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Abstract: We consider an axion-like particle (ALP) coupled to Standard Model (SM)
fermions as a mediator between the SM and a fermionic dark matter (DM) particle. We
explore the case where the ALP-SM and/or the ALP-DM couplings are too small to allow
for DM generation via standard freeze-out. DM is therefore thermally decoupled from
the visible sector and must be generated through either freeze-in or decoupled freeze-out
(DFO). In the DFO regime, we present an improved approach to obtain the relic density by
solving a set of three stiff coupled Boltzmann equations, one of which describes the energy
transfer from the SM to the dark sector. Having determined the region of parameter space
where the correct relic density is obtained, we revisit experimental constraints from electron
beam dump experiments, rare B and K decays, exotic Higgs decays at the LHC, astro-
physics, dark matter searches and cosmology. In particular, for our specific ALP scenario
we (re)calculate and improve beam dump, flavour and supernova constraints. Throughout
our calculation we implement state-of-the-art chiral perturbation theory results for the
ALP partial decay width to hadrons. We find that while the DFO region, which predicts
extremely small ALP-fermion couplings, can probably only be constrained by cosmological
observables, the freeze-in region covers a wide area of parameter space that may be acces-
sible to other more direct probes. Some of this parameter space is already excluded, but a
significant part should be accessible to future collider experiments.
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1 Introduction

The last two decades have seen a surge in the theoretical exploration of dark matter (DM)
models, and brought a wealth of new data to constrain them. The possibility that dark
matter directly couples to Standard Model (SM) states via renormalizable interactions is by
now severely constrained. For example, LHC data and direct detection experiments rule
out vast parts of the parameter space for standard electroweak-scale WIMPs produced
via thermal freeze-out [1, 2]. This has led to a paradigm shift towards various other
possibilities for dark matter candidates, with masses above 1TeV or below 10GeV, and
with other production mechanisms. In particular, models where the DM-SM interactions
are mediated by additional particles have attracted much attention.

Among such models are those with a fermionic dark matter candidate and a pseu-
doscalar mediator a, interacting with the SM via a Lagrangian of the form

L = a
∑
f

Cf
mf

fa
f̄ iγ5f + aCχ

mχ

fa
χ̄iγ5χ+ . . . (1.1)

Here f stands for any SM fermion, and χ is the DM particle. One possible motivation for
this type of interaction is that it allows the efficient suppression of direct detection cross
sections while still allowing for large enough DM-SM interactions to create the observed relic
abundance via thermal freeze-out. However, freeze-out is of course by no means the only
mechanism for dark matter production. In fact, one of the oldest dark matter candidates is
itself a pseudoscalar state which is extremely light and extremely weakly coupled, namely a
non-thermally produced QCD axion. At intermediate values of the couplings, dark matter
could be produced by the freeze-in mechanism: Assuming that its abundance is initially
zero after reheating, dark matter will be gradually produced by scattering processes in the
thermal plasma without ever reaching thermal equilibrium, until these processes decouple
and the DM abundance remains constant [3, 4].
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In this paper we study a dark matter model with interactions of the type of eq. (1.1)
but for a range of couplings which are too small to give the correct relic density through
freeze-out. Our motivation is unrelated to direct detection constraints (which are irrelevant
for such small couplings) but are rather guided by top-down reasoning: If there exists a light
pseudoscalar a, it might well be an axion-like particle (ALP), by which we mean the pseudo-
Goldstone boson of an approximate U(1)PQ global symmetry which is spontaneously broken
at a high scale fa; this provides a reason for it to be light. It is natural to have a emerge
from an extended Higgs sector in some UV completion of the SM, which could explain the
flavour-preserving couplings to SM states of eq. (1.1). In this case, besides these effectively
renormalizable couplings, one also expects dimension-5 couplings of the form

L = a
∑
f

Cf
yf√
2fa

h f̄iγ5f + . . . (1.2)

where h is the SM Higgs boson, which will turn out to be important for the dark matter
abundance in parts of the parameter space.

If there are additional fermions χ charged under U(1)PQ, they would also couple to
the ALP. If there are no additional fermions charged under both U(1)PQ and under the
Standard Model, there exists a field basis in which no dimension-5 couplings aF F̃ between
the ALP and the SM gauge bosons are induced above the electroweak scale. The only
relevant couplings between the SM and the ALP are then those of eqs. (1.1) and (1.2).
Moreover, since there is no evidence for new physics close to the electroweak scale, the
scale fa should be large, fa �TeV. Hence the ALP couplings to fermions may be too small
to allow for dark matter production via freeze-out, and other production mechanisms should
be studied.

It is tempting to try to identify a in this scenario with a (DFSZ-like) QCD axion itself.
However, if a QCD axion were massive enough to be short-lived on cosmological scales
(thus mediating the SM-DM interactions, rather than being part of the dark matter sector
itself), it would be subject to multiple astrophysical and laboratory constraints, see e.g. [5]
for an overview. While it may be possible to circumvent these constraints by extensive
model-building, in this paper we will not attempt to do so but rather assume that the a
mass is mainly due to some explicitly U(1)PQ-breaking effect other than the anomaly. The
usual QCD axion relation between ma and fa therefore no longer holds, and a does not
contribute to solving the strong CP problem.

To summarise our findings, we will show that the observed dark matter abundance
can be produced in this model by several distinct mechanisms, depending on the values
of the ALP-SM and ALP-DM couplings as well as on the ALP and DM masses. It can
be produced via ALP-mediated freeze-in from the scattering of SM particles, via freeze-in
from the scattering of ALPs, via freeze-out of ALP-DM interactions which kept the DM in
equilibrium with the ALP, or finally via standard freeze-out. We will numerically study a
number of example scenarios with regard to the most relevant cosmological, astrophysical
and collider constraints.
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2 Model

2.1 Particle content, interactions and relevant processes

Our model contains a single Dirac fermion χ and a pseudoscalar ALP a. The Lagrangian is

L = LSM + 1
2∂µa∂

µa+ χ̄(i∂/−mχ)χ+ i
∑
f

Cf
fa

(
mf + yf√

2
h

)
af̄γ5f

− 1
2m

2
aa

2 + i
Cχ
fa

mχ aχ̄γ5χ , (2.1)

where f is any Standard Model fermion with mass mf and Yukawa coupling yf and h is
the Higgs boson. This Lagrangian is valid below the electroweak symmetry breaking scale;
see appendix A for some details on a possible UV completion. We have not included any
coupling of the ALP to gauge bosons via a trFF̃ terms. Including them would be perfectly
possible but would lead to a proliferation of parameters, so we restrict our analysis to more
minimal models where there are no heavy fermions charged under both the SM gauge
group and U(1)PQ. Nevertheless, effective aγγ and agg vertices are induced at one loop
by (finite) SM fermion triangle graphs. We will often refer to the hidden sector (HS), by
which we mean the ensemble of ALPs and DM particles. For future convenience, we define
the effective axion couplings by

gaff = Cf
fa

, gaχχ = Cχ
fa

, (2.2)

where we will later refer to gaχχ as the hidden sector coupling, and to gaff as the connector
coupling. In this model, dark matter is stabilized by a global U(1) χ-number symmetry
which also ensures that it can only be produced in χχ̄ pairs. A variant with a Majorana
dark matter candidate stabilized by a Z2 symmetry could also be viable.

From the above Lagrangian we can deduce the various means by which:

• the dark matter can interact with Standard Model particles, e.g. through interactions
with fermions mediated by the pseudoscalar, ff̄ ↔ χχ̄ or ff̄ ↔ hχχ̄, or via a loop
diagram with gauge bosons, γγ ↔ χχ̄;

• the ALP can interact with the SM, e.g. via qq̄ ↔ ga, qg ↔ qa, or the (inverse) decay
ff̄ ↔ a, or ff̄ ↔ ha;

• the ALPs and the dark matter can interact, i.e. aa↔ χχ̄ or χa↔ χa.

These different interactions, where those responsible for DM and ALP generation are sum-
marised in table 1, give rise to a rich phenomenology. Different DM generation mechanisms
are at play in different regions of the parameter space. The study of these mechanisms was
pioneered in a different model by [6], and more recently refined in [7].
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Interaction Processes Scaling

SM ↔ ALPs

f a

γf̄

f

γ a

f f

f̄

a

a

f

f̄

h

g2
aff

SM ↔ χ a

f̄

f χ

χ̄

f

f̄

h

χ

χ̄

a (gaff · gaχχ)2

ALPs ↔ χ

χ a

aχ̄

g4
aχχ

Table 1. Different sector interaction processes and their scaling with the hidden sector and con-
nector couplings. Note that the diagrams ff̄ ↔ γa and fγ ↔ fa shown are equivalent to those for
qq ↔ ga, qg ↔ qa, f̄γ ↔ f̄a and q̄g ↔ q̄a and therefore the latter are not shown explicitly.

As detailed in the next sections, the mechanisms at play in our model are the following:1

• For sufficiently small gaχχ and gaff , and assuming that the HS relic density is negligi-
ble at reheating, dark matter is produced by freeze-in. Depending on the couplings,
the dominant process may be direct freeze-in ff̄ → χχ̄ mediated by an off-shell
ALP, or ALP production from SM states followed by aa → χχ̄ (where the ALP
may or may not be in equilibrium with the SM). These processes are infrared dom-
inated, since they are induced by (effectively) renormalizable operators. For large
reheating temperatures, the dominant process for direct freeze-in will be 2 → 3 scat-
tering ff̄ → hχχ̄, which is suppressed by phase space but ultraviolet-dominated,
i.e. sensitive to the reheating temperature.

• For intermediate gaff , ALPs will be produced abundantly from the SM thermal bath
but will not reach thermal equilibrium with the SM particles. However, if gaχχ is
sufficiently large, the hidden sector will form a separate thermal bath at a lower
temperature, in which DM is produced by freeze-out. We study this mechanism of
freeze-out from a thermally decoupled dark sector, or to put it simply, decoupled
freeze-out (DFO), in detail.

• For larger gaff and gaχχ, the entire dark sector will thermalize with the SM, and
DM can be produced via standard freeze-out. Since we are interested in the small-
coupling regime, and since the standard freeze-out phase is already well studied in
the literature, we will not analyse it in detail.

1Note also that if the ALP is coupled to a strongly-interacting hidden sector, the DM can be produced
via an additional, qualitatively different production mechanism, the so-called SIMP mechanism [8].

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
1

2.2 General Boltzmann equations

In order to study the various DM generation mechanisms we start from the covariant
form of the Boltzmann equation for the Friedmann-Lemaître-Robertson-Walker metric,
where the momenta of the particles have been integrated over. The SM particles are in
equilibrium with the photon bath at temperature T , allowing us to replace the distributions
of SM particles by the equilibrium distributions. We neglect quantum statistical factors,
assuming Maxwell-Boltzmann statistics:

feq(p, T ) = e−E/T , (2.3)

such that the particles’ number density, energy density and pressure equilibrium distribu-
tions are given by

neq(T ) = g

(2π)3

∫
d3p feq(p, T ) = g

2π2 m
2 TK2 (m/T ) ,

ρeq(T ) = g

(2π)3

∫
d3p feq(p, T )E = g

2π2 m
2 T (mK1 (m/T ) + 3TK2 (m/T )) ,

Peq(T ) = g

(2π)3

∫
d3p feq(p, T ) |p|

2

3E = g

2π2m
2T 2K2 (m/T ) = Tneq(T ) , (2.4)

respectively, for a given particle of mass m and degrees of freedom g, where K1(x) and
K2(x) are the first and second order Bessel functions.

More generally, the hidden sector particles may be in kinetic equilibrium at a temper-
ature T ′ which is different from T :

f(p, T ′) = n(T ′)
neq(T ′)e

−E/T ′ . (2.5)

Kinetic equilibrium is not reached in the freeze-in phase, where the scattering among hidden
sector particles is not efficient (see [9] for a detailed analysis of freeze-in in a related model).

The Boltzmann equations governing the evolution of the a and χ number densities are
given by

dnχ
dt + 3Hnχ =

∑
f

〈
σχχ̄→ff̄v

〉((
neq
χ

)2
− n2

χ

)
+ 〈σaa→χχ̄v〉n2

a − 〈σχχ̄→aav〉n2
χ

+
∑
i,j,k

(
〈σχχ̄→ijkv〉

((
neq
χ

)2
− n2

χ

)
+ 〈σχχ̄i→jkv2〉neq

i

((
neq
χ

)2
− n2

χ

))
,

dna
dt + 3Hna =

∑
i,j,k

〈σia→jkv〉 (neq
a n

eq
i − nan

eq
i ) + 〈Γa〉 (neq

a − na)

− 〈σaa→χχ̄v〉n2
a + 〈σχχ̄→aav〉n2

χ . (2.6)

Here i, j, k are SM particles which are involved in the relevant processes, as listed in table 1.
For example, if all fermion couplings Cf are of the same order and at temperatures where all
SM particles are relativistic, the dominant contribution for ALP production comes from
i = g, j = k̄ = t. The cross sections for the processes entering eq. (2.6) are given in
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appendix C. Most of the processes appearing in eq. (2.6) are 2 → 2 processes, and enter
via the typical thermally averaged cross section 〈σv〉, defined by2

〈σ12→34v〉 = C

2TK2(m1/T )K2(m2/T )

∫ ∞
smin

σ(s)F (m1,m2, s)2

m2
1m

2
2
√
s

K1(
√
s/T ) ds , (2.7)

where σ(s) is the cross section for the process 12→ 34 as a function of the squared centre-
of-mass energy s. Here C is an additional factor of 1/2 for the case of identical particles
in the initial state (C = 1 for non-identical initial state particles). We have further used
the abbreviation

F (m1,m2, s) =
√

(s− (m1 +m2)2)(s− (m1 −m2)2)
2 (2.8)

and the lower limit of the integral is given by smin = max
(
(m1 +m2)2, (m3 +m4)2) . Note

that, where appropriate, we have made use of detailed balance,

〈σij→klv〉neq
i n

eq
j = 〈σkl→ijv〉neq

k n
eq
l . (2.9)

For the (inverse) decays which contribute, we define the thermally averaged decay rate
to be

〈Γa〉 = Γa
K1(ma/T )
K2(ma/T ) , (2.10)

where Γa is the decay rate of the pseudoscalar a. We provide details of the ALP decay rate
in the various decay channels in appendix D. For the calculation of the DM relic density we
restrict ourselves to (inverse) decay into fermions in the perturbative regime, see eq. (D.1).3

The Hubble rate in eq. (2.6) is given in terms of the total energy density of the universe
ρ = ρSM + ρHS, via

H =
(8

3πGρ
)1/2

, (2.11)

where G is the gravitational constant. The energy density of the visible sector is

ρSM = g∗ρ,SM(T )π
2

30T
4 , (2.12)

with g∗ρ,SM(T ) the SM effective degrees of freedom in energy. The hidden sector energy
density differs according to the production regime as we will explain in more detail in
section 2.4. For the SM effective degrees of freedom in energy and in entropy, denoted by
g∗ρ and g∗s, respectively, we adopt the recent results from an improved analysis, covering
a wide range of temperatures [10]. This analysis is based on state-of-the-art results of
perturbative and non-perturbative calculations of thermodynamic quantities in the SM.

2We have not explicitly stated the temperature dependence of the thermally averaged cross sections in
eq. (2.6) as this depends on the production regime considered. For example, in the DFO mechanism the
hidden sector interactions take place at the common temperature of the hidden sector which is different
from that of the SM, see below in section 2.4.

3For energies in the range ∼ 0.5−1.2GeV various hadronic decay channels open up. However, when we
present results on the DM relic density, we are either in the perturbative regime or apply a hard cut on the
decay width below T ≤ 600MeV (see also the discussion in section 4.4 and in appendix D).
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In particular, for an improved description of the QCD phase transition they adopt results
from the “Budapest-Wuppertal”-collaboration [11] in 2 + 1 + 1 flavour lattice QCD. We
use the fit functions provided in this paper in our analysis.

Note that by solving this set of differential equations we only calculate the abundance
of χ particles and later set nDM = nχ + nχ̄ = 2nχ. In addition, we point out that later
in this section we will find that it is convenient to make a change of variables from t to
z = mχ/T , and the differential equations will be written as a function of z instead of t.

2.3 Freeze-in

The freeze-in mechanism can generate the observed DM abundance for the case that both
gaff and gaχχ are sufficiently small, assuming that the initial abundance of DM particles
and ALPs is zero or negligible. Both a and χ will be produced from interactions amongst
SM particles in the thermal bath, but for small gaff and gaχχ the DM will not thermalize,
neither with the photons nor with the ALPs. The production stops once the temperature
of the particles involved drops below the DM mass scale, since the abundances become
Boltzmann-suppressed and the production rate becomes negligible compared to the Hubble
expansion rate. The co-moving dark matter number density is effectively frozen from that
point on, while the ALPs will eventually decay back to Standard Model states.

The interplay of the different sectors allows for three different freeze-in regimes, namely
freeze-in of the DM directly from SM particles, freeze-in from the ALPs and sequential
freeze-in [7, 9]. All three regimes are characterised by a value of gaχχ which is too small for
the hidden sector particles to establish thermal equilibrium among each other. Depending
on the range in gaff , the ALPs may or may not be in equilibrium with the SM, as described
in the following.

2.3.1 Freeze-in from SM particles

In this regime, the DM is produced directly from the SM fermions via an s-channel ALP
(see table 1). In order to generate the correct relic density via this mechanism, one requires
gaχχ to be small, such that 〈σaa→χχ̄v〉 ∝ g4

aχχ is small enough for aa→ χχ̄ to be negligible
compared to ff̄ → (h)χχ̄. In this regime we find that ALPs are in thermal equilibrium
with the SM, i.e. na = neq

a (T ).
In order to calculate the relic abundance we require the appropriate Boltzmann equa-

tion for this region, which we obtain by adapting eq. (2.6) accordingly. We first define the
dark matter yield Y = Yχ as usual by

Y = nχ
s

(2.13)

where s = sSM + sHS is the total entropy density of the universe. The entropy density in
the freeze-in regime is given by

s = 2π2

45 g∗s(T )T 3 , (2.14)

with the effective degrees of freedom in entropy given by g∗s(T ) = g∗s,SM(T ) +g∗s,a(T ) and
we can neglect the entropy density of the DM particles.

– 7 –
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The ALP abundance plays no role in this freeze-in scenario, so we neglect all terms
in eq. (2.6) involving na. Since the DM is never in equilibrium, Y � Yeq, we can neglect
the back-reaction as usual. Concerning the contribution to the DM yield from 2 → 2
scattering, it is convenient to introduce the reaction density for the interaction ij → kl [6]

γij→kl = 〈σij→kl v〉neq
i n

eq
j (2.15)

in terms of which the Boltzmann equation eq. (2.6) for the yield from freeze-in becomes

dY
dT = −

∑
f

γχχ̄→ ff̄

3Hs2
ds
dT + (2 ↔ 3 terms) . (2.16)

Here we have replaced the z dependence by a dependence on T . The corresponding infrared-
dominated contribution to the yield today at T ≈ 0 is therefore obtained by integrating
the reaction density,

Y0,IR = −
∑
f

∫ ∞
0

γχχ̄→ ff̄

3Hs2
ds
dT dT . (2.17)

An important point concerns the relative magnitude of the contributions from 2 → 2
interactions and 2 → 3 interactions. In a hypothetical model with only renormalizable
couplings between the ALP and the SM fermions, as defined by eq. (1.1), freeze-in would
proceed only via ff̄ → χχ̄ scattering, which is infrared dominated. However, as we stated
previously, in realistic models where the ALP-fermion couplings are generated from the
ALP mixing with the Standard Model Higgs, one also obtains the dimension-5 couplings
of eq. (1.2). These couplings induce 2 → 3 interactions which are phase-space suppressed,
but nevertheless cannot be neglected in general,4 because they are ultraviolet dominated
and their contributions therefore scale as the reheating temperature TRH. For instance, if
TRH is large enough to neglect all masses of the involved particles, then the dark matter
yield from such a process can be estimated as [12]

Y0,UV ≈
135

(2π)9
1

1.66 g3/2
∗

g2
affg

2
aχχ y

2
f m

2
χ TRHMP , (2.18)

with MP the Planck mass. A thorough analysis of ALP production from UV freeze-
in, allowing for all possible dimen- sion-5 couplings between the ALP and the SM to be
present, was conducted in [13], and models similar to ours have been studied in both their
UV and IR freeze-in phases in [14]. We will eventually find that, for reheating temperatures
TRH & 200GeV, UV freeze-in via 2 → 3 scattering gives significant contributions to the
dark matter yield; see appendix C for details of the computation.

2.3.2 Freeze-in from ALPs

In this regime, the ALPs are in thermal equilibrium with the SM, and produce the DM via
the t-channel process aa → χχ̄. Obtaining the observed relic density via this mechanism
requires a larger gaχχ compared to the case in section 2.3.1, and a correspondingly smaller
gaff to avoid overproduction.

4Note on the other hand that the ff̄h→ χχ̄ interactions included in eq. (2.6) can safely be neglected.
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Since the ALPs are in thermal equilibrium with the SM particles, this regime is con-
ceptually very similar to the previous one. We just need to replace the reaction density
γχχ̄→ ff̄ in eq. (2.17) by the appropriate γχχ̄→ aa:

Y0 = −
∫ ∞

0

γχχ̄→ aa

3Hs2
ds
dT dT. (2.19)

In this regime, there are no direct sizeable UV-dominated contributions to the DM
yield. However, UV-dominated 2→ 2 processes such as ff̄ → ah will contribute to the ALP
abundance and will therefore reduce the value of gaff at which the ALPs reach equilibrium
with the SM. We determine this boundary by numerically solving the Boltzmann equation
for the ALPs and checking whether na & neq

a . For IR-dominated contributions, the yield
is essentially insensitive to the upper integration limit (provided it is chosen above the
freeze-out temperature of the top quark). Since the UV-dominated contributions depend
on the reheating temperature, the appropriate integration limit is at zRH = mχ/TRH . As
always we assume that the universe has reheated into SM particles only, i.e. na(TRH) ≈ 0.
Note that O(1) corrections to the UV contributions can be expected, due to the uncertainty
associated with the details of the reheating mechanism.

2.3.3 Sequential freeze-in

In the sequential freeze-in regime, dark matter is again produced from ALPs via aa→ χχ̄.
The difference with the previous regime is that the ALPs are not thermalized. Nevertheless,
the ALP abundance is sufficient to obtain the correct DM relic density.

Calculating the DM relic abundance is non-trivial, since the ALPs are not even in
kinetic equilibrium, and therefore the unintegrated Boltzmann equations governing the
individual momentum modes should be employed for a precise quantitative analysis. This
was done in a study dedicated to the freeze-in regime in ref. [9] for a related model. Due
to time limitations, we choose to follow ref. [7], where a simplified analysis is proposed
employing the integrated Boltzmann equations

dna
dt + 3Hna =

∑
i,j,k

γeq
ia→jk + 〈Γa〉neq

a (T ) ,

dnχ
dt + 3Hnχ = γχχ̄→aa , (2.20)

where γaa→χχ̄ = 〈σaa→χχ̄v〉(T )n2
a, and na is determined from the first equation. The second

term on the r.h.s. of the first equation describes the production of the ALP via inverse
decays. We have neglected the term −γχχ̄→aa in the first equation since neq

a (T )� na. The
temperature of the ALPs is taken to be the temperature T of the SM bath.

This gives a rough estimate of the parameter values leading to the observed relic den-
sity; however we stress that this method is relying on several rather crude approximations.
Specifically, we assume that the axions are in kinetic equilibrium in order to be able to
define a temperature, and we then equate this temperature with that of the photons. It
should be possible to obtain a more precise result following the method of ref. [9], but this
is beyond the scope of our work.
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2.4 Decoupled freeze-out (DFO)

For a sufficiently large hidden sector coupling gaχχ, the interactions between the HS par-
ticles will be strong enough for them to thermalize. If the ALP-SM couplings gaff are
sufficiently small, then the hidden sector will nevertheless be thermally decoupled from the
SM thermal bath, at a temperature T ′ � T . This regime is somewhat more complicated
to analyse than the freeze-in regime, due to an increased number of interactions playing a
role, and due to the non-trivial interplay between the hidden sector number densities and
the temperature T ′. We will therefore proceed to explain some of the technical aspects in
more detail.

As in the case of freeze-in, we assume the initial number density of DM particles and
of ALPs to be negligibly small. The DM and ALPs will then freeze in until the abundances
are sufficient to allow the particles to thermalize. This happens once the reaction rate for
aa ↔ χχ̄ scattering exceeds the expansion rate of the universe,

Γaa→χχ̄ ≡ 〈σaa→χχ̄ v〉neqa (T ′) > H . (2.21)

While aa ↔ χχ̄ is the dominant process for DM and ALP annihilation and production,
the DM and ALP number densities will approximately track the equilibrium values neq

χ (T ′)
and neq

a (T ′), respectively. After T ′ falls below the mass of the χ and a, we allow for the
possibility that nχ and na deviate from the equilibrium distributions. The number densities
nχ and na and the hidden-sector temperature T ′ are then given by the solution of a system
of three coupled differential equations, as explained in the following.

The temperature T ′ of the hidden sector is calculated from the hidden-sector energy
density ρ′ via the equation of state. To determine ρ′, we start from the Boltzmann equation
for the phase-space distribution f(p, t) of either of the hidden sector particle species:

(∂t −H p ∂p) f(p, t) = 1
E(p)C[f(p, t)] . (2.22)

Here we have used that, by isotropy and homogeneity, f(p, t) can only depend on the
modulus p of its 3-momentum and on time. C[f ] is the collision operator and E is the
energy. With the energy density given by eq. (2.4), we can integrate eq. (2.22), writing

∂ρ′

∂t
+ 3H

(
ρ′ + P ′

)
=
∫

d3p

(2π)3C[f(p, t)] (2.23)

where we have integrated by parts and used P ′ = 1
3〈p

∂E
∂p 〉. The integrated collision operator

for a 1 2 → 3 4 process is∫
d3p

(2π)3C[f ] = g1g2

∫
d3p1
(2π)3

d3p2
(2π)3 f1(p1)f2(p2)vMøl E(~p1, ~p2) (2.24)

where vMøl is the usual Møller velocity and the energy transfer rate E is, in terms of the
matrix elementM and the transferred energy ∆Etr,

E(~p1, ~p2) = 1
2E12E2vMøl

∫ ∏
i=3,4

d3pi
(2π)3

1
2Ei
|M|2(2π)4δ(4)(p1 + p2 − p3 − p4)∆Etr . (2.25)
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Solving eq. (2.23) enables us to obtain ρ′ as a function of the temperature of the visible
sector T . In the reannihilation region described in ref. [6], eq. (2.23) was applied to a model
with fermionic dark matter coupled to both the SM photon and a hidden-sector photon.5
In that case, the hidden sector is populated predominantly via ff̄ → χχ̄ processes, and
the mass degeneracies of the particles involved allow to analytically simplify the integrated
collision operator along the lines of [15], leaving a single integral to be evaluated numerically.
In our model, the 2 → 2 processes ff̄ → aγ, γf → af , qq̄ → ag, gq → aq and hermitian
conjugates must also be taken into account, as well as (inverse) decay processes ff̄ → a.
To treat the 2→ 2 processes, some work is needed to cast the integrated collision operator
into a form amenable to numerical integration. This is detailed and justified in appendix B.

Given the hidden-sector energy density from eq. (2.23), we obtain T ′ from the equation
of state of the hidden sector. The total HS energy density and pressure are given by the
sum of the ALP and DM contributions,

ρ′ + P ′ = ρa + ρχ + Pa + Pχ . (2.26)

Initially the ALPs and the DM will be ultra-relativistic, P ′ = ρ′/3, and the universe will be
radiation-dominated with most of its energy density in the visible sector, ρ ∝ T 4. Changing
variables using ∂

∂t ≈ −HT
∂
∂T , eq. (2.23) becomes

∂ρ′

∂t
+ 4H ρ′ = −H

(
T
∂ρ′

∂T
− 4ρ′

)
= −HTρ ∂

∂T

(
ρ′

ρ

)
=
∫

d3p

(2π)3C[f(p, t)] . (2.27)

As long as the hidden sector particles are relativistic and interactions are rapid, solving
this equation for ρ′ will provide us with the temperature of the hidden sector via eqs. (2.4):
T ′ is obtained by iteratively solving

ρ′

ρ
=
ρeq
a (T ′) + ρeq

χ (T ′)
π2

30 geff,SM(T )T 4
. (2.28)

As T ′ decreases, the hidden-sector particles will eventually become non-relativistic,
and their interactions will freeze out. In this regime, T ′ must be determined together with
the HS number densities nχ and na. Kinetic equilibrium is maintained (due to efficient
χa→ χa scattering), hence

ρχ =
ρeq
χ (T ′)
neq
χ (T ′) nχ , Pχ =

P eq
χ (T ′)
neq
χ (T ′) nχ = T ′nχ , (2.29)

and similarly for the ALP. The hidden-sector equation of state is then given by

ρ′ + P ′ =
ρeq
χ (T ′)
neq
χ (T ′) nχ + ρeq

a (T ′)
neq
a (T ′) na + T ′ (nχ + na) . (2.30)

5Note that while our DFO region is very similar to the reannihilation region of ref. [6], it differs from the
latter in two ways: the first is that in our case the energy transfer from the SM to the dark sector proceeds
via the SM to ALP transition rather than SM to DM, see figure 7. The second is that during freeze-out,
the production of DM from the SM does not become the dominant production mechanism, and as a result
we do not observe a bump in the DM comoving number density as opposed to the case in ref. [6].

– 11 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
1

The quantities nχ, na and T ′ are finally obtained as the solutions of a system of three
coupled differential equations, namely eq. (2.23) written in the form

z
dρ′
dT ′

dT ′
dz = −3(ρ′ + P ′) + 1

H

∫
d3p

(2π)3C[f(p, t)] (2.31)

in conjunction with the equation of state eq. (2.30), and the Boltzmann equations

Hz
dnχ
dz + 3Hnχ =

∑
f

〈
σχχ̄→ff̄v

〉
(T )neq

χ (T )2 +
∑
i,j,k

〈σχχ̄i→jkv2〉neq
i

(
neq
χ

)2

+ 〈σaa→χχ̄v〉 (T ′)n2
a − 〈σχχ̄→aav〉 (T ′)n2

χ

(2.32)

Hz
dna
dz + 3Hna = 〈Γa〉neq

a (T ) +
∑
i,j,k

〈σia→jkv〉 (T )neq
a (T )neq

i (T )

− 〈σaa→χχ̄v〉 (T ′)n2
a + 〈σχχ̄→aav〉 (T ′)n2

χ

(2.33)

with the initial condition for T ′ provided by the solution of eq. (2.28). Here i, j, k are SM
particles involved in the a-number changing processes, see table 1.

2.5 Finite-temperature effects

We incorporate finite-temperature corrections in our analysis in light of the observation
in ref. [9] that these have a large impact on the relic density in the case of sequential
freeze-in. Such corrections arise due to the fact that perturbation theory breaks down in
the presence of an additional scale, the temperature of the plasma. Calculations therefore
require the resummation of diagrams, which can be implemented in a simple way, following
ref. [9], on adopting the hard thermal-loop (HTL) approximation [16], where only loops
involving soft momenta ∼ gT . T are resummed. Within this approximation, it turns
out that the masses of fermions and gauge bosons appearing in the dispersion relations
can simply be replaced by temperature dependent quantities. For the gauge bosons this
amounts to adding a mass to the propagators which is the thermal Debye mass (neglecting
differences between the transverse and longitudinal modes), which for the case of gluons is
given by [17]

m2
g(T ) = 4παs(2πT )T 2

3

(
nc + nf (T )

2

)
, (2.34)

with nf the number of active flavours in the plasma, and for photons [17]

m2
γ(T ) = 4παemT

2nch(T )
3 , (2.35)

with nch(T ) the number of electromagnetically charged particles in the plasma.
For the case of fermions we also add a thermal mass correction to the propagators,

neglecting the difference between particle and hole states [18]. For the leptons this takes
the form [19]

m2
l (T ) =

4παem(2πT )T 2q2
f

8 (2.36)

– 12 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
1

and for quarks

m2
q(T ) =

4πT 2(αs(2πT )/6 + αem(2πT )q2
f )

8 . (2.37)

In order to capture the effect of thermal corrections on interaction vertices we renormalize
the coupling constants at the scale of the first Matsubara mode, ω = 2πT , making use of
the renormalization group equations in vacuum [18]. Note that we perform this running
for the electromagnetic, strong couplings and Yukawa couplings, although for the latter we
found that this resulted in a negligible effect on the results.

3 Constraints

In this section we review the most important existing and future experimental constraints
on our model. ALPs can significantly impact astrophysical, cosmological and collider pro-
cesses, and the various constraints on ALPs have widely been discussed in the literature
(see [20] for a review). In section 4 we will explore the regions of parameter space of our
model where the correct relic density is obtained via different production mechanisms. We
will therefore focus on those collider, astrophysical and cosmological constraints which are
relevant in these regions.

While the discussion has been general so far, to discuss the constraints and for the sub-
sequent numerical analysis we concentrate on the simplest case of strictly flavor-universal
axion-fermion couplings, i.e. universal values of Cf and gaff in eqs. (2.1) and (2.2).

3.1 Collider constraints

3.1.1 SLAC E137 electron beam dump experiment

Electron and proton beam-dump experiments are among the accelerator-based experiments
where the ALPs in our model could be produced. Within the parameter region of interest
a strong constraint comes from the E137 beam dump experiment at SLAC [21]. Here ALPs
could be produced via Primakoff, bremsstrahlung or positron annihilation (see figure 1)
and if these decay within the detector such events might be observed.

Calculating the number of events. In the SLAC E137 electron beam dump experi-
ment no events were detected [21]. This puts an experimental upper bound on the event
rates Ns

Ns < N up
s = 2.996 for Ns,det = 0 at 95% CL . (3.1)

Following [20–22] we calculate the theoretically expected event rate to obtain a bound on
the ALP’s coupling and mass. The theoretical number of events can be obtained by an
integral over all possible production cross sections folded with the probability to detect
the ALP and the differential track-length distribution of the shower particles in the beam,
multiplied by the total number of electrons dumped. To obtain the theoretical number of
events in a specific decay channel we additionally multiply by the corresponding branching
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ratio, yielding

Ntheory(a→ XX) = Ne, inc
∑
i,Z

PZ

∫
dE Ti(E) p(E)σi→akZ (E) B(a→ XX) . (3.2)

Ne, inc is the total number of electrons dumped (∼ 30 Coulomb), PZ is the number density
of atoms per cm3 of atomic number Z and σi→akZ are the cross sections for the different
production processes with i the initial particle. Ti is the corresponding track-length dis-
tribution of the initial incoming particles, i ∈ {γ, e+, e−}. p(E) is the probability for the
ALP to decay visibly. The differential track-length distributions for the secondary shower
particles can be estimated in the Weizsäcker-Williams approximation which allows one
to relate the incident electrons in the initial state to the distributions of photons, elec-
trons and positrons which are produced in electromagnetic shower cascades. Intuitively,
the differential track-length T (E) is the length a particle with given energy E will travel.
One then directly considers the interactions of these particles with the target [23]. We
extract the track-length distributions for photons, electrons and positrons in the beam
dump (figure 14 of reference [21]) which have been calculated using the SLAC EGS pro-
gram [24]. This spares us from finding an analytic expression for the Weizsäcker-Williams
approximation. Through interactions of the shower particles with the target material, the
ALPs in our model are predominantly produced by the Primakoff process (Zγ → Za), by
bremsstrahlung (Ze± → Ze±a) and by (non-)resonant positron annihilation (e+e− → γa

and e+e− → a). The Feynman diagrams for these processes are shown in figure 1. We
can sum over the production channels since all other final state particles produced in the
process are absorbed in the shielding. The ALP subsequently decays and its decay prod-
ucts can be detected in the electromagnetic calorimeter. Therefore, in order to obtain the
theoretically expected number of events, we include the branching fraction for the decay
channel a→ γγ (loop induced) and a→ e+e−, which opens up for ma > 2me. The various
decay channels of the ALP in our model are summarised in appendix D.

Following ref. [22] we include the probability p(E) for the ALP to be detected. Taking
the experimental layout into account, we can envisage at least five scenarios where the
ALP could have decayed invisibly (see appendix F): either none or only one of the decay
particles reaches the detector or both of them reach the detector but the opening angle is
too small and the two final state particles are indistinguishable. For instance, if the ALP is
highly boosted and its lifetime is long, it will certainly decay behind the detector. We will
thus have to take the ALP decay probability into account to obtain a final result for the
theoretically expected number of events. Details about the calculation of the probability
for the ALP to decay visibly can be found in appendix F. We assume that most of the
ALPs are produced in the cooling water [20].

Details about the ALP production processes. As mentioned above, the relevant
production processes for our model in electron beam dump experiments are the Primakoff
process, bremsstrahlung and (non-)resonant positron annihilation (see figure 1). In the
Primakoff process, depicted in figure 1a), a secondary photon emits an ALP in the vicinity
of the nucleus. Since the ALP in our model does not couple to photons at tree level, the
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aγ

Z Z

e± e±

Z Z

a

e− a

γe+

e−

e+

a

(a) (b) (c) (d)

Figure 1. Feynman diagrams for the four different production mechanisms of ALPs in our model in
the E137 beam dump experiment: (a) Primakoff production (b) bremsstrahlung (both off a target
nucleus of atomic number Z) (c) non-resonant e+e− annihilation (d) resonant e+e− annihilation.

process is induced at one-loop level, with a loop function depending on the momentum
transfer. Details about the cross section and the loop calculation relevant for this process
can be found in appendices E.1 and H, respectively. In bremsstrahlung (see figure 1b),
the electron is scattered off the mass shell of the nucleus and returns to the mass shell
by emission of an ALP. Lastly, the ALP can be produced by (non-)resonant positron
annihilation, see figures 1c) and 1d). The cross sections for bremsstrahlung and positron
annihilation can be found in appendices E.2 and E.3.

It is interesting to look at the interplay of the different contributions as a function of
the ALP mass. From eqs. (E.1) and (E.10) we see that for models where the ALP couples
to both electrons and photons at tree level the Primakoff and the bremsstrahlung processes
scale approximately as

σγ→aZ ≡ σ(Zγ → Za) ∼ αemg
2
aγγ and (3.3)

σe→aeZ ≡ σ(Ze± → Ze±a) ∼ α2
emg

2
aff

m2
e

m2
a

, (3.4)

for me � ma � Ei, with Ei the energy of the initial particle. This means that bremsstrah-
lung is suppressed by a factor σe→aeZ /σγ→aZ ∼ αemm

2
e/m

2
a (see also ref. [25]). Interestingly,

in our model, due to the loop suppression in the Primakoff process, see eq. (H.5), the cross
sections scale as

σe→aeZ /σγ→aZ ∼ m2
e/(m2

aαem) (3.5)

and the Primakoff process becomes dominant only for larger ALP masses. This can be
observed in figure 2 where we plot the ALP yield per incident electron from the various
production processes depicted in figure 1,

Nprod/Ne, inc =
∑
Z

∫
dE σi→akZ Ti(E) PZ , (3.6)

as a function of the ALP mass ma, for an ALP-electron coupling gaff = 1GeV−1 and ignor-
ing the detection probability of the ALP. The range of accessible positron energies limits
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Figure 2. ALP yield per incident electron Nprod/Ne, inc =
∑
Z

∫
dE σi→akZ Ti(E)PZ for the

various production processes of the ALP in our model in electron beam dump experiments, namely
Primakoff production (Zγ → Za), bremsstrahlung (Ze± → Ze±a), non-resonant (e+e− → γa) and
resonant (e+e− → a) positron annihilation.

the range of producible ALPs to those with masses ma,min ∼ 35MeV for the resonant case
and ma,max ∼ 135MeV for production by both resonant and non-resonant positron annihi-
lation. For small ALP masses non-resonant positron annihilation scales approximately as
σe→aγ ∼ m2

a. While in the original analysis [21], ALP production by non-resonant positron
annihilation was included, in later analyses positron annihilation is often neglected alto-
gether since the positrons arise as secondary particles in the beam. Yet, the number of
secondary positrons can be large enough for positron annihilation to become important
for large ALP masses. To be precise, it turns out that it indeed dominates over the often
considered bremsstrahlung for ALP masses around 50−100MeV and clearly cannot be ne-
glected in models where the Primakoff process is highly suppressed, see also ref. [26] for
a related discussion in the case of dark photons. In our case, however, the ALP coupling
to photons arises from fermion loops and the suppression of photoproduction is such that
positron annihilation is non-negligible, but not large enough for it to become dominant.

3.1.2 Exotic Higgs decays at the LHC

Production of the ALP in Higgs decays would be mainly via h → aa (for ma ≤ mh/2)
or h → Za (for ma < mh − mZ ' 85GeV). While it is possible to write extra effective
operators for the haa as well as the hZa coupling, we assume for this work that the only
new terms are those in the Lagrangian in eq. (2.1). Therefore both these Higgs decay
channels are mediated by a fermion loop and dominated by the top-quark contribution.

Higgs exotic decay searches at the LHC currently include h → Z(a → gg) [27] and
h→ aa with (1) both a→ bb̄ [28], (2) both a→ `+`− [29], and (3) aa→ bb̄µ+µ− [30]. A
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detailed study of these reveals (see appendix G for further details on the sensitivity of each
of these) that current searches are not sensitive to coupling regimes that would correspond
to gaff . 1GeV−1. We therefore can safely ignore limits from these searches.

3.1.3 Production in decays of mesons

For intermediate mass ranges (2me . ma . 5 GeV), the best chance for detecting an ALP
could be via decays of heavy mesons. Dedicated experiments provide the possibility to
obtain rather precise measurements of branching fractions and thereby constrain couplings
to very small values. We consider constraints on the emission of an ALP in rare B and
K flavour-changing neutral current processes, proceeding at the quark level via b→ sa or
s→ da. Depending on the decay mode and the lifetime of the ALP, such decays could be
constrained by B → K(∗)`+`− and K → π`+`− or B → K(∗)νν̄ and K → πνν̄. For ALP
masses smaller than 2me, the only decay possible is to photons, and the lifetime of the ALP
is long enough that it decays outside the detector volume of current experiments. In this
case, it would show up as an invisible decay mode of the said meson with the accompanying
products identifiable.

The main experimental constraints that we consider in this work are therefore:

• B+ → K+X(→ µ+µ−) for long-lived scalar X (LHCb [31]), the 95% C.L. upper
limits on the branching ratio are given as a function of the lifetime of X in the range
0.1 to 1000 ps.

• B0 → K∗0X(→ µ+µ−) where X is a scalar particle with mass in the range 214 to
4350MeV (LHCb [32]), the 95% C.L. upper limits on the branching ratio are given
as a function of the mass and lifetime of X. The limit is of the order 10−9 over the
majority of this range.

• B0 → K(∗)X(→ µ+µ−) at fixed target experiments, limits can be extracted from
CHARM results as described in ref. [33].

• K+ → π+νν̄ from NA62 [34], where 90% C.L. upper limits are given for the K+ →
π+X branching ratio, where X is a long-lived scalar or pseudoscalar particle decaying
outside the detector, for lifetimes longer than 100 ps.

• K± → π±e+e−, where NA48/2 [35] provides a 90% C.L. upper limit (here we assume
the lifetime should be less than 10 ns).

• K± → π±X(→ µ+µ−) for long-lived X (NA48/2 [36]) , the 90% C.L. upper limits
on the branching ratio are given as a function of the lifetime of X in the range 100
ps to 100 ns.

We currently do not apply the K → πγγ (which only dominates near 100MeV) and Bs →
µ+µ− (which only dominates for non-minimal flavour violation and for ma ∼ 3−10GeV).
Further the B → Kνν̄ from BaBar [37] is not included as the relevant parameter space is
covered by the K+ → π+νν̄ search.
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In order to obtain the constraints on our parameter space, we first calculate the B →
K(∗)a and K → πa branching ratios. For the former, the expression can be found in
refs. [38] and [39]. Form factors for the B → K transition are taken from ref. [40] and for
B → K∗ from ref. [41]. For the Kaon decay and K → πa, we follow ref. [42], taking into
account the octet enhancement in non-leptonic Kaon decays.

For each point in parameter space, we then verify the ALP lifetime, which allows
us to impose the appropriate limit, and then for the charged lepton channels multiply
by the branching ratio for the necessary ALP decay, as given in appendix D. For the
B → K(∗)X(→ µ+µ−), K+ → π+X (where X is long lived) and K± → π±X(→ µ+µ−)
channels, the experimental constraints are directly given for the contribution of a new
particle X, as a function of the mass and lifetime of X, such that we do not require
the SM branching ratio. These limits can easily be translated from the ma − τa to the
(ma, gaff )-plane. For K+ → π+e+e− however we need to include the SM contribution, for
which we adopt the chiral perturbation theory result from ref. [43], taking into account the
associated theoretical uncertainty. The constraints from the CHARM experiment [44, 45]
are extracted in ref. [33], by first calculating the B meson production spectra and then
convoluting it with the branching ratio for B → K(∗)a. In order to be detected, the
ALP produced must then decay to muons within the detector volume. Making use of the
probability of this occurring, a limit on the ALP coupling to fermions gaff was obtained
for a given mass ma, for further details about this procedure see ref. [33].6

3.2 Astrophysical constraints

3.2.1 Supernova SN1987A

The SN1987A neutrino observations in 1987 in the Large Magellanic cloud provide us with
another strong constraint. The neutrino flux coming from the core collapse, which lasted
a few seconds, was measured. The presence of weakly-coupled particles in supernovae
would provide an additional cooling mechanism. By comparing to data from SN1987A,
bounds on the ALP coupling can therefore be derived. Here, following refs. [46, 47] we will
adopt the “Raffelt criterion” to obtain these bounds, i.e. we demand that the luminosity
emitted due to the ALP is less than that due to the neutrinos, Lν = 3 · 1052 ergs/s [48].
The cooling time should also be in agreement with the data. The high temperatures
and density provided by SN1987A creates a conducive environment for the production of
weakly-interacting particles such as the ALP. As the core temperature is around 30MeV,
and taking the Boltzmann tail into consideration, we could imagine that ALPs of masses
up to O(100 MeV) could be generated. As our ALPs only interact with fermions at tree
level, the dominant production mechanism of the ALPs is via bremsstrahlung. In order to
calculate the production rate, we first need to relate the quark Lagrangian to the nuclear
Lagrangian:

L ⊃ −i
∑
N

mN CN
fa

aN̄γµγ5N , (3.7)

6We are very grateful to the authors of ref. [33] for providing us with the bounds they obtained in the
ma − gaff plane via private communication.
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where we sum over the proton and neutron, N = p, n with masses mN and coupling to the
ALP CN respectively. Fortunately, the relation between the ALP-quark couplings and the
ALP-nucleon couplings are well known, and the state of the art results can be found in
ref. [49]. We then obtain Cp = Cn = 0.43Cf . Corrections to the diagrammatic calculation
of the nuclear-scattering bremsstrahlung cross section are obtained using the results for
the spin-flip current at N3LO in chiral perturbation theory. Three multiplicative factors
reproducing these corrections were provided in ref. [47], and are included in our analysis:

• The factor γf = 1/(1 + nBσnpπ
2ω ) acts as a cut-off preventing scattering at arbitrarily

low energies, where nB is the baryon number density, ω is the energy, and σnpπ ' 15
is the nucleon-nucleon scattering cross section when the pion is massless.

• The factor γp accounts for the change in phase space due to the non-zero pion mass,
and is obtained from s defined in eq. (49) of ref. [50], which we multiply by a factor
1/(1− e−x) to account for the detailed-balance condition, following ref. [47].

• Finally γh contains the ratio of the mean free path of the weakly-coupled particle
calculated at higher order in χPT to that at Born level, and is given by rYe given in
eq. (5) of ref. [51].

Putting these factors together with the Born-level expression, the decay rate is given by:

Γa =
∑
N

Y 2
N C

2
N

8f2
a

n2
B σnpπ
ω

γfγpγh

√
1− m2

a

ω2 , (3.8)

where YN is the mass fraction of the nucleon N (we adopt Yp = 0.3 [46]). Making use of
this decay width, on integrating over the volume V and the ALP phase-space we obtain
the luminosity using [47]

La =
∫ Rν

0
dV

∫
d3ka
(2π)3 ω e

−ω/T Γa exp
(
−
∫ Rfar

0
dr
(
Γa + Γabs

all

))
(3.9)

where ka is the ALP momentum. The integration limits involve two radii: Rν is the
neutrinosphere radius, ' 40 km, beyond which most neutrinos free stream until arriving
at Earth, and the far radius is given by Rfar '100 km. Further the contribution to the
absorptive width of the decay of the ALP to leptons is included explicitly via

Γabs
a`` = ma

8π
∑
`

Θ(ma − 2m`)
m2
`

f2
a

√
1− 4m2

`

m2
a

. (3.10)

In order to calculate the luminosity, we further require the temperature and density profile
of the proto-neutron star. These profiles are subject to large uncertainties, which have
been estimated in the past by comparing the different profiles proposed in the literature.
We adopt the profiles introduced in ref. [46], where a detailed study and comparison with
other models for the hidden photon case is available. The comparison of the luminosity in
the QCD axion and ALP case can be found in ref. [47].
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3.2.2 Horizontal branch stars

The conditions inside horizontal branch (HB) stars in globular clusters would allow a
sizeable production of ALPs inside the stellar core. HB stars lie in the horizontal branch
in the Hertzsprung-Russell diagram, i.e. they contain little metal and are in the state of a
stable helium burning core and a hydrogen burning shell. Red Giants (RG) evolve to HB
stars after their core becomes so hot and dense that the helium ignites. The interaction of
ALPs with particles in the core of HB stars could alter the stellar evolution of these stars
and in order to avoid conflicts with observations, constraints must be placed on the ALP
parameter space. The constraints coming from HB stars are two-fold: If ALPs interact
very weakly, they mostly escape freely, draining energy from the star. This puts an upper
bound on the coupling. On the other hand, for larger couplings, they will be trapped inside
the source and radiate energy which provides a lower bound.

Energy loss argument. The first scenario we envisage is a very weakly interacting ALP,
which would stream out freely of the hot core and accelerate the cooling of the star. A
branch in the Hertzsprung-Russell diagram corresponds to a certain stage in the stellar
evolution, depending on the type of nuclear fuel being burnt. Stars inside globular clusters
travel along the different branches of the Hertzsprung-Russell diagram during their stellar
evolution. Hence, the number of stars inside a certain branch is proportional to the time
the star “lives” in a certain branch. The R-parameter which is the ratio of the number of
HB stars over RG stars,

R = NHB
NRG

= τHB
τRG

, (3.11)

is a suitable quantity to assess the impact of new particles on HB stars inside globular clus-
ters: An additional energy loss mechanism by ALPs would manifest itself in a contraction
and heating of the core, which would mainly have an effect on the nuclear fuel consumption
(helium), hence reducing the star’s Helium burning lifetime and therefore the number of
HB stars. The Helium burning lifetime is related to the energy emitted per unit time and
mass averaged over a typical HB core, 〈ε〉, via its luminosity. One usually assumes that the
energy emission caused by additional particles should not exceed the energy emission from
Helium burning, 〈εa〉 . 〈ε3α〉 ≈ 100 erg g−1 s−1 [52]. The dominant production mechanism
for ALPs with a coupling to electrons in HB stars is the Compton process. Here, we con-
sider three possible ALP production mechanisms, the Compton process, bremsstrahlung
and the loop induced Primakoff process. For the calculation of the energy emitted by ALPs
we use eq. (12) in ref. [53] for the Compton process, expression (56c) given in ref. [54] for
the bremsstrahlung process, and eq. (A2) in ref. [55] for the Primakoff process where we
replace the axion-photon coupling by expression H.5, making the approximation of zero
momentum transfer.

ALP opacity. While in most models ALPs have very weak couplings, one could on the
other hand imagine that the new particle has such a strong coupling that it is trapped
inside the stellar core. In this scenario the ALP will scatter and decay inside the star,
transporting heat between different regions and thereby contributing to radiative energy
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transfer. Again, observations indicate that models of stellar structure work well and that
a new source of radiative energy transfer should therefore not exceed that due to photons,
parametrized by the so-called Rosseland mean opacity. The photon opacity in HB stars is
typically κγ ∼ 0.5 cm2/g. We include four sources for the ALP’s effective opacity, namely
(loop induced) decay into photons and the inverse Primakoff process (using eqs. (A.2)
and (A.6) from ref. [55], replacing gaγγ by expression H.5), the Compton process and
bremsstrahlung (using eq. (3.8) in ref. [52]).

3.3 Cosmological constraints

If a substantial number of ALPs are produced in the very early universe, they can affect
the successful predictions for big bang nucleosynthesis (BBN), see for example [55–57].
Whether or not this is a concern depends on the ALP abundance, mass, and lifetime.

If the ALPs and the DM are still relativistic during the time of BBN (occuring at
a photon temperature between T ∼ 1MeV and T ∼ 10 keV), these additional relativistic
degrees of freedom will contribute to the energy density of the universe, cf. eq. (2.12),
which increases the speed at which it expands (see eq. (2.11)). A faster expansion causes
an earlier freeze-out of neutrons, manifesting itself in a change of the neutron-to-proton
ratio and changing the abundances of Helium-4 and Deuterium. The number of additional
relativistic degrees of freedom around the time of BBN, ∆NBBN

eff , is thus constrained by
measurements of these light element abundances [58]. In most of the scenarios we envisage,
however, the hidden sector particles are frozen out before the QCD phase transition, and
the hidden sector temperature is generally lower than the photon temperature.

Heavier ALPs with masses larger than ∼ 1−10MeV can still be constrained if they
are abundant and long-lived. Out-of-equilibrium decays of ALPs after neutrino decoupling
will heat up the plasma and therefore decrease the effective number of neutrinos ∆NCMB

eff
observed in the CMB. Since neutrino decoupling takes place just before BBN, comparably
strong constraints on the ALP lifetime can also be inferred from ∆NBBN

eff [56].
The combined constraints from ∆Neff rule out axion-like particles with either masses

below O(10MeV) or with lifetimes above O(0.01 s) when assuming that the ALPs couple
predominantly to photons [56, 57]. However, this is not the case in our model.

Finally, for heavier ALPs, electromagnetic showers produced in ALP decays during or
after BBN can destroy the newly created nuclei and thus directly alter the light element
abundances, see [59, 60] for recent studies. For ALP masses above the GeV scale, hadronic
showers give rise to additional constraints, excluding abundant hadronically decaying par-
ticles with lifetimes down to about O(0.1 s). This is because cascade hadrons can scatter off
background protons, which once again increases the neutron-to-proton ratio [61]; see [62]
for a recent numerical analysis.

3.4 Constraints on the DM

3.4.1 DM relic density constraint
Our model should explain the DM relic density measured today and thus has to satisfy the
relic density constraint. The DM relic density today measured by Planck is [63]

ΩDMh
2 = ρDM

ρcrit/h2 = 0.120(1) . (3.12)

– 21 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
1

Throughout the following sections, when calculating the DM relic densities for the different
DM production mechanisms, we solve the Boltzmann equations until the comoving χ num-
ber density Yχ = nχ/s stays constant. We then solve for the couplings which lead to the
observed DM relic density today, where we assume that χ and its antiparticle χ̄ make up all
the DM. Once the number changing interactions stop, the DM number density will become
redshifted due to the ongoing expansion of the universe. Using entropy conservation in a
comoving volume, we relate the number densities after freeze-out (of either the DM, see
section 2.4 or the bath particles annihilating into DM, see section 2.3) and the measured
density parameter of DM today by

Ωχh
2 ≡ ρχ

ρcrit/h2 = mχnχ,1
ρcrit/h2

s0
s1

= mχYχs0
ρcrit/h2 , (3.13)

with ρcrit/h
2 = 1.053672(24) × 10−5 GeV cm−3 and s0 = 2891.2 cm−3 [64] and where we

have used the subscript “0” for quantities today and the subscript “1” for quantities after
freeze-out, when we stop the simulation. Note that for our model Ωχ = ΩDM/2 (see
section 2).

3.4.2 (No) constraints from dark matter phenomenology

We have verified explicitly that, as one would expect, the couplings between the DM
particle and the SM are too small to lead to an observable signal at current and near
future direct or indirect detection experiments, in both the freeze-in and the DFO region.
In particular, the present limits from AMS02 on the DM annihilation cross section into SM
particles [65, 66] would need to improve by several orders of magnitude to become relevant
for our model. The same is true for present limits on dark matter-nucleon interactions in
effective field theory for direct detection experiments [67].

Since our DM candidate has self-interactions via the axion couplings, it is interesting
to ask whether it could resolve any of the small-scale structure problems plaguing the
standard ΛCDM scenario. Along with possible hints for self-interacting DM come a variety
of constraints from merging clusters (among them the Bullet cluster) or halo shapes, see
ref. [68] for a summary. Most of the possible hints suggest a self-interaction cross section
per DM mass of the order of σ/mχ ∼ 0.1−1 cm2/g. Interestingly, existing constraints turn
out to be weaker or roughly of the same order as the cross sections needed to alleviate
the tensions. Since the hidden sector particles are in equilibrium in the DFO region, the
interaction strength might become large enough to lead to an observable signal in our model.

To quantify the self interaction strength in our model, we consider the momentum
transfer cross section as proposed by [69]7

σT =
∫

dΩ(1− | cos θ|) dσ
dΩ . (3.14)

We find that, in the weakly coupled regime and at small velocities where the Born approx-
imation is valid, the cross sections are too small to lead to sizeable interactions. In the

7Alternatively, the viscosity cross section σV =
∫

dΩ sin2 θdσ/dΩ weighting forward and backward scat-
tering equally is sometimes used.
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non-relativistic strongly coupled regime for very light mediators, i.e. for

g2
aχχm

3
χ

4πma
> 1 ,

the cross section has been claimed to be Sommerfeld-enhanced [70–72]. However, as we
will see in section 4.4, the largest possible DM-ALP coupling in the DFO region is of the
order of gaχχ ∼ 2.5 · 10−2 GeV−1, such that if we keep the ratio mχ/ma = 10 fixed, this
condition is never met. Additionally, as shown recently in ref. [73] (see also ref. [74]), the
potential arising from a pseudoscalar exchange does not lead to any significant Sommerfeld
enhancement at small velocities. Hence, the DM particles in our model do not self-interact
sufficiently to explain the discrepancies in structure formation observed at small scales.

4 Results

In this section we will first present the results of the relevant constraints on our model,
providing bounds on the ALP-fermion coupling, gaff , as a function of the ALP mass,
ma. As introduced in section 3, we focus on constraints from the electron beam dump
experiment E137 at SLAC, from the supernova SN1987A, from horizontal branch stars and
flavour constraints from heavy meson decays. Armed with the tools discussed in section 2
we subsequently study the generation of DM in the early universe, calculating the dark
matter relic density generated for a large range of ALP-SM and ALP-DM couplings for a
specific set of masses. This requires solving the Boltzmann equations in various different
production regimes. We focus on the regions of parameter space needed to reproduce
the observed DM abundance in the freeze-in and in the DFO regions, i.e. in DM genesis
scenarios where the DM and the SM remain out of equilibrium, for a large range of ALP
and DM masses. Finally, we compare these regions to the constraints on the ALP to study
the phenomenological implications of our model. Throughout this section, when calculating
the DM relic density, we fix the ratio mχ/ma = 10.

4.1 Collider and astrophysical constraints

Figure 3 summarises the experimental bounds on ALPs discussed in section 3 we obtained
for the model considered in this work, see eq. (2.1), where the ALP only couples to SM
fermions at tree level.

We have considered a number of collider constraints coming from SLAC E137,
NA62, NA48, LHCb and CHARM. For the electron beam dump at SLAC we solve
Ntheory(ma, gaff ) = N up

s = 2.996, with Ntheory given by eq. (3.2), for different values
of ma. The ALP can be produced by the Primakoff process, by bremsstrahlung or by
electron-positron annihilation. It can decay into two photons or, for ma > 2me, into an
electron-positron pair. For even larger ALP masses, various other decay channels open up,
cf. figure 9. The original analysis [21] considers separately 1) Primakoff production with
decay into either two photons or into e+e−, 2) bremsstrahlung production with decay into
e+e− and 3) non-resonant positron annihilation with subsequent decay into e+e−. In the
present work, we provide a complete analysis without making assumptions on dominant
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decay into e+e−

K+ → π+a (→ e+e−)
B+ → K+a (→ µ+µ−)
LHCb: B → K∗a (→ µ+µ−)
CHARM: B → K∗a (→ µ+µ−)
K+ → π+a (→ µ+µ−)

Figure 3. Full constraint plot on the ALP-fermion coupling gaff as a function of the ALP mass
ma for an ALP which only couples to SM fermions at tree level. We show collider and astrophysical
constraints discussed in section 3.

production and/or decay channels. In order to provide a combined bound, we sum over
all possible production processes, since the only observable final-state particles are the
decay products of the ALP (additional final-state particles from the production process
are absorbed in the beam dump absorber). In figure 3 we depict in light and dark blue
the constraints from a decay of the ALP into two photons and an electron-positron pair,
respectively. As explained in more detail in section 3, a too large ALP-fermion coupling
would lead to an overproduction of ALPs, whereas ALPs with too small couplings are
long-lived and would escape the detector. The upper bound thus stems from the fact that
the detection probability of ALPs decaying too early becomes exponentially suppressed,
leading to the typical nose-like shape in both SLAC beam dump constraints. Comparing
our results to figure 19 of ref. [75], we find that the combination of several production
processes excludes a slightly larger region of parameter space. This stems from the dom-
inant Primakoff production process for larger ALP masses, cf. figure 2. Since the loop
interaction is kinematically suppressed, the bounds on the ALP-fermion coupling gaff for
an ALP decaying into two photons are shifted towards larger couplings compared to the
constraints on a tree-level ALP-photon coupling, see for instance figure 2 in ref. [20].

Flavour constraints also have an important impact on the parameter space considered.
The calculation of the bounds from rare B and K decays shown in figure 3 was discussed
in section 3. Rare B decays provide access to the parameter space for masses up to
ma ∼ mB − m(∗)

K . The LHCb bounds from B+ → K+X(→ µ+µ−) are shown in cyan,
and from B0 → K∗0X(→ µ+µ−) in dark cyan, for a long-lived scalar X, as indicated.
We further show the CHARM bound coming from the B0 → K(∗)X(→ µ+µ−) analysis in
pink. Together, these form a powerful probe of gaff , excluding almost completely couplings
down to O(10−5)GeV−1, as pointed out in ref. [33]. Coming to rare K decays, we show
the NA48/2 limits on K± → π±e+e− in light green and from K± → π±X(→ µ+µ−)
for long-lived X in dark green as well as the NA62 limit from K+ → π+νν̄ in purple.
These three bounds are highly powerful and complementary probes of the parameter space,
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providing complete coverage down to gaff ∼ 10−5 GeV−1 for ma . mK− mπ. Note that
the uneven nature of certain constraints from B and K meson decays is a direct artefact of
the experimental limits, and the gaps in the constraints are due to the fact that in regions
where ma corresponds to the mass of certain mesons, a reliable limit cannot be obtained.

The astrophysical constraints from SN1987A and from HB stars in globular clusters
are depicted in orange and yellow respectively. The most stringent constraint relevant
for the freeze-in region is from SN1987A. This restricts the coupling gaff to be less than
∼ 4 · 10−9 GeV−1 for ALP masses up to O(100)MeV. The only constraint which probes
lower couplings is that from HB stars, but this is only relevant for very small values of ma.
As described in section 3.2.1, the bound is obtained, following refs. [46, 47], by demanding
that the luminosity emitted due to the ALP is less than that due to the neutrinos, Lν = 3 ·
1052 ergs (i.e. the “Raffelt condition”). The upper line in the constrained region comes from
the fact that if the coupling is too large the ALPs would not escape from the Supernova,
and the lower line comes from the fact that if the coupling is too low, fewer ALPs would
be produced. Note that our bound is obtained by following the calculation in refs. [46, 47],
which involves several updated nuclear physics calculations, as well as including the energy
dependence of the optical depth such that the energy loss at large couplings is correctly
accounted for, and the bound therefore differs by an order of magnitude from previous
work. We have verified that multiplying or dividing this luminosity by a factor two would
result in a change in the limit on the coupling of less than 50%.

The constraint coming from HB stars excludes a wide region of parameter space for
small ALP masses (1 eV < ma < 10 keV) and small couplings gaff . 3× 10−9 GeV−1 (yel-
low), by requiring 〈εa(ma, gaff )〉 . 100 erg g−1 s−1. Not surprisingly, since the dominant
production mechanism in HB stars for ALPs with a coupling to fermions is the Compton
process and since the Primakoff process in our model is loop-suppressed, we essentially
obtain the same bound as in figure 4 in ref. [52], which the authors calculated considering
the Compton process only. It was pointed out in ref. [52] that radiation is not the dominant
mechanism for heat transfer inside HB stars and that indeed convection is more efficient.
Let us stress that this analysis is a crude estimate of the bound for our model and there-
fore most likely subject to large uncertainties. Making dedicated simulations is beyond
the scope of this paper, in particular since we are mainly interested in ALPs with masses
ranging in the MeV-GeV range for which the number densities are Boltzmann-suppressed
in HB stars. For more recent analyses of constraints on the ALP-photon coupling from HB
stars see for instance refs. [76–78]. A global analysis from HB stars, red giants and white
dwarfs suggests a non-zero ALP-SM coupling (HB-hint) [79]. Other strong astrophysical
constraints on an ALP-electron coupling come from the delay of Helium ignition in red
giants, see for example [80].

It is worthwhile mentioning that we have not made any assumptions about the branch-
ing ratios or preferred decay modes for the calculation of the bounds on our model. Since
the ALP only couples to fermions at tree level, the branching ratios for the various pro-
duction and decay modes follow naturally.

– 25 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
1

−16 −14 −12 −10 −8 −6 −4

−12

−10

−8

−6

−4

−2

log10(gaff · gaχχ (GeV−2))

lo
g
1
0
(g
a
χ
χ

(G
eV

−
1
))

-4.

-2.

0.

2.

4.

6.

log10(Ωχh
2)

S
M

99
K
χ

S
M

99
K
a

a
T ′
←→ χ

a
T←→ χ

S
M

T
←
→

χ

a
99

K
χ

a↔
χ

a
↔S

M

χ
↔

S
M

−16 −14 −12 −10 −8 −6 −4 −2

−12

−10

−8

−6

−4

−2

log10(gaff · gaχχ (GeV−2))

lo
g
1
0
(g

a
χ
χ
(G

eV
−
1
))

a 99K χ

Figure 4. Hidden sector coupling gaχχ as a function of the product of the hidden sector and the
ALP-fermion coupling, gaχχ · gaff , for mχ = 10GeV and ma = 1GeV. The dashed line corresponds
to the combination of couplings which give the correct DM relic density ΩDMh

2 = 0.12 as measured
by the Planck telescope. Left: Contour plot of the DM relic density as a function of gaχχ · gaff and
gaff , giving the so-called “Mesa” phase diagram: For our choice of masses six different DM genesis
scenarios are possible, namely freeze-in from the SM, freeze-in from ALPs, sequential freeze-in,
decoupled freeze-out (DFO), freeze-out from the hidden sector and freeze-out from the SM. Right:
Different phases of the diagram, corresponding to equilibrium relations between the three sectors.
The equilibrium relations essentially determine the production mechanism.

4.2 Phase diagram

As described in detail in section 2, the interplay between the three different sectors in
our model, namely the SM particles, the ALP and the DM, gives rise to various DM
production mechanisms. Solving the Boltzmann equations in a large range of hidden sector
and connector couplings and plotting the final abundance as a function of these couplings
gives what in [6] (and later in [7] for the massive mediator case) was dubbed a “Mesa” phase
diagram. For our model, this phase diagram is shown in the left panel of figure 4 for an ALP
with mass ma = 1GeV and the DM with mass mχ = 10GeV. The dotted line indicates the
combination of couplings gaχχ and gaff such that the final abundance corresponds to the
observed DM density.8 To aid the understanding of what follows, we also plot in the right
panel of figure 4 the different phases of the diagram, corresponding to equilibrium relations
between the three sectors, as these essentially determine the production mechanism. Let
us have a look at the various regimes in more detail:9

8Note that we plot the abundance as a function of gaχχ and the product of gaχχ · gaff as these are the
proportionality factors for the competing DM production processes, cf. table 1.

9This is extensively discussed in ref. [7], and we will therefore only briefly comment on the different
shapes of the regions.
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SM 99K χ

(a T←→ SM)

Freeze-in from SM. Starting from the bottom-left (small gaχχ and
gaχχ·gaff ) of the phase diagram in figure 4, the dominant process is ff̄ →
χχ̄ and, for reheating temperatures above TRH & 200GeV, ultraviolet-
dominated 2 → 3 interactions. DM is produced from scattering of SM
fermions in the thermal bath without ever reaching equilibrium. From
equation (2.17) we realise that the final relic density is proportional to
(gaχχ · gaff )2 (cf. table 1). The size of each term individually is a free
parameter, however, gaff is large enough to ensure a-SM equilibrium.
Hence, we expect a vertical line in the (gaχχ · gaff , gaχχ) phase diagram.

a 99K χ

(a T←→ SM)

Freeze-in from ALPs. Going upwards in the phase diagram, i.e. in-
creasing the value of the hidden sector coupling, while still keeping gaff
large enough for efficient ALP-SM scattering, collisions of thermal ALPs
become more likely than collisions of thermal SM particles. Following the
same arguments as above, Yχ scales like g4

aχχ and is therefore indepen-
dent of gaff . Hence, we expect a horizontal line in the (gaχχ · gaff , gaχχ)
phase diagram, appearing as a plateau in figure 4.

SM 99K a
a 99K χ

(a · · ·χ)

Sequential freeze-in. The relic abundance is obtained by a chain of
sequential reactions ∑i,j,k ij → ak (with {i, j, k} SM particles) followed
by aa → χχ̄. Hence, Yχ ∝ 〈σaa→χχ̄v〉n2

a, i.e. Yχ ∝ (gaχχ)4. Similarly,
na ∝

∑
i,j,k 〈σia→jkv〉neq

a (T )neq
i (T ), i.e. na ∝ (gaff )2. Finally, Yχ ∝

(gaff ·gaχχ)4 and we expect a vertical line, but shifted to the left because
the ALPs and the DM are now both out of equilibrium. Note that our
calculation in this region is subject to uncertainties (see section 2.3.3).
On performing a full analysis as in ref. [9] we would expect the line in
figure 4 to move to the right as our approximation may overestimate the
production of ALPs up to a factor of two. Consequently, a larger ALP-
fermion coupling would be needed in order to produce the observed DM
relic density.

a
T ′←→ χ

(SM 99K a)
(SM 99K χ)

DFO. As explained in section 2.4, the ALP-SM and the SM-DM pro-
cesses enter the final relic density only weakly via T ′ (see also section 4.4
for an extended discussion). The dependence on gaff is mild, hence the
almost horizontal line in the phase diagram. For increasing gaff , more
hidden sector particles are produced and the strength among the hidden
sector particles has to slightly increase to ensure a later freeze-out of χ−
particles.
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a
T←→ χ

(a T←→ SM)

Thermal freeze-out from ALPs. Going further to the right in the
phase diagram, i.e. further increasing gaff , the ALPs and the SM and
then also the SM and DM will equilibrate and all three sectors will share
a common temperature. In the right half of the phase diagram DM will
therefore be produced by freeze-out. However, gaff is still small enough
for aa ↔ χχ̄ to be the more efficient process. The behaviour is as in
DFO except that the weak dependence on gaff disappears completely,
since the hidden and the visible sector share the same temperature.

SM T←→ χ

(a T←→ SM)

Thermal freeze-out from SM. This is the usual thermal freeze-out
from 2 → 2 DM-SM scattering which in our model is set by ff̄ ↔
χχ̄ scattering and hence by the product (gaχχ · gaff )2. As in freeze-in
from SM we expect a vertical line, except that the final relic abundance
depends now inversely on (gaχχ · gaff )2.

4.3 Freeze-in region

Having discussed collider and astrophysical constraints on the mediator in our model in
the previous section, we now investigate the phenomenological implications of a feebly
interacting DM particle. The freeze-in region is defined by the couplings of the DM to
both the ALPs and the visible sector being so tiny that the DM particles never reach
thermal equilibrium. Their initial abundance being zero or negligible, the DM particles are
gradually produced by out-of-equilibrium scattering of particles in the thermal bath. The
ALPs, on the other hand, are in thermal equilibrium with the SM in the conventional freeze-
in scenario. (We do not consider DM production via sequential freeze-in as its description
is subject to theoretical uncertainties, as described in section 2.3.3.) Hence the reaction
rates satisfy∑

i,j,k

〈σia→jkv〉neq
i (mχ) + 〈Γa〉 >H(mχ) (equilibrium of ALP-SM) ,

∑
i,j,k

〈
σχχ̄[k]→ijv

[2]
〉

[neq
k (mχ)] neq

χ (mχ)

〈σχχ̄→aav〉neq
χ (mχ)

}
<H(mχ) (DM out of equilibrium) , (4.1)

where, in the second line, the symbols in square brackets pertain to 2 → 3 interactions.
Depending on the relative size of the couplings gaff and gaχχ, DM generation by either
ij → χχ̄[k] (where i, j, k are SM particles) or aa→ χχ̄ scattering will be more efficient. This
results in two distinct regimes which we label freeze-in from SM particles (cf. section 2.3.1)
and freeze-in from ALPs (cf. section 2.3.2). In these regimes, the DM relic abundance
is given by eqs. (2.17) and (2.19), respectively. Since the relic density is proportional to
the couplings entering the matrix element squared of the dominant process, it suffices to
factorize the couplings and solve for those couplings satisfying the relic density constraint
in eq. (3.12).
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Figure 5. ALP-fermion coupling gaff as a function of ma for lines of constant hidden-sector
coupling gaχχ (plotted in dashed black) which reproduce the observed DM relic density via freeze-
in from SM and freeze-in from ALPs as indicated for reheating temperatures TRH = 200GeV (left)
and TRH = 2000GeV (right). We fixed the ratio mχ/ma = 10. The lower line indicates the value
of gaff for which the ALPs and the SM reach equilbrium. In grey, we have included the relevant
constraints on our ALP model on the connector coupling gaff in this parameter region (cf. figure 3).

As discussed in section 2.3.1, ultraviolet-dominated contributions to the DM relic den-
sity from a-mediated 2 → 3 scattering processes ff̄ → hχχ̄, fh → fχχ̄ and f̄h → f̄χχ̄

become important for reheating temperatures above a few hundred GeV. These contri-
butions introduce a dependence on the reheating temperature since the final relic abun-
dance scales with TRH , see eq. (2.18). Here we consider two representative scenarios: For
TRH = 200GeV, UV-dominated processes are practically negligible; the DM abundance
will therefore be independent of the exact value of TRH if it is chosen even lower (but
above the temperature of top quark freeze-out). By contrast, for TRH ∼ 2000GeV, the
result is fully dominated by the UV-dominated processes. This behaviour can be observed
in figure 6 where we compare the relative contribution of the IR- and UV-dominated pro-
cesses to the final DM abundance as a function of the ALP mass in the freeze-in from SM
scenario, i.e. where aa→ χχ̄ scattering is negligible. We keep the ratio mχ/ma = 10 fixed.
Indeed, for TRH = 200GeV, the DM abundance is set by ff̄ → χχ̄ scattering, except
for large ALP masses where the 2 → 3 interactions always dominate. By contrast, for
reheating temperatures of the order of a few TeV, it is the ultraviolet contributions that
set the final DM abundance.

In figure 5 we depict the results for these two scenarios in a large range of ALP masses,
together with the constraints derived in the previous section. We plot the value for the
ALP-SM coupling gaff as a function of the ALP mass ma for lines of constant hidden
sector coupling gaχχ (dashed black lines). Inside the yellow region DM production from
SM fermion scattering is more efficient (freeze-in from SM particles), and inside the yellow
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Figure 6. Relative contributions of infrared-dominated interaction ff̄ → χχ̄ (solid) and ultraviolet-
dominated 2 → 3 interactions (ff̄ → hχχ̄) + 2(fh → fχχ̄) (dashed) to the final χ-abundance as
a function of the ALP mass in the freeze-in from SM regime for reheating temperatures TRH =
200GeV (red) and TRH = 2000GeV (blue). We fixed the ratio mχ/ma = 10.

hatched region production from ALP scattering (freeze-in from ALPs). These freeze-in
regimes span a vast region of parameter space in the (ma, gaff )-plane. We cut the plot
at the upper theoretical bound Cf . 4π which results in gaff = Cf/fa . 1GeV−1 since
fa � v with v the electroweak scale, cf. appendix A. Below the lower boundary the χ-
particles are produced via sequential freeze-in or decoupled freeze-out (DFO) because the
ALPs and the visible sector cease to share the same temperature.

The point where the ALPs equilibrate with the SM plasma is affected by O(1) finite-
temperature corrections and by UV-dominated processes entering the equilibrium condi-
tions eq. (4.1), notably ff̄ → ah. These can enhance ALP production at earlier times. As
a consequence, the simple conditions in eq. (4.1) are only approximately true and in fact,
equilibration can be attained for some T & mχ. To obtain the lower boundary in figure 5,
we solve the Boltzmann equation for the ALP number density numerically and determine
the couplings for which na(T ) = neqa (T ) for some TRH & T & mχ.

In general, the ALP-SM interaction strength gaff must be comparably large if thermal
equilibrium is to be reached, and is therefore likely in reach of upcoming experiments.
For gaff & 10−6−10−5 GeV−1 and ma below a few GeV, the parameter space is ruled out
by constraints from rare B and K decays and the electron beam dump experiment at
SLAC. For masses below ∼ 0.2GeV, the remaining parameter space is covered by the SN
constraint, see also figure 3. However, we remark that the relic density constraint inhibits
large hidden sector couplings: gaχχ has to be as small as ∼10−15 GeV−1 for the largest
connector couplings and for large ALP masses as in this parameter region DM production
is controlled by ff̄ → χχ̄ + (2 → 3 terms) and therefore by the product of couplings
gaff · gaχχ (see table 1).

When the DM is dominantly produced by freeze-in from ALPs, we expect the con-
tours in constant gaχχ in the (ma, gaff )-plane to be vertical because the relic density is
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independent of the connector coupling and proportional to (gaχχmχ)4. In the freeze-in
from SM scenario the relic density is both proportional to m2

χ ∝ m2
a and to g2

aff . For
TRH = 200GeV and DM masses above the mass of the top quark, this dependence is weak-
ened by the Boltzmann suppression of the particles predominantly producing the DM via
tt̄→ χχ̄, leading to an upwards bending of lines of constant hidden sector coupling. Here,
interactions have to become stronger; between reheating and freeze-out of the top there
is barely enough time to produce the heavy DM particle. For the ultraviolet-dominated
case, the lines of constant gaχχ get shifted towards smaller values of gaff since more DM is
produced at earlier times. Not surprisingly, the freeze-in from the mediator scenario is in-
dependent of the two reheating temperatures since aa→ χχ̄ is infrared dominated and the
ALPs belong to the SM bath. We would like to add that, depending on the temperature,
finite-temperature corrections can influence the DM production from fermion scattering by
up to O(100%), resulting in a change in the final relic density of ∼ 10% for TRH = 200GeV
and ∼ 5% for TRH = 2000GeV.

Note that, in principle, ALPs with masses ma .MeV which are still relativistic during
big bang nucleosynthesis are severely constrained by cosmology, see section 3. We do not
include these bounds in our analysis since the relevant parameter space is already excluded
by collider experiments or astrophysics. For larger masses, lifetimes above τ ∼ 0.01 s can
be excluded [56]; yet in the freeze-in regime the ALP-fermion coupling strength is large
such that lifetimes are < 0.01 s.

In summary, we find that for feebly interacting dark matter, which has tiny couplings
to the mediator, the correct relic density can be obtained in a large region of unexcluded
parameter space, likely within the reach of future experiments.

4.4 DFO region and cosmological constraints

As the hidden sector coupling gaχχ increases, the interactions among the ALPs and the DM
become frequent enough to bring them in thermal equilibrium, however at a temperature
T ′ which is distinct from that of the photons, T . These now constitute a dark sector
which is thermally decoupled from the visible sector. Energy is gradually transferred to
the hidden sector by rare scatterings of SM particles into both the ALPs and the DM. The
DM relic density is set by aa ↔ χχ̄ interactions and the mechanism resembles ordinary
freeze-out but occurs at a different temperature, i.e. by decoupled freeze-out (DFO). To
obtain the relic density in the DFO regime we proceed as outlined in section 2.4 and
section 3.4.1. The calculation is more involved than for freeze-in, since now a stiff system
of coupled differential equations (2.31), (2.32) and (2.33) has to be solved, which we have
accomplished using the stiff solver package dvode [81]. We track the evolution of Yχ ≡ nχ/s
until the DM particles freeze out and Y stays constant (more precisely, we require the
relative change in Yχ to be smaller than ε = 5 · 10−4). As in the case of freeze-in, here too,
UV contributions to SM-DM and SM-ALP interactions can introduce a dependence on the
reheating temperature. However, these only enter indirectly via the energy transfer from
the SM. We have checked this explicitly and find that for reheating temperatures below
O(TeV) they do not significantly influence the final DM relic abundance. To be more
specific, we find that a variation of TRH = 200GeV and TRH = 2000GeV leads to a change
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Figure 7. Illustrative example of the evolution of the number densities and the reaction rates in
the DFO scenario for mχ = 10GeV and ma = 1GeV and for a set of couplings which give the
measured dark matter relic abundance: gaff = 9.44 · 10−12 GeV−1 and gaχχ = 1.06 · 10−2 GeV−1.
Left: Evolution of the different terms competing on the right hand side of the Boltzmann equations
for nχ and na as a function of log10(z) = log10(mχ/T ). We also plot the evolution of the reaction
rate for elastic scattering among the hidden sector particles, aχ→ aχ. Right: The evolution of the
comoving number density of χ (red) and a (blue) as a function of log10(z) = log10(mχ/T ). The
equilibrium distributions Yχ,eq(T ′) (dotted red) and Ya,eq(T ′) (dotted blue) and Yχ,eq(T ) (dotted
orange) are also shown for reference. We plot along the evolution of the hidden sector temperature
T ′ (green).

of ∼ 22% in the final DM relic abundance and a change ∼ 7% in the required value of
gaχχ. Hence, the DFO scenario retains very little sensitivity to the ultraviolet for reheating
temperatures below a few TeV, and in the following we can neglect these contributions.
However, we do add finite-temperature corrections to both ALP and DM production from
the SM, which result in O(1) corrections, mainly originating from thermal mass effects.

In the left panel of figure 7 we present an illustrative example of the evolution of
the various reaction rates at play in the DFO regime, together with the Hubble rate, for
mχ = 10GeV and ma = 1GeV and for a set of couplings which give the measured dark
matter relic abundance (gaff = 9.44 · 10−12 GeV−1 and gaχχ = 1.06 · 10−2 GeV−1). For
reactions faster than the Hubble rate, i.e. lines above the turquoise dotted Hubble line,
the particles involved achieve equilibrium. Once the reaction rates drop below the Hubble
rate, the particles become so dilute that they no longer collide sufficiently often and the
process shuts off. We also distinguish between the infrared- (solid) and ultraviolet- (dashed)
dominated SM-ALP and SM-DM interactions. A few observations can be made: Firstly,
aa ↔ χχ̄ interactions are the dominant DM number changing interactions throughout
the evolution. The mechanism which sets the relic abundance is therefore conceptually
very similar to the simpler freeze-out scenario, however governed by T ′ rather than T .
Secondly, neither the SM-ALP nor the SM-DM reaction rates ever exceed the Hubble
rate, and the hidden sector is indeed decoupled. Nevertheless, the SM slowly transfers
energy to the hidden sector both via SM-ALP and SM-DM interactions, with the dominant
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Figure 8. Contour plot of the hidden-sector couplings gaχχ in the (ma, gaff )-plane which give
the observed DM relic density via decoupled freeze-out (DFO). We fixed the ratio mχ/ma = 10.
We have included the relevant constraints on our ALP model on the connector coupling gaff in
this parameter region (cf. figure 3). We additionally plot the region excluded by cosmological con-
straints of additional particles decaying electromagnetically (light grey) and decaying hadronically
(dark grey). For explanations about the boundaries of the DFO region and the constraints from
electromagnetic and hadronic decays see the main text.

contribution coming from SM-ALP interactions. Lastly, elastic scattering aχ(χ̄) ↔ aχ(χ̄)
stays active until after freeze-out of the χ-particles, as assumed in section 2.4. For the same
parameters, in the right panel of figure 7 the evolution of the comoving number densities of
the DM and the ALP are shown, as well as the hidden sector temperature T ′. We also plot
the equilibrium distributions Yχ,eq(T ′) and Ya,eq(T ′) as dotted lines, and, for comparison,
Yχ,eq(T ). As in the simpler thermal freeze-out scenario, Ya and Yχ follow the equilibrium
distributions, Ya,eq(T ′) and Yχ,eq(T ′), respectively. For rapid interactions the right hand
side of the Boltzmann equation vanishes and Yχ stays constant.10 The ALPs and the DM
separate from the equilibrium distributions at the same time, around T ′ ' mχ/10, since
no other particles are around to maintain frequent number changing interactions. Since
T ′ < T the inverse SM freeze-out temperature can be as small as z ∼ 2−3.

In figure 8 we show the region of parameter space where the correct relic density is
obtained for a large range of masses and couplings, again keeping the ratio mχ/ma = 10
fixed, together with the constraints derived in the previous section. We have checked

10Due to the relation between T and T ′, affected by the rate of energy transfer to the hidden sector, Yχ
and Ya ostensibly increase in the plot; this is because the plot shows the evolution of the comoving number
densities as a function of the SM temperature T .
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that the observations made in the previous paragraph hold for the whole set of parameters
depicted in figure 8. The region in the (ma, gaff )-plane is shaped by a number of conditions:

• Relic density. For connector couplings, gaff , which are too small, the hidden
sector does not become sufficiently populated. Although gaχχ might be large enough
to establish equilibrium between the hidden sector particles, neq

χ (T ′) can never reach
the amount of DM density observed today. This is indicated by the lower boundary.

• a ↔ SM. On the other hand, if the connector coupling gaff is too large, the in-
teractions between the hidden sector and the SM become strong enough to establish
thermal equilibrium. Depending on the hidden sector coupling, the DM is then either
produced by freeze-in (see section 4.3) or thermal freeze-out. We remark that the
numerical solution close to the transition between the freeze-in and the DFO regime
is challenging and we chose this upper boundary conservatively.

• gaχχ. The DM-mediator interaction is (cf. eq. (2.1))

Cχ
mχ

fa
aχ̄γ5χ ≡ gaχχmχaχ̄γ5χ . (4.2)

Our effective theory is valid only below the scale fa. Thus, the reheating temperature
TRH should be below this scale to safely ignore UV contributions. On the other hand,
TRH has to be higher than mχ. We consequently need a hierarchy fa & TRH & mχ,
i.e. small gaχχ = Cχ/fa, and this is the reason why the DM (the ALP for a fixed
mass ratio) should not be too heavy.

• QCD. Finally, we employ a perturbative description of the strong interactions, only
convergent at high enough energies. The DM abundance should therefore be set by
interactions happening at temperatures before the QCD phase transition. In practice,
we set the upper boundary labelled “QCD” by requiring that the χ-particles freeze
out at temperatures above the threshold Tpert = 600MeV.

The shape of the contours of constant gaχχ can be understood as follows. By increasing the
strength of the ALP-fermion coupling, more energy will be transferred to the hidden sector
and heat up the hidden sector particles. This will increase the amount of DM particles,
neq
χ (T ′). In order to satisfy the relic density constraint (3.12), the interaction strength

among the hidden sector particles has to increase to keep χχ̄→ aa active for longer, such
that the χ-particles can continue to annihilate. The DM-ALP interaction is proportional to
the product (gaχχ ·mχ)4. For increasingma, gaχχ has to decrease to compensate the effect of
increasing mχ. We find that in this scenario gaff enters only via SM→ a processes because
the energy transfer and DM production from the connector process ff̄ → χχ̄ is always
subdominant. The dependence on gaff is therefore very mild. Furthermore, we observe
that gaχχ has to be large compared to the freeze-in scenario to maintain equilibrium among
the hidden sector particles.

It turns out that it is extremely challenging to test the DFO region with collider
searches for ALPs: in this scenario the visible sector and the mediator barely talk to each
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other, such that the sensitivity of experiments probing the relevant mass range, in partic-
ular the SN bound and the bounds from rare B and K decays, would have to improve by
several orders of magnitude. However, the tiny coupling between the SM particles and the
ALP makes the ALP relatively long lived, and since the ALPs are abundantly produced
along with the DM particles (cf. figure 7) their decay can have important implications for
the cosmological history during and after big bang nucleosynthesis, as briefly discussed in
section 3. Of course, the imprint ALPs will leave on cosmological observables strongly de-
pends on its decay products and its lifetime. In the range of ALP masses we consider, the
dominant decay channel varies, see figure 9. For ALPs with masses ma . 2mµ, i.e. ALPs
which dominantly decay into photons and e+e−, the constraints are very similar. Here, we
apply the bounds from ref. [59] on very long-lived ALPs in the sub-GeV mass range. Gener-
ically speaking, they exclude sufficiently abundant particles decaying electromagnetically
with lifetimes τa ∼ 103−105 s. The bound labelled “electromagnetic decays” in figure 8 was
obtained by applying the bounds on the ALP’s lifetime from figures 4 and 5 in ref. [59],
interpolating between the mass of the decaying particle and the dominant decay channel
of the ALP. For masses in the range 2mµ . ma . 1GeV, the ALP dominantly decays into
muons. In principle, the applicable constraints are the electromagnetic ones here — see also
the discussion in ref. [55] — and the lifetime is short enough for them not to matter. For
hadronic decays the bounds become more severe, cf. section 3, and lifetimes above τ ∼ 0.1 s
can be excluded. In ref. [62] bounds are provided on hadronically decaying particles with
masses in the GeV-TeV range. The smallest mass for which results are available is 30GeV.
We apply the corresponding bound to our model, extrapolating from the given shapes that
the bounds will remain approximately constant for lower masses. We have checked that,
taking into account the branching ratios of the various decay channels, the energy injec-
tion from ALPs is sufficient in the DFO region for these constraints to apply. However,
as outlined in section 3, photo-dissociation is clearly not the only possible scenario. For
instance, ALPs decaying into photons can re-equilibrate with the SM, a scenario which
was studied in depth in ref. [56], excluding much shorter lifetimes. However, as studied
in ref. [60], since the temperature of our hidden sector T ′ is in general well below T , we
expect these bounds to be alleviated in our case. In order to obtain precise cosmological
bounds a detailed analysis of the evolution of the ALP number density and its imprint on
cosmological observables would hence be necessary, yet beyond the scope of this paper.

We conclude this section by remarking that, as mentioned above, the upper left bound-
ary labelled “QCD” arises due to a theoretical limitation. It might be interesting to describe
the processes involved at low energies using non-perturbative techniques in order to explore
the remaining parameter space. In doing so, we should be able to close the gap between
the “QCD” line and ALP-SM equilibrium condition in figure 5.

5 Conclusion

To conclude, we study a fermionic DM model with a pseudoscalar (ALP) mediator coupled
to SM and DM fermions at tree level. In this model, different production mechanisms
can set the relic abundance, depending on which interactions are most important. In fact,
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we find that, similar to the case of a fermionic DM model with a massive dark photon
mediator studied in ref. [7], six different production mechanisms are possible for the set
of ALP and DM masses we have considered, namely freeze-in from SM particles, freeze-in
from mediators, sequential freeze-in, decoupled freeze-out (DFO), freeze-out from mediators
and freeze-out from the SM. We numerically solve the general set of coupled Boltzmann
equations for a range of ALP-fermion and ALP-DM couplings to obtain the phase diagram
for a fixed ALP and DM mass (ma = 1GeV, mχ = 10GeV). We focus on two cases where
the hidden sector, comprised of the DM and ALP, does not thermalize with the visible
sector: freeze-in (from the SM or from ALPs) and DFO.

In the freeze-in and DFO regimes, we determine the relic density by solving the rel-
evant Boltzmann equations. This is most challenging in the DFO region, as discussed
in section 2.4, where a set of three coupled differential equations must be solved (the
Boltzmann equations for the ALP and DM number densities and the Boltzmann equation
governing the energy transfer from the SM to the dark sector), and a variety of processes
contribute to ALP and dark matter production. We derive for the first time the energy
transfer Boltzmann equation for the case where there is a single hidden sector particle
in the final state, and present a new strategy for determining the hidden sector tempera-
ture from the evolution of the energy density. Throughout our work we take into account
thermal effects by implementing temperature-dependent corrections to the SM masses and
couplings, as these can alter the results at the O(1) level, in particular in the case of the
production of ALPs. The dominant contribution stems from the increased masses of the
in medium SM particles.

In a model where the ALP-fermion couplings arise from an extended Higgs sector
in the UV, both infrared-dominated and ultraviolet-dominated processes contribute to
freeze-in, and either of them may dominate depending on the hierarchy of the reheating
temperature and the electroweak scale. In particular, we find that UV-dominated 2 → 3
interactions play a role for the production via freeze-in from the SM for reheating tem-
peratures TRH & 200GeV. We therefore choose to study one typical infrared-dominated
(TRH = 200GeV) and one ultraviolet-dominated scenario (TRH = 2TeV). In the DFO
region all ultraviolet-dominated processes enter only at the subleading level via the energy
transfer to the hidden sector, such that the final DM abundance is largely insensitive to
the ultraviolet contributions for reheating temperatures below a few TeV, and these are
therefore neglected.

We also pay particular attention to calculating the experimental bounds on the relevant
parameter space, including collider, astrophysics, cosmology and DM constraints. Some
of the most powerful constraints come from collider experiments, particularly beam dump
constraints coming from SLAC E137 and flavour constraints notably from NA62 and LHCb,
together constraining masses up to the B meson mass and the gaff coupling down to
O(10−6 GeV−1). For the beam dump experiment we improve previous analyses by including
all dominant ALP production processes, namely the Primakoff process, bremsstrahlung and
(non-)resonant positron annihilation. In particular, we show that positron annihilation can
become the dominant process for larger ALP masses in models where the ALP coupling
to photons is highly suppressed and in this case clearly cannot be neglected. For the
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scenario considered, where the only tree-level couplings of the ALP are to fermions, we
added the different production scenarios since they cannot be distinguished by experiment.
Our analysis excludes a large part of the parameter space in the (ma, gaff )-plane and puts
upper and lower bounds on the coupling. For the flavour constraints, we implement the
state-of-the-art bounds for the most constraining channels from NA62, NA48/2, LHCb
and CHARM, which together rule out a large section of parameter space, down to gaff ∼
O(10−5 GeV−1) for masses up toma ∼ mK+−mπ+ , and in the range gaff ∼ O(10−4 GeV−1)
to O(10−2 GeV−1) up to ma ∼ mB −mK(∗) .

Out of all the constraints considered, astrophysics provides the most stringent bounds
on our parameter space. In particular SN1987A and HB stars strongly probe the parameter
space for ma . O(0.1GeV), extending down to gaff ∼ O(10−9 GeV−1). For the former
constraint, we adapt the state-of-the-art analysis [46, 47] to the scenario we consider,
including N3LO corrections in chiral perturbation theory. While we do consider DM direct
detection, indirect detection and self-interactions, due to the pseudoscalar nature of the
mediator, as expected, none of these provide relevant constraints.

The tiny coupling between the SM and the mediator which is required to reproduce
the observed DM relic density in the DFO region is responsible for making the new sector
so difficult to probe. It therefore seems that current and near future experiments cannot
access this region of parameter space, yet cosmology can provide a powerful tool to constrain
secluded dark sectors. Here we carry out an estimate of the consequences that the presence
of ALPs would have on cosmology for the DFO region: Applying the constraints from
refs. [59] and [62], we exclude very long lived (τa & 103−105 s) electromagnetically decaying
ALPs and short lived (τa & 0.1 s) hadronically decaying ALPs as their decay products would
photodissociate light elements.

In sections 4.3 and 4.4 we present the regions of parameter space in the (ma, gaff )-
plane where the correct relic density is obtained, with contour lines showing the required
value of gaχχ. For freeze-in, as seen in figure 5, we find a large unexcluded region, ex-
tending to gaff ∼ 10−9 GeV−1 for 10−4 GeV< ma < 102 GeV. For larger values of gaff
and ma, smaller values of gaχχ are required. Probing this region, for the largest values of
gaχχ, would require the flavour constraints to improve substantially, or low-mass resonance
searches at ATLAS or CMS. For the DFO regime, as seen in figure 8, the correct density
is obtained for relatively low values of gaff ∼ 10−13−10−10 GeV−1 and large values of gaχχ
(∼ 10−2 GeV−1). Again it appears that cosmology offers the only means of probing such
small values of gaff . Moreover, it turns out the DFO region is disfavoured by the standard
BBN scenario.

There are several possible improvements to our analysis that could be envisaged. As
discussed in section 2.3.3, a thorough study of the sequential freeze-in region requires
solving the unintegrated Boltzmann equations. It would also be interesting to compare our
results in the DFO region to those obtained using the unintegrated Boltzmann equations.
Furthermore, it might be worthwhile using non-perturbative methods to investigate the
DFO mechanism in the region above the QCD boundary. In this work we focus on a Dirac
fermion dark matter particle, but, as previously mentioned, a Majorana fermion is an
equally well-motivated possibility which could merit a detailed study, although one should
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expect qualitatively similar results. Finally, the potential sensitivity of future experiments
is of utmost interest, and in this view it should be worthwhile to assess the sensitivity of
planned future flavour experiments and upgrades, beam dump experiments and cosmology
measurements.
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A Effective ALP-DM Lagrangian from a two Higgs doublet model

The effective Lagrangian eq. (2.1) can be UV completed by a renormalizable model contain-
ing additional Higgs doublets and singlets, with the flavour-diagonal couplings of the ALP
being a consequence of the Higgs coupling structure. Here we present a simple example for
pedagogical purposes.

Our starting point is the Lagrangian of a type-I two Higgs doublet model with an extra
scalar singlet,

L = Lkin −
(
ydijQ̄LiΦ2DRj + yeijL̄LiΦ2ER + yuijQ̄LiΦ̃2URj + h.c.

)
− m̃2

1 |Φ1|2

− m̃2
2 |Φ2|2 +M2 |φ|2 − λ̃1

2 |Φ1|4 −
λ̃2
2 |Φ2|4 −

λφ
2 |φ|

4 − λ̃3 |Φ1|2 |Φ2|2

− λ̃4 (Φ†1Φ2)(Φ†2Φ1)− κ1 |Φ1|2 |φ|2 − κ2 |Φ2|2|φ|2 − λ̃12
(
Φ†1Φ2φ

2 + h.c.
)
. (A.1)

Here Lkin contains all the gauge-kinetic terms for the SM gauge and fermion fields as well
as for the scalars Φ1, Φ2 and φ. Φ1 and Φ2 are two Higgs doublets with the gauge quantum
numbers of the SM Higgs, and φ is a complex scalar which is neutral under the SM. This is
the most general renormalizable Lagrangian allowed by a U(1)PQ global symmetry under
which Φ2 and the SM fermions are neutral, while Φ1 and φ are charged. Note that this
symmetry is not a PQ symmetry in the stricter sense of being anomalous with respect to
QCD, and therefore unsuitable for solving the strong CP problem.

For M2 > 0, φ will take a VEV 〈φ〉 = fa/
√

2, which can be taken real and positive.
We define real scalar fields σ and a by

φ(x) = 1√
2

(fa + σ(x)) ei
a(x)
fa . (A.2)

We anticipate that Φ1 and Φ2 will also take vacuum expectation values of the order v � fa.
This parameterization is useful to extract leading-order effects in v/fa; to leading order
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we have fa =
√

2
λφ
M . The fields σ and a are approximate mass eigenstates, up to mixing

with the Φ-like fields with mixing angles of order v/fa.
At low energies, σ (whose VEV is zero to leading order) can be integrated out. The

effective Φ1,2 mass parameters and quartic couplings at low energies will be modified accord-
ing to suitable matching conditions from replacing |φ|2 → f2

a/2 in the above Lagrangian
and from four-point interactions with σ exchange, such that m̃2

i → m2
i and λ̃k → λk. Up

to higher-dimensional operators, the effective Lagrangian is now that of a type-I two-Higgs
doublet model with an additional field a(x),

L = Lkin −
(
ydijQ̄LiΦ2DRj + yeijL̄LiΦ2ER + yuijQ̄LiΦ̃2URj + h.c.

)
−m2

1 |Φ1|2

−m2
2 |Φ2|2 −

λ1
2 |Φ1|4 −

λ2
2 |Φ2|4 − λ3 |Φ1|2 |Φ2|2

− λ4 (Φ†1Φ2)(Φ†2Φ1)− λ12 f
2
a

2
(
Φ†1Φ2 e

2ia/fa + h.c.
)
. (A.3)

With the a-dependent field redefinition Φ1(x) → e2ia(x)/faΦ1(x), a disappears from the
potential. However, the Φ1 kinetic term is not invariant,

(DµΦ1)†DµΦ1 → (DµΦ1)†DµΦ1 − 2i∂µa
fa

Φ†1
←→
D µΦ1 +O

(
a2

f2
a

)
.

The “Higgs basis” in the space of Φ1 and Φ2 is defined by rotating (Φ1,Φ2) → (H,Φ)
by an angle β such that the Higgs VEV is contained in one doublet H only, tan β =
〈Φ2〉/〈Φ1〉. In general, β is independent of the mixing angle α which parameterizes the
mixing between the mass eigenstates. However, in the decoupling limit, these two angles
are aligned and the fields H and Φ contain the mass eigenstates as

H(x) =
(

G+(x)
v+h(x)+iG0(x)√

2

)
, Φ(x) =

(
H+(x)

H0(x)+iA0(x)√
2

)
. (A.4)

We assume that the Φ-like states are also heavy, so they can be integrated out as well. (This
step can in principle be interchanged with integrating out σ or performed simultaneously,
depending on the mass hierarchies.) The effective Lagrangian becomes

L = Lkin −
(
Y d
ijQ̄LiHDRj + Y e

ijL̄LiHERj + Y u
ij Q̄LiH̃URj + h.c.

)
+m2 |H|2 − λ

2 |H|
4 − 2i∂µa

fa
cos2 β H†

←→
D µH (A.5)

where Y u,d,e = yu,d,e sin β. The (∂a)H†←→DH term would cause a to mix with the Z boson
after electroweak symmetry breaking, which is avoided by another field redefinition:

H(x) → H(x)e−2i cos2 β a(x)/fa . (A.6)

The Yukawa terms will shift accordingly, and one obtains for the final axion couplings in
this field basis at leading order in 1/fa

L = Lkin +m2 |H|2 − λ

2 |H|
4 −

(
Y d
ij Q̄LiHDRj + Y e

ij L̄LiHERj + Y u
ij Q̄LiH̃URj + h.c.

)
− 2 cos2 β

a

fa

(
i Y d

ij Q̄LiHDRj + i Y e
ij L̄LiHERj − i Y u

ij Q̄LiH̃URj + h.c.
)
. (A.7)
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The second line corresponds to the ALP-fermion couplings in eq. (2.1) with Cd,l = −Cu =
2 cos2 β, after switching to four-spinor notation. These are, for our purposes, flavour-
universal couplings (the minus sign in the up-type quark coupling is immaterial for the
processes we consider). They can be regarded as PQ charges of a suitably redefined U(1)PQ
under which Φ2 carries charge 2 cos2 β.

Other models where an ALP is obtained by more general extensions of the Higgs sector
will induce different axion-fermion couplings. For example, choosing a type-II two-Higgs
doublet model (as in the standard DFSZ model for QCD axions [82]) would yield different
couplings for up-type and down-type quarks and leptons, unless tan β = 1.

It is possible to transform the dimension-5 couplings in eq. (A.7) into ∂µa jµPQ terms,
where jµPQ denotes the fermionic U(1)PQ current. In models where U(1)PQ is anomalous,
this will induce also aF F̃ couplings. The ∂µa jµPQ are usually eliminated again after elec-
troweak symmetry breaking, using the equations of motion to transform them into the
Yukawa-like couplings of eq. (2.1), which involves precisely the same anomaly term. We
emphasize that additional aF F̃ terms are never induced at high scales, unless there are
heavy fermions with charges under both PQ and the Standard Model (such as in the KSVZ
model for a QCD axion).

To obtain our dark matter model, we now add two more features. The first is a mass
term for a which explicitly breaks the PQ symmetry; we assume ma � fa and write

∆Lmass = m2
a

4 (φ− φ∗)2 . (A.8)

The second is the dark matter candidate χ, for which there are several possibilities.
In this paper we focus on a Dirac dark matter candidate χ = χL + χR with PQ charges
allowing for a coupling

∆Lχ = − (yχ φχLχR + h.c.) (A.9)

which, after PQ breaking, gives rise to a Dirac massmχ = yχfa/
√

2 and an axionic coupling:

∆Leff = −mχ χχ− i
mχ

fa
aχγ5χ . (A.10)

In this simple model, the reduced ALP-fermion couplings gaff tend to be of the same
order of magnitude as the reduced ALP-DM couplings gaχχ, unless cosβ � 1. As we
show in the main text, hierarchically different couplings can lead to interesting effects.
They are well-motivated in UV models with multiple axions and a clockwork-like structure
for the couplings, leading to exponentially different effective decay constants for different
sectors of the theory [83]. One might speculate, for instance, that the DM sector and the
SM are localized on different lattice sites in theory space, giving rise to a large hierarchy
gaff � gaχχ.

Moreover, this model predicts Cχ = 1 and therefore gaχχ = 1
fa
. The DFO phase

as discussed in sections 2.4 and 4.4 will therefore not be realized in this simple scenario,
since DFO requires significant connector couplings gaχχ ∼ (100GeV)−1. A mass scale
fa ∼ 100GeV is of course ruled out by observation. We emphasize nevertheless that there
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is no obstacle in principle to raising Cχ, although doing so with the particle content of the
present minimal model would require fine-tuning (by adding an additional explicitly PQ
breaking term, namely a bare Dirac mass term for χ which could partially cancel the Dirac
mass from spontaneous PQ breaking).

We finally remark that another possibility for the dark matter candidate would be a
single Weyl dark matter candidate χ = χL, coupled to φ according to

∆Lχ = −1
2
(
yχ φχ

T
LCχL + h.c.

)
. (A.11)

This coupling translates into a Majorana mass after PQ breaking. A third possibility would
be a model with two Weyl fermions and a see-saw-like structure where both a Dirac mass
and a Majorana mass are allowed, with the dark matter phenomenology depending on the
hierarchy between the two.

B Collision term for the energy transfer Boltzmann equation

For a process 1 2 → 3 4, neglecting the back-reaction, the integrated collision operator is
given in eq. (2.24) in terms of the energy transfer rate E(~p1, ~p2) for an initial state with
momenta ~p1 and ~p2, and of the Møller velocity

vMøl =
√

(s− (m1 +m2)2)(s− (m1 −m2)2)
2E1E2

≡ F

E1E2
. (B.1)

Assuming the momentum distributions to be Maxwell-Boltzmann-like, the collision term
becomes ∫

d3p

(2π)3C[f ] = g1g2

∫
d3p1
(2π)3

d3p2
(2π)3 e

−(E1+E2)/T vMøl E(~p1, ~p2) (B.2)

= g1g2
32π4

∫
dE+dE−ds e

−E+/TF E(~p1, ~p2)

where, following ref. [15], in the second line we have replaced E+ = E1 +E2, E− = E1−E2
and s = (E1 + E2)2 − (~p1 + ~p2)2. The energy transfer rate E(~p1, ~p2) can be written as
in eq. (2.25). For the transferred energy ∆Etr, there are two cases which we need to
distinguish: For ff̄ → χχ̄, ∆Etr = E+, and for ff̄ → aγ, γf → af , qq̄ → ag, gq → aq

(and the corresponding hermitian conjugate processes) we have ∆Etr = E3. It turns out
that in the former case, as studied in ref. [6], the identical particles in the initial state
and ∆Etr being independent of the final state result in several simplifications in E(~p1, ~p2),
absent for the latter.

In order to demonstrate the difference between these two cases let us now perform the
integration in p4 (where in the following discussion we will use the notation pi = |~pi|):

E(~p1, ~p2) = 1
4F

∫
d3p3
(2π)3

1
2E32E4

|iM|2(2π)δ(E1 + E2 − E3 − E4)∆Etr

where E4 = (m2
4 + |~p1 + ~p2− ~p3|2)1/2. The next steps depend on the value of ∆Etr. Clearly

if ∆Etr = E+, it does not affect the integration over p3 and Ω, resulting in the simple
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relation E(~p1, ~p2) = σ(~p1, ~p2)E+. However, when ∆Etr = E3 integrating in p3 and Ω is not
so straightforward. For the latter case, let us consider the argument of the delta function
which we will call g(p3) ≡ E1 + E2 − E3 − E4:

g(p3) = E+ − E3 − (m2
4 + E2

+ − s+ p2
3 − 2p1p3 c13 − 2p2p3 c23)1/2

where cij = cos θij , and we have defined θij to be the angle between the momenta of
particles i and j. Since we perform the integration in c13, we need to replace θ23 by
θ13 + θ12, where c12 = (E2

+ − s − p2
1 − p2

2)/(2p1p2). In order to obtain the solution p0
3 of

the equation g(p3) = 0 analytically, and to speed up the computation, we are obliged to
make the assumption E3 = p3. This assumption is easily justifiable for the dominantly
contributing case f = t (and results in an effect of at most ∼ 1.4%), and we have checked
that qq̄ → ga and ff̄ → γa dominate over fγ → fa and qg → qa. We then find

E(~p1, ~p2) = 1
8πF

∫
p2

3dp3dc13
1

4E4
|iM|2 δ(p3 − p0

3)
|g′(p3)|p3→p0

3

(B.3)

where we have replaced ∆Etr by E3. The result for the integrated collision operator is then
obtained by inserting eq. (B.3) in eq. (B.2) and performing the integration numerically,
setting E3 = p3.

For the case of ff̄ → χχ̄, and E(~p1, ~p2) = σ(~p1, ~p2)E+, the integrated collision operator
can easily be simplified to [6]:∫

d3p3
(2π)3C[f3] = g1g2

32π4

∫
ds σ(s) (s− 4m2) s TK2

(√
s

T

)
(B.4)

where we have adopted the limits of integration [6, 15]: s > (m1 + ms)2, E+ >
√
s and

−2F
s

√
E2

+ − s < E− + E+
m2

1−m
2
2

s < 2F
s

√
E2

+ − s.

The case of inverse decays, 1 2→ X, is not identical, and deserves to be studied as it has
not previously been required, starting with

E(~p1, ~p2) = 1
2E12E2vMol

∫
d3pX
(2π)3

1
2EX

|iM|2(2π)4δ(4)(p1 + p2 − pX)∆Etr

= 1
2E12E2vMol

1
2EX

|iM|2(2π)δ(E1 + E2 − EX)E+ . (B.5)

We can then insert this expression in eq. (B.2), and find for m1 = m2 = m∫
d3p3
(2π)3C[f3] = g1g2

32π3

∫
dE+ e

−E+/T |iM|2 2F E+
m2
X

√
E2

+ −m2
X Θ(m2

X − 4m2)

=T g1g2
32π3mX

√
m2
X − 4m2 |iM|2 K2

(
mX

T

)
Θ(m2

X − 4m2) (B.6)

which in terms of the decay width of particle X can be expressed as∫
d3p3
(2π)3C[f3] =T g1g2

2π2 ΓX m3
X K2

(
mX

T

)
Θ(m2

X − 4m2) .
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C Cross sections and input for Boltzmann equations

In table 2 we collect the different annihilation processes for the DM and the ALPs which
govern the Boltzmann equations in eq. (2.6). In this section we provide expressions for
the cross sections for the required 2 → 2 processes and the collision term for the relevant
2→ 3 processes.

C.1 Hidden sector process

For the annihilation of the DM particles to ALPs, i.e. annihilation in the hidden sector
(for which the Feynman diagrams at tree level are shown in table 2), the total unpolarized
cross section in the centre of mass frame is given by

σ(χχ̄→ aa) = (gaχχmχ)4

16πs

(
6m4

a − 4m2
as+ s2

(s− 2m2
a)
√

(s− 4m2
a)(s− 4m2

χ)
ln s−2m2

a+
√

(s−4m2
a)(s−4m2

χ)
s−2m2

a−
√

(s−4m2
a)(s−4m2

χ)

−2− m4
a

m4
a − 4m2

am
2
χ +m2

χs

)
. (C.1)

C.2 Connector processes

The Feynman diagram of the χχ̄ → ff̄ connector process is depicted in table 2. For the
total cross section in the centre of mass frame we find at tree level

σ(χχ̄→ ff̄) =
(gaχχmχ)2(gaffmf )2ncfs

√
s− 4m2

f

16π (m2
a − s)

2
√
s− 4m2

χ

, (C.2)

with ncf the number of colour degrees of freedom of the fermion. For reheating tem-
peratures above a few hundred GeV contributions from the ultraviolet-dominant 2 → 3
processes ff̄ → hχχ̄, fh → fχχ̄ and f̄h → f̄χχ̄ become important. Following ref. [12],
but calculating the matrix element explicitly and including the final state masses one finds
(the fact that not all involved particles are scalars does not change the integral because we
neglect Fermi/Bose factors)

ṅχ + 3Hnχ = (gaχχmχ)2(gaffmf )2

v2
ncf T

(4π)7 ×∫ ∞
smin

ds
∫ 1

0
dx2

∫ 1

x2
dx1 s

3/2K1

(√
s

T

)
4p2
as

(p2
a −m2

a)
2 (C.3)

with p2
a = (x1 − x2)s + m2

h and smin = 4m2
f (T ) for ff̄ → hχχ̄ and p2

a = (x1 − x2)s + m2
f

and smin = (mf (T ) +mh)2 for fh→ fχχ̄, f̄h→ f̄χχ̄.
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Process Feynman-diagram

χχ̄→ aa

eq. (C.1)

χ a

aχ̄

χ a

χ̄ a

χχ̄→ ff̄

eq. (C.2)
a

χ̄

χ f

f̄

aγ → ff̄ , ag → qq̄

eqs. (C.4), (C.5)

a f

f̄γ

a q

q̄g

af → γf , aq → gq

eqs. (C.6), (C.7)
f

a γ

f q

a g

q

ah→ ff̄

eq. (C.8)

a

f

f̄

h

ff̄ → hχχ̄, fh→ fχχ̄,
f̄h→ f̄χχ̄

eq. (C.3)

f

f̄

h

χ

χ̄

a

f

h

f

χ

χ̄

a

f̄

h

f̄

χ

χ̄

a

a→ ff̄

eq. (D.1)

f

f̄

a

Table 2. Feynman diagrams of the annihilation of the DM via the hidden sector and connector
processes, as well as the co-annihilation of ALPs at tree level.

C.3 SM-ALP processes

For the co-annihilation of ALPs to SM particles, the Feynman diagrams at tree level are
shown in table 2. Here we collect the results for the total unpolarized cross section in the
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centre of mass frame:

σ(aγ → ff̄) =
(gaffmf )2 αem q2

f n
c
f

m2
a +m2

γ − s

√√√√λ(s,m2
f ,m

2
f )

λ(s,m2
a,m

2
γ)[

m4
a − 4m2

am
2
f +

(
m2
γ − s

)2√
λ(s,m2

a,m
2
γ)(s(s− 4m2

f )
ln
(√

s(m2
a+m2

γ−s)+
√
λ(s,m2

a,m
2
γ)
√
s−4m2

f√
s(m2

a+m2
γ−s)−

√
λ(s,m2

a,m
2
γ)
√
s−4m2

f

)

−
m2
a

(
m2
γ + 2m2

f

) (
m2
a +m2

γ − s
)

(m2
a −m2

γ)2m2
f +m2

am
2
γs− 2(m2

a +m2
γ)m2

fs+m2
fs

2

]
, (C.4)

σ(ag → qq̄) = 1
6 σ(aγ → ff̄)(αem → αs, q

2
f → 1, mγ → mg) , (C.5)

σ(af → γf) =
(gaffmf )2 αem q2

f

4s

√√√√λ(s,m2
f ,m

2
γ)

λ(s,m2
f ,m

2
a)

∫ 1

−1
d cos(θ) 1(

s−m2
f

)2 (
t−m2

f

)2

(
m2
a

(
m2
γ

(
2m2

f (s+ t)− 2m4
f − s2 − t2

)
− 2

(
s+ t− 2m2

f

) (
s t−m4

f

))
+
(
s−m2

f

) (
t−m2

f

) (
(s+ t− 2m2

f )2 + 2m4
a

) )
, (C.6)

σ(aq → gq) = 4
3 σ(af → γf)(αem → αs, q

2
f → 1, mγ → mg) , (C.7)

with ncf the number of colour degrees of freedom of the fermion and qf the fermion’s electric
charge. Note that expressions (C.6) and (C.7) are equivalent to the ones for f̄a→ f̄γ and
q̄a→ q̄g.

For reheating temperatures above a few hundred GeV contributions from the
ultraviolet-dominant process ah → ff̄ become important. In this case we find for the
cross section in the centre of mass frame

σ(ah→ ff̄) =
(gaffmf )2ncf

8πv2

√√√√λ(s,m2
f ,mf

2)
λ(s,m2

a,m
2
h) . (C.8)

D Decay width of the ALP

The total decay width of the ALP plays an important role at various points in our work,
particularly for the collider and cosmological constraints. For example, for the collider
constraints it is important because the ALP lifetime determines whether it can be triggered
on, or if it decays within the detector or outside (leading to invisible decay). At tree level,
the ALP decays into leptons or quarks, however at loop level it may decay into photons
or gluons. Our calculations for the leading partial decay widths are summarised below. In
the perturbative regime the decay width of an ALP decaying to fermions is

Γ(a→ ff̄) =
(gaffmf )2ncfma

8π

√√√√1−
4m2

f

m2
a

, (D.1)
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with ncf the number of colour degrees of freedom of the fermion. This expression is used
for leptons and for decays into heavy quarks cc̄ and bb̄, provided ma is above the threshold
for the decay into a pair of D or B mesons respectively. For the contribution of the light
quarks, we take into account the decays of ALPs to hadrons via

• If the mass of the ALP is less than 1.2GeV, the decay width is calculated using code
obtained by private communication, created for ref. [84]. This code was written for
the decay of an NMSSM CP-odd Higgs, but with an appropriate choice of parameters
(P11 =

√
2vgaff , tan β = 1 and decoupled neutralinos, charginos and heavy Higgs

bosons) this particle can be identified with our ALP.

• Above 1.5GeV, the decay width into light quarks is given by [75]

Γ(a→ hadrons) = g2
aff

9m3
aα

2
s

32π

(
1 + 83αs

4π

)
, (D.2)

as in this regime the strong coupling is taken to be perturbative.

• Between 1.2 and 1.5GeV we interpolate between the above determinations of the
decay widths, in order to obtain a smooth result for the total decay width of the
ALP, important particularly for the cosmological constraints.

This concludes the discussion of the tree-level decays of the ALP. In order to take into
account experimental constraints on ALP decays to photons, we further require the decay
width into two photons via a fermion loop. This is given by

Γ(a→ γγ)loop = α2|T (m2
a)|2

4π3ma
, (D.3)

where the triangle loop function is

T (s) =
∑
f

gaff m
2
f n

c
f q

2
f arcsin2 (√s/(2mf )

)
, (D.4)

where qf is the electric charge of the fermion. In figure 9, we provide the branching ratios
for all the above mentioned decays.

E Axion production cross sections in SLAC E137 experiment

E.1 Primakoff production

The differential cross section for the production of ALPs via the Primakoff mechanism (see
figure 1a) is given by eq. (A1) in ref. [21],

dσγ→aZ

dΩ = 8αem
Γ(a→ γγ)

m3
a

| F (t) |2 θ2(
θ2 + 1

4

(
ma
Eγ

)4
)2 , (E.1)

where Γ(a → γγ) is the loop induced ALP decay width to two photons (see appendix H
for details), t = (pa − pγ)2 is the momentum exchange with pγ the four-momentum of
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Figure 9. Branching fractions of the ALP into photons, leptons and hadrons as indicated, as a
function of the ALP mass.

the incoming photon and pa the four-momentum of the outgoing ALP. Θ is the scattering
polar angle in the laboratory frame. Z and F (t) are the target atomic number and target
form factor, respectively. For t ≤ 3 × 10−6 GeV2 we use the atomic form factor, given by
eqs. (A5)–(A6) in [21],

|Fatomic(t)|2 = Z2
(

a2|t|
a2|t|+ 1

)
+ Z

(
a′2|t|

a′2|t|+ 1

)2

(E.2)

with the parameters

a =
{

122.8/me for hydrogen
111 Z−1/3/me for oxygen (E.3)

a′ =
{

282.4/me for hydrogen
773 Z−2/3/me for oxygen . (E.4)

For t > 3 × 10−6 GeV2 the elastic scattering form factor of the nuclei is used. The dipole
form factor for the proton and the elastic form factor for oxygen are given by [85]

Fdi,H(t) = 1
(1 + |t|

q2
0
)2

(E.5)

Fel,O(t) = Z

(
1− a2

0 t

8

)
e−a

2
0 t/4 , (E.6)

with q2
0 = 0.71GeV2 and a0 = 8.97GeV−1. To obtain an expression for the momentum

exchange t we need to find the relation between the energy of the incoming photon and the
energy of the outgoing axion. Following [22], the momentum exchange can be expressed as

t = (pγ − pa)2 = − m4
a

4E2
a

− E2
a θ

2 . (E.7)
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under the assumption that θ � 1, ma � Ea,mN and pt ≈ 0. However, since both the
photon track-length distribution and our expression for the Primakoff cross section are
given in terms of the photon energy, we have to find an expression for the transverse
momentum squared t in terms of Eγ . To first order approximation we have Eγ ≈ Ea. As
pointed out in [22], the term proportional to m4

a is negligible since we are considering small
axion masses. Expanding to second order and inverting gives

Ea ≈ Eγ −
(Eγθ)2

2mN
(E.8)

and consequently

t = (pγ − pa)2 = −2mN (Eγ − Ea) ≈ (Eγθ)2 . (E.9)

For our largest ma = 1GeV we get a relative error of 0.1% for the photon energy which is
negligible considering the fact that we extract the track-length distribution from a graph.

E.2 Bremsstrahlung

The differential cross section for axion production by bremsstrahlung (see figure 1 b) is
given by

d2σe→aeZ

dΩadEa
=
α2

emg
2
affm

2
e

4π2
Ee
U2

(
x3 − 2m2

ax
2(1− x)
U

+ 2m2
a

U2 [m2
ax(1− x)2 +m2

ex
3(1− x)]

)
χ ,

(E.10)

with U = E2
eθ

2
ax + m2

ex + m2
a(1 − x)/x and x = Ea/Ee. χ is the integrated form factor

obtained from integrating χ =
∫
tmin

dt|F (t)|2(t− tmin)/t2 [86],

χ = χelastic + χinelastic

= Z2
[
ln
(
a2m2

e(1 + l)2

a2tmin + 1

)
− 1

]
+ Z

[
ln
(
a′2m2

e(1 + l)2

a′2tmin + 1

)
− 1

]
, (E.11)

where tmin = (U/(2Ee(1− x)))2 is the minimal momentum transfer squared and l =
E2
eθ

2
a/m

2
e and a and a′ are to a reasonable approximation given by eqs. (E.3). me is

the mass of the electron, Ee is the energy of the incoming electron and positron and Ea
the energy of the ALP in the laboratory frame.

E.3 Positron annihilation

Non-resonant case. The non-resonant cross section for positron annihilation in the
centre of mass frame is given by (see figure 1c)

dσe+→aγ

d cos(θ∗) =
g2
affm

2
fαem

2s

(
m2
a

s−m2
a

)
1

1− β2cos(θ∗)2 , (E.12)

where θ∗ is the scattering polar angle of the ALP in the centre of mass frame and β =√
1− 4m2

e/s is the speed of the electron target [21]. s = 2E+me + 2m2
e is the centre of
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mass energy squared. The maximal opening angle for the ALP to be detected is given in
the laboratory frame (see appendix F). We therefore have to relate the ALP’s scattering
angle in the centre of mass frame, θ∗, with θlab

max, the angle in the laboratory frame. This
can be achieved by expressing the Mandelstam variable t which is Lorentz invariant in the
laboratory frame and in the centre of mass frame. We find

cos(θlab) =
Elab

+ Elab
a − E∗+E∗a + cos(θ∗)

√
E∗2a −m2

a

√
E∗2+ −m2

e√
Elab2

+ −m2
e

√
Elab2
a −m2

a

, (E.13)

where the asterix denotes quantities in the centre of mass frame. The ALP’s energy in the
the laboratory frame is

Elab
a = s+m2

a + (s−m2
a)β cos(θ∗)

4me
. (E.14)

In the centre of mass frame the energies of the ALP and of the positron are

E∗a = 4E∗2+ +m2
a

4E∗+
E∗+ = 1

2
√
s = 1

2

√
2(m2

e +meElab
+ ). (E.15)

We have now all the ingredients to express the differential cross section in terms of the
scattering angle and the positron energy in the laboratory frame over which we integrate.
To deal with the infrared divergence in the cross section for s → m2

a, i.e. small photon
energies, we apply a cut on the centre of mass energy around

√
s = 3MeV as proposed

in ref. [21].

Resonant production. The resonant positron annihilation production cross section (see
figure 1d) can be obtained from the Breit-Wigner formula and is in the centre of mass frame
given by [87]

σe
+→a(E∗a) = π2

2E∗2a
Γ(a→ e+e−)Γ(a→ XX)

(E∗a −ma)2 + Γ2
a/4

, (E.16)

with Γa the total decay width of the ALP and

Γ(a→ XX) =
{

Γloop(a→ γγ) for the ALP decaying into two photons
Γ(a→ e+e−) for the ALP decaying into e+e−.

(E.17)

Since the Breit-Wigner formula contains the decay width of the ALP which is strongly
peaked compared to the step size in the positron energy the cross section is approximated
by a delta function, i.e.

σe
+→a(E∗a) = σe

+→a
tot δ(E∗a −ma) (E.18)

where

σe
+→a

tot (a→ XX) =
∫ ∞
∞

dE∗aσe
+→a(E∗a) = π2

2m2
a

Γ(a→ e+e−)B(a→ XX) (E.19)
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and hence independent of the positron energy. The number of events in a specific decay
channel can therefore be approximated by

N (a→ XX) = Ne, inc σe
+→a

tot (a→ XX)
∫

dE∗a T (E+) p(E+) dE+
dE∗a

δ(E∗a −ma)
∑
Z

PZ

= Ne, inc σe
+→a

tot (a→ XX) T (E+) p(E+) ma

me

∑
Z

PZ , (E.20)

where T+(E) is the track-length distribution of positrons. The energy of the positron and
of the ALP are in the laboratory frame given by

Elab
+ = m2

a −m2
e

2me
, Elab

a = Elab
+ +me (E.21)

respectively.

F Details on the ALP’s detection probability

In this appendix we will give details about the probability for the ALP in the SLAC electron
beam dump experiment to decay invisibly, i.e. we consider the cases where the ALP could
have been produced but not been detected. In these cases the non-observation of axions
in the experiment does not allow us to set bounds on the ALP’s coupling and mass. To
determine whether the ALP decays inside or outside the decay volume we need its decay
length. The decay length of the ALP in the laboratory frame is

la = βγaτa = βγa
Γa
≈ Ea
maΓa

(F.1)

where we assume Ea � ma [22]. In the following discussion we consider the case where the
axion decays into two photons.11 Taking the experimental layout into account, the ALP
cannot be detected if (the scenarios are summarised in figure 10):

• the opening angle of the ALP is too big, p(θa > θmax) = 0. The detector which is
approximated as cylindrical with radius R = 1.5 m can detect photons with a maximal
separation angle of sin(θmax) = R/(D+L) ≈ θmax (see definition in figure 10), which
for the dimensions of E137 corresponds to θE137, max = 0.22 deg.

• the ALP decays too early and/or the opening angle between the photons is too large,
so that both photons would miss the detector. The opening angle between the two
photons is determined by the boost of the ALP. The minimal opening angle for high
ALP boosts is given by θγ, min ≈ 2/γa [20, 22]. The distribution of the number of
photons dN/dθγ is peaked at this minimal θγ, min and the typical separation between
the two photons arriving at the detector is therefore given by

dγγ = sin [θγ, min(D + L− la)] ≈ θγ, min(D + L− la) = 2(D + L− la)
γa

, (F.2)

11In principle, the same arguments can be applied for the case where the ALP decays to an electron-
positron pair. Some approximations may not be reasonable as the decay products are massive (concerning
boost, typical opening angle). To derive the bounds, we have used the same expressions and obtain very
good agreement with the results presented in [21] (based on a Monte-Carlo simulation) and [75].
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Figure 10. Different scenarios for the ALPs to decay invisibly (here schematically shown for
photons).

whereD+L−la is the distance from the detector at which the ALP decays. dγγ should
not exceed the dimension of the detector, p(dγγ > 2R) = p(D+L−la > REa/ma) = 0.

• the ALP decays inside the absorber and the photons get absorbed or the ALP decays
behind the detector. The probability that the ALP decays inside the decay volume
is given by

p(la) = p(la > D)− p(la > D + L) = e−D/la − e−(D+L)/la . (F.3)

Indeed, we find that this significantly reduces the number of detectable particles.

• the ALP decays in front of the detector but the separation between the two photons
is too small. The typical separation between the photons has to be larger than
the minimal resolution of the detector, RE137, min ≈ 3 mm, which would lead to an
indistinguishable signal, p(dγγ < Rmin) = 0.

To sum up, the probability to detect both photons is given by [22]

p(la) =


e−D/la − e−(D+L)/la if Ea < 2ma · L/Rmin,

Ea > (L+D) ·ma/ (R+ 1/Γa) and θ < θmax
0 otherwise .

(F.4)

G Details on constraints from exotic Higgs decays

To understand the sensitivity of the LHC exotic Higgs decay searches, it is first important
to calculate the decay table for the axion. A detailed calculation is available in the appendix
and the branching fractions are plotted in figure 9 for a range of ALP masses from 10MeV
to 100GeV. What is relevant for our discussion here is that the branching fraction into
two photons remains consistently smaller than 10−3 as soon as the ALP mass is large
enough to allow a → µ+µ−. Next, as expected, once each new massive fermion mode
turns on, it quickly dominates as the width in that channel is proportional to m2

f . We also
assume that as soon as the mass threshold is above 1.5GeV (' 2mρ), decays into hadrons
via loop-mediated a→ gg open up. Therefore, once hadronic decays become allowed, any
branching fraction into muons becomes again vanishingly small. Our calculation (assuming
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a → gg open only above 1GeV) gives B(µ+µ−) < 10−3 as soon as τ+τ− and cc̄ modes
open (i.e. ma & 1.8GeV). Since all current exotic Higgs decays look for ma & 10GeV only,
we can safely assume that none of the muonic searches will be able to see the signatures
of our model. We therefore need only think about the h → aa → 4b channel. The limits
on h→ aa→ 4b are only able to exclude branching ratios less than one in the small mass
range between 18–22.5GeV. However, this would still require a branching fraction of 0.75
of the SM Higgs into this one channel alone. Given that in our model, these channels
are dependent on 1-loop contributions only the decay width of the Higgs into these modes
cannot be of comparable size to the usual tree-level 2-body SM decays. We therefore
conclude that none of these searches unfortunately have any sensitivity to our model.

The current limit [27] in h → Z(a → gg) is in principle sensitive to our model in the
very narrow range 0.5GeV < ma . 2.7GeV. However, this is precisely the mass range
where theoretical calculations are wildly unpredictable due to hadronic contributions and
we choose not to apply these.

Lastly, the h → Zγ searches can be used in certain phase space regions where the
two photons from a-decay are collimated, i.e. h → Z(a → γγ). The h → ZZ∗ → 4`
measurements can also be used to place a limit on new physics contributions as the off-shell
Z decaying into two leptons can also be interpreted as a new particle that decays into two
leptons. A study of the collimated di-gamma decay was done in [88]. However, interpreted
in our model, it corresponds only to coupling values gaff & 102 GeV−1. Since this lies
wildly outside the self-consistent EFT regime, we assume that the h→ Zγ measurements
are currently not sensitive enough to provide a useful constraint. Similarly, the 4` decay
mode of the Higgs currently carries the signal strength accuracy µ = 1.44± 0.4 [89] which
translates to an upper limit on the decay width Γ(h → Za) × B(a → 2`) . 0.44 × Γ(h →
ZZ∗ → 4`). Again, due to the loop suppression in our decay, we end up with exclusions
on Caff � 1 only and there is no usable limit from this measurement.

H Loop diagrams relevant for constraint calculations

The ALP in our model can only decay into photons via a fermion loop. Applying the
constraints from the effective axion-photon coupling, gaγγ , to the axion-fermion coupling,
gaff , demands more theoretical groundwork. The main task is to calculate the Primakoff
cross section for this coupling. The resulting cross section can then be inserted into the
expression for the ALP yield for the beam dump constraint and the expressions for the
total energy outflow and the ALP opacity for the HB stars constraints. The approach we
adopt is to replace the expression for the axion-photon coupling in the “decay width” in
equations (E.1) by an expression for the axion-photon coupling induced by a fermion loop.
This coupling will now depend on the momentum transfer squared, t = (pγ − pa)2. The
Feynman diagram of the Primakoff process induced by a fermion loop is shown in figure 11
on the left. It should be noticed that the decay width in equation (E.1) has to be regarded
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Figure 11. Left: Feynman diagram of the Primakoff production process via a fermion loop. Right:
Feynman diagram of the amplitude we need to calculate to replace gaγγ by gloop

aγγ in the Primakoff
production process.

as a definition of the axion-photon coupling rather than an actual physical decay width,
dσ
dΩ = 8αem

Γ
m3
a

| F (t) |2 θ2(
θ2 + 1

4

(
ma
Eγ

)4
)2

= αem
g2
aγγ

8π | F (t) |2 θ2(
θ2 + 1

4

(
ma
Eγ

)4
)2 . (H.1)

By comparing the amplitude of the loop diagram and the tree-level effective diagram we
will deduce what gaγγ should be replaced by. The Feynman diagram of the amplitude we
have to consider is depicted in figure 11 on the right. We proceed as in ref. [90] and find
that the amplitude of the triangle graph is given by

T αβ =
∫

d4k

(2π)4 (−1) Tr
[

i

/k + /pγ −mf
γα

i

/k −mf
γβ

i

/k + /pγ − /pa −mf
γ5

]

= −i 1
2π2 ε

αβρσpa,ρpγ,σmfC0(p2
a, p

2
γ , (pa − pγ)2,m2

f ,m
2
f ,m

2
f ) , (H.2)

with the three-point scalar function C0 defined as in ref. [91]. The matrix element squared
of the diagram is given by (with t = (pa − pγ)2 in eq. (E.1))

|M|2loop =
α2

em(m2
a − t)2

[∑
f gaffm

2
fq

2
fn

c
f |C0(m2

a, 0, t,m2
f ,m

2
f ,m

2
f )|
]2

2π2 . (H.3)

By calculating the same diagram but with an effective ALP-photon coupling gaγγ at tree
level, i.e.

|M|2 = g2
aγγεµνρσεαβκλg

αµ gβν pργ p
κ
γ (pγ − pa)σ (pγ − pa)λ

= 2 g2
aγγ

(
(pa · pγ)2 − (pa · pa)(pγ · pγ)

)
=
g2
aγγ(m2

a − t)2

2 (H.4)

we obtain the replacement

g2
aγγ →

α2
em

[∑
f gaffm

2
fq

2
fn

c
f |C0(m2

a, 0, t,m2
f ,m

2
f ,m

2
f )|
]2

π2 (H.5)

– 53 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
1

in the expression for the Primakoff production in the E137 SLAC experiment, eq. (E.1),
and in the expression for the Primakoff production in horizontal branch stars. For the
constraints from horizontal branch stars we make the approximation of zero momentum
transfer, i.e. t ≈ 0.
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