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1 Introduction

Black holes in dimensions higher than four have been a fascinating subject for the last
two decades, motivated by string theory phenomenologies such as the possible production
in the particle accelerators with the large extra dimension scenario [1] and AdS/CFT
correspondence [2]. Recent studies reveal that such higher dimensional black holes have
rich variety of solutions and dynamics [3]. The simplest and typical example of the rich
dynamics in higher dimensions is the black string constructed as the direct product of a
flat spatial direction and a Schwarzschild-Tangerlini black hole [4]. Despite such a simple
structure, one can learn from the black string on the generic behavior in higher dimensions
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such as the Gregory-Laflamme (GL) instability [5, 6] which leads to the violation of strong
cosmic censorship [7] and nonuniquness in the phase diagram [8, 9].

The Lovelock theory is the most general theory of gravity including higher curvature
corrections whose equations of motion become second order. Such a theory arises as the
low energy limit by the compactification of M theory from 11D to 5D. In particular, the
Einstein-Gauss-Bonnet (EGB) theory with only correction terms of quadratic curvatures
has been one of major subjects of research for a few decades because of the simplicity. For
D = 4, this theory coincides with the Einstein gravity since the higher curvature term
(Gauss-Bonnet terms) vanishes but for D ≥ 5, the action of the theory consists of the
Einstein-Hilbelt term and non-vanishing Gauss-Bonnet (GB) terms.

As for black holes in the EGB theory, the first static solution for D ≥ 5 was found by
Boulware and Deser under the assumption of spherical symmetry. Finding rotating EGB
black hole solution is considered to be a considerably hard problem since the Kerr-Schild
formalism does not work in this theory. However, the numerical solution of a rotating EGB
black hole was obtained in ref. [12], and approximate and analytic solutions at the first
order in the rotation parameter were found in ref. [13]. Furthermore, black strings in the
EGB theory was studied in refs. [14–16].

Unlike black holes in General Relativity (GR), the thermodynamics of EGB or Lovelock
black holes have not been understood well. The zeroth law for Lovelock black holes was
proven assuming the smooth limit to GR [17]. The first law was shown by Iyer and Wald,
who successfully established the general entropy formula [18, 19]. However, whether the
second law with respect to the Iyer-Wald entropy holds even in the Lovelock heory is still
an open problem. By adding appropriate terms, so-called Wall terms, to the Iyer-Wald
formula, the second law has been proven to hold in terms of the small variation from
stationary solutions [20–23].

The large dimension limit or, large D limit [24–26] is the viable approximation that
greatly helps us understand the nonlinear dynamics of black holes in higher dimensions.
At the large D limit, the influence of gravity is localized in a thin layer of O (1/D) around
the black hole horizon, and the dynamics of the horizon deformation reduces to a simple
effective theory on the horizon surface, which we call “the large D effective theory” [27–
30]. Particularly, the nonlinear dynamics of the black string has been understood very well
by the large D effective theory analysis in many aspects such as the Gregory-Laflamme
instability, non-uniform branches and critical dimension [27, 30–32].

Recently, the large D effective theory approach was also applied to the study of EGB
black holes, such as the stability analysis of static EGB black holes [33], dynamics of
black strings [34] and black rings [35]. Moreover, analytic solutions of rotating black holes
with equal angular momenta were also constructed in the 1/D-expansion without taking
the slow rotation limit or small αGB limit [36]. The second law of black holes for higher
curvature theories was also studied at the large D limit. The second law, particularly, in
the EGB theory proved within the large D membrane paradigm up to 1/D and linear order
in αGB [37]. In ref. [38], appropriate forms of large D effective theories compatible to the
second law were investigated in general higher curvature theories.
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In this article, we use the large D effective theory approach to study the horizon
dynamics of EGB black string. The effective equations and thermodynamic variables are
derived up to the next-to-leading order (NLO) in 1/D expansion. Particularly, we show
the entropy functional of the effective theory follows the second law, at the nonlinear level.
We show that longer uniform black strings can be stable with the GB correction, that is,
kGL becomes longer with larger GB correction. We also find the GB term admits larger
critical dimensions than in GR.

The rest of the article is organized as follows. First, we derive the metric functions
using 1/D-expansion in section 2. In section 3, the large D effective theory of the EGB
black string are studied. Solving the effective equation, we study the phase and stability
of uniform and nonuniform black strings in section 4. Finally, we summarize our result in
section 5.

2 Metric solution

We consider the EGB theory, whose action is given by

S = 1
16πG

∫ √
−g (R+ αGBLGB) dDx, (2.1)

where the GB correction term LGB is written as

LGB = R2 − 4RαβRαβ +RαβγδR
αβγδ. (2.2)

This action leads to the EGB equation

Rµν −
1
2Rgµν + αGBHµν = 0, (2.3)

where
Hµν = 2RRµν − 4RµαRαν − 4RµανβRαβ + 2RµαβγRναβγ −

1
2LGBgµν . (2.4)

The large D limit can lead to different limits depending on the scale assumption of the
coupling constant αGB at the limit. We choose the scaling so that the Einstein-Hilbert
term and the GB term remain comparable. At large D, the radial gradient on the horizon
is roughly estimated as ∂r = O (D) [25], and hence, each term in the action is estimated
as R ∼ gtt∂2

rgtt = O
(
D2) and LGB ∼ R2 = O

(
D4). Then, we must assume the αGB scale

as O
(
D−2). It turns out that the other cases are easily obtained as the parameter limits

of αGB → 0 or αGB →∞, after the EGB equations are solved in the 1/D expansion. Due
to the lengthy equations in the 1/D expansion, we do not write them here. See appendix
A for the detail.

2.1 Setup

To obtain the D = n + 4 dynamical black string, we assume the following ansatz in the
Eddington-Finkelstein coordinates

ds2 = −Adt2 + 2Udtdr − 1
n
Cdtdz + 1

n
Gdz2 + r2dΩ2

n+1, (2.5)
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where dΩ2
n+1 denotes the line element of Sn+1. For convenience, we use n as the large

parameter instead of D in the following analysis. As the boundary condition, we impose
that the spacetime is asymptotically flat in the direction transverse to the string

A(r →∞) = 1, U(r →∞) = 1, C(r →∞) = 0, G(r →∞) = 1 , (2.6)

and regular on the horizon. In the ansatz (2.5), the string direction z compactified by
z ∼ z + L is rescaled by 1/

√
n in advance, to capture the Gregory-Laflamme instability of

the wavenumber of O (
√
n) [24, 25].

To expand the metric in 1/n, we assume that the horizon is placed at r = r0 +O (1/n),
and introduce the near-horizon coordinate by

R := (r/r0)n. (2.7)

With the near-horizon coordinate, the metric functions are expanded as

A =
∑
i=0

Ai(t,R, z)
ni

, C =
∑
i=0

Ci(t,R, z)
ni

,

G = 1 + 1
n

∑
i=0

Gi(t,R, z)
ni

, U = 1 + 1
n

∑
i=0

Ui(t,R, z)
ni

. (2.8)

We also define the rescaled coupling constant which remains O
(
n0) by

α := n2αGB
r2

0
. (2.9)

In the following, we set the radius scale as r0 = 1 by changing the overall scale.

2.2 Leading order analysis

At the leading order, A0 is written by solving eq. (A.4), as

A0 = 1 + 1
2α −

1
2α

√
1 + 4α(α+ 1)m(t, z)

R , (2.10)

where we consider only the (−)-branch that allows the GR limit at α → 0. m(t, z) is an
integration function with respect to the R-integral, which determines the horizon position
R = m(t, z) as well as the mass density at R → ∞. From eq. (2.10) and eq. (A.5), C0 is
also obtained

C0 = p(t, z)
2αm(t, z)

√1 + 4α(α+ 1)m(t, z)
R − 1

 , (2.11)

with the other integration function p(t, z) that arouse the non-uniformity and horizon
velocity along the string direction. For G0 and U0, it is convenient to switch to the auxiliary
variable

X :=

√
1 + 4α(α+ 1)m

R , (2.12)
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which takes the value between X = 1 (R = ∞) and X = 1 + 2α (R = m). A0 and C0 are
rewritten in terms of X as

A0 = 1 + 2α−X
2α , C0 = p

2αm(X − 1). (2.13)

Then, G0 and U0 are obtained by solving eqs. (A.6) and (A.7), respectively, as

G0 =
(

log
(
X2 + 1

)
2α+ 1 − 2 log(X + 1) + 2 arctanX

)(
m∂zp− p∂zm+m2

(α+ 1)m2

)

− ((2α+ 1)π − 2(4α+ 1) log 2)(m∂zp− p∂zm+m2)
2(α+ 1)(2α+ 1)m2 + p2

2αm2 (X − 1), (2.14)

and

U0 = p
((

2α2 + 3α+ 1
)
p− 4α2∂zm

)
+ 4α2m∂zp+ 4α2m2

4α(α+ 1)(2α+ 1)m2

− ((2α+ 1)X∂zm− 1)
(
−∂zmp+m∂zp+m2)

(α+ 1)(2α+ 1) (X2 + 1)m2 − Xp2

4αm2 . (2.15)

Constraints. Plugging the leading order solutions to eqs. (A.11) and (A.12), we obtain
the leading order effective equation, which is first shown in ref. [34],

∂tm− ∂2
zm = −∂zp, (2.16)

∂tp− ∂2
zp = ∂z

(
m− p2

m
+ 2α

(α+ 1)(2α+ 1)

(
p∂zm−m∂zp−m2

m

))
. (2.17)

2.3 Next-to-leading order solution

At the higher order, after imposing the same boundary condition as above, eq. (A.8)
provides the extra undetermined functions in Ai and Ci that corresponds to the shift of
O
(
n−i

)
in m and p. We choose these functions so that Ai(R = m) = 0 and Ci(R = m) = 0

for i ≥ 1. This choice sets the event horizon at R = m for the static solution at each order.
A1 is obtained by solving eq. (A.8a) at the next-to-leading order (NLO),

A1 = (X2 − 1)
(
−p∂zm+m∂zp+m2)

4α(α+ 1)Xm2

(
log(X2 + 1)
2(2α+ 1) + arctanX

)

+ (X − 1) log(X + 1)
(
(X + 1)p∂zm+ α(X + 1)m∂zp+ (−2α+ 2αX +X − 3)m2)

4α(α+ 1)Xm2

+ (X − 1) log(X − 1) (2(X − 1)m+ (X + 1)∂zp)
4αXm

+ (X − 1)
(
p2 − 2p∂zm+ 2m∂zp+m2(2 log(4α(α+ 1)m) + 1)

)
2αXm2

+ (1−X2)(2(2α+ 1)(2m2 logm+ p2) + c1m
2 + c2p∂zm+ c3m∂zp)

8Xα(1 + α)(2α+ 1)m2 , (2.18)
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where the coefficients c1, c2, c3 are given by

c1 = 2(2α+ 1)(1 + arctan(2α+ 1)) + (16α2 + 20α+ 6) log 2 + 4(2α+ 1)(α+ 1) logα
+ 2(2α+ 1)2 log(α+ 1) + log(1 + (2α+ 1)2), (2.19)

c2 = 2(2α+ 1)(−2− arctan(2α+ 1) + log 2 + log(α+ 1))− log(1 + (2α+ 1)2), (2.20)
c3 = 2(2α+ 1)(2 + arctan(2α+ 1)) + 2(2α+ 1)2 log 2 + 2(2α+ 1)(α+ 1) logα

+ 2α(2α+ 1) log(α+ 1) + log(1 + (2α+ 1)2). (2.21)

Due to the considerably lengthy form, we do not explicitly write other components. Instead,
we roughly explain the form of the solutions. C1 and U1 are much lengthy and are expressed
with the combination of log(X ± 1), log(X2 + 1), arctanX and rational functions of X, as
is A1. H1 is written in the combination of the polylogarisms

Li2
(1−X

2

)
, Li2

(1 + 2α−X
2(1 + α)

)
, Li2

(1 + 2α−X
2α

)
, (2.22)

Clausen’s functions

Cl2(2 arctanX), Cl2(2 arctanX + π/2), Cl2(2 arctanX + π), Cl2(2 arctanX + 3π/2),
(2.23)

and some complex polylogarisms given in appendix B

Dl2(X), Dl2(−X), Fl2(X), Gl2(X), (2.24)

in addition to log(X ± 1), log(X2 + 1), arctanX and rational functions of X.

3 Large D effective theory

Substituting the NLO solutions in the previous section into eqs. (A.11) and (A.12), we
obtain the effective equation up to NLO correcting eq. (2.17). To keep the readability, we
do not write the explicit form of the lengthy correction, but instead express it in terms of
the conservation law of the quasi-local stress energy tensor

∂tT
tt + ∂zT

tz = 0, ∂tT
tz + ∂zT

zz = 0, (3.1)

where Tµν is shown in appendix C. The effective equation is invariant under the scaling
law that reflects the freedom to choose the overall scale of the geometry

m→ Cm, p→ Cp, ∂t → C−1/n∂t, ∂z → C−1/n∂z, α→ C2/nα, (3.2)

where the scaling law for α reflects the dimension of αGB.

3.1 The second law

In the previous work [34], the metric solution is derived only up to the leading order, where
the entropy is found trivially proportional to the ADM mass as in the GR case [25]. We
show that the NLO correction to the entropy is crucial to admits the second law of black
holes in the effective theory.
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3.1.1 Entropy current

We construct the entropy current from the dynamical effective theory in terms of the local
event horizon [39], in which the area factor is replaced with the Iyer-Wald formula [18, 19].1

The local event horizon H is defined as the null surface r − rH(t, z) = 0 which satisfies

A− 2U∂trH + 1
n
G−1(C − nU∂zrH)(C − nU∂zrH) = 0. (3.3)

The spatial metric of the local event horizon H is given by

ds2
H = 1

n
GH(dz − vdt)2 + r2

HdΩ2
n+1, (3.4)

where we define the velocity field v as

v = CH − UH∂zrH . (3.5)

With the near-horizon coordinate RH := rnH , the large D limit leads to

A
∣∣
R=RH

+O (1/n) = 0 ⇒ RH = m+O (1/n) , (3.6)

and
v = (p− ∂zm)/m+O (1/n) . (3.7)

With the NLO solution, these are corrected as

RH = m− (2α+ 1)
(
(p− ∂zm)2 − 2m∂tm

)
n(α+ 1)m (3.8)

and

v= p−∂zm
m

+ 1
n

[
2(2α+1)∂zm(∂tm+∂2

zm)
(α+1)m2 −

(
16α4 +34α3 +28α2 +11α+2

)
∂zm∂zp

(α+1)(2α+1)(2α2 +2α+1)m2

+ α(1−2α2)∂zm
(α+1)(2α+1)(2α2 +2α+1)m−

2(2α+1)(mp(∂2
zm−∂zp)+(∂zm)3 +m2∂t∂zm)

(α+1)m3 (3.9)

+
(
36α4 +76α3 +66α2 +28α+5

)
(∂zm)2p

(α+1)(2α+1)(2α2 +2α+1)m3 + p3

m3 −
(11α+7)p2∂zm

2(α+1)m3 − 2∂tmp
m2 − ∂zm logm

m

]
.

Then, the entropy current is given by

JµS∂µ := Ωn+1
4G
√
n

(ρS∂t + jS∂z) (3.10)

where
ρS := (1 + 2αRH)

√
GHr

n+1
H , jS := ρSv (3.11)

and RH is the scalar curvature of the horizon surface (3.4).
1It has been shown that we do not need the modification to the entropy for the second law in the EGB

theory [20].
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We find that, up to NLO, the entropy density is given by

ρS = (2α+1)m

− 1
4(α+1)n

[
∂zp

(
(2α+1)(π−4arctan(2α+1)+4log(α+1))−2log(2α2 +2α+1)

)
−8(2α+1)2∂tm+16α(α+1)∂2

zm+4
(
2α2 +α−1

)
m logm

−∂zmp
m

(
8(2α+1)2 +(2α+1)(π−4arctan(2α+1)+4log(α+1))−2log(2α2 +2α+1)

)
+m

(
(2α+1)(π−4arctan(2α+1)+4log(α+1))−2log(2α2 +2α+1)−8α(α+1)

)
+4
(
2α2 +2α+1

) ∂zm2

m
+2(2α+1)(3α+1)p

2

m

]
. (3.12)

With the entropy density, we define the dynamical entropy for the effective theory up to
NLO

S :=
∫ L

0
ρSdz. (3.13)

Using the effective equation (3.1), one can verify2

∂tρS + ∂z (jS + 1/n(. . . )) = 2(1 + α+ 2α2)
(1 + α)n m(∂zv)2 ≥ 0, (3.14)

where p is replaced by v using eq. (3.7). This is consistent with the result by the large D
approach in [37] up to the linear order in α.

The second law in the large D effective theory follows from this inequality

∂tS = 2(1 + α+ 2α2)
(1 + α)n

∫ L

0
m(∂zv)2dz ≥ 0. (3.15)

The entropy-production rate only differs from that in GR by the factor depending on the
GB coupling constant

∂tS

S
= 2α2 + α+ 1

(2α+ 1)(α+ 1)

∫ L

0
2m(∂zv)2dz

n

∫ L

0
mdz

. (3.16)

For a given configuration m(t, z) and v(t, z), the entropy-production rate is minimized at
α = 1/

√
2 and goes back to the GR rate at α → ∞. This is consistent with the fact that

the time evolution from a uniform to a non-uniform black string takes a largest duration
at α = 0.708 ≈ 1/

√
2 in ref. [34].

2We need to add some total derivative terms to the flux part to satisfy the local second law. Nevertheless,
this does not affect the second law in the integrated form.

– 8 –



J
H
E
P
0
2
(
2
0
2
3
)
1
0
1

3.1.2 Entropy functional for effective theory

The entropy density (3.12) is proportional to the mass density (C.4) at the leading order.
Therefore, as in the GR case [40], we can construct a monotonic functional for the leading
order theory by taking the difference between the entropy and mass so that the leading
order terms cancel,

n

[
ρS −

2α+ 1
α+ 1

(
1 + 2α2 − 1

(α+ 1)(2α+ 1)

)
T tt
]

= 1 + α+ 2α2

1 + α

(
−(∂zm)2

2m − (2α+ 1)(1 + α)
2(1 + α+ 2α2) mv

2 +m logm
)

+ ∂z(. . . ), (3.17)

where v is given by eq. (3.7). The coefficient of T tt is chosen so that the right hand side
in the above expression does not include the term const. ×m.3 Therefore, we define the
entropy functional by

S1 = 1 + α+ 2α2

1 + α

∫ L

0

(
−(∂zm)2

2m − (2α+ 1)(1 + α)
2(1 + α+ 2α2) mv

2 +m logm
)
dz. (3.18)

The second law for the entire entropy (3.15) guarantees the monotonicity of this functional,

∂tS1 = 2(1 + α+ 2α2)
1 + α

∫ L

0
m(∂zv)2dz ≥ 0. (3.19)

One can also confirm the monotonicity using only the leading order effective equation (2.17).

3.2 Static equation

In the static case, eq. (3.1) reduces to a simple master equation. The static solution is
given by assuming T tz = 0 or v = 0 which leads to

p(z) = m′(z) + 1
n

[(
α
(
2α2 − 1

)
4α4 + 10α3 + 10α2 + 5α+ 1 + logm(z)

)
m′(z) (3.20)

−
(
4α4 + 14α3 + 10α2 + 3α+ 1

)
m′(z)3

2(α+ 1)(2α+ 1) (2α2 + 2α+ 1)m(z)2 + α
(
2α2 − 1

)
m′(z)m′′(z)

(α+ 1)(2α+ 1) (2α2 + 2α+ 1)m(z)

]
.

With this condition, eq. (3.1) reduces to a third order ODE for m(z). By introducing
R(z) = logm(z), it can be integrated to the second order ODE

R′′(z)+ 1
2R
′(z)2+R(z) = 1

n

(
c01R(z) + c02R(z)2 + (c20 + c21R(z))R′(z)2 + 1

4c21R′(z)4
)
,

(3.21)

3The term Cm only produces CM in eq. (3.18) which remains constant during the time evolution.
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where the integration constant is fixed so that R = 0 gives the uniform solution by using
the scaling law (3.2). The coefficients are given by

c01 = 20α3 + 2πα2 + 34α2 + 2πα+ 12α+ π + 2
2(α+ 1)(2α2 + α+ 1) + 2 log(α+ 1)

(α+ 1) (2α2 + α+ 1)

− 2
(
2α2 + 2α+ 1

)
arctan(2α+ 1)

(α+ 1) (2α2 + α+ 1) −
(
2α2 + 2α+ 1

)
log(2α2 + 2α+ 1)

(α+ 1)(2α+ 1)(2α2 + α+ 1) , (3.22a)

c02 = −12α3 + 22α2 + π
(
4α2 + 3α+ 2

)
+ 4α− 2

4(α+ 1) (2α2 + α+ 1) −
(
2α2 + α+ 2

)
log(α+ 1)

(α+ 1) (2α2 + α+ 1)

+
(
4α2 + 3α+ 2

)
arctan(2α+ 1)

(α+ 1) (2α2 + α+ 1) +
(
4α2 + 3α+ 2

)
log(2α2 + 2α+ 1)

8α4 + 16α3 + 14α2 + 8α+ 2 , (3.22b)

c20 = 12α3 + 2πα2 + 22α2 + 2πα+ 4α+ π − 2
4(α+ 1) (2α2 + α+ 1) + log(α+ 1)

2α3 + 3α2 + 2α+ 1 ,

−
(
2α2 + 2α+ 1

)
tan−1(2α+ 1)

(α+ 1) (2α2 + α+ 1) −
(
2α2 + 2α+ 1

)
log(2α2 + 2α+ 1)

8α4 + 16α3 + 14α2 + 8α+ 2 , (3.22c)

c21 = −36α3 + 58α2 + π
(
4α2 + 3α+ 2

)
+ 28α+ 10

4(α+ 1) (2α2 + α+ 1) −
(
2α2 + α+ 2

)
log(α+ 1)

(α+ 1) (2α2 + α+ 1)

+
(
4α2 + 3α+ 2

)
arctan(2α+ 1)

(α+ 1) (2α2 + α+ 1) +
(
4α2 + 3α+ 2

)
log(2α2 + 2α+ 1)

8α4 + 16α3 + 14α2 + 8α+ 2 . (3.22d)

Non-uniformity. To parametrize the non-uniform phase, it is convenient to define a
scale-independent measure of the static deformation. Here we introduce the non-uniformity
parameter as4

λ := 1
2

(
eRmax

eRmin
− 1

)
. (3.23)

3.2.1 Thermodynamics

Once eq. (3.21) is solved, the thermodynamics phase is calculated as

Mass = nΩn+1
16πG

√
n

∫ L

0
T ttdz =: nΩn+1

16πG
√
n
M, (3.24)

Entropy =: Ωn+1
4G
√
n
S, (3.25)

Temperature =: n

4πTH , (3.26)

Tension = − Ωn+1
16πG

√
n

T zz

n
=: Ωn+1

16πG
√
n
T , (3.27)

4We adopt the convention convenient for the large D analysis, which is different from the earlier works [8].
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where

M=(α+1)
∫ L

0
dzeR

[
1+ 1

n

(4α+3−(α−1)R
α+1 −

(3α+2
α+1 +R

)
R′2 (3.28)

+
(

arctan(2α+1)−π/4−2(2α+1)−log(α+1)
α+1 +log(2α2+2α+1)

2(2α+1)(α+1) −R(z)
)

(R′′+1)
)]
,

S=(2α+1)
∫ L

0
dzeR

[
1+ 1

n

(6α+(1−2α)R
2α+1 −1

2
2α−1
2α+1(R′)2 (3.29)

−
(

arctan(2α+1)−π/4−log(α+1)
α+1 − 4α

2α+1+log(2α2+2α+1)
2(2α+1)(α+1)

)
(R′′+1)

)]
,

TH= α+1
2α+1

[
1− 1

n

(
α(4α+1)

2(2α+1)(α+1)+
(
2α2+α+1

)
(2α+1)(α+1)

(
R′′(z)+1

2R
′(z)2+R(z)

))]
, (3.30)

and

T = eR

n

[
2α2+α+1

2α+1 (1+R′′)

+ 1
n

(
t0+t1R+t2(R′)2+(t3+t4R)R′′+t5(R′′)2+t6(R′)2R′′+t7R′R(3)+t8R(4)

)]
. (3.31)

The coefficients for T is given by

t0 = 2α2 +α+1
(2α+1)(α+1)

(
log
(
2α2 +2α+1

)
2(2α+1) +arctan(2α+1)− log(α+1)− π4

)

+ α
(
4α3−4α2−11α−3

)
(α+1)(2α+1)2 ,

t1 =−2α
(
4α2 +4α−1

)
(2α+1)2 , t2 = 4α+1

(2α+1)2 , t4 = 2(4α+1)
(2α+1)2 , t6 =−8α3 +8α2 +2α+1

(2α+1)2 ,

t3 = 1+9α+20α2 +32α3 +16α4

(1+α)(1+2α)2 + π

2 −2arctan(1+2α)

+ (2−4α) log(1+α)− log
(
1+2α+2α2)

1+2α ,

t5 = 1+12α+31α2 +36α3 +12α4

(1+α)(1+2α)2 +
(
3−α−2α2) log(1+α)

(1+α)(1+2α)

+
(
3+7α+6α2)((1+2α)π−4(1+2α)arctan(1+2α)−2log

(
1+2α+2α2))

4(1+α)(1+2α)2 ,

t7 = 2+8α+14α2 +4α3−
(
1+2α+2α2)(4arctan(1+2α)−π)+4log(1+α)

2+6α+4α2

−
(
1+2α+2α2) log

(
1+2α+2α2)

(1+α)(1+2α)2 ,

t8 = 2α
1+α

+ π

4 −arctan(1+2α)+ (1−2α) log(1+α)
1+2α − log

(
1+2α+2α2)

2+4α . (3.32)

The Hawking temperature is calculated in terms of the surface gravity

Temperature = n

4πTH = κ

2π = 1
2π

∂rA

2U

∣∣∣∣
r=rH

. (3.33)
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Up to NLO, the scaling law (3.2) acts on these variables as

M → C
n+1
n M, S → C

n+2
n S, T → CT , TH → C−1/nTH . (3.34)

In eq. (3.21), we have already fixed the scaling so that the uniform solution is uniquely given
by R = 0 up to NLO. This scaling choice corresponds to fixing the temperature (3.30) to

TH = α+ 1
2α+ 1

[
1− α(4α+ 1)

2n(2α+ 1)(α+ 1)

]
. (3.35)

First law. With the Iyer-Wald entropy, the static solution satisfies the first law

dM = THdS + T dL. (3.36)

If we recover the radius scale r0, the thermodynamic variables can be written as

M = rn+1
0 M̂(α, λ), S = rn+2

0 M̂(α, λ), T = rn0 T̂ (α, λ), TH = r−1
0 T̂H(α, λ), (3.37)

where the quantities with hat are scale invariant parts. By considering r0 and λ as inde-
pendent parameters and recalling the definition α = n2αGB/r

2
0, the first law reduces to

dM − THdS − T dL =
[
(n+ 1)M − (n+ 2)THS − T L− 2α (∂αM − TH∂αS − T ∂αL)

]dr0
r0

+ (∂λM − TH∂λS − T ∂λL) dλ. (3.38)

This leads to a modified Smarr formula

(n+ 1)M = (n+ 2)THS + T L+ 2α (∂αM − TH∂αS − T ∂αL) . (3.39)

4 Phase and stability of static black strings

Now, solving the large D effective theory up to NLO, we study the phase and stability of
uniform/non-uniform black strings. In particular, we focus on the weakly deformed phase
which can be solved analytically by the perturbative method.

4.1 Stability of uniform black string

We start with examining the stability of the uniform phase refining the leading order result
in ref. [34]. With the linear perturbation from the uniform solution

m(t, z) = 1 + εm1e
Ωt cos(kz), p(t, z) = ε p1e

Ωt sin(kz), (4.1)

eq. (3.1) at O (ε) reduces to

A11m1 +A12 p1 = 0, A21m1 +A22 p1 = 0, (4.2)

where Aij are functions of Ω and k. The degeneracy condition det(Aij) = 0 leads to the
dispersion relation as

Ω = ΩLO + 1
n

ΩNLO, (4.3)
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where

ΩLO =− 1+2α+2α2

(2α+1)(α+1)k
2± k

√
4α4+8α3+4α+α2(k2+7)+1

(2α+1)(α+1) , (4.4)

ΩNLO =−2α
(
2α2+2α+1

)
k4arctan(2α+1)

(α+1)3(2α+1)2 −α
(
2α2+2α+1

)
k4 log(2α2+2α+1)

(α+1)3(2α+1)3

− 2α
(
2α2+2α+1

)
k4 log(1+α)

(α+1)3(2α+1) −
(
40α6+104α5+112α4+60α3+20α2+6α+1

)
k2

(α+1)2(2α+1)2(2α2+2α+1)

+α(8α+π+4)
(
2α2+2α+1

)
k4

2(α+1)3(2α+1)2 ± k
√

4α4+8α3+7α2+4α+α2k2+1
4(α+1)3(2α+1)3

×
[

4
(
4α3+6α2+4α+1

)
k3arctan(2α+1)

(
4α4+16α3+8α+α2(19−2k2)+1

)
4α4+8α3+4α+α2(k2+7)+1

−4(2α+1)2k3 log(α+1)
(
−8α5+2α+4α4(k2−5

)
+2α3(2k2−9

)
+α2(2k2−5

)
+1
)

4α4+8α3+4α+α2(k2+7)+1

+2
(
2α2+2α+1

)
k3 log(2α2+2α+1)

(
4α4+16α3+8α+α2(19−2k2)+1

)
4α4+8α3+4α+α2(k2+7)+1

+ (2α+1)k
4α4+8α3+4α+α2(k2+7)+1

(
2(α+1)2

(
8α5−28α4−46α3−19α2−4α−1

)
+2α2(8α+π+4)

(
2α2+2α+1

)
k4−(α+1)

(
π
(
8α5+32α4+42α3+28α2+9α+1

)
−4
(
16α6+24α5+12α4−9α3−8α2+α+1

))
k2
)]
. (4.5)

The threshold wave number Ω(kGL) = 0 for the instability up to NLO is given by

kGL = 1− k1
n
, (4.6)

where k1 is written as k1 = c01/2 in terms of c01 in (3.22a).
As shown in ref. [34], the threshold scale for the instability is the same as in GR at

the leading order. With the NLO correction, one can see the dependence on the coupling
constant α in the threshold. As α grows, kGL monotonically decreases, and then it has a
finite limit at α→∞ (figure 1),

kGL
∣∣
α=0 = 1− 1

2n −→ kGL
∣∣
α→∞ = 1− 5

2n. (4.7)

The corresponding periodicity is given by

LGL = 2π
kGL

= 2πr0

(
1 + k1

n

)
+O

(
n−2

)
, (4.8)

where we reinstated the radius scale. Therefore, requiring longer wavelength for the in-
stability, uniform black strings are stabilized by the GB correction. Note that this is a
consistent result with the numerical analysis for D = 9 pure GB black strings, which shows
the smaller threshold wavenumber than for GR [41, 42]. Interestingly, this is contrary
to the result in 5 ≤ D ≤ 8 where the instability needs larger kGL for small α [16, 43],
which implies a critical dimension on the α-dependence of kGL. To confirm such a critical
dimension, one needs to know the NNLO correction to eq. (4.6).
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Figure 1. α-dependence of k1.

4.2 Weakly non-uniform black string

The static non-uniform black string can be constructed by the perturbative expansion
from the static uniform black string in the small non-uniformity by starting from the onset
of the instability. As in GR [31, 32], we assume the following expansion in the static
equation (3.21)

R(z) =
∑
i=1

εiµi cos(ikz), µi =
∑
j=0

∑
k=0

µi,j,kε
jn−k, (4.9)

where without loss of generality, we can set µ1 = 1 by the redefinition of small parameter
ε. The first three terms are given by

µ0 = −ε2
(1

4 −
c02 + c20

2n

)
+ ε4

( 1
72 −

19c02 + 24c20 + 9c21
288n

)
+O

(
ε6
)
,

µ2 = − 1
12 + c20 − c02

6n + ε2
( 5

1728 + 13c21 − 5c02 − 10c20
576n

)
+O

(
ε4
)
,

µ3 = 1
96 + 3c02 − 4c20 + 3c21

96n − ε2
( 29

46080 −
17c02 + 116c20 − 195c21

23040n

)
+O

(
ε4
)
, (4.10)

where cij are shown in eq. (3.22). The wavenumber is also modified from kGL

k

kGL
= 1− ε2

24

(
1− 5c02 + 4c20 − 3c21

n

)
+ ε4

( 19
6912 + −95c02 − 76c20 + 33c21

3456n

)
+O

(
ε6
)
.

(4.11)
The small amplitude ε is related to the non-uniformity parameter (3.23) by eq. (4.9)

λ = 1
2

(
eR(0)

eR(π) − 1
)

(4.12)

= ε+ ε2 + ε3

96

(
65 + 3c02 − 4c20 + 3c21

n

)
+ ε4

48

(
17 + 3c02 − 4c20 + 3c21

n

)
+O

(
ε5
)
.

The periodicity is, then, expanded in terms of λ,

L

LGL
= 1 + λ2

24

(
1− `1

n

)
− λ3

12

(
1− `1

n

)
+ λ4

(1043
6912 −

515`1 + 72
3456n

)
+O

(
λ5
)
, (4.13)
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where LGL is given by eq. (4.8) and `1 is written as

`1 := 5c02 + 4c20 − 3c21 = 48α3 + 76α2 + (40 + π)α+ 16
2(α+ 1)(2α2 + α+ 1) (4.14)

− α
(
log

(
2α2 + 2α+ 1

)
+ 2(2α+ 1)2 log(α+ 1) + 2(2α+ 1) arctan(2α+ 1)

)
(α+ 1)(2α+ 1) (2α2 + α+ 1) .

4.3 Thermodynamics

Using the perturbative solution of the non-uniform black string constructed in the previous
section, we can obtain the thermodynamic variables as the expansion in λ,

M

MGL
=1+λ2

24

(
1− `1−12

n

)
−λ

3

12

(
1− `1−12

n

)
+λ4

(5448−443`1
3456n + 971

6912

)
+O

(
λ5
)
, (4.15)

S

SGL
=1+λ2

24

(
1− `1−12

n

)
−λ

3

12

(
1− `1−12

n

)
+λ4

(5448−443`1
3456n + 971

6912

)
+O

(
λ5
)
, (4.16)

T
TGL

=1−
(

1+ 9−`1
n

)
λ2

2 +
(

1+ 9−`1
n

)
λ3−

(121
72 + 55(9−`1)

36n

)
λ4+O

(
λ5
)
, (4.17)

where `1 is shown in eq. (4.14) and the critical values for uniform strings, where non-uniform
strings branch off, are given by

MGL = (1 + α)rn+1
0

(
1 + (α+ 1)`1 − 7α− 5

2n(1 + α)

)
, (4.18)

SGL = (1 + 2α)rn+2
0

(
1 + (2α+ 1)`1 − 10α− 7

2n(1 + 2α)

)
, (4.19)

TGL = rn0
n

1 + α+ 2α2

1 + 2α

[
1 + 1

n

(
α
(
4α2 − 8α− 3

)
(1 + 2α) (1 + α+ 2α2) (4.20)

+arctan(1 + 2α)− π/4− log(1 + α)
1 + α

+ log
(
1 + 2α+ 2α2)

2(2α+ 1)(α+ 1)

)]
,

and

TH = TH,GL = 1
r0

( 1 + α

1 + 2α −
α(1 + 4α)
n(1 + 2α)2

)
. (4.21)

In the above, we re-introduce the radius scale. Note that the same λ-dependence that
appears in the mass and entropy provides just an approximate relation up to NLO.5

For these perturbation formula, we can confirm that the Smarr relation (3.39) and

∂λM = TH∂λS + T ∂λL (4.22)

hold up to O
(
λ10) and NLO in 1/n.

5With the form of LGL,MGL, SGL, TGL and the assumption ∂α(M/MGL) = O
(
n−1) = ∂α(S/SGL), the

Smarr formula (3.39) shows M/MGL − S/SGL = O
(
n−2). This is because the α-dependence does not

appear in the static equation at the leading order.
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In the literature [44], the relative binding energy is also defined as a useful scale
invariant quantity

τ := LT
M

(4.23)

= τGL

[
1−

(
1− `1−10

n

)
λ2

2 +
(

1− `1−10
n

)
λ3−

(481
288 + 2171−217`1

144n

)
λ4 +O

(
λ5
)]
,

where

τGL = LGLTGL
MGL

= 1
n

2α2 + α+ 1
(2α+ 1)(α+ 1) −

1 + 6α+ 15α2 + 8α3 − 4α4

n2(1 + α)2(1 + 2α)2 . (4.24)

For the uniform solution, one can check that the large α limit of the relative binding
energy and temperature matches with the result by the large α approximation up to NLO
in 1/n [45]

τGL →
1
n

+ 1
n2 '

1
n− 1 ,

n

4πTH,GL →
n− 2
8πr0

(α→∞). (4.25)

4.4 Stability of weakly non-uniform black string

By considering the dynamical perturbation to the static solution (4.9) in eq. (3.1), we study
the change of the fundamental modes

m(t, z) = eR(z)
(
1 + δ eΩtf(z)

)
, p(t, z) = ps(z)

(
1 + δ eΩtg(z)

)
, (4.26)

where δ is another small parameter and ps(z) corresponds to that of the static solu-
tion (3.20). We assume the mode functions are decomposed by the Fourier modes in
the periodicity of the static solution,

f(z) =
∑
i=0

εiνi cos(ikz), g(z) =
∑
i=0

εiν̄i sin(ikz). (4.27)

We focus on the fundamental mode which goes back to the zero mode Ω → 0 for ε → 0.6

Here, we do not give the detail of the derivation, but find that the growth rate becomes

Ω = − 2α2 + α+ 1
2α2 + 2α+ 1

(
1− Ω1

n

)
λ2

12 +O
(
λ3
)
, (4.28)

where ε is replaced with λ by using eq. (4.12) and

Ω1 = 1
(α+1)(2α2 +2α+1)

(
32α3 +57α2 +(26+π)α+9+ 2α3−2α2−α

(2α2 +2α+1)2 + 1
2α+1

−4αarctan(2α+1)−4(2α+1)α log(α+1)− 2α log(2α2 +2α+1)
2α+1

)
. (4.29)

Therefore, for large enough n, we obtain Ω < 0, i.e. the non-uniform phase is linearly
stable. For smaller n, the stability of the non-uniform phase depends on the value and
signature of Ω1.

6All other modes are stable at ε→ 0 and then, will not give the instability in the perturbative regime.
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4.5 Critical dimensions

In the GR case, it is known that the black string admits a critical dimension n∗, such that
for n > n∗ the non-uniform phase is stable, and for n < n∗ unstable [46], where the critical
dimension appears in the mass for fixed L as well as in the entropy difference between the
non-uniform and uniform phase of the same mass. We can see the critical dimension from
the mass for fixed L expanding up to O

(
λ2)

M

Ln+1 '
MGL

Ln+1
GL

[
1 + nλ2

24

(
1− `1

n

)]
, (4.30)

where `1 is given by eq. (4.14) and we assume the deformation parameter is sufficiently
small λ2 � 1/n. This estimates the critical dimension in the mass as

n∗,M = `1 (D∗,M = 4 + `1). (4.31)

To determine the critical dimension in the entropy difference at large D, we need to solve
the O

(
n−2) correction. Hence, we do not discuss this.

Similarly, the critical dimension also appears in the dynamical stability (4.28), where
we obtain

n∗,D = Ω1, (D∗,D = 4 + Ω1). (4.32)

As shown in figure 2, the critical dimensions for both the mass and dynamical stability
increase as the coupling constant α grows. This indicates that we need a slightly higher
dimension for the stable non-uniform phase with a large coupling constant α.

As discussed in ref. [32], in the GR case, the NLO result determines n∗ only up to
O
(
n0), that is

n = n∗ (1 +O (1/n∗)) = n∗ +O
(
n0
∗

)
. (4.33)

In the GR case, these critical dimensions approaches to the similar values that give the
same threshold for the integer dimension with higher order corrections in 1/n. With the GB
correction, it is unclear whether or not n∗,M and n∗,D give the same criticality. To confirm
n∗,M = n∗,D for every α, one might need a full numerical study with non-integer n. If they
admit a slight difference, one can take a value of α to satisfy either of (i) n∗,M < n < n∗,D
or (ii) n∗,D < n < n∗,M. From figure 2, it seems to be the case (i), in which the non-uniform
phase will be dynamically unstable, but thermodynamically stable. However, we cannot
expect any such physical system. Fortunately, the GR result up to O

(
n−3) [32] estimates

n∗,M,GR = 9.93 and n∗,D,GR = 9.62 supporting the case (ii), in which the non-uniform
phase will be dynamically stable but thermodynamically unstable, i.e. metastable.

Another possibility is that both n∗,D(α) and n∗,M(α) simply converge within 9 < n < 10
with higher order corrections in 1/n uniformly for any α, which has the same threshold for
integer dimensions as in GR.

5 Conclusion

In this article, we have developed the analytical studies on the non-linear dynamics of
black strings in Einstein-Gauss-Bonnet (EGB) theory, using the large D effective theory ap-
proach. Extending the earlier work [34], we have obtained the dynamical effective theory up
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Figure 2. α-dependence of the critical dimensions in the mass and stability.

to the next-to-leading order (NLO) in the 1/D-expansion. Remarkably, with the NLO cor-
rection, we have shown that the Iyer-Wald entropy of the dynamical deformation is subject
to the second law within the large D effective theory. Using the entropy and mass formulae
up to NLO, we have also determined the entropy functional for the leading order theory.

Solving the effective equation, we have studied the phase and stability of uniform
and non-uniform black strings up to NLO. We have found that the Gregory-Laflamme
instability of uniform solutions requires longer wavelength than in General Relativity (GR).
The threshold wavelength grows as a function of the Gauss-Bonnet (GB) coupling constant
αGB, and finally ends at a finite limit for αGB →∞. This indicates that the GB correction
stabilize uniform black strings.

From the onset of the instability, we have also constructed static non-uniform black
strings by perturbing static uniform black strings in the weakly-deformed regime and have
studied the thermodynamics and dynamical stability. We have estimated the critical di-
mensions for both the mass with periodicity fixed and the dynamical stability within the
accuracy of O

(
n0), and have indicated that both of them are increasing functions of αGB.

As the threshold of the instability, the critical dimensions approach to certain finite values
at the limit αGB → ∞. This shows non-uniform black strings are rather destabilized by
the GB correction, contrary to uniform black strings. With the GB correction, a slightly
higher dimension is required to admit the stable non-uniform phase. We have also agued
that the difference between the thermodynamical and dynamical critical dimensions leads
to the metastable non-uniform phase in a certain dimension with a certain value of αGB.

A simple extension of this work is finding higher order corrections in the 1/D-
expansion, which nevertheless will require much harder works to find the metric solution.
With higher order corrections in the 1/D-expansion, one can determine the critical dimen-
sions more accurately. This will predict the existence of the metastable non-uniform phase,
more correctly. It will also be interesting to explore such metastable phase directly in the
fully numerical analysis.
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The large D effective theory approach will be also applicable to the Einstein-Lovelock
theories or more general higher curvature theories, in which the second law is only shown
for the perturbation around the stationary black holes [20, 23]. It will be possible to verify
the second law beyond the perturbative level in those theories almost in parallel by using
the large D effective theory approach, but one must replace the Iyer-Wald entropy with
the Iyer-Wald-Wall entropy [20].
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A 1/D-expansion of EGB equation

In this section, we explain the derivation of the metric solution in the 1/D-expansion.
Instead of eq. (2.3), we expand an equivalent equation

Eµν := Rµν + αGBH̃µν = 0, (A.1)

where

H̃µν = − 1
D − 2LGBgµν + 2RRµν − 4RµαRαν − 4RµανβRαβ + 2RµαβγRναβγ . (A.2)

We denote the sphere component as

Eij = EΩγij , (A.3)

where γij is the metric for Sn+1. With the assumption α := n2αGB = O (1) and the new ra-
dial coordinate R := rn, the sphere component gives the equation for A at the leading order

EΩ/n = R(2αA0 − 2α− 1)∂RA0 + (A0 − 1)(αA0 − α− 1) +O (1/n) . (A.4)

The solution is easily found as eq. (2.10). Given the solution of A0, the 1/n expansion of
Erz, Ezz, Err lead to the radial ODE for C,G and U at the leading order, respectively,

2Erz/n = ∂R
(
R2(2αA0 − 2α− 1)∂RC0

)
+O (1/n) , (A.5)

2Ezz = ∂R
[
R2A0(2αR∂RA0 + 2αA0 − 2α− 1)∂RG0)

]
(A.6)

− ∂R
[
2αR(A0 − 1) (2R∂RA0 +A0 − 1)− 2R∂zC0 (2αR∂RA0 + 2αA0 − 2α− 1)

+4αR2∂zA0∂RC0 − 2αR3A0(∂RC0)2
]

+ R2(∂RC0)2(2αA0 − 2α− 1) +O (1/n) ,

Err/n = −R(2αA0 − 2α− 1)∂R

(
U0 −

R
2 ∂RG0

)
− αR2(∂RC0)2 +O (1/n) , (A.7)

where the latter two also need the solution for C0 as sources.
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Substituting the 1/n-expansion of the metric (2.8) to EΩ, Erz, Ezz and Err, one can
obtain i-th order evolution equation for i ≥ 1, which is rewritten in terms of the auxiliary
variable X (2.12) as,

∂X

(
X

1−X2Ai

)
= S(i)

A , (A.8a)

∂2
XCi = S(i)

C , (A.8b)

∂X [(1 +X−2)(1 + 2α−X)∂XGi] = S(i)
G , (A.8c)

∂X

(
Ui −

1−X2

4X ∂XGi

)
= S(i)

U , (A.8d)

where the sources S(i)
A and S(i)

C only contain lower order solutions, while S(i)
U and S(i)

G

further include Ai and Ci as in eqs. (A.6) and (A.7).
For other components, one can find that Ett and Etr gives the condition degenerate to

EΩ at leading order

2g−1
tt Ett/n2 ' 2Etr/n2 ' R∂REΩ/n = r∂rEΩ/n

2. (A.9)

Eliminating the leading order terms in Ett and Etr with EΩ, we obtain the conditions
correspond to the Hamiltonian constraint

H := 2n−1Etr − n−1r∂rEΩ = 0, (A.10)

and temporal part of the vector constraint,

Vt := 2n−1(Ett − gttEtr) = 0. (A.11)

Similarly, the leading order part of Etz is degenerate to the combination of Erz and EΩ, and
then, the subtraction of it leads to the condition corresponds to the constraint along the
string direction

Vz := 2Etz − 2gttErz − ∂zEΩ = 0. (A.12)

One can find that Vt = 0 and Vz = 0 produce the effective equations if the metric solutions
are substituted, while H = 0 is trivially satisfied without extra condition.

B Necessary functions for higher order integrals

Here we introduce several functions which appear in the higher order solution of metric
functions. These functions are necessary to perform integrals involving arctan(x) and
log(1 + x2).

Clausen’s function. Clausen’s functions are related to the real and imaginary parts of
Lik(eiθ)

Li2m(eiθ) = Sl2m(θ) + iCl2m(θ), Li2m+1(eiθ) = Cl2m(θ) + iSl2m(θ) (B.1)
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where Clk(θ) and Slk(θ) are also defined as the Fourier series

Cl2m(θ) =
∞∑
k=1

sin(kθ)
k2m , Sl2m(θ) =

∞∑
k=1

cos(kθ)
k2m , (B.2)

Cl2m+1(θ) =
∞∑
k=1

cos(kθ)
k2m+1 , Sl2m+1(θ) =

∞∑
k=1

sin(kθ)
k2m+1 . (B.3)

By definition, these functions have the periodicity of 2π. The Sl-type functions are ex-
pressed by the Bernoulli polynomials for 0 ≤ θ ≤ 2π

Sl2m(θ) = (−1)m−1(2π)2m

2(2m)! B2m

(
θ

2π

)
, Sl2m−1(θ) = (−1)m(2π)2m−1

2(2m− 1)! B2m−1

(
θ

2π

)
.

(B.4)
Cl-type functions also satisfies the double angle formula

Clm+1(2θ) = 2m[Clm+1(θ) + (−1)mClm+1(π − θ)]. (B.5)

Cl2 is used to express following integrations

∫ logx
1+x2dx=−1

2Cl2(2arctanx)+ 1
2Cl2(2arctanx+π), (B.6)∫ log(x±1)

1+x2 dx=−1
2Cl2(2arctanx±π/2)+ 1

2Cl2(2arctanx+π)+ 1
2 arctanx log2, (B.7)∫ log(1+x2)

1+x2 dx= Cl2(2arctanx+π)+2arctanx log2. (B.8)

Complex polylogarisms. Clausen’s functions are the polylogarism on the unit circle in
the complex plain. We also need the polylogarism on other trajectories in the complex plain.
We define the following real functions as the real and imaginary parts of corresponding
polylogarism

Dl2(x) = Re Li2
(1− i

2 (1 + x)
)
, El2(x) = Im Li2

(1− i
2 (1 + x)

)
(B.9)

Fl2(x) = Re Li2
(
x− 1− 2α
i+ x

)
, Gl2(x) = Im Li2

(
x− 1− 2α
i+ x

)
. (B.10)

It turns out that we do not need El2(x) since it is expressed by Cl2’s

El2(x) = 1
2Cl2(2 arctan x+ π)− 1

2Cl2
(

2 arctan x+ π

2

)
−
(

arctan x+ π

4

)
log(1 + x) + 1

2

(
arctan x+ π

4

)
log 2− K

2 , (B.11)

where K ≈ 0.916 is Catalan’s constant.
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These functions are used to express following integrations∫
x log(x± 1)

1 + x2 dx = Dl2(±x)− 1
2 log(x+ 1) log

(
x2 + 1

2

)
, (B.12)

∫ log(1 + x2)
x− 1− 2α dx = 2Fl2(x)− arctan2 x+ 1

4 log(1 + x2)2 + 2 arctan x arctan(1 + 2α)

− 1
2 log(2 + 4α+ 4α2)(log(1 + x2)− 2 log(1 + 2α− x)), (B.13)∫ arctan x

x− 1− 2αdx = Gl2(x)− 1
2 arctan x(log(1 + x2)− log(2 + 4α+ 4α2)

− 1
2 arctan(1 + 2α)(log(1 + x2)− 2 log(1 + 2α− x)). (B.14)

C Quasi-local stress energy tensor

Here we present the quasi-local stress energy tensor of the EGB black string defined by
Brown-York’s method

Tµν := lim
r→∞

rn+1

8πG (Khµν −Kµν)− (regulator), (C.1)

where hµν and Kµν is the metric and extrinsic curvature of a r-constant surface. At large
D, we normalize the tensor so that it remains finite at the limit

Tµν = n

16πGT
µν (C.2)

where the normalized components up to NLO are given by

T tt=(α+1)m (C.3)

+ 1
n

[
βm−αp

2

m
+(1+2α−β)p∂zm

m
+(β−4α−3)∂zp−(2αm+(α+1)∂zp)logm

]
,

T tz=(α+1)(p−∂zm) (C.4)

+ 1
n

[
−
(
β+2α2−3α−1

2α+1

)
p−αp

3

m2 +
(

10α3+10α2+5α+1
(2α+1)(2α2+2α+1)−β

)
p(∂zm)2

m2

−
(
β+α(2α−1)

2α+1

)
p∂zp

m
+
(
β+4α4−4α3−6α2−4α−1

(2α+1)(2α2+2α+1)

)
∂zm

+
(
β+6α2−3α−1

2(2α+1)

)
p2∂zm

m2 +
(

4α4

(2α+1)(2α2+2α+1)+β
)
∂zp∂zm

m

+
(

2α2+α+1
1+2α ∂2

zp+(1+α)p
2∂zm−2mp∂zp

m2 −2αp

+2α(mp∂2
z+m∂zp∂zm−p(∂zm)2+2αm2∂zm)

(2α+1)m2

)
logm

]
,

T zz=− 2αp∂zm
(2α+1)m+(α+1)∂tm+(α+1)p2

m
−
(
2α2+α+1

)
(m+∂zp)

2α+1 (C.5)

+ 1
n

[(
−4α4+8α3+15α2+6α+1

(α+1)(2α+1)2 −
(
2α2+α+1

)
β

(2α+1)(α+1)

)
m+

(
3β−2α3+9α2+13α+4

2α2+3α+1

)
p2

m
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−αp
4

m3 +γ1p(∂zm)3

m3 +γ2(∂zp)2

m
+γ3

m∂2
zm−2(∂zm)2

m
+γ4p

2(∂zm)2

m3 +γ5∂zp(∂zm)2

m2

+γ6p
2∂2
zm

m2 +γ7p∂
2
zp

m
+γ8

m∂3
zp−p∂3

zm

m
+
(
γ9+4α2+2α+1

2α+1
p2

m2

)
∂tm

−2(4α2+3α+1)
2α+1

p∂tp

m
+γ10∂zp+

(
2α3+10α2+13α+3

(α+1)(2α+1) −3β
)
p2∂zp

m2 +γ11
∂zp∂

2
zm

m

+γ12
∂tm∂zp

m
+γ13

m∂t∂zp−p∂t∂zm−∂zm∂tp
m

+γ14
p∂zm

m
+
(
3β− 7α2+12α+3

(α+1)(2α+1)

)
p3∂zm

m3

+γ15
p∂zp∂zm

m2 +γ16
p∂2

zm∂zm

m2 +γ17
∂2
zp∂zm

m
+γ18

p∂zm∂tm

m2

+logm
(

2α∂zm
2α+1

(
p∂tm

m2 −
∂tp

m
− (2α−1)p

(2α+1)m

)
−∂tm

(
(α+1)p2

m2 + 4α2

2α+1

)

−2αp∂t∂zm
(2α+1)m +2(α+1)p∂tp

m
−2αp2

m
+2α(4α2+4α−1)m

(2α+1)2

+
(
4α3+4α2−5α−1

)
∂zp

(2α+1)2 −
(
2α2+α+1

)
∂t∂zp

2α+1

)]

where
β = log

(
2α2 + 2α+ 1

)
4α+ 2 − log(α+ 1) + arctan(2α+ 1)− π

4 + 1, (C.6)

and

γ1 = 4α
(
24α4 +38α3 +26α2 +9α+1

)
(α+1)(2α+1)2 (2α2 +2α+1) −

16α log(α+1)
2α+1 ,

γ2 =
(
2α2 +α+1

)
β

2α2 +3α+1 −
24α6 +96α5 +138α4 +108α3 +53α2 +17α+2

(α+1)(2α+1)2 (2α2 +2α+1) + 4α log(α+1)
2α+1 ,

γ3 =−10α3 +20α2 +11α+2
4α3 +6α2 +4α+1 + 4α log(α+1)

2α+1 +2β,

γ4 =−2
(
2α2 +6α+1

)
β

2α2 +3α+1 − 2α
(
16α5 +56α4 +44α3 +4α2−10α−3

)
(α+1)(2α+1)2 (2α2 +2α+1) + 8α log(α+1)

2α+1 ,

γ5 = 16α log(α+1)
2α+1 − 4α

(
24α4 +38α3 +26α2 +9α+1

)
(α+1)(2α+1)2 (2α2 +2α+1) ,

γ6 =−
(
2α2 +α+1

)
β

2α2 +3α+1 + 2α3 +13α2 +6α+3
4α2 +6α+2 − 4α log(α+1)

2α+1 ,

γ7 =
(
2α2 +α+1

)
β

2α2 +3α+1 −
2α3 +9α2 +5α+2

2α2 +3α+1 + 4α log(α+1)
2α+1 ,

γ8 =−3α+1
α+1 + 4α log(α+1)

2α+1 +β,

γ9 =−8α6 +16α5 +42α4 +62α3 +41α2 +12α+1
(α+1)(2α+1)2 (2α2 +2α+1) + 4α log(α+1)

2α+1 +β,

γ10 = 4α log(α+1)
2α+1 − 32α6 +88α5 +96α4 +58α3 +24α2 +9α+1

(α+1)(2α+1)2 (2α2 +2α+1) ,

γ11 = 26α4 +36α3 +23α2 +8α+1
4α4 +10α3 +10α2 +5α+1 −

8α log(α+1)
2α+1 −β,
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γ12 =
(
4α2 +4α+2

)
β

2α2 +3α+1 − 8α6 +16α5 +50α4 +82α3 +61α2 +22α+3
(α+1)(2α+1)2 (2α2 +2α+1) ,

γ13 = 1−2α+4α log(α+1)
2α+1 −

(
2α2 +α+1

)
β

2α2 +3α+1 ,

γ14 = 5β+ 32α6 +40α5−68α4−154α3−114α2−37α−5
(α+1)(2α+1)2 (2α2 +2α+1) ,

γ15 =
(
2α2 +11α+1

)
β

2α2 +3α+1 + 64α6 +240α5 +280α4 +166α3 +60α2 +19α+3
(α+1)(2α+1)2 (2α2 +2α+1) − 12α log(α+1)

2α+1 ,

γ16 =−120α5 +244α4 +226α3 +114α2 +29α+3
(α+1)(2α+1)2 (2α2 +2α+1) + 20α log(α+1)

2α+1 +3β,

γ17 = 68α5 +146α4 +144α3 +75α2 +19α+2
(α+1)(2α+1)2 (2α2 +2α+1) − 12α log(α+1)

2α+1 −2β,

γ18 =−
(
6α2 +5α+3

)
β

2α2 +3α+1 +−24α5−20α4 +22α3 +34α2 +17α+3
(α+1)(2α+1)2 (2α2 +2α+1) + 4α log(α+1)

2α+1 . (C.7)
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