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1 Introduction

Over the past three decades, the (Schwarzschild) black strings and black branes [1] have
served as the model solution for studying the physics of black holes in higher dimensions.
They produce a plethora of physical phenomena not found in four-dimensional gravity,
including the Gregory-Laflamme instability [2, 3], non-uniqueness [4–19], and violations of
the weak cosmic censorship [20, 21]. The same physics is found in other higher dimensional
black holes, including black rings [22–24], ultraspinning black holes [25–33], and certain
black holes in supergravity [34–40].

Recently in [41], we studied the D = 6 equal-spinning Myers-Perry black string. There,
we found a different instability that affects certain rotating black strings: the superradiant
instability [42–44]. In this instability, the ergoregion of the black string amplifies incoming
waves. Meanwhile, momentum along the string direction produces an effective mass term,
allowing these waves to be confined. The amplification process then continues until an
instability takes over.

In other superradiant instabilities (say, in AdS), there are new solutions that branch
from its onset called black resonators [45–48]. The same is true for rotating black strings,
and by analogy, we call these black resonator strings. Linear evidence for the existence of
black resonator strings was identified in [41], but here we construct them explicitly and
study their properties. We will do so both by using higher-order perturbation theory and
by solving the full Einstein equation numerically. As in [41], we focus on the case where
the D = 6 equal-spinning Myers-Perry black string is a solution. The mechanism for the
instability, as well as the prediction for the existence of novel solutions branching from its
onset, has been anticipated in [42].1

1Indeed, our black string resonators were coined ‘gyratons’ in [42].
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We will find some similarities between black resonator strings and black resonators.
Both solutions are rotating black objects with gravitational hair. Both are neither time-
translation invariant nor axisymmetric, but they are nevertheless time-periodic.2 Both
have a higher entropy than the unstable solution from which they branched off (for fixed
conserved charges), i.e. it is permissible, entropically, for the superradiant instability to
evolve towards these solutions.

However, we also find some differences. Unlike black resonators, black resonator strings
are expected to be stable to perturbations with arbitrarily high wavenumber. Unlike
black resonators, where their horizonless limit is a nontrivial solution called a geon, black
resonator strings do not have a zero-horizon limit. Curiously, we will also construct Kaluza-
Klein geons, which are horizonless configurations that share the same symmetries as black
resonator strings, but these appear to be entirely disconnected and seemingly unrelated to
black resonator strings.

The plan of the manuscript is as follows. Section 2 is dedicated to review the equal
angular momenta Myers-Perry black string and the properties of its Gregory-Laflamme and
superradiant instabilities studied in [41]. In section 3 we motivate the ansatz we use to
find the black resonator strings as well as their thermodynamic quantities. In section 4,
we provide the details to our perturbative calculation. We describe our construction of
Kaluza-Klein geons in section 5, then explain in section 6 why the theory does not have
Kaluza-Klein warm holes (of the type found in [49]). Finally, we piece together the phase
diagram of solutions in section 7 and end with a discussion in section 8 where we speculate
on evolution scenarios.

2 Myers-Perry string and its instabilities

The Myers-Perry (MP) black hole [50] is a rotating higher-dimensional black hole that is
asymptotically flat and Ricci flat (Rµν = 0). In five dimensions, the Myers-Perry black hole
has three dimensionful parameters, a common choice being the mass radius parameter r0
and two angular momentum parameters a1 and a2 [50, 51]. In general, this solution has
an isometry group Rt × U(1)2, but in the equal-spinning case a1 = a2 ≡ a, the solution
has an enhanced symmetry Rt × U(2) [52, 53]. The extra symmetries simplify the study of
rotating black holes.

We are interested in the associated 6-dimensional rotating black string, which is the
product spacetime of an equal-spinning Myers-Perry black hole with a circle. Hereafter, we
simply refer to this solution as the Myers-Perry black string. Its metric can be written:3

ds2
MP string = −F

H
dt2 + dr2

F
+ r2

[
H

(
σ3
2 −

Ω
H

dt
)2

+ ds2
CP1

]
+ dz2 , (2.1)

2These two statements together imply that black resonator strings have a helical Killing vector field
K ≡ ∂t + ΩH∂ψ, where ∂t and ∂ψ are the asymptotic Killing vector fields generating time translations and
translations in the angular direction of the equal-spin rotation, respectively.

3The radial coordinate used here can be related to the standard Boyer-Lindquist radial coordinate of [50]
through r2 → r2 + a2. We shall use a notation where capital Latin indices run over the 6-dimensional
coordinates, lower case Latin indices run over all spatial coordinates except the radial one, and Greek indices
run over all coordinates except the extended/string direction.
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where
ds2

CP1 = 1
4
(
σ2

1 + σ2
2

)
(2.2)

is the metric of the complex projective space CP1, which is isomorphic to the 2-sphere
S2.4 Letting (θ, φ, ψ) be the Euler angles of a S3 with ranges 0 ≤ θ ≤ π, 0 ≤ φ < 2π, and
0 ≤ ψ < 2π, we have defined the 1-forms σı (ı = 1, 2, 3) on S3 as

σ1 = − sin(2ψ) dθ + cos(2ψ) sin θ dφ ,
σ2 = cos(2ψ) dθ + sin(2ψ) sin θ dφ ,
σ3 = 2 dψ + cos θ dφ .

(2.3)

which satisfy the Maurer-Cartan equation dσı = 1
2εıkσ ∧ σk. In (2.1), we have also defined

F (r) = 1− r2
0
r2 + a2r2

0
r4 , H(r) = 1 + a2r2

0
r4 , Ω = a r2

0
r4 . (2.4)

This solution has an event horizon at r = r+ (the largest real root of F ) with Killing horizon
generator K = ∂t + ΩH∂ψ, where ΩH ≡ Ω(r+)/H(r+) is the horizon angular velocity. We
can express the mass radius parameter as r0 = r2

+/
√
r2

+ − a2.
Letting L be the length of the extended direction z (so z ∼ z + L) and introducing

the dimensionless rotation parameter ã ≡ a/r+, the energy, angular momentum, tension
along z, temperature, entropy and angular velocity of the Myers-Perry black string are,
respectively:

E
∣∣
MP

= L

8G6

3πr2
+

1− ã2 , J
∣∣
MP

= L

4G6

πãr3
+

1− ã2 , Tz
∣∣
MP

= 1
8G6

πr2
+

1− ã2 ,

TH
∣∣
MP

= 1
2πr+

1− 2ã2
√

1− ã2
, SH

∣∣
MP

= L

G6

π2r3
+

2
√

1− ã2
, ΩH

∣∣
MP

= ã

r+
.

(2.5)

At ã = 1/
√

2, the temperature vanishes at extremality. Note that we decided to measure J
and ΩH with respect to ψ ∼ ψ + 2π, in accordance with the work of Myers and Perry5 [50].

The Myers-Perry black string (2.1) is unstable to (at least) two sectors of perturba-
tions [41]. One is the familiar Gregory-Laflamme instability, where horizons with a large
separation of length scales are unstable to forming ripples along the extended directions.
This instability was first studied in the context of Schwarzschild black strings/branes [2, 3],
later extended to rotating black strings in [25–27, 29], and then studied in detail for the
Myers-Perry black string in [41].

The other instability involves superradiant scattering, where an ergoregion of a rotating
black hole amplifies incident waves. If these waves are reflected or confined, the amplification

4In odd spacetime dimensions, D = 2N+3, equal-spinning Myers-Perry black holes have a homogeneously
squashed S2N+1 written as an S1 fibred over CPN . Note that the Fubini-Study line element ds2

CP1 on CP1

is simply the familiar metric for the S2 and the Kähler potential A of CP1 is simply A = 1
2 cos θ. For further

details see [27, 52–54].
5In these conventions the superradiant factor (also known as resonant or syncronization factor), that will

appear later in our discussions, reads ω − 2mΩH . The non-standard factor of 2 reflects the fact that we
have equal rotation along the two planes and we are using the period of 2π for ψ.

– 3 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
9

□□□□□□□□□□□□□□□□□□□□□□□□
□□□□□□□□□□

□□□□□□□
□□□□□□

□□□□□
□□□□

□□□□
□□□□

□□□
□□□

□□□
□□□

□□
□□
□□
□□
□□
□□
□□
□□
□□
□
□
□
□
□
□
□
□
□
□
□
□

□
□
□
□
□
□
□

□
□□
□□
□□
□
□
□
□
□
□□
□□
□□
□□
□

○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○
○○○○○○○○
○○○○○○○
○○○○○○
○○○○○○
○○○○○
○○○○○
○○○○○
○○○○
○○○○
○○○○
○○○○
○○○
○○○
○○○
○○○
○○○
○○○
○○○
○○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○○○
○○○
○○○
○○
○○
○○
○○
○
○○
○

△△△△△
△△△△△

△△△△△
△△△△△

△△△△△△
△△△△△△

△△△△△△
△△△△△△

△△△△△△
△

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.5

2.0

2.5

3.0

3.5

◆

◆

◆

c

B

A

○○○○○○○○○○○○○○○○○
○○○○○○○○○

○○○○○○○
○○○○○○

○○○○○
○○○○○

○○○○
○○○○

○○○○
○○○○

○○○○
○○○

○○○
○○○

○○○
○○○

○○○
○○○

○○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○
○
○
○
○
○
○○
○○
○○
○○○○
○○○
○○
○○
○○
○
○
○
○
○
○
○○

△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△

□
□

□
□

□
□

□
□

□

□

□

□

□

□
□

□
□

□

□

□

□

□□
□
□
□
□
□
□
□

□

□

□□
□
□
□□
□□
□

0.60 0.62 0.64 0.66 0.68 0.70

2.5

3.0

3.5

○○○○○○○○○○○
○○

○○
○○

○○
○○

○○
○○

○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○
○○○
○○○
○○○
○○
○○
○○
○
○
○
○
○
○○

□
□

□

□

□

□

□□
□
□
□
□
□
□
□
□

□
□□
□□
□□
□□
□

0.685 0.695 0.705

2.8

3.0

3.2

3.4

3.6

3.8 ◆A

○
α

○

○
◆

◆

◆

c

B

A

α

β

Figure 1. Superradiant instability (for azimuthal number m = 2) and Gregory-Laflamme instability
of Myers-Perry black strings with parameters k̃(0), Ω̃H . Superradiant instability occurs inside the
triangular region ABc, and Gregory-Laflamme instability occurs below the curve marked by orange
squares. The Gregory-Laflamme onset curve intersects with the edge of the unstable superradiant
region at points α and β. The vertical dashed line at Ω̃H = 1/

√
2 is extremality.

process continues, leading to an exponentially growing instability. In black strings, the
Kaluza-Klein momentum along the string direction can provide an effective mass term
that confines superradiant bound states [42]. In the Myers-Perry black string (2.1), this
superradiant instability was found and studied in [41] (see also [43, 44] for perturbative
analysis of this instability in Kerr strings for scalar fields).

The dominant superradiant instability of (2.1) is expected to be sourced by the
perturbation of the form ds2 = ds2

MP string + δds2
SR with [41]

δds2
SR = 1

4e
ikze−iωtei (m−2) (φ+2ψ) cos2(m−2)

(
θ

2

)
Q(r)

(
σ2

1 − σ2
2 + 2 iσ1 σ2

)
, (2.6)

which describes a superradiant perturbation with a charged scalar harmonic of CP1. Here,
k = 2π/L, and m is a half-integer (m = 2, 5/2, 3, 7/2, 4, · · · ) corresponding to the azimuthal
quantum number for ψ [47, 55]. We are most interested in the m = 2 case as the instability
of this perturbation has the highest growth rate and it does not depend on the polar angle θ.

It is often convenient for us to work in units of the horizon radius r+. Accordingly, we
introduce the dimensionless quantities

ã = a/r+, Ω̃H = ΩHr+, k̃ = kr+, ω̃ = ωr+. (2.7)

Figure 1 summarizes key information about the m = 2 superradiant instability pre-
viously found in [41]. In parameters (Ω̃H , k̃), Myers-Perry black strings are unstable in a
triangular region ABc of figure 1. This triangular region is defined by the region between
two curves (Bc and Ac) k̃?(Ω̃H) ≤ k̃ ≤ k̃(0)(Ω̃H) and extremality (AB) Ω̃H ≤ 1/

√
2 . We

also have the intersection point (c) of these curves Ω̃H |c, where k̃?(Ω̃H |c) = k̃(0)(Ω̃H |c).

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
9

Let us explain the physical origin of the curves k̃(0)(Ω̃H) and k̃?(Ω̃H). As we have alluded
to earlier, the superradiant instability requires two ingredients. One is the superradiant
amplification of incident waves. The other is a confinement mechanism that causes the
amplification process to continue growing until an instability sets in. The curve k̃(0)(Ω̃H) is
the superradiant onset curve where ω̃ = 2mΩ̃H with Im ω̃ = 0. The curve k̃?(Ω̃H) is the
confining cutoff curve, where the confinement mechanism is no longer strong enough to
support an instability.

It turns out that some parts of the unstable region ABc of figure 1 are known analytically
for any m [41]. Point A, where the superradiant onset curve meets extremality k̃(0)(Ω̃ext

H ),
is given by

k
(m)
(0) r+|ext =

√
2m2 + 4m− 1 . (2.8)

The confining cutoff curve (Bc in figure 1) is given by

k̃
(m)
? (Ω̃H) = (2m− 1)

√
1− Ω̃2

H , (2.9)

and the intersection point between the superradiant onset curve and confining cutoff curve
(point c in figure 1) is

Ω̃H

∣∣
c

= 2m− 1√
8m2 − 4m+ 1

. (2.10)

For reference, the curve marked by orange squares in figure 1 shows the zero mode
curve k̃(0)

∣∣
GL

where the Gregory-Lafamme instability sets in. This instability exists for any
rotation, 0 ≤ Ω̃H ≤ 1/

√
2 and for L̃ > L̃(0)

∣∣
GL

= 2π/k̃(0)
∣∣
GL
. This curve intersects the onset

and cutoff curves of the superradiant instability at points α and β in figure 1. Together, the
figure shows that in different regions of parameter space either, none, or both instabilities
can be present.

At the onset of an instability, perturbations neither grow nor decay exponentially. These
perturbations instead move the solution towards other steady-state solutions. Our focus in
this paper is on the steady-state solutions that should branch from the onset of the m = 2
superradiant instability, in a phase diagram of asymptoticallyM1,4 × S1 backgrounds with
equal angular momenta.6 From the nature of the perturbations, one can see that these
solutions are not time independent (they are time-periodic), and neither axisymmetric nor
translationally invariant along the string direction. In [41], we called these solutions black
resonator strings by analogy to similar solutions that branch from superradiant instabilities
in black holes [45–48, 56, 57]. We will construct these solutions explicitly in the next few
sections. We will also determine whether the black resonator strings have higher or lower
entropy (horizon area) than the corresponding Myers-Perry black string with the same
length, energy, and angular momenta. By the horizon area law, these entropy considerations
will provide important information about the time evolution and ultimate endpoint of the
superradiant instability.

Like the superradiant instability, the onset of the Gregory-Laflamme instability also
leads to a new family of solutions: stationary but non-uniform black strings [58]. We leave

6We focus on the superradiant onset curve k̃(0)(Ω̃H) and not the confining cutoff curve k̃?(Ω̃H). The
reason is that we have well-defined, regular perturbative solutions to the former but not the latter.
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the study of these non-uniform Myers-Perry black strings to future work, but lessons can
be drawn from previous results on other black strings [4–19]. From these results, we would
expect the non-uniform black strings to have less entropy than the uniform solutions for a
given energy and angular momenta. We also expect that this non-uniform family connects
to localized or caged black holes that have spherical (and not string-like) horizon topology.
A localised black hole is expected to be the entropically dominant solution, again for fixed
energy and angular momenta.

3 Ansatz and thermodynamics for black resonator strings

3.1 Symmetries of Myers-Perry black strings and its perturbations

The Myers-Perry black string (2.1) is time-translation invariant, axisymmetric, and transla-
tionally invariant (∂t, ∂ψ, and ∂z are Killing fields). A less obvious symmetry is an SU(2),
which we will now explain.

Recall that the isometry group of S3 is SO(4) ' SU(2)L × SU(2)R. It follows that,
in the zero rotation limit, Myers-Perry strings (i.e. Schwarzschild strings) also have these
isometries. The Killing vectors generating SU(2)L (denoted by ξı) and SU(2)R (denoted by
ξ̄ı) are, respectively, given by

ξ1 = cosφ∂θ + 1
2

sinφ
sin θ ∂ψ − cot θ sinφ∂φ,

ξ2 = − sinφ∂θ + 1
2

cosφ
sin θ ∂ψ − cot θ cosφ∂φ,

ξ3 = ∂φ,

(3.1a)

and 
ξ̄1 = − sin(2ψ) ∂θ + cos(2ψ)

sin θ ∂φ − 1
2 cot θ cos(2ψ)∂ψ,

ξ̄2 = cos(2ψ) ∂θ + sin(2ψ)
sin θ ∂φ − 1

2 cot θ sin(2ψ) ∂ψ,
ξ̄3 = 1

2∂ψ .

(3.1b)

Note that ξ̄ı are the normalised dual vectors of σı: (σı)α(ξ̄)α = δı (α = θ, φ, ψ). We
can define the “angular momentum” operators Lı = iξı and Rı = iξ̄ı which satisfy the
commutation relations [Lı, L] = iεıkLk and [Rı, R] = −iεıkRk (where εık is the Cartesian
Levi-Civita tensor). Under SU(2)L and SU(2)R, the 1-forms (2.3) transform as

£Lıσ = 0 , £Rıσ = −iεıkσk . (3.2)

The invariance of the S3 metric dΩ2
S3 = 1

4(σ2
1 +σ2

2 +σ2
3) under SU(2)L×SU(2)R can now be

checked using (3.2). It further follows from the first equation in (3.2) that σı are invariant
under SU(2)L (hence, they are often called SU(2)-invariant 1-forms).

From the second equation in (3.2) one concludes that Rı generate the three-dimensional
rotations of the “vector” (σ1, σ2, σ3). In particular, R3 generates U(1)ψ ⊂ SU(2)R, which
describes rotations in the σ1σ2-plane. Thus, while Schwarzschild black strings preserve
SO(4) ' SU(2)L × SU(2)R, once we turn-on rotation, Myers-Perry black strings (2.1)
preserve the SU(2)L subgroup but break SU(2)R. Yet, SU(2)R is not completely broken
since the U(1)ψ ⊂ SU(2)R symmetry generated by R3 is preserved (indeed note that ds2

CP1

is independent of ψ). That is to say, the isometry group of the equal-spinning Myers-Perry
black string (2.1) is Rt ×U(1)z ×U(1)ψ × SU(2)L.

– 6 –
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How do perturbations at the onset of the superradiant instability (described in section 2)
break these symmetries? By definition, an onset has Im ω̃ = 0, but these perturbations
have Re ω̃ 6= 0. These perturbations are therefore time-periodic. As these perturbations
have k̃ 6= 0, they also break translation invariance along z. All m 6= 0 perturbations also
break axisymmetry about ψ. However, m = 2 are special in that they are the only nontrival
superradiant perturbations that preserve SU(2)L. This extra symmetry is why we focus
only on the m = 2 perturbations.

Beyond linear order, these m = 2 perturbations therefore extend towards a branch of
solutions that break Rt, U(1)z and U(1)ψ, but are time periodic (preserving a helical Killing
field K = ∂t + ΩH∂ψ ≡ ∂τ that forms Rτ ), and preserve SU(2)L.7 These are the solutions
which we have called black resonator strings, and we aim to construct these solutions and
study their properties in the rest of the manuscript.

3.2 Ansatz for black resonator strings

The most general ansatz that can describe an asymptotically M1,4 × S1 rotating string
with the above SU(2)L symmetries, helical Killing vector field ∂τ , and zero horizon velocity
in the string direction, can be written as

ds2 = r2
+

{
− y2F̃ q1

H̃
dτ2 + 4q2

(1− y2)4F̃
dy2 + q7

(
L̃

2 dx+ q3dy
)2

(3.3)

+ 1
(1− y2)2

[
q4H̃

(
Σ3
2 + y2Ω̃

H̃

[
1 + (1− y2)3q6

]
dτ
)2

+ q5
1
4

(
q8Σ2

1 + Σ2
2
q8

)]}
,

where qj = qj(y, x), for j = 1, 2, 3, · · · , 8, are eight functions of a radial coordinate y and of
a direction x (the string, with physical length L ≡ L̃r+, extends non-uniformly along this
direction), and

F̃ (y) =
(
2− y2

)(
1− ã2

1− ã2
(
1− y2)2) ,

H̃(y) = 1 + ã2

1− ã2
(
1− y2)4 ,

Ω̃(y) = ã
(
2− y2

) [
1 +

(
1− y2

)2
]
. (3.4)

Σ1,Σ2,Σ3 are the SU(2) left-invariant 1-forms on S3 defined as in (2.3), but with ψ replaced
by Ψ, where the relation between ψ and Ψ is given below in (3.6). Furthermore, it will be
convenient to redefine both q1 and q7 so that we can read the energy and tension by taking
a single derivative with respect to y. We thus set

q1(x, y) = 1 +
(
1− y2) q̂1(x, y) , q7(x, y) = 1 +

(
1− y2) q̂7(x, y) (3.5a)

and
qi(x, y) = q̂i(x, y) , i 6= 1, 7 . (3.5b)

7It turns out that though U(1)z and U(1)ψ are broken, it is possible to find a special perturbation
that preserves a U(1) involving a linear combination of ∂z and ∂ψ, i.e. a helical symmetry. The resulting
non-uniform solutions were called helical black strings in [41]. These solutions, though more symmetric,
necessarily have nonzero horizon velocity in the z direction (akin to “boosted” black strings), so we do not
study them here, but leave them for a forthcoming paper [59].
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In (3.3), the coordinate x describes the direction along the string. To obtain this
coordinate, we started with a periodic coordinate z with (dimensionful) spatial period
L ≡ L̃r+, i.e. z ∼ z + L. But, because we seek solutions with a Z2 symmetry around z = 0,
we restrict our domain to z ∈ [0, L/2]. Finally, we can then introduce the dimensionless
coordinate x = 2

L z which ranges between x ∈ [0, 1].
To further understand the motivation for the ansatz (3.3) note that the Myers-Perry

black string (2.1)–(2.4) can be rewritten as (3.3) with q1,2,4,5,7,8 = 1 and q3,6 = 0 after doing
the coordinate and field redefinitions

t = r+τ , r = r+
1− y2 , ψ = Ψ + ΩH r+τ , z = 1

2 L̃r+x ;

F =
(

1− r+
r

)
F̃ , H = H̃ , Ω = − 1

r+

(
1− r+

r

)
Ω̃ + a

r2
+
H̃ . (3.6)

The new coordinates (τ, y, θ, φ,Ψ, x) are dimensionless. The shift in the azimuthal coordinate
ψ ensures that (3.3) describes solutions where the angular velocity at the horizon vanishes at
the expense of being in a rotating frame at infinity. It follows that, in these new coordinates,
the Killing horizon generator K = ∂t + ΩH∂ψ of the Myers-Perry black string becomes

K = ∂τ . (3.7)

Thus, ansatz (3.3) describes black string solutions with horizon at y = 0, generated
by (3.7), with temperature TH = 1

2πr+
1−2ã2√

1−ã2
(measured with respect to time t since

gAB(∂t)A(∂t)B → −1 at the asymptotic region), and that asymptote toM1,4 × S1 at y = 1.
Note that the ansatz (3.3) is completely general given our symmetry requirements.

Indeed, the system has a nonlinear symmetry that leaves the metric invariant when we shift
the Euler angle Ψ→ Ψ + Ψ0, and there is a choice of Ψ0 that sets the cross term σ1σ2 to
zero.8 After fixing Ψ0, deformations along CP1 are described by two remaining degrees of
freedom given by the functions q5 and q8. Moreover, because our metric fields depend on x
and y, we allow for a cross term dxdy proportional to q3 to avoid fixing the gauge.

Further notice that linearizing (3.3) about the Myers-Perry black string, after using (3.6),
one gets a m = 2 perturbation that is described by (2.6) with Q ∝ δq8 and ω = 2mΩH =
4ΩH . That is, this linearization yields the m = 2 superradiant onset mode of the Myers-
Perry black string. Thus, (3.3) is a good ansatz to study the nonlinear back-reaction of the
m = 2 superradiant onset linear mode discussed previously.

Generically, solutions of (3.3) are not time independent nor axisymmetric since the
associated Rt and U(1)ψ symmetries are broken in (3.3) when q8 6= 1.9 They clearly also

8Concretely, setting Ψ = ψ − 1
4 arctan

(
Q2
Q1

)
where Q1,2 = Q1,2(r, z) one has

√
Q2

1 +Q2
2
(
Σ2

1 − Σ2
2
)

=
Q1
(
σ2

1 − σ2
2
)

+ 2Q2σ1σ2.
9This becomes evident when we return to the frame that does not rotate at infinite and rewrite

q8Σ2
1 + 1

q8
Σ2

2 = 1
2

(
q8 −

1
q8

)[(
σ2

1 − σ2
2
)

cos(4ΩHt) + 2σ1σ2 sin(4ΩHt)
]

+ 1
2

(
q8 + 1

q8

)(
σ2

1 + σ2
2
)

which explicitly depends on t when q8 6= 1. Moreover, this term also depends explicitly on ψ, when q8 6= 1,
as can be seen when we expand

(
σ2

1 − σ2
2
)
in terms of the Euler angles as in (2.6). Further recall that(

σ2
1 + σ2

2
)
is the line element of CP1 which is isometric to an S2.
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break translation invariance along the string direction x. Thus, (3.3) only has the symmetries
Rτ × SU(2)L with the Rτ isometry generated by the horizon generator (3.7). In this sense,
we say that resonator solutions of (3.3) are time-periodic because they still have the helical
Killing vector field (3.7). Like black resonators in AdS, the helical Killing field is timelike
in certain regions of the asymptotic AdS boundary but spacelike in others [45–48, 56].

To find the resonator string solutions, and to fix the remaining gauge freedom in our
ansatz, we use the Einstein-DeTurck formalism [17, 33, 60–62]. This formulation of the
gravitational equations requires a choice of reference metric g, which has the same causal
structure and contains the symmetries of the desired solution (it can have other symmetries).
The reference metric we choose is the Myers-Perry black string metric given by (3.3) with
q1,2,4,5,7,8 = 1 and q3,6 = 0, as discussed above. The DeTurck method modifies the Einstein
equation RAB = 0 into

RAB −∇(AξB) = 0 , ξA ≡ gCD
[
ΓACD − ΓACD

]
, (3.8)

where Γ and Γ define the Levi-Civita connections for g and ḡ, respectively. Unlike Rµν = 0,
this equation yields a well-posed elliptic boundary value problem. Indeed, it was proved
in [61] and [62] that static and stationary (with t−ψ symmetry) solutions to (3.8) necessarily
satisfy ξµ = 0, and hence are also solutions to Rµν = 0. Note that the results of [61, 62]
apply to asymptotically flat and asymptotically AdS spacetimes and, of relevance here, to
asymptotically Kaluza-Klein backgrounds.

We now discuss the boundary conditions. At the asymptotic boundary, y = 1, we
impose as a Dirichlet condition that our solutions must approach the reference metric. At
y = 0, we demand a regular bifurcate Killing horizon generated by ∂τ . This amounts to
impose Neumann boundary conditions for q1,2,4,5,6,7,8 and Dirichlet boundary condition for
q3. The discrete Z2 symmetry x→ −x requires that all of the qi’s have Neumann boundary
conditions at x = 0, except q3 which has a Dirichlet boundary condition. Finally, regularity
at x = 1 requires a Dirichlet boundary condition for q3 and Neumann conditions for the
remaining functions.

We are now ready to solve the Einstein-DeTurck differential equations subject to the
above boundary conditions. We will do this within higher-order perturbation theory about
the Myers-Perry black string in section 4. We will also solve the full nonlinear problem
numerically. For that, we will use a Newton-Raphson algorithm and discretise the Einstein-
DeTurck equations using pseudospectral collocation (with Chebyshev-Gauss-Lobatto nodes
along the x and y directions). The resulting algebraic linear systems are solved by LU
decomposition. These methods are reviewed in [33].

It is convenient for us to work in units of the horizon radius r+, where the Myers-Perry
black string can be parametrized by the dimensionless quantities ã = a/r+ and L̃ = L/r+.
Later, we can convert these to units of L, as we will discuss in detail in section 3.4.

The above discussions naturally invite us to follow one of two strategies (we will use
both) to generate the 2-parameter space of black resonator strings:

1. We can choose to generate lines of black resonator strings that have the same di-
mensionless rotation ã as the Myers-Perry black string they branch from. The
dimensionless length L̃ is varied along these families of solutions.
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2. Alternatively, we can choose to generate lines of black resonator strings that have the
same dimensionless length L̃ as the Myers-Perry black string they branch from (i.e.
we fix the length to be L̃ = 2π/k̃(0) where k̃(0) is the m = 2 zero mode wavenumber
for the superradiant instability of the Myers-Perry black string that given in figure 1).

Altogether, with these two strategies we span the 2-dimensional phase space parameter of
black resonator strings. We will present our results in section 7.

3.3 Asymptotic expansion

Before computing the asymptotic charges, we need to understand the expansion of the
functions qi near asymptotic infinity. This expansion can be sorted out via a generalised
Frobenius expansion near asymptotic infinity, since the equations of motion linearise there.
We find

q̂i(x, y) =
+∞∑
n=0

q̂
(n)
i (y) cos(nπ x) , i = 1, 2, 4, 5, 6, 7 , (3.9a)

q̂3(x, y) =
+∞∑
n=0

q̂
(n)
3 (y) sin(nπ x) , (3.9b)

q̂8(x, y) = 1 +
+∞∑
n=1

q̂
(n)
8 (y) cos(nπ x) . (3.9c)

The exact decay of each of the q̂(n)
i (y) is intricate, but from the above considerations

it is clear that the only components that have a chance to contribute to the asymptotic
charges are the n = 0 components of the i = 1, 2, 4, 5, 6, 7 functions. These turn out to be
relatively easy to determine:

q̂
(0)
i (y) =

+∞∑
j=0

α
(j)
i (1− y)j + (1− y)4 log(1− y)

+∞∑
j=0

β
(j)
i (1− y)j (3.10a)

with
α

(0)
1 = α

(0)
2 = α

(0)
4 = α

(0)
5 = α

(0)
6 = 1 (3.10b)

and
α

(0)
3 = α

(0)
6 = 0 . (3.10c)

3.4 Thermodynamics for black resonator strings

In this section, we find the thermodynamic quantities that will allow us to discuss the phase
diagram of black resonator strings and compare them against the Myers-Perry black strings.

Consider the Einstein-Hilbert action with the Gibbons-Hawking term for an asymptoti-
callyM1,4 × S1 spacetime manifoldM with spacelike boundary ∂M

Sreg = − 1
16πG6

∫
M

d6x
√
−g R− 1

8πG6

∫
∂M

d5x
√
−hK , (3.11)

where G6 is Newton’s constant, R is the 6-dimensional Ricci scalar of the metric gAB ,
√
−g

is the determinant of gAB,
√
−h is the determinant of the pullback of hAB = gAB − nAnB
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into the 5-dimensional boundary ∂M, n is the unit normal to ∂M with nµn
µ = 1, and

K = gABKAB is the trace of the extrinsic curvature KAB = h C
A ∇CnB of ∂M. The

addition of the Gibbons-Hawking term guarantees that one gets a regularized action (i.e.
with a well-defined variational principle) since the variation (3.11) w.r.t. gAB yields the
correct Einstein bulk equation of motion, RAB − 1

2RgAB = 0. But, using this Einstein bulk
equation, the variation of (3.11) still yields the boundary term (with a, b running over the
boundary coordinates)

δSreg = − 1
16πG6

∫
∂M

d5x
√
−h (Kab −Khab) δhab , (3.12)

from which the regularized energy-momentum tensor becomes

T reg
ab = − 2√

−h
δSreg
δhab

= 1
8πG6

(Kab −Khab) . (3.13)

Unfortunately, this stress tensor diverges as we approach the asymptotic boundary. To
get a renormalized action we can add counterterm contributions to Sreg that only depend
on the boundary metric, (and thus preserve the bulk equations of motion) that annihilate
these divergences. Following the renormalization procedure of [63] (see also [64, 65]) one
finds that renormalization is achieved with the following counterterm10

Sct = − 1
8πG6

∫
∂M

d5x
√
−h
√

3
2R , (3.14)

where R is the Ricci scalar of the boundary metric hab. Its variation yields

δSct = − 1
8πG6

∫
∂M

d5x
√
−h 1

2

√
3

2R (Rab −Rhab) δhab , (3.15)

where Rab is the Ricci tensor of the boundary metric. Therefore, the renormalized energy-
momentum stress tensor that follows from variation of the renormalized action Sren =
Sreg + Sct is

T ren
ab = 1

8πG6

(
Kab −Khab +

√
3

2R Rab −
√

3
2Rhab

)
. (3.16)

The conserved charge associated to an asymptotic Killing vector field ξ at the asymptotic
boundary Σt (a constant time slice t =constant at y = 1) is then

Qξ = lim
y→1

∫
Σt
d4x
√
σ ηi ξj T ren

ij , (3.17)

where η is the unit normal ηi = ∂if
|∂f| (with ηiη

i = −1) to the spacelike hypersurface Σt

defined by f = 0, and
√
σ is the determinant of σij which is the pullback of σab = hab + ηab

to Σt. It follows that the energy of the system associated to the asymptotic Killing vector
field ξ = ∂t = ∂τ − ΩH∂Ψ is given by E ≡ Q∂t and that the angular momentum is the

10For asymptoticallyM1,D−p−1 × Tp spacetimes with p brane directions, we find that the appropriate
counterterm is Sct = − 1

8πGD

∫
∂M dD−1x

√
−h
√
C(D,p)R with C(D,p) =

√
D−p−2
D−p−3 . In our case D = 6, p = 1.
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conserved charge J ≡ Q∂ψ associated to the asymptotic Killing vector field ξ = ∂ψ = ∂Ψ.
Finally, the tension associated to the asymptotic Killing vector field ξ = ∂z is Tz ≡ Q∂z .
Altogether, the energy, angular momentum and tension of the black resonator strings are:

E =
π L̃ r3

+
16G6

( 6
1− ã2 − 3α(1)

1 − α
(1)
7

)
,

J =
π L̃ r4

+
8G6

ã

( 2
1− ã2 − α

(1)
6

)
,

Tz =
π r2

+
16G6

( 2
1− ã2 − α

(1)
1 − 3α(1)

7

)
. (3.18)

The temperature (w.r.t. the asymptotic Killing vector field ∂t with normalization ‖|∂t‖|2 →
−1 at the asymptotic region), the angular velocity and the entropy of the black resonator
strings are

TH = 1
2πr+

1−2ã2
√

1−ã2
, ΩH = ã

r+
, SH =

π2 L̃r4
+

2G6
√

1−ã2

∫ 1

0

√
q4(x,0)q5(x,0)

√
q7(x,0)dx.

(3.19)
To express quantities in units of the Kaluza-Klein circle length L, we will use the fol-
lowing dimensionless energy, angular momentum, tension, temperature, angular velocity
and entropy:

E ≡ E

L3 , J ≡ J

L4 , Tz ≡
Tz
L2 , τH ≡ THL , ωH ≡ ΩHL , σH ≡

SH
L4
(3.20)

to discuss our phase diagram of asymptoticallyM1,4 × S1 solutions.
Next, we would like to find the Smarr and first law for these scale invariant quantities.11

For this purposes, first notice that the extensive thermodynamic variables of the system
are the total energy, E, angular momentum J , tension Tz, the total entropy SH , and the
length L. It follows that the first law for the total charges of the system is:

dE = TH dSH + 2 ΩHdJ + Tz dL , (3.21)

where the factor of 2 accounts for the fact that the two angular momenta of our solutions
are equal, and we see that TH ,ΩH , Tz are the potentials (intensive variables) conjugate to
SH , J, L, respectively. Under the scaling symmetry

{τ, y, θ, φ,Ψ} → {τ, y, θ, φ,Ψ}, {r+, a, L} → {λr+, λ a, λL} ,
{qj} → {qj}, (j = 1, · · · , 8) (3.22)

the energy scales as E → λ3E and thus it is a homogeneous function of λ of degree 3. This
means that for any value of λ,

E
(
λ4 SH , λ

4 J, λL
)

= λ3E (SH , J, L) . (3.23)

11The first law for the Schwarzschild black string was discussed in [66–68].
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We can now apply Euler’s theorem for homogeneous functions to write the energy as a
function of its partial derivatives:12

4SH
∂E

∂SH
+ 4J ∂E

∂J
+ L

∂E

∂L
= 3E (SH , J, L) . (3.24)

Reading the partial derivatives in (3.24) from (3.21), one gets the Smarr relation for the
charges of the system:

E = 4
3

(
TH SH + 2 ΩH J + 1

4Tz L
)
. (3.25)

It will be useful to have also the Smarr relation and first law for the dimensionless quanti-
ties (3.20). To get the former, we simply need to divide (3.25) by L3 yielding

E = 4
3

(
τH σH + 2ωH J + 1

4Tz
)
. (3.26)

Finally, we can rewrite the first law (3.21) in terms of (3.20) and use (3.25) to find the
desired first law for the dimensionless quantities

dE = τH dσH + 2ωH dJ , (3.27)

which, as expected, does not include a contribution proportional to the quantity L we use
for our units. In a traditional thermodynamic language, the first law (3.27) and the Smarr
relation (3.26) are also known as the Gibbs-Duhem and Euler relations, respectively.

From (3.18)–(3.20) the dimensionless thermodynamic quantities read

E = π

16G6L̃2

( 6
1− ã2 − 3α(1)

1 − α
(1)
7

)
,

J = π

8G6L̃3
ã

( 2
1− ã2 − α

(1)
6

)
,

Tz = π

16G6L̃2

( 2
1− ã2 − α

(1)
1 − 3α(1)

7

)

τH = L̃

2π
1− 2ã2
√

1− ã2
,

ωH = ã L̃ ,

σH = π2

2G6L̃3
1√

1− ã2

∫ 1

0

√
q4(x, 0)q5(x, 0)

√
q7(x, 0) dx (3.28)

which will be used to discuss our physical results.
We will use (3.26)–(3.27) to check our results. Note that when we set α(1)

i = 0 in (3.28),
we recover the dimensionless quantities associated to the thermodynamics (2.5) of the
Myers-Perry black string.

12Essentially, in the present case, Euler’s theorem amounts to taking a derivative of the homogeneous
relation (3.23) with respect to λ and then sending λ→ 1.
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4 Perturbative construction of resonator strings

We are now in a position to construct black resonator strings and study their thermodynamics.
Here, we begin with a perturbative construction, which describes black resonator strings in
the region near their merger with the Myers-Perry black strings. We do this by solving the
boundary vale problem described in the previous section to fifth order in perturbation theory.

We follow a perturbative approach developed in [19, 69], which originated from [4, 7, 12].
Using linear perturbation theory, we first identify the region of parameter space where
Myers-Perry black strings are unstable to m = 2 superradiant modes. This task was already
performed in [41] and explained in section 2 and shown in figure 1, but we will shortly
describe this calculation in the present context. Our main task here is to continue the
perturbative expansion to higher orders, until we reach an order where thermodynamic
quantities receive perturbative corrections.

Let us now describe our perturbative analysis. We work with the ansatz (3.3) and
equations of motion (3.8) in the previous section, and write the following expansion

qj(x, y) = Qj +
∞∑
n=1

εn q
(n)
j (x, y); (4.1a)

k̃ =
∞∑
n=1

εn−1k̃(n−1) ≡ k̃(0) +
∞∑
n=2

εn−1k̃(n−1), with L̃ = 2π
k̃
, (4.1b)

where Q1,2,4,5,7,8 = 1, Q3,6 = 0 describes the Myers-Perry black string background. Note
that the equations of motion depend explicitly on L = 2π/k, so both k and L receive
perturbative corrections, the latter of which we write as

L̃ = L̃(0) +
∞∑
n=2

εn−1L̃(n−1) , (4.2)

and its expansion coefficients can be read straightforwardly once (4.1b) is known.13

Our expansion parameter ε is the amplitude of the linear order perturbation (n = 1).
We want to consider a superradiant perturbation of the form (2.6) for m = 2 at its onset, i.e.
with ω = 2mΩH = 4ΩH . Such a perturbation breaks the Rt, U(1)ψ, and U(1)x symmetries
of the Myers-Perry black string. For our ansatz, the only metric component that is perturbed
at linear order is q8(x, y) with a deformation of the form

q
(1)
8 (x, y) = q

(1)
8 (y) cos(π x) , q

(1)
1,2,3,4,5,6,7(x, y) = 0. (4.3)

The linearized equation of motion for q
(1)
8 (y) is a quadratic eigenvalue problem for κ̃ ≡√

k̃2
(0) − Ω̃2

H that we solve to get the superradiant onset wavenumber k̃(0). This task was
already done in [41] and shown as the blue curve cA in figure 1. Linear analysis also
identifies the region ABc of parameter space where Myers-Perry black strings are unstable
to m = 2 superradiant modes (figure 1).

13We have chosen to work with a coordinate x ∈ [0, 1] rather than z = xL2 ∈ [0, L2 ]. The Fourier modes
between these coordinates are related (for integer η) as cos(η k z) = cos(η π x). We also have a factor of π in
the cosine instead of 2π in order to make use of the Z2 symmetry in the solutions we seek.
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To fix the normalization condition for the linear problem (which also fixes the expansion
parameter of our perturbation scheme), we define

q
(1)
8 (y) =

(
1− y2

)3/2
e
−
√
k̃2

(0)−Ω̃2
H/(1−y

2)
q̂8(y) (4.4)

and require that q̂8|y=1 ≡ 1. This fixes the horizon value q̂8|y=0 ≡ qH8 and thus the horizon
function q

(1)
8 |y=0 cos(πx) ≡ qH8 cos(πx). When we continue with perturbation theory at

higher order, we will require that the cos(πx) component of q8 at the horizon does not
receive any perturbative corrections. This uniquely fixes the expansion parameter ε.

Although the sector of perturbations we look at only excites q8(x, y) at linear order −
see (4.3) − at higher order this backreacts on all other metric components, whose perturba-
tions are described by (4.1). More concretely, at higher orders O(εn), the expansion (4.1)
gives a boundary-value problem for the quantities {k̃(n−1), q

(n)
j }. Note again that the

wavenumber k̃ and thus the length L̃ are also corrected at higher orders. Since we have
fixed the x coordinate to lie in x ∈ [0, 1], we can express the x-dependence of the functions
as a sum of Fourier modes (with harmonic number η)

q
(n)
j (x, y) =

n∑
η=0

q
(n,η)
j (y) cos(η π x). (4.5)

Here and onwards, η = 0, . . . , n identifies a particular Fourier mode of our expansion at
order O(εn) and we have the identification q

(1,1)
j ≡ q

(1)
j with the latter function introduced

in (4.3). That is, we have already found the n = 1 contribution, (4.3) and k̃(0) ≡ k̃(0), of
this expansion by solving a homogeneous eigenvalue problem. At linear order, we started
with the single η = 1 Fourier mode and the nth polynomial power of this linear mode has
the highest harmonic η = n. This implies that the Fourier series at order n terminates at
harmonic η = n.

Let us now describe the structure of the perturbative equations at order O(εn), n ≥ 2
in full detail. Because the Fourier mode η = 1 is the only one that exists at linear order,
the structure of the η = 1 equations are different from the rest.

So here, we begin first with the more general η 6= 1 case. Note that for n ≥ 2, the
perturbative equations of motion are no longer homogeneous, but is now a boundary value
problem with a source. The perturbative equations of motion take the form14

L̄H q
(n,η)
j = S(n,η)

j , if n ≥ 2 and η 6= 1, (4.6)

where the source S(n,η)
j is a function of the lower order solutions and their derivatives,

and where L̄H is a differential operator that only depends on the background Myers-Perry
solution Qj and superradiant onset wavenumber k̃(0). The general solution q

(n,η)
j (y) is found

by solving (4.6) subject to the boundary conditions we already discussed below (3.8).15

14Because only q
(1)
8 is excited at linear order, the ODE for q(n,η)

8 decouples from the others in (4.6). That
is, (4.6) is effectively a coupled system of ODEs for q

(n,η)
j≤7 plus a decoupled ODE for q(n,η)

8 .
15That is, we require vanishing asymptotic Dirichlet boundary conditions q

(n,η)
j |y=1 = 0 − so that the full

solution (4.1) approaches the DeTurck reference Myers-Perry string solution, and regularity at the horizon
y = 0. The latter requires that we give a Dirichlet boundary condition for q

(n,η)
3 and Neumann boundary

conditions for q(n,η)
j 6=3 .
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Moving on to the ‘exceptional’ case η = 1, at order O(εn), n ≥ 2, our boundary value
problem becomes a (non-conventional) eigenvalue problem in k̃(n−1). The 7 ODEs for
q

(n,1)
j≤7 are still of the form (4.6) and independent of q(n,1)

8 and k̃(n−1). The equation for
q

(n,1)
8 decouples from the others (so it is independent of q(n,1)

j≤7 ) but it does depend on the
eigenvalue k̃(n−1). More explicitly, the structure of the equations is16

LH q
(n,1)
1,··· ,7 = S(n,1)

1,··· ,7 ,

LH,8 q(n,1)
8 = k̃(n−1) 8k̃(0)q

(1)
8

(1− y2)4f
+ S(n,1)

8 , if n ≥ 2 and η = 1, (4.7)

where f(y) was defined in (3.4), q(1)
8 (y) was introduced in (4.3), and LH , LH,8 are the

differential operators of the homogeneous equations. We now have to solve (4.7) (subject to
boundary conditions that are the same as for the η 6= 1 case) to find q

(n,1)
j≤7 (y), the eigenvalue

k̃(n−1) and q
(n,1)
8 (y).

As it turns out (after doing the computation), not all Fourier modes η = 0, . . . n are
excited. For even n, only modes with even η are excited. Likewise, for odd n ≥ 3, only
modes with odd η are excited. It follows that, to order n = 5, the modes that are excited
in our system are:

q
(2)
j (x, y) = q

(2,0)
j (y) + q

(2,2)
j (y) cos(2π x), (4.8a)

q
(3)
j (x, y) = q

(3,1)
j (y) cos(π x) + q

(3,3)
j (y) cos(3π x), (4.8b)

q
(4)
j (x, y) = q

(4,0)
j (y) + q

(4,2)
j (y) cos(2π x) + q

(4,4)
j (y) cos(4π x), (4.8c)

q
(5)
j (x, y) = q

(5,1)
j (y) cos(2π x) + q

(5,3)
j (y) cos(3π x) + q

(5,5)
j (y) cos(5π x). (4.8d)

This last observation, together with the previous observation that Fourier modes with
η = 1 are those that give the wavenumber correction k̃(n−1) at order O(εn), implies that
k̃(n−1) = 0 if n is even. Furthermore, at even n order, the cos (π x) Fourier mode is not
excited by the source and thus the only solution of (4.7) is the trivial solution.

Finally, note that the η = 0 harmonics are of particular special interest. Indeed,
as we will see later in (4.15), modes with η 6= 0 do not directly contribute to the final
thermodynamic quantities, though we still need to find the η 6= 0 harmonics at lower
order to obtain the η = 0 solution at order n and the wavenumber corrections k̃(n−1)

(the latter also contribute to the above thermodynamic quantities). Moreover, it follows
from the discussion of (4.8) that odd order n modes do not contribute to corrections of
thermodynamic quantities.

As we expand to higher orders, we find that the odd and even orders in perturba-
tion theory behave differently. Even orders O(εn) introduce perturbative corrections to
thermodynamic quantities like energy, angular momenta, tension, entropy, temperature,
angular velocity, etc, but they do not correct the wavenumber, k̃(n−1) = 0 (and thus do not
correct L̃).

16It is not a standard eigenvalue problem because the eigenvalue k̃(n−1) is not multiplying the unknown
eigenfunction q

(n,1)
8 . Instead, it multiplies an eigenfunction q

(1)
8 that was already determined at previous

n = 1 order.
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Figure 2. Wavenumber corrections k̃(2) (left panel) and k̃(4) (right panel), as defined in (4.1b), as
a function of the dimensionless angular velocity Ωr+ = ã. The vertical red dashed line represents
the extremal configuration with ΩHr+ = 1/

√
2. Recall that the leading wavenumber k̃(0) is given in

figure 1.

Odd orders O(εn) give the wavenumber corrections k̃(n−1) but do not change the
thermodynamic quantities. The leading wavenumber k̃(0) was already shown in figure 1. On
the other hand, the next-to-leading order wavenumber corrections k̃(2) and k̃(4), as defined
in (4.1b), are plotted in figure 2, in the left and right panels, respectively. The fact that
(some of) these higher order quantities grow large as one approaches Ω̃H = Ω̃H |c and/or
Ω̃H = Ω̃ext

H = 1/
√

2 tells us that our perturbation theory breaks down in this region. We
will come back to this below.

Once we have found all the Fourier coefficients q(n,η)
j (y) and wavenumber corrections

k̃(n−1), we can reconstruct the eight fields qj(x, y) using (4.1). We can then substitute these
fields in the thermodynamic formulas (3.28) of section 3.4 to obtain all the thermodynamic
quantities of the system up to O(ε5). We complete this perturbation scheme up to order
O(ε5): this is the order required to find a deviation between the relevant thermodynamics
of the black resonator and MP strings, as it will be found when obtaining (4.14).

Having described the perturbation scheme, we are now ready to discuss the system’s
properties that can be extracted from the perturbative analysis. First of all, let us recall
that it follows from (3.28) (with α(1)

1,6,7 = 0 and q4,5,7(x, 0) = 1) that the thermodynamic
quantities of MP strings parametrized by (L̃, ã) are given by

E
∣∣
MP

= 1
G6

3π
8L̃2

1
1− ã2 , J

∣∣
MP

= 1
G6

π

4L̃3
ã

1− ã2 , Tz
∣∣
MP

= 1
G6

π

8L̃2
1

1− ã2 ,

τH
∣∣
MP

= L̃

2π
1− 2ã2
√

1− ã2
, ωH

∣∣
MP

= ã L̃ , σH
∣∣
MP

= 1
G6

π2

2L̃3
1√

1− ã2
.

(4.9)

Extremal MP strings (i.e. with τH = 0) are a 1-parameter family of solutions with
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Figure 3. Superradiant instability (for m = 2) and Gregory-Laflamme instability of Myers-Perry
black strings with parameters E , J . For presentation, we show the momentum difference with the
extremal Myers-Perry black string G6∆J ≡ G6(J − Jext MP)same E . Superradiant instability occurs
inside the triangular region ABc, and Gregory-Laflamme instability occurs above the curve marked
by orange squares. The Gregory-Laflamme onset curve intersects with the edge of the unstable
superradiant region at points α and β. The horizontal red line at ∆J = 0 is extremality.

Ω̃H = Ω̃ext
H = 1/

√
2 and

Jext MP(E) = 23/2

33/2π1/2G
1/6
6 E

3/2 . (4.10)

At leading order in perturbation theory, we can recover our results from [41], which
was already presented in figure 1. Here, in figure 3, we show the results again but this time
in terms of the dimensionless energy and angular momentum (in units of circle length L)
as defined in section 3.4. For visibility, it is convenient to show the angular momentum
difference from the extremal Myers-Perry black string

∆J ≡ (J − Jext MP)|same E , (4.11)

rather than J itself.
The various quantities that are plotted in figure 3 are the same as that of figure 1. The

triangular region ABc is where Myers-Perry black strings are unstable to superradiance. In
particular, the blue curve Ac represents the onset curve of the superradiant instability.

This onset curve Ac is where a new family of black resonator strings branches from
Myers-Perry black strings. Perturbation theory at order O(ε) locates this curve, but it
cannot describe the thermodynamic properties of the black resonator strings. For that, we
need to proceed to higher order. We do so up to n = 5 and thus we get the thermodynamic
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description of black resonator strings up to O(ε5). We can then compare it against the
thermodynamics of MP strings and find which of these two families is the preferred phase,
when they coexist. We are particularly interested in the microcanonical ensemble, so the
dominant phase is the one that has the highest dimensionless entropy σH for given energy
E and angular momenta J (in units of circle length L)

To complete this task, let QMP and Qres denote generic thermodynamic quantities Q
for the Myers-Perry black string and black resonator string, respectively. Again, when
comparing these two solutions in the microcanonical ensemble, we must use the same
Kaluza-Klein circle size L. Accordingly, we must work with quantities in units of L (3.20).
Then, in these units, we also require the solutions to have the same dimensionless energy
and angular momentum:

Eres = EMP , Jres = JMP. (4.12)

Given a resonator string with (Eres,Jres) we must therefore identify the corresponding
Myers-Perry black string with the same energy and angular momentum. To translate to
the parameters (L̃MP, ãMP) that we have used to describe the Myers-Perry black strings, we
use the following relations:

L̃MP =
√

3π
√
Eres

Σ+
, ãMP = 1

12
√

3π
Σ+Σ2

−

JresE3/2
res

with Σ± ≡
√

4E2
res ±

√
2
√

8E4
res − 27πJ 2

resEres . (4.13)

We can now replace these quantities in (4.9) with the identifications L̃→ L̃MP and ã→ ãMP

to find the thermodynamic quantities (in particular, the entropy σH) of the Myers-Perry
string with the same energy and angular momenta as the resonator string.

This process gives us a family of Myers-Perry black strings in terms of (Eres,Jres).
Since, in our perturbation scheme, the resonator quantities depend on ε, so too do the
corresponding Myers-Perry black strings. We can now compute the entropy density difference
∆σH = (σH,res − σH,MP) |same (E,J ) between resonator strings and Myers-Perry strings. This
gives ∆σH = c

(2)
∆σε

2 + c
(4)
∆σε

4 where c(2)
∆σ and c(4)

∆σ are two functions of q(n,η)
j |y=0 (n = 2, 4).

We can use the first law of thermodynamics (3.27) to show that c(2)
∆σ = 0 which justifies

our need to extend the perturbation expansion up to O(ε5). We also find that c(4)
∆σ no longer

depends on order n = 4 functions q(4,η)
j .17 Altogether, after using the first law of (3.27), we

find that

∆σH = (σH,res − σH,MP)
∣∣
same (L,E,J )

= c
(4)
∆σ ε

4 +O(ε6) (4.14)
17Note that the energy, etc are even functions of ε and the first law (3.27) can be written as ∂εE =

τH ∂εσH + 2ωH ∂εJ . The first law must be obeyed at each order in ε and thus it effectively gives two
conditions (one at order ε and the other at order ε3) that we can use to express the second derivatives of
q

(2,0)
7 |y=1 and q

(4,0)
7 |y=1 as a function of other functions q

(n,η)
j and their first derivatives evaluated at the

horizon, y = 0, or at y = 1. When we do this, we simplify considerably c(2)
∆σ and c(4)

∆σ. In particular, this
finds that c(2)

∆σ = 0. As a further check of our numerics, we verify that the Smarr law (3.26) is obeyed by
our solutions.
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Figure 4. Lowest-order perturbative correction to the entropy of Myers-Perry black strings by
branching m = 2 black resonator strings near the onset of the superradiant instability. The
horizontal axis shows the dimensionless angular velocity Ω̃H of the strings. The vertical axis
shows the difference (4.15) between the dimensionless entropy of the resonator and Myers-Perry
black strings with the same (L, E ,J ). Since c(4)

∆σ > 0, black resonator strings always dominate the
microcanonical ensemble around the superradiant merger line. The divergences near endpoints imply
that perturbation theory is breaking down at these locations. (See also later figure 5).

with18

c
(4)
∆σ =

k̃2
(0)

384π
√

1− ã2 (1− 2ã2)

{
k̃(0)

[
2
(
1− ã2

)2 (
3− 2ã2

)
ã2q

(2,0) ′
6 (1)2

− 8ã2
(
ã4 − 3ã2 + 2

) (
q

(2,0)
4 (0) + 2q(2,0)

5 (0) + q
(2,0)
7 (0)

)
q

(2,0) ′
6 (1)

−
(
4ã4 − 10ã2 + 1

) (
q

(2,0)
4 (0) + 2q(2,0)

5 (0) + q
(2,0)
7 (0)

)2]
(4.15)

− 6k̃(2)
[(

1− 2ã2
) (

q
(2,0)
4 (0) + 2q(2,0)

5 (0) + q
(2,0)
7 (0)

)
+ 2

(
1− ã2

)
ã2q

(2,0) ′
6 (1)

]}
,

where q
(2,0) ′
6 (1) stands for the first derivative of q(2,0)

6 evaluated at y = 1 and all other
functions in (4.15) are evaluated at y = 0.

For a given (E ,J ), if ∆σH > 0 then the black resonator strings are the preferred phase,
at least in a neighbourhood of the m = 2 superradiant onset. Recall that this onset is given
by the curve Ac in figure 1 or figure 3 in the range Ω̃H |c ≤ Ω̃H ≤ Ω̃ext

H . Thus, to analyse the
18The entropy difference depends also on functions evaluated at the asymptotic boundary because we

have subtracted the Myers-Perry backgroundand because we used first law to get (4.15).
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positivity of ∆σH , we just need to compute the coefficient c(4)
∆σ in (4.14)–(4.15) as a function

of Ω̃H . This is done in figure 4. We conclude that, for any value of Ω̃H |c ≤ Ω̃H ≤ Ω̃ext
H ,

c
(4)
∆σ and thus ∆σH are positive quantities. It follows that black resonator strings near the
superradiant onset have a higher entropy than the corresponding Myers-Perry black strings.

From the perturbative analysis, we find that the black resonator strings branch from
the Myers-Perry black strings in a direction towards the unstable region Ac of figure 3
(see later figure 5).19 The fact that the entropy has an expansion in even powers of ε also
implies that perturbations with different signs are equivalent. This means that the black
resonator strings only extend in one direction.20 Together with the entropy results, this
implies that it is entropically permissible for unstable Myers-Perry black strings near the
onset to evolve to black resonator strings.

This perturbative analysis, however, has its limitations. First, we note from figure 4
that the entropy correction c(4)

∆σ is diverging near the endpoints of the merger line, which
is an indication that perturbation theory is breaking down in such regions. Second, the
perturbative analysis does not say anything about solutions that are far from the merger
line. We will construct such solutions by solving the full Einstein equation numerically
and study their thermodynamics in section 7. We will make a direct comparison between
numerics and perturbation theory later in figure 5.

5 Constructing geons with Kaluza-Klein asymptotics

Besides the existence of black resonators we will also find another intriguing class of
solutions. These are horizonless configurations that are smooth and are analogous to AdS
geons detailed in [46, 72–74]. For this reason we will refer to these as Kaluza-Klein geons.
To find these solutions we again use the DeTurck method [17, 33, 60–62]. We start with
presenting a line element consistent with our symmetries, just like we did in (3.3) for the
black string resonators, but now without an horizon. We take

ds2 = −Q1 dT 2 + 4Q2 dy2

(1− y2)4(2− y2) +Q7

(
L̃

2 dx+Q3 dy
)2

+ y2(2− y2)
(1− y2)2

{
Q4

[Σ3
2 + Ω0 dT + Ω0(1− y2)3Q6 dT

]2
+ Q5

4

(
Q8 Σ2

1 + Σ2
2

Q8

)}
,

(5.1)

where Qi(x, y), with i ∈ {1, . . . , 8} are functions of x and y only and L̃ and Ω0 are constants,
whose physical meaning we will discuss shortly.

For the reference metric in the De Turck method we choose

Q1 = Q2 = Q4 = Q5 = Q7 = Q8 = 1 and Q6 = Q3 = 0 , (5.2)

which is just the Kaluza-Klein spacetimeM1,4 × S1.
19Note that as explained above, ∆σH , E and J have an expansion in ε and thus we can do a parametric

plot of ∆σH as a function of E and J .
20Black hole resonators that branch from the onset of other superradiant systems [45–48, 56, 57, 70, 71]

have this property. The non-uniform strings that branch from the Gregory-Laflamme onset also have
this property [4–19]. However, there are also systems where the changing the sign of the perturbation
gives different physical results, and these have solutions that branch in two directions from onset of the
instability [19, 25–29, 31–33, 37, 39].
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Note that in (5.1) y = 0 is a regular smooth center and (for any constant x and T ), it
corresponds to a point in spacetime. Spatial infinity is located at y = 1, and here x is a
periodic coordinate with period x ∼ x+ 2. Without loss of generality, we take x ∈ [−1, 1].
We are further interested in solutions which preserve a Z2 symmetry around x = 0 and
are invariant under x→ −x. For this reason we will take x ∈ [0, 1] and choose boundary
conditions at x = 0 and x = 1 consistent with this discrete symmetry. This amounts
to choosing

∂Qi
∂x

∣∣∣∣
x=0

= Q3(0, y) = 0 , ∀i 6=3 ,

∂Qi
∂x

∣∣∣∣
x=1

= Q3(1, y) = 0 , ∀i 6=3 .

Our integration domain is thus a unit square (0, 1) × (0, 1). At spatial infinity we
demand the line element to approach the reference metric, and at y = 0 we demand
regularity. This last statement in turn implies

∂Qi
∂y

∣∣∣∣
y=0

= Q3(x, 0) = 0 , ∀i 6=3. (5.3)

We are left with discussing the physical meaning of L̃ and Ω0. In the absence of a black
hole, which necessarily introduces a novel scale, there is a special symmetry of the Einstein
DeTurck equations for the ansatz shown in (5.1). In particular, it is a simple exercise to
show that under the scaling

Q1 = Q̃1

L̃2
, Q7 = Q̃7

L̃2
, Q3 = L̃ Q̃3 and Qi = Q̃i ∀i 6=1,7,4 , (5.4)

the Einstein DeTurck equations for the Q̃ depend only on the product L̃Ω0. This scaling
shows that, despite depending on two parameters, eq. (5.1) really only yields a one-parameter
family of physical solutions. One can either decide to fix L, and change Ω0 to move along
the family of solutions, or vice-versa. Here L can be interpreted as the length of the
Kaluza-Klein circle at spatial infinity, and Ω0 as the geon angular velocity.

One can apply the procedure outlined in section 3.4 to compute the thermodynamic
properties of the Kaluza-Klein geon. We note that the metric (5.1) is written in a frame
that is rotating at infinity. To accommodate this, we first change to a different angular
coordinate Ψ = ψ − Ω0t and only afterwards compute all the relevant thermodynamic
quantities. This in turn implies that the geon angular velocity is give by ωH = Ω0 L̃. Note
that though we continue to use the subscript H, the dimensionless angular velocity ωH
really measures the angular velocity of the Kaluza-Klein geon with respect to a static
observer at infinity, as there is no horizon for geons.

We defer the discussion of our results on this calculation to section 7.

6 No warm holes with Kaluza-Klein asymptotics

There is yet another class of geometries that could potentially play an important role in
our discussion. These are black hole solutions that are on the verge of becoming scattering
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states, and yet manage to have finite energy, entropy and temperature. They have been first
uncovered in [49] in the context of four-dimensional asymptotically flat charged black holes
coupled to a charged scalar field with non-minimal couplings and were coined warm holes.

In the present context, Kaluza-Klein warm holes, if they exist, would be black resonator
strings that would have the maximum or minimum angular momenta (at least for a given
window of lengths and energies) and they should have finite entropy and nonzero temperature.
If we lower the temperature of the system towards zero, it is possible for solutions to stop
existing at a nonzero temperature because such solutions can no longer be confined by the
gravitational potential created by the Kaluza-Klein momentum. Such a minimum, non-zero
temperature black string would be called a warm hole (or, if we prefer, warm string) if and
only if it happens to be a smooth solution.

One way to understand the status of warm hole solutions for our ansatz comes from
solving the equations of motion for q8 appearing in (3.3) asymptotically. By performing a
generalised Frobenius analysis near asymptotic infinity, one finds

q8(x, y) ≈ 1 + e
− λ̂

1−y cos(πx)(1− y)
3
2 {a0 +O[(1− y)]}+O

[
e
− 2λ̂

1−y

]
, (6.1a)

with

λ̂ ≡

√
π2

L̃2
− 4ã2 . (6.1b)

Warm hole solutions are marginally bound (i.e. on the verge of not being confined by
the potential created by the Kaluza-Klein momentum), for which the exponential decay in
q8 near y = 1 is absent, i.e.

L̃ = π

2|ã| . (6.2)

In this case, the expansion encoded in (6.1) is no longer valid. Instead, one finds
two possibilities

q8(x, y)− 1 ≈ cos(πx)(1− y)1±
√

9−16πG6(E−Tz) [1 +O(1− y)] . (6.3)

A few comments are in order regarding the above expansion. One can show that
the procedure for computing all the relevant thermodynamics of the solution remains
unchanged from what we saw in section 3.4, so long as we take the upper sign in (6.3)
and the argument of the square root is positive definite. This means that we can take all
the relevant thermodynamic quantities in said section, and replace L̃ as given in (6.2). If
9 − 16πG6(E − Tz) > 0, the upper sign gives rise to normalisable solutions, whereas the
minus sign in (6.3) leads to unphysical solutions with infinite energy. Numerically, we find
that 9− 16πG6(E − Tz) < 0 throughout parameter space, in particular in the limit where
L̃ approaches π/(2ã) from below. This rules out the existence of smooth, normalisable
warm holes solutions with Kaluza-Klein asymptotics that connect smoothly to our black
resonator strings.

As we shall see in section 7, there is a limit of black resonator strings where they fail
to become bound states. What we have shown in this section is that such limiting solutions
cannot be regular.
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Figure 5. Comparison between nonlinear solutions and the perturbative results of section 4. The
solid black line is the perturbative expansion, whereas the green disks are the full nonlinear results.
Both curves were generated with Ω̃H = 0.66 (though recall that ∆σH is the difference with respect
to the Myers-Perry black string at the same E and J , so the reference Myers-Perry black string may
have a different Ω̃H). The Myers-Perry superradiant onset is the blue disk with ∆σH = 0. The fact
that ∆σH ≥ 0 indicates that black resonators are the dominant configuration.

7 Phase diagram of black resonator strings

In this section we discuss the phase space of solutions among black resonator strings, Kaluza-
Klein geons, and Myers-Perry black strings. We find that whenever solutions co-exist with
the same E and J , the black resonator strings have the highest entropy. In figure 5, we
show the entropy difference between a black resonator string and a Myers-Perry black string
(at the same E and J as in (4.14)), for black resonator strings at constant Ω̃H = 0.66.
The black solid line shows the perturbative result of (4.14)–(4.15) constructed in section 4,
whereas the green disks give the fully nonlinear numerical data. The agreement between
the two methods near the onset is reassuring.

We now proceed to show the full phase space of solutions in figure 6. For presentation,
we show solutions parametrised by (E ,∆J ), where ∆J gives the difference in angular
momentum between a given solution and the corresponding extremal Myers-Perry black
string with the same energy E , i.e. ∆J = J − Jext MP.

Black resonator strings also have their own extremal limit, which we estimate to be
the magenta line in figure 6. To illustrate this, we show in figure 7 the temperature τH as
a function of E of four lines of black resonator strings. The arrows in the lines of figure 7
indicate the direction of decreasing values of ∆J . By approaching as close as possible to
zero temperature across many such curves, we obtain the set of magenta points displayed
in figure 6.

The black disks in figure 6 are the lowest-energy black resonator strings we have
managed to construct. Black resonator strings do not exist too far to the left of this
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Figure 6. Phase space of black resonator string solutions and Kaluza-Klein geons. The green
points are black resonator strings and the red points are Kaluza-Klein geons. As far as we can
tell, black resonator strings and Kaluz-Klein geons do not overlap. Black resonator strings merge
with Myers-Perry black strings at the onset curve given by blue points. The magenta points are
our best estimate of where black resonator string are extremal. The black points on the left are
where black resonator strings cease being bound states. The gray points mark turning points where
black resonator strings have maximum angular momenta. There is (at least) a second set of black
resonator strings that exist just below this gray curve, ending in a curvature singularity (which also
lies somewhere just below this gray curve).

curve because they are no longer bound states. The lowest-energy limit solutions of black
resonator strings here would be warm holes, but as we have shown in (6.3), warm holes are
not regular solutions. We emphasize that constructing solutions near the black disks is a
numerical challenge, so we do not have precise knowledge of where the lowest-energy black
resonator strings lie in phase space. In particular, we do not know if this low-energy limit
lies to the right, left, or intersects the confining cutoff curve for m = 2 perturbations of
Myers-Perry black strings (shown in green in figure 3). Unfortunately, this means that we
do not know if the phase space of black resonator strings completely covers the region of
unstable (to m = 2 superradiant perturbations) Myers-Perry black holes or not.

The red points in figure 6 are the Kaluza-Klein geons of section 5 and, as far as we
can tell, they neither coexist nor are a limiting solution of black resonator strings. In other
words, black resonator strings and the Kaluza-Klein geons are disconnected in the phase
diagram and seem to be unrelated solutions.
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Figure 7. τH as a function of E for several of the solutions in figure 6 that approach extremality.
The direction of the arrows indicates decreasing values of ∆J in figure 6.

There is a family of black resonator strings with maximum angular momenta. These
are given by the grey line in figure 6. At this line, there is a fold (or turning point). The
continued space of solutions now extends towards smaller momenta, so the phase space
just slightly below this gray turning-point curve has (at least) two black resonator string
solutions. Our results indicate that continuing the space of solutions further will result
in a curvature singularity at finite ∆J < ∆Jmax(E). Evidence for this singularity are
presented in figure 8 where we plot the maximum value of the normalised Kretschmann
scalar as a function of E for fixed ã = 0.5, where the aforementioned turning point can
easily be identified.

The fact that the black resonator strings and the Kaluza-Klein geons are totally
disconnected in the phase diagram deserves a comment. Typically, in superradiant black
hole systems with black resonators (rotating or charged), the geons (or solitons) of the
theory are the zero horizon radius limit (i.e. the zero entropy limit) of the resonator black
holes [45, 56, 57, 75–80]. Sometimes, a resonator black hole can be well-approximated by a
superposition of a ‘bald’ black hole and a geon, so long as both components have the same
angular velocity or chemical potential. Evidently, such an approximate does not apply in
the present Kaluza-Klein setup.

There are two sets of solutions which we have not discussed. First, there are rotating
generalisations [58] of the usual non-uniform strings of [7, 81–84], which branch from the
onset of the Gregory-Laflamme instability. The reason for not commenting on these solutions
is that available results would suggest that these solutions have lower entropy than the
corresponding Myers-Perry string at fixed values of E and J . Second, we have not discussed
Kaluza-Klein (a.k.a. localized) black holes [11, 14, 60, 85–87], which can also carry rotate.
We leave the construction of these solutions, and their location in the respective phase
diagram, to future work.
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Figure 8. Maximum value of the normalised Kretschmann scalar for black resonator strings as
a function of E at fixed Ω̃H = 0.5. A turning point is clearly visible around G6E ≈ 0.903. The
apparent blow-up of the Kretschmann scalar suggests that the phase space of black resonator strings
ends in a curvature singularity.

8 Discussion and conclusions

In this paper, we considered vacuum Einstein gravity in 6-dimensions (D = 6) and studied
the phase diagram of asymptoticallyM1,4 × S1 black string solutions with equal angular
momenta along the two rotational planes. In this setup, Myers-Perry black strings are
cohomogeneity-1, so it is the simplest model of a system that has both Gregory-Laflamme
and superradiant instabilities. These instabilities were studied in detail in [41], and the
unstable regions were shown in figure 3 and figure 1.

We constructed a new type of black string, black resonator strings, that branch from
the onset of the m = 2 superradiant instability. These solutions have SU(2)L isometry,
and a further isometry generated by the helical Killing vector field K = ∂t + ΩH∂ψ = ∂τ .
That is, these black resonator strings are time periodic, and neither axisymmetric, nor
translationally invariant along the S1 direction. We find that black resonator strings are
entropically preferred over Myers-Perry black strings in regions of phase space where both
solutions exist.

We also constructed Kaluza-Klein geons, which are horizonless, purely gravitational
solutions that share the same symmetries as the black resonator strings. Unlike other
superradiant systems, the Kaluza-Klein geons are not the horizonless limit of black resonator
strings. The full phase diagram of black resonator strings, Kaluza-Klein geons, and Myers-
Perry black strings were shown in figure 6.

We now speculate on the time evolution of Myers-Perry black strings that are unstable
to m = 2 superradiant perturbations. Even though black resonator strings have higher
entropy than Myers-Perry black strings, it still remains unclear whether black resonator
strings will serve as a final endpoint. Some obstacles are (1) the existence of other more
entropically preferred solutions, (2) the existence of further instabilities, (3) the status of
radiative perturbations.
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What other solutions could there be? Conspicuously missing are the non-uniform
strings and localised black holes that are associated to the Gregory-Laflamme instability.
Previous studies of static black strings in D = 6 dimensions suggest that the localised
black holes often have the largest entropy, and that might remain true when rotation is
accounted for. Also missing are m 6= 2 black resonator strings, possibly from other sectors of
perturbation theory. Should any of these solutions have higher entropy that the Myers-Perry
black string, then they would compete as a possible endpoint. A further complication is
that some of these solutions might be metastable, though not the entropically dominant.
The dynamics and ultimate endpoint would then depend heavily on the initial data.

Another question is whether there are competing instabilities. This is certainly true for
some regions of parameter space, as shown in figure 1. Where Gregory-Laflamme instability
and superradiant instabilities are both present, it is typical for the Gregory-Laflamme
instability to dominate the early dynamics due to its higher growth rate. Additionally,
there are other superradiant instabilities, though it is notable in this case that there
are only a finite number of them. This is unlike superradiant instabilities in some other
systems, where there is an infinite number of unstable modes, often with arbitrarily
high azimuthal mode number m [45, 56, 76, 88–90]. For this reason, it seems likely
that superradiant instabilities in this system will not cause a cascade to smaller and
smaller length scales [45, 88]. The Gregory-Laflamme instability, on the other hand,
can lead to a change in horizon topology, which necessitates a violation of weak cosmic
censorship [4, 7, 12, 14, 18, 20, 21, 58, 60, 91–93].

Yet another separate question is whether black resonator strings themselves are stable.
While they are certainly stable to the m = 2 perturbations that generate them, there
are already several other perturbations that cause instabilities within the Myers-Perry
black string. It seems likely that many of these instabilities will be present in black
resonator strings as well. Where and how these instabilities affect black resonator strings
remains unclear.

A further complication is that many perturbations are radiative. That is, perturbations
can create gravitational waves that can reach null infinity, removing energy and angular
momentum from the system. The final state, therefore, does not necessarily need to have
the same energy and angular momentum as the starting state, though the entropy of course
must still increase.

Finally, we comment on whether our results apply to the D = 5 Kerr black string. In
the Kerr case, we again have both a superradiant instability and the Gregory-Laflamme
instability. D = 5 black resonator strings should likewise exist. However, unlike the D = 6
case, a single Kerr black string can be unstable to superradiant modes with arbitrarily high
m. This occurs because Kerr black holes, unlike Myers-Perry black holes, have bound orbits.
In this regard, the Kerr case is similar to other superradiant systems, and the evolution of
that instability might lead to a cascade to smaller and smaller length scales.
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