in which case the infrared CFT is SU(Ng)y, again by level-rank duality.

o This predicts for example that SO(Np)y has an 't Hooft anomaly for time-reversal,
measured by NNr mod 2.

An interesting special case is SU(N) 40, i.e., a single copy of the fundamental repre-
sentation Np = 1. The infrared coset in this case is U(1)x. For N = 3 this coset is actually
a supersymmetric minimal model, U(1)3 = M%=2, and therefore SU(3) + 3 has emergent
supersymmetry in the infrared. This is a consequence of the fact that A3 contains a gauge
singlet, if and only if N = 3 [43].

In the ultraviolet of SU(N) + O there is a manifest Zy chiral symmetry that acts as
(—1)Fr : 9p = 431p, and whose 't Hooft anomaly is the number of Majorana fermions, 2N
mod 8. This anomaly must be reproduced by the infrared degrees of freedom, i.e., by U(1)y.
We check this as follows.

The equality U(NV);/SU(N); = U(1)y is due to the character decomposition

N—
dNS—X(Qa 9,0) = Z (il)KXZNS_X(% 9)X7£~0(Q7 g)

—_

~
Il
=)

(5.19)

=

drx(,9.0) = Y (F1) N 2 (4 0)x0.0(0,9)
0

~
|
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where v is the generator of the Z(SU(N)) = Zn center symmetry and 0 is the vacuum
character. Also, x¢(q,0) denote the regular (bosonic) characters of U(1)y if N is even, and
the super-characters if N is odd; and 6 denotes a U(1) flavor fugacity. Finally, xA(q, g)
denotes an SU(V); character with g € SU(N) flavor fugacity.

These branching relations imply that the characters of the coset CFT are

pYS-NS _ | NS-NS

ngS—R — (_1)£ NS-R

. (5.20)
R-NS R-NS :
by = Xeq N2
R-R . R-R
b = (1) X vy -
Hence, the partition function twisted by the (—1)f symmetry is
. N-1_
U"HNS((—1)FLQLO_1/24QLO_1/24) _ Z pYSRpNS-NS
=0
o (5.21)
= DS,
=0

The 't Hooft anomaly under (—1)f% is measured by the phase acquired by this partition
function under an ST?S~! modular transformation. The idea is that S moves the operator
(—1)FZ from the spatial cycle into the temporal cycle, so it allows us to access the spin of
the operators in the twisted sector. In a non-anomalous fermionic theory, the spin should
be half-integral; hence, 72 measures precisely the extent to which this condition fails. If we
use the modular matrices of U(1)y (see e.g. [50, 73]), we obtain ST2S~1 = 2% precisely
as in the ultraviolet.

5.3 WZW models

We noticed in the previous section that the infrared CF'T that describes G + NpO is just
the WZW model for the chiral flavor symmetry. An interesting question one could ask
is how general this situation is, i.e., for which QCD theories are the infrared degrees of
freedom just the affinization of the ultraviolet currents. As stated in (5.2)

SO(dim(R)),
Gr(r)

SO(dim(R))1
Grr) X Haim(ry)

= Hdim(Ro) X (522)

one can always factor out these currents from the infrared coset, and the question becomes
for which theories is the remaining sector a trivial CFT. Note that this extra part is precisely
the infrared coset of the QCD theory where one gauges the (diagonal) flavor symmetry,
G x H + (Rp,0). From this perspective, the answer is straightforward: the theory G + R
flows in the infrared to Hgim(g,) (plus possibly a trivial CFT, i.e., a TQFT) if and only if
the theory G x H + (Rp,0) is gapped. But now we can utilize our classification of gapped
theories (cf. table 4) to give the list we are after. This way one obtains table 5.
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G R IR WZW
G € table4| R 1%}
SU(N) NrpQO U(NF)N
U(N) NrO SU(NF)N
Sp(N) |NrpO| Sp(Np)n
SUN) | B U0y
SU(N) | O U(l)%N(N+1)
Spin(l()) 16 U(l)lﬁ
Es 27 | U(1)er
sui) | 2 | su@y
SU@2) | 4 SU(2),
Sp(3) | 14 | SU(2);
SU6) | 20 | SU(@2)0
Spin(l?) 32 SU(2)16
Er 56 | SU(2)s

Table 5. Classification of QCD theories that realize in the infrared a pure WZW model for the
ultraviolet flavor symmetry (modulo a TQFT). Any theory not on this table will flow in the infrared
to H current algebra plus a non-trivial CFT (which has no continuous flavor symmetry). The first
line “G € table 4” refers to the fact that gapped theories themselves satisfy this criterion, in the
sense that both their flavor symmetry and their infrared CFT are trivial.

5.4 Minimal models

It is interesting to note that (both SUSY and non-SUSY) minimal models [74-80], a
celebrated family of 2d CFTs, also appear in the infrared of QCD gauge theories. We
already noticed three instances of this phenomenon so far, where we found QCD theories
that flow to Ising, tri-critical Ising, and a compact boson at the SUSY radius R? = 3 in
the infrared (the latter being the first A/ = 2 minimal model). Here we describe some
families of QCD theories that realize all the minimal models. The examples are by no
means exhaustive: there are many other QCD theories that also flow to minimal models
in the infrared. In order to simplify the discussion, in this and subsequent examples we
shall make no distinction between the bosonized/fermionized versions of a given CFT, and
we will not be careful with certain discrete quotients of the gauge group (so for example
SO(4) = SU(2) x SU(2)).

Virasoro minimal models. Consider the following QCD theories:

SU(2)% x SO(k) + (2,1,2,1) + (2,2,1,0)

SU(2)% x Sp(k) + (2,2,1) + (1,2,00). (5-23)
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Their infrared is

SO(4k + 4), SO(4k + 4),
SU(Q)]H_l X SU(Q)k X SU(2)1 X SO(]{J)47 SU(2)1 X SU(Q)]H_l X Sp(k})1 ’

(5.24)

and we claim that these are both coset realizations of Mj. Indeed, they can both be
written as

SU(2)k+1
thanks to the level-rank dualities SO(nm)1/SO(n),, = SO(m), and SO(4nm),/Sp(n)m, =
Sp(m)n.

N = 1 minimal model. Consider the QCD theories

My =

(5.25)

SU(2)? x Sp(2) x SO(k) + (2,1,4,1) + (2,2,1,0)

2 (5.26)
SU(2)” x SO(2) x Sp(k) + (2,1,0,0) + (2,2,1,1).
Their infrared is
SO(4k + 8)1 SO(4k + 8)1
SU(2) k42 x SU(2)k x Sp(2)1 x SO(k)4’ SU(2)k42 x SU(2)2 x SO(2)4 % Sp(k()l )
5.27

and we claim that these are both coset realizations of ./\/l/k}/ =1, Indeed, they can both be
written as

SU(Q)k X SU(2)2

MN:l _
. SU(2)k+2

(5.28)
for the same reason as for M.

5.5 Diagonal coset

Here we discuss a class of QCD theories whose infrared leads to the so-called diagonal cosets
(9K X 9k’)/Bk+k, Whose structure is better understood than that of generic cosets [81, 82].
In particular, consider the following linear quivers:

S(UN) x U(M) x U(L)) + (3,0,1) + (1,5,0)

SO(N) x SO(M) x SO(L) + (0,00,1) + (1,0,0) (5.29)

Sp(NV) x Sp(M) x Sp(L) + (0,0,1) + (1,0,0).

Their infrared theories are

UNM + LM),
S(UN)m x UM) N+ x U(L)m)’
SO(NM + LM),
SO(N)M X SO(M)N+L X SO(L)M
SO(ANM +4LM),
Sp(N)ar x Sp(M) Nz % Sp(L)n
(5.30)
which, thanks to level-rank duality, become the following diagonal cosets
SUM)ny x SUM)r SO(M)n x SO(M)p, Sp(M)n x Sp(M)r (5.31)

SUM)N+L SO(M)n+r Sp(M) N+
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Figure 2. The first few complete graphs K1, Ks,..., K5. If we associate to each node a gauge
group U(n;),SO(n;), Sp(n;) (with the global U(1) modded out in the unitary case), and to each
edge a bifundamental quark, then the quiver gauge theory associated to K, has a Kazama-Suzuki
model as its effective low energy description.

5.6 Kazama-Suzuki

Here we describe QCD theories that acquire an emergent N’ = 2 supersymmetry in the
infrared. In particular, they become Kazama-Suzuki models [83].

Consider the QCD quiver associated to an arbitrary complete graph K, where each
node represents a gauge group G;, and each edge a bifundamental quark (see figure 2). We
take the gauge groups to be any of

G = S(U(N1) x U(Ng) x --- x U(N,))
G = SO(N1) x SO(N2) x - - x SO(N,,) (5.32)
G = Sp(N1) x Sp(Nz) x -+ x Sp(Ny,) .

Note that for n = 1,2 these are pure Yang-Mills and G x G + (0,0), i.e., they are both
gapped theories (the latter are entries on table 4). We claim that for n > 3, the theory has
emergent N = 2 supersymmetry in the infrared, they are Kazama-Suzuki models. Indeed,

their infrared cosets are

U(Xi>; NiNj), SO(Xs; NilNj), SO(43;~; NiNj),
SILUWN)y | w) ILSOWN)y " LS Wiy,

(5.33)

which are the cosets that describe Kazama-Suzuki models associated to the embeddings
SU(D_Ny) o S(JTuvi)),
1FE* ik
SO(Z Nz) 2 H SO(Ni)a (5'34)

iFx i#*
Sp(>_ Ni) > [T Sp(N:)
1% [E=

at level IV,, where x is an arbitrary node of K.
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A Conventions and background

We work in 14 1 dimensional Minkowski spacetime with metric n = diag(—1,+1) and 2 x 2
gamma matrices v*, u = 0,1. The Hodge dual of a one-form is (xj), = €., where we
take €® = —¢; = +1. In particular, xdt = dz, *dz = dt. In null coordinates z* the metric
isn y =n__=0,1n._ =n_, =1, and the star is xdz™ = +dz*.

The minimal spinor is Majorana-Weyl, namely one can impose the simultaneous
conditions 729 = 41 and ¢* = Cv, where 7> = 74%4! is the chirality matrix and C is
the charge-conjugation matrix, defined by (y#)* = Cy*C~!. It is convenient to choose
the Majorana basis v* = (io?,0') where 42 = 03 and C = 1. In this basis, Majorana

fermions are real ¢* = 4, and chiral fermions are either 9 (é) or ¥ (2) We take

S

=27 1/4 <ij> and T = 12 (2% & 2'). The fermion kinetic term is

— Ot = WO tpe + i 04 (A1)
For Grassmann odd a,b we use (ab)* = b*a*.

Mass terms. For massless fermions the two chiralities are decoupled. These couple
through mass terms
i

V2

wﬁwzwgﬁm—wwn-

Wy = —=(Yir + Yety)

(A.2)

both of which are hermitian. Although less obvious, one can also use bilinears of the form

- 1
re(¢Y*Y) = —=(Ypby — Yiy)

] {5 (A.3)
im(y* ) = ﬁ(wlﬁr +biby) -

both of which are hermitian and Lorentz scalars (recall that v, — e/21), and 1, — e~/21),
under a boost with rapidity n € R).

If the fermion is real, ¥, = 4y, then the bilinears ihy31p and re(¢*1)) both become
zero, due to fermi statistics, and the other two bilinears i) and im(lﬁ*w) become identical.

Symmetries. Let us list some of the manifest symmetries of QCD theories. The center
one-form symmetry is straightforward: it is given by the subgroup of the center that is
not screened by the fermions, namely ker(R) C Z(G), the kernel of the representation R.
As a matter of principle, it is possible that there are other one-form symmetries that are
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not associated to the center of the gauge group, although exhibiting these is a much more
complicated task.??

Zero-form symmetries are abundant too. For example, if we have N massless chiral
fermions in a given representation R, one has the following continuous flavor symmetries
acting on them:

R complex:  U(Np)
R real: O(Nr) (A4)
R pseudoreal: Sp(Np).

When G has no U(1) factors, so that the generators are traceless, the classical axial
symmetries are unbroken (unlike in 3 + 1d). If there are abelian factors then U(1) flavor
symmetries are generically broken into discrete subgroups. An important discrete chiral
subgroup, which is very often present even if U(1) is broken, is the chiral fermion parity Z%,
which negates left movers and fixes right movers, to wit, Z%: 1 — 73¢. This subgroup has
a very well understood group of 't Hooft anomalies, valued in Zg and responsible for many
interesting properties of QCD theories.

In presence of mass terms, the continuous chiral symmetries (A.4) descend to their
diagonal vector-like subgroups, or even smaller subgroups if the different flavors have
different masses.

Finally, there are two other discrete symmetries that are quite useful: charge conjugation
Z%, which sends a representation R to its conjugate R, and time-reversal Z-Qr, which is
anti-linear and satisfies T2 = (—1)¥". Note that charge conjugation exists only if the group
admits complex representations, for otherwise the operation is a gauge transformation and
thus not a symmetry. On the other hand, time-reversal is a symmetry only if the theory is
vector-like R, = R,, because ~? interchanges the two chiralities. The combination CT is a
symmetry only if Ry = R,. Charge conjugation and time-reversal act on the gauge fields as

Ul t) = ™ (x,t)
Ay, t) = — Al (z,1)

C:

() = AO(x, —t) (A.5)
T:  Ao(z,t) — +AL(x, —t)
Aj(x,t) = —Al(z,—1),
where ¢ denotes transposition.

The three discrete Zo transformations, chiral fermion parity, charge conjugation, and
time-reversal, act as follows on the fermion mass terms:

i ihySp re(y*) im(Y*)
zk — - - -
s + - — +
zy - 4+ - -

(A.6)

33For example it has recently been appreciated [84] that pure Yang-Mills has a very large space of
non-invertible one-form symmetries, valued in a maximal torus of G. It is not clear which if these, if any,
survive the introduction of matter, or whether there are other one-form symmetries — invertible or otherwise
— beyond these, although at face value it seems unlikely.
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Note that all the mass terms are odd under the chiral symmetry, which suggests that this
symmetry might be anomalous. On the other hand, there is at least one mass term that is
even under the other two symmetries, so they are non-anomalous. The exception is when
the fermions are real, because in that case the mass terms i)y3¢ and re(¢)*t) vanish due
to fermi statistics. In this situation, the remaining mass terms it1) and im(¢p*)) (which
are in fact equal) are odd under time-reversal, which suggests that such symmetry might
be anomalous too (and, if so, the anomaly will be at most a mod 2 effect; this is confirmed
by Q5 = 7,).

A.1 Matching energy momentum tensors

We have the canonical energy momentum tensor built from the fermion fields which takes
the form

T(z) = _% 3wt (2). (A7)

The normal ordering is defined as the constant part of the OPE of AB. The notation above
for two operators is defined by

AB: (2) = - [} 94 (@)B(2), (A.8)

2t J, x — 2

and extracts the constant part of the OPE of A and B via a contour integral. We can define
the current J%(z) = % :Wt?jwj (2), for tf; the generators of the g Lie algebra. We write the
energy momentum tensor given by the Sugawara construction as

z) = 'yz ::wit?jwj::wktzlwl:: (2)

. (A.9)
- Vztz]tkl WW”%ﬁkwl:: (Z) :

We first consider the term ::)%)7::qpFepl::. By the rearrangement lemma [39, appendix 6.C]
we have

::wi¢j::wk¢l:: (2) ::wi :wj :wkwl::: (z)+ :[:wiwj:, :¢kwl:]: (2)

+ n[ M O (2) 4 [ ) (2),
When we substitute these results into (A.9) we get
7 2 it s (2)
—’th ! kgl (2)
. o , (A.11)
+th L L S R LA R AW LR RER
_’th it apd Ryl +’YZ —4tit5 plot] .
The second term above has the form of (A.7), where we use the fact that
dlm(G) i 1
Z it = U B G w0 YT s ) (A-12)
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and take G and R from our list of gapped theories. A necessary condition for equality of
T(2) and T (2) is if 43, t3t%, @t wpd pFaple: (2) = 0. By definition, this term is

a “ij

w—zT—2Y

D W g s oree, ()

a.

and since 1% is Grassmann, this vanishes if the total antisymmetrization of 3, ti;ty vanishes.

This gives us the condition

D tith + ity + titG = 0. (A.14)
a

If the group G = G x U(1) which has a U(1) factor, we can write tg; as a decomposition
under G and U(1), where it has charge g under the U(1), i.e., the current is J(2) = 3 :biq 9’
As an example we take U(NN) with a fermion in the antisymmetric representation of SU(NV)
and charge ¢ under U(1). The SU(N) part of the Sugawara tensor reads

1 2N? =N =2)7 5o i,
Tsun(2) = SN —2) {— N } @' 0.": A15)
L ig i 1 88 Ayl .
:_5 p azw-‘i‘N(N_l) ) 8z'¢ .
The U(1) part of the Sugawara tensor reads
1 o 1 o
Tuy(2) = INN-T) saptptiapdepd = NN-T) SRR (A.16)

and by summing (A.15) and (A.16) we reproduce (A.7).
Now suppose we are working with an Abelian theory and we consider n complex
fermions, with g7, charge matrix, i.e. U(l)’qﬁq. The canonical energy momentum is given by

1
T(z) = E(ﬁmfwf: — 1ol (2). (A.17)
With the charge matrix we can define the current J, = ¥fqr,4!, which satisfies the OPE
Jo(2)Jp(0) ~ —-. (A.18)

From this we build the Sugawara tensor

T(z) = %Z(k‘ab)_l s T gral e g (2), (A.19)
a,b

where ko = (¢°¢)ap = q1a a1v, 50 (kap) ™' = (qra q1p) ', and we can define the current as
Jo =T qra1p!: . Again by the rearrangement lemma, we have

qra gy =TT T (2) = qra gy T ! Ty (2)
+ qra qu(—(SUz/JJ :Gzz/JIT: —§t :wJTBZwI:)(z) (A.20)
=d1aqr1b (_ :wlaz¢IT: - ilb”@zi//i)(z) .
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After substituting into (A.19) we get

T(Z) ~ 5 Z (ql_blql_al) |:QIa qJb :wﬁ :¢I 3¢JTwJ22: (Z)

2
a,b
+ qra g (=07 w7 0.9 =61 o1 (2)]
= 3 [ttt st (o) (<61 s 0l —1 sy 0,00 (2)]

= & (wttol — o) (o)
= T(2),

(A.21)

which is the canonical energy momentum tensor. We have used the fact that ", (q75) ™' g7 =
077, and the first term in the second equality vanishes by applying (A.13) and evaluating
the contour integrals.

A.2 Temporal gauge Hamiltonian commutation

The quantized Hamiltonian is given by integrating the Hamiltonian action in (4.46), where
we take the left and right handed fermions vy(z) and ¢, (z) to be operators on a circle
where 0 < z < 27

7 2m i Ta Ta Ta Ta
H:/O L;(I(R)—Fh) (: h e(x):—i—:JrJT(:c):)
Liim [ (z+e oz —e)) — (W (z+e€ ir(T—€
+ il (Wlo + 0uiele = 9) = Wi, + )0uvir(a = €))) .
1 1a Ta Ta 1 1a
+ S5 2@ (T = T)@) + S5 1(R)A (:U)2]dw
2T
+g2/0 (E%(z))*d.

We use the expression for jgr as specifically given in section 4.2.

For the commutator [@a, H ] = 0, the pieces proportional to ¢° and g2 vanish separately.
The commutator of G* with :ft?frjzr(:v): vanishes [85], and we proceed to use the commuta-
tion relations in (4.41) to show that the other terms in (A.22) vanish when commuted with
Ge. Consider first the terms:

2

@), [ AR = [ A) (T )+ TR0~ ) dy
(A.23)
~ 27 27 __
(@), [ATw)dy) = — [TA) (17T @) — ) — iL(R)6"0,0( ~y)) dy.
(A.24)
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We then look at the terms:

~Dafi), [ AT - T ) =

27
- [ ismoe(e - ) (- ) )y (A.25)
0

[T A (3 )t~ )y,
0

_ o
IR ), [ Aty)%ay) =
_%I(R) /0 R (y)5990,8(x — y)dy (A.26)

—%I(R) /0 7 et 3 () A ()55 — 1)y

The second term in (A.23) and (A.24) cancel with the first term in (A.26). The first term
in (A.23) and (A.24) cancel with the second term in (A.25); the last term in (A.26) vanishes
by antisymmetry. We are thus left to negotiate the term

2
= [ ism0u6( — ) (T - ) )y (A27)
0

in (A.25). For this we consider

R 27
(i) [ itim sl 0+ 90 (v - O)dy) (A.28)

where we first compute the commutator by treating the second term as an operator, and
then using the propagator while taking the e — 0 limit. This is the same procedure used to
prove that [bflf’,r(a:), jgr(y)] contains a Schwinger term. Working with just the left handed
part of (A.28) we get

- 2w
Teta), [ il + 90,y — )y
2w
= Bl @), [ il (o + 90l = )y

; 27
= % lim{/0 oz —y— G)ay(wjg(y +e)tiie(y — €))dy

4 [ 08—y ol + ey - Oy
. (A.29)
— slim{ [T 0,800~y — Oy + Oty aly — Oy

27
+ [ 0,80 g+ ey + Ottty — Oy

2m
= {_ 0 (%5(30 a y):wgé(y)t%@bje(y):dy}

27 ~
=1 ; 0z0(x —y)J(y)dy,
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which cancels the first term in (A.27), and we can do an analogous computation for j,‘?
The first equality we use the fact that J%(z) = %1/13 i e(z) + (singular term), where the
singular term vanishes in the commutator. To go from the third equal sign to the fourth
equal sign we replace the fermions by the normal ordered version where [86]

Uy + 500y —€) = ] (y + )ty — €): + im (U] (e + e+ Otf0050(a — e~ ),
(A.30)
and the second term vanishes under the derivative. For the term proportional to g2

we consider

D), [ B i) = <20 [ B ) B )~ y)dy (A.31)

which vanishes due to the antisymmetry of feb°.

B Infrared coset CFTs

In this appendix we review the formalism of coset CFTs [39], our primary goal being to
understand the CFTs that appear in the deep infrared of QCD (5.1).

Chiral characters. One of the most important concepts in RCFT is that of a chiral
character. These consist of a finite family of functions {xx(¢)} of the complex structure
g = €2™7_holomorphic in the upper half plane, and labelled by the primaries of the theory
A (the representations of the chiral algebra). Given these characters, the torus partition
function of the theory takes the form

Z(q) = > M\ xa(@xala) = X' M. (B.1)
A
Here M, the so-called mass matrix, specifies how the left-moving sectors are paired up
with right-moving ones. The possible choices for M are constrained by the requirement
of Z being a modular-invariant function of ¢. This is archived by a key property of the
characters, to wit, their covariance under modular transformations. Under a generic such
transformation, the characters mix with each other in a well-defined fashion, and the role of
M is to ensure that the sesquilinear form Z = xT M is a scalar under these transformations.
As a result, while Z(q) is a well-defined function on H/SL(2,7Z), the tuple x is best thought
of as a non-trivial section thereon.
When x»(¢) admits a Hilbert space interpretation, it is defined as

X)\(Q) = tr'H)\ (qLO_C/24) ) (B2)
such that )
Z(q) = tra(gho-e/Hiqhoel2h) = @M Hy @ My (B.3)
A

Here # is the full Hilbert space of the theory, and #) is the representation space (module)
for A\. The mass matrix M dictates how these chiral modules combine into H. From now
on, and in order to simplify the notation and presentation, we always have in mind the
diagonal theory Mj , = 5;7 - Non-diagonal theories can often be thought of as the diagonal
theory of a larger algebra via (potentially non-abelian) anyon condensation.
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Fermionic CFTs. A CFT is said to be fermionic if, on top of the dependence on the
conformal structure of spacetime, it also depends on the choice of spin structure thereof. In
other words, a fermionic CF'T depends on the boundary conditions for fermionic fields. The
CF'Ts that appear at RG fixed points of QCD theories are naturally fermionic, because the
microscopic theory contains quarks. Hence our main interest is in fermionic CFTs.

In the case of the torus there are four spin structures, corresponding to either periodic
or anti-periodic boundary conditions around the two non-trivial cycles. We also refer to
these boundary conditions as Ramond and Neveu-Schwartz, respectively, and we use the
notation + = R, — = NS interchangeably.

In a fermionic CFT, the characters acquire a dependence on the spin structure: they
become super-characters. Consequently, we denote them as X)i\’i where

XIS (g) 1= trpge , (g70 /)

ANSR(q) = tragg, (—1)Fegqlome/2t) o
X§_NS(Q) = trHR;A(qLO 0/24) )
XA (q) = tI‘HR;A((_l)FLqL()*c/24) '

Here, H..) denotes the module of A with fermion boundary conditions &, while (—1)f*
denotes the chiral fermion parity operator, which assigns +1 to bosonic left-movers and —1
to fermionic left-movers, while it acts trivially on the right-moving modes.

The partition function of a fermionic CF'T is obtained by combining the two chiral
halves in a modular covariant way:

Zy+(q X:th,\xA Xy (9) (B.5)

which computes

Zi,i(Q) _ tf?—ti((:Fl)F Lo— 0/24 ~Lo— 0/24) Hy = EDMS\%)\/H:I:;S\ ®@ Hin, (B.6)

where (—1)F = (=1)"2(=1)F% is the total fermion parity.

Here the mass matrices M*, which dictate how the two chiral halves # 0 M combine
into the full Hilbert space H, are chosen so as to ensure that Z 4 transforms appropriately
under modular transformations. Unlike in the case of bosonic CFTs, Z4 + is not in general
invariant under SL(2,Z). Indeed, modular transformations generically map the different
spin structures into each other, which induces a reshuffling of the partition functions Z4 4.
Specifically, under the standard generators of SL(2,Z) = (S,T), the partition functions

SC NSNS 2> Znsr <2 Zpns QT
C e O
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The choices for the mass matrices M* are constrained by the requirement of Z+ + being
a modular-covariant function of ¢q. As usual, we will always have in mind the diagonal
theory Mii,)\ =03

In order to simplify the notation, we shall frequently leave the dependence on the spin
structure 4, + implicit.

Flavor-twisted characters. If the chiral algebra has some flavor symmetry U, then it is
often useful to introduce flavor-twisted characters (i.e., we turn on fugacities for the Cartan
generators; these are roots of u). This allows us to organize the modules H into irreducible
representations of U so as to have a more transparent understanding of the structure of
states therein. To this end, we can define extended characters as

a4, 9) = tra, (¢7*p(g)) | (B.8)

where g € U is a symmetry group element and p: g — H, is its representation on the
Hilbert space. The character is a class function, so its dependence on g is only through its
conjugacy class.

Regular characters x)(q) are obtained from the extended ones x(g, g) by setting g = 1.
The former only keep track of the conformal weights of the states in H), while the latter
also keeps track of their quantum numbers under U.

Coset CFTs. Whenever the chiral algebra has a subalgebra, one can expand the characters
of the former in terms of those of the latter,

xa(g) = Db (@)xala), (B.9)
A

where x) are the characters of the original chiral algebra, and xa those of the subalgebra.

The key point of this construction is that, if ) and x are both modular covariant,
then so are the coefficients bﬁ\\. This means that one can think of these coefficients as the
characters of a new theory, which we call the coset CFT; this is the celebrated GKO coset
construction [87]. If at least one of x\, xa is a super-character, then so is b}, and hence the
coset is a fermionic CFT.

This new theory, the coset CFT, has characters bf\\(q), and therefore its partition
function takes the form

Z¢*(q) = Y_b(@)b(q) (B.10)
b

where we restrict to diagonal partition functions for simplicity. If b is a super-character, the
expression above defines the partition function of a fermionic CFT, while if it is a regular
character, it defines the partition function of a bosonic CFT.

It should be remarked that, in order to actually calculate the coefficients b3, it is
often unavoidable to turn on flavor fugacities, for otherwise the computation becomes
impracticable. One is therefore forced to look at the extended characters xx(q, g), xa(q,4’),
where ¢ is a symmetry group element of the original algebra, and ¢’ its restriction to the
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subalgebra. Specifically, if the original algebra has flavor symmetry U and its subalgebra
has flavor symmetry U’ C U, then the character decomposition can be extended to

Xa(@,9) =D (g, 9")xala. 9) (B.11)
A

where g € U, ¢’ € U’, and ¢” is a group element of the flavor symmetry of the coset, namely
the commutant of U’ inside U.

WZW CFTs. The discussion so far has been rather abstract and general. To be concrete,
let us discuss Wess-Zumino-Witten (WZW) theories, which we review next. WZW theories
are labelled by a compact Lie group G, which we take to be simple and connected, and
a “level” k, an integer that specifies the central extension for the loop algebra of G. We
denote the corresponding model by Gi. When G is simply-connected (which we henceforth
assume, unless specified otherwise) the chiral algebra is a Kac-Moody algebra:

[Ja Jb ] — fabc JC+m —+ knéab6n+m ) (B12)

n»“m n

while if G is not simply-connected, then the chiral algebra is Kac-Moody extended by the
simple currents that generate 71(G). WZW theories with 71 (G) = 0 are always bosonic,
while those with 71 (G) # 0 are fermionic if any of the currents that generate m1(G) is a
fermion (it has half-integral conformal weight).

The representations of the chiral algebra are required to be unitary with respect
to (JO)T .= J2,,.

The enveloping algebra of (B.12) contains the Virasoro algebra via the Sugawara

construction: 1
L,=———-) :J*J* ., B.1
such that
c(Gy) 2 .
Ly, L) = —n)Lpym = 1)dntm, = d
[ | =(m—n)Lnym+ 1 n(n® —1)6n+ c(Gr) T im(g) (B.14)

[Ly, J3) = —mJ;

n+m

Note that this last expression indicates that J_,, carries n units of Ly eigenvalue.
The primaries of the theory are labeled by the integrable representations of g, to wit,
the highest-weight representations A\ € Rep(g) that satisfy

0,7 <k, (B.15)

with 6 the highest root of g (the highest weight of the adjoint representation) and (,-)
its Killing form, normalized to (0,60) = 2. The module H, is constructed as follows: at
lowest grade, one begins with the vacuum states |\), which live in the finite dimensional
representation A generated by J§. On top of these vacua one constructs the excited states.
For example, at grade-one one has the states J%;|\), which live inside the representation
0 ® \. At grade-two one has the states J%|\) and J%;J%|)\), so the states live inside
0@ N+ 62

sym ® A. Etc. Importantly, not all of these states are physical: we must project
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out the null states, i.e., the states whose norm vanishes. Continuing this way one obtains
the character

Xa(@,9) = " (xa(9) + X8 (9)0 + XR(9)8 + X (9)T + ), (B.16)

where R, is the space of physical states at grade n, and xg(g) := trg(g) the finite character of
R.3* A more convenient way to obtain the characters is the so-called Weyl-Ka¢ formula [88],

(5 9) . v Vw2
(g, g) = S22 fa(g.9) = Y det(w) gRe TeAgie T RRAR2k (B 7
Xp(a,9) e
aVeRV

where W denotes the Weyl group of g, QV its coroot lattice, p its Weyl vector, and z is the
value of g € G when conjugated to any maximal torus.

Spin(n); CFT. A particularly important family of WZW models is Spin(n);. For n
odd this theory has three primaries 0,v, o (the scalar, vector, and spinor representation,
respectively), and for n even it has four, 0,v, s, ¢ (where s, ¢ denote the two spinors). The
corresponding characters read

xo(4: 9) Z(J‘”/48l°+5q+ <°+H+ED+E> ¢
+ <-+3B+m+g+§j+g>q3+---]
Xo(4,9) = ¢ 20 [°+0q+ (e +H) ¢+ (-+2B+E) q3+...}

_|_q—n/48+3/2 E+§q+ q2+...

_ q—n/48+1/2

m+(m+§)q+<2m+53+§ >q2 (B.18)

‘H
+(3D+2@+3g+gﬂ+g+g)qz+...

Xo (0,9) = ¢"*' o {O+Bq2+ (e +H+rm) ¢ + <o+25+m+g) q4—l—-.-:|

+¢" 5 [D+og+ (0+H) ¢ + (20+H+F) ¢+

= ¢ |0 + (U+E]>q+ (20+B+QE) ¢

)

+ <4a+§+2g+4@+1j1) AR

3By definition, xr(g) := ZAGQ(R) 2, where Q(R) is the space of weights of the representation R,
with multiplicities.

~ 54 —



where o denotes the spinor of Spin(n) when n is odd, and any of the two spinors when n is
even (in which case & denotes the conjugate spinor, obtained by permuting the last two
Dynkin labels). Here, a Young diagram stands for the finite character xr(g) associated to
the representation R of so(n), and a dot R is a short-hand notation for the representation
whose highest weight is given by A := Ar + w|y, 2] (s0 for example 0= (1,0,...,0,1)).

These expressions make it manifest how the different states of Spin(n); appear at each
level. For example, in x( at grade n = 2 the states live inside

J%|0) + 7% J%110) CH+ B P)sym = (. +B+ED+E) +HH, (B.19)

and one can check that the representations in parentheses are physical and the isolated one
is null (its norm vanishes).

SO(n);1 CFT. A related — and also very important — WZW model is SO(n);. This
theory is obtained from Spin(n); through fermionization. There are two key properties of
SO(n); that make it special. First, it is a fermionic theory, meaning that its characters
and partition functions depend on the choice of spin structure. Second, it is a holomorphic
theory, meaning that its partition function factorizes as Zy + = |ds +|? (as opposed to
non-holomorphic theories whose partition function is a sum of such terms). In other words,
SO(n); has a unique primary (for fixed spin structure). Following the convention of [39] we
denote this unique character as d+ +.

The characters of SO(n); can be obtained from those of Spin(n); (cf. equation (B.18))
via the standard bosonization/fermionization dictionary:

x0(4, 9) + xv(q,9)
\/§XU( g)
0

Xs(¢,9) £ xe(a: 9) -

dns-x(4,9)
n odd: drNs(q;9)
(2:9)
9)

(B.20)

dr-r

7

n even: drx(q,g

U(1)r CFT. So far we have described WZW models for simple groups. The case of U(1)
requires a separate discussion. By U(1)g, with k£ even, we mean a free compact boson at
radius R2 = k. This has a chiral U(1) flavor symmetry; if we turn on a fugacity z € U(1)
for this symmetry, the characters of this CFT are

Z qlk(quZ/k \/EquE/\/E’ (B.21)
UEZ

xe(q,

with £ =10,1,...,k — 1, and where 7 is the Dedekind function.

When £ is odd, by U(1); we mean the theory U(1)y; extended by the vertex operator
of weight k/2, i.e., by £ = 2k. As this weight is half-integral, the operator is a fermion and
the extension results in a fermionic CFT. Its super-characters can be obtained for example
by following the rules of [50]:

XN (0:2) = X0 (0, 2) £ X80 on (0, 2)

(k)

(B.22)
K k
Xroxe(4,2) = Xgé+)1(q, z) £ th/+)1+2k(q, z).
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These characters have also been discussed in e.g. [73]. The special case k = 1 is equivalent
to a free fermion theory, U(1); = SO(2)1, as can be checked by comparing the corresponding
super-characters; this is nothing but the trivial statement that one complex fermion equals
two real fermions. More generally, U(n); denotes the CFT of n complex fermions, and we
shall use the notation U(n); = SO(2n); interchangeably. (The former is more natural when
the free fermions are associated to a complex representation of the gauge group G).

WZW coset models. We are now ready to discuss the class of models of interest, namely
cosets of the form SO(n);/Gy, which appear at the deep infrared of QCD theories with
gauge group G.

The CFT SO(n)1/Gy is obtained by embedding G into SO(n);. As above, this
embedding gives rise to a character decomposition of the form

det = by xa, (B.23)
A

where d4 1 are the characters of SO(n)1, and x those of Gi. The denominator theory Gy, is
allowed to be fermionic, in which case it is understood that x, = Xf’i is a super-character
at spin structure £, +. In any case, whether GGy is fermionic or not, the coset is a fermionic
theory, because the numerator SO(n); is fermionic. Consequently, the coefficients bf’i
depend on the spin structure, as indicated by the superscript. These coefficients are the
super-characters of the coset CFT SO(n);/Gk, and they determine the dynamics of QCD
in the infrared. In particular, at low energies the partition function of QCD becomes

L= bR (B.24)
A

In this sense, the whole problem of describing the strongly coupled dynamics of QCD has
been reduced to the task of finding the coefficients by in (B.23). While for generic cosets this
is a computationally demanding task, for cosets of the form SO(n); /Gy there is a substantial
simplification: the numerator SO(n); is in fact equivalent to n free Majorana fermions.

This free fermion representation can be exploited as follows. Consider the coset
SO(n)1/Gg, where n = dim(R) and k = I(R) with embedding G C SO(n) via the repre-
sentation R. In the Neveu-Schwartz sector the free fermions have half-integral modding
Yr41/2, while in the Ramond sector they have integral modding ¢,. These modes are
independent, so the SO(dim(R)); partition function is just the product of the individual
partition functions over all r € N. The fermions 9,12, 9, all generate R-modules except
for the Ramond zero modes vy, which generate a spinor module. With this, the different
partition functions of SO(dim(R)); read

dxs-x(g, g; R) = g~ mUR)/48 H I 142772
r=0 e R)

dim(R) odd :  dgr.ns(q, g; R) = V2 ¢im@)/24y H H L2
r=1XeQ(R) (B25)

drr(q,9;R) =0

dim(R) even: drx(q,9;R) = qdim(R)/24( ) £ xe(g H H 142"
r=1XeQ(R
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where g € G is the restriction of any flavor SO(dim(R)) symmetry to the subgroup G, and
z its value on any maximal torus.

One can use these expressions to compute the first few terms of the g-expansion of d4 +.
These terms are then reorganized into Gr(g) characters, whose g-expansion can be obtained
with e.g. the Weyl-Ka¢ formula (B.17). The characters of the coset SO(dim(R))1/G(g)
are identified with the coeflicients of this reorganized series. Computer software is often
instrumental in these computations, for example the LieART Mathematica package [89].
The extensive tables of Lie algebras, representations, and branchings in [90] can also come
in handy.

Topological cosets and conformal embeddings. A special role is played by cosets
O(n)1/G where Gy embeds into SO(n); conformally, i.e., when the central charge of
O(n)1/Gy vanishes. We argued in the main text that this happens if and only if the QCD

theory with group G is gapped. When this happens, the infrared theory becomes a trivial

CFT. That being said, the coset is not an empty theory, even though it has no local degrees

of freedom; in other words, it is a topological QFT. The low energy dynamics of gapped

theories is entirely contained in the topological degrees of freedom carried by the topological
coset SO(n)1/Gy.

By topological invariance, all observables of such cosets become g-independent, so the
branching functions by are just numbers instead of functions of q. Note that topological
invariance is just a special case of conformal invariance: TQFTs are invariant under all
diffeomorphisms instead of just the conformal ones. This means, in particular, that the
formula (B.24) is still valid for TQFTs. In this case, as Ly = 0, the partition function
actually computes the total number of states in the theory, which has a finite-dimensional
Hilbert space:

Zy _ = try, (1) = bosons plus fermions in H (B.26)
Zy + = trag, (—1)F = bosons minus fermions in H4 ‘
or, equivalently,
1 1
number of bosons in Hy = §(Zi,, +2Z44) = Z 5 |bi % + \bi 12
. * (B.27)
number of fermions in Hy = —(Z4 - — Z4 ) = Z = |bi bi 2.
2 ’ 5 2

In what follows we shall work out several examples in some detail in order to illustrate
some of the previous considerations.
B.1 Examples of topological cosets

Here we demonstrate the coset construction for the conformal embedding SO(8); D SU(3)s.
As ¢=8/2—3-8/6 =0, the resulting theory is topological, i.e., it has a finite-dimensional
Hilbert space. In order to find this Hilbert space we need to decompose the SO(8) characters
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into SU(3) characters. The former are given by (B.25):

x0(q, 9) :q_l/G[l+(8+10+ﬁ)q+(1+48+10+ﬁ+327)q2

+(21+108+610+6T0+ 627 +235+ 235+ 64)¢° + - -

- (B.28)
Xo(a,9) = ¢"*[8+ (1+28+ 10+ 10+ 27)g
+(21+68+310+3ﬁ+427+35+£)q2+--~} :
and, by triality,
xXs(2:9) = xe(a,9) = x(a,9) - (B.29)

We next reorganize these characters in terms of SU(3)3 characters. The characters of
SU(3)3 are given by

x1(q,9) :q1/6[1+8q+ (1—i—28—i—27)q2
+(21+48+210—|—210—|—227+64)q3+--'}

Xg(q,g):q1/18{3+(3+6+15)q+(33+26+315+24+42)q2+~--]

xe(2,9) = ¢"* {6+ (346 +15+24)q
+(23+46+315+15’+324+42)q2+--~}

xs(q,9) = ¢'/° [8+ (1+28+10+10+ 27)q (B.30)
+(21+68+310+310+427+35+35)q2+-~-}

x10(g,9) = q‘r’/6 [10—1— (8—|— 10+27)q
+(38—1—310+1()+227+35+235’))q2—i—-"}

x15(q, 9) = ¢*3/1® [15+ (3+6+215+ 15 +24)q
+(33+36+615+215’+21+324+242)q2+---}.

By comparing (B.28) to (B.30) it is easily checked that

dns-Ns = X1+ X8 + X10 + X719
dNs-R = X1 — X8 + X10 + Xig (B.31)
dr-NS = 2X8

dpr =0,
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which implies that the NS sector of SO(8);/SU(3)3 has four bosons and no fermions, and
the R sector has two and two, i.e., Hng = C*° and Hp = C22.

It is interesting to note that, out of the four bosons in Hyg, one of them (the one
corresponding to bg) is charged under (—1)¥%, while the other three are neutral. In the full
non-chiral theory, this state is a boson because it comes from bgbg, which is charged under
both (—1)fr and (—1)¥% (and is therefore neutral under (—1)¥ = (=1)r(—1)Fr),

In the previous example we found that Hyr was supersymmetric (it contains the same
number of bosons as fermions), which was a consequence of dr_g vanishing. In order to show
that this is not always the case, we will describe an example where Hp is not supersymmetric.

Consider the coset SO(16);/Spin(9)2. Using (B.25), the characters of the numerator are

Xo(g,9) = ¢ /3 (1 + (36 + 84)q
+ (9416 + 36 + 44 + 84 4 2126 + 231 + 495 + 924) >
+(29+16 + 536 + 44 + 584 + 3126 + 3231 + 495
+ 3594 + 910 + 3924 + 1650 + 2457 +22772)¢° + - -)
Xo(q,9) = ¢/5(16 + (16 + 128 + 432)q
+ (316 + 3128 + 3432 + 576 + 672 + 768 + 2560)>
+ (716 +9128 + 9432 + 4576 + 2672 + 5768
+ 1920 + 4 2560 + 4608 + 4928 + 25040)¢> + - - -)
Xs(q,9) = ¥/ (44 + 84 4 (9 + 36 + 44 + 84 + 126 + 231 + 594 + 924)q (B.32)
+(14+29+336+344 + 484 + 3126 + 3231 + 495
+ 3594 + 910 + 4924 + 1650 + 1980 + 2457 + 2772) ¢
+(21+69+836+644+ 1084 + 10126 + 2156 + 9231
43495 + 11594 + 3910 + 11924 + 51650 -+ 21980
+ 32457 + 2574 + 52772 4 33900 + 24158 + 9009 + 15444)¢> + - - -)
Xe(q,9) = ¢*/3(128 + (16 + 2128 + 432 + 576 + 768)q
+ (316 +6128 + 4432 + 3576 + 672 + 3768 + 22560 + 5040)¢>
+ (816 4+ 16128 + 13432 + 9576 + 4672 + 9768 + 1920
+ 82560 + 24608 + 4928 + 55040 + 9504 + 12672)¢° + ---) .

In order to express these in terms of the characters of the denominator, we need the
Spin(9)2 characters:

x1(q,9) = ¢~ /3(1436 ¢+ (1436 +44+126+495)q>
+(14436+44+84+126-+495+2594+910+2772)¢°+---)
X16(2.9) = ¢"/°(16+(16+128+432)q
+(316+3128+3432+576-+-672-+768-+2560)¢>
+(716+9128+9432+4576+2672+5768
+1920+42560-+4608+4928+25040)¢>+--- )
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Xaa(q,9) = ¢*/3(44+ (36 +44+594)q
+(14236+344+126+495+2594+910+924+1980)>
+(14+636-+544+84+3126+231+2495+7594+3910
+2924+1980+22772+3900+4158+9009)¢>+---)

x84(¢,9) = ¢**(84+(9+84+126+231+924)q
+(29+36+484+2126+3231+594+3924+1650-+2457+2772)¢>
+(14+69+236+44+984+7126+2156+8231+495+4594+9924
+51650+1980+32457+2574+32772+23900+4158+15444)¢° +--)

X128(¢,9) = ¢** (1284 (16+2128+432+576+768)q
+(316+6128+443243576+672+3768+22560+5040)¢>
+(816+16128+13432+9576+4672+9768+1920
+82560+24608+4928+55040+9504+12672)¢>+---), (B.33)

in terms of which one can write

dns-Ns(¢,9) = x1(q, 9) + x16(q, 9) + x84(q, 9)

dns-r(¢,9) = x1(¢,9) — x16(q, 9) + x84(q, 9) (B.34)
dr-Ns(q,9) = xa4(q, 9) + x84(q, 9) + x128(q, 9)

dr-r(q,9) = xa4(q,9) + x84(q,9) — X128(q, 9) -

These affine branching rules imply that the Hilbert spaces of SO(16);/Spin(9)s are
Hns = Hr = C319. As promised, Hp is not supersymmetric. While the unextended character

dr-r(g) = 0 vanishes, the extended one dr.r(q,9) = Xx84(¢:9) + x44(¢; 9) — x128(q, 9) is
non-zero, and hence the coset does not have the same number of bosons and fermions.

In section 5 we attributed the supersymmetry of the Ramond sector to certain 't Hooft
anomalies. These anomalies are present when the number of quarks is odd. In the theory
SO(16)1/Spin(9)2 the number of fermions is even, 16, so there is no reason to expect that
the Ramond sector is supersymmetric — and indeed it is not.

B.2 Example of a non-topological coset

Here we study the coset Spin(7);1/SU(2)2g, which has ¢ = 7/2 — 3 x 28/30 = 7/10. This is
non-zero so the coset is non-topological, i.e., it is a traditional CFT. We begin by writing
the characters of the numerator Spin(7);:

Xo(q,g):q7/48[1—|—(3+7+11)q+(21+3+25+27+29+11—|—213)q2
+(21—|—53—|—45+87+59+611+413+215+17+19)q3—|—---]

xv(q,g)=q17/48[7+(1+5+27+9+13)q
+(1423+37+11+35+27+39+211+213 + 15+ 17)¢>

—|—(41+53—|—95—|—127+109+811+713+215+317+19)q3+~--}
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Xo(@:9) = ¢/ |1+ T+ (1+3+5+27+9+11+13)q

+(214+33+45+67+49+411+313+15+17)¢°+
+(21+83+1154+167+139+1111

+10183 45154317 +219)¢* +--- | . (B.35)

Similarly, the characters of the denominator SU(2)sg are

x1(,9) =¢ 71 +3¢+(1+3+5)¢+(1+33+5+7)¢>+---)

x7(,9) =T+ (B+T+9)g+ (3+25+37+29+11)¢>
+(1+23+55+67+59+211+13)¢> +--)

x11(¢,9) = ¢®¥/°11+ (9 + 11+ 13)g + (T+29+ 311+ 213 + 15)¢?
+(5+274+59+611+5134+215+17)¢> +---)

x13(q,9) = ¢"/°(13 + (11 + 13 +15)¢+ (9 + 211+ 313 + 215 + 17)¢>
+(7T+29+511+613+515+217 +19)¢° +---)

xar(g,9) = ¢FOT + (15417 +19)g + (134 215+ 317+ 219+ 21)¢" 5 5
+(11+2134+515+617+519+221+23)¢> +--+)

x19(¢,9) = ¢"™/(19 + (17 + 19+ 21)g + (15 4+ 217+ 319 + 221 + 23)¢>
+(134+215+517+619+521+223 +25)¢° +--+)

x23(q,9) = ¢®7/°(23 + (21 + 23 + 25)q + (19 + 221 + 323 + 225 + 27)¢°
+ (1742194521 +623+525+227+29)¢°> +---)

x29(q, 9) = ¢*¥/°(29 + (27 + 29)q + (25 + 227 + 229 + 31)¢>
+ (234225 +427+429+231)¢° +---)

Given these expressions one can check that the Spin(7); characters decompose into
SU(2)28 characters as
xo(¢,9) = a7 (xa(q,9) + x11(¢, 9) + x19(2, 9) + X20(¢, 9))
X (1+q2+q3—|—2q4+2q5+4q6+-~)
137/240
+4q (x7(q,9) + x13(¢, 9) + x17(0, 9) + x23(¢,9))
x (1+q+2¢%+2¢° +4¢" +5¢° + )

Xo(2,9) = ¥ (xa(q, 9) + x11(0, 9) + x19(¢, 9) + X29(¢, 9))

X (1+q+2q2+2q3+3q4+4q5+---)

+_q17/240(x7(q7g)<+;X13(q’g)-+/X17(q,g)<+;X23(q,g))

X (1+q+q¢*+2¢°+3¢* +4¢° +---)
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Xo (@, 9) = " (x1(g, 9) + x11(2, 9) + x19(¢, 9) + x20(¢, 9))

x (1+q+¢*+2¢° +3¢" +4¢° + )
+ ¢ (x7(q,9) + x13(¢, 9) + x17(2, 9) + x23(, 9))
><(1+q+2q2—|—3q3+4q4+6q5+-~). (B.37)

According to the coset prescription we are instructed to regard the g-dependent coeffi-
cients as the characters of a new theory, which we denote as

X141 (q) = 7/240(1+q2—|—q3—|—2q4—|—2q5—|—4q6—|—4q7+7q8+...)

X1,3 (q) = ¢"37/240 (1 +q+2¢* +2¢° +4¢* +5¢° + 7¢5 +9¢" + -- )

x1,4(q) = 353/240 (1 +q+2¢>+2¢3 + 3q4 +4¢° 4+ 6¢° + 7q7 4. ) .
X2 (@) = "0 (14 g+ ¢* +2¢° + 3" + 4¢° + 6¢° + 8" + - -+ ) (B-38)
o1 (@) = 19/120 (1+q+q2+2q3+3q4+4q5+6q6+8q7+___)

x22(0) = /% (14 q+2¢* +3¢° + 4g" + 66> + 8¢° + 11¢7 + - ) |

which we recognize as the Virasoro characters of the minimal model M (4, 5) with central
charge ¢ = 7/10:

XT,S(q) = ky(q) — k—s(Q), ks(q) i= 77((1)71 Z q((2np(p+l)+r(1?+1)fsp)Q)/zlp(erl) ' (B.39)
nel

Fermionizing, we get the super-characters

NX(@)=xi1+tx14a & x13Fx12

RNS(g) = X210 & X292,

X
X

(B.40)

which, nonsurprisingly, are the characters of the fermionic ¢ = 7/10 minimal model. In
other words, the infrared theory of SU(2) + 7 is the fermionic M (4, 5) minimal model, with
coset realization SO(7)1/SU(2)2s

Another interesting example is SO(8);1/Spin(7);. The numerator and denominator
algebras are both of the type so(n)1, so the characters are straightforward. By working out

the decomposition one obtains
dnsx = x5 X8 + X £ xOx D

(1) 4 (7)Xé) (73 (1)

- (B.41)
dr-X = X¢ X Xo ' Xo s

where x(7) are the characters of Spin(7); and x1) are the Ising characters. Therefore, the
infrared chiral algebra of Spin(8) + 8 is the (bosonic) Ising CFT.

C Abelian theories

Consider a QED theory with N, photons and Ng non-chiral Dirac fermions:

. N¢ Np
Z g;;°da; A*daj + 5 Z Oida; + > v Pr’, (C.1)
i=1 =1

1,j=1
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where the gauge fields are normalized to integral periods:

dal-
/ ez, (C.2)

and D denotes the covariant derivative

Ne
D[Z@JriZQ”ai, (C3)
i=1
with Q; € Z the charge of the field ¢; under U(1);.

In order to simplify the notation we will often think of indexed objects g;;, 0;, a;, @r; as
arrays of suitable shape, e.g., g is a square matrix of dimension N, x N,, 6 a row vector of
dimension 1 x N, () a rectangular matrix of dimension Nr x N, etc.

In (C.1), gij,6; denote the coupling constants of the model. These are not all indepen-
dent: for example, one can always perform linear changes of basis in photon space a — Aa,
under which g=2 +— A'g™2A, 0 — §A. Here A € GL(N,,Z) is an integral unimodular matrix
so as to preserve the quantization condition (C.2). Under this redefinition, the matrix of
charges @) transforms as Q) — QA. We will come back to this momentarily.

Classically, the model has flavor symmetry U(1)VF corresponding to axial rotations of
the fermions 1y — €' 7 1r. This flavor symmetry may be enhanced to a non-abelian group
if some of the rows of ) are equal. These classical symmetries often have a mixed anomaly
with the gauge group U(1)™e. Specifically, consider the flavor subgroup U(1)r C U(1)VF
defined by a certain row vector of integers n = (n1,ng, ..., ny,) such that, under a € U(1)p,
the fermions rotate with angle ay = an;. Under U(1)F the left-movers have charge +ny,
while the right-movers have charge —n;. Under U(1);, both chiralities have charge Q7;.
Therefore, the mixed flavor-gauge anomaly is

N
U(I)F - U(l)i: Z 2n1Q[i = Q(HQ)Z . (C4)
I=1

This mixed anomaly has two (dual) interpretations: first, it stems from the fact that, under
U(1)p rotations, the theta terms in (C.1) shift, so these terms are rendered unphysical; and
second, it corresponds to the fact that the current that generates U(1) is not conserved,
and hence U(1)p is not an actual symmetry. Let us analyze both these points in turn.

Theta terms. The mixed anomaly between U(1)V* and U(1)e can be understood as
the statement that, under U(1)VF rotations, the theta terms in (C.1) shift. In particular,
under the U(1)r € U(1)VF subgroup specified by the integer vector n, one has

Ul)p: 0 — 0+ 2anQ. (C.5)

This means that 6 are unphysical parameters, as they can generically be rotated away.
More precisely, the linear combination 6v, where v is a N, X 1 column vector, shifts as
A(fv) = 2anQu, and this is zero for all @ € U(1)p if and only if Qv = 0. In other words,
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the physical theta parameters of the system are in correspondence with the vectors that are
annihilated by @ on the right:

e In the non-chiral QED system (C.1), the space of physical theta parameters is
given by the kernel (right-null-space) of Q. The linear combination Qv is physical
if and only if v € ker Q.

Axial currents. The mixed anomaly between U(1)V# and U(1)"¢ can also be understood
as the statement that, in the quantum theory, some of the currents that generate U(l)N F
are not conserved. In particular, the subgroup U(1)r C U(1)VF specified by the integer
vector n is generated by the current

Np
Jn =Y _npJp, (C.6)
I=1

where J}' = pry3ytapr is the current that generates axial rotations of the I-th fermion.
The mixed U(1)-U(1); anomaly violates the conservation law for J,, if and only if 2n@Q
is non-zero. In other words, there are as many conserved axial currents as there are row
vectors that are annihilated by @ on the left:

e In the non-chiral QED system (C.1), the algebra of axial flavor symmetries
is given by the cokernel (left-null-space) of Q. The linear combination n - J is
conserved if and only if n € coker Q).

Hermite normal form. We noticed above that one can always perform changes of basis
in photon space according to a — Aa, where A is a matrix in GL(N,,Z). This change
of basis redefines the matrix of charges according to @ — QA. One can always use this
freedom to put @ in (column) Hermite normal form, namely @ = QA where Q is lower
triangular and columns of zeros, if any, are to the far right (see figure 3).

In this basis the matrix of charges has ker @) columns that are identically zero. This
means that the corresponding photons are essentially decoupled. (They still couple topolog-
ically, via the kinetic term. This does not affect local properties like the existence of a mass
gap). This explains why the physical theta terms come from ker Q): a theta term is physical
if and only if it multiplies a free photon. In other words, the parameter 6;v; is physical if
and only if the photon a;v; is decoupled from the fermions.

Putting together the last two observations we learn that, as far as classifying gapped
theories is concerned, we can assume without loss of generality that there is the same
number of photons than fermions, Ng = N.. This follows from the rank-nullity theorem,
|ker Q| — |coker Q| = N. — Np, which implies that if N, # Np, then at least one of
ker ), coker ) will be non-empty. If ker ) is non-empty the system contains decoupled
photons, which are gapped and hence do not affect the classification. Conversely, if coker Q
is non-empty, the system contains continuous chiral symmetries and hence it is automatically
gapless. The interesting question is, therefore, what happens if () is square and non-singular.

If Np = N, and @ is full-rank, there are no rows nor columns that are zero, so there
are no decoupled sectors and no continuous axial symmetries. There are no U(1)V* axial
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<« rank Q —>

I
|
: NF_NC
:
l

Figure 3. Hermite normal form of an Np x N, integral matrix . The gray region represents
the non-zero entries. This decomposition is unique if we impose some further restrictions, such as
positivity of pivots; this shall play no role in this work.

symmetries because of the mixed anomaly, and no non-abelian chiral symmetries because
there are no repeated rows in @ (for otherwise the matrix would not be full-rank). We now
claim that these conditions are not only necessary for being gapped, but also sufficient:

Lemma 6. The non-chiral QED system (C.1) defined by a square matrix of charges Q is
gapped if and only if Q is full rank.

This claim follows from the analysis of section 4, and the fact that free fermions have
chiral algebra U(NF); and the photons a chiral algebra U(1)q:q. The lattice generated by
the compact scalars in U(1)¢qtq is non-degenerate if and only if @ is full-rank. Equality
of the energy-momentum tensors of U(Np); and U(1)gtq is nothing but the standard
boson-fermion correspondence in 2d.

One can reach this conclusion by looking directly at the central charges. The central
charge of the free fermions is N and, and that of the compact bosons is*® sign(Q'Q) =
rank(Q), and these match if and only if @ is full-rank, as required.

As an interesting remark, note that if Q'Q is not full rank, then in the gauge chiral
algebra U(1)qeq there is a factor of U(1)g for each zero eigenvalue of Q'Q. This factor of
U(1)g should be thought of as a free photon (a similar phenomenon was observed in [13] in
a 3d QCD system). This is consistent with the discussion so far, in the sense that if the
rank is not maximal there will be columns of zeros in (), signaling decoupled photons.

3%Here sign(K) denotes the signature of the matrix K, defined as +1 for each positive eigenvalue, —1
for each negative eigenvalue, and 0 for each zero eigenvalue. As K = Q'Q is positive semi-definite,

sign(Q'Q) = rank(Q'Q).
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Discrete symmetries. If rank Q = N., we saw earlier that ) defines a QED theory with
no continuous chiral symmetries. That being said, the system in general enjoys several
discrete symmetries. Let us look at purely left-handed transformations. If we consider a
U(1), transformation defined by an integer vector n, then the theta term shifts as

U)g: 0 — 0+ an@, (C.7)

as per the flavor-gauge mixed anomaly. This shift means that U(1), is not a true symmetry of
the quantum system. On the other hand, if we choose « in such a way that 6 stays invariant
modulo 27, then the corresponding transformation does constitute a true symmetry of the
quantum theory. This is simplest to ensure in the Hermite basis 3. In this basis it becomes
clear that there is a Z; discrete symmetry for each diagonal component of Q, obtained by
choosing o = 2wk /q with £ = 0,1,...,§ — 1. Note that there is another factor of Z; that
acts on the right-handed fermions alone, but the two factors of Z; are not two distinct
symmetries, inasmuch as their simultaneous action is nothing but a gauge transformation.
Hence, all in all, the flavor symmetry group of QED is

I 7. (C.8)

Gediag(Q)

Note that if rank Q < N, then some of the diagonal components of Q will be zero. If for
G = 0 we agree to denote Zg = U(1), then the group above also contains the case where the
system has non-trivial continuous symmetries.

For future reference we mention the fact that the order of the symmetry group

is [1g = det(Q).

Chiral theories. We finally make a few remarks concerning chiral theories. These are
labelled by pairs of integral matrices @y, @, which specify the charges of the left-movers
and right-movers, respectively. Gauge anomaly cancellation requires (2.15)

QiQe = QLQ. . (C.9)

The reader might find it useful to have at their disposal examples of chiral theories. A
trivial class of examples is Qy = —@Q),. A more interesting class of examples is provided by
choosing any non-symmetric normal matrix ), and taking Q, = @Q, @, = Q'. More generally,
it is easy to show that if Qy, @, satisfy the gauge anomaly cancellation condition (C.9), then
there exists some orthogonal matrix O such that QQ; = OQ),. Therefore, we can generate
other families of examples by fixing @), and looking for orthogonal matrices O that make
0Q), integral.

In any case, many of the previous claims for non-chiral theories can be easily generalized
to chiral theories. For example, if N. > Np, the extra photons are still decoupled. Indeed,
if the matrices Qy, @, are fat (more columns than rows, see figure 3) then they necessarily
have a non-trivial kernel. The anomaly cancellation condition says that they in fact share
the kernel: the equality Q}Q, = QLQ, implies that ||Qv||* = ||Q,v||? for any vector v, so
v is either annihilated by both Qy, @, or by neither. If v is in their kernel, then the linear
combination v;a; is indeed a decoupled photon.
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Similarly, if N, < Np, then there will necessarily be some anomalous continuous
symmetry, because the matrices Qy, Q, will have a non-trivial cokernel, so the associated
currents will be conserved — the mixed anomaly with the gauged U(1) will vanish.

All in all, in classifying gapped theories we can assume without loss of generality
that N, = N, and that @, @, are full rank. In this situation, the exact same argument
from before proves that these are not only necessary conditions for being gapped, but
also sufficient:

Lemma 7. A chiral QED system defined by a pair of square matrices of charges (Qg, Qr),
subject to the gauge anomaly cancellation condition (C.9), is gapped if and only if (Q¢, Qy)
are full rank. (Both matrices necessarily have the same rank, due to (C.9)).

As a consistency check, note that a gapped theory cannot have continuous chiral
symmetries, and it is not entirely obvious from the discussion above that a model with full
rank matrices (Qy, @,) has no such symmetries. It is clear that, being full rank, there are
no purely left handed (nor purely right handed) symmetries; but there is no immediate
reason that excludes symmetries where both chiralities transform at the same time. It is
not hard to show that, as a matter of fact, no such symmetries exist either: any would-be
flavor symmetry where both chiralities transform simultaneously is either broken by a
mixed flavor-gauge anomaly, or a pure gauge transformation itself. Hence, chiral models
with full rank (Qy, @,) have no continuous chiral symmetries, as required for a supposedly
gapped theory.

The conjectural infrared TQFT has left chiral algebra U(Ng); /U(l)QﬁQ ,» and right
chiral algebra U(NFp)1/U(1)qtq,. These two algebras are isomorphic — cf. the anomaly
cancellation condition — via the orthogonal matrix O discussed above, namely O := Q,Q L.

C.1 U(1) with N charge-q Dirac fermions

Here we analyse the infrared dynamics of U(1) plus N copies of a charge-q Dirac fermion.
The claim is that the low energy theory of this system corresponds to a copy of the SU(N);
WZW model on each of the g universes. (These universes are the result of the Z, one-form
symmetry). This nicely reproduces the analysis of [91].

According to the general conjecture (5.1), the infrared dynamics of the model are
described by the coset

U(N)y
U(l) g

(C.10)

Note that if N > 1, the central charge is non-zero, so the coset describes a gapless theory.

In order to project the theory into a specific universe we gauge the one-form symmetry

Zq, to wit
UV)1 _UN),
<U(1)qu>/Zq T U)N SUWN)1.- (C.11)
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The second equality involves the character decomposition
N-1
dnsx(4,9,0) = D (E1)"xn(q,0)x7m0(q, 9)

n—

Nf
drx(¢,9,0) = > (ED)" X0t (n/2)(0:0)xym0(4, 9) ,
=0

n

o

(C.12)

[y

where 0 is a flavor U(1) parameter and g an SU(N) flavor parameter. The characters
of U(1)n are denoted by xn(g,0) and those of SU(N); by xa(q,9). When N is odd, xn
denotes a super-character and when even, a regular character.

Note that when NV =1 the CFT SU(1); becomes trivial, which means that the charge-q
Schwinger model has a unique, trivial vacuum in each universe. In this case, the infrared
coset U(1)1/U(1),2 describes a gapped theory, and the character decomposition is

q—1
dxsx(q,0) =Y (£1) X0~ (q.0)
=0
q—1
dr-x(q,0) = ;}(ﬂ)@xﬁgﬁq/gj (¢,9),

(C.13)

where x, are the characters of U(1),2; these are regular (bosonic) characters when ¢ is even
(cf. (B.21)), and super-characters when odd (cf. (B.22)). From this character decomposition
we learn that the theory has ¢ vacua, all bosonic, in both sectors Hng = Hg = C?°. These
q vacua live in the ¢ universes, one in each.® Out of these, [¢/2] are neutral under (—1)Z,
and the rest |g/2] are charged.

C.2 Vacua of gapped theories

In the previous section we described the infrared dynamics of a gapless theory. Here we
study the gapped case, namely those theories where the matrix of charges @ is square and
full rank. Conjecturally, the vacua of such theories are described by the coset (5.1)

U(n)1
UDgrg
We focus on the case where () describes an even lattice, i.e., where all the diagonal
components of Q*Q are even. In this situation the CFT U(1)g:q is bosonic, that is, its

(C.14)

characters do not depend on the spin structure.
The characters of the numerator U(n); are given by

dNS—X(qv 9) = q_n/24 H H(]. + Ziqr+1/2)(1 4+ z;lqr+1/2)
r=01i=1
(C.15)

n o0 n

dr-x(q,0) = qn/12 [H Zz'l/Q + 251/2] H H(1 + 29 )(1+ zi_lqr) )
i=1 r=1i=1

where 6 € U(n) is a flavor parameter conjugate to 6 ~ diag(z1,...,2,).

36More precisely, the states that live in a specific universe are linear combination of these g states. (—1)f~

does not commute with the one-form symmetry, and therefore the states in a given universe do not have
well-defined charge under (—1)7%.
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On the other hand, the characters of the denominator are

S R K= QlQ, (C.16)

X@(q70 -
) ()" u€Zr+K-1

where 7 is the Dedekind eta function.

The vacua of the QED theory labelled by a matrix () are determined by the branching
functions of U(n); into U(1)qgtq, i.e., by the decomposition of di 1 characters into x
characters. We propose that the branching functions of the coset U(n)1/U(1)qt are given
by the following;:

dnsx(q,0) = ) (1) xo10(q, 0)
Lel(Q)

drx(0,0) = > (ED XG040 (a.0),
LeT(Q)

(C.17)

where I'(Q) = Z"/ ~ is the set of all integral vectors modulo the identification through
rows of Q: two vectors are declared to be equivalent if they differ by some integral linear
combination of the rows of Q. As a consistency check, note that 2hge, = ||¢||* so the chiral
fermion parity in the NS-sector corresponds precisely to the spin of the characters. Similarly,
in the R-sector the spin is 2hg¢(p41/2) = n/4 mod 1 so the spin is in Z + %n, as expected
from the zero-point energy of the fermions.

The branchings above predict that the QED theory with matrix of charges ) has
IT(Q)| = | det(Q)| vacuum states. As in the Schwinger model, these can be thought of as
the result of the spontaneous symmetry breaking of the axial symmetry, which also has
| det(Q)| elements. Note also that | det(Q)]| is the order of the one-form symmetry, which
suggests that each universe has a single vacuum state.
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