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1 Introduction

Since the seminal work of [2], studying the low energy dynamics of branes wrapped on
compact manifolds has been a successful research direction. From the field-theoretic
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point of view one may generate families of lower-dimensional field theories from a higher-
dimensional parent theory living on the worldvolume of the branes in flat spacetime. By
placing the branes on a non-trivially curved manifold and requiring the preservation of
some supersymmetry, one must perform a twist of the field theory. For a topological twist,
this is realised geometrically by studying the embedding of a calibrated cycle, on which
the brane is wrapped, into a special holonomy manifold. The different ways of embedding
the compactification manifold give rise to the different families of lower-dimensional field
theories.

For a large enough number of branes, and small enough curvatures, one may use the
holographic correspondence. Since the original work of [2], which studied the holographic
duals of 4d N = 4 super-Yang-Mills (SYM) and the 6d N = (2, 0) theory compactified on
a Riemann surface, there have been many generalisations. The theories of class S study
the twisted compactification of the 6d (2, 0) SCFT living on M5-branes on a punctured
Riemann surface [3] preserving N = 2 supersymmetry in four dimensions. These were
later extended to theories preserving N = 1 supersymmetry in four dimensions in [4–7]
and the holographic dual of Argyres-Douglas theories in [8, 9]. Theories of classR study the
compactification of the 6d (2, 0) AN−1 theory on hyperbolic three-manifolds, [10]. Whilst
the theories in [11] arise from compactifying the D4-D8 bound state on a Riemann surface.
In addition, the work of [12] studies various compactifications of branes on Riemann surfaces
with punctures using gauged supergravity, and [1, 13–15] consider field theories wrapped
on spindles.

In this work we will restrict to studying the holographic dual of a stack of D3-branes
compactified on a Riemann surface with a twist preserving N = (2, 2) supersymmetry and
flowing to a two-dimensional SCFT.1 The UV theory is 4d N = 4 SYM which flows to the
2d SCFT after being placed on the Riemann surface. Via the AdS/CFT correspondence
the two theories, the UV and IR, admit AdS duals. For the UV theory this is of course
AdS5 × S5 whilst for the IR one obtains the AdS3 solutions which form the content of this
work. The full flow solution is a five-dimensional asymptotically AdS5 black string with
AdS3 × Σ2 near-horizon geometry.2

The microscopic origin of the Bekenstein-Hawking entropy of black objects is one of the
fundamental problems in theoretical physics. Certain thermodynamic quantities of black
objects may be computed in gravity in either the asymptotic or near-horizon limit without
loss of information. One such quantity is the Bekenstein-Hawking entropy. The fact that
one only needs the near-horizon to compute the Bekenstein-Hawking entropy and not the
full black string solution is a considerable simplification to the problem. One can then
identify the microstates of the black string as the SCFT dual to the AdS3 near-horizon
theory. In this paper we will take this latter approach and interest ourselves in the near-
horizon of black strings preserving N = (2, 2) supersymmetry and not the full black string
solution.

1Recently constraints on the elliptic genera of 2d N = (2, 2) SCFTs admitting holographic duals have
been investigated in [16–18]. Though we will not compute the elliptic genus of the field theory duals of our
solutions it would be interesting to see where these theories lie in the landscape mapped out there.

2Static black string solutions in 5d STU supergravity have been found in [19] for example.
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Solutions of this type were classified in [20], whilst AdS3 solutions preserving other
amounts of supersymmetry have been studied in [21–62]. The conditions for preserving
supersymmetry and satisfying the equations of motion, which we review in section 2, are
very similar to the conditions for other AdS solutions which are identified as wrapped brane
solutions. In particular the form of the solutions are similar to the AdS5 solutions arising
from M5-branes on a Riemann surface [7] and AdS4 solutions in massive type IIA obtained
from the D4-D8 bound state on a Riemann surface, [11, 63]. We will reduce the conditions
of [20] to a Monge-Amperé like equation for a potential. We will present two distinct
classes of solutions. The first has a constant curvature metric on the Riemann surface and
we find that the solution is a deformation of the Maldacena-Nuñez solution [2]. The benefit
of our formulation is that the inclusion of punctures has a natural interpretation in this
description: they are interpreted as sources to the Monge-Amperé equation. The second
class of solutions we study has a non-constant curvature metric on the Riemann surface
wrapped by the D3-branes. Topologically the space is a disk with a Zk orbifold singularity
at the centre and smeared D3-branes on the boundary.

The paper is organised as follows. In section 2 we will review the construction of AdS3
solutions in type IIB preserving N = (2, 2) supersymmetry before reducing the conditions
under the assumption of the existence of a flavour symmetry. We next consider solutions
where the branes wrap a constant curvature Riemann surface in section 3. We begin by
reviewing the field theory in section 3.1 before constructing a simple holographic dual in
section 3.2 and analysing the regularity and central charge of the solution in section 3.3.
We generalise this solution further in section 3.4 before computing additional observables
of the theory and comparing to the field theory results. In section 4 we consider the
holographic duals of 4d N = 4 SYM on a topological disk equipped with a non-constant
curvature Riemann surface, analysing the solutions in detail. Some technical material is
relegated to an appendix.

2 N = (2, 2) AdS3 solutions

We now turn our attention to constructing the supergravity dual of the 2d N = (2, 2)
SCFTs discussed in the introduction. We will reduce N = 4 SYM on a Riemann surface,
breaking the SU(4)R R-symmetry to its U(1)3 Cartan in order to perform a topological
twist. As such, the resultant two-dimensional field theory should admit three U(1) sym-
metries: two will furnish the U(1)L×U(1)R R-symmetry of the N = (2, 2) superconformal
algebra whilst the third will be a flavour symmetry of the theory. Given these considera-
tions, the metric of the gravity solution should take the form

AdS3 ×
(
Σ2 × S1

R × S1
L × S1 × I1 × I2

)
, (2.1)

where I1, I2 are two line intervals. Solutions of this form, supported by five-form flux were
classified in [20].3 The metric is given by

1
L2 ds2 =

√
y

sin ζ
[
ds2(AdS3) + ds2(X7)

]
, (2.2)

3For convenience we make a few redefinitions of the results in [20], in particular we redefine the warp
factor via e−4∆y = sin2 ζ.
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with AdS3 having unit radius and L a constant. Supersymmetry fixes the internal metric
to take the form

ds2(X7) = cos2 ζ(dψ1 + σ)2 + sin2 ζdψ2
2 + sin2 ζ

4y2 cos2 ζ
dy2 + sin2 ζ

y
g(4)(y, x)ijdxidxj . (2.3)

The coordinate y defines an almost-product structure, implying that the one-form σ has
“legs” only along the four-dimensional base, though it may still depend on y non-trivially.
The metric g(4) on the base admits an SU(2)-structure (J, Ω) satisfying4

∂ψ1J = ∂ψ2J = 0 , (2.4)

∂yJ = 1
2d4σ , (2.5)

d4J = 0 , (2.6)

and

∂ψ1Ω = −iΩ , (2.7)

∂ψ2Ω = 0 , (2.8)

∂yΩ = 1
2 tan2 ζ∂y

(
log

(
sin2 ζ

y

))
Ω , (2.9)

d4Ω = − [iσ + d4(log cos ζ)] ∧ Ω . (2.10)

The metric is supported by the five-form flux

1
L4F5 = (1 + ?)dvol(AdS3) ∧ F (2) , (2.11)

with
F (2) = ydσ − 2J4 − d

(
y

sin2 ζ
(dψ1 + σ)

)
. (2.12)

Supersymmetry implies that all equations of motion are satisfied provided all the torsion
conditions given above hold. Contrast this with the N = (0, 2) case [23], where one must
also impose the Maxwell equation for F (2).

Consistent with these geometries preserving N = (2, 2) supersymmetry, which has R-
symmetry group U(1)L×U(1)R, the metric admits two independent Killing vectors: ∂ψ1 ,
∂ψ2 . The generator dual to the left-moving R-symmetry is ∂ψ1−∂ψ2 whilst the right moving
is dual to ∂ψ1 + ∂ψ2 . Recall that the solution we are looking for should have three U(1)
isometries. The general form of the internal metric accounts for two of the three required,
and therefore we require that the metric g(4) should admit a single Killing vector.

4One can reduce the number of these conditions further by reinterpreting the conditions in terms of
derivatives of the determinant of the metric, see [20]. This reformulation is reminiscent of the ones appearing
for N = 1 AdS5 solutions in M-theory [64] and AdS4 solutions in massive type IIA [63]. However, for our
purposes the most convenient formulation of the conditions are the ones we present here.
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2.1 Embedding into the (0, 2) classification

Before we proceed, it is useful to study the embedding of the N = (2, 2) conditions into
the classification of N = (0, 2) solutions [23]. We first want to isolate the right-moving
R-symmetry vector field, to do this we make the change of coordinates

ψ1 = 1
2(φR + φL) , ψ2 = 1

2(φR − φL) . (2.13)

A small rearrangement of terms after the coordinate transformation, and identifying the
warp factor to be

ye−4∆ = sin2 ζ , (2.14)

puts the solution into the form

ds2(X7) = 1
4
[
dφR + (1− 2ye−4∆)dφL + 2(1− ye−4∆)σ

]2
+ e−4∆ds2(Y6) , (2.15)

where

ds2(Y6) = 1
4y(1− ye−4∆)dy2 + y(1− ye−4∆)(dφL + σ)2 + g(y, x)ijdxidxj . (2.16)

This is the same form for the metric in the N = (0, 2) classification [23].5 The one-form
dual to the R-symmetry vector is

η = 1
2
[
dφR + (1− 2ye−4∆)dφL + 2(1− ye−4∆)σ

]
, (2.17)

and the Kähler base Y6 is defined above. The SU(3)-structure forms, in terms of the
SU(2)-structure ones are given by

J6 = 1
2dy ∧ (dφL + σ) + J , Ω6 = 1

2
√
y(1− ye−4∆)

[
dy + 2iy(1− ye−4∆)(dφL + σ)

]
∧ Ω ,

(2.18)
and it is simple to see that they satisfy the N = (0, 2) conditions,

dJ6 = 0 , dΩ6 = −2iη ∧ Ω6 , (2.19)

provided the N = (2, 2) torsion conditions (2.4)–(2.10) hold. Moreover, since N = (2, 2)
supersymmetry imposes the Maxwell equation for F (2) it follows that the N = (0, 2) master
equation is also satisfied.

2.2 Canonical form of solutions with TTT3 fibration

In appendix A we have reduced the torsion conditions (2.4)–(2.10) under the assumption
that g(4) contains an additional flavour U(1) direction. The solution is determined by a
potential D satisfying a Mongé-Ampere like equation (2.20), which is a generalisation of
the Toda equation. Specifically this takes the form

�D = 16y2
(
∂2
yD∂ΘD − (∂y∂ΘD)2

)
e∂yD , (2.20)

5We use the conventions in [20] rather than [23], the difference is a minor change of orientation.
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with � ≡ ∂2
X1

+ ∂2
X2

. Once a solution to (2.20) has been provided the metric is given by

1
L2 ds2 =

√
yg

h

[
ds2(AdS3) + h

g
dψ2

2 + he2A

yg
(dX2

1 + dX2
2 ) + h

yg
ds2(M4)

]
,

ds2(M4) = 1
4gijdu

iduj + hijηiηj , e2A = 4y2e∂yDg ,

gij ≡ −∂i∂jD , hij ≡ −∂i∂j (D + y(log y − 1)) ,

η1 ≡ dψ1 + ?2d2(∂yD) , η2 ≡
1
2 (dφ+ ?2d2(∂ΘD)) , (2.21)

with
ui = {y,Θ} , g ≡ det(gij) , h ≡ det(hij) . (2.22)

Dualising along the non-R-symmetry directions to type IIA and then uplifting to M-theory
one will obtain an AdS3 solution in the class discussed in [65]. In general these solutions
describe M5 branes wrapped on a four-manifold, and the uplifted solutions will be dual to
wrapping M5 branes on T2 × Σ with Σ the Riemann surface wrapped by the D3-branes.
It would be interesting to study the solutions discussed in the following sections from an
M-theory perspective.

The form of the metric suggests that one should look for solutions with D3-branes
wrapped on the (X1, X2) directions; we will do just that in section 3. However, we should
stress that these directions can lie in the co-dimensions of the wrapped D3-branes as we
shall find in section 4. Our focus in this work are cases where (X1, X2) span a Riemann
surface of constant curvature, though we stress that this does not imply that the surface
the D3-branes are wrapped on has constant curvature. Going away from the constant
curvature metric and including punctures on the Riemann surface is beyond the scope of
this work, however the generalisation of our ansatz in this direction is obvious, though
technically challenging.

3 D3-branes wrapping a constant curvature Riemann surface

In this section we will consider the compactification of 4d N = 4 SYM on a constant cur-
vature Riemann surface Σg, of genus g, preserving N = (2, 2) supersymmetry. We begin
in section 3.1 by reviewing the construction of the 2d SCFT arising from the compactifi-
cation. In particular, we will compute the central charge and the R-charges of baryonic
operators with which we may compare to a dual gravity computation. Our gravity analysis
begins with the reduction of the general N = (2, 2) supersymmetry conditions of 2.2 for a
constant curvature Riemann surface. We find that there is no solution for g = 0, whilst the
solution for g = 1 has an enhancement of supersymmetry to N = (4, 4) and is the double
T-dual of the D1-D5 system. For g > 1 we find a family of solutions which generalise the
Maldacena-Nuñez solution [2], breaking the SU(2) symmetry of their solution to U(1). We
present the regularity analysis of these solutions before computing their central charge and
R-charges, which match with the field theory analysis in section 3.1.

– 6 –
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3.1 Twisted D3-branes

Let us consider compactifications of 4d N = 4 SYM on a Riemann surface. As is well
known, when the Riemann surface has non-trivial curvature it is necessary to perform a
topological twist of the theory in order to preserve supersymmetry.6 Let us begin by defin-
ing our conventions for 4d N = 4 SYM. For the moment we will use N = 4 representations,
however as we will explain later, in order to compare to the R-charges computed in gravity
it is useful to rewrite the theory in terms of N = 1 multiplets.

As is well known 4d N = 4 SYM contains a single N = 4 gauge multiplet, which in
N = 1 language consists of a single N = 1 gauge multiplet and three chiral superfields Φi.
The bosonic symmetry group of the theory is

SO(1, 3)× SU(4)R , (3.1)

with SU(4)R the R-symmetry of the theory. The 16 supersymmetry transformation pa-
rameters (Killing spinors) transform under the bosonic symmetry group as

ε : (2,1,4) , ε̃ : (1,2, 4̄) , (3.2)

whilst the gauginos transform in

Ψ : (2,1,4) , Ψ̃ : (1,2, 4̄) . (3.3)

We now want to place the theory on a Riemann surface of constant curvature Σg, such that
the Ricci scalar is RΣg = 2κ with κ = {−1, 0, 1}, for Σg>1 = H2, Σg=1 = T2, and Σg=0 = S2

respectively. For H2 this is meant locally, globally it is a compact quotient H2/Γ, where Γ
is an element of the Fuschian subgroup of the PSL(2,R) isometry group of H2. The theory
then flows to a two-dimensional SCFT in the IR. The presence of the Riemann surface
breaks the four-dimensional Lorentz symmetry to

SO(1, 3)→ SO(1, 1)×U(1)Σg . (3.4)

Generically this does not preserve any supersymmetry unless the Riemann surface is the
two-torus T2. Since we are interested in preserving (2, 2) supersymmetry in the resultant
2d SCFT we must perform a topological twist. We will twist with the Cartan of the SU(4)R
R-symmetry, namely U(1)3. Under the Cartan the representations of SU(4)R that we need,
decompose as (see for example [67]):

SU(4)R → U(1)1 ×U(1)2 ×U(1)3

4→ 1 1
2 ,

1
2 ,

1
2
⊕ 1 1

2 ,−
1
2 ,−

1
2
⊕ 1− 1

2 ,
1
2 ,−

1
2
⊕ 1− 1

2 ,−
1
2 ,

1
2

(3.5)

6→ 11,0,0 ⊕ 10,1,0 ⊕ 10,0,1 .

We now want to study the possible twists of the theory which preserve N = (2, 2) su-
persymmetry. Such twists have been classified previously in [2, 12, 68, 69], however for

6Recently, compactifications which twist with the isometry of the compactification space have been
investigated, see for example [66].
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completeness and to extract out the R-charges, we will perform the analysis here as well.
We turn on a background gauge field A along the generator T

T = a1T1 + a2T2 + a3T3 , (3.6)

with Ti the generator of the i’th U(1) in the U(1)3 Cartan. Supersymmetry of the theory is
preserved subject to a Killing spinor equation being satisfied. By turning on a background
gauge field, the Killing spinor equation on the Riemann surface is given by(

∂µ −
i
2sωµ − iAµ

)
ε = 0 . (3.7)

The gauge field A has field-strength F = −κTdω, for κ 6= 0, with ω the spin connection
on the Riemann surface, whilst for κ = 0 we have F = −T 2π

vol(T2)dvol(T2). The constant
s is ±1 for positive/negative chirality spinors respectively. In order for supersymmetry to
be preserved we must tune the parameters ai such that the Killing spinor equation admits
constant spinor solutions. This requires the contribution from the spin connection to be
cancelled by the background gauge field.

Using the decomposition in (3.5) and denoting the spinors as εm± , m ∈ {1, 2, 3, 4} we
see that constant spinors satisfy the Killing spinor equation provided

∓κ2 = a1 + a2 + a3 , ∓
κ

2 = a1 − a2 − a3 , ∓
κ

2 = −a1 + a2 − a3 , ∓
κ

2 = −a1 − a2 + a3 ,

(3.8)

for each of the spinors εm± respectively.
N = (2, 2) supersymmetry is preserved if the ai are chosen such that two of the

conditions above are satisfied, one for a positive chirality spinor and one for a negative
chirality spinor. Without loss of generality, we can choose these spinors to be ε1+ and ε2−,
which implies that the ai’s satisfy

a1 = 0 , a2 + a3 = −κ . (3.9)

Recall that a 2d N = (2, 2) SCFT admits a U(1)L×U(1)R R-symmetry. We may identify
the right-moving R-symmetry by requiring that the positive chirality spinor has R-charge
1 and the negative chirality spinor has vanishing R-charge under it. Conversely under the
left-moving R-symmetry the positive chirality spinor has vanishing R-charge whilst the
negative chirality spinor has R-charge 1. The most general right-moving U(1) R-symmetry
with these properties is given by7

RR = T1 + cos2 αRT2 + sin2 αRT3 , (3.10)

whilst for the left-moving R-symmetry we have

RL = T1 − cos2 αLT2 − sin2 αLT3 . (3.11)

Note in addition that
TF = T2 − T3 , (3.12)

7These choices of R-symmetry generalise those taken in [2].
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parametrises a flavour symmetry of the theory. For a theory which is conformal at the IR
fixed point it is necessary that the ’t Hooft anomaly8

kIJ =
∑

Weyl fermions
γ3QIQJ , (3.13)

of a left- and right-moving current vanishes [68]. In addition at the fixed point the ’t Hooft
anomaly for a flavour and R-symmetry must vanish, therefore altogether we must impose

kRF = kLF = kLR = 0 . (3.14)

Note that the first two are the conditions imposed by c-extremization, whilst the latter
is an additional constraint which imposes N = (2, 2) supersymmetry. As an aside, if one
naively performs c-extremization preserving N = (0, 2) supersymmetry and then tunes the
parameters to preserve N = (2, 2) supersymmetry as in (3.9) one finds the non-sensical
result that the central charge vanishes. By imposing the additional constraint that kLR = 0
we alleviate this problem.

In order to evaluate the ’t Hooft anomalies we need to know the multiplicities of the
2d fermions. This can be computed by using the Riemann-Roch index theorem. The
difference between the number of zero modes on Σg is given by [2]

n+ − n− = 1
2π

∫
Σg

F = 2T (g− 1) . (3.15)

The constraints from (3.14) are satisfied provided

a2 = a3 = −κ2 , (3.16)

which gives the following ’t Hooft anomalies for the left- and right-moving R-symmetries

kRR = kLL = N2(g− 1) . (3.17)

Consequently the central charges are given by

cL = cR = 3N2(g− 1) , (3.18)

where we have used cR = 3kRR and cL = 3kLL. Note that the central charge is only well-
defined for g > 1, the compactification on the two-sphere with this twist does not give rise
to a well defined IR SCFT. Note in particular that the parameters of the R-symmetry drop
out of the central charge. To see the contribution of these parameters we should compute
the R-charges of the reduced scalar fields. Recall that the scalars of 4d N = 4 SYM
transform in the 6 of the SU(4)R R-symmetry. From (3.5) we have that the i’th N = 1
chiral multiplet may be arranged to have charge 1 under the i’th U(1) and uncharged under
the others. It then follows from (3.10) that the (right-moving) R-charges are

R[Φ1] = 1 , R[Φ2] = cos2 αR , R[Φ3] = sin2 αR . (3.19)

We will see later that these are indeed reproduced by the gravity solution of section 3.4.5.
8The indices I, J run over all U(1)’s of the theory. Here these are a flavour symmetry, and a left-

and right-moving R-symmetry. The Q’s are the charges of the Weyl fermion under the generator of the
symmetry and γ3 is the chirality matrix in 2d.
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3.2 A simple ansatz for constant curvature Riemann surfaces

In this section we consider a simple ansatz for D3-branes wrapping Riemann surfaces of
constant curvature. As we shall see only the cases of T2 and H2 give rise to sensible holo-
graphic duals, the former reproduces the D3-D3 near-horizon while the latter generalises
the N = (2, 2) solution of [2]. Our starting point is the system presented in section 2.2.

In order to make the comparison with the field theory more manifest it is useful to
first make the change of coordinates

y = m+t+ +m−t− , Θ = t+ − t− , (3.20)

where m± are constrained to satisfy

m+ +m− = 1 . (3.21)

This change of coordinates puts the defining equation into the form

�D = 16(m+t+ +m−t−)2
(
∂2
t+D∂

2
t−D − (∂t+∂t−D)2

)
e(∂t++∂t− )D . (3.22)

We will make the assumption that the Riemann surface is of constant curvature, as such
we assume that the warp factor e2A appearing in front of the Riemann surface takes the
factorised form

e2A = f(t+, t−)e2A0(X1,X2) , (3.23)

where the potential A0 satisfies9

�A0 = −κe2A0 . (3.24)

Given the definition of e2A, after substituting this ansatz into (2.20), the potential D is
required to take the form

D = µ2
gÃ0 + I(t+, t−) , (3.25)

where
µ2
g ≡ 2(a+t+ + a−t−) + c , (3.26)

with c an integration constant and a± constants satisfying

a+ + a− = κ . (3.27)

In addition we have defined the scalar Ã0 which satisfies

�Ã0 = −e2A0 , (3.28)

and has solution

Ã0 =

−
1
4(X2

1 +X2
2 ) for κ = 0 ,

κA0 for κ 6= 0 .
(3.29)

9In order to generalise to include punctures on the Riemann surface one should add source terms to the
right-hand side of equation (3.24).
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With these definitions equation (3.22) reduces to

− µ2
g = 16(m+t+ +m−t−)2e(∂t++∂t− )I(t+,t−)

(
∂2
t+I∂

2
t−I − (∂t+∂t−I)2

)
, (3.30)

which we must solve for I. Notice that this equation is left invariant when I is shifted by
any linear function of (t+− t−), so we can without loss of generality set such terms to zero.
We will take a similar ansatz to that used in [11], namely

I =− µ2
0(log µ2

0 − 1)− 1
c+µ

2
+(log µ2

+ − 1)− 1
c−
µ2
−(log µ2

− − 1) + 2ν(t+ + t−) , (3.31)

where we define
µ2
± = b± − c±t± , µ2

0 = m+t+ +m−t− = y . (3.32)

In general the constants are fixed as

a± = 1
2κ , m± = 1± ε

2 , c± 6= 0 , (3.33)

with additional constraints that depend on the curvature of the Riemann surface, namely

κ = 0 : ε = ±1 , c = −16b±c∓e4ν , (3.34)

κ 6= 0 : ε = κ(b−c+ − b+c−)±
√
c+c−(c2c+c− − 4b−b+)

κ(b−c+ + b+c−) + c c−c+ , e4ν = − κ

4c+c−(1− ε2) .

Notice that we have

c+c−µ2
0 +m+µ2

+ +m−µ2
− = c+b−m− + c−b+m+ , (3.35)

so that when m± 6= 0 and likewise the right-hand side of this expression, (µ0, µ+, µ−)
define an embedding of a surface into a three-dimensional ambient space. The metric of
the constant curvature solutions take a simple form in terms of these coordinates, we have
in general that

1
L2 ds2 =

√
Λ
[
ds2(AdS3) + 4e4νc+c−e2A0(dX2

1 + dX2
2 )
]

+ 1√
Λ

ds2(M5) , (3.36)

ds2(M5) = dµ2
0 + 1

c+ dµ2
+ + 1

c−
dµ2
− + 1

c+µ
2
+η

2
+ + 1

c−
µ2
−η

2
− + µ2

0dψ2
2 ,

where we define the warp factor

Λ ≡ µ2
0 + (m+)2

c+ µ2
+ + (m−)2

c−
µ2
− , (3.37)

and the fibered terms

η± ≡
1
2 [(1± ε)dψ1 ± dφ+ V ] , V = κ

(
∂X2Ã0 dX1 − ∂X1Ã0 dX2

)
. (3.38)

Clearly, positivity ofM5 demands c± > 0 and this manifold has the appearance of a U(1)3

preserving deformed five-sphere. However, as we will see shortly, the actual topology of
this space depends on that of the Riemann surface. We shall study the distinct solutions
in more detail in the next section.

– 11 –



J
H
E
P
0
2
(
2
0
2
2
)
1
8
9

3.3 Analysis of solutions

We saw in the previous section that the solution has the appearance of a U(1)3 preserving
deformed five-sphere, fibered over a Riemann surface, subject to the embedding condi-
tion (3.35). In this section we will study the regularity of the solutions for all choices of
Riemann surface.

3.3.1 TTT2 case

We begin by considering the case κ = 0, taking the solution

ε = 1 , c = −16e4νb+c− , (3.39)

of (3.34) without loss of generality. The condition (3.35) then informs us that we should fix

c+µ2
0 = b+ sin2 α , µ2

+ = b+ cos2 α , (3.40)

and one finds that η± are merely two independent linear combinations of (ψ1, φ), that we
shall identify as η± = dτ± so that

ds2(M5) = b+

c+

(
dα2 + cos2 αdτ2

+ + sin2 αdψ2
2

)
+ 1
c−

(
dµ2
− + µ2

−dτ2
−

)
, Λ = b+

c+ , (3.41)

in other words the warp factor is constant and the internal five-manifold is S3×R2. Locally
there is of course no difference between this and S3 × T2, making the entire space locally
AdS3 × S3 × T4 — clearly then we have reproduced the D3-D3 near-horizon,10 one can
check that the flux is consistent with this. There are no further solutions with κ = 0.

3.3.2 S2 case

In this section we shall study the case κ > 0, i.e. the two-sphere case. When κ 6= 0,
positivity of the Riemann surface factor in (3.36) demands that

− κ

1− ε2 > 0 , (3.42)

so when κ > 0 we must have ε2 > 1, the symmetry of the solution means we can take this to
be ε > 1 and so m− < 0 without loss of generality. Turning our attention to (3.35) we see
that when the right-hand side is positive/negative it becomes an embedding equation for
dS2/AdS2, both of which are non-compact and pseudo-Riemannian — however (µ±, µ0)
do not appear in the definition ofM5 with the correct signs to give rise to sub-manifolds of
these topologies and in factM5 remains positive in both these cases. One can parametrise

c+b−m− + c−b+m+ = +1 : c+c−µ2
0 = cos2 β cosh2 r , m+µ2

+ = sin2 β cosh2 r ,

c+b−m− + c−b+m+ = −1 : c+c−µ2
0 = cos2 β sinh2 r , m+µ2

+ = sin2 β cosh2 r , (3.43)

without loss of generality, however in either case 0 ≤ r < ∞, and the upper limit is at
infinite proper distance in the ten-dimensional space, so the solutions following from these
tunings are unbounded. There is of course one final option, fix

c+b−m− + c−b+m+ = 0 . (3.44)
10I.e. the D1-D5 near-horizon twice T-dualised on different U(1)’s within T4.
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Here one can parameterise

c+c−µ2
0 = r2 cos2 β, m+µ2

+ = r2 sin2 β , (3.45)

but once again 0 ≤ r <∞, with the upper bound at infinite proper distance. Hence while
solutions exist with S2, they do not represent good holographic duals to CFTs.

3.3.3 H2 case

In this section we shall study the case κ < 0, where the Riemann surface is a compact
quotient of H2. Positivity of the metric in this case requires that ε2 < 1, meaning that
m± > 0 and so (3.35) embeds a two-sphere in R3. We thus fix

c+b−m− + c−b+m+ = 2c+c− , m+µ2
+ = 2c+ cos2 α cos2 β , m−µ2

− = 2c− cos2 α sin2 β ,

without loss of generality which makes the warp factor become

Λ = 1 + sin2 α+ ε cos2 α cos(2β) , (3.46)

which has no zeros as −1 < ε < 1. The internal five-manifold on the other hand can be
written as

ds2(M5) = 2 Λ
Q

dα2 + 2 sin2 αdψ2
2 + 4 cos2 α

( Q
1− ε2Dβ

2 + 1
1 + ε

cos2 βDτ2
+ + 1

1− ε sin2 βDτ2
−

)
,

Q ≡ 1 + ε cos(2β) , Dτ± ≡ dτ±+ V

2 , Dβ ≡ dβ− εtanα sin(2β)
Q

dα ,
(3.47)

which is topologically a five-sphere with 0 ≤ α < π
2 , 0 ≤ β < π

2 , 0 ≤ ψ2 < 2π and the U(1)
directions τ± are defined as

2dτ± ≡ (1± ε)dψ1 ± dφ , (3.48)

and have period 2π. Notice that when ε = 0 we have Dβ = dβ and the metric becomes
that of the AdS3 solution of [2]. The general solution is a parametric deformation breaking
the U(1)×U(1)×SU(2) isometry to U(1)3, whilst preserving N = (2, 2) supersymmetry.
One can show that the two form flux is given by

F (2) = −2 sin(2α)dα ∧
(

(1− ε)cos2 β

Q
dτ+ + (1 + ε)sin2 β

Q
dτ− +

( 1
Q
− 1

2

)
V

)
(3.49)

− 2 cos2 α sin(2β)Dβ ∧
(1− ε

1 + ε
dτ+ −

1 + ε

1− εdτ− −
2ε

1− ε2V
)

+ e2A0

( 2Λ
(1− ε2) + cos2 α

)
dX1 ∧ dX2 .
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3.3.4 Flux quantisation

In order to compare to CFT quantities we must first quantise the flux. To this end it is
helpful to know the internal part of the five-form flux explicitly, we find

1
L4F

int.
5 = dψ2 ∧

[
8sinα cos3 α

1− ε2
sin(2β)

Λ2

(
2Λ + (1− ε2) cos2 α

)
dα ∧Dβ ∧Dτ− ∧Dτ+

+2 sin(2α)e2A0dX1 ∧ dX2 ∧ dα ∧
(

cos2 β

(1− ε)Qdτ+ + sin2 β

(1 + ε)Qdτ−

)

+sin2(2α) sin(2β)
(1− ε2)Λ e2A0dX1 ∧ dX2 ∧Dβ ∧ (dτ+ − dτ−)

]
. (3.50)

The relevant part of this is the first line. We should impose
1

(2π)4

∫
M5

F int.
5 = N , (3.51)

in units where gs = α′ = 1. The integral is non-trivial but can be performed exactly,
ultimately we find that we must tune

2L4

π(1− ε2) = N . (3.52)

3.3.5 Central charge

In this section we will study the central charge with which we may compare to the field
theory results presented in section 3.1. Since the R-charges may be obtained from a speci-
fication of the more general solution we present later in section 3.4.5, we will suppress the
calculation of them here. The Brown-Henneaux formula [70]

csugra = 3
2G(3)

N

(3.53)

computes the sum of the left- and right- moving central charges of the field theory

csugra = cL + cR
2 . (3.54)

Since the theories we are considering preserve N = (2, 2) supersymmetry we have cL =
cR, and therefore the gravitational anomaly should vanish. The dimensionally reduced
Newton’s constant appearing in the Brown-Henneaux formula is computed by reducing
the full 10d solution on the compact internal manifold down to 3d. For a type II AdS3
solution with metric of the form

ds2 = e2A3ds2(AdS3) + ds2(M7) , (3.55)

the central charge is given by11

csugra = 3
24π6

∫
M7

eA3dvol(M7) . (3.56)

11This expression is in Einstein frame, though we have set the dilaton to zero, so this is identical to the
string frame for us.
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For the H2 solution we have

eA3 = LΛ
1
4 , dvol(M7) = 16L7

1− ε2 Λ−
1
4 e2A0dX1 ∧ dX2 ∧ dvol(S5) , (3.57)

where by dvol(S5), we mean the volume form on the unit norm round five-sphere, integrat-
ing to π3. We thus find

csugra = 3N2(g− 1) , (3.58)

where we have used that the volume of the Riemann surface is given by

vol(Σg) =
∫

Σg

e2A0dX1 ∧ dX2 =
∫

Σg

ρ = 4π(g− 1) , (3.59)

where ρ is the Ricci form, which follows since the chosen metric on the Riemann surface is
Einstein.

3.4 A more general solution

In this section we will generalise the previous solution by adding two additional free pa-
rameters. We generalise the previous solution by taking as ansatz for I

I = −µ2
0(log µ2

0 − 1)− 1
2R+µ

2
+(log µ2

+ − 1)− 1
2R−µ

2
−(log µ2

− − 1) + 2ν(t+ + t−) , (3.60)

where
µ2
± = b± −R±

[
(1 + r±)t+ + (1− r±)t−

]
. (3.61)

Note that the previous ansatz for I is recovered for r+ = −r− = 1 and c± = 2R±. As
before the solution is split into distinct cases depending on the genus. The universal sector
fixes the constants

a+ = κ

4 (2 + r+ + r−) , m± = 1± ε
2 , R± 6= 0 (3.62)

whilst the curvature dependent part satisfies

κ = 0 : dε = r∓ , c = −8b∓R±(r±− ε)2e4ν ,

κ 6= 0 : e4ν = κ

16R+R−(ε− r−)(ε− r+) ,

ε = cR+R−(r+ + r−) +κ(b+R−r−+ b−R+r+)±
√
R+R−(r+− r−)2(c2R+R−− b−b+)

κ(b+R−+ b−R+) + 2cR+R−
.

(3.63)
Note that these reduce to (3.34) for r+ = −r− = 1 and c± = 2R± as they should. Moreover,
we have a similar constraint on the functions µ0, µ± as in (3.35) given by

2R+R−(r+−r−)µ2
0+R−(ε−r−)µ2

++R−(r+−ε)µ2
− = b−R+(r+−ε)+b+R−(ε−r−) . (3.64)

As before, this defines an embedding equation of a surface into a three-dimensional ambient
space. Note that the inclusion of the parameters r± shift the coefficients of the functions
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µ± so that it is no longer simply m± as in (3.35). We may now assemble the full metric of
the solution. We have

1
L2 ds2 =

√
Λ
[
ds2(AdS3) + 4R+R−(r+− r−)2e4νe2A0(dX2

1 + dX2
2 )
]

+ 1√
Λ

[
dµ2

0 + 1
2R+ dµ2

+ + 1
2R−dµ2

−+ Λη2 +
µ2
−µ

2
+

2(R−(r−− ε)2µ2
+ +R+(r+− ε)2µ2

−)
Dφ2

+
µ2

0[R−(r−− ε)2µ2
+ +R+(r+− ε)2µ2

−]
2R+R−(r+− r−)2µ2

0 +R−(r−− ε)2µ2
+ +R+(r+− ε)2µ2

−
Dφ2

2

]
,

(3.65)
where

Dφ ≡ dφ−
(
ε− r+ + r−

2

)
κV ,

Dφ2 ≡ dφ2 + κV −
R−(r− − ε)µ2

+ +R+(r+ − ε)µ2
−

R−(r− − ε)2µ2
+ +R+(r+ − ε)2µ2

−
Dφ , (3.66)

η ≡ 1
2

(
dφ1 +

R+(r+ − ε)2µ2
− +R−(r− − ε)2µ2

+
R+R−(r+ − r−)2Λ Dφ2

)
,

and

Λ ≡ µ2
0 + (r− − ε)2

2R+(r+ − r−)2µ
2
+ + (r+ − ε)2

2R−(r+ − r−)2µ
2
− . (3.67)

From the presentation above we see that the metric looks locally like a U(1)3 preserving
deformed five-sphere. In addition, from the N = (0, 2) perspective of section 2.1, one
can identify the one-form η as the one-form dual to the R-symmetry vector. This puts
the metric on the five-sphere in the form of a U(1)-fibration over CP2 equipped with a
non-Einstein metric. The two-form flux is given by

F (2) = 2J6 − d(Λη) , (3.68)

with

J6 = 4e4νR+R−(r+ − r−)2ΛdV − 1
4
[
(1− ε)dt− + (1 + ε)dt+

]
∧Dφ2

+
(1 + r+)R+(r+ − ε)µ2

− − (1 + r−)R−(ε− r−)µ2
+

4(R+(r+ − ε)2µ2
− +R−(ε− r−)2µ2

+)
dt+ ∧Dφ

+
(1− r+)R+(r+ − ε)µ2

− + (r− − 1)R−(ε− r−)µ2
+

4(R+(r+ − ε)2µ2
− +R−(ε− r−)2µ2

+)
dt− ∧Dφ . (3.69)

3.4.1 TTT2 case

As in section 3.3.1 the T2 example reduces to the AdS3×S3×T4 solution, as such we shall
suppress further analysis of this case.
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3.4.2 S2 case

Let us turn to the S2 case. It is clear that we require R± > 0 and therefore positivity of
the warp factor of the Riemann surface, e4ν implies that

(ε− r−)(ε− r+) > 0 . (3.70)

Studying the embedding equation (3.64) we see that it defines an embedding into either
three-dimensional anti-de Sitter, Minkowski or de Sitter space for choices of the parameters.
In each case the solutions will be non-compact and therefore they do not give rise to good
holographic duals as in section 3.3.2.

3.4.3 H2 case

Instead, let us consider the g > 1 case. Positivity of the warp factor requires

(r+ − ε)(r− − ε) < 0 . (3.71)

Due to the symmetry of the solution we may assume without loss of generality that r+ > r−;
if this is not the case then we may relabel as +↔ −. We see that we must therefore require

r+ > ε , r− < ε , (3.72)

and consequently the embedding equation is that of a two-sphere in R3. We may then
parametrise as

µ2
0 = b−R+(r+− ε) + b+R−(ε− r−)

2R+R−(r+− r−) sin2 v , µ2
− = b−R+(r+− ε) +R−b+(ε− r−)

R+(r+− ε) cos2 v cos2 u ,

µ2
+ = b−R+(r+− ε) +R−b+(ε− r−)

R−(ε− r−) cos2 v sin2 u ,

(3.73)
giving rise to a compact internal manifold.

3.4.4 Toric data and three-cycles

We now want to analyse the regularity of these generalised solutions. We saw earlier that
regularity of the metric can be ensured by correctly identifying the embedding coordinates.
In this section we will take an alternative approach using the toric data of the five-sphere
at fixed point on the Riemann surface. Note that the compact part of the metric in (3.65),
without the Riemann surface, has been written as a U(1)3 fibration over a two-dimensional
space defined by the embedding condition (3.64). One can then use the tools of toric
geometry to analyse the regularity of the metric. Moreover, this analysis allows us to
identify the three-cycles, each corresponding to a degeneration surface of the metric, on
which one may wrap D3-branes giving rise to di-baryonic operators of the dual SCFT.
Of course, since on the five-sphere b3 = 0 defining such charges is subtle. From the toric
viewpoint these three-cycles wrapped by D3-branes are obtained when one goes to the
edge of the polytope over which the U(1)3 fibration is defined and where one of the U(1)’s
shrinks. With this in hand we may compute the R-charges of these operators and compare
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to the field theory. In the following we will consider just the κ 6= 0 case since the κ = 0
case reduces to the previously studied AdS3 × S3 × T4 solution.

The form of the ansatz for the function I is reminiscent of the canonical potential for
a symplectic toric manifold. Here, the µ2

•’s play the role of the functions defining the edges
of the polytope. Note that the metric has a singular like behaviour when any of µ0 or
µ± vanish, the goal is to obtain constraints such that the degeneration is smooth.12 To
this end we construct Killing vectors which have zero norm on some locus of the solution.
The degeneration locus is associated to the edges of a 2d polytope over which the U(1)3

is fibered. Requiring that the surface gravity of these Killing vectors is normalised to 1
on the respective degeneration surface, and giving the dual coordinate period 2π leads to
a smooth degeneration and a regular metric. In the case at hand there are three Killing
vectors, which, after the prescribed normalisation condition discussed above, are given by

k0 = 2∂φ1 − ∂φ2 , k± = (r± − ε)∂φ + ∂φ2 . (3.74)

Defining a new 2π-periodic coordinate for each of these three vectors via, k• = ∂ψ• , we find
that the metric is regular. In order to compute various integrals it is useful to perform a
change of coordinates,

φ1 = 2ψ0 , φ2 = −ψ0 + ψ+ + ψ− , φ = (r+ − ε)ψ+ + (r− − ε)ψ− . (3.75)

These new 2π-periodic coordinates give a free action for the U(1)3 torus action.
To extend this regularity analysis to the full manifold we now need to make sure that

the fibration over the Riemann surface is well defined. Viewing the fibration as a gauging
of the U(1)3 torus action via

dψ• → Dψ• ≡ dψ• +A• , (3.76)

with the A• gauge fields on the Riemann surface. The fibration is well-defined provided
that the field-strength of the gauge fields A• over the Riemann surface have integral period.
Explicit computation gives

A0 = 0 , A+ = A− = κ

2 V , (3.77)

and therefore the fibration is well-defined since
1

2π

∫
Σg

dV = 2(g− 1) . (3.78)

From the non-trivial gauge fields we can read off the topological twist of the dual field
theory. We see that the topological twist is performed by turning on a background gauge
field of the form

A = κ

2 (T+ + T−)V . (3.79)

Finally we may identify the (right-moving) R-symmetry of the solution from the expression
for the one-form η. We find

RR = ∂ψ0 + r− − ε
r+ − r−

∂ψ+ + ε− r+

r+ − r−
∂ψ− . (3.80)

12For a more detailed discussion as to why the following works see [44] for example.
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Note in particular that the R-symmetry does not mix with the isometries of the Riemann
surface. This is a distinction between the solutions discussed in this section and the ones
in the following section 4.

3.4.5 Flux quantisation and observables

Having discussed the geometry of the solution and the various three-cycles let us first
consider the quantisation of the five-form flux. We must ensure that this is an integer over
all integral five-cycles in the geometry according to the quantisation condition (3.51). Since
the geometry is a five-sphere fibered over a Riemann surface the only integral five-cycle is
the five-cycle at fixed point on the Riemann surface. The internal part of the five-form is

1
L4F

int.
5 = (r+− r−)(b+R−(ε− r−) + b−R+(r+− ε))2

2(R+R−)2(r+− r−)(r+− ε)(ε− r−)Λ2 cosu sin u cos3 v sin v×(
Λ + cos2 v

(r+− ε)(ε− r−)
[
b+R−(ε− r−) + b−R+(r+− ε)

]
2R+R−(r+− r−)3

)
du∧ dv ∧ dψ0 ∧ dψ+ ∧ dψ−

+ . . . , (3.81)

where the suppressed terms do not have support on the topological five-sphere. Integrating
the flux over the five-sphere we find the quantisation condition

N = L4

8π
(r+ − r−)[b+R−(r− − ε)− b−R+(r+ − ε)]

R+R−(r+ − ε)(ε− r−) . (3.82)

We can now compute the R-charges of baryonic operators in the SCFT. These corre-
spond to wrapping D3-branes on three-cycles on the five-sphere. The three-cycles, let us
denote them by S•, are the ones obtained by going to the facet of the polytope, upon which
a U(1) shrinks.13 Following [20] (see also [71]) the R-charge is given by

R[S•] = L4

(2π)3

∫
S•

e4∆dvol(S•) = L4

(2π)3

∫
S•
η ∧ J , (3.83)

where the last inequality has been written using (0, 2) language. Explicit computation
gives

R[S0] = −L
4

8π
(r+ − r−)[b+R−(r− − ε)− b−R+(r+ − ε)]

R+R−(r+ − ε)(r− − ε) , (3.84)

R[S+] = L4

8π
b+R−(r− − ε)− b−R+(r+ − ε)

R+R−(r+ − ε) ,

R[S−] = L4

8π
b−R+(r+ − ε)− b+R−(r− − ε)

R+R−(r− − ε) ,

which after using the definition of N become

R[S0] = N , R[S+] = N(ε− r−)
r+ − r−

, R[S−] = N(r+ − ε)
r+ − r−

. (3.85)

13We emphasise again that these three-cycles are not elements of H3(S5,Z) since b3(S5) = 0.
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Note that the R-charges are all positive and moreover they sum to 2N as expected [71],

R[S0] + R[S+] + R[S−] = 2N . (3.86)

In addition, from the form of the R-symmetry vector as given in (3.80), it is clear that the
dual operators in the field theory have charge 1 under the associated degenerating Killing
vector, and vanishing charge under the others directions. We may compare this with (3.19)
and find agreement upon identifying

cos2 αR = ε− r−

r+ − r−
. (3.87)

Finally, let us compute the central charge. As before we use the Brown-Henneaux
formula as given in (3.56), and as expected from the field theory analysis, the result is

c = 3(g− 1)N2 . (3.88)

Note in particular that the newly introduced parameters drop out of the central charge,
despite not dropping out of the R-charges of the fields.

4 D3-branes wrapping a topological disk

In [1] a solution with D3-branes wrapping a spindle was obtained in 5d U(1)3 gauged su-
pergravity and then lifted to ten dimensions. The result locally coincides with a solution
originally derived in [72], but the interpretation in terms of a spindle and CFT analysis
is new. The solution supports multiple charges and generically preserves N = (0, 2) su-
persymmetry, however, as we shall establish in this section, for a certain tuning of these
charges it experiences an enhancement to N = (2, 2), where the D3-branes now actually
wrap a Riemann surface with the topology of a disk and includes additional source D3-
branes. This solution can be embedded in the canonical form of section 2.2, interestingly
the Riemann surface which the branes wrap is not that of the (X1, X2) directions. In-
stead, as we establish in section 4.3, (X1, X2) span a two-sphere in the co-dimensions of
the wrapped D3-branes.

4.1 Summary of [1]

The metric of the solution of [1] takes the form14

1
L2 ds2 =

√
WH(x)

1
3
[
ds2(AdS3) + ds2(Σ2)

]
+ 1√

W

3∑
I=1

(XI)−1
[
dµ2

I + µ2
I(dφI +AI)2

]
,

W =
3∑
I=1

XIµ2
I , AI = x− x0

x+ 3KI
dϕ , XI = H(x)

1
3

x+ 3KI
,

ds2(Σ2) = 1
4P (x)dx2 + P (x)

H(x)dϕ2 , (4.1)

14The flux can be found in this reference.
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where µI embed a unit radius two-sphere into R3 and the functions of x are

H = (x+ 3K1)(x+ 3K2)(x+ 3K3) , P = H − (x− x0)2 , (4.2)

where [1] constrain K1 + K2 + K3 = 0, which kills the O(x2) term in H. The x direction
can then be bounded between two real roots of the cubic polynomial P for which H 6= 0,
and the surface becomes Σ2 = WCP1

[n+,n−], which is an orbifold known as a spindle. Here
n± ∈ N, are related to the period of ϕ. When K1 = K2 = K3 = 0 the solution of [13]
is recovered. In this section we shall consider a different tuning of these parameters, not
considered in [1].

4.2 An N = (2, 2) tuning

We would like to extract an N = (2, 2) solution from the local solution of the previous
section. The first thing to appreciate is that K1 + K2 + K3 = 0 is not a requirement for
supersymmetry (at least in ten dimensions), so let us instead tune the parameters as

K2 = K1 = K , K3 = −1
3x0 . (4.3)

The connection A3 then becomes topologically trivial, {A1 = A2, X1 = X2 = X−2
3 } and

so the U(1)3 isometry of the five-dimensional internal space gets enhanced to SU(2)×U(1)
— similar to the N = (2, 2) solution of [2]. This solution experiences an enhancement of
supersymmetry to N = (2, 2), as we prove in the following section, 4.3. The two functions
defining the solution become

H = (3K + x)2(x− x0) , P = (x− x0)Q , Q = (3K + x)2 − x+ x0 . (4.4)

For certain tunings of (K,x0) the polynomial Q contains two real roots x = x± namely

x± = 1
2
(
1− 6K ±

√
1− 12K − 4x0

)
. (4.5)

Σ2 exhibits spindle-like behaviour between these loci, however a physical metric should be
real and positive which requires {Q > 0, x > x0, 3K + x > 0}, and Q is strictly negative
for x− < x < x+. It is however possible to achieve a physical metric and to bound x to the
interval [x0, x−] provided that −1

3x0 < K < 1
12(1− 4x0). At x = x0 H and P both vanish,

but P/H remains finite, so similar to the solution of [9], the topology of Σ2 is now that of
a disk with R2/Zk orbifold singularity at x = x−. Close to x = x− only P exhibits a zero,
defining u = (x− − x) we find

ds2(Σ2) = 1
x+ − x−

(
du2 + (x+ − x−)2(x− − x0)2

H(x−) u2dϕ2
)
, (4.6)

at this loci, so that we have a R2/Zk orbifold when the period of ϕ is ∆ϕ = 2π
√
H(x−)

k(x+−x−)(x−−x0)
for k ∈ N or a regular zero for k = 1. The behaviour close to x = x0 in the full space needs
more care to disentangle: first one should note that warp factor W can now be written as

H
2
3W = (3K + x)

(
(x− x0) + (3K + x0)µ2

3

)
, (4.7)
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which provided µ3 6= 0, remains finite as x approaches x0. Similarly around x = x0
when µ3 6= 0 we find W (X1,2)−2 = µ−2

3 and W (X3)−2 = (x − x0)2(3K + x0)−2µ−2
3 . We

see then that the sub-metric spanned by (x, φ3 + ϕ) vanishes as R2 in polar coordinates.
The behaviour as both µ3, (x − x0) → 0 is a bit subtle, one can study it by changing
coordinates to

µ2
3 = r cos2

(
θ̃

2

)
, µ2 + iµ1 = e

i
2β
√

1− µ2
3 , x = x0 + (3K + x0)r sin2

(
θ̃

2

)
, (4.8)

and then expanding about r = 0. To leading order the metric then becomes

1
L2 ds2 =

√
r(3K + x0)

[
ds2(AdS3) + dϕ2

]
+ 1

4
√
r

[
dr2 + r2ds2(S̃2) + 4ds2(S3)

]
, (4.9)

where (θ̃, φ3 +ϕ) span the two-sphere and (β , φ1, φ2) span the three-sphere (in topological
joint coordinates). It is not hard to see that this behaviour is singular, it is in fact that
of a partially localised stack of D3-branes with worldvolume (AdS3, ϕ) that are smeared
over S3. Thus we see that at generic points of the deformed two-sphere spanned by µI the
solution is bounded between a regular zero at x = x0 and a R2/Zk orbifold at x = x−,
with flavour D3-branes at the loci (x = x0, µ3 = 0).

To further study the solution let us fix

µ3 = sinα , µ2 + iµ1 = cosαe
i
2β ,

φ1 = −1
2(τ1 − τ2) , φ2 = 1

2(τ1 + τ2) , φ3 = ψ − ϕ ,

Λ = x− x0 + (3K + x0) sin2 α , (4.10)

which allows us to write the metric as
1
L2 ds2 =

√
3K + x

√
Λ
[
ds2(AdS3) + 1

4(x− x0)Qdx2 + Q

(3K + x)2 dϕ2
]

+ 1√
Λ

ds2(M5) ,

ds2(M5) = Λ√
3K + x

dα2 + x− x0√
3K + x

sin2 αdψ2

+ 1
4
√

3K + x cos2 α

[
dβ2 + sin2 βdτ2

2 +
(

dτ1 + cosβdτ2 + 2 x− x0
3K + x

dϕ
)2
]
,

(4.11)

whereM5 is topologically a five-sphere when the coordinates are taken to have periodicity

0 ≤ α < π

2 , 0 ≤ β < π, 0 ≤ ψ < 2π, 0 ≤ τ1 < 2π, 0 ≤ τ2 < 4π . (4.12)

4.3 Embedding the topological disk solution into section 2.2

Above we have constructed a solution by taking a limit of the multi-charge solution of [72]
and then analysed its regularity. In this section we prove that the solution does indeed
preserve N = (2, 2) supersymmetry as claimed. We shall do so by embedding it into the
general form of section 2.2. Much of this can be reverse-engineered by comparing (4.11)
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to (2.3) and (2.21). This is sufficient to establish how the coordinates are related, extract
the values of (∂2

ΘD, ∂yD) and to identify the Riemann surface of the local ansatz, which
surprisingly turns out not to be Σ2. In fact it is not hard to show that the (X1, X2)
directions in (2.21) correspond to the two-sphere spanned by (β, τ1) in (4.11), as such this
is another example in the constant curvature ansatz, our first with a two-sphere. We must
identify the coordinates of (2.21) as

X1 = tan
(
β

2

)
cos τ1 , X2 = tan

(
β

2

)
sin τ1 ,

y = (x− x0) sin2 α , Θ = 3K + 2y − x0 − Λ ,

ψ1 = −ϕ− τ1 − τ2 , ψ2 = ψ , φ = τ1 + τ2 , (4.13)

and decompose the potential defining the system as

D = I(y,Θ) + (2y −Θ)A0 , A0 = − log
(1

2
(
1 +X2

1 +X2
2

))
, (4.14)

so that the partial differential equation of (2.20) reduces to

∂2
yI∂

2
ΘI − (∂y∂ΘI)2 + (2y −Θ)

16y2 e−∂yI = 0 . (4.15)

It is possible to extract the following derivative of I from the metric15

e∂yI = 1
32K̃

∆3 , (4.16)

2∆2∂
2
ΘI = −K̃Θ− (1− 2K̃)y + ∆2 + K̃

√
∆1

2y −Θ − y(1− 3K̃ + y)√
∆1

− y(1− K̃ − y)(K̃ + y)
(2y −Θ)

√
∆1

,

where we introduce

K̃ ≡ 3K + x0 , ∆1 ≡ 4K̃y + (K̃ + y −Θ)2 ,

∆2 ≡ K̃2 + y(Θ− 1− y) + K̃[4y(1 + y)− (1 + 4y)Θ + Θ2] ,

∆3 ≡ 2∆2 − (K̃ + y)(
√

∆1 − 2− y + Θ)− K̃(2 + K̃ + 5y − 2Θ) . (4.17)

The definitions (4.16) are self consistent (i.e. they give rise to the same ∂2
Θ∂yI) and are

already enough to confirm that (4.15) is satisfied, which is an important consistency check.
Further, though non trivial, the definition of ∂yI in (4.16) can be integrated to give I up to
a function of Θ which can then be fixed16 by imposing consistency with the expression for
∂2

ΘI. The final expression is rather complicated but of closed form, we find it convenient

15We can also extract an expression for ∂y∂ΘI which is consistent with these.
16Note that (4.15) is invariant under I → I + f(Θ) when f ′′(Θ) = 0, so we set terms linear in Θ to zero.
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to decompose it as

I=I0 +I+ +I−+IΘ ,

IΘ= 1
4

(
(Θ−1)+ 1−2K̃−Θ√

1−4K̃

)
log(Θ−2K̃), I±= 1

4
√

1−4K̃
q±

[
log
(
l∓+p±

√
∆1

)
− logm±

]
,

I0=−y
[
1+log(32K̃y)

]
+y log∆3−Θ

[
1
2 log

((
K̃+y+

√
∆1

)(
K̃−y+Θ+

√
∆1

))
− log(2y−Θ)

]
− 1√

1−4K̃

[
2K̃−(1−Θ)

(
1+
√

1−4K̃
)]

log∆2−
1
2 log

(
3K̃+y−Θ+

√
∆1

)
− 1−2K̃−Θ

2
√

1−4K̃
log
(

(1−Θ)
(

1−
√

1−4K̃
)
−2y

√
1−4K̃−2K̃

)
, (4.18)

where q± ≡ q1 ± q2 and so on for p±, l± and m±, with

q1 ≡ −1 + 2K̃ + Θ , p1 ≡ 1 + Θ− 6K̃ , q2 ≡
√

1− 4K̃(1−Θ) , p2 ≡
√

1− 4K̃q1 ,

l1 ≡
√

1− 4K̃
[
∆1 + y(1 + y) + Θ(1 + K̃ + y) + K̃(K̃ − 2)

]
, l2 ≡ (3K̃ + y −Θ)q1 ,

m1 ≡
√

1− 4K̃(1 + 2y −Θ) , m2 ≡ q1 . (4.19)

We have confirmed that (4.18) does indeed solve (4.15), so the solution preserves N = (2, 2)
supersymmetry as claimed.

It is interesting to contrast the above expression for I to the one of the previous
section in equation (3.60). Whereas the solution for I in the previous section had only
linear functions in the logarithms the solution here has truly non-linear terms. Moreover,
whereas in the previous section we could identify I as taking the form of a canonical toric
potential, such an interpretation is not manifest here. It would be interesting to better
understand the above solution for I in the hope that one may construct a sensible ansatz
with which we may further generalise the solutions. We hope to come back to this in the
future.

4.4 Flux quantisation and central charge

We now want to turn our attention to computing some observables of the dual CFT. We
should first quantise the flux onM5, the relevant part is

1
L4F5 = 1

4 sinα sin βdα ∧ dψ ∧ dβ ∧ dτ1 ∧ dτ2 + . . . (4.20)

where . . . either vanishes onM5 or does so when it is integrated over it. We then have
1

(2π)4

∫
M5

F5 = N ⇒ L4 = 2πN . (4.21)

We should also quantise the connections of the fibrations such that we have a well defined
orbifold fibration, this demands that we impose that the field strengths FI = dAI satisfy,17

M/k = 1
2π

∫
Σ2
F1 = 1

2π

∫
Σ2
F2 = ∆ϕ

4π [1− (x+ − x−)] , ∆ϕ = π[1− (x+ − x−)]
k(x+ − x−)√x− − x0

,

(4.22)
17Recall dA3 = 0.
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for M ∈ N, which fixes
3K + x0 = M(M ± 1)

(2M ± 1)2 . (4.23)

Given the constraints on (K, x0) discussed below (4.5) the positive branch is valid for
M ≥ 1 and the negative one for M ≥ 2, so they are equivalent — to be concrete we take
the former. We can compute the holographic central charge using (3.56), we find after
substituting for L and 3K + x0 this takes the form

csugra = 3N2 M2

4k(1 + 2M) , (4.24)

where again we expect the central charges of the dual CFT to be cL = cR = csugra.
Clearly we have a deviation from the behaviour derived in section 3.1, but this should be
no surprise as the D3-branes are now wrapping a topological disk which does not have
constant curvature.

4.5 Discussion

In section 4.3 we showed how the solution is embedded into the canonical form of section 2.2.
To our knowledge this is the first time an example with branes wrapping a surface of non-
constant curvature has been embedded into one of the various AdS classifications that
are defined in terms of a Mongé-Ampere like equation — it may be possible to construct
similar solutions for other wrapped brane scenarios. Interestingly, for this example, the
Riemann surface that the branes wrap and that of the classification are not the same —
indeed the (X1, X2) directions of (2.21) actually span a two-sphere. This is a novel feature
of this solution and one should contrast this with the solutions in section 3 where the
Riemann surface of the classification and that wrapped by the D3-branes is identical. This
may provide a hint towards finding solutions with branes wrapping non-constant Riemann
surfaces more broadly. It would be interesting to generalise this example as section 3.3.3
generalises [2], but we shall not attempt that here.

The dual field theory computation in this case is somewhat subtle. One cannot simply
specialise the field theory result in [1] to our current case. Concretely, one finds that
after c-extremization has been performed, despite the trial central charge having a well
defined extremal point, the central charge is identically 0. Clearly this is inconsistent.
This is in fact the same problem one would encounter if one naively specialises the general
N = (0, 2) twist of 4d N = 4 SYM in [68] to a N = (2, 2) twist in the constant curvature
Riemann surface case. The problem arises because c-extremization mixes the holomorphic
(right-moving) and anti-holomorphic (left-moving) R-symmetries. We leave recovering the
supergravity result from a field theory computation to the future.
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A Reducing the conditions

We have seen that the gravity solution is fixed by determining a four-dimensional metric
satisfying the torsion conditions (2.4)–(2.10). Our goal in this section is to obtain the
reduced conditions after substituting in an ansatz for the four-dimensional base. We will
take the most general 4d metric admitting a single U(1) isometry as used in [7] to study
AdS5 solutions in M-theory. Explicitly, the metric is

ds2
4 = e2A(dx2

1 + dx2
2) + e2B

[
(dθ + eCV R)2 + e2C(dφ+ V I)2

]
, (A.1)

where V I and V R have legs only along the Riemann surface parametrised by the coordinates
(x1, x2). The vector ∂φ is taken to be a Killing vector and thus the three scalars A,B,C
are independent of φ, though they may depend on the other three coordinates and y. We
will use conventions in which the Hodge dual on the Riemann surface satisfies

?2 dx1 = −dx2 , ?2dx2 = dx1 , (A.2)

and the volume form is given by

dvol2 = dx1 ∧ dx2 . (A.3)

In addition, let us define the one-forms

ηθ ≡ dθ + eCV R , ηφ ≡ dφ+ V I , (A.4)

and the twisted exterior derivative on the Riemann surface

d̂2 ≡ d2 − eCV R∂θ . (A.5)

With the above metric ansatz the SU(2)-structure forms are

J = e2Advol2 + e2B+Cηθ ∧ ηφ , Ω = eA+Be−iψ1(dx1 + idx2) ∧ (ηθ + ieCηφ) . (A.6)

A.1 Reducing the conditions

Let us reduce the torsion conditions (2.4)–(2.10) on the ansatz above. We begin with the
conditions for the holomorphic volume form before moving on to the Kähler form.

Reducing (2.9): ∂yΩ equation. From equation (2.9) we obtain the conditions

∂yC = 0 , (A.7)
?2V

R + V I = V 0 , ∂yV
0 = 0 , (A.8)

y∂y log
(
e2(A+B) cos2 ζ

)
= − tan2 ζ . (A.9)
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Since the first condition implies that the scalar C is independent of the y coordinate it
follows that it may be removed by a change of coordinates. We will therefore set C = 0 in
the following. Moreover we may solve the final condition by introducing the scalar Λ:

cos2 ζ = − 1
y∂yΛ

, e2(A+B) = −y2∂yeΛ . (A.10)

Reducing (2.10): d4Ω equation. Next consider (2.10). Once the dust settles we obtain
two conditions

0 = ∂θV
0 , (A.11)

σ = −1
2 ?2 d̂2 log

(
e2(A+B) cos2 ζ

)
+ 1

2∂θ log
(
e2(A+B) cos2 ζ

)
ηφ , (A.12)

the latter of which implies that σ is determined by the function Λ introduced in the previous
section,

σ = −qdφ− 1
2 ?2 d̂2Λ + 1

2∂θΛηφ . (A.13)

This exhausts the non-trivial conditions arising from the holomorphic volume form, and
we turn our attention to the Kähler form.

Reducing (2.5): ∂yJ equation. The conditions resulting from imposing (2.5) on the
above ansatz are

4∂ye2B = ∂2
θΛ , (A.14)

4e2B∂yV
R = d̂2∂θΛ , (A.15)

4∂ye2Advol2 = ∂θΛd̂2V
I − d̂2 ?2 d̂2Λ , (A.16)

4e2B∂yV
I = ∂θΛ∂θV I − ∂θ ?2 d̂2Λ . (A.17)

Note that the final condition, (A.17) is implied by (A.15) above and equation (A.8).

Reducing (2.6): d4J equation. Finally imposing that the base is Kähler for fixed y

is equivalent to the three conditions

∂θe2Advol2 = e2Bd̂2V
I , (A.18)

d̂2e2B = e2B∂θV
R , (A.19)

d̂2V
R = 0 . (A.20)

A.2 Simplifying the conditions

Restricting to the independent equations we are left with six independent conditions
to solve, namely (A.14)–(A.16) and (A.18)–(A.20) subject to the two constraints (A.8)
and (A.10).

First note that equation (A.20) implies that the twisted differential operator d̂2 is
nilpotent. Moreover, it follows that V R is locally exact with respect to this twisted exterior
derivative and we may write it (locally) as

V R = d̂2Γ , (A.21)
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for some function Γ. To proceed it is useful to make the change of coordinates [7]

Xi(x) = xi , −Γ(X,Θ, y) = θ . (A.22)

With this change of coordinates the derivatives are given by

∂θ = − 1
∂ΘΓ∂Θ , ∂y → ∂y −

∂Y Γ
∂ΘΓ∂Θ , ∂x = ∂X −

∂XΓ
∂ΘΓ∂Θ , (A.23)

whilst the twisted differential becomes

d̂2 = dX2 ≡ dXi ∧ ∂Xi . (A.24)

With this change of coordinates (and dropping the superscript X on dX2 from now on) the
one-form ηθ takes the simple form

ηθ = −∂ΘΓdΘ− ∂yΓdY . (A.25)

We can now solve (A.19) as

e2B = − G

∂ΘΓ , d2G = 0 , (A.26)

with G a scalar function. Inserting this into (A.10) fixes the warp factor of the Riemann
surface to be

e2A = y2eΛg

G
, (A.27)

where we have defined
g ≡ ∂yΛ∂ΘΓ− ∂yΓ∂ΘΛ . (A.28)

Since V 0 is independent of both θ and y it follows that for a suitable X dependent gauge
choice for Γ we may, without loss of generality set V 0 = 0. It then follows that (A.18) is
equivalent to

G
(
∂2
X1 + ∂2

X2

)
Γ = y2∂Θ

(
eΛg

G

)
. (A.29)

Next consider equations (A.14) and (A.15). They are equivalent to

∂yG = ∂ΘG̃ , (A.30)
d2G̃ = 0 , (A.31)

where we have defined the function

G̃ ≡ 1
4∂ΘΓ

(
4G∂yΓ− ∂ΘΛ

)
. (A.32)

The final equation to solve is (A.16) which implies

(G∂y − G̃∂Θ)e2A = G

4 (∂2
X1 + ∂2

X2)Λ . (A.33)
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Having further reduced the conditions in terms of scalar potentials let us study the structure
of the metric. First we define

h ≡ ∂yΛ̃∂ΘΓ− ∂ΘΛ̃∂yΓ , with Λ̃ = Λ + log y , (A.34)

then the warp factor is given by

cos2 ζ = −∂ΘΓ
yg

, and sin2 ζ = h

g
. (A.35)

The ten-dimensional metric becomes
1
L2 ds2 =

√
yg

h

[
ds2(AdS3) + h

g
dψ2

2 + e−4∆e2A(dX2
1 + dX2

2 ) + e−4∆ds2(M4)
]
, (A.36)

where

ds2(M4) = −
[

g

4∂ΘΓdy2 + ∂ΘΓ
h

(
ηΘ + ∂ΘΛ

∂ΘΓηy
)2

+ ∂ΘΓG
(

dΘ + ∂yΓ
∂ΘΓdy

)2
+ 4G
∂ΘΓη

2
y

]
(A.37)

and we have defined

ηΘ ≡ dψ1 −
1
2 ?2 d2Λ , ηy ≡ −

1
2(dφ− ?2d2Γ) , (A.38)

where the reason for this labelling of the one-forms will become apparent soon. If we make
the change of coordinates specified by

dθ̄ = GdΘ + G̃dy , (A.39)

under which the partial derivatives transform as

∂Θ = G∂θ̄ , ∂y → ∂y + G̃∂θ̄ , (A.40)

the functions G and G̃ are eliminated from both the metric and the remaining conditions
to solve. We may therefore set G to any non-zero constant, set G̃ = 0 and revert back to
the previous set of coordinates. We fix G = 1

4 so that the condition from setting G̃ = 0
implies the integrability condition

∂yΓ = ∂ΘΛ . (A.41)

We may solve this without loss of generality by introducing a potential D such that

Γ = ∂ΘD Λ = ∂yD . (A.42)

The two remaining conditions (A.29) and (A.33) then imply

�D − 16gy2e∂yD = f(X1, X2) . (A.43)

However, by suitably redefining the potential D we can set the function f(X1, X2) to zero
without loss of generality, so we do so. We must therefore solve the Mongé-Ampere like
equation

�D = 16y2
(
∂2
yD∂

2
ΘD − (∂y∂ΘD)2

)
e∂yD . (A.44)

– 29 –
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The final metric is

1
L2 ds2 =

√
yg

h

[
ds2(AdS3) + h

g
dψ2

2 + h

yg
e2A(dX2

1 + dX2
2 ) + h

yg
ds2(M4)

]
, (A.45)

ds2(M4) = 1
4gijdu

iduj + hijηiηj , (A.46)

gij ≡ − ∂i∂jD , (A.47)

hij ≡ − ∂i∂jD̃ , (A.48)

where
ui = {y,Θ} , η1 = ηΘ , η2 = −ηy , (A.49)

and
D̃ ≡ D + y(log y − 1) , e2A = 4y2e∂yDg. (A.50)

Note that the functions g and h are now the determinants of the matrices gij and hij
respectively.

The flux is given by

F (2) = −2J + yd
(
ηΘ −

∂ΘΛ
∂ΘΓηy

)
− d

(
yg

h

(
ηΘ −

∂ΘΛ
∂ΘΓηy

))
, (A.51)

with J as given in (A.6).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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