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Abstract: Canonical neutrino oscillations arise due to the propagation of three mass
eigenstates from production to detection. We aspire to capture, in one simple framework,
a broad range of new physics effects on neutrino propagation beyond this canonical picture
— this can be done by promoting the neutrino propagators to the general Källén-Lehmann
form. In this work we demonstrate how models predicting additional light propagating
species of neutrino are naturally accommodated in this language and propose a simple
model spectrum composed of just three ‘broadened’ states as a flexible ansatz by which to
explore the phenomenology of new physics in neutrino propagation. Reinterpreting existing
neutrino oscillation measurements, we illustrate how this framework provides the capacity
to probe deviations from the standard three-neutrino scenario systematically and generally.
Whilst current data allows for relatively strong constraints on broadened neutrinos, we find
the upcoming JUNO experiment will yield significant improvements, particularly for the
heaviest neutrino, paving the way to a clearer understanding of how neutrinos propagate
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1 Introduction

Since their discovery, neutrinos have been an invaluable probe of physics ‘beyond the
Standard Model’ (BSM). Indeed the observation of flavour changes in neutrino oscillations,
which require non-zero neutrino masses, is arguably one of the strongest pieces of evidence
for new BSM physics. This observation behooves particle physicists to probe, to the greatest
degree possible, all aspects of the neutrino sector of the SM.

As neutrino oscillations arise as a result of massive neutrino propagation from the point
of production to the point of detection, one may ask if these massive fermions are propa-
gating from one point to another as expected. In this work we aim to develop a coherent
framework in which this question may be posed theoretically and answered experimentally.1

In any free or interacting quantum field theory the propagator (two-point function)
for a fermion may be captured by a Källén-Lehmann representation. Note that this is a
non-perturbative representation, not reliant on any perturbative expansion, but only on

1Note that very recently ref. [1] appeared, with broadly similar motivations although very different
specific considerations.
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Figure 1. A schematic Feynman diagram for a general neutrino propagation process. The double
lines show the external states at the production and detection vertices. The elliptical blob symbolises
the Källén-Lehmann propagator. In the case of canonical oscillations, this reduces to the usual
Feynman propagator.

the basic axioms of quantum mechanics. As a result, this representation may be included
in any phenomenological description of neutrino oscillations, whether QM-like or QFT-like,
and it will capture any QFT-compatible BSM modifications of neutrino propagation from
production to detection, as illustrated schematically in figure 1. To this end, in section 2
we generalise the usual neutrino oscillation framework to include the more general Källén-
Lehmann form, propagating this general form all the way through to generalised formulæ
for oscillation probabilities of neutrino appearance and disappearance.

To illustrate the utility of this approach more concretely we provide two simple BSM
scenarios in which the neutrino propagator becomes ‘broad’. The first is the previously
studied ‘Pseudo-Dirac’ neutrino model [2–9], where neutrino masses are effectively Dirac
and a small amount of lepton number violation leads to a small splitting of mass eigenstates.
A second model generalises this setup further, through a fermionic clockwork-inspired de-
construction of fermions on a circle, to give a broad band of states in lieu of a single neutrino
mass eigenstate. The mapping of both models into the Källén-Lehmann representation of
the propagator is developed and their impact on observable neutrino oscillation data is
investigated. Motivated by these models and the fact that an almost limitless zoology of
models is in principle realisable, we then present a simple ‘top-hat’ phenomenological ansatz
which captures the dominant oscillation features of more complete microscopic models that
lead to band-like neutrino spectral functions.

Armed with this formalism and utilitarian phenomenological ansatz, we first discuss
how observations of neutrinos from distant sources can aide in testing these scenarios in
section 3. Then, in section 4 we take the next step to see how well we currently understand
BSM effects in neutrino propagation as it pertains to Earth-based experiments. In practical
terms we do this by determining how well KamLAND, Daya Bay, T2K and NOvA measure-
ments constrain non-SM contributions to neutrino propagation, finding that KamLAND
has been particularly powerful. On the other hand, the upcoming JUNO experiment will
provide an even more powerful and complementary probe, breaking flat directions that
presently exist. Finally, section 6 offers some concluding remarks.
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2 Neutrino propagation from Källén-Lehmann

There is a broad literature concerning neutrino oscillation amplitudes, ranging from text-
book quantum-mechanical derivations to involved quantum field theory treatments. There
is little to be gained in repeating these analyses here, thus we focus on the core novel in-
gredient of this work, wherein the key addition to typical treatments, reviewed for example
in [10, 11], is to replace the free neutrino propagator and matrix elements found in QFT
treatments ∑

j

U∗αjUβj
/p+mj

p2 −m2
j + iε

, (2.1)

by the more general Källén-Lehmann propagator for spin-1/2 particles

GKL
αβ (p2) = i

∫ ∞
0

dµ2 /pρ̃αβ(µ2) + ραβ(µ2)
p2 − µ2 + iε

, (2.2)

where α and β denote the flavour eigenstate at the point of production and detection
respectively. This captures any new-physics effects on the propagation of neutrinos con-
sistent with the axioms of QFT and, essentially, promotes the sum over mass eigenstates
to a continuum integral. The assumptions employed in deriving this general form of the
propagator are broad but simple. They boil down to Lorentz-invariance, causality, and
the usual assumptions of quantum mechanics including positive-definite norm states and
boundedness of the Hamiltonian. Any BSM scenarios outside of these assumptions will
not, generally, be captured. For instance, Lorentz-violating neutrino interactions, theories
including ghost states, or propagation in Lorentz-violating backgrounds, cannot be cap-
tured. On the other hand, scenarios in which neutrinos have BSM decays modes will be
captured. This can be understood through the optical theorem, where a particle decay
width is related to the imaginary part of its propagator which is, in turn, given by ρ̃(µ2)
and ρ(µ2). This would apply to any hidden QFT sector interactions that influence neutrino
propagation including, for example, if the hidden sector is of an ‘unparticle’ type [12], with
a continuum of states.

The ρ functions here encode both the density of states, and the matrix elements
describing the overlap between the mass and interaction eigenstates. One recovers the
usual Feynman propagator if ρ̃(µ2) and ρ(µ2)/µ are identical and comprise delta functions
δ(µ2 − m2

j ). More general scenarios such as neutrino mixing with hidden sector states,
including for strongly-coupled hidden sectors, can be described by functions exhibiting a
discrete or continuous density of states.

Since the propagator above and the spectral functions ραβ(µ2) and ρ̃αβ(µ2) are ex-
pressed in the interaction basis, whose eigenstates need not coincide with those of the
vacuum Hamiltonion, the spectral functions need not be real nor obey the usual positivity
requirements satisfied by Källén-Lehmann functions. An exception is in the case α = β,
when the mapping between mass- and interaction-bases depends only on real, positive fac-
tors such as |Uαj |2. In this case, the spectral functions are required to be real, and both
ρ̃αα(µ2) and (µρ̃αα(µ2)− ραα(µ2)) are positive-definite.
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In all scenarios of interest, the neutrinos are ultra-relativistic. In this limit, chirality
and helicity eigenstates coincide and the spin structure can be factored out of the two-
point function. All the relevant oscillation physics is fully captured by the scalar amplitude
which itself can be represented via the scalar Källén-Lehmann propagator. In practice this
amounts to setting ρ̃(µ2) = 0 in eq. 2.2. Cataloguing the BSM possibilities for the neutrino
sector thus fundamentally reduces to the study of a single scalar function, ρ(µ2), which
will be the object of interest in what follows.

Following the standard QFT calculations with this modification, the probability for
neutrino flavour transitions for propagating neutrinos of momentum p is given by

Pαβ =
∣∣∣∣∫ ∞

0
dµ2e−i

√
µ2+p2Lραβ(µ2)

∣∣∣∣2 . (2.3)

In this statement we have applied the approximation L ≈ T , and are explicitly working in
the limit in which the full QFT calculation reproduces that obtained in QM. This requires
the additional assumption that the neutrino at the production and detection vertices can
be approximated as a plane wave, or equivalently that the neutrino wavepackets maintain
coherence over the entire distance of interest, L.

In order to expand
√
µ2 + p2, we must assume that all coherently-propagating neutri-

nos are relativistic. This requires that ραβ(µ2) does not have support for large µ2, which is
expected for light, oscillating neutrinos with large (above ∼MeV) energies. We thus have
that

√
µ2 + p2 ≈ E + µ2/(2E), and can express the transition probability as

Pαβ =
∣∣∣∣∫ ∞

0
dµ2e−i

µ2L
2E ραβ(µ2)

∣∣∣∣2 . (2.4)

This expression for the transition amplitude is simply the Fourier transform of the scalar
spectral function.

2.1 Two-flavour example

To make concrete headway we now turn to two-flavour mixing as characterised by the
unitary matrix

U =
(

cos θ sin θ
− sin θ cos θ

)
, (2.5)

which rotates flavour states (να, νβ) into mass eigenstates (ν1, ν2). For example, the να
survival probability thus follows from the spectral density

ραα = δ(µ2 −m2
1) cos2 θ − δ(µ2 −m2

2) sin2 θ , (2.6)

giving

P (να → να) = 1− sin2 2θ sin2
(

∆m2
21L

4E

)
, (2.7)

where ∆m2
21 ≡ m2

2 − m2
1. Similarly, the να → νβ (α 6= β) transition probability follows

from
ραβ = sin θ cos θ

(
δ(µ2 −m2

1)− δ(µ2 −m2
2)
)
, (2.8)
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giving

P (να → νβ) = sin2 2θ sin2
(

∆m2
21L

4E

)
. (2.9)

We see that the predictions from this formalism map to textbook expressions in this stan-
dard case.

2.2 Pseudo-Dirac neutrinos

A simple and well-known possibility that converts a single neutrino mass eigenstate into
multiple states is that of pseudo-Dirac neutrinos [2–9]. Structurally, the model consists of
Dirac neutrinos, preserving a lepton-number symmetry, supplemented by a small source of
explicit lepton-number violation which can be naturally small. This symmetry breaking
thus splits the Dirac neutrinos into two Majorana mass eigenstates. Explicitly, the usual
Lagrangian is

λνRLH + h.c., (2.10)

which (after electroweak symmetry breaking) generates a Dirac mass mD = λv/
√

2. The
small lepton-number violating Majorana mass term for the right-handed neutrino is

1
2Mν2

R + h.c. (2.11)

In the limit mD �M , this has physical mass eigenvalues

M± = mD ±
M

2 , (2.12)

and the mixing angle between the EW gauge eigenstate and the mass eigenstates is

tan(2θ) = 2mD

M
. (2.13)

When mD � M the mixing angle is approximately maximal, θ ≈ π/4. This furnishes a
basic example where the mass eigenstate that propagates from production to detection is,
microscopically, multiple states of different mass.

This can be generalised to three flavours by the introduction of 3 right-handed neu-
trinos, νRi, for i ∈ {1, 2, 3}. For simplicity, we take the alignment limit where the 3 × 3
Dirac and Majorana mass matrices can be simultaneously diagonalised. We shall hence-
forth refer to the diagonal entries of these as mDi and Mi respectively. The 6× 6 unitary
matrix describing the rotation of the {νeL, νeR, νµL, νµR, ντL, ντR} flavour states into the
mass eigenstates may be conveniently written as a product of 3 × 3 and 2 × 2 matrices,
defined as

Oαβab = UαβRab(θi) , (2.14)

where Uαβ is the usual leptonic mixing matrix and Rab is a 2 × 2 rotation matrix with a
rotation angle tan 2θi = 2mDi/Mi.

The spectral density for α to β flavour transitions is

ραβ(µ2) =
3∑
i=1

U∗αiUβi
[
cos2(θi)δ(µ2 −M2

i,−) + sin2(θi)δ(µ2 −M2
i,+)

]
, (2.15)

– 5 –
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where Mi,+,Mi,− refer to the masses of the physical Majorana mass eigenstates into which
the ith Dirac neutrino splits. Motivated by this, we now generalise further to a band of
states.

2.3 A band of neutrinos

One way a band of neutrino states can be realised is through a ‘clockwork’-inspired [13–
15] fermion ring. Consider N identical copies of the Standard Model enjoying a large
translation symmetry in theory space. These different sectors could have renormalisable
(hence relevant at low energies) couplings to one another through one of three portals:
Higgs, kinetic mixing and neutrino. We will focus on the latter and suppose the following
ring of couplings for a single flavour of neutrinos

Lλ = λ

q

j=N−1∑
j=1

LjHj(ψj − qψj+1) + LNHN (ψN − qψ1)

 , (2.16)

where the ψ are SM-neutral Weyl fermions, λ a small Yukawa coupling, and we assume
q > 1. Upon electroweak symmetry breaking in all of the sectors the collective neutrino
mass matrix, for one active flavour, becomes

Mν = mD

q



1 −q 0 · · · 0
0 1 −q · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1 −q
−q 0 0 · · · 0 1


, (2.17)

where mD = λv/
√

2. The physical eigenvalues of this mass matrix are

m2
j = m2

D

q2

(
1 + q2 − 2q cos

(2πj
N

))
. (2.18)

We thus have a band of N mass eigenstates centred at ∼ mD with a breadth of ∼ mD/q.
The overlap between these states and the flavour eigenstates is given by the elements of
the rotation matrix

Rjk =
cos

(
2πjk
N

)
+ sin

(
2πjk
N

)
√
N

. (2.19)

Thus, for instance, the overlap between the jth mass eigenstate of a given generation and
the interaction eigenstate in that sector of the ring is given by the elements R1j .

This can be further generalised to include 3 active generations of neutrino in each copy
of the SM, with (site-independent) couplings λα where α ∈ {1, 2, 3}. We take q to be the
same for each generation. In our conventions, the spectral density describing transitions
from the α to β flavour eigenstates is then

ραβ =
3∑
i=1

U∗αiUβi

 N∑
j=1

R2
1jδ(µ2 −m2

ij)

 , (2.20)

– 6 –
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where the mij refer to the masses of the N physical mass eigenstates of the ith generation.
This model essentially replaces any would-be SM Dirac neutrino mass eigenstate, of mass
∼ mD, by a band of states spread about this mass scale.

Some comments are in order. This model serves only to illustrate that such a scenario is
possible, but is not intended to advertise the model as being particularly strongly motivated
in its own right. Furthermore, many details of the model are not necessary in order to
realise the same qualitative scenario including, for instance, the translation symmetry that
enforces equal q at each site which could be softly broken.

Finally, a brief comment on cosmology. If each sector were truly identical then it
would be necessary that only the SM sector is reheated at the end of inflation, otherwise
the neutrinos and photons of the hidden sectors would presumably lead to inconsistencies
with cosmological observations. It may also be the case that the reheating temperature is
necessarily low to avoid over-populating the other neutrino states.

2.4 Theory-space perspective

To understand the phenomenology of these more exotic scenarios it is instructive to consider
the process in terms of the ‘theory-space’ sites, borrowing terminology from dimensional
deconstruction [16, 17]. Consider an N -site band model. Only one of the sites corresponds
to an active, and potentially measurable neutrino. The remaining N − 1 sites are sterile.
When we talk of physically measurable neutrino oscillations, we refer to the probability of
starting in the active flavour eigenstate of the (α) generation and being measured in the
active flavour eigenstate of the (β) generation at some later time, however here we will
focus on a single-generation case.

Since the starting active flavour eigenstate is some superposition of the N mass eigen-
states through which the system evolves, there will be a generally non-zero probability of
being in one of the other N − 1 sites when a neutrino is detected. In general, the higher
the value of N , the lower the detection probabilities become due to the greater number of
available sites to which the system has evolved during propagation.

To illustrate this, we consider the specific case of N = 6, corresponding to one active
neutrino site and 5 sterile sites. In the main panel of figure 2 we consider initialising the
system in the active flavour state, which we number as state 1, and plot the overlap of the
time-dependent state with the ith site eigenstate as a function of the measurement time.
Due to the discrete rotational symmetry in theory space the curves for i = 5 and i = 6
overlap exactly with those of states i = 3 and i = 2 respectively, so they are not visible on
the plot. The inset images show the overlap with each site at a time tj and thus how the
measurement probability is distributed between the 6 sites. When viewed chronologically
they illustrate the flow of probability in theory-space, which repeats periodically. As N is
increased, the time taken to return to the starting distribution in which the system is in
the active state increases, as there are a greater number of sites for the probability to flow
through first.

– 7 –
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Figure 2. The flow of probability around the ring of fermions for N = 6 sites and q = 103. The
neutrino is initialised at t = 0 in the active, i = 1 state and, as time evolves, may overlap with the
other N − 1 sites, before returning to a maximum of being detected in the n = 1 state again after
a time T . The probability that the system is in the ith site on measurement after a time t is shown
in the main figure, in units of the cycle period T . The circular bar charts illustrate, to scale, the
flow of probability around the sites, plotted in the same colours as in the main figure, at a number
of instances. The inner and outer concentric dashed circles denote measurement probabilities of 0.5
and 1 respectively.

2.5 A phenomenological ansatz

The two scenarios considered above are just examples of the rich landscape of BSM pos-
sibilities for the neutrino sector. Whilst it is of course possible to construct the relevant
spectral function for any given model, calculate the transition probabilities, and extract the
bounds from experimental data, this process would need to be undertaken separately for
each individual model under consideration. Given the number and range of theoretical pos-
sibilities, a comprehensive survey is not only cumbersome, but fundamentally not feasible.
Experimental analyses are thus typically limited to a handful of the simplest models.

We find that over the energies probed by existing oscillation experiments, the n-flavour
oscillation probability distributions arising from both the pseudo-Dirac and band models
can be sufficiently mimicked by a spectral function consisting of n top-hat functions. With
respectively discrete and quasi-continuous spectral functions, the pseudo-Dirac and band
cases span a broad landscape of plausible spectral functions and it is thus reasonable to
expect the top-hat set-up to be capable of reproducing neutrino oscillation probability
distributions for a broad range of microscopic scenarios. In this section, we will thus derive
the general form of the transition probability generated by top-hat functions.

– 8 –
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ρ(µ2)

µ2
0

∆m2
21 ∆m2

32

m2
2m2

1 m2
3

b1 b2 b3

Figure 3. Sketch of the form of the top-hat ρs(µ2) for 3 flavour oscillations as defined in eq. 2.21.
The bold arrows represent the δ-function eigenstates of the standard scenario.

To this end, we begin by focusing on three-neutrino oscillations, replacing the delta
functions (three at m2

i ) of the canonical spectral function with top-hat functions of (gener-
ally different) breadths bi centred at these values. Explicitly, we parametrise the spectral
function as

ρee(µ2) =


1
b1
|Ue1|2 = 1

b1
cos2 θ12 cos2 θ13, m2

1 − b1
2 ≤ µ

2 ≤ m2
1 + b1

2
1
b2
|Ue2|2 = 1

b2
cos2 θ13 sin2 θ12, m2

2 − b2
2 ≤ µ

2 ≤ m2
2 + b2

2
1
b3
|Ue3|2 = 1

b3
sin2 θ13, m2

3 − b3
2 ≤ µ

2 ≤ m2
3 + b3

2
0, otherwise

 . (2.21)

This is illustrated schematically in figure 3. We note that current measurements of the
leptonic mixing matrix indicate |Ue3|2 � |Ue1|2, |Ue2|2.

Upon taking the Fourier transform, we arrive at the amplitude

iAee =
3∑
i=1

sinc
(
Lbi
4E

)
|Uei|2e

−iLm2
i

2E , (2.22)

and probability

P (νe → νe) =
(∑

i

sinc (αi) |Uei|2
)2

− 4
∑
i<j

|Uei|2|Uej |2sinc (αi) sinc (αj) sin2 (∆ji) ,

(2.23)

where ∆ji ≡ ∆m2
jiL/(4E) and αi ≡ biL/(4E). We note that since we are treating neutrino

propagation in vacuum, the probability for antineutrino oscillations, νe → νe, is identical.
For the case of equal breadths, b1 = b2 = b3 = b, this simplifies to

P (νe → νe) = sinc2
(
Lb

4E

)[
1− sin2 2θ12 cos4 θ13 sin2 ∆21

− sin2 2θ13
(
cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32

) ]
, (2.24)
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e
→
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PD: Mi = Mi∗
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−0.001
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0.001

∆
P

(a) Comparison of 3-flavour oscillation probabilities generated by a density of
states comprised of 3 top-hat functions with fractional breadths b̃i = 0.005, and
a pseudo-Dirac density of states with masses (M1,M2,M3) = (1.23, 1.21, 1.39)
×10−4eV, selected by performing a least squares fit to the top-hat probability
distribution. The lower panel shows the fit residuals.

µ2(eV 2)

ρ
(µ

2 )

∆m2
32

0.01

PD: Mi = Mi∗

Standard Case: b̃i = 0

Top Hat: b̃i = 0.005
∆m2

21

(b) A plot of the spectral function ρ(µ2) for these two models with the same
parameters as in (a). Also shown is the triple δ-function density of states corre-
sponding to the canonical scenario. The heights of the top-hat functions relative
to each other are plotted to scale but the vertical extent of the (formally infinite)
δ-functions for the pseudo-Dirac and conventional models are intended for illus-
trative purposes only.

Figure 4. Evaluation of the top-hat phenomenological ansatz defined in section 2.5 to capture the
oscillation behaviour of pseudo-Dirac models as detailed in section 2.2.

which we identify as the standard probability expression modulated by a factor of sinc2
(
Lb
4E

)
.

We emphasise that these expressions only depend on the relative spacing of the states in
µ2 and not on their absolute value.
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(a) Comparison of 3-flavour oscillation probabilities generated by a density of
states comprised of 3 top-hat functions with fractional breadths b̃i = 0.005, and a
N = 10 band density of states. The value of q = 987.2 was selected using a least
squares fit to the top-hat probability distribution.

µ2(eV 2)

ρ
(µ

2 )

∆m2
32
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Band: N = 10, q = q∗
Standard Case

Top Hat: b̃i = 0.005
∆m2

21

(b) A plot of the spectral function ρ(µ2) for these two models with the same
parameters as in (a). Also shown is the triple δ-function density of states corre-
sponding to the canonical scenario. The heights of the top-hat functions relative
to each other are plotted to scale but the vertical extent of the (formally infinite)
δ-functions for the band states and conventional model are intended for illustra-
tive purposes only.

Figure 5. Evaluation of the top-hat phenomenological ansatz defined in section 2.5 to capture the
oscillation behaviour of band models as defined in section 2.3.
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For the purpose of this exercise we assume a normal neutrino mass ordering and set m3
to have an absolute value of 0.1 eV. We then fix m1 and m2 according to m2

i = m2
3−∆m2

3i
for i ∈ {1, 2}. We use the current best fit values of the ∆m2

ij and the mixing angles as
determined by existing experiments.2 We parametrise the breadths of the top-hat states
according to a fractional value relative to the mass squared, b̃i ≡ bi/m2

i . For reference, we
highlight that at b̃1 = 0.01, b1 ≈ ∆m2

21 and the spectral gap between the top-hats of state
1 and state 2 vanishes.

We now seek to demonstrate the capability of the top-hat to capture the phenomenol-
ogy of the specific microscopic models introduced earlier. To approach this, we generate the
(anti-)electron survival probability distribution as a function of baseline length over energy
(L/E) for a given set of top-hats breadths (b1, b2, b3), and perform a least squares fit of the
pseudo-Dirac and band probability distributions over the range L/E ∈ [5, 30] km/MeV,
treating the set (M1,M2,M3) as free parameters in the former and fixing N and fitting for
q in the latter. As an illustration, we consider a top-hat set up with fractional breadths
b̃i = 0.005 which, for reference, corresponds to b1 ≈ 0.5∆m2

21. Figure 4 (a) compares the
probability distribution for this set up with that generated by the best fit of the pseudo-
Dirac model. The best fit parameters are (M1,M2,M3) = (1.23, 1.21, 1.39)× 10−4 eV. The
residuals for the fit are shown in the lower panel and show a disagreement of less than
0.1% over the domain probed by JUNO. In figure 4 (b) we plot the density of states for
these models with the parameters required for matched probability distributions as detailed
above. Also shown is the triple δ-function spectrum of the canonical scenario. Whilst the
heights of the top-hat states relative to each other are plotted to scale, the vertical extent
of the (formally infinite) δ-functions for both the pseudo-Dirac model and the standard
case are for illustrative purposes only. We observe that probability matching occurs when
the breadth of the top-hat function for a given state is roughly twice the pseudo-Dirac
mass splitting of that generation.

In figure 5 (a) we show the agreement between the same top-hat density of states,
with the best fit of the band model for N = 10, which is achieved for q = q∗ = 987.2.
Once again we see an excellent agreement of within 0.1% over the JUNO energy range. As
seen in the comparison of the spectral densities for the matched cases shown in figure 5
(b), the breadth of the top-hat of a given state should slightly exceed the breadth of the
band. Note that whilst there are 10 mass eigenstates for each generation, degeneracies of
the mass values of some states means that they do not appear as distinct lines on the plot.

Whilst we have merely shown matching to a single choice of top-hat breadths here, we
have found that it is always possible to tune the model parameters to achieve an excellent
agreement of the probability distributions for any set of top-hat breadths, and thus from
the reverse perspective, to be able to find a choice of top-hat breadths which reproduce
the probability distributions of these models for any given set of parameters.

2Explicitly we take sin2 θ12 = 0.3, sin2 θ13 = 2.2 × 10−2, ∆m2
21 = 7.4 × 10−5 eV2, and ∆m2

31 = 2.5 ×
10−3 eV2 [18].
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Figure 6. Plots of the anti-electron neutrino survival probability as a function of L/E for the
3-flavour top-hat density of states set up as defined in section 2.5 for the case where only one of the
three states has a finite breadth, of fractional value b̃ = 0.03 and the remaining two are δ-functions.
Also shown for comparison is the probability distribution for the standard scenario in which the
density of states comprises of 3 δ-functions (bi = 0).

2.6 The top-hat landscape

Given their ability to capture the probability distributions of some specific theoretical
models, it serves to explore the phenomenological space that can be spanned by top-hat
spectral densities in this way. We will address this by exploring the effect on the transition
probability of different top-hat breadths. We initially consider the case where only one of
the three states has a finite breadth, and the remaining two are δ-functions. In figure 6 we
plot the probability distributions generated by setting b̃ = 0.03 for the non-zero breadth
state. This comprises of O(1) amplitude oscillations driven by ∆m2

21 on which a smaller
amplitude, higher frequency, oscillation driven by ∆m2

13 is superimposed. We note that the
impact of broadening the third top-hat in the spectral function is to damp the amplitude
of the ∆m2

13 oscillations. As apparent from eq. 2.23, modifications to the large amplitude
∆m2

21 oscillations arise from the sinc terms in b1 and b2, and thus occur on broadening of
the breadths of the first and second top-hat states.

To gain a handle on the top-hat breadths required to produce measurable deviations
from the standard case, we consider the impact on the probability distribution of setting
b̃1 = b̃2 = b̃3 = b̃, such that the breadths of the three states relative to their central
mass-squared are equal. We plot the transition probability for increasing values of b̃ in
figure 7. Very little deviation from the standard probability distribution occurs for b̃ .
0.002, the point at which b1 ≈ b2 becomes sizeable (∼ 20%) relative to ∆m2

21. By nature
of their larger amplitude, the greatest overall modifications to the probability distribution
will arise from modifications to the ∆m2

21 oscillations and thus the degree of deviation
from the standard probability distribution is largely controlled by the comparative sizes of
b1 ≈ b2 and ∆m2

21. Increasing b̃1 (or b̃2) both increases the frequency, and decreases the
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Figure 7. Plots of the anti-electron neutrino survival probability as a function of L/E for the
3-flavour top-hat density of states as defined in section 2.5 with b̃1 = b̃2 = b̃3 = b̃, for various
values of b̃. The case b̃i = 0 corresponds to the standard scenario in which the density of states is
comprised of 3 δ-functions.

extent of the central peak, of (one of) the sinc functions modulating the ∆m2
21 oscillations.

If b1 � ∆m2
21, the entire energy range probed by JUNO lies approximately at the central

peak of the modulating sinc function. In the opposing regime, the JUNO energy range
falls in the tails of the sinc function and probability is driven towards zero. If b1 and ∆m2

21
are of the same order, the probed energy range lies on the falling edge of the sinc function
central peak and we see sizeable corrections to the probability, which increase with L/E.
For reference, we note that for the set of masses used in this figure, b1 ≈ ∆m2

21 when
b̃1 ≈ 0.01 .

3 The decoherence limit

When propagating over long distances the neutrino wave packets will ultimately decohere,
leading to asymptotic neutrino detection probabilities. One may recall this from the stan-
dard two-neutrino treatment, wherein for ∆m2

21L � 4E, there are many oscillations such
that

sin2
(

∆m2
21L

4E

)
→ 1

2 , (3.1)

and the survival probability asymptotes to

P (να → να) = 1− 1
2 sin2 2θ. (3.2)

Due to our simplifying ansatz of flavour alignment, these same limits factorise within the
various scenarios considered above, when L/E is much larger than any mass-squared-
separation scale of interest for the model at hand.
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In this limit, coherence is lost among the mass eigenstates and simplified expressions
for the various models may be found.

For the pseudo-Dirac case, assuming all mass eigenstates having splittings such that
coherence is lost amongst them, the probabilities become

Pαβ =
3∑
i=1

(U∗αiUβi)2
[
cos4(θi) + sin4(θi)

]

→ 1
2

3∑
i=1

(U∗αiUβi)2 , (3.3)

where in the final expression we have employed the limit M � mD, thus θi → π/4.
Importantly, note that this is a factor 1/2 smaller than the corresponding standard three-
neutrino result in the decoherence limit.

Now consider the band model, again with a band splitting for each mass eigenstate that
is great enough for coherence to be lost amongst the band. In this case the probabilities
become

Pαβ =
3∑
i=1

(U∗αiUβi)2
N∑
j=1

R4
1j

→ 3
2N

3∑
i=1

(U∗αiUβi)2. (3.4)

The emerging pattern is physically intuitive. Given a long-enough propagation distance
the individual mass wave packets separate. In these flavour-aligned models, what would
have been one mass eigenstate is replaced by N individual separated states, of which an
effective N − 1 are sterile and undetectable. The overall numerical coefficient depends on
the specific details of the model, however the suppression of the resulting signal universally
scales inversely proportionally to the number of available states.

Since the top-hat model effectively corresponds to an infinite number of states, one
would expect that in the decoherence limit the various detection probabilities would asymp-
totically vanish. In this case the electron neutrino survival probability asymptotes to

P (νe → νe) →
∑
i

1
2

( 4E
Lbi

)2
|Uei|4 , (3.5)

which indeed vanishes asymptotically as an inverse quadratic of the length scale. This
will be important when we come to consider experimental constraints. Furthermore, the
mixing angles are also important. For instance, one has

|Ue1|4 ≈ 0.5 , |Ue2|4 ≈ 0.09 , |Ue3|4 ≈ 5× 10−4 , (3.6)

hence, depending on the situation, it may be that constraints on the survival probability
of the total electron neutrino flux will only likely significantly constrain broadening in the
lightest neutrinos.
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In the following subsections, we discuss how observations of neutrinos from very distant
sources can, in principle, place strong constraints on broadened neutrinos through nonzero
bi. In contrast, sections 4 and 5 will demonstrate how terrestrial, neutrino-oscillation
focused measurements, are an interesting avenue to potentially discover a nonzero bi.

3.1 Supernova constraints

Let us first consider the longest baseline constraints arising from the detection of SN1987A
neutrinos by Kamiokande-II [19, 20], IMB [21, 22], and Baksan [23]. Constraints on the
pseudo-Dirac case were considered in ref. [9], which informs our comments here. In ref. [9] it
was found that constraints were not strong in the decoherence limit since the flux reduction
by a factor of 2 could be accommodated by a doubling of the supernova energy. Stronger
limits were found for mass splittings in the L/E-range corresponding to SN1987A as this
modifies the energy-dependence of the spectrum. However, in this work we are interested
in large mass splittings ∆m2 � 10−19 eV2, such that the full decoherence limit is reached.
We would thus expect that in the band model there would be similar flexibility, such that
N = 3 would be acceptable, and perhaps even larger. On the contrary, for the top-hat
ansatz we would expect a significant suppression of the signal for a universal breadth of
b� 10−19 eV2.

There is, however, the aforementioned caveat which concerns the universality of the
breadth. We will illustrate this with the top-hat case, although similar aspects apply to the
other two models. Due to the smallness of |Ue2|4 and |Ue3|4, from eq. 3.5 it appears there
would be no strong constraint on b2 and b3, since a reduction of the flux due to decoherence
in these modes would not be sufficient to generate tension with observations. On the
contrary, we expect a limit in the ballpark of b1 . 10−19 eV2 applies, otherwise the neutrino
flux would be too greatly depleted. The analysis of ref. [9] assumed universal splittings,
however it would be interesting to repeat this analysis under non-universal assumptions,
especially with application to the models considered here.

3.2 Solar constraints

The case for solar neutrinos is somewhat more complex. While matter effects are important,
it is still ultimately the element |Uei|4 which controls the magnitude of electron neutrino
disappearance on broadening the ith mass eigenstate. However, the overall fluxes are
measured with greater precision and the physics of production understood with greater
certainty. As a result, one again expects the most significant constraints on b1, however
constraints on b2 may also be relevant. Estimating that strong constraints arise whenever
Lbi/E � 1, then for typical solar neutrino energies and the Earth-Sun baseline one expects
the limits to be in the region of b1 . 10−12 eV2.

Solar constraints on the pseudo-Dirac case were studied in detail in ref. [6], where
indeed limits which would roughly correspond to b1 . 10−12 eV2 were found, however in this
case constraints in the region of b2 . 10−11 eV2 also arise, due to the well-measured neutrino
flux which gives sensitivity to effects at the |Ue2|4-level. Which width is most strongly
constrained is determined from an interplay between the precision of measurement and the
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magnitude broadening effect which, since it is controlled by the parameter combination
∼ bjL/E, is stronger at lower energies for a given fixed width and baseline.

3.3 Atmospheric & astrophysical constraints

Due to the typical baseline and energies involved, one expects constraints from atmospheric
neutrinos to be at the level of bi . 10−4 eV2. However, as we will demonstrate in section 4,
future long-baseline reactor antineutrino experiments will probe smaller breadths for all bi,
and thus we will not consider atmospheric constraints further here.

Finally, the observation of extragalactic neutrinos at neutrino observatories [24, 25]
can provide an additional handle on neutrinos traveling great distances. Measuring the
ratios of different flavours of the neutrinos upon arrival at Earth [26, 27] can, in principle,
help in constraining many of the models discussed here, however, such constraints would
be subject to uncertainties on the overall neutrino flux, among others. Nevertheless, as
precision improves [28], the BSM power of these measurements should be considered in
more detail.

3.4 Summary

It is clear that astrophysical probes of neutrino oscillations allow for baselines that go
deep into the decoherence regime. Indeed, due to the form of the PMNS matrix they lead
to very strong constraints on the breadth of the lightest mass eigenstate, at the scale of
b1 . 10−19 eV2 and slightly weaker constraints at the level of b2 . 10−11 eV2. However,
they do not probe b3 with the same power due to the smallness of |Ue3|2. Moreover, these
observations all probe the physics of broadened neutrinos in the decoherence (classical)
regime as opposed to making measurements where the propagating neutrinos maintain
coherence.

As a result, in section 4, we turn to terrestrial probes of neutrino breadths for all mass
eigenstates, for their novelty in probing the quantum interference effects of broadened
neutrinos, and also as a complementary probe to the methods discussed in this section,
subject to a very different set of measurement techniques and assumptions.

4 Terrestrial experiments for constraining spectral functions

Having discussed the strengths and weaknesses of very long-baseline, astrophysical con-
straints on neutrino breadths in section 3, we now shift our focus to terrestrial neutrino
oscillation experiments. Section 2 established our phenomenological description of the neu-
trino spectral functions; now we explore these experiments and their ability to test this
scenario. In developing this phenomenological approach, we have focused on the case where
neutrinos are propagating for long proper times (large L/Eν) in vacuum, where their in-
teractions with any matter along the path of propagation can be neglected. To date, the
experiments consistent with this assumption are those measuring oscillations of electron
antineutrinos νe produced in nuclear reactors. These oscillations, with Eν ∼ 1−10MeV,
have been measured at a variety of baseline lengths, allowing for world-leading measure-
ments of both mass-squared splittings ∆m2

21 and ∆m2
31 in the standard framework. A
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second class of experiments measure the oscillations of νµ produced at ∼GeV energies in
proton-induced neutrino beams, travelling hundreds of kilometers. These νµ disappearance
experiments offer comparable sensitivity to ∆m2

31 and operate in a similar L/Eν regime to
the reactor antineutrino experiments.

Reactor antineutrino νe experiments. The most precise measurements of reactor
antineutrinos are those from KamLAND [29–31], with baselines of L ≈ 200 km, and Daya
Bay [32–36], with baselines L ≈ 1 km. These two correspond to measurements at L/E ≈
40 km/MeV and 0.5 km/MeV, respectively. Due to the hierarchicy between ∆m2

21 ≈
7.5×10−5 eV2 and ∆m2

31 ≈ 2.5×10−3 eV2, KamLAND is sensitive to oscillations driven by
∆m2

21 (where oscillations due to ∆m2
31 have averaged out over the energy uncertainty of its

detector) and Daya Bay is sensitive to oscillations driven by ∆m2
31 (where the oscillations

due to ∆m2
21 have yet to develop significantly at the Daya Bay L/E ranges). Because of this,

we expect that when studying the generalised spectral functions described in section 2.5,
KamLAND will be sensitive to nonzero b1 and b2 on the order of ∆m2

21 and that Daya Bay
will be sensitive to b3 on the order of ∆m2

31.
In simulating KamLAND, we develop our analysis to match the results of the most

recent collaboration results in ref. [31]. This is modified from analyses from refs. [37, 38]
built off the collaboration results of ref. [30] to include a broader range of L/E for the
greatest possible sensitivity to the bi. We have verified that with bi set to zero, our analysis
roughly reproduces the results of ref. [31] by weighting the different reactor contributions
to the final result properly and averaging over the L/E ranges considered. We also include
a correlated 4.1% systematic normalization uncertainty as done in ref. [30] to arrive at our
results.

Our simulation of Daya Bay is modified from the analysis of ref. [39] (see ref. [40]
for further discussion), developed to match the official results from ref. [35]. This includes
nuisance parameters reflecting the systematic uncertainty associated with the neutrino flux
for each bin in the analysis, correlated across the three experimental halls of Daya Bay,
allowing for reduced dependence on the neutrino flux prediction for the results. Refs. [39,
41] provide further details for the simulation of neutrino event-rate expectations at Daya
Bay in the context of additional sterile neutrino species.

We also consider the possibility of testing these phenomenological spectral functions in
the future, namely by the JUNO [42, 43] experiment. JUNO is a medium-baseline reactor
experiment that will measure antineutrino oscillations with L ≈ 50 km, in the L/E regime
between that tested by Daya Bay and KamLAND. This will allow JUNO to simultaneously
measure oscillations driven by the two mass-squared splittings in a precise way. Previous
analyses, including refs. [44–49], have demonstrated that JUNO is an impressive discovery
ground for BSM physics — here, we demonstrate that in our broad-neutrino framework,
JUNO will be sensitive to all three spectral-function breadths bi simultaneously, and should
exhibit impressive capability in searching for nonzero bi’s. To simulate JUNO we use the
same analysis described in refs. [37, 38], modified to accommodate our scenario. We refer
the reader to refs. [37, 38] and references therein for more detail. Notably, the simulation
that we use here includes a correlated flux systematic uncertainty of 2%, an uncorrelated
uncertainty of 0.8% for each reactor considered, and a spectral shape uncertainty of 1%.
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Figure 8. Oscillation probability for reactor antineutrinos as a function of L/E for the standard
three-neutrino case (grey) and including nonzero spectral-function breadths as indicated in the
legend (blue). We shade the regions of L/E probed by existing/future experiments Daya Bay (red),
JUNO (purple), and KamLAND (green).

The relevant L/E ranges of these three reactor antineutrino experiments are displayed
in figure 8. Each experiment’s L/E range is shown as a shaded box, with Daya Bay,
JUNO, and KamLAND in red, purple, and green, respectively. We also show the oscillation
probability P (νe → νe) as a function of L/E that is/can be measured by these three
experiments. We display oscillation probabilities for two cases: grey for the standard three-
neutrino scenario3 and in blue where we additionally include nonzero spectral-function
breadths, b1 = b2 = 0.1∆m2

21 and b3 = 0.1∆m2
31.

Here, the advantage of exploring these effects at large L/E is clear, as in figures 4–7.
Because KamLAND operated at such large L/E, we would expect powerful sensitivity.
However, not present in this figure (but present in our simulations) are the effects of
finite energy resolution by the respective detectors. For instance, KamLAND has larger
energy uncertainty than JUNO will and therefore is not as sensitive to fast, ∆m2

31-driven
oscillations in its range of L/E (and does not have sensitivity to b3). Thus, despite its
lower L/E, we expect JUNO to be the most powerful of these three.

Long-baseline νµ disappearance experiments. Throughout this work, we are inter-
ested in scenarios where neutrino propagation in vacuum is a suitable description. While
modern-day (and future) long-baseline experiments measuring P (νµ → νe) require the
consideration of neutrino interactions with matter for an accurate calculation of oscilla-
tion probabilities, the disappearance probability P (νµ → νµ) and its CP-conjugate are
insensitive to standard matter effects for the baselines/energies of interest.

3Assuming the same values for the mass splittings and mixing angles as stated in section 2.5.

– 19 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
6

For that reason, and for complete comparison against the tests from reactor antineu-
trino measurements, we include adapted simulations of the T2K [50] and NOvA [51] ex-
periments from ref. [52] to account for these effects in long-baseline νµ → νµ and νµ → νµ
oscillations. The oscillation probabilities follow from eq. (2.23) with the substitution
|Uei|2 → |Uµi|2. When considering present T2K and NOvA results, we consider only
statistical uncertainties when determining constraints on bi — such an approach has been
demonstrated to be sufficient, even in the context of new-physics searches, in refs. [53, 54]
among others.

We also consider future long-baseline experiments DUNE [55, 56] and Tokai to Hyper-
Kamiokande (T2HK) [57, 58], which we will comment on in section 5. For these future
projections, flux normalization uncertainties of 5% are incorporated to better reproduce
the experiments’ expected sensitivities.

In the context of figure 8, all of these experiments are situated at a similar L/E to
Daya Bay. Therefore, we expect sensitivity to b3 but not competitive with what JUNO
will have to offer in the coming decade, due to JUNO’s larger L/E and powerful energy
resolution.

5 Current & future constraints on spectral functions

In this section, we provide the current constraints on the breadths b1, b2, and b3. For
simplicity, we will focus on the scenario in which the neutrino masses follow the normal
ordering m3 > m2 > m1. We will present results in terms of the dimensionless b̃i ≡ bi/m2

i .
We choose m1 = 10−2 eV as a benchmark for this presentation. Given the discussion in
section 2, we expect that the constraints on bi from these experiments would be largely
unchanged if we considered the inverted mass ordering m2 > m1 > m3, however the
dimensionless b̃i would given the change in the overall m2

i .
When analysing current data, to estimate the constraints on b̃i, we marginalise over

the relevant “standard” oscillation parameters in a given analysis. For KamLAND, this
means marginalising over sin2 θ12 and ∆m2

21, for Daya Bay, sin2 θ13 and ∆m2
31, and for

our analysis of T2K and NOvA’s νµ disappearance channels, ∆m2
31 and sin2 θ23. This

additional parameter space, relative to fixing the standard oscillation parameters to their
best-fit values, leads to a factor of ∼two reduction in constraining power of the b̃i in some
cases, similar to effects observed in ref. [46] in the context of neutrino decoherence searches.

We present current constraints on the three b̃i in figure 9. We find that current data
from KamLAND, Daya Bay, T2K, and NOvA are consistent with b1 = b2 = b3 = 0.
Here, we compare 1σ (dotted), 2σ (dashed), and 3σ (dashed) constraints for the different
experiments, KamLAND in blue, Daya Bay in green, and a combined analysis of T2K and
NOvA in orange. As expected from our discussion in section 4, we find that KamLAND
has strong sensitivity to b̃1 and b̃2, but no sensitivity to b̃3. In contrast, Daya Bay and
the long-baseline νµ disappearance measurements are able to constrain b̃3. The 2σ and 3σ
Daya Bay constraints do not appear on this space as they are cannot constrain b̃3 < 1 at
this level.
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Figure 9. Current constraints from KamLAND (blue), Daya Bay (1σ only, green), and long-
baseline νµ disappearance measurements from T2K and NOvA (orange) at 1, 2, and 3σ CL (dotted,
dashed and solid respectively) on the reduced breadths bi, relative to the overall neutrino-masses-
squared when we assume m1 = 10−2 eV.

b̃1 b1 [eV2] b̃2 b2 [eV2] b̃3 b3 [eV2]
Current 5.7× 10−2 5.7× 10−6 1.6× 10−1 2.8× 10−5 5.3× 10−1 1.4× 10−3

Future 5.1× 10−2 5.1× 10−6 4.0× 10−2 7.0× 10−6 1.3× 10−2 3.3× 10−5

Table 1. Current and future (expected) terrestrial constraints on b̃i ≡ bi/m
2
i and bi at 1σ confi-

dence.

In contrast, future projections on b̃i from JUNO are displayed in figure 10, compared
against KamLAND’s constraints. Note that we have changed the axes ranges here such
that the Daya Bay, T2K, and NOvA constraints are no longer visible. Additionally, we have
explored the capability of the future T2HK and DUNE measurements of νµ disappearance
in this context; their sensitivities are both also outside the range shown in figure 10 —
they have the power to constrain b̃3 . 7× 10−2 and have no sensitivity to b̃1 nor b̃2.

Taking this set of constraints, we can derive 1σ upper limits on b̃i as well as bi given
our benchmark m1 = 10−2 eV, which we present in table 1. While the b̃i are useful for
dimensionless comparisons, the future sensitivity on the absolute bi are notable in their
own right, demonstrating sensitivity to meV-scale phenomena.
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Figure 10. Expected future constraints by JUNO (purple) in the absence of a new-physics signal
in the parameter space of b̃i, compared against the current constraints from KamLAND (blue).
Compared to figure 9, the data range here is so narrow that the constraints from Daya Bay, T2K,
and NOvA do not appear.

6 Conclusions

For decades the neutrino sector has provided us with a unique window through which to
study the hidden world of matter. Indeed it remains a theoretically well-motivated location
to hunt for new physics. With new neutrino oscillation observatories planned for the near
future, it is timely to explore the diverse theoretical and experimental BSM landscape of
neutrino oscillations.

In light of this, we have proposed a new general framework to organise future explo-
rations of the neutrino sector, capturing new physics effects on neutrino propagation in
a single spectral function. We demonstrated how this language both reproduces conven-
tional neutrino flavour oscillation calculations, and is simultaneously capable of describ-
ing the phenomenology of more exotic theoretical models including those with discrete
and continuous mass spectra. The relevant phenomenological features can in both cases
be mimicked by a ‘toy’ mass-spectrum comprising three top-hat functions with a model-
specific choice of breadths. We emphasise that this top-hat set up should not be considered
a concrete theoretical model, but moreover as a convenient phenomenological ansatz offer-
ing the possibility of model-independent analyses of experimental data. Instead of having
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to sequentially re-interpret searches for different theoretical models, one can equivalently
constrain the ‘breadth’ of neutrino spectral functions and thus probe the nature of neu-
trino propagation effects directly. In the instance of a positive hint for a non-zero neutrino
breadth, whilst there may not be a unique invertible mapping from a given set of top-
hat breadths to the true mass spectrum, a preference for top-hat functions of non zero
breadth is likely to indicate the presence of extra states in the mass-spectrum, and thus
the existence of additional sterile neutrinos.

After discussing how long-distance neutrino measurements can test this non-zero
breadth in section 3, we demonstrated the utility of this approach with terrestrial ex-
periments in sections 5, where we explored the landscape of existing and future oscillation
experiments and compared their capacity to probe new physics in neutrino propagation.
We found that the long-baseline anti-electron neutrino oscillation experiment KamLAND
constrains the breadths of the two lower mass states to remarkable sensitivity but provides
no information on the breadth of the third state. Daya Bay and current long-baseline νµ
disappearance searches close this gap somewhat, but current constraints are comparatively
weak. The near-future mid-baseline anti-electron neutrino experiment JUNO is projected
to significantly improve upon the sensitivities of existing searches, most noticeably for that
of the third, highest mass, state.

We highlight that whilst current data is consistent with the predictions of the con-
ventional 3-neutrino model, the possibility of finite breadths are by no means excluded,
particularly for the highest mass state, m3. Finding new physics in the neutrino sector is
possible, as testified by the rich and diverse range of BSM scenarios considered in liter-
ature. Armed with the tools to probe the neutrino mass spectrum in a general manner,
this framework offers a useful and previously unexploited manner by which to harness the
capabilities of future experiments to answer the question: how broad is a neutrino?
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