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1 Introduction and summary

In the landmark paper [1], Belavin, Polyakov and Zamolodchikov defined an infinite class of
2D conformal field theories. They are the conformal minimal models M(p, q) with central
charges c(p, q) = 1 − 6(p− q)2/(pq), where p and q are relatively prime positive integers.
Among them a distinguished subset are the unitary minimal models M(p, p+ 1) [2], where
p = 3, 4, 5, . . .. For p = 3 we find the Ising model, for p = 4 the tricritical Ising model, etc.

The critical Ising model is well-known to be described by the massless Euclidean φ4

field theory. This theory is conformal for d < 4, and in particular in 2D. More generally,
Zamolodchikov [3] proposed that the Ginzburg-Landau (GL) description of M(p, p + 1)
with diagonal modular invariants is given by

S =
∫
ddx

(1
2 (∂µφ)2 + g

(2(p− 1))!φ
2(p−1)

)
, (1.1)

where we assume that all the coefficients of terms φ2k with k < p− 1 are tuned to zero at
the multi-critical point. In d = 2 the coupling g has dimension of mass-squared, so these
models flow to strong coupling. However, they become weakly coupled near the upper
critical dimensions dc(p) = 2(p−1)

p−2 , and one can develop the dc − ε expansions. For example,
for the φ4 theory (p = 3) Wilson and Fisher [4] developed the 4− ε expansion that, when
continued to d = 2 gives a good approximation to the exact Ising scaling dimensions in
d = 2: ∆φ = 1/8 and ∆φ2 = 1. Similarly, the tricritical Ising model, M(4, 5), is described
by the φ6 theory, which admits a 3 − ε expansion [5]. On the other hand, the fermionic
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version [6] of the tricritical Ising model may be described by a Yukawa theory with emergent
Supersymmetry [7]. This Yukawa model admits a 4− ε expansion, and in 3D it describes
the supersymmetric Ising model [7–9].

Another interesting class of minimal models are M(2, 2k + 1) with k = 2, 3, . . .. The
first representative is M(2, 5), which corresponds to the Yang-Lee (YL) edge singularity [10].
Its GL description is provided by the scalar field theory with interaction ∼ iφ3 [11]. Indeed,
the theory

S =
∫
ddx

(1
2 (∂µφ)2 + g

6φ
3
)
, (1.2)

has a weakly coupled IR fixed point in d = 6 − ε with an imaginary g. The resulting ε
expansion, which is now known up to order ε5 [12, 13], provides a good approximation to
the exact value ∆φ = 2h1,2 = −2/5 in 2D.1

The GL descriptions of other non-unitary minimal models pose interesting challenges [15–
19]. In this paper we explore another field theory with cubic interactions

S =
∫
ddx

(1
2(∂φ)2 + 1

2(∂σ)2 + g1
2 σφ

2 + g2
6 σ

3
)
. (1.3)

In the concluding paragraphs of [20], it was suggested that this model with imaginary g1
and g2 provides a GL description of the minimal model M(3, 8), and we provide several
new arguments in favor of this identification.2 First, as explained in section 2, the global
symmetry (other than the conformal symmetry) of M(3, 8) is Z2. This is also evident in
the GL description where under the Z2 the fields transform as

Z2 : φ→ −φ, σ → σ. (1.4)

There is also an anti-unitary time reversal symmetry (where i → −i). This is shown for
M(3, 8) in section 2. It is also true for (1.3), where at the fixed point the couplings are
imaginary. Under this symmetry the fields transform as

T : φ→ φ, σ → −σ. (1.5)

In [20] it was suggested that, when M(3, 10) is perturbed by the maximum dimension
relevant operator with ∆ = 6/5, it can flow to M(3, 8). Here we show that this flow is
consistent with the generalized c-theorem that applies to all PT-symmetric models [27].
The D6 modular invariant model of M(3, 10) describes a pair of the Yang-Lee models
M(2, 5) [28–30]. Indeed, the central charge c(3, 10) = 2c(2, 5) = −44/5, and the operator
scaling dimensions are sums of those found in M(2, 5). We therefore suggest that the

1See also [14] for a recent discussion of subleading contributions in the YL model related to irrelevant
operators.

2The theory (1.3) is the case N = 1 of the O(N) invariant theories introduced in [21] as a UV completion
of the quartic O(N) invariant theories for dimensions 4 < d < 6. In 6− ε dimensions it was found that only
for N > 1038 do these theories posses fixed points in d = 6− ε dimensions with real couplings. The case
N = 1 instead has fixed points at imaginary couplings. Similarly, the cubic field theory where φ is replaced
by a pair of anti-commuting scalars has an imaginary fixed point; it describes the OSp(1|2) symmetric
universality class that is critical in 2 < d < 6 [22–26].
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M(3, 8) φ1,2 φ1,3 φ1,4 φ1,5 φ1,6 φ1,7

∆ − 7
16 ≈ −0.44 −1

2 − 3
16 ≈ −0.19 1

2
25
16 ≈ 1.56 3

Z2 odd even odd even odd even
T even odd odd odd even even

Table 1. Primary fields and their properties for the (3, 8) minimal model. ∆ denotes the conformal
dimension, which is the sum of the holomorphic and the anti-holomorphic dimensions.

GL description of M(3, 10) is provided by two copies of the cubic field theory (1.2) with
the same couplings. This GL description has Z2 symmetry realized by interchanging the
two scalar fields, φ1 and φ2. After defining φ1 = σ+φ√

2 , φ2 = σ−φ√
2 , we again find the GL

description of (1.3) with g1 = g2. Therefore, the RG flow from M(3, 10) to M(3, 8) can be
studied using this GL description, generated by the operator φ1φ

2
2 +φ2φ

2
1. This Z2 invariant

flow can be studied perturbatively in 6− ε dimensions, where it connects two different fixed
points [21].

In section 3 we recall that the minimal model M(3, 8) has emergent supersymmetry: it
is the (2, 8) member of the class of N = 1 superconformal minimal models [31, 32]. This is
analogous to the well-known equivalence between the tricritical Ising model M(4, 5) and
the superconformal (3, 5) minimal model with the diagonal modular invariant. The Z2
symmetry (1.4) translates in the superconformal (2, 8) model into the symmetry which
acts by (−1) on the R-R sector and by +1 on the NS-NS sector. We note that it seems
challenging to find a Ginzburg-Landau description for the fermionic superconformal (2, 8)
model [32], and there are indications that there is no field theory in which we can apply the
ε-expansion to describe this model.3 Interestingly, here we observe that if we restrict to the
bosonic M(3, 8) model, there is such a GL description. In the remainder of the paper, we
use the GL description (1.3) and the perturbative results [12, 13, 20, 22, 33] to carry out
the 6− ε expansions of the operator dimensions. We find that, when extrapolated to 2D,
they are in reasonably good agreement with the exact dimensions of M(3, 8).

2 The (3, 8) and (3, 10) minimal models and RG flows

We start by mentioning the basic structure of the (3, 8) minimal model that is of interest
to us. This is the theory consisting of two, left and right, copies of the corresponding
degenerate representation of the Virasoro algebra. We are considering the diagonal theory,
where each primary field has the same holomorphic and anti-holomorphic dimensions. The
central charge of the theory (left and right) is c = −21

4 . There are seven primary operators
which we will denote by φ1,i, i = 1, · · · , 7, where φ1,1 = 1 is the identity. Their conformal
dimensions are shown in table 1.

3The reason is essentially that there is no choice of a monomial superpotential that would be consistent
with the symmetries of the model.
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The OPE structure of the theory is given by

φ1,2 × φ1,2 ∼ 1 + iφ1,3, φ1,2 × φ1,3 ∼ iφ1,2 + φ1,4,

φ1,2 × φ1,4 ∼ φ1,3 + φ1,5, φ1,2 × φ1,5 ∼ φ1,4 + iφ1,6,

φ1,2 × φ1,6 ∼ iφ1,5 + φ1,7, φ1,2 × φ1,7 ∼ φ1,6,

φ1,3 × φ1,3 ∼ 1 + iφ1,3 + iφ1,5, φ1,3 × φ1,4 ∼ φ1,2 + iφ1,4 + φ1,6,

φ1,3 × φ1,5 ∼ iφ1,3 + iφ1,5 + φ1,7, φ1,3 × φ1,6 ∼ φ1,4 + iφ1,6,

φ1,3 × φ1,7 ∼ φ1,5, φ1,4 × φ1,4 ∼ 1 + iφ1,3 + iφ1,5 + φ1,7,

φ1,4 × φ1,5 ∼ φ1,2 + iφ1,4 + φ1,6, φ1,4 × φ1,6 ∼ φ1,3 + φ1,5,

φ1,4 × φ1,7 ∼ φ1,4, φ1,5 × φ1,5 ∼ 1 + iφ1,3 + iφ1,5,

φ1,5 × φ1,6 ∼ iφ1,2 + φ1,4, φ1,5 × φ1,7 ∼ φ1,3,

φ1,6 × φ1,6 ∼ 1 + iφ1,3, φ1,6 × φ1,7 ∼ φ1,2,

φ1,7 × φ1,7 ∼ 1.

(2.1)

Note that there are no degeneracies in the dimensions of the fields. The global (0-form)
symmetries are dictated by invariance of the OPE. In this case, the only such symmetry
commuting with Virasoro is a Z2 symmetry, under which φ1,2, φ1,4, and φ1,6 are odd, as
indicated in table 1.

The OPE coefficients (or 3-point function coefficients) for the minimal model are known
as well [34–36]. We are particularly interested in

C2
(1,3),(1,3),(1,3) = −

Γ
(

1
8

)2
Γ
(

5
4

)
8
√

2 · Γ
(

7
8

)2
Γ
(

3
4

) ≈ −3.12537,

C2
(1,2),(1,2),(1,3) = −

√
2 · Γ

(
1
8

)2
Γ
(

5
4

)
8 · Γ

(
7
8

)2
Γ
(

3
4

) = 2C2
(1,3),(1,3),(1,3) ≈ −6.25073,

(2.2)

where for instance the first quantity corresponds to the 3-point function (including both
holomorphic and anti-holomorphic pieces) coefficient of three copies of φ1,3. In particular,
both OPE coefficients are imaginary. We will not quote all coefficients, but we have indicated
which couplings are imaginary by writing an ‘i’ in (2.1).

In addition to such global Z2 symmetries, there can also be spacetime symmetries, and
in particular a time reversal symmetry. Indeed, there is such a time reversal symmetry for
M(3, 8) with the charges indicated in table 1.4

Let us argue that there is RG flow from M(3, 10) to M(3, 8). The minimal model
M(3, 10) has 9 primary fields, with φ1,1 = 1 being the identity. Their conformal dimensions
are shown in table 2. More details on M(3, 10) are given in appendix A.

4There is also the symmetry that is the product of the two. In the GL description (1.3) it corresponds to
transforming both φ and σ in (1.5). It is not an independent symmetry of course.

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
6

M(3, 10) φ1,2 φ1,3 φ1,4 φ1,5 φ1,6 φ1,7 φ1,8 φ1,9

∆ −11
20 −4

5 −3
4 −2

5
1
4

6
5

49
20 4

Z2 odd even odd even odd even odd even
T even even odd odd odd even even even

Table 2. Primary fields and their properties for the (3, 10) minimal model.

Flows between non-unitary but PT-symmetric theories must satisfy a generalized
version of the c-theorem [27], which states that the effective central charge ceff = c− 24hmin
must decrease. For the unitary theories, hmin = 0 and we recover the original Zamolodchikov
c-theorem [37]. For the conformal minimal models ceff(p, q) = 1− 6/(pq), and its decrease
imposes strong constraints on possible RG flows. For example, for the flows starting from
M(4, 5) these constraints were recently used in [18].

Since ceff(3, 10) = 4/5, we find that from the flows originating from M(3, 10) the
IR minimal model must have pq < 30. Given that this is a non-unitary minimal model,
this limits the possibilities to (2, 5), (2, 7), (2, 9), (2, 11), (2, 13), (3, 5), (3, 7), (3, 8), (4, 7).
Furthermore, since M(3, 10) has 7 primary relevant operators (including the identity), we
will assume that the IR theory has 6 of them. Except for M(2, 13) that we will rule out in
a moment, the only such minimal model is M(3, 8). Since the RG flow takes place within
the space of GL theories (1.3) this solidifies the tentative identification of the IR fixed point
with M(3, 8) that was made in [21].

In fact, all the other possibilities can be ruled out as follows. The models (2, 5), (2, 7),
(2, 9), (2, 11), (2, 13) have no Z2 symmetry. The (4, 7) minimal model does have a Z2 and
time reversal symmetry. However, the lowest dimension Z2 odd operator is φ2,3 and the
lowest dimension Z2 even operator is φ1,2 of the M(4, 7) theory. We would therefore expect
by (1.5) that φ1,2 of the M(4, 7) theory would be odd under time reversal, but in fact it
can be checked that it is even. In addition, we would expect the 3-point coefficient of φ1,2
of M(4, 7) to be imaginary, but it vanishes. This leaves us only with M(3, 5), M(3, 7), and
M(3, 8), and among them the scaling dimensions match best those of M(3, 8), as we will
see below. In fact, M(3, 5) and M(3, 7) can be excluded because, while they do have a Z2
symmetry, it is anomalous [19, 38].5 Indeed, for these minimal models there is no D-type
modular invariant, and the Z2 cannot be gauged. This puts our proposal on solid footing.

2.1 RG flow from a pair of Ising models

The minimal model M(2, 5) describes the YL critical behavior of the Ising model in the
imaginary magnetic field [10]. This implies the existence of an RG flow from the Ising fixed
point M(3, 4) to the YL M(2, 5) fixed point under the thermal and imaginary magnetic
field deformations [18]. Indeed, using the GL description of the Ising model in magnetic

5We thank Shu-Heng Shao and the referee for pointing this out to us.
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field and at a temperature above the critical (m ∝ T − Tc > 0)

SIsing =
∫
d2x

(1
2(∂µφ)2 + hφ+ 1

2mφ
2 + λ

4!φ
4
)
, (2.3)

the YL model can be obtained by shifting φ→ φ0 + φ, with φ0 = i
√

2m
λ to eliminate the

quadratic term. Then neglecting the fourth-order term in the action one finds [11]:

SYL =
∫
d2x

(1
2(∂µφ)2 + (h+ ihc)φ+ g

6φ
3
)
, (2.4)

where hc = 2m
3

√
2m
λ and g = i

√
2mλ. Tuning the magnetic field h to the imaginary critical

value −ihc we obtain the GL description (1.2) of the YL critical point. Similarly there is
an RG flow from two decoupled Ising models M(3, 4) to two decoupled YL models M(2, 5),
or equivalently M(3, 10).

Let us argue that there exists an RG flow from a pair of Ising models to the M(3, 8)
model that is produced by the imaginary magnetic field, thermal, spin-spin and energy-
energy deformations. Indeed, we can consider the GL description of two Ising models at a
temperature above the critical and in imaginary field and with spin-spin and energy-energy
deformations:

S =
∫
d2x

( 2∑
i=1

(1
2(∂µφi)2 + hφi + m

2 φ
2
i + λ

4!φ
4
i

)
+ αφ1φ2 + u

4φ
2
1φ

2
2

)
. (2.5)

To eliminate the quadratic terms we make a pure imaginary shift of the order parameters:
φ1 → φ0 + φ1 and φ2 → φ0 + φ2, where φ0 = i

√
2m
λ+u . Then taking α = 2mu

λ+u we obtain

S =
∫
d2x

( 2∑
i=1

(1
2(∂µφi)2 + (h+ ihc)φi + g

6φ
3
i

)
+ gu

2λ
(
φ1φ

2
2 + φ2φ

2
1
))

, (2.6)

where hc = 2(λ+3u)
3(λ+u) m

√
2m
λ+u and g = i

√
2mλ2

λ+u . At the critical value h = −ihc of the imaginary
magnetic filed and after the replacement φ1 = σ+φ√

2 and φ2 = σ−φ√
2 we find the proposed GL

description (1.3) of the minimal model M(3, 8), where g1 = g λ−u√2λ and g2 = g λ+3u√
2λ . As a

consistency check, we note that the RG flow from the two Ising models to M(3, 8) satisfies
the inequality [27] for ceff , since 2ceff(3, 4) = 1 > ceff(3, 8) = 3/4. This picture suggests that
the M(3, 8) critical point can be realized by the 2D lattice Hamiltonian of the form

H = −
∑
〈ij〉

(J(σi1σ
j
1 + σi2σ

j
2) + Jεσ

i
1σ

j
1σ

i
2σ

j
2)−

∑
i

(Jσσi1σi2 + h(σi1 + σi2)) , (2.7)

where σi1, σi2 = ±1 are classical spins and the magnetic field h is tuned to critical imaginary
value.

The schematic RG flows we are proposing are depicted in figure 1 (the spin-spin and
energy-energy deformations of a pair of Ising models were discussed in [39–41]).
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Figure 1. A schematic description of the proposed RG flows.

3 Supersymmetry of M(3, 8)

The spectrum of the minimal model M(3, 8) suggests that it is a supersymmetric theory. In
particular, the holomorphic dimension 3/2 suggests that the corresponding operator is the
supercurrent. In fact, M(3, 8) is known to be related to the (2, 8) N = 1 supersymmetric
minimal model [31, 32]. This model is the simplest non-unitary superconformal model; it is
sometimes called the supersymmetric Yang-Lee model.6 Integrable perturbations of it were
studied, e.g., in [42–46]

We start by reviewing the N = 1 superconformal minimal models [47–51] (see also [52]
for a concise summary). These are labeled by pairs (p, q), where we can restrict to p < q,
such that p, q have the same parity with p and p−q

2 being coprime. The superconformal
central charge is

ĉ = 1− 2(p− q)2

pq
(3.1)

which is related to the conformal central charge by c = 3
2 ĉ. In the superconformal minimal

models, c < 3
2 . The primary fields are labeled by (r, s) in the range

1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1, sp ≤ rq. (3.2)

The holomorphic dimensions are

hrs = (rq − sp)2 − (p− q)2

8pq + 1− (−1)r−s

32 . (3.3)

The fields with r − s even belong to the Neveu-Schwarz (NS) sector while those with r − s
odd are in the Ramond (R) sector. The models with q = p+ 2 are the unitary series. The
most familiar one is SM (3, 5), where SM (p, q) denotes the superconformal minimal models
with the diagonal modular invariant. It is equivalent to the tricritical Ising model M(4, 5),
whose central charge is c = 7

10 .
Let us recall [31, 32] that M(3, 8) is equivalent to the model SM (2, 8), having c = −21

4
or ĉ = −7

2 . The spectrum of SM (2, 8) is shown in table 3.7 In order to distinguish fields of
6We thank the referee for providing a number of references about SM (2, 8) and its relation with M(3, 8),

and pointing out that this relation was known before.
7The model SM (2, 8) coupled to 2D supergravity, and its dual large N matrix model description, were

discussed in [52].
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SM (2, 8) φ1,1 = 1 φ1,2 φ1,3 φ1,4

∆ 0 − 3
16 −1

2 − 7
16

Sector NS-NS R-R NS-NS R-R

Table 3. Primary fields and their properties for the (2, 8) superconformal minimal model. ∆ denotes
the conformal dimension.

different minimal models, we will add superscripts to indicate the theory. Let us now match
the different fields. As usual, the identity operator in SM (2, 8) gives rise to the identity in
M(3, 8) as well as to the supercurrent φM(3,8)

1,7 which is a descendant in SM (2, 8). All other
NS fields give rise to two Virasoro primaries. Indeed, φSM(2,8)

1,3 gives rise to φM(3,8)
1,3 having

the same dimension, as well as φM(3,8)
1,5 which is an NS descendant with additional (1

2 ,
1
2)

holomorphic dimensions.
Usually, each R sector superconformal primary gives rise to a single Virasoro primary.

Indeed, φSM(2,8)
1,2 corresponds to φM(3,8)

1,4 having the same dimension, and φSM(2,8)
1,4 has the

same dimension as φM(3,8)
1,2 . However, there is an exception to this rule. In order to explain

this, recall that the generators of the superconformal algebra are Ln, the Virasoro generators,
and Gm, where m are integer in the R sector and half-integer in the NS sector. They satisfy
the algebra

[Lm, Ln] = (m− n)Lm+n + ĉ

8m(m2 − 1)δm,−n,

{Gm, Gn} = 2Lm+n + ĉ

8
(
4m2 − 1

)
δm,−n,

[Lm, Gn] =
(
m

2 − n
)
Gm+n.

(3.4)

In the R sector we have G2
0 = L0 − ĉ

16 . For the R sector superconformal primaries φ, we
find that in the very special case that the holomorphic dimension is h = c

24 = ĉ
16 , the

operator G−1φ is a Virasoro primary rather than a descendant. This is the case for the
model SM (2, 8), since the operator φSM(2,8)

1,4 satisfies this condition, as it has h = − 7
32 . In

fact, this applies to all SM (p, q) where p and q are even, since the operator φp/2,q/2 satisfies
this condition.8 In SM (2, 8) this results in a superconformal descendant which is a Virasoro
primary, having dimension h = − 7

32 + 1 = 25
32 , which corresponds to φM(3,8)

1,6 . This completes
the correspondence between the primary fields in the two theories. The operators in the R
sector are the ones odd under the Z2 that we mentioned in table 1.

We note that, in the diagonal modular invariant of SM (2, 8), we have a truncation
of the full supersymmetric theory that contains no fields of half-integer spin. In fact this
combination is identical to the modular invariant of the M(3, 8) minimal model. To show
this, let us discuss the superconformal characters (additional details may be found in

8The models SM (p, q) where p and q are even therefore have a non-vanishing Witten index; this means
that they have unbroken supersymmetry [53]. In contrast, the models where p and q are odd do not contain
a superconformal primary with h = ĉ

16 ; they have a vanishing Witten index and the supersymmetry is
spontaneously broken.
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appendix B). For each NS sector superconformal primary field there are 2 characters:

χNS(q) = tr qL0− c
24 , χ̃NS(q) = tr(−1)F qL0− c

24 , (3.5)

where the trace is over all the superconformal descendants. In the model SM (2, 8), we have
the following relations to the Virasoro characters χVr,s(q) ≡ trr,s qL0− c

24 in M(3, 8):

χNS
1,1(q) = χV1,1(q) + χV1,7(q) , χ̃NS

1,1(q) = χV1,1(q)− χV1,7(q) ,
χNS

1,3(q) = χV1,3(q) + χV1,5(q) , χ̃NS
1,3(q) = χV1,3(q)− χV1,5(q) .

(3.6)

In the R sector we find

χR1,2(q) =
√

2χV1,4(q) , χ̃R1,2(q) = 0 ,
χR1,4(q) = χV1,2(q) + χV1,6(q) , χ̃R1,4(q) = χV1,2(q)− χV1,6(q) = 1 .

(3.7)

Following [50], the factor of
√

2 is included in χR1,2(q) because all the contributing states are
doubly degenerate. The simplicity of the characters χ̃R1,2 and χ̃R1,4 is due to the unbroken
supersymmetry of SM (2, 8), and the fact that the superconformal primary φSM(2,8)

1,4 corre-
sponds to the unique R ground state which contributes to the Witten index. The diagonal
modular invariant of SM (2, 8) is

ZSM(2,8) = 1
2
(
|χNS

1,1(q)|2 + |χ̃NS
1,1(q)|2 + |χNS

1,3(q)|2 + |χ̃NS
1,3(q)|2 + |χR1,2(q)|2 + |χR1,4(q)|2 + 1

)
,

(3.8)
and it indeed equals the modular invariant of M(3, 8):

ZM(3,8) =
7∑

m=1
|χV1,m(q)|2 . (3.9)

This provides an explicit check of our identification between the two models.

4 Padé approximants using the 5-loop results

In this section we match scaling dimensions of the Ginzburg-Landau theory (1.3) and
M(3, 8) finding a nice agreement.

The cubic theory (1.3) has critical dimension dc = 6. For d = 6 − ε < 6, the theory
is renormalizable and its renormalization up to five loops has been carried out by [12]. In
particular, [12] computed the beta functions {β1, β2} of the two couplings g1 and g2, the
anomalous dimensions {γφ, γσ} of the two fundamental fields φ and σ, and the operator
mixing matrix γ(2)

ij of the two Z2 even quadratic operators φ2 and σ2. The Z2 odd quadratic
operator σφ is an exact descendant of φ at fixed points due to the equation of motion
∂2φ = g1σφ.

Using the functions β1 and β2, we can first find the fixed point of interest. More
explicitly, let us define

g1 =
√

6ε(4π)3 x(ε), g2 =
√

6ε(4π)3 y(ε), (4.1)
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where x(ε) =
∑4
a=0 xaε

a +O(ε5) and y(ε) =
∑4
a=0 yaε

a +O(ε5) are ε expansions. At leading
order, the relation β1 = β2 = 0 yields two coupled equations for x0 and y0

−7x2
0 − 12x0 y0 + y2

0 = 1, 12x3
0 − 3x2

0 y0 + 9y3
0 + y0 = 0 (4.2)

The solutions of eq. (4.2) that correspond to a stable fixed point are [20]

y∗0 = 6
5x
∗
0 = ± 6 i√

499
(4.3)

where the two signs are equivalent and we still stick to the “+” sign for simplicity. Once x∗0
and y∗0 are fixed, the rest xa, ya can be solved recursively by using higher order terms in
β1 = β2 = 0. Altogether, we find

g∗1 ≈ i
√

6ε(4π)3
(
0.223831+0.0788991ε−0.0395812ε2+0.0701557ε3−0.181827ε4+O(ε5)

)
g∗2 ≈ i

√
6ε(4π)3

(
0.268597+0.12292ε−0.0471511ε2+0.104183ε3−0.274325ε4+O(ε5)

)
(4.4)

Note that the coupling constants are imaginary. This agrees with (2.2). We cannot do
a quantitative precise comparison, but we see that qualitatively this is consistent with our
proposed correspondence.

Plugging these fixed points into the anomalous dimensions γφ, γσ yields the ε-expansion
of the scaling dimensions of φ and σ at this stable fixed point up to ε5:

∆φ = 2− 0.5501ε− 0.0234476ε2 + 0.0200648ε3 − 0.0341125ε4 + 0.0894357ε5 +O
(
ε6
)

∆σ = 2− 0.561122ε− 0.0358843ε2 + 0.0236057ε3 − 0.0451066ε4 + 0.119965ε5 +O
(
ε6
)

(4.5)

By evaluating the eigenvalues λ(3)
± of the matrix ∂βi

∂gj
at g∗1 and g∗2 , we obtain the dimensions

of two relevant operators in 6− ε dimension, arising from the mixing of the two Z2 even
cubic operators φ2σ and σ3

∆(3)
+ = d+λ(3)

+ = 6−0.77319ε2+1.59707ε3−4.5542ε4+15.5329ε5+O(ε6) (4.6)

∆(3)
− = d+λ(3)

− = 6−0.88978ε+0.0437751ε2−0.0395877ε3+0.0750536ε4−0.188671ε5+O(ε6)

All terms in eq. (4.5) and eq. (4.6) up to order ε3 agree with the three-loop analysis of [20].
Using the mixing matrix γ(2)

ij between φ2 and σ2, we get

∆(2)
− = 4−1.0501ε+0.0116011ε2+0.0195235ε3−0.0210404ε4+0.0430057ε5+O(ε6) (4.7)

and ∆(2)
+ = 2 + ∆σ, which is consistent with the equation of motion ∂2σ = g1

2 φ
2 + g2

2 σ
2.

So ∆(2)
+ corresponds to a scalar operator O(2)

+ which is a descendant of σ at level 2 in
any d = 6 − ε, i.e., O(2)

+ ∼ P 2σ. The order ε and ε2 terms in ∆(2)
± can also be extracted

from [21, 22].
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φ σ O(2)
− O(3)

+ O(3)
−

∆
4-loop −0.423502 −0.69918 0.187805 3.49691 2.81839
5-loop −0.309357 −0.485249 0.479018 4.26805 2.66414

Z2 charge odd even even even even

Table 4. Padé approximants for the scaling dimensions of φ, σ,O(2)
− ,O(3)

± in d = 2. O(3)
± arise from

the mixing between φ2σ and σ3, and O(2)
− is a combination of φ2 and σ2.

To compare with the conformal data of M(3, 8), we will use Padé approximants to
extrapolate the ε-expansions of scaling dimensions above to ε = 4, i.e., d = 2. Namely,
given any perturbative series f(ε) = f0 + f1ε+ · · ·+ fkε

k +O(εk+1), we approximate it by
a rational function

Pade[m,n](ε) = a0 + a1ε+ · · ·+ amε
m

1 + b1ε+ · · ·+ bnεn
(4.8)

with m + n = k, such that (i) Pade[m,n](ε) does not have a pole along 0 < ε < 4 and (ii)
its small ε expansion matches f(ε) up to εk. Then we use Pade[m,n](4) as the value of the
asymptotic series f(ε) at ε = 4. We compute both 4-loop Padé, which means truncating the
ε expansions up to ε4, and 5-loop Padé. The 4-loop and 5-loop Padé results are based on
Pade[2,2] and Pade[3,2] respectively if there are no poles between 0 and 4. For ∆(+)

3 , we find
that Pade[2,2] has a pole around ε ≈ 1.64632 and hence Pade[1,3] will be used. Similarly for
∆(2)
− , because Pade[3,2] has a pole around ε ≈ 2.84547, we provide its Pade[2,3] approximant.

Altogether, the Padé results are summarized in table 4.
Combining the numerical results of scaling dimensions and the Z2 charges, we propose

to make the following identifications of primary operators in M(3, 8):

φ1,2 ↔ φ, φ1,3 ↔ σ, φ1,5 ↔ O(2)
− , φ1,7 ↔ O(3)

− (4.9)

In addition, we think that O(3)
+ can become a Virasoro descendant of σ, i.e., O(3)

+ ∼ L−2L̄−2σ.
The two Z2 odd primaries φ1,4 and φ1,6 are still missing in this dictionary. The first

guess would be the two Z2 odd cubic operators φ3 and φσ2. A simple way to obtain their
operator mixing is considering a generalization of (1.3) defined by the potential

V (φ, σ) = g1
2 σφ

2 + g2
6 σ

3 + g3
2 φσ

2 + g4
6 φ

3 (4.10)

The renormalization of this generalized theory has been computed up to three loops in [54].
Diagonalizing the 4× 4 stability matrix ∂βi

∂gj
at the fixed point (g∗1, g∗2, 0, 0), we recover λ(3)

±
up to ε3. This is because the generalized theory reduces to (1.3) when the couplings g3 and
g4 vanish. We also obtain an exactly vanishing eigenvalue which is due to SO(2) rotations
in the (φ, σ) plane [54]. The last eigenvalue yields a slightly irrelevant operator in d = 6− ε
with scaling dimension

∆ = 6 + 0.00300601ε− 0.770885ε2 + 1.59377ε3 +O(ε4) (4.11)
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δ11 :

δ12 : δ21 :

δ22 :

Figure 2. Diagrams needed for the calculation of the Z2 odd quartic operators. We do not show
permutations of the same diagrams that are needed.

The [2, 1] Padé gives ∆ ≈ 4.68145 at d = 2. So this operator is not very likely to correspond
to any primary operators in M(3, 8). We have to consider higher order operators that are
odd under Z2.

5 Z2 odd quartic operators

Next we consider higher Z2 odd operators, which are the quartic operators φ3σ
6 and φσ3

6 .
We should be careful in doing the calculation in a consistent way from the RG point of
view. At the end, the anomalous dimension matrix relevant to obtain the dimensions of
these operators is a 2× 2 matrix. One may obtain it by considering the set of diagrams
shown in figure 2.

Specifically, one chooses δij with i, j = 1, 2 so as to renormalize the diagrams following
each δij shown in the figure. Note that for any permutations of the same diagram, we
draw only one of the diagrams. As usual, we should also take into account the anomalous
dimensions of the fundamental fields. This means that if we define δij as what we subtract
from the diagrams shown, we need to consider the matrix(

1 + δ11 + 3
2δφ + 1

2δσ δ12
δ21 δ22 + 1

2δφ + 3
2δσ

)
. (5.1)

At this order, the wavefunction counterterms are, for example in minimal subtraction,

δφ = − g2
1

3(4π)3ε
,

δσ = − g
2
1 + g2

2
6(4π)3ε

.

(5.2)
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The anomalous dimensions matrix is then given by the RG derivative of this matrix as
usual. In our case, this gives

γ(4) = 1
(4π)3

(
−47

12g
2
1 − 3g1g2 + g2

2
12 −3g2

1 + g1g2
2

−3g2
1 + g1g2

2 −19
12g

2
1 − 3g1g2 − 9

4g
2
2

)
. (5.3)

The dimensions are obtained by diagonalizing this matrix, giving eigenvalues λ(4)
± and

then as usual
∆(4)
± = 2(d− 2) + λ

(4)
± (5.4)

with d = 6− ε.
Using the fixed point value, we find the dimensions

∆(4)
− = 8− 2

√
135529− 377

998 ε+O(ε2) ≈ 8− 0.36001ε,

∆(4)
+ = 8 + 2

√
135529 + 377

998 ε+O(ε2) ≈ 8 + 1.11552ε.
(5.5)

This leading order result is the first step in matching to the minimal model. It is hard
to extrapolate as far as ε = 4 with a 1-loop computation. We hope that higher orders will
be computed and matched in the future.

6 Discussion

We have presented new arguments for the existence of RG flow connecting two non-unitary
conformal minimal models. The flow connects M(3, 10), which is a product of two YL
models, in the UV, with M(3, 8) in the IR. We have noted that the latter model has
emergent supersymmetry: it is equivalent to the superconformal minimal model SM (2, 8).

The GL description (1.3) of M(3, 8) and M(3, 10) implies that the upper critical
dimensions of these minimal models is 6. The RG flow connecting them can be studied
perturbatively in 6− ε dimensions, but it becomes strongly coupled in 2D. In the future
it would be interesting to study the 2D non-unitary RG flow from M(3, 10) to M(3, 8)
numerically using the Truncated Conformal Space Approach [55], which in [14, 18] was
recently applied to other non-unitary RG flows. Similarly, using the methods of [56], we
can study the RG flow to M(3, 8) starting from a pair of Ising models, which was described
in section 2.1.

One application of the GL description (1.3) is that it allows us to study the continuation
of the (3, 8) minimal model to dimension d > 2 and study the non-trivial CFTs in d = 3, 4,
and 5.9 For each operator, we use the same Padé as in section 4, and present the results
for both the 4-loop and the 5-loop computations in table 5. If the 6-loop results become
available, they should provide further improvements to these estimates.

9This is different from the continuation of SM (2, 8) to d > 2 that was studied in [32].
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φ↔ φ1,2 σ ↔ φ1,3 O(2)
− ↔ φ1,5 O(3)

− ↔ φ1,7 O(3)
+

d = 3
4-loop 0.222711 0.0677029 1.06612 3.5537 4.21921
5-loop 0.275722 0.160396 1.19207 3.47991 4.7682

d = 4
4-loop 0.841309 0.768325 1.99267 4.32652 4.98508
5-loop 0.858297 0.795556 2.02761 4.30235 5.255

d = 5
4-loop 1.43379 1.41069 2.97067 5.14007 5.6558
5-loop 1.43578 1.41352 2.97374 5.13721 5.70711

Table 5. Scaling dimensions of operators in higher dimensions in the (3, 8) universality class, which
follow from the GL description (1.3). In the 4-loop and 5-loop results, we use the same Padé
approximants for any given operator as used in section 4.

While O(3)
+ is a Virasoro descendant in d = 2, it cannot be a descendant in higher

dimensions since we know that those are the operators with explicit derivatives acting on
them. Therefore we expect it to be a new primary in d > 2, and its dimension is shown in
the table.
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A The (3, 10) minimal model

In this appendix we provide more details on the (3, 10) minimal model. The operator
dimensions and symmetries are presented in table 2.

As mentioned before, the modular invariant relevant to us is the D6 combination. In
fact, it includes combinations of chiral and anti-chiral parts of the fields φ1,3, φ1,5, φ1,7, φ1,9,
as well as the identity. Recall that M(2, 5) has only two primaries, the identity, as well as
an operator φM(2,5) having dimension −2

5 . The operator φ1,5 clearly corresponds to φM(2,5),
while φ1,3 corresponds to two copies of this operator appearing in two copies of the M(2, 5)
theory. The operator φ1,9 is the additional energy-momentum tensor that is present in the
two copies of the theory.

Lastly, recall that [20] the flow from M(3, 10) to M(3, 8) is generated by the operator
φ1φ

2
2 +φ2φ

2
1. Using the equations of motion, this is the operator φ1∂

2φ2 +φ2∂
2φ1. Therefore,

this operator has dimension 2 + 2
(
−2

5

)
= 6

5 . The operator φ1,7 of M(3, 10) is precisely the
operator generating the flow to M(3, 8).
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To complete the description of M(3, 10), we collect the OPEs in this theory:

φ1,2 × φ1,2 ∼ 1 + φ1,3, φ1,2 × φ1,3 ∼ φ1,2 + iφ1,4,

φ1,2 × φ1,4 ∼ iφ1,3 + φ1,5, φ1,2 × φ1,5 ∼ φ1,4 + φ1,6,

φ1,2 × φ1,6 ∼ φ1,5 + iφ1,7, φ1,2 × φ1,7 ∼ iφ1,6 + φ1,8,

φ1,2 × φ1,8 ∼ φ1,7 + φ1,9, φ1,2 × φ1,9 ∼ φ1,8,

φ1,3 × φ1,3 ∼ 1 + φ1,3 + iφ1,5, φ1,3 × φ1,4 ∼ iφ1,2 + φ1,4 + φ1,6,

φ1,3 × φ1,5 ∼ iφ1,3 + φ1,5 + iφ1,7, φ1,3 × φ1,6 ∼ φ1,4 + φ1,6 + iφ1,8,

φ1,3 × φ1,7 ∼ iφ1,5 + φ1,7 + φ1,9, φ1,3 × φ1,8 ∼ iφ1,6 + φ1,8,

φ1,3 × φ1,9 ∼ φ1,7, φ1,4 × φ1,4 ∼ 1 + φ1,3 + iφ1,5 + φ1,7,

φ1,4 × φ1,5 ∼ φ1,2 + iφ1,4 + iφ1,6 + φ1,8, φ1,4 × φ1,6 ∼ φ1,3 + iφ1,5 + φ1,7 + φ1,9,

φ1,4 × φ1,7 ∼ φ1,4 + φ1,6 + iφ1,8, φ1,4 × φ1,8 ∼ φ1,5 + iφ1,7,

φ1,4 × φ1,9 ∼ φ1,6, φ1,5 × φ1,5 ∼ 1 + φ1,3 + iφ1,5 + φ1,7 + φ1,9,

φ1,5 × φ1,6 ∼ φ1,2 + iφ1,4 + iφ1,6 + φ1,8, φ1,5 × φ1,7 ∼ iφ1,3 + φ1,5 + iφ1,7,

φ1,5 × φ1,8 ∼ φ1,4 + φ1,6, φ1,5 × φ1,9 ∼ φ1,5,

φ1,6 × φ1,6 ∼ 1 + φ1,3 + iφ1,5 + φ1,7, φ1,6 × φ1,7 ∼ iφ1,2 + φ1,4 + φ1,6,

φ1,6 × φ1,8 ∼ iφ1,3 + φ1,5, φ1,6 × φ1,9 ∼ φ1,4,

φ1,7 × φ1,7 ∼ 1 + φ1,3 + iφ1,5, φ1,7 × φ1,8 ∼ φ1,2 + iφ1,4,

φ1,7 × φ1,9 ∼ φ1,3, φ1,8 × φ1,8 ∼ 1 + φ1,3,

φ1,8 × φ1,9 ∼ φ1,2, φ1,9 × φ1,9 ∼ 1. (A.1)

B Some relations between (super-)Virasoro characters

In this appendix, we will prove the following two identities relating the Virasoro characters
of M(3, 8) to a super-Virasoro character of SM (2, 8):

χV1,2(q)− χV1,6(q) = 1, χV1,2(q) + χV1,6(q) = χR1,4(q). (B.1)

Here χVr,s(q) denotes the Virasoro character corresponding to the primary field φM(3,8)
r,s in

the (3, 8) minimal model, given by [57]

χVr,s(q) =
∞∏
n=1

1
1− qn

∑
m∈Z

∑
±

(±) q
1

96 (48m+8r−2∓3s)(48m+8r+2∓3s) (B.2)

and χRr,s(q) is the super-Virasoro character corresponding to the R sector superconformal
primary field φSM(2,8)

r,s in SM (2, 8), given by [51, 52]

χRr,s(q) =
∞∏
n=1

1 + qn

1− qn

∑
m∈Z

∑
±

(±) q
1

32 (16m+4r∓s)2
. (B.3)
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Using eq. (B.2) for both φM(3,8)
1,2 and φM(3,8)

1,6 , we obtain

χV1,2 − χV1,6

=
∞∏
n=1

1
1− qn

∑
m∈Z

(
−q24m2−10m+1 + q24m2+2m − q24m2+14m+2 + q24m2+26m+7

)

=
∑
m∈Z−q

3(−4m+1)2−(−4m+1)
2 + q

3(−4m)2−(−4m)
2 − q

3(−4m−1)2−(−4m−1)
2 + q

3(−4m−2)2−(−4m−2)
2∏∞

n=1(1− qn) .

(B.4)

Notice that the sum on the R.H.S of eq. (B.4) can also be written as
∑
m∈Z(−)mq

3m2−m
2 ,

and the latter is exactly the series expansion of the infinite product
∏∞
n=1(1− qn), known

as the pentagonal number theorem. This yields the first identity in eq. (B.1). For the sum
of χV1,2 and χV1,6, we get similarly

χV1,2 + χV1,6 =
∑
m σm q

3m2−m
2∏∞

n=1(1− qn) (B.5)

where σm is equal to 1 when m ≡ 0 or 1 (mod 4), and −1 when m ≡ 2 or 3 (mod 4). It
is straightforward to check that such a sign function can be realized as σm = (−)

3m2+m
2 ,

which further leads to

χV1,2 + χV1,6 =
∑
m(−)m(− q)

3m2−m
2∏∞

n=1(1− qn) =
∏
n≥1

1− (−q)n

1− qn

=
∏
n≥1

(
1− q2n) (1 + q2n−1)

1− qn
=
∏
n≥1

(1 + qn)
(
1 + q2n−1

)
(B.6)

where we have used the pentagonal number theorem again. Next, we will show that the
R.H.S of eq. (B.6) is exactly the super-Virasoro character χR1,4:

χR1,4 =
∞∏
n=1

1 + qn

1− qn

∑
m∈Z

(
q2(2m)2 − q2(2m+1)2) =

∞∏
n=1

1 + qn

1− qn

∑
m∈Z

(−)mq2m2
. (B.7)

The infinite sum over m yields the elliptic theta function θ4(q2). Using its Jacobi triple
product representation, we get

χR1,4 =
∞∏
n=1

(1 + qn)
(
1− q4n) (1− q4n−2)2

1− qn

=
∞∏
n=1

(1 + qn)
(
1− q4n−2)

1− qn

∞∏
n=1

(
1− q2(2n)

) (
1− q2(2n−1)

)
=
∞∏
n=1

(1 + qn)
(
1 + q2n−1) (1− q2n−1) (1− q2n)

1− qn
=
∏
n≥1

(1 + qn)
(
1 + q2n−1

)
. (B.8)

This completes the proof of the second identity in eq. (B.1).
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