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1 Introduction

Recently, the Event Horizon Telescope [1] astounded the world with the first image of a
black hole at the center of our galaxy. Instead of pictures, we search for “words” to describe
black hole microstates. The seminal work of Strominger and Vafa [2] matching the area
of a black hole horizon with the counting of microstates has fundamentally changed our
perception of string theory and quantum gravity. Not only did it fortify the legitimacy of
string theory as a consistent theory of quantum gravity, but it also revealed that black
hole horizons contain a large amount of quantum information, contrary to the classical
no-hair theorem. Extracting and decoding this information is key to unveiling profound
fundamental aspects of black holes. While [2] sparked bustling activity in counting black
hole microstates, much less effort has been invested in uncovering the properties of the
states themselves.

The AdS/CFT duality provides a rigorous framework to attack this problem. The
Bekenstein-Hawking entropy of an asymptotically-AdS black hole is dual to the statistical
entropy of a thermal state in the conformal field theory (CFT) living at the boundary of
the AdS space. In the classic correspondence between the type IIB superstring theory on
AdS5 × S5 and the N = 4 super-Yang-Mills (SYM) theory with gauge group SU(N), the
entropy of electrically-charged rotating BPS black holes in AdS5 [3–7] was expected to be
reproduced by the superconformal index of the CFT [8]. However, due to large cancellations
between bosonic and fermionic states at nearby charges, the superconformal index at real
saddle points is not large enough to account for the growth of the number of black hole
microstates. It was then realized in [9], building on prior observation by [10], that the black
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hole entropy is related to a complexified Euclidean on-shell action. The complexified bulk
geometry identified a set of complex fugacities, and the superconformal index of the CFT
with such fugacities exactly reproduced the black hole entropy [9, 11, 12].1

In light of these triumphs, it is natural to take one step further and try to understand
not just the number of black hole microstates, but to find their precise holographic dual,
which by the state/operator correspondence are local operators in N = 4 SYM. This
problem has two parts:

1. Enumeration of BPS operators. This has been studied at weak coupling in [52–55], by
organizing them into the cohomology of a supercharge Q on the Fock space of single-
trace and multi-trace operators.2 The weak-coupling spectrum was then conjectured
by [54] to be invariant along the exactly marginal deformation into the strong-coupling
regime, which is appropriate for describing black holes. In [55], the Q-cohomology
was reformulated as a relative Lie superalgebra cohomology.

2. Identification of the ones dual to black holes, and not just a gas of gravitons. To this
end, explicit representatives of cohomology classes dual to the multi-gravitons were
proposed in [55] and shown to recover the multi-graviton partition function in the
AdS at large N . In [55], a sporadic search at low ranks N = 2, 3 and reasonably high
energies reported a negative result for the existence of states not of multi-graviton
form, i.e. candidate black hole microstates. Nevertheless, the recent evaluation of finite
N indices strongly suggests that they should be present even at low ranks [39, 40].

The present paper revisits this cohomology problem and performs a systematic search
for cohomology classes that are not of multi-graviton form. Our main results can be
summarized as follows:

1. We obtain a large collection of fully-refined counting data, which contains much more
information than even the fully-refined index, let alone the unrefined index which
most explicit evaluations consider.

2. The first non-graviton cohomology class is found for N = 2 at energy E = 19/2,
disproving the conjecture of [55] about their nonexistence.

3. A non-renormalization theorem is proven (assuming the applicability of Leibniz rule of
the Q-action) in perturbation theory, which puts the conjecture of [54] on a firmer basis.

1Earlier, the topologically twisted indices in CFT3 reproduce the entropy of a class of static dyonic BPS
black holes in AdS4 [13, 14]. Generalizations to other dimensions and other amounts of supersymmetry can
be found in [15–51].

2While the Q-closed condition is natural, the unfamiliar reader may at this point wonder about the
meaning of Q-exactness. A 1/16-BPS operator must also be annihilated by Q†, which receives quantum
corrections. To circumvent this difficulty, one invokes Hodge theory which establishes a bijection between
harmonic forms (annihilated by ∆ ≡ {Q, Q†}) and the de Rham cohomology (Q-cohomology). Note
that Q-exact operators are orthogonal to the 1/16-BPS operators, and Q-closed operators with non-zero
∆-eigenvalues are Q-exact.

– 2 –



J
H
E
P
0
2
(
2
0
2
3
)
1
0
9

The remainder of this paper is organized as follows. Section 2 introduces the BPS
letters and words, reviews the formulation of the cohomology problem in terms of a BPS
superfield, and discusses the BPS partition function that counts the BPS states (without
signs). Section 3 proves the non-renormalization conjecture of [54] in perturbation theory,
and comments on the non-perturbative extension. The key results of our enumeration are
then presented in section 4, with various ramifications discussed.

2 Letters and words

2.1 Review of the cohomology problem

The N = 4 super-Yang-Mills theory has superconformal symmetry PSU(2, 2|4). Let
us denote the 16 supercharges by QIα, QIα̇, and the 16 superconformal supercharges
by SαI , S

Iα̇, where the upper (lower) I = 1, · · · , 4 is the (anti-)fundamental index of
the SU(4)R R-symmetry, and α, α̇ = ±, ±̇ are the spinor indices of the Lorentz group
SO(4) ∼= SU(2)L × SU(2)R. The 1/16-BPS operators are defined to be those annihilated by
the supercharge Q ≡ Q4

− and its hermitian conjugate (BPZ conjugate) Q† = S ≡ S−4 in
radial quantization. They have the commutator

∆ ≡ 2{Q,Q†} = D − 2J3
L − q1 − q2 − q3 , (2.1)

where D is the dilatation operator, J3
L is the left SU(2)L angular momentum, and q1, q2, q3

are the Cartan generators of the SO(6)R R-symmetry.3

By standard arguments (see footnote 2), the space of the 1/16-BPS operators is
isomorphic to the cohomology of the supercharge Q [54]. In the weak coupling limit,
one can further restrict the Q-cohomology to the classical null space of ∆. In the path
integral formalism, local operators are constructed out of gauge-invariant combinations of
the fundamental fields, which consist of six scalars ΦIJ in the antisymmetric representation
of SU(4)R with the reality condition Φ∗IJ = 1

2ε
IJKLΦKL ≡ ΦIJ , four chiral fermions ΨIα as

well as their complex conjugates ΨIα̇, and the gauge field Aµ.
The operators in the classical null space of ∆ are constructed using the BPS letters,

which are fundamental fields and their derivatives of vanishing classical ∆-eigenvalue.4 The
full set of BPS letters are

φi ≡ Φ4i , ψi ≡ −iΨi+ , λα̇ ≡ Ψ̄4
α̇ , f ≡ −iF++ = Fµν(σµν)++ , (2.2)

where i = 1, 2, 3, and their covariant Dα̇-derivatives, where

Dα̇ ≡ (σµ)+α̇Dµ . (2.3)

The BPS letters satisfy two relations. The first is the obvious relation between Dα̇ and f ,

[Dα̇, Dβ̇ ] = εα̇β̇f . (2.4)
3Our convention is that R1 = q2 + q3 = R4

4 − R1
1, R2 = q1 − q2 = R1

1 − R2
2, R3 = q2 − q3 = R2

2 − R3
3,

where R1, R2, R3 are the Cartan generators of SU(4)R, and R1
1, R2

2, R3
3, R4

4 are the diagonal components of
the fundamental representation of SU(4)R.

4This is also referred as the psu(1, 2|3) subsector [56].
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The second is the only equation of motion that is purely made out of the BPS letters,

Dα̇λ
α̇ = [φi, ψi] , (2.5)

which amounts to the invariance of the path integral under field redefinitions. The gauge-
invariant combinations of the BPS letters (2.2) and (2.3) up to the relations (2.4) and (2.5)
will be referred as the BPS words. The supercharge Q acts on the BPS letters as

[Q,φi] = 0 , {Q,ψi} = −iεijk[φj , φk] ,
{Q,λα̇} = 0 , [Q, f ] = i[φi, ψi] ,

[Q,Dα̇ζ] = −i[λα̇, ζ] +Dα̇[Q, ζ] ,
(2.6)

where ζ is any fundamental field.
The BPS fields can be assembled into a fermionic “BPS superfield” [55], which is a

power series in the Grassmann variables θi,

Ψ(z, θ) = −i[λ(z) + 2θiφi(z) + εijkθiθjψk(z) + 4θ1θ2θ3f(z)] , (2.7)

and the component fields λ(z), φi(z), ψi(z), f(z) are formal power series of the auxiliary
variables zα̇ [54],

φi(z) =
∞∑
n=0

1
n! (z

α̇Dα̇)nφi , ψi(z) =
∞∑
n=0

1
n! (z

α̇Dα̇)nψi ,

λ(z) =
∞∑
n=0

1
(n+ 1)!(z

α̇Dα̇)n(zβ̇λβ̇) , f(z) =
∞∑
n=0

1
n! (z

α̇Dα̇)nf .
(2.8)

The BPS superfield satisfies the constraint

Ψ(Z = 0) = 0 , (2.9)

where we collectively denote all the auxiliary variables as Z = (z+, z−; θ1, θ2, θ3). The BPS
letters can be recovered by taking the ∂z± and ∂θi

derivatives of the BPS superfield Ψ and
evaluating it at the origin Z = 0 of the superspace C2|3. One does not miss anything by
symmetrizing all the α̇ indices in (2.8) because the antisymmetric parts can be replaced
by the right-hand sides of (2.4) and (2.5). The charges of the BPS superfield and the
derivatives are given in table 1, where Y is related to the charge of the “bonus” U(1)Y
symmetry [57, 58].5

The supercharge Q acts on the BPS superfield Ψ(Z) as

{Q,Ψ(Z)} = Ψ(Z)2 . (2.10)

It was recognized in [55] that in this formulation the Q-cohomology is nothing but the
relative Lie superalgebra cohomology

H∗(GN , slN ;C) , (2.11)

where GN ≡ C[z+, z−] ⊗ Λ[θ1, θ2, θ3] ⊗ slN . For readers not familiar with Lie algebra
cohomology, its basic definition can be found in section 3 of [55].

5Compared with [57, (5.2)], Ythere = −2Yhere + 2
∑3

i=1 qi.
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Charges J3
L J3

R qj Y

Ψ −1
2 0 1

2 1
∂z±

1
2 ±1

2 0 0
∂θi

1
2 0 δij − 1

2 0

Table 1. Angular momenta and charges of the BPS superfield and derivatives.

2.2 BPS partition function and superconformal index

The BPS partition function is defined as [55]

Z(x, a, b, u, v, w)

= TrHBPS

[
xY aD−J

3
L+J3

R−Y bD−J
3
L−J

3
R−Y u−q2−q3+Y v−q1−q3+Y w−q1−q2+Y

]
,

(2.12)

where x counts the number of the superfield Ψ, a and b count the number of the z-derivatives
∂z± , and u, v, w count the number of θ-derivatives ∂θi

. The superconformal index defined
in [8] is given by specializing the BPS partition function as

ISCI(t, y, v, w) = Z(−1, t3y, t3/y,−t2v,−t2w/v,−t2/w)

= Tr
[
(−1)F t2(D+J3

L)y2J3
RvR2wR3

]
,

(2.13)

where R1 = q2 + q3, R2 = q1 − q2, R3 = q2 − q3, and the fermion number F is the sum of
the exponents of x, u, v, w, i.e. F = 3Y − 2q1 − 2q2 − 2q3. The unflavored index and BPS
partition function are defined by

IN (t) ≡ ISCI(t, 1, 1, 1) = Z(−1, t3, t3,−t2,−t2,−t2) = Tr
[
(−1)F t2(D+J3

L)
]
,

ZN (t) ≡ Z(1, t3, t3, t2, t2, t2) = TrHBPS

[
t2(D+J3

L)
]
.

(2.14)

Let us expand them as

IN (t) =
∑
n

dN (n)tn , ZN (t) =
∑
n

dN (n)tn , (2.15)

where n is the eigenvalue of 2(D+ J3
L). The coefficients dN (n) and dN (n) in the expansions

count (up to signs for the case of dN (n)) the BPS states.
There are two important asymptotic limits of the degeneracies dN (n) and dN (n). First,

in the N →∞ limit with n fixed, the degeneracies only receive contributions from finite
energy states, corresponding to (multi-)supergravitons in the AdS bulk. At large n, they
behave as [8]

log |d∞(n)| =
√

5π
3
√
n+O(log n) ,

log d∞(n) = 2
1
6
√

3π
5 n

5
6 +O(

√
n) .

(2.16)

Second, in the N,n→∞ limit with j = n/N2 fixed, the degeneracies receive contributions
from states with energy scaling as N2, corresponding to black holes in the bulk. In this
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limit, the asymptotic behavior for dN (n) is [9, 11, 12]

lim
N→∞

N−2 log |dN (N2j)| = π

2 · 3
1
6
j

2
3 +O(j

1
3 ) , (2.17)

whereas the asymptotic behavior of dN (n) remains an open problem.
For the index, dN (n) for ranks N = 2, · · · , 10 were computed in [39, 40]. For the BPS

partition function, we present in section 4 the results of dN (n) for ranks N = 2, 3, 4.6 Note
that n, defined as the eigenvalue of 2(D + J3

L), is not to be confused with the energy E,
which is the eigenvalue of D.

2.3 Multi-gravitons from single-trace cohomology

The action (2.10) of the supercharge Q is closed in the space of single-trace BPS words.
Hence, we can restrict the cohomology problem to this subspace, where all the single-trace
Q-cohomology classes were found in [55]. They are represented by the single-graviton
operators

∂p1
z+∂

p2
z−∂

q1
θ1
∂q2
θ2
∂q3
θ3

Tr
[
(∂z+Ψ)k1(∂z−Ψ)k2(∂θ1Ψ)m1(∂θ2Ψ)m2(∂θ3Ψ)m3

] ∣∣∣
Z=0

. (2.19)

It is straightforward to check that (2.19) are Q-closed and also not Q-exact in the space
of single-trace words.7 The single-trace BPS partition function in the large N limit was
computed in [55], which matched perfectly with the single-particle partition function in the
bulk theory [8].

Products of the single-graviton operators modulo trace relations represent non-trivial
cohomology classes and are dual to multi-graviton states. We will refer to such cohomology
classes as being of multi-graviton form. The partition function counting the multi-gravition
cohomology classes in the large N limit is simply given by the plethystic exponential of the
single-trace BPS partition function.

3 A non-renormalization theorem

The above counting of 1/16-BPS states is valid in the weak coupling limit. To compare with
the entropy of gravitons and black holes in the bulk type IIB superstring theory, one needs
to extend the counting to the regime of strong coupling. Let us analyze more precisely the
validity regime of the counting in the coupling space using the relative Lie superalgebra
cohomology (2.11). The generators of the Cartan subalgebra of the superconformal algebra

6The U(N) and SU(N) BPS partition functions are simply related by

ZU(N)(x, a, b, u, v, w)
ZSU(N)(x, a, b, u, v, w) = exp

[
∞∑

n=1

1
n

(
Z+(xn, an, un, vn, wn) + (−1)n+1Z−(xn, an, un, vn, wn)

)]
,

Z±(x, a, b, u, v, w) = 1
2 (z(x, a, b, u, v, w)± z(−x, a, b,−u,−v,−w)) ,

z(x, a, b, u, v, w) = (1 + u)(1 + v)(1 + w)
(1− a)(1− b) x− x .

(2.18)

7Switching the ordering of the letters inside a trace results in operators in the same cohomology class.
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all have integer or half-integer eigenvalues, except the dilatation operator D, and hence
cannot receive quantum corrections. In the perturbation theory, the dilatation operator is
expected to take the form

D = D0 + g2
YMN

8π2 H +O(g3
YM) , (3.1)

where gYM is the gauge coupling, and H is the one-loop Beisert Hamiltonian [59, 60], which
is a differential operator acting on the space of all gauge-invariant words. When restricting
to the space of BPS words, H is proportional to the anti-commutator of Q and Q†, i.e.8

H ∝ {Q,Q†} . (3.3)

Hence, our discussion in the previous section shows that in the space of BPS words,
the null space of the one-loop Beisert Hamiltonian H, is isomorphic to the cohomology
H∗(GN , slN ;C).

It was conjectured in [54] that the supersymmetric spectrum of the N = 4 super-
Yang-Mills theory on S3 is exactly given by the ground states of the one-loop Beisert
Hamiltonian H without any higher-loop or non-perturbative correction. Nontrivial checks
of this conjecture by matching the one-loop partition function at infinite N with the
supergraviton partition function in the AdS5 × S5 was reported in [53, 55]. Let us prove
the part of the conjecture of vanishing perturbative corrections.

The BPS state counting to all orders in perturbation theory is still governed by a relative
Lie superalgebra cohomology. We start by figuring out the relative cochain complex and
the differential acting on it. Firstly, BPS operators can be written as linear combinations
of BPS words with coefficients in the formal power series ring C[[gYM]]. We do not need
to include non-BPS words because operator-mixing in perturbation theory is only among
those with the same angular momenta, R-charges, and classical dimension.9 Therefore, in
terms of the BPS superfield Ψ, the BPS operators reside in the relative cochain complex
C∗(GN , slN ;C[[gYM]]).

Next, it is important to note the advantage of our formulation that we only need the
knowledge of the supercharge Q, but not the dilatation operator D. Unlike the dilatation
operator which is deformed by the coupling gYM, one can choose a regularization scheme
such that the action of Q on the BPS superfield is undeformed perturbatively.10 Using the
Leibniz rule, the Q-action on the BPS superfield (2.10) gives the Q-action on the BPS words,
or equivalently the differential acting on the relative cochain complex C∗(GN , slN ;C[[gYM]]).

8Furthermore, Q and Q† at leading order in gYM can be represented by

Q = Tr
(

ΨΨ ∂

∂Ψ

)
, Q† = Tr

(
Ψ ∂

∂Ψ
∂

∂Ψ

)
. (3.2)

9The dilatation operator D obviously commutes with angular momenta and R-charges. In perturbation
theory, D also commutes with the classical dimension by dimensional analysis, and the classical dimensions
of non-BPS words do not satisfy the BPS condition (2.1).

10For example, one could use the “dimensional regularization by dimensional reduction” (DRED)
scheme [61], or the regularization scheme in [62].
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Here, we have assumed that the Q-action satisfies the Leibniz rule in perturbation theory.
We do not have a proof, but the only known obstruction, the Konishi anomaly [63], is absent
in N = 4 SYM [64].11

In summary, the 1/16-BPS operators are classified by the relative Lie superalgebra
cohomology

H∗(GN , slN ;C[[gYM]]) , (3.4)

which is isomorphic to the tensor product12

H∗(GN , slN ;C[[gYM]]) ∼= H∗(GN , slN ;C)⊗C C[[gYM]] . (3.5)

Consequently, the 1/16-BPS spectrum is invariant to all orders in perturbation theory.
Furthermore, by S-duality, our argument can be applied to all the weakly coupled points on
the conformal manifold.

Finally, let us comment on the situation at finite couplings. Barring some subtleties, we
expect that the BPS operators are linear combinations of BPS words with coefficients being
holomorphic functions on the complex plane of the coupling gYM at a finite distance away
from the free points. While we do not know whether the cohomology still has an analogous
factorization as (3.5), the fact that the factorization exists at every weakly coupled point
hints toward the affirmative.

4 Constructive enumeration and discussions

4.1 Computational scheme

We completely restructure and greatly improve the efficiency of the Mathematica code
developed in [55]. Our algorithm can be outlined as follows.

1. List all the single-trace BPS words made out of the BPS letters up to a certain value
of n = n∗. Express each single-trace BPS word in the component form, and take into
account the SU traceless condition by substituting away the (N,N)-entry.

2. List all the multi-trace BPS words in the component form up to n = n∗ by combining
the single-trace BPS words. Eliminate the linearly dependent multi-trace BPS words
due to trace relations. Let VY denote the resulting vector space in a fixed-charge
sector of (J3

L, J
3
R, qj , Y ), with Y (denoting the homogeneous degree in Ψ) explicit for

later convenience. See section 2.1 for the notations.
11We thank Davide Gaiotto and Justin Kulp for pointing this subtlety out to us.
12The universal coefficient theorem implies

H∗(GN , slN ;C[[gYM]]) ∼= HomC(H∗(GN , slN ;C),C[[gYM]]).

Viewing C[[gYM]] as an infinite product C× C× · · · allows us to write

HomC(H∗(GN , slN ;C),C[[gYM]]) ∼= HomC(H∗(GN , slN ;C),C)⊗C C[[gYM]].

Finally, we use the fact that

HomC(H∗(GN , slN ;C),C) ∼= H∗(GN , slN ;C).

We thank Dingxin Zhang for the discussion on this point.
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3. List all the single-graviton operators, express them in the component form, and then
list all the multi-graviton operators by combining single-gravitons. Let WY denote
the resulting vector space.

4. In the above steps, the presence of fermionic BPS letters means that the ordering of
letters cannot be completely forgotten. We fix an ordering on the BPS letters, and for
each word commute the letters into the fixed ordering, while carefully keeping track
of minus signs from fermionic statistics.

5. Act the supercharge Q on VY , and compute bases for the spaces

VY , QVY , span(WY ∪QVY−1)

by performing numerical QR decomposition in Julia.13 This gives matrix represen-
tations of the cochain complex and the embedding of span(WY ∪QVY−1) into VY ,

· · · VY−1 VY VY+1 · · ·

span(WY ∪QVY−1)

Q Q

Q

Q Q

Q=0 (4.1)

The representatives of all the cohomology classes can then be explicitly constructed.

6. For the purpose of counting, the dimensionality of the Q-cohomology is given by

dim(VY )− dim(QVY )− dim(QVY−1),

and that restricted to the Q-cohomology with representatives of multi-graviton form
is given by

dim(span(WY ∪QVY−1))− dim(QVY−1).

4.2 Counting data and a giant-graviton-like feature

We have performed the fully-refined cohomological enumeration comprehensively up to the
values of n indicated in table 2. While the holographic duality concerns SU(N) gauge group,
the index counting literature mostly considers U(N) gauge group. We present the counting
data of both for the convenience of the reader, even though the two are simply related by the
contribution of a single decoupled D3-brane. Figure 1 depicts the unrefined counting data.
The fully-refined counting data can be publicly accessed on https://github.com/yinhslin/bps-
counting, and will be continually updated as our computation progresses.

13We have been extremely careful with numerical stability. In particular, the non-graviton cohomology
classes corresponding to candidate black hole microstates discussed in section 4.3 have been verified with
exact row reduction in Mathematica.

– 9 –

https://github.com/yinhslin/bps-counting
https://github.com/yinhslin/bps-counting


J
H
E
P
0
2
(
2
0
2
3
)
1
0
9

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

○

○ ○ ○

○

○

○

○

○ ○
○
○

○

○ ○ ○
○

○

○
○
○
○

○

5 10 15 20 25

1

10

102

103

104

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

○
○ ○

○ ○
○
○ ○ ○ ○

○
○ ○

○
○ ○ ○ ○

○
○ ○

○

○
○ ○

5 10 15 20 25

1

10

102

103

104

105

106

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

○

○ ○
○

○

○
○

○

○ ○
○

○
○

○ ○
○

5 10 15

1

10

102

103

104

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

○

○ ○

○ ○

○ ○
○ ○

○

○

○

○ ○ ○

○

○

○
○

5 10 15

1

10

102

103

104

105

●

● ●

●

●

●

●

●

●

●

●

●

●

○

○ ○
○

○

○

○
○

○ ○ ○

○ ○

5 10 15

1

10

102

103

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

○

○
○

○
○

○ ○

○ ○
○ ○

○

○ ○

○

5 10 15

1

10

102

103

104

Figure 1. Logarithmic plot of the number of 1/16-BPS states dN (n) (dots) and the absolute-valued
index dN (n) (circles) at each n for SU(N) and U(N) gauge groups, N = 2, 3, 4.

Inspired by the recent discovery of the giant graviton expansion [65–69], we divide the
finite-N BPS partition function (resp. index) by the infinite-N one, and plot the coefficients
at each n in figure 2. Note that the counting of 1/16-BPS states at finite-N coincides with
infinite-N up to n = 2N + 1, as was explained by [39]. A key signature of the giant graviton
expansion is the presence of periodic “dips” indicating the contributions of giant gravitons.14

We see that not only the index but also the partition function exhibits such dips! Such dips
come from the sign-changes in the coefficients of ZN=2/ZN=∞. It would be fascinating if
a giant graviton expansion of the partition function exists. All in all, we believe that the
data we accumulated contains profound information about bulk quantum gravity.

The data underlying figures 1 and 2 are tabulated in tables 3 through 5.
14We thank Nathan Benjamin and Ji Hoon Lee for a discussion.
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Figure 2. Logarithmic plot of the absolute-valued coefficients of ZN/ZN=∞ (dots) and IN/IN=∞
(circles), for N = 2, 3, 4.

N Maximal n
2 25
3 19
4 15

Table 2. The maximal n of comprehensive cohomological enumeration for each N .
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n dSU(2) dSU(2) dU(2) dU(2) ZN=2/ZN=∞|tn IN=2/IN=∞|tn

0 1 1 1 1 1 1
1 0 0 0 0 0 0
2 0 0 3 3 0 0
3 0 0 2 −2 0 0
4 6 6 15 9 0 0
5 6 −6 18 −6 0 0
6 9 −7 51 11 −10 −10
7 18 18 90 −6 −12 12
8 30 6 195 9 −39 −9
9 40 −36 362 14 −72 0
10 66 6 699 −21 −117 21
11 120 84 1308 36 −198 −54
12 198 −80 2431 −17 −237 83
13 324 −132 4434 −18 −222 −102
14 537 309 8046 114 72 72
15 822 −18 14346 −194 840 128
16 1257 −567 25434 258 2577 −459
17 1944 516 44544 −168 6084 744
18 2959 613 77442 −112 12067 −697
19 4476 −1392 133386 630 21660 12
20 6834 −180 228021 −1089 35166 1440
21 10352 2884 386898 1130 51136 −3240
22 15540 −1926 651843 −273 64368 4182
23 23406 −4242 1091004 −1632 61440 −2580
24 35076 7890 1814578 4104 15129 −2971
25 52020 792 2999724 −5364 −124884 12132

Table 3. Counting of 1/16-BPS states for SU(2) and U(2) gauge groups, and the coefficients of
ZN=2/ZN=∞ and IN=2/IN=∞.
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n dSU(3) dSU(3) dU(3) dU(3) ZN=3/ZN=∞|tn IN=3/IN=∞|tn

0 1 1 1 1 1 1
1 0 0 0 0 0 0
2 0 0 3 3 0 0
3 0 0 2 −2 0 0
4 6 6 15 9 0 0
5 6 −6 18 −6 0 0
6 19 3 61 21 0 0
7 30 6 102 −18 0 0
8 54 0 249 33 −15 −15
9 92 −16 470 −22 −20 20
10 177 27 996 36 −66 −18
11 318 18 1938 6 −132 12
12 595 −87 3865 −19 −246 10
13 1068 96 7458 90 −462 −54
14 1854 54 14373 −99 −735 111
15 3234 −222 27258 138 −1106 −190
16 5610 132 51339 −9 −1371 279
17 9558 210 95562 −210 −1284 −288
18 16329 −235 176594 672 25 49
19 27612 −468 323208 −1116 3870 630

Table 4. Counting of 1/16-BPS states for SU(3) and U(3) gauge groups, and the coefficients of
ZN=3/ZN=∞ and IN=3/IN=∞.

4.3 Black hole microstates

For SU(2) gauge group, we found that up to n = 25, almost all cohomology elements have
a representative that is of multi-graviton form, except one element at E = 19/2 and n = 24
with the total number of derivatives given by (#∂z± ,#∂θi

) = (0, 0, 4, 4, 4), as well as six
elements at E = 10 and n = 25 with (#∂z± ,#∂θi

) = (0, 1, 3, 4, 4) plus permutations. For
N = 3, 4, every state is found to be of multi-graviton form, up to the values of n indicated in
table 2. The scarcity of candidates for black hole microstates at computationally-accessible
charges explains the then-negative result of [55]. Note that the enigma there was due to
the lack of any candidates for black hole microstates. We are by no means suggesting that
every state not of multi-graviton form must be a black hole microstate, but the discovery of
viable candidates is reassuring.
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n dSU(4) dSU(4) dU(4) dU(4) ZN=4/ZN=∞|tn IN=4/IN=∞|tn

0 1 1 1 1 1 1
1 0 0 0 0 0 0
2 0 0 3 3 0 0
3 0 0 2 −2 0 0
4 6 6 15 9 0 0
5 6 −6 18 −6 0 0
6 19 3 61 21 0 0
7 30 6 102 −18 0 0
8 69 15 264 48 0 0
9 112 −36 490 −42 0 0
10 222 24 1086 78 −21 −21
11 420 36 2130 −66 −30 30
12 831 −37 4411 107 −100 −30
13 1530 −30 8676 −36 −210 30
14 2844 78 17280 30 −420 −12
15 5220 88 33670 114 −832 −36

Table 5. Counting of 1/16-BPS states for SU(4) and U(4) gauge groups, and the coefficients of
ZN=4/ZN=∞ and IN=4/IN=∞.

For SU(2), the smallest value of n = 24 at which a non-graviton state is found coincides
with the location of the second dip of ZN=2/ZN=∞ as shown in figure 2. Could these
non-graviton states have interpretations in terms of giant gravitons?15

We stress that our search is comprehensive n-by-n, and not energy-by-energy. By the
BPS condition, states with a fixed n have energies bounded below by E ≥ d2n/3e/2 for
n > 9. Our exhaustive search for SU(2) up to n = 25 proves that there is no black hole
microstate for E < 9. By comparison, the expectation from the bulk side, valid at large N ,
is that black hole microstates should show up at energies E ∼ N2 or higher [8]. Hence, the
actual lowest energy for N = 2 is significantly higher than this bulk expectation.

Furthermore, while we have obtained explicit expressions for the space of representatives
of each cohomology class, the precise 1/16-BPS operator must be annihilated by Q†, and
is hence a perturbative series in the coupling. Demanding the annihilation by the one-
loop Q† (3.2) will give the weak coupling of the 1/16-BPS operator, but it is unclear
whether distinct properties of black hole microstates persist in the transition from strong to
weak coupling.

15One important caveat is that the known giant gravitons have vanishing Lorentz spin, but the non-graviton
states we found have nonzero Lorentz spin. We thank Ji Hoon Lee for pointing this out.
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4.4 Outlook

What are the salient features of black hole microstates when compared to multi-graviton
states? Are there linguistic rules governing the words and letters that underlie information-
theoretic properties of black holes, such as chaos? Compared to holographic descriptions of
black holes in the canonical ensemble, such as the thermofield double [70], our microcanonical
data contains different information and may potentially allow the direct study of things like
the eigenstate thermalization hypothesis [71–73]. We envision the computation performed
in this paper to be the beginning of a “black hole genome project” that aims to provide key
clues for these problems. To this end, a more efficient way of enumerating 1/16-BPS states
and black hole microstates is highly desired. The superconformal index admits an integral
formula over (special) unitary matrices from the supersymmetric localization of the N = 4
SYM path integral. Could the BPS partition function also be computed by localization
techniques?

While there is a closed form expression for the multi-graviton states as products of the
single-graviton operators (2.19), we do not have a simple way to write down the operators
that represent the non-graviton cohomology classes. A special class of 1/16-BPS operators
was written down in determinant form in [52, 74]. It would be interesting to investigate
whether those determinant operators are of multi-graviton form, or whether they provide
words for non-graviton cohomology classes.

Finally, the one-loop Beisert Hamiltonian in various subsectors has been explored
in [75–78], and dubbed as the “spin matrix theory” that describes the dynamics of near-BPS
states. We have shown that the Beisert Hamiltonian takes a very simple form (3.2) and (3.3)
in terms of the BPS superfield Ψ, which efficiently organizes all the BPS letters. This could
help the study of the spin matrix theory in the largest subsector, the psu(1, 2|3) subsector.
On the bulk side, it has been proposed that the near-BPS states describe the near-horizon
excitations of black holes, which are captured by the N = 2 Schwarzian theory [79]. It would
be fascinating to identify a Schwarzian sector of the spin matrix theory or the quantum
mechanics of the all-loop Beisert Hamiltonian.
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