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1 Introduction

Understanding the properties of the spectrum of local BPS operators in superconformal
field theories (SCFTs) offers a window into their strong coupling dynamics and is a subject
with illustrious history. Supersymmetric indices à la Witten provide a convenient tool to
encode such BPS spectra and are therefore objects of central interest in SCFTs. Such
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supersymmetric indices acquire new importance in the context of AdS/CFT and black
hole physics where they can be used with great efficacy to do precision holography or
to account for the microscopic entropy of black holes. Supersymmetric localization [1, 2]
has been extensively used for exact calculations of path integrals in strongly interacting
quantum field theories and as we discuss in this work can be brought to bear yet again for
the calculation of supersymmetric indices in large N holographic SCFTs.

The superconformal index (SCI) of the 4d N = 4 Super-Yang-Mills (SYM) theory on
S1 × S3 defined in [3, 4] has received particular interest in this context. This is largely
due to the recent observation that the SCI of the N = 4 SYM theory can account for the
entropy of the dual supersymmetric Kerr-Newman (KN) AdS5 black holes found in [5–
9]. The key to this microscopic understanding of the black hole entropy is to allow for
complex chemical potentials associated with the global charges of the N = 4 SYM theory
when evaluating the SCI [10–13]. This can be interpreted as choosing the “second sheet”
for the complex valued chemical potentials [14]. These developments have sparked a flurry
of activity centered at understanding the SCI of N = 4 SYM theory and its generalizations
to other N = 1 holographic SCFTs that provide the microscopic origin of the entropy of
dual AdS5 black holes. A remarkable feature of the SCI in 4d N = 1 holographic SCFTs
is that it allows for an all order expansion in a Cardy-like limit in which the size of the S1

is taken to be much smaller than the radius of the S3, see [14, 15] as well as [16–23] for
further discussion on the 4d SCI in this Cardy-like limit. In the large N limit, on the other
hand, the exact evaluation of the 4d SCI becomes much more involved due to multiple
competing saddles; see [24–37] for a selection of recent results on various aspects of the
SCI in this large N limit.

Our goal in this work is to study the large N limit of the SCI on S1 × S2 defined
and studied in [38–43] for 3d holographic SCFTs. The calculation of the 3d SCI in the
large N limit has been previously studied in a particular regime of fugacities but the result
has been restricted to the leading order in the large N limit taken after the Cardy-like
limit [44–46].1 In the discussion below we focus on the Cardy-like limit, which ultimately
amounts to taking the limit of vanishing S2 angular momentum fugacity ω, and improve
on this analysis in two significant ways. Focusing on the U(N)k × U(N)−k ABJM theory
for concreteness [48], we first rewrite the SCI in a suitable manner that simplifies the
analysis of the leading ω−1 and ω0 terms in the Cardy-like limit. We then use a saddle
point approximation to show that the ω−1 term in the small ω expansion of the SCI is
determined by the so-called Bethe potential used in the calculation of another related
supersymmetric observable, the Topologically Twisted Index (TTI) [49–51]. Moreover, we
find that the ω0 term in the Cardy-like limit simply evaluates to the TTI itself. Such a
judicious rewriting of the SCI was studied in [44, 45] for general 3d N = 2 gauge theories
where it was also shown that it can be used to compute the Cardy-like limit of the SCI
for general values of N . These results are significant since the TTI has recently been
computed to all orders in the 1/N expansion for various holographic SCFTs, including the
ABJM theory [52–54]. We can thus leverage these recent TTI results to obtain a closed

1See also [47] for some very recent related work.
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form expression for the ω−1 and ω0 terms in the Cardy-like limit of the SCI for the ABJM
theory to all orders in the 1/N expansion at fixed k. We believe that our results can
be extended to many holographic 3d N = 2 SCFTs. To illustrate this we use the same
techniques to compute explicitly the ω−1 and ω0 terms in the Cardy-like limit of the SCI
for 3d U(N) N = 4 SYM coupled to one adjoint and Nf fundamental hypermultiplets2

to all orders in the 1/N expansion at fixed Nf . The S3 partition function and the TTI
of these two holographic SCFTs can also be computed in a closed form to all orders in
the large N expansion, see [55–58] and [52, 54], respectively. Our findings thus add to the
menagerie of exact large N results in these two holographic models.

The 3d SCI for holographic SCFTs arising from M2-branes can be used to understand
the leading N

3
2 term in the large N limit of the entropy of the dual supersymmetric Kerr-

Newman black holes in AdS4 constructed in [59–63], see for instance [63–65]. Our explicit
results for the SCI go well beyond this leading order in the large N limit and should
thus have interesting holographic implications. In particular, we find that the N

1
2 term in

the large N expansion of our SCI results agrees with the holographically dual calculation
performed in [66, 67] using higher-derivative supergravity. Moreover, we find that the
logN term in the large N expansion of the SCI agrees with the dual 1-loop calculation in
supergravity discussed in [68]. We also show that our results are compatible with a recent
conjecture [69], motivated by 4d gauged supergravity and holography, for a closed form
expression for the SCI of the ABJM theory to all orders in the 1/N expansion. Finally,
we discuss how the subleading 1/N corrections to the 3d SCI that we have obtained from
the field theory side can improve on the previous microstate counting of the entropy of the
holographic dual supersymmetric AdS4 black hole.

The rest of this paper is organized as follows. In section 2 we briefly review the
SCI of N = 2 SCFTs and the corresponding matrix model obtained via supersymmetric
localization. In sections 3 and 4 we investigate the SCI of the ABJM theory and the
ADHM theory respectively, and provide the all order perturbative 1/N expansion for the
first two leading terms in the Cardy-like expansion. In section 5 we discuss the holographic
implications of our results and their bearing on the thermodynamics of supersymmetric
Kerr-Newman AdS4 black holes. We conclude in section 6 with a short discussion of some
open questions. The four appendices contain a collection of technical results on special
functions and the saddle point approximation along with a summary of the numerical
analysis used to derive our main results.

2 Superconformal index of generic N = 2 SCFTs

The S1 × S2 superconformal index (SCI) was defined in [38–40] and then considered for
generic N = 2 SCFTs in [41–43]. It can be viewed as the following trace over the Hilbert
space of the theory in radial quantization

I(q, ξa) = Tr
[
(−1)F e−β1{Q,Q†}q∆+j3

∏
a

ξFaa

]
, (2.1)

2This model is also known as the ADHM quiver theory and we will often adopt this monicker.
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where F is the fermion number and the supercharge Q satisfies the anticommutation
relation

{Q,Q†} = ∆−R− j3 . (2.2)

The charges ∆ + j3 and Fa in the trace formula (2.1) commute with Q and Q†. Here ∆ is
the energy in radial quantization, R denotes the superconformal R-charge, j3 is the third
component of the angular momentum on S2, and Fa are charges associated with flavor
symmetries.

We use the conventions of [41] where the ratio of the circumference of S1 and the
radius of S2 is denoted by β = β1 + β2. The SCI (2.1) is independent of the parameter β1
based on the usual argument for the Witten index and receives contributions only from the
BPS states annihilated by Q and Q† or equivalently the BPS states saturating the bound
∆−R− j3 ≥ 0. As a result one can rewrite the SCI (2.1) as

I(q, ξa) = TrBPS

[
(−1)F qR+2j3

∏
a

ξFaa

]
, (2.3)

where TrBPS[· · · ] means that the trace is taken over the BPS states annihilated by Q and
Q† only. We will call the chemical potential for the q fugacity ω and will use the relation
q = eiπω. The relation between the geometric parameter β2 used in [41] and ω is then
πω = iβ2. Since the SCI is independent of β1 we can take it to vanish and then use β2
as the real parameter that determines the length of the S1 (in units of the S2 radius).
Therefore the Cardy-like limit of small S1 corresponds to taking ω → i0+. This limit will
play a central role in our discussion below.

The SCI (2.3) can also be written explicitly in terms of a matrix model for generic
N = 2 SCFTs [41–43]. In this paper we focus on the case where a given N = 2 SCFT has
the gauge group G = ⊗pr=1U(N)kr with Chern-Simons (CS) levels kr’s and N = 2 chiral
multiplets collectively represented by Φ with superconformal R-charge R(Φ) and flavor
charges fa(Φ). The matrix model for the SCI then reads3

I(q, ξa) = 1
(N !)p

∑
m1,··· ,mp∈ZN

∮ ( p∏
r=1

N∏
i=1

dzr,i
2πizr,i

(zr,i)krmr,i

∏
a

ξka,r,imr,i
a

)

×
p∏
r=1

N∏
i=1

(−1)krm
2
r,i ×

∏
Φ

∏
ρ

(−1) 1
2ρ(m)|ρ(m)|

×
p∏
r=1

N∏
i 6=j

q−
1
2 |mr,i−mr,j |

(
1− zr,iz−1

r,j q
|mr,i−mr,j |

)
(2.4)

×
∏
Φ

∏
ρ

(
q1−R(Φ)e−iρ(h)

∏
a

ξ−fa(Φ)
a

) 1
2 |ρ(m)|

(
e−iρ(h)∏

a ξ
−fa(Φ)
a q2−R(Φ)+|ρ(m)|; q2

)
∞(

eiρ(h)∏
a ξ

fa(Φ)
a qR(Φ)+|ρ(m)|; q2

)
∞

,

3We mainly followed the conventions of appendix A in [70] involving the extra phases in the 2nd line
of (2.4) compared to the previous localization formula in the literature [41–43], which comes from the
canonical prescription for the fermionic number operator (−1)F = (−1)2j3 . See also [71–73].
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where the contour integrals for the gauge zero modes zr,i = eihr,i are over the unit circles
and ρ runs over the weights of the representation RΦ of the N = 2 chiral multiplet Φ with
respect to the gauge group G = ⊗pr=1U(N)kr . The mr,i denote quantized gauge magnetic
fluxes. In appendix A we provide the definition of the ∞-Pochhammer symbol (·; ·)∞ and
present some of its properties.

It is worth mentioning that in the matrix model (2.4) we have also included the contri-
bution from mixed CS terms between gauge and flavor symmetries with general CS levels
ka,r,i following appendix A of [70]. For the concrete examples in the following sections,
however, we will turn on such mixed CS terms only for the topological symmetries with
unit CS levels by coupling a background vector multiplet to the topological symmetry
current JTr = ∗Tr[Fr] with gauge field strength Fr.

3 ABJM superconformal index

In this section we investigate the SCI of the ABJM theory. In section 3.1 we briefly
introduce the ABJM theory [48] and then provide the matrix model for its SCI based on
the general presentation in section 2. In section 3.2 we evaluate the matrix model for the
ABJM SCI using the saddle point approximation in the Cardy-like limit following [44, 45].
In section 3.3 we provide the all order perturbative 1/N expansion for the first two leading
terms in the Cardy-like expansion of the ABJM SCI using the exact ABJM TTI on S1×S2

recently found in the literature [52, 53]. Finally, in section 3.4 we discuss the relation
between the all order results for the ABJM SCI and the Airy conjecture recently proposed
in [69, 74].

3.1 Matrix model for the ABJM SCI

The ABJM theory has U(N)k×U(N)−k gauge group with opposite CS levels ±k, the
corresponding two N = 2 vector multiplets, and two pairs of bi-fundamental and anti bi-
fundamental N = 2 chiral multiplets A1,2 & B1,2 with superconformal R-charge 1

2 . We use
Φ to collectively represent all the N = 2 chiral multiplets as Φ = {A1, A2, B1, B2}.

In addition to the U(1)R superconformal R-symmetry, the global symmetry of the
ABJM theory manifest in this N = 2 formulation is SU(2)A×SU(2)B×U(1)T . The flavor
symmetries SU(2)A and SU(2)B act on A1,2 and B1,2 respectively, while U(1)T denotes
the topological symmetry arising from the U(1) factors in the gauge groups. We denote
the Cartan generators of these global symmetries as (A,B, T,R) respectively. The charges
of the N = 2 chiral multiplets under these symmetries are presented in table 1, see for
example [75] for more details.

The ABJM SCI can be obtained from the trace formula (2.3) and reads

IABJM(q, ξA, ξB, ξT ) = TrBPS

[
(−1)F qR+2j3(ξA)A(ξB)B(ξT )T

]
, (3.1)

where (ξA, ξB, ξT ) are fugacities associated with the flavor charges (A,B, T ) respectively.
The corresponding matrix model for the ABJM SCI can then be obtained from (2.4)
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Φ R A B T

A1
1
2 1 0 0

A2
1
2 −1 0 0

B1
1
2 0 1 0

B2
1
2 0 −1 0

Table 1. Charge assignments of N = 2 chiral multiplets in the ABJM theory. The U(1)T symmetry
acts non-trivially on monopole operators.

using table 1

IABJM(q, ξA, ξB, ξT )

= 1
(N !)2

∑
m,m̃∈ZN

∮ ( N∏
i=1

dzi
2πizi

dz̃i
2πiz̃i

zkmii z̃−km̃ii ξmiT1
ξm̃iT2

)

×
N∏
i 6=j

q−
1
2 |mi−mj |

(
1− ziz−1

j q|mi−mj |
)
q−

1
2 |m̃i−m̃j |

(
1− z̃iz̃−1

j q|m̃i−m̃j |
)

×
N∏

i,j=1

(
q

1
2 z−1
i z̃jξ

−1
A

) 1
2 |mi−m̃j |

(
z−1
i z̃jξ

−1
A q

3
2 +|−mi+m̃j |; q2

)
∞(

ziz̃
−1
j ξAq

1
2 +|mi−m̃j |; q2

)
∞

×
N∏

i,j=1

(
q

1
2 z−1
i z̃jξA

) 1
2 |mi−m̃j |

(
z−1
i z̃jξAq

3
2 +|−mi+m̃j |; q2

)
∞(

ziz̃
−1
j ξ−1

A q
1
2 +|mi−m̃j |; q2

)
∞

×
N∏

i,j=1

(
q

1
2 ziz̃

−1
j ξ−1

B

) 1
2 |mi−m̃j |

(
ziz̃
−1
j ξ−1

B q
3
2 +|−mi+m̃j |; q2

)
∞(

z−1
i z̃jξBq

1
2 +|mi−m̃j |; q2

)
∞

×
N∏

i,j=1

(
q

1
2 ziz̃

−1
j ξB

) 1
2 |mi−m̃j |

(
ziz̃
−1
j ξBq

3
2 +|−mi+m̃j |; q2

)
∞(

z−1
i z̃jξ

−1
B q

1
2 +|mi−m̃j |; q2

)
∞

,

(3.2)

where we have turned on the mixed CS terms between the gauge symmetry and the topo-
logical symmetries only. Note that the ABJM SCI (3.2) does not depend on ξT1 and ξT2

separately but only on ξT ≡ ξT1ξT2 as expected from the fact that ABJM theory has only
one non-trivial U(1)T topological symmetry [48]. This can be seen explicitly in the ma-
trix model (3.2) by shifting the integration variables as (zi, z̃i) → (ziξ−1/k

T1
, z̃iξ

1/k
T2

). The
phases in the 2nd line of (2.4) disappear in the ABJM SCI (3.2) since the phases from bi-
fundamental chiral multiplets cancel each other and the phase from CS terms also reduces
to unity as ∑

m,m̃∈ZN

N∏
i=1

(−1)k(m2
i−m̃

2
i ) = 1 (3.3)

for an integer CS level k ∈ Z.
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To study the Cardy-like limit of the ABJM SCI it is useful to rewrite the matrix
model (3.2) as [44, 45]

IABJM(ω,∆, n)

= 1
(N !)2

∑
m,m̃∈ZN

∮
|si|=qmi ,|s̃i|=qm̃i

(
N∏
i=1

dsi
2πisi

ds̃i
2πis̃i

e
ik

4πω (U2
i −Ũ

2
i )− ik

4πω

(
Ū2
i −

¯̃U2
i

))

×
N∏
i 6=j

[
(1− s−1

i sj)(1− s̃−1
i s̃j)(1− s̄−1

i s̄j)(1− ¯̃s−1
i

¯̃sj)
] 1

2

×
N∏
i=1

[
(sis̄i)

N
2 −i(s̃i ¯̃si)

N
2 −i+1

2∏
a=1

(s−1
i s̃iy

−1
a q2−na ; q2)∞

(s̄−1
i

¯̃siyaqna ; q2)∞
×

4∏
a=3

(s̄−1
i

¯̃siy−1
a q2−na ; q2)∞

(s−1
i s̃iyaqna ; q2)∞

]

×
N∏
i>j

[ 2∏
a=1

(s−1
i s̃jy

−1
a q2−na ; q2)∞

(s̄−1
i

¯̃sjyaqna ; q2)∞
×

4∏
a=3

(s̄−1
i

¯̃sjy−1
a q2−na ; q2)∞

(s−1
i s̃jyaqna ; q2)∞

×
2∏

a=1

(s̄j ¯̃s−1
i y−1

a q2−na ; q2)∞
(sj s̃−1

i yaqna ; q2)∞
×

4∏
a=3

(sj s̃−1
i y−1

a q2−na ; q2)∞
(s̄−1
j

¯̃siyaqna ; q2)∞

]
,

(3.4)

in terms of new integration variables (recall that zi = eihi , z̃i = eih̃i , q = eiπω)

si = eiUi = ziq
mi = ei(hi+πωmi) , s̃i = eiŨi = z̃iq

m̃i = ei(h̃i+πωm̃i) , (3.5)

and the parameters ya = eiπ∆a (∆a ∈ R) and na ∈ R defined as

yaq
na− 1

2 = (ξ−1/k
T ξA, ξ

−1/k
T ξ−1

A , ξ
1/k
T ξB, ξ

1/k
T ξ−1

B ) (a ∈ {1, 2, 3, 4}) , (3.6)

under the constraints
4∑

a=1
na = 2 ,

4∏
a=1

ya = 1 . (3.7)

Note that (ya, na) are uniquely determined for given three complex parameters (ξA, ξB, ξT )
through the map (3.6) under the constraints (3.7). Accordingly in (3.4) we have replaced
the argument of the ABJM SCI as

IABJM(q, ξA, ξB, ξT ) → IABJM(ω,∆, n) , (3.8)

where (∆, n) collectively represent (∆a, na) under the constraints (3.7). To obtain the
expression (3.4) we have also assumed

q ∈ R>0 ⇔ iω ∈ R . (3.9)

In appendix C.1, we provide some more details on the derivation of (3.4).
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3.2 Cardy-like limit of the ABJM SCI

Taking the Cardy-like limit

|q| → 1− ⇔ ω → i0+ , (3.10)

one can expand the ∞-Pochhammer symbol using the asymptotic expansion (A.5) and
apply the Euler-Maclaurin formula to replace the sum over gauge magnetic fluxes with the
corresponding integrals in the matrix model (3.4), see [44, 45] and appendix C.1 for details.
The result reads
IABJM(ω,∆, n)

= 1
(N !)2

∫
C2N

( N∏
i=1

dUidŪi
−4π2iω

dŨid
¯̃Ui

−4π2iω

)
e

1
πω

ImW(0)[U,Ũ ;∆]+2 ReW(1)[U,Ũ ;∆,n]+O(ω) ,
(3.11)

where the first two leading terms of the effective action in the Cardy-like limit are given by

W(0)[U, Ũ ; ∆] = −k2

N∑
i=1

(
U2
i − Ũ2

i

)
+

N∑
i=1

[ 2∑
a=1

Li2(s−1
i s̃iy

−1
a )−

4∑
a=3

Li2(s−1
i s̃iya)

]

+
∑
i>j

[ 2∑
a=1

(
Li2(s−1

i s̃jy
−1
a )− Li2(sj s̃−1

i ya)
)

−
4∑

a=3

(
Li2(s−1

i s̃jya)− Li2(sj s̃−1
i y−1

a )
)]

, (3.12a)

W(1)[U, Ũ ; ∆, n] = 1
2

N∑
i=1

[ 2∑
a=1

(1− na)Li1(s−1
i s̃iy

−1
a ) +

4∑
a=3

(1− na)Li1(s−1
i s̃iya)

]

+ 1
2
∑
i>j

[ 2∑
a=1

(1− na)
(
Li1(s−1

i s̃jy
−1
a ) + Li1(sj s̃−1

i ya)
)

+
4∑

a=3
(1− na)

(
Li1(s−1

i s̃jya) + Li1(sj s̃−1
i y−1

a )
)]

+ 1
2

N∑
i 6=j

[
log
(
1− s−1

i sj
)

+ log
(
1− s̃−1

i s̃j
)]

+ 1
2

N∑
i=1

[(N − 2i) log si + (N − 2i+ 2) log s̃i]

− N

4

[ 2∑
a=1

(1− na) log ya −
4∑

a=3
(1− na) log ya

]
. (3.12b)

Note that in (3.11) we have used the complex conjugation relations

W(0)[U, Ũ ; ∆] =W(0)[−Ū ,− ¯̃U ;−∆] ,

W(1)[U, Ũ ; ∆, n] =W(1)[−Ū ,− ¯̃U ;−∆, n] ,
(3.13)

which are derived using that (∆, n) are real by construction, see (3.6).
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To apply the saddle point approximation to the integral (3.11), first one should solve
the saddle point equations in the Cardy-like limit, namely

0 = ∂W(0)[U, Ũ ; ∆]
∂Ui

= ∂W(0)[U, Ũ ; ∆]
∂Ũi

. (3.14)

Let us denote the solution to the leading order saddle point equation (3.14) by {U?i, Ũ?i}
with the apparent (N !)2 degeneracy from permutations. The saddle point approximation
to the integral (3.11) can then be derived following appendix B and the result reads

log IABJM(ω,∆, n)

= 1
πω

ImW(0)[U?, Ũ?; ∆]

+ log

∣∣∣∣∣∣∣
∏4
a=1 y

−N
2

2 na
a

detB[U?, Ũ?; ∆]

∏N
i=1 s

N
?i s̃

N
?i

∏
i 6=j

(
1− s−1

?i s?j
) (

1− s̃−1
?i s̃?j

)
∏N
i,j=1

∏2
a=1(s̃?i − yas?j)1−na

∏4
a=3(s?i − yas̃?j)1−na

∣∣∣∣∣∣∣
+O(ω) ,

(3.15)

where the 2N × 2N square matrix B[U, Ũ ; ∆] is defined by its components as

[
B[U, Ũ ; ∆]

]
I,J
≡ ∂W(0)[U, Ũ ; ∆]

∂UI∂UJ
(UI = {U1, · · · , UN , Ũ1, · · · , ŨN}) . (3.16)

See appendix C.1 for additional details.

3.3 All order 1/N expansion for the ABJM SCI in the Cardy-like limit

To evaluate the Cardy-like expansion of the ABJM SCI (3.15) explicitly in the large N limit,
we will use the known all order results for the S1 × S2 TTI of the ABJM theory [52, 53].
As a first step, we relabel the gauge holonomies and the leading order effective action
in (3.15) as

Ui → −ũi −
(1− (−1)N )π

2k ,

Ũi → −ui −
(1− (−1)N )π

2k ,

W(0)[U, Ũ ; ∆] → −VTTI[u, ũ; ∆] .

(3.17)

Then by using the inversion formula of the polylogarithm (A.2) and assuming

0 < Re[ũi − uj + π∆3,4] < 2π , −2π < Re[ũi − uj − π∆1,2] < 0 (i < j) , (3.18)

– 9 –



J
H
E
P
0
2
(
2
0
2
3
)
0
2
7

one can rewrite VTTI[u, ũ; ∆] as

VTTI[u, ũ; ∆]

=
N∑
i=1

[
k

2
(
ũ2
i − u2

i

)
− π

(
2ñi −

1− (−1)N

2

)
ũi + π

(
2ni −

1− (−1)N

2

)
ui

]

+
N∑

i,j=1

 ∑
a=3,4

Li2(ei(ũj−ui+π∆a))−
∑
a=1,2

Li2(ei(ũj−ui−π∆a))


− N(N − 1)π2

4

[ 4∑
a=3

(1−∆a)2 −
2∑

a=1
(1−∆a)2

]
,

(3.19)

where we have introduced a set of integers (ni, ñi) = (1 − i, i − n) in the last equation.
It is remarkable that (3.19) is exactly the same as the Bethe potential for the S1 × S2

ABJM TTI [53] up to u, ũ-independent terms. This implies that the leading order saddle
point equations for the matrix model of the ABJM SCI in the Cardy-like limit, (3.14), are
equivalent to the Bethe Ansatz Equations (BAE) obtained by taking partial derivatives of
the Bethe potential with respect to (ui, ũi),

0 = ∂VTTI[u, ũ; ∆]
∂ui

= ∂VTTI[u, ũ; ∆]
∂ũi

. (3.20)

Based on the equivalence between the saddle point equation (3.14) and the BAE (3.20)
under the map (3.17), one can rewrite the Cardy expansion of the ABJM SCI (3.15) as

log IABJM(ω,∆, n)

= − 1
πω

ImVTTI[u?, ũ?; ∆]

+ log

∣∣∣∣∣∣∣
∏4
a=1 y

−N
2

2 na
a

detBTTI[u?, ũ?; ∆]

∏N
i=1 x

N
?i x̃

N
?i

∏
i 6=j

(
1− x−1

?i x?j
) (

1− x̃−1
?i x̃?j

)
∏N
i,j=1

∏2
a=1(x̃?i − yax?j)1−na

∏4
a=3(x?i − yax̃?j)1−na

∣∣∣∣∣∣∣
+O(ω) ,

(3.21)

in terms of the solutions {x?i = eiu?i , x̃?i = eiũ?i} to the BAE (3.20) and the 2N × 2N
matrix[

BTTI[u, ũ; ∆]
]
I,J
≡ (−1)1−Θ(I−N)∂VTTI[u, ũ; ∆]

∂uI∂uJ
(uI = {u1, · · · , uN , ũ1, · · · , ũN}) ,

(3.22)
which is equivalent to the Jacobian matrix in the Bethe Ansatz formulation for the ABJM
TTI [52, 53, 75]. In (3.22) we have used the Heaviside step function Θ(x) on the real line
that takes the value Θ(x) = 1 for x > 0 and vanishes for x ≤ 0.

Note that the first subleading term of order O(ω0) in (3.21) is precisely the same as
the logarithm of the S1 × S2 ABJM TTI, which has recently been evaluated to all orders
in the perturbative 1/N expansion by using precision numerical analysis of the large N
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solutions to the BAE [52, 53] and reads

log

∣∣∣∣∣∣∣
∏4
a=1 y

−N
2

2 na
a

detBTTI[u?, ũ?; ∆]

∏N
i=1 x

N
?i x̃

N
?i

∏
i 6=j

(
1− x−1

?i s?j
) (

1− x̃−1
?i x̃?j

)
∏N
i,j=1

∏2
a=1(x̃?i − yax?j)1−na

∏4
a=3(x?i − yax̃?j)1−na

∣∣∣∣∣∣∣
= −π

√
2k∆1∆2∆3∆4

3

4∑
a=1

na
∆a

[
N̂

3
2
k,∆ −

ca(∆)
k

N̂
1
2
k,∆

]
− 1

2 log N̂k,∆

+ f̂0(k,∆, n) + f̂np(N, k,∆, n) ,

(3.23)

where f̂np stands for non-perturbative correction of order O
(
e−
√
N
)
and we have defined

N̂k,∆ ≡ N −
k

24 + 1
12k

4∑
a=1

1
∆a

, ca(∆) ≡
∏
b 6=a(∆a + ∆b)
8∆1∆2∆3∆4

∑
b 6=a

∆a . (3.24)

See [53] for a discussion on the N -independent constant f̂0 which has no known closed form
expression but can be determined accurately with precision numerics. We also emphasize
that the all order expression (3.23) is given for the specific range of ∆ that satisfies the
inequalities (3.18) and the constraints (3.7) as

4∑
a=1

∆a = 2 , (3.25)

which we assume from here on.
We can now use the numerical results for the solution to the BAE from [52, 53] and

substitute them in (3.19) to deduce a closed form expression for the imaginary part of the
Bethe potential that governs the leading term of order O(ω−1) in (3.21). The result is the
following compact expression

ImVTTI[u?, ũ?; ∆] = 2π
[
π
√

2k∆1∆2∆3∆4
3 N̂

3
2
k,∆ + ĝ0(k,∆) + ĝnp(N, k,∆)

]
, (3.26)

where ĝnp stands for non-perturbative correction of order O
(
e−
√
N
)
. We refer the reader

to appendix C.2 for more details on the numerical analysis by which the closed form
expression (3.26) is deduced. It will be very interesting to derive a closed form expression
for the N -independent constant ĝ0 in (3.26), but we leave this problem for future work.

Substituting the subleading term (3.23) and the leading term (3.26) back into (3.21),
we obtain our final result for the all order 1/N expansion of the ABJM SCI in the Cardy-
like limit

log IABJM(N, k, ω,∆, n)

= − 2
ω

[
π
√

2k∆1∆2∆3∆4
3 N̂

3
2
k,∆ + ĝ0(k,∆)

]

+
[
−π
√

2k∆1∆2∆3∆4
3

4∑
a=1

na
∆a

(
N̂

3
2
k,∆ −

ca(∆)
k

N̂
1
2
k,∆

)
− 1

2 log N̂k,∆ + f̂0(k,∆, n)
]

+O
(
e−
√
N
)

+O(ω) .
(3.27)
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An interesting rewriting of this analytic result for the SCI is possible after first defining
new complex parameters ϕa as

ϕa = ∆a + ωna (eiπϕa = yaq
na) →

4∑
a=1

ϕa = 2(1 + ω) . (3.28)

Using this new variable the ABJM SCI (3.27) can be written more compactly as

log IABJM(N, k, ω, ϕ) = −4
3C(k, ω, ϕ)−

1
2 (N −B(k, ω, ϕ))

3
2 − 2

ω
ĝ0(k,Reϕ)

− 1
2 log (N −B(k, ω, ϕ)) + f̂0(k, ϕ) +O

(
e−
√
N
)

+O(ω) ,
(3.29)

where we have also defined

C(k, ω, ϕ) = 2ω2

π2kϕ1ϕ2ϕ3ϕ4
, (3.30a)

B(k, ω, ϕ) = k

24 + (1 + ω)2F1(ϕ) + (1− ω)2F2(ϕ)
48kϕ1ϕ2ϕ3ϕ4

, (3.30b)

F1(ϕ) =
4∑

a=1
ϕ2
a −

(ϕ1 + ϕ2 − ϕ3 − ϕ4)(ϕ1 − ϕ2 + ϕ3 − ϕ4)(ϕ1 − ϕ2 − ϕ3 + ϕ4)∑4
a=1 ϕa

,

(3.30c)

F2(ϕ) = −2
4∑
a<b

ϕaϕb . (3.30d)

At leading order in the large N limit, our result (3.29) is in agreement with the result
obtained recently in [47] for the O(ω−1) and O(ω0) terms in the Cardy-like limit of the
ABJM SCI. It would be interesting to understand how to extend the analysis of [47] to
include finite N corrections. We now proceed to discuss the significance of the rewriting
of the leading terms in the Cardy-like limit of the SCI in (3.29).

3.4 Relation to the Airy conjecture

Recently, the form of the large N ABJM partition function on various 3d Euclidean super-
symmetric backgrounds has been conjectured based on holography and a dual 4d gauged
supergravity analysis [69, 74]. The ABJM superconformal index, in particular, has been
conjecturally given in terms of an Airy function as

Iconj
ABJM =

(
eA(k,ω,ϕ)C(k, ω, ϕ)−

1
3Ai

[
C(k, ω, ϕ)−

1
3 (N −B(k, ω, ϕ))

])2 (
1 +O

(
e−
√
N
))

,

(3.31)
where the functions B(k, ω, ϕ) and C(k, ω, ϕ) are precisely the ones defined in (3.30)
above. The N -independent prefactor eA(k,ω,ϕ) and the non-perturbative correction of order
O
(
e−
√
N
)
have not been conjectured in [69, 74].

The conjecture (3.31) can be expanded in the Cardy-like limit (3.10) using the asymp-
totic expansion of the Airy function

Ai[z] = e−
2
3 z

3
2

√
4πz

1
4

(
1 +O

(
z−

3
2
))

, (3.32)
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and the result is indeed consistent with the all order result (3.29) we have obtained directly
from the matrix model calculation. Importantly, the all order result (3.29) can be used
to improve the conjecture by partially restricting the behavior of the unknown prefactor
eA(k,ω,ϕ) in the Cardy-like limit to find

A(k, ω, ϕ) = − 1
ω
ĝ0(k,Reϕ) + 1

4 logC(k, ω, ϕ) + 1
2 f̂0(k, ϕ) + 1

2 log 4π +O(ω) , (3.33)

where the constants f̂0, ĝ0 are the ones appearing in (3.27) and can be obtained numerically
for various ϕ configurations in [53] and appendix C.2. Therefore in addition to a non-trivial
consistency check of the conjecture in [69, 74] for the SCI of the ABJM theory our results
can serve as a stepping stone towards the extension of this conjecture to include also N -
independent contributions.

4 ADHM superconformal index

In this section we investigate the SCI of the ADHM theory. In section 4.1 we briefly
introduce the ADHM theory [57, 58] and then provide the matrix model for its SCI based
on the general presentation in section 2. We then proceed in section 4.2 with the evaluation
of the matrix model for the ADHM SCI using the saddle point approximation in the
Cardy-like limit following [44, 45]. In section 4.3 we provide the all order perturbative 1/N
expansion for the first two leading terms in the Cardy-like expansion of the ADHM SCI
using the exact ADHM TTI on S1 × S2 recently found in [54].

4.1 Matrix model for the ADHM SCI

The ADHM theory has a U(N) gauge group with a vanishing CS level and a corresponding
N = 4 vector multiplet, one adjoint N = 4 hypermultiplet, and Nf fundamental N = 4
hypermultiplets. In terms of N = 2 multiplets, the N = 4 vector multiplet decomposes into
an N = 2 vector and an N = 2 adjoint chiral multiplet Φ3 with superconformal R-charge
1, the adjoint N = 4 hypermultiplet decomposes into two adjoint N = 2 chiral multiplets
Φ1,2 with superconformal R-charge 1

2 , and the Nf fundamental N = 4 hypermultiplets
decompose into Nf pairs of fundamental and anti-fundamental N = 2 chiral multiplets
ψq and ψ̃q (q = 1, · · · , Nf ), respectively, with superconformal R-charge 1

2 . We use Φ to
collectively denote all N = 2 chiral multiplets, i.e. Φ = {Φ1,Φ2,Φ3, ψq, ψ̃q}.

The global symmetries of the ADHM theory are SU(2)`×SU(2)R1×SU(2)R2×U(1)T ×
U(Nf ). Here SU(2)` corresponds to the flavor symmetry that rotates Φ1,2, SU(2)R1 ×
SU(2)R2 is the N = 4 R-symmetry, and U(1)T is the topological symmetry associated with
the U(N) gauge group. The U(Nf ) flavor symmetry acts only on the Nf fundamental
hypermultiplets and will play no role in the discussion below. Let us denote the Cartan
generators of the SU(2)`×SU(2)R1×SU(2)R2×U(1)T global symmetries as (`, r1, r2, T ) re-
spectively. Then, from the N = 2 point of view, the superconformal R-charge corresponds
to R = r1 +r2 and (`, F = r1−r2, T ) become flavor charges [44]. The charges of the N = 2
chiral multiplets of the ADHM theory under these symmetries are summarized in table 2.
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Φ R = r1 + r2 ` F = r1 − r2 T

Φ1
1
2

1
2

1
2 0

Φ2
1
2 −1

2
1
2 0

Φ3 1 0 −1 0

ψq
1
2 0 1

2 0

ψ̃q
1
2 0 1

2 0

Table 2. Charge assignments of the N = 2 chiral multiplets in the ADHM theory.

The ADHM SCI can be obtained from the trace formula (2.3) as

IADHM(q, ξ`, ξF , ξT ) = TrBPS

[
(−1)F qR+2j3(ξ`)`(ξF )F (ξT )T

]
, (4.1)

where (ξ`, ξF , ξT ) are fugacities associated with the flavor charges (`, F, T ) respectively.
The corresponding matrix model for the ADHM SCI is then obtained from (2.4) using
table 2 and reads

IADHM(q,ξ`,ξF ,ξT )

= 1
N !

∑
m∈ZN

∮ ( N∏
i=1

dzi
2πizi

ξmi

T

)
N∏
i 6=j

q−
1
2 |mi−mj |

(
1−ziz−1

j q|mi−mj |
)

×
N∏

i,j=1

(
q

1
2 z−1
i zjξ

− 1
2

` ξ
− 1

2
F

) 1
2 |mi−mj |

(
z−1
i zjξ

− 1
2

` ξ
− 1

2
F q

3
2 +|−mi+mj |;q2

)
∞(

ziz
−1
j ξ

1
2
` ξ

1
2
F q

1
2 +|mi−mj |;q2

)
∞

×
N∏

i,j=1

(
q

1
2 z−1
i zjξ

1
2
` ξ
− 1

2
F

) 1
2 |mi−mj |

(
z−1
i zjξ

1
2
` ξ
− 1

2
F q

3
2 +|−mi+mj |;q2

)
∞(

ziz
−1
j ξ

− 1
2

` ξ
1
2
F q

1
2 +|mi−mj |;q2

)
∞

(4.2)

×
N∏

i,j=1

(
z−1
i zjξF

) 1
2 |mi−mj | (z−1

i zjξF q
1+|−mi+mj |;q2)∞

(ziz−1
j ξ−1

F q1+|mi−mj |;q2)∞

×
N∏
i=1

(q 1
2 z−1
i ξ

− 1
2

F

) 1
2 |mi|

(
z−1
i ξ

− 1
2

F q
3
2 +|−mi|;q2

)
∞(

ziξ
1
2
F q

1
2 +|mi|;q2

)
∞

(
q

1
2 ziξ

− 1
2

F

) 1
2 |−mi|

(
ziξ
− 1

2
F q

3
2 +|mi|;q2

)
∞(

z−1
i ξ

1
2
F q

1
2 +|−mi|;q2

)
∞


Nf

,

where we have turned on the mixed CS term between the gauge symmetry and the topolog-
ical symmetry only. The phases in the 2nd line of (2.4) disappear in the ADHM SCI (4.2)
since the phases from adjoint and pairs of fundamental & anti-fundamental chiral multiplets
cancel each other.
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As in the ABJM case, to investigate the ADHM SCI in the Cardy-like limit (3.10), it
is useful to rewrite it as [44, 45]

IADHM(ω,∆, n)

= 1
N !

∑
m∈ZN

∮
|si|=qmi

(
N∏
i=1

dsi
2πisi

(sis̄i)
− 1

2ω

(
∆m+

Nf
2 ∆3

)
+ t

2−
Nf n3

4

)

× (−1)
N(N−1)

2 ×
N∏
i=1

(sis̄i)
N−2i+1

2 ×
N∏
i 6=j

(1− s−1
i sj)

1
2 (1− s̄−1

i s̄j)
1
2

×
3∏
I=1

 N∏
i=1

(y−1
I q2−nI ; q2)∞
(yIqnI ; q2)∞

×
N∏
i>j

(s−1
i sjy

−1
I q2−nI ; q2)∞

(s̄−1
i s̄jyIqnI ; q2)∞

(s̄−1
i s̄jy

−1
I q2−nI ; q2)∞

(s−1
i sjyIqnI ; q2)∞


×

N∏
i=1

[
(s−1
i y−1

q q2−nq ; q2)∞
(s̄−1
i yqqnq ; q2)∞

(s̄−1
i y−1

q̃ q2−nq̃ ; q2)∞
(s−1
i yq̃qnq̃ ; q2)∞

]Nf

(4.3)

in terms of new integration variables (recall that zi = eihi , q = eiπω)

si = eiUi = ziq
mi = ei(hi+πωmi) , (4.4)

and the parameters yI = eiπ∆I , ym = eiπ∆m , yq = eiπ∆q , yq̃ = eiπ∆q̃ (∆I ,∆m,∆q,∆q̃ ∈ R)
and nI , t, nq, nq̃ ∈ R defined as(

y1q
n1− 1

2 , y2q
n2− 1

2 , y3q
n3−1, y−1

m qt
)

=
(
ξ

1
2
` ξ

1
2
F , ξ

− 1
2

` ξ
1
2
F , ξ

−1
F , ξT

)
, (4.5)

under the constraints
3∑
I=1

nI = n3 + nq + nq̃ = 2 ,
3∏
I=1

yI = y3yqyq̃ = 1 . (4.6)

Note that (yI , ym, nI , t) are uniquely determined by the three complex parameters (ξ`, ξF , ξT )
through the map (4.5) under the constraints (4.6). The ADHM SCI does not depend on
∆q,∆q̃ and nq, nq̃ independently, which have been introduced simply by manipulating the
integration variables to make the comparison with the ADHM TTI more straightforward
in section 4.3. Accordingly in (4.3) we have replaced the argument of the ADHM SCI as

IADHM(q, ξ`, ξF , ξT ) → IADHM(ω,∆, n) , (4.7)

where (∆, n) collectively represent (∆I ,∆m, nI , t) under the constraints (4.6). To obtain
the expression (4.3) we have also assumed q ∈ R>0 (iω ∈ R) as in the ABJM case. More
details on the derivation of (4.3) are presented in appendix D.1.

4.2 Cardy-like limit of the ADHM SCI

Taking the Cardy-like limit (3.10), one can simplify the matrix model (4.3) further as in
the ABJM case, see [44, 45] and appendix D.1 for details. The result reads

IADHM(ω,∆, n)

= 1
N !

∫
CN

N∏
i=1

dUidŪi
−4iπ2ω

(−1)
N(N−1)

2 e
1
πω

ImW(0)[U ;∆]+2 ReW(1)[U ;∆,n]+O(ω) ,
(4.8)
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where the first two leading terms of the effective action in the Cardy-like limit are given as

W(0)[U ; ∆] = π

(
∆m + Nf

2 ∆3

) N∑
i=1

Ui + 1
2

3∑
I=1

N∑
i=1

[
Li2(y−1

I )−Li2(yI)
]

(4.9a)

+
3∑
I=1

N∑
i>j

[
Li2(s−1

i sjy
−1
I )−Li2(s−1

i sjyI)
]

+Nf

N∑
i=1

[
Li2(s−1

i y−1
q )−Li2(s−1

i yq̃)
]
,

W(1)[U ; ∆, n] = i
2

(
t− Nf

2 n3 +N − 2i+ 1
) N∑
i=1

Ui + 1
2

N∑
i 6=j

log
(
1− s−1

i sj
)

+ 1
4

3∑
I=1

N∑
i=1

(1− nI)
[
Li1(y−1

I ) +Li1(yI)
]

+ 1
2

3∑
I=1

N∑
i>j

(1− nI)
[
Li1(s−1

i sjy
−1
I ) +Li1(s−1

i sjyI)
]

+ Nf
2

N∑
i=1

[
(1− nq̃)Li1(s−1

i yq̃) + (1− nq)Li1(s−1
i y−1

q )
]

+ NNf
4

[
(1− nq̃) log yq̃ − (1− nq) log yq

]
. (4.9b)

Note that in (4.8) we have used the complex conjugation relations

W(0)[U ; ∆] =W(0)[−Ū ;−∆] , W(1)[U ; ∆, n] =W(1)[−Ū ;−∆, n] , (4.10)

which can be obtained using that (∆, n) are real by construction, see (4.5).
To apply the saddle point approximation to the integral (4.8), first one should solve

the saddle point equations in the Cardy-like limit, namely

0 = ∂W(0)[U ; ∆]
∂Ui

. (4.11)

Let us denote the solution to the leading order saddle point equation (4.11) by {U?i} with
the apparent N ! degeneracy from permutations. The saddle point approximation to the
integral (4.8) can then be obtained by following appendix B to find

log IADHM(ω,∆, n)

= 1
πω

ImW(0)[U?; ∆] (4.12)

+ log

∣∣∣∣∣∣∣
∏3
I=1 y

−N2
2 nI

I

detB[U?; ∆]

∏N
i=1 s

N+t
?i

∏
i 6=j(1− s

−1
?i s?j)∏3

I=1
∏N
i,j=1(s?i− s?jyI)1−nI

y
NNf (1−nq̃)

2
q̃ y

NNf (1−nq)
2

q
∏N
i=1 s

Nf
2 n3
?i∏N

i=1(1− s?iyq)Nf (1−nq)(s?i− yq̃)Nf (1−nq̃)

∣∣∣∣∣∣∣
+ log(−1)

N(N−1)
2 − 1

2 log(−1)N +O(ω) ,

where we have defined the N ×N square matrix B[U ; ∆] by its component as[
B[U ; ∆]

]
i,j
≡ ∂W(0)[U ; ∆]

∂Ui∂Uj
. (4.13)

See appendix C.1 for more details on this derivation.
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4.3 All order 1/N expansion for the ADHM SCI in the Cardy-like limit

To evaluate the Cardy expansion of the ADHM SCI (4.12) explicitly in the large N limit,
we will use the known all order results for the S1×S2 ADHM TTI [52, 54]. As a first step,
we rename the gauge holonomies and the leading order effective action in (4.12) as

Ui → ui, W(0)[U ; ∆]→ −VTTI[u; ∆] . (4.14)

Then by using the inversion formula of the polylogarithm (A.2) and assuming

0 < Re[ui − uj + π∆I ] < 2π , −2π < Re[ui − uj − π∆I ] < 0 (i < j) , (4.15)

one can rewrite VTTI[u; ∆] as

VTTI[u; ∆] = π

(
N − 2i + 1−∆m −

Nf

2 ∆3

) N∑
i=1

ui

+ 1
2

3∑
I=1

N∑
i,j=1

[
Li2(ei(uj−ui+π∆I))− Li2(ei(uj−ui−π∆I))

]

+Nf

N∑
i=1

[
Li2(ei(−ui+π∆q̃))− Li2(ei(−ui−π∆q))

]
.

(4.16)

Similar to the ABJM case, we again find that the function (4.16) is exactly the same as the
Bethe potential for the S1×S2 ADHM TTI [54]. This implies that the leading order saddle
point equations for the matrix model of the ADHM SCI in the Cardy-like limit, (4.11), are
equivalent to the Bethe Ansatz Equations (BAE) obtained by taking partial derivatives of
the Bethe potential with respect to ui,

0 = ∂VTTI[u; ∆]
∂ui

. (4.17)

Based on the equivalence between the saddle point equation (4.11) and the BAE (4.17)
under the map (4.14), one can rewrite the Cardy expansion of the ADHM SCI (4.12) as

log IADHM(ω,∆, n)

=− 1
πω

ImVTTI[u?; ∆] (4.18)

+ log

∣∣∣∣∣∣∣
∏3
I=1 y

−N2
2 nI

I

detBTTI[u?; ∆]

∏N
i=1 x

N+t
?i

∏
i 6=j(1−x

−1
?i x?j)∏3

I=1
∏N
i,j=1(x?i−x?jyI)1−nI

y
NNf (1−nq̃)

2
q̃ y

NNf (1−nq)
2

q
∏N
i=1 x

Nf
2 n3
?i∏N

i=1(1−x?iyq)Nf (1−nq)(x?i− yq̃)Nf (1−nq̃)

∣∣∣∣∣∣∣
+ iN(N − 2)π

2 +O(ω) ,

in terms of the solutions {x?i = eiu?i} to the BAE (4.17) and the N ×N matrix
[
BTTI[u; ∆]

]
i,j
≡ −∂VTTI[u; ∆]

∂ui∂uj
, (4.19)

– 17 –



J
H
E
P
0
2
(
2
0
2
3
)
0
2
7

which is equivalent to the Jacobian matrix in the Bethe Ansatz formulation for the ADHM
TTI [54, 76].

Note that the first subleading term of order O(ω0) in (4.18) is precisely the same as the
real part of the logarithm of the S1×S2 ADHM TTI, which has recently been evaluated to
all orders in the perturbative 1/N expansion by using the numerical BAE solution [52, 54]
and reads

log

∣∣∣∣∣∣∣
∏3
I=1y

−N
2

2 nI
I

detBTTI[u?;∆]

∏N
i=1x

N+t
?i

∏
i 6=j(1−x−1

?i x?j)∏3
I=1

∏N
i,j=1(x?i−x?jyI)1−nI

y
NNf (1−nq̃)

2
q̃ y

NNf (1−nq)
2

q
∏N
i=1x

Nf
2 n3
?i∏N

i=1(1−x?iyq)Nf (1−nq)(x?i−yq̃)Nf (1−nq̃)

∣∣∣∣∣∣∣
=−

π
√

2Nf ∆̃1∆̃2∆̃3∆̃4

3

4∑
a=1

ña

[
1

∆̃a

N̂
3
2
Nf ,∆̃

+
(
ca(∆̃)Nf + da(∆̃)

Nf

)
N̂

1
2
Nf ,∆̃

]
(4.20)

− 1
2 logN̂Nf ,∆̃ + f̂0(Nf ,∆̃, ñ)+ f̂np(N,Nf ,∆̃, ñ) ,

where f̂np stands for non-perturbative corrections of order O
(
e−
√
N
)
and we have defined

N̂Nf ,∆̃≡N−
Nf

24 +Nf

12

( 1
∆̃1

+ 1
∆̃2

)
+ 1

12Nf

( 1
∆̃3

+ 1
∆̃4

)
, (4.21a)

ca(∆̃)≡
(
− 1

∆̃1

(∆̃2 +∆̃3 +∆̃4)(∆̃1 +∆̃2)
8∆̃1∆̃2

,− 1
∆̃2

(∆̃1 +∆̃3 +∆̃4)(∆̃1 +∆̃2)
8∆̃1∆̃2

,

− ∆̃3 +∆̃4

8∆̃1∆̃2
,−∆̃3 +∆̃4

8∆̃1∆̃2

)
, (4.21b)

da(∆̃)≡
(
−(∆̃1 +∆̃2)(∆̃2 +∆̃3 +∆̃4)(∆̃1 +∆̃3 +∆̃4)

8∆̃1∆̃2∆̃3∆̃4
,

− (∆̃1 +∆̃2)(∆̃2 +∆̃3 +∆̃4)(∆̃1 +∆̃3 +∆̃4)
8∆̃1∆̃2∆̃3∆̃4

, (4.21c)

− 1
∆̃3

(∆̃3 +∆̃4)((∆̃1 +∆̃2)(∆̃2 +∆̃3)(∆̃3 +∆̃1)+(∆̃1∆̃2 +∆̃2∆̃3 +∆̃3∆̃1)∆̃4)
8∆̃1∆̃2∆̃3∆̃4

,

− 1
∆̃4

(∆̃3 +∆̃4)((∆̃1 +∆̃2)(∆̃2 +∆̃4)(∆̃4 +∆̃1)+(∆̃1∆̃2 +∆̃2∆̃4 +∆̃4∆̃1)∆̃3)
8∆̃1∆̃2∆̃3∆̃4

)
,

in terms of the ‘tilde’ parameters

∆̃ ≡
(

∆1,∆2,
∆3
2 −

∆m

Nf
,

∆3
2 + ∆m

Nf

)
, (4.22a)

ñ ≡
(
n1, n2,

n3
2 + t

Nf
,
n3
2 −

t

Nf

)
. (4.22b)

We do not know how to derive a closed form expression for the N -independent constant f̂0
but it can be obtained numerically with very good precision, see [54]. We also emphasize
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that the all order expression (4.20) is given for the specific range of ∆ that satisfies the
inequalities (4.15) and the constraints (4.6) as

4∑
a=1

∆̃a =
3∑
I=1

∆I = 2 , (4.23)

which we assume from here on.
Substituting exactly the same numerical BAE solutions used to derive the all order

ADHM TTI (4.20) in [54] into (4.16), we find a simple closed form expression for the
imaginary part of the Bethe potential that governs the leading term of order O(ω−1)
in (4.18) to find

ImVTTI[u?; ∆] = 2π

π
√

2Nf ∆̃1∆̃2∆̃3∆̃4

3 N̂
3
2
Nf ,∆ + ĝ0(Nf ,∆) + ĝnp(N,Nf ,∆)

 , (4.24)

where ĝnp stands for non-perturbative corrections of order O
(
e−
√
N
)
. We present more

details on the numerical analysis that allowed us to deduce this expression in appendix D.2.
It will be very interesting to find a closed form expression for the N -independent constant
ĝ0 in (4.24).

Substituting the subleading term (4.20) and the leading term (4.24) back into (4.18),
we obtain our final result for the all order 1/N expansion of the ADHM SCI in the Cardy-
like limit

log IADHM(N,Nf , ω,∆, n)

= − 2
ω

π
√

2Nf ∆̃1∆̃2∆̃3∆̃4

3 N̂
3
2
Nf ,∆ + ĝ0(Nf ,∆)



−
π
√

2Nf ∆̃1∆̃2∆̃3∆̃4

3

4∑
a=1

ña

[
1

∆̃a

N̂
3
2
Nf ,∆̃

+
(
ca(∆̃)Nf + da(∆̃)

Nf

)
N̂

1
2
Nf ,∆̃

]

− 1
2 log N̂Nf ,∆̃ + f̂0(Nf , ∆̃, ñ) + iN(N − 2)π

2 +O
(
e−
√
N
)

+O(ω) .

(4.25)

Following the discussion in the ABJM case, we can rewrite this result by introducing new
complex parameters ϕa as

ϕa = ∆̃a + ωña (eiπϕa = ỹaq
ña) →

4∑
a=1

ϕa = 2(1 + ω) . (4.26)

After this change of variables the ADHM SCI (4.25) can be written more compactly as

log IADHM(N,Nf , ω, ϕ)

= −4
3C(Nf , ω, ϕ)−

1
2 (N −B(Nf , ω, ϕ))

3
2 − 2

ω
ĝ0(Nf ,Reϕ)− 1

2 log (N −B(Nf , ω, ϕ))

+ f̂0(Nf , ϕ) + iN(N − 2)π
2 +O

(
e−
√
N
)

+O(ω) ,

(4.27)
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where we have also defined

C(Nf , ω, ϕ) = 2ω2

π2Nfϕ1ϕ2ϕ3ϕ4
, (4.28a)

B(Nf , ω, ϕ) = Nf

24 −
Nf

12

( 1
ϕ1

+ 1
ϕ2

)
− 1

12Nf

( 1
ϕ3

+ 1
ϕ4

)

+ ω

(
Nf

12
ϕ3 + ϕ4
ϕ1ϕ2

+ (ϕ1 + ϕ2)(ϕ1 + ϕ3 + ϕ4)(ϕ2 + ϕ3 + ϕ4)
12Nfϕ1ϕ2ϕ3ϕ4

)
. (4.28b)

It will be interesting to use these SCI results, together with the TTI results in [52, 54],
to obtain a conjecture similar to the one proposed in [69, 74] for the large N partition
function of the ADHM theory on general 3d Euclidean supersymmetric backgrounds.

5 Holography and black holes

In this section we discuss the holographic implications of the ABJM and ADHM SCI results
derived above. First we focus on the so-called universal KN AdS4 black hole solution which
arises in special limits of the parameters and can be obtained in 4d minimal N = 2 gauged
supergravity. We then proceed to discuss the more general case of supersymmetric KN
AdS4 black hole solutions in 4d N = 2 gauged supergravity coupled to vector multiplets.

5.1 Holography in the universal limit

The universal limit of an Euclidean SCFT partition function, as discussed in [77–79],
amounts to turning on fugacities and background fields associated only with the energy
momentum tensor multiplet of the SCFT. When viewed as 3d N = 2 SCFTs the ABJM
and ADHM theories admit such a treatment which amounts to the following special values
of the parameters used above

ABJM : ∆a = na = 1
2 , ADHM : ∆̃a = ña = 1

2 . (5.1)

In this universal limit the general expressions (3.27) and (4.25) reduce to

log IABJM(N, k, ω)

= −π
√

2k
3

[( 1
2ω + 1

)(
N − k

24 + 2
3k

) 3
2
− 3
k

(
N − k

24 + 2
3k

) 1
2
]

− 2
ω
ĝ0(k)− 1

2 log
(
N − k

24 + 2
3k

)
+ f̂0(k) +O

(
e−
√
N
)

+O(ω) , (5.2a)

log IADHM(N,Nf , ω)

= −
π
√

2Nf

3

( 1
2ω + 1

)(
N + 7Nf

24 + 1
3Nf

) 3
2

−
(
Nf

2 + 5
2Nf

)(
N + 7Nf

24 + 1
3Nf

) 1
2


− 2
ω
ĝ0(Nf )− 1

2 log
(
N + 7Nf

24 + 1
3Nf

)
+ f̂0(Nf ) +O

(
e−
√
N
)

+O(ω) , (5.2b)

respectively.
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The holographic dual of this universal limit of the SCI is given by the Euclidean super-
symmetric KN AdS4 black hole solution of the N = 2 gauged minimal supergravity [59, 60]
uplifted to 11d through the consistent truncation on S7 [80, 81]. The difference in the su-
pergravity description between the ABJM and ADHM models originates in the different
orbifold action resulting in the distinct internal manifolds S7/Zk and S7/ZNf , see [67] for
more details. The large N QFT results in (5.2a) and (5.2b) can be viewed as field theory
predictions for the Euclidean path integral of M-theory on these two asymptotically AdS4
Euclidean backgrounds. The first two leading terms of order N

3
2 and N

1
2 in the logarithm

of the Euclidean M-theory path integral can been obtained by evaluating (minus) the regu-
larized Euclidean on-shell action of the dual supersymmetric KN AdS4 black hole solution.
The N

3
2 term arises from the 2-derivative on-shell action whereas the N

1
2 term can be

accounted for by using four-derivative corrections to the minimal 4d N = 2 gauged super-
gravity, see [65–67]. Using the results of [68] one can also calculate the logN contribution
to the SCI from the dual supergravity description. Combining these supergravity results
we find the following holographic expectation for the form of the SCI of the ABJM and
ADHM models in the large N limit4

logZM-theory
∣∣
KN AdS4×fS7/Zk

= −π
√

2k
3

[
(ω + 1)2

2ω

(
N

3
2 +

(1
k
− k

16

)
N

1
2

)
− 3
k
N

1
2

]
− 1

2 logN + . . . , (5.3a)

logZM-theory
∣∣
KN AdS4×fS7/ZNf

= −
π
√

2Nf

3

[
(ω + 1)2

2ω

(
N

3
2 +

( 1
2Nf

+ 7Nf

16

)
N

1
2

)
−
N2
f + 5
2Nf

N
1
2

]
− 1

2 logN + . . . .

(5.3b)

It is now easy to check that the all order 1/N expansion for the ABJM and ADHM SCI (5.2)
in the Cardy-like limit is indeed identical to the logarithm of the dual Euclidean M-theory
path integral (5.3) up to and including the terms of order logN and ω0. This amounts to
a highly non-trivial precision test of holography and improves on previous results in the
literature where this agreement was demonstrated in the leading N

3
2ω−1 order [44].

Note that the field theory SCI result in (5.2) does not have precise information about
subleading corrections of order O(ω) in the Cardy-like limit but still provides the all order
prediction in the 1/N expansion for the dual Euclidean M-theory path integral for the
ω−1 and ω0 terms. On the other hand, even though only the first three leading terms
of order N

3
2 , N

1
2 , and logN have been obtained from supergravity in (5.3), their exact

ω-dependence is fully determined and can be used to restrict the subleading corrections
of order O(ω) in the dual SCI (5.2). In particular, this leads to a supergravity prediction
about the N

3
2 and N

1
2 terms at order ω (and their absence at higher orders in ω) as well

as the absence of any logN term at order ω or higher in the small ω limit. It will be most
interesting to confirm these supergravity results independently by field theory calculations.

4In (5.3) the subscript “f” in the product symbol should remind the reader that the 11d solution involves
a non-trivial fibration between the external and the internal manifolds.
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Another important holographic application of the SCI (5.2) is that the Legendre trans-
form of the SCI determines the entropy function of the dual supersymmetric KN AdS4 black
hole in the large N limit [63–65, 79]. To see this explicitly for the minimal supergravity
of interest here, let us write down the Legendre transform of the SCI (5.2) in the large N
limit as5

SABJM(N, k, ω, ϕ, J,Q, λ) = −2π
√

2k
3

ϕ2

ω
N

3
2 − 2πi(ωJ + ϕLQ+ λ(2ϕ− 1− ω)) ,

(5.4a)

SADHM(N,Nf , ω, ϕ, J,Q, λ) = −
2π
√

2Nf

3
ϕ2

ω
N

3
2 − 2πi(ωJ + ϕLQ+ λ(2ϕ− 1− ω)) ,

(5.4b)

where the parameters ω and ϕ play the roles of chemical potentials associated with the black
hole angular momentum J and electric charge Q, respectively, and we have also introduced
the Lagrange multiplier λ to implement the constraint 2ϕ = 1+ω. Extremizing the entropy
functions (5.4) with respect to ω, ϕ, λ and demanding positive entropy at the extremum
then gives the Bekenstein-Hawking entropy of a dual supersymmetric KN AdS4 black hole
as discussed in [63–65, 79]

SKN AdS4(J(Q), Q) = πL

GN

J(Q)
Q

= πL2

2GN

√1 + 4G2
NQ

2

L2 − 1

 . (5.5)

Note that the 4d Newton constant GN is related to the field theory parameters in the large
N limit as (see [67] for instance)

L2

2GN
=


√

2k
3 N

3
2 (for ABJM)

√
2Nf
3 N

3
2 (for ADHM) .

(5.6)

Note also that in (5.5), the constraint J = LQ
2

[√
1 + 4G2

NQ
2/L2 − 1

]
between the angular

momentum J and the electric charge Q of the Lorentzian black hole does not arise from
the extremization procedure but follows from imposing a reality condition on the entropy.
We discuss this reality constraint further below.

It is worth emphasizing that the entropy function (5.4) cannot be obtained relying
solely on the all order 1/N expansion of the SCI (5.2). Since the latter is obtained in the
Cardy-like limit up to subleading corrections of order O(ω), the all order SCI (5.2) does
not provide enough information to determine the leading term in the entropy function (5.4)
unambiguously to take the form ∼ ϕ2

ω N
3
2 with the constraint 2ϕ = 1 + ω. Hence we have

implicitly used the known result for the holographic dual on-shell action (5.3) obtained
from supergravity, which is not exact in the 1/N expansion but exact for generic finite ω,
to fully determine the N

3
2 term in the entropy function in (5.4). It will be very interesting

5Compared to the convention of [79], we have (ω, ϕ)there = 2πi(ω, ϕ)here and restore the AdS4 radius L
explicitly. In [79] the angular momentum J is dimensionless but the electric charge Q has inverse length
dimension so we put the extra factor of L in front of Q in (5.4).
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to employ a field theory calculation of the ABJM and ADHM SCI for generic finite ω to
rigorously derive the large N entropy function in (5.4).

If the all order 1/N expansion of the ABJM and ADHM SCI in the Cardy-like
limit (5.2) can be found for finite ω, one can use it to derive the entropy of the dual
supersymmetric KN AdS4 black hole beyond the large N limit. To be precise, we ex-
pect that the latter can be obtained from the former by implementing the inverse Laplace
transform as

Ω(J,Q) =
∫
dλ

∫ 1

0
dωdϕ IABJM/ADHM(ω, ϕ)e−2πi(ωJ+ϕLQ+λ(2ϕ−1−ω)) ,

SKN AdS4(J(Q), Q) = log Ω(J,Q)
∣∣∣
Fix J=J(Q) by demanding real log Ω(J,Q)

.

(5.7)

Note that the entropy function (5.4) can be read off from the exponent of the integrand
in (5.7) by taking the large N limit of the ABJM or ADHM SCI as in (5.2). The Bekenstein-
Hawking entropy (5.5) then arises from the large N saddle point approximation of the
integral in (5.7). To derive corrections to the Bekenstein-Hawking formula one needs to
evaluate the integral (5.7) beyond the large N limit. This is an interesting and important
open question for future research. Its answer necessitates an expression for the large N
expansion of the ABJM/ADHM SCI valid for generic finite ω beyond the Cardy-like limit
we studied here.

It is worth discussing further the positive entropy condition, which has been used to
obtain the dual supersymmetric KN AdS4 black hole entropy (5.5) by extremizing the
entropy function (5.4) read off from the SCI (5.2). We are not aware of a field theory argu-
ment for imposing such a positivity condition. More specifically, it is not a priori justified
to impose positivity on the logarithm of the microcanonical partition function obtained
from the SCI via the inverse Laplace transform in (5.7) especially since we have already
allowed for general complex chemical potentials. The positive entropy condition arises nat-
urally only if we interpret the logarithm of the microcanonical partition function as the
entropy of a holographically dual KN AdS4 black hole. This implies that the microcanonical
partition function Ω(J,Q) given in (5.7) requires an appropriate holographic dual inter-
pretation before imposing positivity on log Ω(J,Q). It is important to understand whether
a purely field theoretic argument can be found that imposes such a positivity constraint
on the SCI of holographic SCFTs. This puzzle is alleviated in Euclidean signature where
one can interpret the generic complex log Ω(J,Q) as the “entropy” associated with a dual
supersymmetric Euclidean supergravity solution satisfying the canonical thermodynamic
relation [65, 79]. In this sense, the positive entropy condition arises only if one analytically
continues these supergravity solutions to Lorentzian signature and wants to interpret them
as regular supersymmetric KN AdS4 black hole. In view of this subtlety, we consider the
Euclidean M-theory path integral discussed around (5.3) as the more natural setting to
study precision holography for the SCI.

5.2 Holography for general charges

The holographic dual description of the ABJM and ADHM SCI given in (3.29) and (4.27) is
expected to be the supersymmetric KN AdS4 black hole with generic values of the electric
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charges obtained as a solution in N = 2 gauged supergravity coupled to vector multiplets
with a certain prepotential. For both the ABJM and ADHM model, a dual KN AdS4 black
hole solution with two different electric charges in the N = 2 gauged supergravity coupled
to a single vector multiplet (the X0X1 model) was found in [61].6 The dual description
of the ABJM SCI with generic fugacities, is in terms of the dyonic KN AdS4 black hole
solutions in the N = 2 gauged supergravity coupled to three vector multiplets (the STU
model) recently constructed in [63]. From here on for concreteness we focus our brief
discussion on the ABJM SCI (3.29) with generic configurations for ϕ as in (3.28).

As in the minimal supergravity case discussed in section 5.1, the ABJM SCI (3.29)
with generic ϕ is expected to describe the M-theory path integral around a Euclidean
supersymmetric KN AdS4 black hole solution in the STU model uplifted to 11d through
the consistent truncation on S7 derived in [82, 83]. The leading N

3
2 term in the SCI should

correspond to minus the regularized Euclidean on-shell action of the dual supersymmetric
KN AdS4 solution. To the best of our knowledge this has not been explicitly verified for
general values of the fugacities. For the special case with two different electric charges
in the STU model (which amounts to studying the X0X1 model) this calculation of the
on-shell action has been performed in detail in [65] yielding the result7

logZM-theory
∣∣
KN AdS4×fS7/Zk

= −2π
√

2k
3

ϕ1ϕ3
ω

N
3
2 +O

(
N

1
2
)
. (5.8)

Note that here we made use of the map between the gravitational and field theory param-
eters in (5.6). This results agrees with the logarithm of the ABJM SCI (3.29) at the N

3
2

leading order upon the identification ϕ1 = ϕ2 and ϕ3 = ϕ4. Note again that the ABJM
SCI (3.29) is derived in the Cardy-like limit of small ω whereas the supergravity result is
valid for general finite ω. This is analogous to the minimal gauged supergravity discussion
in section 5.1. The N

1
2 term in the large N expansion of the ABJM SCI (3.29) has not

yet been derived using supergravity methods. The expectation is that it can be accounted
for by studying the four-derivative generalization of the STU model of 4d N = 2 gauged
supergravity. A discussion of this model was recently presented in [67], however, it has not
yet been applied in the context of holography for rotating charged black holes. It will of
course be very interesting to pursue this problem further. The logN term in the ABJM
SCI (3.29) on the other hand can be computed using supergravity. This has been discussed
in some detail in [68] where it was shown that the coefficient of this term is independent of
the fugacities and always takes the form −1

2 logN in the large N limit. This agrees with
the field theory result in (3.29) providing yet another test of holography and solidifying
further the analysis in [68].

The analysis in [44] of the ABJM SCI in the large N limit taken after the Cardy-like
limit leads to the following proposal for the entropy function for the supersymmetric KN

6The reason for this result is that this supergravity model is simply the 4d N = 4 SO(4) gauged
supergravity which should be the common universal holographic sector shared by the ABJM and ADHM
models according to the proposal in [78].

7Compared to the convention of [65], we have (ω, ϕa)there = 2πi(ω, ϕa)here, 4Qthere
a = Qhere

a , and we
restore the AdS4 radius L and the 4d Newton constant GN explicitly.
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AdS4 black hole in the STU gauged supergravity model

SABJM(N, k, ω, ϕ, J,Q, λ) = −2π
√

2k
3

√
ϕ1ϕ2ϕ3ϕ4

ω
N

3
2

− 2πi
(
ωJ + L

4

4∑
a=1

ϕaQa + λ

(
1
2

4∑
a=1

ϕa − 1− ω
))

.

(5.9)

This proposal for the entropy function has been tested by matching it with the Bekenstein-
Hawking entropy of the known black hole solutions in [61] upon extremization with respect
to ω, ϕ, λ and after imposing a reality condition on the entropy [64, 65]. A further gener-
alization of this to an entropy function for the dyonic black holes in the STU model was
presented in [63]. Note that the entropy function (5.9) reduces to the minimal one (5.4) for
identical electric charges Qa and associated chemical potentials ϕa. However, as discussed
in section 5.1, the derivation of the entropy function (5.9) from the ABJM SCI is still
incomplete since the logarithm of the ABJM SCI is obtained only up to O(ω) in (3.27)
and therefore its N

3
2 leading order does not completely fix the dependence of the entropy

function in (5.9) on the fugacities. This once again underscores the importance of extend-
ing our result for the ABJM SCI (3.27) beyond the Cardy-like limit and finding the index
for general finite values of the fugacities.

6 Discussion

The central result in this work is the explicit evaluation of the leading ω−1 and the first
subleading ω0 order in the Cardy-like limit of small ω for the SCI of the ABJM and ADHM
3d holographic SCFTs. Our calculations are based on the observation that these two terms
in the SCI are closely related to the Bethe potential and the TTI of the SCFT.8 These two
quantities can in turn be computed to all orders in the perturbative 1/N expansion using
high-precision numerical calculations based on the recent results in [52–54]. This analysis
amounts to the closed form expressions in (3.27) and (4.25) for the two leading terms in the
Cardy-like limit of the SCI. In the large N limit these results can be successfully compared
to holographically dual calculations performed using 2- and 4-derivative supergravity as well
as 1-loop corrections to supergravity. We also discussed the implications of these results to
the microscopic entropy counting of the dual supersymmetric charged and rotating AdS4
black hole solutions. Our analysis points to several interesting questions for future studies
which we now briefly discuss.

A natural generalization of our results would be to study the SCI of more general 3d
N = 2 holographic SCFTs in the Cardy-like limit. In particular, it is important to establish
whether for such models the first two leading terms in the small ω limit of the SCI can in
general be identified with the Bethe potential and the TTI of the corresponding SCFT. If
this is indeed the case then one can use the recent TTI results [54] valid to all order in
the 1/N expansion of such holographic SCFTs to compute the corresponding SCI for these
models. We hope to investigate this question in the near future.

8This relation between the SCI and TTI at order ω−1 can be explained by using the decomposition of
these two partition functions into the Cardy blocks discussed in [45]. We believe that there is a similar
explanation for the relation between the SCI and TTI at order ω0 which we plan to explore in future work.
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Another interesting extension of our work is to study the SCI in the presence of back-
ground magnetic fluxes for continuous flavor symmetries. Since the flavor magnetic fluxes
can be turned on simply by shifting the gauge magnetic fluxes appropriately [43], deriving
the formal expression for the Cardy-like expansion of this generalized SCI in terms of the
saddle point approximation would be analogous to what we did in section 3 and section 4
above. The non-trivial question is to understand whether the map between the SCI and
the Bethe potential and TTI continues to hold in some form in the presence of these flavor
magnetic fluxes. If indeed such a map exists then it can be leveraged to derive the all order
1/N expansion of the generalized SCI in the Cardy-like limit which in turn can be used
to explore the physics of the dual dyonic KN AdS4 black holes. This question is especially
relevant for holographic applications to the ABJM theory where such dyonic black hole
solutions in the STU model of 4d gauged supergravity were recently studied in [63].

As we emphasized throughout this paper the all order 1/N expansion of the SCI we
have obtained for the ABJM and ADHM SCI is restricted to the first two leading terms
of order ω−1 and ω0 in the Cardy-like limit. We were not able to study the subleading
corrections of order O(ω) in the SCI relying on the saddle point approximation. New
calculational methods may be needed to find such corrections. It will be most interesting
to understand how to calculate the large N SCI for holographic SCFTs without appealing
to the small ω limit. As discussed in section 5, this is particularly important in the context
of holography since the fugacities and charges of the dual supergravity solutions are in
general finite. For the ABJM theory, in particular, finding the SCI in the large N limit
at finite ω can also be used to test the Airy conjecture of [69, 74] beyond the leading two
orders in the small ω expansion which we confirmed in this work.

Our focus here was on the M-theory limit of the SCI for the ABJM and ADHM models.
This corresponds to taking N large and keeping k and Nf fixed. The recent results in [53]
strongly suggest that the all order 1/N expansion results for the SCI in (3.27) and (4.25)
can be reorganized to yield the type IIA expansion characterized by large N and k (or
Nf ) with fixed k/N (or Nf/N). It will be interesting to analyze this in more detail and in
particular to understand whether one can use string theory techniques to access the 1/N
corrections to the SCI from the holographically dual type IIA description.

Given the results presented above for the SCI, as well as analogous explicit results for
the all order 1/N expansion of the S3 and TTI partition functions of holographic SCFTs,
see [52–54, 84], it is natural to wonder whether similar exact results can be derived for the
large N expansion of the partition functions of these holographic models on more general
compact Euclidean manifolds of the type discussed in [73]. It will be most interesting
to pursue this question and understand the general lessons that can be drawn from it in
order to further increase our understanding of precision holography, black hole physics, and
quantum gravity.
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A Special functions

The polylogarithm is defined within the unit disk as

Lin(z) ≡
∞∑
k=1

zk

kn
(|z| < 1) , (A.1)

and then extended to |z| ≥ 1 by analytic continuation with the branch cut. The polyloga-
rithm has the following inversion formula

Lin(eiu) + (−1)nLin(e−iu) = −(2πi)n

n! Bn

(
u

2π

)
for

0 ≤ Re[u] < 2π & Im[u] ≥ 0
0 < Re[u] ≤ 2π & Im[u] < 0 ,

(A.2)
in terms of the Bernoulli polynomials Bn(x).

The ∞-Pochhammer symbol is defined within the unit disk as

(a; q)∞ =
∞∏
n=0

(1− aqn) (|q| < 1) , (A.3)

and can be extended to |q| > 1, see appendix A of [45] for more details. The∞-Pochhammer
symbol satisfies the identity

(−x)
m
2

(xq1+m; q2)∞
(x−1q1+m; q2)∞

= (−x)−
m
2

(xq1−m; q2)∞
(x−1q1−m; q2)∞

(m ∈ Z) . (A.4)

The ∞-Pochhammer symbol also has the following asymptotic expansion

lim
|q|→1−

(aqm; q2)∞ = exp
[
− i

2πωLi2(aqm−1)
]

(1 +O(ω)) (a ∈ C, a /∈ [1,∞), q = eiπω)

= exp
[
− i

2πωLi2(a) + m− 1
2 Li1(a)

]
(1 +O(ω))

(A.5)

in terms of the polylogarithm functions, see appendix A of [44, 45] for more details.

B Saddle point approximation

Here we consider the saddle point approximation for the following type of integral,

Z(ω) =
∫ n∏

i=1

dui
2π exp

[
− i

2πω
(
F (0)[u] + 2iπωF (1)[u] +O(ω2)

)]
, (B.1)
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in the ω → i0+ limit. To begin with, we find a saddle point perturbatively

u? =
∞∑
k=0

u
(k)
? ωk , (B.2)

where the first two coefficients in the small ω-expansion are determined by solving the
saddle point equations perturbatively as

0 = ∂

∂ui
F (0)[u]

∣∣∣∣
u=u(0)

?

, (B.3a)

0 = ∂

∂ui

(
F (0) + 2iπωF (1)

)
[u]
∣∣∣∣
u=u(0)

? +ωu(1)
?

+O(ω2) . (B.3b)

Let us denote the degeneracy of the saddle point (B.2) with dn. The saddle point approx-
imation for the integral (B.1) then reads

Z(ω)

= dn exp
[
− i

2πω
(
F (0)[u(0)

? + ωu
(1)
? ] + 2iπωF (1)[u(0)

? ] +O(ω2)
)]

×
∫ n∏

i=1

(−iπω)
1
2d∆ui

2π e
− 1

2

(
1
2!
∂2F(0)[u(0)

? ]
∂ui∂uj

∆ui∆uj+ (−iπω)
1
2

3!
∂3F(0)[u(0)

? ]
∂ui∂uj∂uk

∆ui∆uj∆uk+O(ω)

)

= dn exp
[
− i

2πωF
(0)[u(0)

? + ωu
(1)
? ] + F (1)[u(0)

? ]
]

(−iω)
n
2

(
det ∂

2F (0)[u(0)
? ]

∂ui∂uj

)− 1
2

(1 +O(ω)) ,

(B.4)

where we have introduced the integration variable ∆ui as (−iπω)
1
2 ∆ui = (u−u(0)

? −ωu(1)
? )i

and also used the property∫ n∏
i=1

dxi exp
[
−

N∑
i=1

Aix
2
i

]
xjxkxl = 0 (for ∀j, k, l ∈ {1, · · · , N}) , (B.5)

which follows from the fact that the integrand is an odd function. Taking the logarithm
of (B.4) and using the leading order saddle point equation (B.3a), we obtain

logZ(ω) = − i
2πωF

(0)[u(0)
? ] + F (1)[u(0)

? ] + n

2 log(−iω)− 1
2 log det ∂

2F (0)[u(0)
? ]

∂ui∂uj

+ log dn +O(ω) .
(B.6)

This is the saddle point approximation used to obtain the ABJM SCI (3.15) and the ADHM
SCI (4.12) in the Cardy-like limit (3.10).

C ABJM superconformal index

In this appendix we provide the key intermediate steps that we have skipped in the main
text to derive the all order perturbative 1/N expansion for the ABJM SCI in the Cardy-like
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limit (3.27). In section C.1 we present some of the details on the rewriting of the matrix
model (3.2) into the form suitable for the Cardy expansion (3.15) following [44, 45]. In
section C.2 we discuss the numerical analysis used to evaluate the leading term of order
O(ω−1) in the Cardy expansion (3.21), which is equivalent to (3.15), to all orders in the
perturbative 1/N expansion.

C.1 Cardy-like expansion of the ABJM SCI

The first step is to rewrite the matrix model for the ABJM SCI (3.2) as (3.4). We start by
shifting the integration variables of the matrix model (3.2) as (zi, z̃i) → (ziξ−1/k

T1
, z̃iξ

1/k
T2

),
upon which the ABJM SCI (3.2) reads

IABJM(ω,∆, n)

= 1
(N !)2

∑
m,m̃∈ZN

∮ ( N∏
i=1

dzi
2πizi

dz̃i
2πiz̃i

zkmii z̃−km̃ii

)
×

N∏
i 6=j

(−1)
1
2 |mi−mj |+

1
2 |m̃i−m̃j |

×
N∏
i 6=j

(−ziz−1
j q)−

1
2 |mi−mj |

(z−1
i zjq

|mi−mj |; q2)∞
(ziz−1

j q2+|mi−mj |; q2)∞
(−z̃iz̃−1

j q)−
1
2 |m̃i−m̃j |

(z̃−1
i z̃jq

|m̃i−m̃j |; q2)∞
(z̃iz̃−1

j q2+|m̃i−m̃j |; q2)∞

×
2∏

a=1

N∏
i,j=1

(
−q1−naz−1

i z̃jy
−1
a

) 1
2 |mi−m̃j | (z−1

i z̃jy
−1
a q2−na+|mi−m̃j |; q2)∞

(ziz̃−1
j yaqna+|mi−m̃j |; q2)∞

×
4∏

a=3

N∏
i,j=1

(
−q1−naziz̃

−1
j y−1

a

) 1
2 |mi−m̃j | (ziz̃

−1
j y−1

a q2−na+|mi−m̃j |; q2)∞
(z−1
i z̃jyaqna+|mi−m̃j |; q2)∞

(C.1)
in terms of the parameters introduced in (3.6). Then we remove the absolute signs for
gauge magnetic fluxes in (C.1) as [44, 45]

|mi − m̃j | →

−mi + m̃j (i ≥ j)
mi − m̃j (i < j) ,

|mi −mj | →

−(mi −mj) (i > j)
mi −mj (i < j) ,

|m̃i − m̃j | →

−(m̃i − m̃j) (i > j)
m̃i − m̃j (i < j) ,

(C.2)

using the identity (A.4) and reorganize the integrand in terms of the new integration
variables introduced in (3.5). The result of this procedure is given in (3.4).

Next, one can expand the expression (3.4) in the Cardy-like limit (3.10) using the
asymptotic formula of the ∞-Pochhammer symbol (A.5) as

IABJM(ω,∆, n)

= 1
(N !)2

∑
m,m̃∈ZN

∫
|si|=qmi ,|s̃i|=qm̃i

(
N∏
i=1

dsi
2πisi

ds̃i
2πis̃i

)
e

1
πω

ImW(0)[U,Ũ ;∆]+2 ReW(1)[U,Ũ ;∆,n]+O(ω) ,

(C.3)
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where the effective actions are defined in (3.12). To obtain the expression (3.11) from (C.3),
one should replace the discrete sums over gauge magnetic fluxes with the continuous inte-
grals using the Euler-Maclaurin formula, see for example [44, 45, 85]

∑
m,m̃∈ZN

∮
|si|=qmi ,|s̃i|=qm̃i

N∏
i=1

dsi
2πisi

ds̃i
2πis̃i

(· · · ) =
∫
C2N

N∏
i=1

dUidŪi
−4iπ2ω

dŨid
¯̃Ui

−4iπ2ω
(· · · ) (1 +O(ω)) .

(C.4)
To show explicitly how (C.4) works, here we focus on the 1-dimensional integral:

∑
m∈Z

∮
|s|=eiπωm

ds

2πisf(s) = lim
M→∞

M∑
m=−M

∫ 2π

0

dθ

2π f(eiπωm+iθ)

=
∫ ∞
−∞

dm

∫ 2π

0

dθ

2π f(eiπωm+iθ)

+ f(0) + f(∞)
2 +

b p2 c∑
k=1

B2k
(2k)! (iπω)2k−1

(
s
d

ds

)2k−1
f(s)

∣∣∣∣s=0

s=∞
+ lim
M→∞

∫ 2π

0

dθ

2πRp︸ ︷︷ ︸
=O(ω0)

=
∫
C

dUdŪ

−4iπ2ω
f(s) (1 +O(ω)) ,

(C.5)

where in the second equation we have used the Euler-Maclaurin formula

n∑
i=m

F (i) =
∫ n

m
di F (i) + F (n) + F (m)

2 +
b p2c∑
i=1

B2k
(2k)!

(
F (2k−1)(n)− F 2k−1(m)

)
+Rp ,

|Rp| ≤
2ζ(p)
(2π)p

∫ n

m
dx |F (p)(x)| ,

(C.6)

and in the third equation we used the Jacobian determinant (iU = iπωm + iθ)

dUdŪ =
∣∣∣∣∣∂(U, Ū)
∂(m, θ)

∣∣∣∣∣ dmdθ =
∣∣∣∣∣
(
πω 1
−πω 1

)∣∣∣∣∣ dmdθ = −2iπωdmdθ . (C.7)

Recall that the Cardy-like limit (3.10) is taken as ω → i0+ where −iω > 0. The crucial
assumption in (C.5) is that the integrand f(s) and its logarithmic derivatives behave nicely
in the s→ 0,∞ limit as

f(s) &
(
s
d

ds

)2k−1
f(s) <∞ (k ∈ Z) as s→ 0,∞ (C.8)

and therefore can be estimated to be of order O(ω0). In this paper we assume that the
integrand of the ABJM SCI (C.3) satisfies the analogous boundary conditions for the multi-
dimensional version of the 1d integral in (C.5) and thereby the replacement of the discrete
sum over gauge magnetic fluxes with the continuous integrals, (C.4), is valid. It will be
interesting to carefully study the validity of this assumption.
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The last step to obtain the Cardy expansion of the ABJM SCI (3.15) is to apply the
saddle point approximation introduced in appendix B to the integral (3.11). This can be
done by mapping the parameters in appendix B to the those for the ABJM SCI in (3.11) as

ui → Ui, Ūi, Ũi,
¯̃Ui (n = 4N) ,

dn → (N !)2 ,

F (0)[u] → 2i ImW(0)[U, Ũ ; ∆] ,

F (1)[u] → 2 ReW(1)[U, Ũ ; ∆, n] ,

(C.9)

and then simply applying the approximation (B.6).

C.2 Numerical analysis for the ABJM SCI in the Cardy-like limit

To evaluate the leading term of order O(ω−1) in the Cardy expansion of the ABJM
SCI (3.21), which is given in terms of the Bethe potential (3.19) evaluated at the solu-
tions to the BAE (3.20), first we construct numerical solutions to the BAE (3.20) for
N = 101 ∼ 301 in step of 10 with

k ∈ {1, 2, 3, 4} ,

∆ ∈
{(1

2 ,
1
2 ,

1
2 ,

1
2

)
,

(3
7 ,

1
2 ,

1
2 ,

4
7

)
,

(1
3 ,

5
12 ,

7
12 ,

2
3

)
,

( 1
π
,

2
π
,

3
2π , 2−

9
2π

)}
,

(C.10)

using Mathematica, see [53] for more details on the numerical procedure. Then we use
LinearModelFit to determine the exact values of the Bethe potential (3.19) evaluated
at the numerical BAE solutions with two fitting functions in terms of the ‘shifted’ N
parameter, N̂k,∆ in (3.24), as

1
2π ImVTTI = ĝ

(lmf)
3/2 (k,∆)N̂

3
2
k,∆ + ĝ

(lmf)
0 (k,∆) , (C.11)

where the superscript “(lmf)” means that the coefficients are determined numerically for
a given configuration of (k,∆) via LinearModelFit. We then confirm that the leading
coefficient ĝ(lmf)

3/2 (k,∆) matches the analytic expression

ĝ3/2(k,∆) = π
√

2k∆1∆2∆3∆4
3 , (C.12)

read off from (3.26) with great precision for all configurations listed in (C.10). For a precise
comparison, below we provide tables for the error ratio

R3/2(k,∆) ≡
ĝ

(lmf)
3/2 (k,∆)− ĝ3/2(k,∆)

ĝ3/2(k,∆) , (C.13)

and the numerical estimate for the constant term ĝ
(lmf)
0 (k,∆) together with the associated

standard error σ0.
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∆ =
(

1
2 ,

1
2 ,

1
2 ,

1
2

)
:

R3/2 ĝ
(lmf)
0 σ0

k = 1 −2.198×10−42 −0.18384102333840097854 1.656×10−39

k = 2 −1.272×10−30 −0.15224228529196635390 1.300×10−27

k = 3 −4.479×10−26 −0.16038269262168390318 5.370×10−23

k = 4 −6.404×10−23 −0.18269074235035962450 8.518×10−20

∆ =
(

3
7 ,

1
2 ,

1
2 ,

4
7

)
:

R3/2 ĝ
(lmf)
0 σ0

k = 1 −5.100×10−38 −0.18487381932915327786 3.757×10−35

k = 2 −1.134×10−27 −0.15225543589256328299 1.116×10−24

k = 3 −3.618×10−24 −0.15976369368639724921 4.153×10−21

k = 4 −2.252×10−21 −0.18141737511951941056 2.851×10−18

∆ =
(

1
3 ,

5
12 ,

7
12 ,

2
3

)
:

R3/2 ĝ
(lmf)
0 σ0

k = 1 −1.179×10−29 −0.19164058508102652614 7.700×10−27

k = 2 −2.312×10−21 −0.15267798840052025763 1.929×10−18

k = 3 1.751×10−20 −0.15546742123991081702 1.652×10−17

k = 4 3.084×10−18 −0.17182133959082622268 3.149×10−15

∆ =
(

1
π
, 2
π
, 3

2π , 2−
9

2π

)
:

R3/2 ĝ
(lmf)
0 σ0

k = 1 −5.526×10−31 −0.19164115564794187181 3.703×10−28

k = 2 −1.584×10−22 −0.15308092766631389200 1.370×10−19

k = 3 −1.971×10−19 −0.15795628160679798011 1.940×10−16

k = 4 −2.338×10−17 −0.17749207056697949250 2.500×10−14

D ADHM superconformal index

In this appendix we provide the key intermediate steps that we have skipped in the main
text to derive the all order perturbative 1/N expansion for the ADHM SCI in the Cardy-
like limit (4.25). In section D.1 we provide some details on how to go from the matrix
model in (4.2) to the Cardy expansion (4.12) following [44, 45]. In section D.2 we discuss
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the numerical analysis used to evaluate the leading term of order O(ω−1) in the Cardy
expansion (4.18), which is equivalent to (4.12), to all orders in the perturbative 1/N ex-
pansion.

D.1 Cardy-like expansion of the ADHM SCI

The first step is to rewrite the matrix model for the ADHM SCI (4.2) as (4.3). We start
by shifting the integration variables as zi → ziξ

−1/2
F yqq

nq−1/2, upon which the ADHM
SCI (4.2) reads

IADHM(ω,∆, n)

= 1
N !

∑
m∈ZN

∮ ( N∏
i=1

dzi
2πizi

(y−1
m qt)mi

)
×

N∏
i=1

(−1)−Nf |mi|

×
N∏
i 6=j

(−ziz−1
j q)−

1
2 |mi−mj |

(z−1
i zjq

|mi−mj |; q2)∞
(ziz−1

j q2+|mi−mj |; q2)∞

×
3∏
I=1

N∏
i,j=1

(
−q1−nIz−1

i zjy
−1
I

) 1
2 |mi−mj | (z−1

i zjy
−1
I q2−nI+|mi−mj |; q2)∞

(ziz−1
j yIqnI+|mi−mj |; q2)∞

×
N∏
i=1

[(
−q1−nqz−1

i y−1
q

) 1
2 |mi| (z

−1
i y−1

q q2−nq+|mi|; q2)∞
(ziyqqnq+|mi|; q2)∞

×
(
−q1−nq̃ziy

−1
q̃

) 1
2 |mi| (ziy

−1
q̃ q2−nq̃+|mi|; q2)∞

(z−1
i yq̃qnq̃+|mi|; q2)∞

]Nf
,

(D.1)

in terms of the parameters introduced in (4.5). Then we remove the absolute signs for
gauge magnetic fluxes in (D.1) by using [44, 45]

|mi −mj | →

−mi + mj (i ≥ j)
mi −mj (i < j) ,

|mi| → −mi .

(D.2)

We then use the identity (A.4) and reorganize the integrand in terms of the new integration
variables introduced in (4.4). The result of this procedure is given in (4.3)

The next step is to expand the expression (4.3) in the Cardy-like limit using the
asymptotic formula of the ∞-Pochhammer symbol (A.5) and then replace the discrete
sums over gauge magnetic fluxes with the continuous integrals by using [44, 45, 85]

∑
m∈ZN

∮
|si|=qmi

N∏
i=1

dsi
2πisi

(· · · ) =
∫
CN

N∏
i=1

dUidŪi
−4iπ2ω

(· · · ) (1 +O(ω)) . (D.3)

We then use this to finally obtain (4.8). This procedure is exactly parallel to the ABJM
case reviewed in appendix C.1 so we skip the details here.
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The last step to obtain the Cardy expansion of the ADHM SCI (4.12) is to apply the
saddle point approximation introduced in appendix B to the integral (4.8). This can be
done by mapping the parameters in appendix B to the those for the ADHM SCI in (4.8) as

ui → Ui, Ūi (n = 2N) ,
dn → N ! ,

F (0)[u] → 2i ImW(0)[U ; ∆] ,

F (1)[u] → 2 ReW(1)[U ; ∆, n] ,

(D.4)

and then simply applying the approximation (B.6).

D.2 Numerical analysis for the ADHM SCI in the Cardy-like limit

To evaluate the leading term of order O(ω−1) in the Cardy expansion of the ADHM
SCI (4.18), which is given in terms of the Bethe potential (4.16) evaluated at the solu-
tions to the BAE (4.17), first we construct numerical solutions to the BAE (4.17) for
N = 101 ∼ 301 in step of 10 with

1) Nf ∈ {1, 2, 3, 4} , ∆I =
(1

2 ,
1
2 , 1, 0

)
, (∆q̃,∆q) =

(1
2 ,

1
2

)
,

2) Nf ∈ {1, 2, 3} , ∆I =
(3

7 ,
4
7 , 1, 0

)
, (∆q̃,∆q) =

(1
2 ,

1
2

)
,

3) Nf ∈ {1, 2, 3} , ∆I =
(3

8 ,
5
8 , 1,

Nf

10

)
, (∆q̃,∆q) =

(1
2 ,

1
2

)
,

4-i) Nf ∈ {1, 2, 3} , ∆I =
( 1
π
,

2
π
, 2− 3

π
,Nf

(
1− 3

π

))
, (∆q̃,∆q) =

( 3
2π ,

3
2π

)
,

4-ii) Nf ∈ {3, 4} , ∆I =
( 1
π
,

2
π
, 2− 3

π
,Nf

(
1− 3

π

))
, (∆q̃,∆q) =

(
e

2π ,
3
π
− e

2π

)
,

(D.5)
using Mathematica, see [54] for more details on the numerical procedure. Recall that ∆
denotes ∆ = (∆I ,∆m) for the ADHM case. Then we use LinearModelFit to determine
the exact values of the Bethe potential (3.19) evaluated at the numerical BAE solutions
with two fitting functions in terms of the ‘shifted’ N parameter, N̂Nf ,∆̃ in (4.21), as

1
2π ImVTTI = ĝ

(lmf)
3/2 (Nf ,∆)N̂

3
2
Nf ,∆̃

+ ĝ
(lmf)
0 (Nf ,∆) , (D.6)

where the superscript “(lmf)” means that the coefficients are determined numerically for
a given configuration of (Nf ,∆) via LinearModelFit. We then confirm that the leading
coefficient ĝ(lmf)

3/2 (Nf ,∆) matches the analytic expression

ĝ3/2(Nf ,∆) =
π
√

2Nf ∆̃1∆̃2∆̃3∆̃4

3 , (D.7)

read off from (4.24) with great precision for all configurations listed in (D.5). For a precise
comparison, below we provide tables for the error ratio

R3/2(Nf ,∆) ≡
ĝ

(lmf)
3/2 (Nf ,∆)− ĝ3/2(Nf ,∆)

ĝ3/2(Nf ,∆) (D.8)
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and the numerical estimate for the constant term ĝ
(lmf)
0 (Nf ,∆) together with the associated

standard error σ0.

∆ =
(

1
2 ,

1
2 , 1, 0

)
:

R3/2 ĝ
(lmf)
0 σ0

Nf = 1 −2.198×10−42 −0.18384102333840097854 1.656×10−39

Nf = 2 2.180×10−31 −0.33723358961840868631 2.233×10−28

Nf = 3 −4.117×10−28 −0.62879449364922746645 4.979×10−25

Nf = 4 −2.443×10−23 −1.0432995069016606835 3.268×10−20

∆ =
(

3
7 ,

4
7 , 1, 0

)
:

R3/2 ĝ
(lmf)
0 σ0

Nf = 1 −5.100×10−38 −0.18487381932915327786 3.757×10−35

Nf = 2 2.985×10−28 −0.34306944663243885903 2.943×10−25

Nf = 3 −2.948×10−25 −0.64251698663465353444 3.398×10−22

∆ =
(

3
8 ,

5
8 , 1,

Nf

10

)
:

R3/2 ĝ
(lmf)
0 σ0

Nf = 1 −9.517×10−31 −0.18922588511715377025 6.421×10−28

Nf = 2 3.923×10−23 −0.35418384892357442559 3.414×10−20

Nf = 3 −1.193×10−19 −0.666855367656914298975 1.181×10−16

∆ =
(

1
π
, 2
π
, 2− 3

π
, Nf

(
1− 3

π

))
:

R3/2 ĝ
(lmf)
0 σ0

Nf = 1 −5.526×10−31 −0.19164115564794187181 3.703×10−28

Nf = 2 3.275×10−23 −0.39085989312606644267 2.840×10−20

Nf = 3 −4.067×10−20 −0.75585703584795923151 4.020×10−17

Nf = 4 −9.539×10−18 −1.2726405536526142820 1.026×10−14

For ∆ =
(

1
π ,

2
π , 2−

3
π , Nf

(
1− 3

π

))
with Nf = 3, we confirmed explicitly that the choice of

different (∆q̃,∆q) configurations in (D.5) does not affect the result.
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